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Abstract—Motivated by controlling the errors of individual
edges in the causal graph discovery problem, we propose a
novel framework for causal discovery inspired by the Neyman-
Pearson formulation of hypothesis testing. In particular, our
formulation requires that the false negative rate is minimized
while simultaneously ensuring that the false positive rate is
held below a specified tolerance level. This allows us to call on
techniques from binary hypothesis testing. Specifically, we derive
the optimal rule for our problem, which consists of a likelihood
ratio test on the edges, and derive a series of matching upper
and lower bounds on the false negative rate, characterized by the
Rényi divergence, which can be used as benchmarks for current
discovery algorithms.

Index Terms—causal inference, Neyman-Pearson hypothesis
testing, Rényi divergence, converse bounds

I. INTRODUCTION

Understanding the underlying causes of phenomena affected
by multiple variables can often by done via the representation
of causal graphs [1]. These graphs are often assumed to be
directed acyclic graphs. Applying causal graph discovery can
have utility in disciplines as diverse as topology inference
in wireless networks [2], gene networks in biology (e.g.
[3]), impact of medications, and optimizing the impact of
advertising [4].

In general causal discovery, the goal is to learn the under-
lying directed acyclic graph from observational data. While
some methods focus on recovering the direction of a subset of
edges [5], others aim to recover the full directed graph [6]–[8].
A challenge with this prior art, in the current context, is an
inability to analyze the edge detection performance. Given a
key equivalence class (Markov equivalence), the results of [9]
imply the asymptotic consistency of greedy search algorithms,
in the number of observations, though no finite data results are
given. However, a challenge of greedy search, in general, is
the associated computational complexity.

Full causal graph recovery is provably hard, even with
access to large observational sets. Within the class of recov-
erable graphs, the prohibitively large search space challenges
even greedy algorithms. As a result, there has been a focus
on computationally feasible algorithms that exploit sparsity
assumptions in the graph as well as a focus on support
recovery (is an edge present or not), versus full recovery.
The following [10], [11] examine sparse networks and provide
sample complexity results. Causal discovery is posed as a
matrix completion problem in [12], and consistency results
are provided. We underscore that we seek problem frameworks
where graph sparsity is not necessarily present.
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Recent work has examined controlling error rates for in-
dividual edge detection such as [13]. An algorithm based on
causation entropy is proposed in [14] and the false positive
and false negative rates are empirically analyzed. In turn,
[15] derives derives converse bounds on the achievable false
negative and false positive error rates for the framework of
[14]. One of our main contributions in this work, is an
improvement on the bound derived in [15] (as adapted to our
context) specifically for the low false positive rate regime.

We control edge error rates by formulating the support
recovery problem as a constrained optimization problem sim-
ilar to the Neyman-Pearson formulation of binary hypothesis
testing. This allows us to use techniques from hypothesis
testing and information-theoretic measures, such as the Rényi
divergence, which has been used to study M -ary hypothesis
testing bounds, [16], [17] and even network information flow
in neural networks [18]. Our formulation has the flavor of an
M -ary hypothesis testing problem if one considers all possible
realizations of edges being absent and present as different
hypotheses. We observe that our framework is not identical
to those previously considered (e.g. [15]. Given our Neyman-
Pearson based framework, we can tradeoff between the two
error types, versus prior work which considered all types of
errors equally. Our contributions are as follows:

1) We pose support detection in a causal graph as a collec-
tion of Neyman-Pearson problems. An aggregated false
negative rate is minimized subject to a pre-specified tol-
erance on the aggregated false positive rate. Aggregation
is over all edges in the causal graph.

2) We propose the optimal support detector, upper and lower
bounds on the false negative rate, and by leveraging tools
from [15], a genie-aided lower bound.

3) We investigate the performance of the optimal detector
compared to other causal discovery methods, as well as
our derived lower bound, and the converse bound derived
in [15]. In particular, we shall see that the optimal detector
outperforms: the Bayesian information criterion (BIC)
[6], NOTEARS [7], and LASSO neighborhood selection
[10] method.

4) We show through the numerical examples that our lower
bound is tighter than the bound proposed in [15] when
the false positive rate is small.

Much of our notation mimics that used in [15] and [14].

