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Traditionally, traffic incident management (TIM) programs coordinate the deployment of emergency resources to immediate incident
requests without accommodating the interdependencies on incident evolutions in the environment. However, ignoring these inherent
interdependencies while making current deployment decisions is shortsighted, and the resulting naive deployment strategy can
significantly worsen the overall incident delay impact on the network. The interdependencies on incident evolution in the
environment, including those between incident occurrences and those between resource availability in near-future requests and the
anticipated duration of the immediate incident request, should be considered through a look-ahead model when making current-stage
deployment decisions. This study develops a new proactive framework based on the distributed constraint optimization problem
(DCOP) to address the above limitations, overcoming conventional TIM models that cannot accommodate the dependencies in
the TIM problem. Furthermore, the optimization objective is formulated to incorporate unmanned aerial vehicles (UAVs). The
UAVS role in TIM includes exploring uncertain traffic conditions, detecting unexpected events, and augmenting information from
roadway traffic sensors. Robustness analysis of our model for multiple TIM scenarios shows satisfactory performance using local
search exploration heuristics. Overall, our model reports a significant reduction in total incident delay compared to conventional
TIM models. With UAV support, we demonstrate a further decrease in the total incident delay ranging between 5% and 45% for
the different number of incidents. UAVS’ active sensing can shorten response time of emergency vehicles and reduce uncertainties
associated with the estimated incident delay impact.
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1. Introduction

Traffic incident management (TIM) programs have tradi-
tionally focused on reducing congestion and enhancing high-
way safety mainly through its full-function service patrols
(FFSPs) program [1]. Under the FFSP program, service
patrol vehicles such as emergency response vehicles (ERVs)
are dispatched to perform tasks including traffic incident
clearance, traffic control and scene management, and inci-
dent detection and verification. In this study, we assume a
trained FFSP operator uses a fully equipped ERV, capable
of rapidly removing incident-involved automobiles or light
trucks to a safe location without waiting for a wrecker.

One of the main challenges facing the TIM program is
the efficient deployment of the limited resources (i.e., ERVs)
in response to a sequence of incident requests. A typical
deployment goal is to minimize the overall response time
of all ERVs to incident locations and, therefore, minimize
the travel time delay to commuters in the network. To
achieve this goal, TIM programs have conventionally
deployed the closest available ERV to an incident location
and returned to the depot after completing the assign-
ment [2].

However, this approach overlooks several key compo-
nents that can improve the overall response time of ERVs
to incident requests. First, to deploy an ERV to a current
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incident request, the dispatcher at the Traffic Operations
Center (TOC) may consider interdependencies between
past, current, and possible near-future incident occurrences
[3, 4] and allocate another ERV instead of the closest one
to the current request. The closest available ERV not served
in the current request could be closer to the location of the
anticipated near-future emergency, possibly resulting in a
lower overall response time of the ERVs to the sequence of
incident requests and thus significantly decreasing the over-
all incident impact on the network.

Second, suppose a busy ERV is available earlier than the
anticipated occurrence time of the next incident. Then, we
can consider the ERV in the next deployment solution
search. Conversely, if the anticipated availability time of a
busy ERYV is later than the occurrence time of the next inci-
dent, we exclude that ERV in the next deployment solution
search. By considering the availability of the ERVs based
on the anticipated incident duration, we avoid making
shortsighted ERV assignments.

While considering the aforementioned components will
improve the deployments of ERVs in TIM, emerging tech-
nologies such as unmanned aerial vehicles (UAVs) are pro-
viding new opportunities to enhance operations in TIM. In
particular, the next-generation (NextGen) TIM seeks to inte-
grate new and emerging technology (e.g., UAVs), tools, and
training to improve incident detection and safety response
and reduce clearance times at roadway crashes [5]. Under
revised Federal Aviation Authority (FAA) regulations that
accommodate UAVs’ advanced operations, UAVs and ERVs
can coordinate their deployments in response to an incident
request to provide more benefits in TIM programs. The role
of UAVs in a heterogeneous vehicle team yields three key
enhancements. First, aerial view of the possible route of
ERVs to the incident location can update the availability
status of the route and allow a safer and faster response to
the incident location. Second, sparse freeway sensor net-
works cannot accurately estimate the location and speed of
nonrecurring congestion (e.g., shockwave). Aerial monitor-
ing of moving shockwaves can help estimate the true impact
of an incident. Third, real-time information about an inci-
dent location can be gathered by monitoring the clearance
progress from UAVs.

