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Abstract—We introduce an algorithm for causal discovery in
the setting of linear additive Gaussian noise models that controls
the false positive rate of individual edges. The ability to control
individual edge errors has only recently started to gain attention.
However, recent methods that make guarantees on the existence
of edges can only do so in the limit of infinite samples or are
computationally infeasible even for modestly sized graphs. By
looking at the residual sum of squares between two vertices we
can detect the presence of an edge while controlling the false
positive rate for a given number of samples. We call our algorithm
e-CUT and compare it to other state-of-the-art algorithms. In
some instances, ¢-CUT achieves a 12 percent reduction in the
false negative rate for a given false positive rate over the different
algorithms.

Index Terms—causal inference, finite-sample results, error
control

I. INTRODUCTION

Understanding the underlying causes of phenomena affected
by multiple variables can often be done via the representation
of causal graphs [1]. These graphs are often assumed to be
directed acyclic graphs. Applying causal graph discovery can
have utility in disciplines as diverse as topology inference in
wireless networks [2], gene networks in biology (e.g. [3]), the
impact of medications, and optimizing the effect of advertising
[4]. As a result, there is a wide range of research regarding
causal graph discovery. For instance, [S] shows that greedy
search algorithms based on likelihood methods, such as those
introduced in [6] are optimal (though not necessarily com-
putationally efficient). Causation entropy is introduced in [7]
for causal discovery of time series data, and further analyzed
in [8]. Causal discovery is posed as a matrix completion
problem in [9]. However, most graph discovery algorithms
do not provide finite-sample guarantees on individual edges
discovered by the algorithm, which is unfavorable in many
applications, especially when the existence of an edge between
two vertices may lead to different decisions. Because of this,
we introduce e-CUT, an algorithm for Causal discovery with
Unequal edge error Tolerance.

A common way to control the sparsity of causal graphs
in discovery algorithms is through a regularization term such
as {y in BIC [6] and ¢; in LASSO neighborhood regression
[10] and NOTEARS [11]. A hyper-parameter determines the
strength of the regularization, and a higher parameter value
indicates the algorithm favors sparsely connected graphs.
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Unfortunately, aside from a well-known result in [10] (which
deals with connected components rather than individual edges)
there is no current way to determine a priori how the hyper-
parameter value affects the edge error rates of various discov-
ery algorithms.

Recently, researchers have begun to emphasize providing
guarantees on the edge error rates and confidence bounds on
the outputs of discovery algorithms. For instance, a generalized
likelihood ratio test is inverted in [12] to obtain confidence
bounds on the causal effects between individual vertices.
However, the results in [12] rely on asymptotic results, and
hence cannot provide guarantees in the finite sample setting.
In [13] a causal bandit problem is studied and different
edge errors are treated unequally. This paper considers the
setting introduced in [14], which formulates the causal graph
discovery problem as a Neyman-Pearson hypothesis testing
problem, where the false negative rate is minimized subject
to a false positive constraint. The optimal detector is derived
in [14], but is found to be computationally infeasible even
for modestly sized graphs. Hence, the algorithm introduced
in this paper still satisfies the finite-sample constraint on the
false positive rate, while significantly reducing computational
complexity.

Our contributions are as follows:

1) We derive an algorithm that seeks to minimize the false
negative rate while keeping the false positive rate below
a pre-specified tolerance level e. We call this method e-
CUT.

2) We show e-CUT’s false positive rate will always sat-
isfy the user-specified tolerance. This result requires no
asymptotic assumptions on the convergence of distribu-
tions or consistency conditions and hence, is a finite-
sample result.

3) We investigate the performance of ¢-CUT compared to
other causal discovery methods, namely LASSO neigh-
borhood regression [10] and NOTEARS [11]. We study
two examples. The first considers a two-vertex system
with varying edge weights and shows e-CUT performance
improves relative to the other algorithms for increasing
edge weights. In the second, we fix the edge weight and
vary the size of the graph, again showing a performance
gain for even modestly sized graphs.

Much of our notation mimics that used in [8], [14] and [7].



Fig. 1: (L) An example, five-node, directed, acyclic graph
with edge weights. (R) Two-node graphs corresponding to the
matrices Ag, A1, and As, respectively.