II. PROBLEM FORMULATION

Consider a directed acyclic graph G with edge set E , vertex
set V with |V| = p, and corresponding weighted adjacency



Fig. 1: (L) An example, five-node, directed, acyclic graph
with edge weights. (R) Two-node graphs corresponding to the
matrices A0, A1, and A2, respectively.

matrix A ∈ Rp×p. We assume a prior on the adjacency matrix,
denoted by πA. We have a series of observations {Xk}nk=1

generated by the underlying distribution PA conditioned on the
realization of A. For ease of exposition, we restrict ourselves
to the linear, additive, exogenous inputs case, i.e.,

Xk = AXk +Wk, (1)

where the exogeneous input terms {Wk}nk=1 are i.i.d.. Given
the underlying adjacency matrix A, the goal is to recover the
support χ of A, where χi,j = 1 ⇐⇒ Ai,j ̸= 0 or Aj,i ̸= 0.

A. Neyman-Pearson Causal Discovery

We define the following error rates

false positive : ϵ+ =
E
∑

i,j 1{χ̂i,j = 1,Ai,j = 0}
E
∑

i,j 1{Ai,j = 0}
, (2)

false negative : ϵ− =
E
∑

i,j 1{χ̂i,j = 0,Ai,j ̸= 0}
E
∑

i,j 1{Ai,j ̸= 0}
, (3)

where the expectations are taken with respect to detector χ̂ as
well as the prior distribution on the matrix A, πA. We wish
to find the detector χ̂ that solves the following optimization
problem.

inf
χ̂

ϵ− s.t. ϵ+ ≤ ϵ, (4)

where 0 < ϵ < 1. We underscore that the detector χ̂ captures
the detection of all edges in the causal graph; we shall provide
a strategy for the detection of each individual edge, but our
performance analysis will be over all edges.

B. Definitions

Throughout this work, we will consider a binary hypothesis
test for each individual edge. In particular, for an observed
data set {Xk}n1 , define the hypothesis testing problem

H0 : χi,j = 0, {Xk}n1 ∼ Pi,j (5)

H1 : χi,j = 1, {Xk}n1 ∼ Qi,j (6)

where Pi,j denotes the density of {Xk}n1 conditioned on
χi,j = 0 and Qi,j denotes the density of {Xk}n1 conditioned
on χi,j = 1. Thus, our problem is actually mixed in nature,
since we assume a prior distribution πA on the graph matrix
A; however we wish to control the aggregated error rate on
the aggregated detector χ̂ as in a classical Neyman-Pearson
detection problem.

Definition 1. We define the following probabilities and
weights:

P+
i,j = P(χ̂i,j = 1|χi,j = 0), (7)

Q−
i,j = P(χ̂i,j = 0|χi,j = 1). (8)

w+
i,j =

P(Ai,j = 0)∑
k,l P(Ak,l = 0)

, (9)

w−
i,j =

P(Ai,j ̸= 0)∑
k,l P(Ak,l ̸= 0)

. (10)

□

With definitions 1, we can straightforwardly write out our
error rates as,

ϵ+ =
∑
i,j

w+
i,jP

+
i,j , ϵ− =

∑
i,j

w−
i,jQ

−
i,j , (11)

III. MAIN RESULTS

We first present the optimal detector for the Neyman-
Pearson discovery problem. Due to space constraints, all
proofs are relegated to the supplemental notes [19].

Proposition 1. Let U be a uniform random variable on [0, 1].
Then, the optimal detector χ̂∗ for the Neyman-Pearson causal
discovery problem is given as follows, where the per edge
detector is given by,

χ̂∗
i,j =



0,
dPi,j

dQi,j
>

w−
i,j

w+
i,j

γ

0,
dPi,j

dQi,j
=

w−
i,j

w+
i,j

γ and U ≤ η

1,
dPi,j

dQi,j
<

w−
i,j

w+
i,j

γ

1,
dPi,j

dQi,j
=

w−
i,j

w+
i,j

γ and U > η

(12)

where γ and η ∈ [0, 1] are chosen so that ϵ+ = ϵ. □

Similar to the optimal detector in Neyman-Pearson hypoth-
esis testing, the random variable U controls our randomization
to achieve the false negative rate exactly.

An interesting observation is that the threshold γ and the
randomization η do not depend on the edge being considered.
The effect of the edge in question is captured by the edge

weights in the factor
w−

i,j

w+
i,j

(which is completely determined by
the prior πA). This feature simplifies design and analysis. For
example, the next proposition follows relatively easily due to
the form of χ̂∗.

Proposition 2. For the detector χ̂∗ given in Proposition 1,
we have, for any λ ∈ [0, 1]

ϵ− ≤
∑
i,j

(w−
i,j)

1−λ(w+
i,j)

λ 1

γλ
e−(1−λ)Dλ(Pi,j ||Qi,j), (13)

where Dλ(Pi,j ||Qi,j) is the the Rényi divergence of order
λ between the series of distributions Pi,j and Qi,j which is
defined in the Appendix. □

The next theorem is a converse bound for any detector χ̂.