Coordinating the deployment of a heterogeneous emer-
gency vehicle team (EVT) (i.e., ERVs and UAVs) to improve
TIM is challenging. Previously, the distributed constraint
optimization problem (DCOP), a generic modeling approach
for multiagent systems and coordination, has been applied to
problems such as the mobile sensor team, among other appli-
cations [6, 7]. This framework is an attractive problem-
solving approach for coordinating the heterogeneous vehicle
team in TIM for many reasons.

First, the distributed constraint optimization framework
is flexible in modeling the objectives of multiagent coordina-
tion problems through cost/utility constraints, overcoming
the rigidity of models such as the constraint satisfaction
model that defines a set of hard constraints and cannot easily
model the dynamics in the TIM problem. The dynamics in
TIM include varying numbers of available resources as they
are deployed or busy serving other requests and the detec-
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tion of new incidents when solving the current time prob-
lem. Second, the distributed framework for TIM can utilize
the onboard computing units on the emergency vehicles
and, with little communication overhead, find an acceptable
deployment scheme eliminating the need for a central com-
puting station. Third, because the problem-solving activities
are distributed among the agents (vehicles), the possibility of
a single point of failure is eliminated. Specifically, since
knowledge of cost constraints is inherently distributed
among the agents, each agent in the deployment fleet can
autonomously decide the best solution by sharing minimum
information. Lastly, the distributed framework can exploit
potential parallelism in constraint networks that define the
coordination between the two subteams of ERVs and UAVs
in TIM. For example, by carefully connecting the problem of
deploying ERVs and UAVs, the ERVs can use route-to-
incident information from UAV's for a safe and fast response
to incident scenes.

This paper develops the distributed constraint optimiza-
tion framework for allocating ERVs and UAVs developed in
a multiagent TIM. We develop the distributed allocation of
aerial and ground emergency resources by proactively
responding to dynamic changes in the freeway network.
The model’s cost constraints directly consider the dispatch
decision based on current incident requests in parallel with
relocation of free ERVs based on the anticipated location of
near-future emergencies. This unified approach will improve
the overall benefit of deploying emergency resources by find-
ing a solution that minimizes the sum of our developed cost
constraints. The motivating domain is modeled as the Proac-
tive Dynamic Routing Of uNmanned-aerial and Emergency
Team Incident Management (P-DRONETIM). The main
contribution of this paper and practical use in real-world
scenarios are highlighted as follows:

e A distributed constraint decision-making framework
for deploying emergency resources in TIM to mini-
mize the delay impact of incidents on the network;

e A unified approach to dispatch ERVs based on current
incident requests in parallel with relocation policies for
free ERVs based on the anticipated location of near-
future emergencies;

e The benefit of coordination between UAVs and ERVs
is developed as a percentage reduction in response
time of the ERV to the incident location based on
the level of hazard on the ERV’s route to the incident
location;

e UAV aerial monitoring of moving shortwaves in the
vicinity of an incident updates the estimate of the true
impact of the incident by combining the estimates of
the delay impact from the UAV observations and tra-
ditional road sensors in a data assimilation approach.

The best use of the proposed technology is “Drone as
First Responders,” which can station UAVs on the roof top
of the building and launch with click of button to respond
immediately upon receiving calls for service. Video feed
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can provide what is going on so responders can make better
decisions. To the best of our knowledge, this is the first study
that develops a proactive and dynamic model for the
heterogeneous incident vehicle team in TIM based on the
DCOP approach.

2. Literature Review

2.1. Overview of Optimization Technique. We first provide an
overview of the common state-of-the-art resource allocation
algorithms from methodological perspective. These diverse
approaches, from simulation frameworks to optimization
algorithms, set the context for understanding the unique
contributions of the proposed algorithms in later sections.

2.1.1. Simulation-Based Framework [8]. The simulation
frameworks are designed to emulate an emergency response
system for highway traffic accidents with a primary focus on
minimizing average response times across various accident
scenarios. This involves the integration of dispatch strate-
gies, allowing the simulation to account for dynamic traffic
information, accident occurrence rates, and dynamic short-
est path scenarios. In the pursuit of more realistic models,
future efforts could be directed towards the development of
models that better align with real-world characteristics.
Additionally, exploring different effective algorithms for
comparing performance and implementing the simulation
framework using specific simulation tools are avenues for
potential advancements.