II. PROBLEM FORMULATION

Consider a directed acyclic graph G with edge set &, vertex
set V with |V| = d, and corresponding weighted adjacency
matrix A € R4*¢ We assume a prior on the adjacency matrix,
denoted by m4. We have a series of n observations {Xj}7_,
generated by the underlying distribution P4 conditioned on
the realization of A. Given a vertex i € V, let X(i) be the
k-th measurement k = 1,..,n of vertex i. Moreover, let Z(4)
denote the parent set of vertex i. Assuming Z(4) is non-empty,
let i; be the j-th parent of vertex ¢, j = 1,...,|Z(¢)|. Define
the vector

Zi (i) = [Xp(i1), Xn(i2), oos Xi (i) 2] T (1)

i.e., the vector comprised of the k-th measurements of the par-
ents of <. Moreover, we assume a linear, additive, exogenous
inputs model, i.e.,

X = AX,+ Wy, (2

where the exogeneous input terms {W}, }7_, are Gaussian with
equal covariance. This assumption is commonly made in the
literature [6], [8], [10], [12], and it is also worth underscoring
that if one removes the equivariance assumption, recoverability
of A is no longer guaranteed even in the asymptotic case
[6]. Given the underlying adjacency matrix A, the goal is to
recover the support x of A, where x;; =1 < A;; #0
or Aj,i # 0.

A. Error Metrics

We define the following error rates which were first intro-
duced in [7] and further studied in [8] and [14],
E>.; H{xi; =1,4i; =0}
false positive : €t = o) J i , Q)
E E” H{Az}j =0}
o ]EZM ]]-{Xi,j =0, Ai,j 7£ 0}
]EZ” 1{A;; # 0} ’
where the expectations are taken with respect to detector x as
well as the prior distribution on the matrix A, ma. We wish
to find the detector x that solves the following optimization
problem.

“4)

false negative : €~

infem st et <, (5)
X

where 0 < € < 1. We underscore that the detector x captures
the detection of all edges in the causal graph; we shall provide
a strategy for the detection of each individual edge, but our

performance analysis will be over all edges.

B. Definitions
Definition 1. We define the following probabilities and

weights:

Pfg = P(f(i,j = I‘Xi,j =0), (6)
Qi; =P(x;; =0lx;; =1). )

P(A;; =0)
TF. = /L)J 3 8
i >y P(Ak = 0) ®)

P(A;; #0)
— i . 9
Wi >k P(Ak #0) ©)
O

With definitions 1, we can straightforwardly write out our

error rates as,
D DD Sy
€ wii B € Wi i,
N 1)

III. MAIN RESULTS

(10)

We present e-CUT along with our main results. Namely, -
CUT satisfies the false positive constraint in (5). Due to space
constraints, the proofs are omitted, however, we give the basic
intuition of our algorithm, which is best explained through a
simple example.

Consider a system with two vertices, see Figure 1. We
receive observation {X.}7 with X, = [Xx(1), Xx(2)]T,
k=1,2,...,n. As stated before, we assume a linear system,

Xi(D)] _ 4 [Xk(1) Wi (1)

] R ot 0
where the [W},(1), Wi (2)] T vectors are i.i.d. Gaussian vectors
with zero mean and covariance matrix o2I. Since we restrict
ourselves to directed acyclic graphs, the adjacency matrix A
can only take one of three possible forms, which we denote
as follows,

0 0 0 0 0
AO[O 0}, Al[a 0], Az{o g},

(12)

where a € R\ {0}. If A = Ay, we have that for all ,
E[Xx(1)?] = E[Wk(1)°] = o, (13)
E[Xk(2)’] = E[Wk(2)’] = 0. (14)

Alternatively, if A = Ay, we still have E[X}(1)?] = o2, but

E[X(2)%] = E[(aXk(1) + Wi(2))’] = (a® + 1)o2. (15
Similarly, if A = A, then we have
E[X:(1)?] = (a® + 1)0?, E[X:(2)?] = o2. (16)

Hence, we study the following hypothesis testing problem,

Ho : E[X(1)%] = E[X(2)%],
Hy : E[Xk(1)?] # E[Xr(2)%.

a7
(18)

Our hypothesis test is given as follows. If Hy is true, then
the empirical estimates of the variances should be roughly



Algorithm 1: e-CUT

Specify user false alarm tolerance 0 < € < 1. Let 2Y denote the power set of V' (the vertex set). Let B denote the set
of all unique pairs of edges, i.e., the set of all pairs (¢, ), such that ¢ # j, 4,j € V. The cumulative distribution
function (cdf) of a chi-squared distribution with [ degrees of freedom is denoted by Fj(x).