Proposition 3. For any detector χ̂ that satisfies ϵ+ ≤ ϵ, we
have that for any λ ∈ [0, 1].

ϵ− ≥ 1

2

∑
i,j

w−
i,j exp

{
− (1− λ)Dλ(Pi,j ||Qi,j)

−λD′
λ(Pi,j ||Qi,j)− λ

√
2D′′

λ(Pi,j ||Qi,j)
}

− ϵmax
i,j

{
w−

i,j

w+
i,j

exp
{
−D′

λ(Pi,j ||Qi,j)

+ (1− 2λ)
√
2D′′

λ(Pi,j ||Qi,j)
}}

,

(14)

where D′
λ(Pi,j ||Qi,j) and D′′

λ(Pi,j ||Qi,j) are defined in the
appendix. □

Propositions 2 and 3 show that the information-theoretic
quantity that controls the false negative rate for a given
tolerance ϵ is the Rényi divergence. Their proofs are provided
in the Supplemental material [19].

A. Genied Aided Lower Bound

Given that our optimal detector necessitates the averaging
over all possible edge combinations, it is computationally
expensive to compute. We leverage the technique proposed in
[15] to create a further lower bound. Specifically, we introduce
a switching variable that acts as a genie, and lower bound the
achievable false negative error rate for a specified tolerance
level ϵ. This lower bound is considerably easier to compute
compared to the optimal detector.

In the sequel, we make the following assumption.

Assumption 1. For each (i, j), there exists a random variable
S with distribution αS such that for all X ,

Pi,j(X) =
∑
s

αsPi,j(X|S = s) =
∑
s

αsPi,j,s, (15)

Qi,j(X) =
∑
s

αsQi,j(X|S = s) =
∑
s

αsQi,j,s, (16)

where Pi,j,s = Pi,j(X|S = s),

Qi,j,s = Qi,j(X|S = s)

□

The assumption suggests a mixture structure of the distribu-
tions Pi,j and Qi,j . We exploit this assumption to determine
the following lower bound on the achievable false negative
rate.

Proposition 4. Suppose Assumption 1 holds. Then, for a given
tolerance level ϵ ∈ (0, 1) and any detector χ̂ that satisfies
ϵ+ ≤ ϵ, we have∑

i,j

w−
i,j

∑
s

αsQi,j,s

(
dPi,j,s

dQi,j,s
>

w−
i,j

w+
i,j

γ

)
≤ ϵ−, (17)

where γ is chosen so that∑
i,j

w+
i,j

∑
s

αsPi,j,s

(
dPi,j,s

dQi,j,s
<

w−
i,j

w+
i,j

γ

)
= ϵ. (18)

□

Proof Sketch of Theorem 4. Consider a detector χ̂s that
receives not only {Xk}n1 , but also the genie information, S.
Then, consider the following hypothesis testing problem for
each edge,

H0 : χi,j = 0, {Xk}n1 ∼ Pi,j,s (19)

H1 : χi,j = 1, {Xk}n1 ∼ Qi,j,s. (20)

If we define the probabilities

ϵ−s =
∑
i,j

w−
i,j

∑
s

αsP(χ̂s
i,j = 0|χi,j = 1, S = s), (21)

ϵ+s =
∑
i,j

w+
i,j

∑
s

αsP(χ̂s
i,j = 1|χi,j = 0, S = s), (22)

we have the following for any detector χ̂s that does not use
S,

ϵ−s =
∑
i,j

w−
i,j

∑
s

αsP(χ̂s
i,j = 0|χi,j = 1, S = s) (23)

(a)
=
∑
i,j

w−
i,j

∑
s

αsP(χ̂i,j = 0|χi,j = 1, S = s) (24)

=
∑
i,j

w−
i,jP(χ̂i,j = 0|χi,j = 1) (25)

(b)
=
∑
i,j

w−
i,jQ

−
i,j

(c)
= ϵ−, (26)

where (a) follows since χ̂s is not a function of S, (b)
follows from Definition 1, and (c) follows from 11. Similarly,
ϵ+s = ϵ+. Then, any detector χ̂ that does not use the genie
information and satisfies ϵ+ ≤ ϵ is also a valid detector for
the following optimization problem,

inf
χ̂s

ϵ−s s.t. ϵ+s ≤ ϵ. (27)

So, for any tolerance ϵ we have that

inf
χ̂s

ϵ−s ≤ inf
χ̂

ϵ−. (28)

Hence, solving (27) lower bounds the achievable false negative
rate for Problem (4). We can use the same procedure used
to derive the optimal detector in Proposition 1 to prove
Proposition 4. ■

In the numerical results, we shall compare the derived
optimal detector to various lower bounds. In [15], the perfor-
mance of graph discovery is investigated through a Bayesian
error metric (probability of error). However, we can adapt
their results to provide a comparable bound for our Neyman-
Pearson detection problem. To this end, we modify Proposition
2 in [15] as follows.