2.1.2. Bilevel Algorithms [9-11]. These algorithms addresses
the nonconvex model for optimal fleet allocation in emer-
gency responses. Employing a heuristic iterative approach,
the model is treated as a master problem with a slave prob-
lem. The master problem involves minimizing a nonconvex
function with constraints on fleet allocation, and the slave
problem is solved using a sensitivity-analysis-based iterative
method. Despite lacking theoretical guarantees of conver-
gence to a local optimum, empirical results showcase its
effectiveness in practice. The algorithm’s outer iteration uti-
lizes a sequential quadratic programming (SQP) algorithm,
demonstrating its potential in optimizing fleet allocation
for freeway service patrols.

2.1.3. Scenario-Based Algorithms [12]. This algorithm intro-
duces a decision framework tailored for optimal fleet alloca-
tion, particularly in addressing high-consequence incident
response scenarios. Employing a risk-averse approach, it is
aimed at minimizing the expected loss associated with
high-consequence scenarios. This is achieved by formulating
the problem as a convex optimization problem, ensuring
computational efficiency and enabling solutions in polyno-
mial time. The loss function is defined based on the expected
time for incident response, and regret associated with fleet
allocation is determined by comparing its performance with
optimal response times in each scenario. The algorithm
strikes a balance between risk aversion and computational
tractability.

2.1.4. Work Function Algorithms With Look-Ahead [13].
This algorithm enhances the performance of greedy algo-
rithm in the allocation of emergency vehicles. The algorithm
computes solutions incrementally using a dynamic pro-
gramming approach, factoring in both total response time
and a simple greedy decision process. An enhanced version
incorporates future information into the decision-making
process. It is aimed at minimizing a combination of the work
function, response time, and expected future response time.
This algorithm stands out by considering historical data and
real-time updates, providing a comprehensive model for
emergency vehicle allocation.

2.2. State-of-the-Art TIM. Table 1 summarizes the proposed
dynamic approach for TIM, highlighting its advantages over
existing static methods in minimizing total delay. The majority
of researches on highway incident management have focused
on allocating a team of emergency vehicles by considering only
the immediate incident request [8, 10-12], without considering
the interdependencies on the evolution of incidents in trans-
portation networks. However, considering only the immediate
request when deploying emergency vehicles is myopic and fails
to accommodate the benefits of knowledge of the interdepen-
dencies on the evolution of incidents and its impact on improv-
ing the immediate request’s decisions, thereby minimizing the
overall incident impact on the network.

A few studies have attempted to address the above limi-
tations. A notable example is the online optimization model
that considers the stochastic nature of event occurrences
[13]. The model receives a sequence of emergency calls
and performs a dispatch decision responding to each
request. However, there is no direct framework for reloca-
tion of free emergency vehicles that can be made parallel
with dispatch decisions. Other studies have developed the
relocation, and dispatch decisions as separate models with-
out considering the interdependencies between the two deci-
sions [13, 14]. However, developing a connection between
these two decisions will provide an efficient relocation deci-
sion to improve the overall response time during dispatch.
The relocation of free emergency resources based on
expected near-future emergencies can significantly improve
the response time in TIM.

A key performance measure for TIM considering inci-
dent occurrences is the response time of emergency vehicles
to the incident requests. Most studies have therefore pro-
posed models that minimize the total response time for the
team of emergency vehicles to all the sequences of incident
requests [8, 10-14]. However, using just the response time
as a performance measure is inadequate for assessing the
true benefits of a deployment policy defined by the total
delay impact on the network. Aside from the response time,
the traffic characteristics at each incident location, including
traffic flow rate, should be considered when making deploy-
ment decisions. In this study, we overcome the limitations of
using the response time as the performance measure by
directly modeling and utilizing the estimated total delay
impact on the network as the performance measure.

To enhance the existing incident management programs,
federal programs such as the NextGen TIM are integrating
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TaBLe 1: The proposed approach to overcome challenges in
existing traffic incident management.

Objectives Response only Total delay
Static Myopic [8, 10-12] Myopic [14]
Dynamic Look-ahead [13] This study

new and emerging technologies such as UAVs with the
ground vehicles [5]. However, there has been a lack of focus
on developing a framework to integrate UAVs to support
the operations of ground vehicles in highway incident man-
agement. Under revised FAA regulations that accommodate
UAVs’ advanced operations [15], a significant opportunity is
presented for policy improvement in highway incident man-
agement. UAVs can provide enhanced information about
the incident scene and aid the emergency vehicles in arriving
at the incident location at full speed.