For each (i,7) € B:

1) For each Z(i) € 2¥ and Z(j) € 2V with j ¢ Z(i) and i ¢ Z(j):
a) Perform linear least squares regression for ¢ and j on Z () and Z (7), respectively, obtaining the vectors of

coefficients & and f.
b) Compute

i.e., the residual sum of squares for vertices ¢ and j.

¢) Compute T4(),2(5) such that

Ts),2) ~ 14— Plo”
202

2_Fn*p(

+n—p)+F.p

T30),2() ~ |4~ plo®

= Pl 202

where p = |2(i)] and ¢ = |2(j)].
d) If |67 — &JZ| < Tz(y,2(;)- declare x5 = 0.

+n—q)+ Fn—q(‘

2

T26),2G) ~ 14— plo

(_ 202 +n _p)

Ts0),2() ~ |4~ plo®
202

+n’_Q):€7

2) If all potential parent sets Z (i) € 2V and z () € 2" have been tested without declaring X; ; = 0, declare {; ; = 1.

equal with high probability. That is, for a properly specified
threshold 7, the event

lo? —o2| < T, (19)

where
n

X5(2)2,
k=1

n
6t =) Xu(1)? &= (20)
k=1

should occur with high probability. To extend the intuition to
the case of more than two vertices, notice that if we condition
on the parents of vertex i, o2 is now given as

- 2

67 =Y (Xu(i) — of Zu(1)", e2))

k=1

where «; is the vector of non-zero edge weights in the ith row
of A. With the intuition of the algorithm explained, the only
challenge left is to determine how to select the threshold 7
to satisfy the false positive constraint. For this, the following
lemma is useful.

Lemma 1. For any nand i € V let Z(i) and Zy,(i) be defined
as in the top of Section Il. Define

n

672 =3 (Xu(i) — & Zu(0))®,

k=1

(22)

where &; is the vector of coefficients resulting from performing
least squares for vertex i on {Z(i)}]!_,. Then, conditioned
on {Zy(i)}2_,, 672 /0? follows a chi-squared distribution with
n — p degrees of freedom, where p = | Z(1)|.

With Lemma 1, we can prove the following result.

Theorem 1. Assume we have a linear system as described in
(2). Then, for any number of samples n and any given false
positive tolerance ¢, the false positive rate of e-CUT, denoted
by ef, satisfies ef <e

Proof Sketch. Since ¢t = 3, Jw/PF,

that for all i, j, Pi’j < e. Note that

Ph= [ ] Pal = 1XRAX)

]l{Ai)j =0U Aj,i = O}ﬂ'A

P(Xi,j =0) ’

where X\’ denotes the set of all measurements except those

from the ith and jth vertex. That is, X\ = {X;m}zzl

where X7 = [X,(1), ..., Xi(i — 1), X (i + 1), o0, Xi(j —

1), X(j +1),..., X(d)]". Then, it suffices to show that for

any A and X\ we have Pa(x;; = 1]X\%7) < . This

is done by first noticing that for 62 and Erjz. as defined in
Algorithm 1,

PA(Xi,j = 1|X\i’j)

=Pal () 167 =871 > 505X \”‘) (25)
2(i),2())

<PA(167% = 632 > 20,2 ()| X V).

it suffices to show

(23)

(24)

(26)

Using Lemma 1 together with a series of inequalities and alge-
braic manipulations, (26) is upper bounded by the expression
given in Algorithm 1 c¢) which completes the proof. O



Some important notes and comparisons are to be made
regarding e-CUT and Theorem 1.

1) Theorem 1 is a finite-sample result. This differs from
much of the current literature which focuses on asymp-
totic recoverability guarantees of causal discovery [1],
[51, [6], [9], [12]. Finite-sample results have appeared
in the literature, with a notable result appearing in [10]
(Theorem 3). However, the result in [10] deals with
connected components instead of individual edges, which
is our main objective.

2) There are many ways to solve the hypothesis-testing
problem between Hy and H;, leading to different causal
discovery algorithms. For instance, one may construct
the likelihood ratio test for each edge pair (4,5). This
approach is taken in [14] and is shown to be optimal,
but computationally infeasible, even for modestly sized
graphs and relatively simple priors m4. A generalized
likelihood ratio test (GLRT) is used in [12] to obtain
confidence intervals on the causal effect between two
vertices, rather than directly declaring the presence or
absence on an edge. Unfortunately, the results in [12] are
asymptotic. Hence, e-CUT circumvents the computational
issues associated with [14] while providing finite-sample
results.