Proposition 5 (adapted from [15]). For any detector χ̂ that
satisfies ϵ+ ≤ ϵ, we have for any λ ∈ (0, 1)

ϵ− ≥ 1

2λ

∑
i,j

(√
1− 4λ(1− λ)ρ2i,j

)
min{w−

i,j , w
+
i,j}−

1− λ

λ
ϵ

(29)



where

ρi,j =

∫
X

√
dPi,j

dQi,j
dQi,j (30)

is the Bhattacharyya coefficient between Pi,j and Qi,j . □

In the numerical results, we will refer to this lower bound
as the Bhattacharyya lower bound.

IV. NUMERICAL RESULTS

We consider a numerical example to illustrate our results.
Our numerical results a suggest that our proposed lower bound
is tighter than the one proposed in [15] when the allowed
tolerance ϵ goes to zero. We compare the optimal detector to
other algorithms, such as the Bayesian information criterion
(BIC) [6], NOTEARS [7], and LASSO neighborhood selection
[10]. We briefly summarize each method. We underscore
that each method below necessitates hyper-parameter tuning;
however, our method does not have any hyper-parameters.
These methods optimize an objective function either via brute
force search over the possible active edges in A or via a low
complexity approximation.

1) BIC: The BIC method is a penalized likelihood detector.
Given jointly Gaussian observations conditioned on the
matrix A, the score function is given by

np

2
log(2πσ2)+

n

2σ2
Trace

(
(I−A)⊤(I−A)Σ̂

)
+β∥A∥0,

(31)
where Σ̂ is the empirical covariance matrix, β is a
regularizer term, and ∥A∥0 is the l0 norm of A (the
number of non-zero entries). BIC employs exhaustive
search.

2) NOTEARS: The NOTEARS algorithm seeks to minimize
the penalized squared loss,

1

2n

n∑
k=1

∥Xk −AXk∥22 + β∥A∥1, (32)

where β is a regularizer term, ∥Xk − AXk∥2 is the l2
norm of the vector Xk−AXk and ∥A∥1 is the l1 norm of
the matrix A. It is shown in [7] that a weighted adjacency
matrix A represents a directed acyclic graph if and only
if

Trace(eA◦A) = p, (33)

where ◦ denotes the Hadamard product (element-wise
multiplication). Hence, the NOTEARS algorithm converts
the combinatorial optimization problem into a continuous
problem, and an algorithm used to solve this continuous
problem is given in [7]. The elements of the continuous-
valued estimate Â are thresholded to determine the
inactive edges.

3) LASSO: For a given observed node Xi,k, let Y i
k =

[X1,k, ..., Xi−1,k, Xi+1,k, ..., Xp,k]
⊤ for k = 1, 2, ..., n.

Then, assuming a linear model for the observations,
X̂i,k = A⊤

i Yi,k, where Ai is a vector of coefficients,

LASSO [10] minimizes the following sparsity penalized
loss over the coefficients of Ai,

1

2n

n∑
k=1

∥Xi,k −A⊤
i Y

i
k∥22 + β∥Ai∥1, (34)

for each node i, where β is a regularizer term.
Consider a system with two nodes, see Figure 1. We receive

observation {Xk}n1 with Xk = [X1,k, X2,k]
⊤, k = 1, 2, ..., n.

As stated before, we assume a linear system,[
X1,k

X2,k

]
= A

[
X1,k

X2,k

]
+

[
W1,k

W2,k

]
, (35)

where the [W1,k,W2,k]
⊤ vectors are i.i.d. Gaussian vectors

with zero mean and covariance matrix σ2I . Since we restrict
ourselves to directed acyclic graphs, the adjacency matrix A
can only take one of three possible forms, which we denote
as follows,

A0 =

[
0 0
0 0

]
, A1 =

[
0 0
a 0

]
, A2 =

[
0 a
0 0

]
,

(36)
where a ∈ R \ {0}. For simplicity, we assume a = 1.
The corresponding graph structures are given in Figure 1.
Furthermore, we assume that the prior πA selects from A0,
A1, and A2 uniformly at random. Then, it is not difficult to
see that

w+
i,j = w−

i,j = 1. (37)

In order to implement χ̂∗ we must first compute the condi-
tional distributions P1,2 and Q1,2. To compute P1,2, observe
that if χ1,2 = 0, then A0 must be the true graph structure, and
so X1,k and X2,k are simply i.i.d Gaussian random variables
with variance σ2. To compute Q1,2, notice that if χ1,2 = 1,
the true graph may correspond to either A1 or A2; each occur
with equal probability. In either case, X1,k and X2,k are jointly
Gaussian random variables. Under A1 they have zero mean
and covariance matrix σ2(I −A1)

−1(I −A1)
−⊤. Under A2

they have zero mean and covariance matrix σ2(I−A2)
−1(I−

A2)
−⊤. Then, we have that

Q1,2(Xk) =
1

2

e−
1

2σ2 X⊤
k (I−A1)

⊤(I−A1)Xk

2π|σ2(I −A1)−1(I −A1)−⊤|

+
1

2

e−
1

2σ2 X⊤
k (I−A2)

⊤(I−A2)Xk

2π|σ2(I −A2)−1(I −A2)−⊤|
.

(38)

In addition to the two-node case described above, we consider
the same system with four nodes. That is, all possible four-
node directed acyclic graphs are equally likely to be selected,
and all edge weights are equal to one.

In examining Figures 2a and 2b, we see, unsurprisingly, that
the derived optimal detector strongly outperforms the existing
strategies with respect to minimizing the false negative rate,
and this performance gap seems to increase as the number of
nodes increases. We also see that our proposed lower bound
is slightly looser than that adapted from the bound in [15]
when the allowed tolerance ϵ is high. However, as can be
seen in Figures 2c and 2d, our bound is tighter as ϵ goes to



(a) Performance curves for p=2; comparing various de-
tectors and bounds.

(b) Performance curves for p=4; comparing various de-
tectors and bounds.

(c) Comparisons of lower bounds for p = 2. (d) Comparisons of lower bounds for p = 4.

Fig. 2: Numerical results showcasing the performance of the optimal detector as well as the tightness of the lower bound for
low false positive rates. For all the cases, σ2 = 1 and n = 10. Performance curves are averaged over 1000 iterations.

zero. Moreover, the algorithms considered all perform very
poorly in this low ϵ regime. In particular, if one increases the
regularizers for the LASSO and BIC methods, which helps
control the false positive rate, then the algorithms will begin
heavily biasing graphs with no connections, effectively making
the false negative rate equal to one. Although our estimator is
optimal, it can become computationally infeasible to compute
even for a modest number of nodes. For instance, for a ten-
node graph, the number of possible directed acyclic graphs is
on the order of 1018. These observations facilitate the need
to design computationally efficient algorithms that are robust
to low false positive rates. As an example, the algorithm in
[13] seeks to control critical errors (false negatives in our
context) by only deleting the minimum number of edges so
that the resulting graph is a directed acyclic graph. It is
computationally efficient as it seeks to learn subsets of the
graph.

V. CONCLUSIONS

In this paper, we have considered the problem of Neyman-
Pearson causal inference, which seeks to minimize the ag-
gregated false negative rate subject to a pre-defined tolerance
on the aggregated false positive rate. We have also derived a
lower bound on the achievable false negative rate for a given
tolerance. Our lower bound is tighter in the regime where
the false positive rate tends to zero, and current algorithms
also perform poorly in this regime, motivating future research

into methods that are robust to low false positive tolerance.
Although not presented herein due to space limitations, we
compare the genie bound to discovery algorithms on time-
series data as was also considered in [15].

APPENDIX

A. Additional Definitions

We state classical definitions for measures that arise in our
performance bounds.

Definition 2. The Rényi divergence of order λ between two
probability measures P and Q and its first two Radon-
Nikodym derivatives are given by, respectively,

Dλ(P ||Q)
.
=

1

λ− 1
log

∫
X

(dP
dQ

)λ
dQ (39)

D′
λ(P ||Q)

.
=

∫
X
Fλ(x;P,Q) log

dP

dQ
(40)

D′′
λ(P ||Q)

.
=

∫
X
Fλ(x;P,Q)

(
log

dP

dQ

)2

−
(
D′

λ(P ||Q)
)2
(41)

where Fλ(x;P,Q)
.
=

f(x)λg(x)1−λ∫
X f(x)λg(x)1−λdµ

for λ ∈ [0, 1]

(42)

where dP
dQ is the Radon-Nikodym derivative of P with respect

to Q.
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