3) Unlike several popular algorithms such as BIC [6],
LASSO [10], and NOTEARS [11], e-CUT requires no
hyper-parameter tuning. That is, in the algorithms men-
tioned, a sparsity constraint is added through a regu-
larization term (g in [6] and ¢; in [10], [11]). The
constant A controls the sparsity of the resulting graph.
Unfortunately, there is no current way to determine a
priori how the constant A\ affects the error rates, and if
these rates satisfy the constraint in (5). Hence, one needs
to experiment with different regularization constants. To
contrast e-CUT, once ¢ is given, everything in e-CUT is
completely specified.

IV. NUMERICAL RESULTS

We consider a numerical example to compare e-CUT to
other popular algorithms, such as NOTEARS [11] and LASSO
neighborhood selection [10]. We examine some interesting
phenomena and show the performance gains of e-CUT over
the algorithms mentioned above.

A. Summary of Prior Algorithms
1) NOTEARS: The NOTEARS algorithm seeks to minimize
the penalized squared loss,
1 n
5 O IXk— AXGE+ A4, @)
k=1
where )\ is a regularizer term, || X — AXg||2 is the Io
norm of the vector X, — AX}, and || Al is the I; norm
of the matrix A. It is shown in [11] that a weighted
adjacency matrix A represents a directed acyclic graph
if and only if

Trace(e°4) = d, (28)

where o denotes the Hadamard product (element-wise
multiplication). The elements of the continuous-valued
estimate A are thresholded to determine the inactive
edges.

2) LASSO: For a given observed node Xy (i), let Y =
[Xk(1)7...7Xk(i — 1),Xk(i + 1),...,Xk(d)]T for k =
1,2,...,n. Then, assuming a linear model for the ob-
servations, Xk(z) = A]Y,), where A; is a vector
of coefficients, LASSO [10] minimizes the following
sparsity penalized loss over the coefficients of A;,

1 < _ ;
o 2 X)) = ATYE + M Aill, 29
k=1

for each node ¢, where A is a regularizer term.

B. Definition of Graph Prior

The prior 74 is defined as follows:

1) For a given number of vertices d, let D denote the
set of all matrices with entries equal to either O or 1
corresponding to a directed acyclic graph.

2) Select a matrix from D uniformly at random. Denote this
matrix as D. Let R be a d x d matrix of Rademacher
random variables.

3) Let a be the desired weight of all the edges. Then, the
final graph is given as A = a(D o R).

Intuitively, 7 4 is the prior that selects a directed acyclic graph
uniformly at random, and the weights of each edge are equally
likely to be either a or —a.

C. Results

Some numerical comparisons for a low number of samples
(n = 10) are given in Figure 2. Figure 2 (a), considers a two-
vertex system for a € {1,2}. The two-node system is often
used in causal discovery as a base case for algorithms (such as
in [15]). Interestingly, when a = 1, LASSO and NOTEARS
considerably outperform ¢-CUT. However, as a increases, the
performance gap begins to shrink, as seen in Figure 2 (a) when
a = 2, and as a keeps increasing, e-CUT eventually begins to
outperform LASSO and NOTEARS, as seen in Figure 2 (b).
Interestingly, e-CUT also outperforms LASSO and NOTEARS
on larger graphs for a fixed a. In Figure 2 (c), we consider a
graph with d = 5 and a = 2, and in Figure 2 (d), we have
d=7and a =2.

There is an intuitive explanation for the first phenomenon.
First, note that e-CUT seeks to control the false positive
rate and selects the thresholds independently of the edge
weights. Hence, if an edge has a sufficiently small weight
e-CUT will be more inclined to declare no edge, increasing
the false negative rate. As the edge weight a increases in
magnitude, the ability to distinguish between an edge and
no edge increases, decreasing this trade-off. As for why the
performance improves for larger graphs further analysis is
needed.
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(d) Performance curves for d = 7 and a = 2.

Fig. 2: Numerical results of the performance of various detectors. For all the cases, 2 = 1 and n = 10 and the regularization
constant ) is varied for LASSO and NOTEARS to control the error rates. Performance curves are averaged over 2000 iterations.

V. CONCLUSIONS

This paper introduced e-CUT, a causal discovery algorithm
that controls the false positive rate by keeping it below a pre-
specified threshold. We show the intuition of the algorithm,
which revolves around the observation that if two vertices have
an edge between them, their variances (when conditioned on
their respective parent sets) are different and that the empirical
estimates of the variances follow a chi-squared distribution.

We

compare ¢-CUT to popular state-of-the-art algorithms

and show the performance gains. We also show interesting
phenomena, such as the performance dependence on the edge
weights, and the size of the graph considered.
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