Previously, DCOP [6, 7], a generic modeling approach
for multiagent systems and coordination that has commonly
been applied to problems such as the mobile sensor team,
among others, has been proposed for modeling the heteroge-
neous vehicle team in TIM [14]. However, this model
assumed a static environment, simplifying dynamic behav-
iors of traffic and events changing by time. A myopic
resource allocation decision that does not consider the
sequence of dependent events cannot proactively adapt to
changes in the environment over multiple time stages. Also,
the availability of emergency resources for near-future emer-
gencies was not considered that could be estimated based on
the service time of the current request. The predictions of
the environment and the resource availability in a future
time should be considered through a look-ahead model
when making decisions in response to the current request.
Research on DCOP under stochastic uncertainty shows that
network uncertainty can be reduced through multiagent
collaborative sampling [16]. Multiagent coordination has
been successfully used to efficiently explore unknown envi-
ronments using the probabilistic multihypothesis tracker
(PMHT) technique [17]. Using the Adopt polynomial-
space algorithm, DCOP has been shown to achieve globally
optimal solutions under asynchronous task execution while
achieving high computational efficiency [6, 18].

To accommodate the dynamically changing environ-
ment and the dependencies at different stages, this study
models the resource allocation in the TIM problem as the
P-DRONETIM. P-DRONETIMs directly model interdepen-
dencies and the possible changes in the future stage when
making current stage decisions. Compared to previous stud-
ies, we consider a heterogeneous vehicle fleet under a unified
framework for dispatch and relocation decisions to accu-
rately capture interdependencies in the decisions. The prob-
ability of incident occurrences at a location for different
times of the day is achieved using incident characteristics
of the given area. A look-ahead model considers the near-
future availability of emergency vehicles and anticipates
future events.

DCOP solution approaches such as complete algorithms
that find the optimal solutions have been proposed in litera-
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ture [19-23]. However, complete algorithms are not practi-
cal for dynamic problems like TIM with large constraint
density. On the other hand, incomplete algorithms such as
the maximum gain method (MGM) and the distributed sto-
chastic algorithm (DSA) provide high-quality solutions,
especially for systems with large constraints density [24-26].
This study focuses on applying the incomplete algorithms
MGM and DSA to P-DRONETIM.

In the event of natural disasters or sensor failures,
UAVs serve as mobile sensors [27] supporting search and
rescue efforts. For instance, UAVs establish a flying ad
hoc network (FANET) to wirelessly communicate and
cooperate. Numerous UAV applications are evolving to
assist vehicular ad hoc networks (VANETSs) and mobile
ad hoc networks (MANETS) [28-30].

3. EVT in TIM

We first described the problem of the EVT in TIM. The EVT
represented by the finite set of vehicles A ={A,A,, -+, A,}
that are physically located in the transportation network.
The network is modeled as a metric space on a grid with a
function d that defines the distance between two locations
in the grid. The current location cloc; of each vehicle A, is
assumed to be known.

Considering the grid network, a finite set of locations
defined by the grid cells represents the locations where a
vehicle can assume a position or where an incident can
occur. These locations represent a discretization of the over-
all underlying space on the transportation network. As
shown in Figure 1, the cells in the grid network represent
the possible locations for vehicles or incidents. We assume
time is discretized so that the vehicles can estimate travel
time between possible locations. The occurrence of an inci-
dent results in travel time delays for commuters at that loca-
tion. We model the incident-induced delays on the network
by a delay function TD that estimates the expected total
delay impact on the network due to that incident. Indirectly,
we define incident locations I as those whose TD; is greater
than 0. This definition can be strengthened by setting a
threshold for TD; since delays in the network can also be
from nonincident events such as rush hours and social
events. Because incidents may occur and be cleared by the
EVT, TD; changes dynamically as the EVT becomes aware
of new incidents from the TOC. In the example presented
in Figure 1, there are two incidents shown as star symbols,
with estimated TD at the location. Given a set of incidents
I € L, the goal of the EVT is to be assigned in a way that min-
imizes the total delay impact of all the incidents in the net-
work. In addition to the emergency vehicle response time
to and clearance time of an incident, TD is a function of sev-
eral other traffic parameters (e.g., traffic flow rate) defined in
the vicinity of the incident location. We provide additional
details of the delay function TD in a later section. Depending
on the number of available vehicles and incidents, the goal of
the proactive and dynamic EVT in the TIM is to position
themselves to minimize the total delay impact for all inci-
dents considering the dynamics of vehicles and incidents
and also predicting near-future incident occurrences.
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FiGurkg 1: Emergency vehicle team in TIM with three agents and two incidents. Grid cells represent the possible locations an emergency
vehicle can visit, and stars represent the incidents, characterized by their expected total delay on the network for each time step.

4. P-DRONETIM Model

4.1. Approach Overview. Our model for the proactive and
dynamic EVT in TIM is based on the DCOP framework. DCOP
is defined by a tuple (A, X, D, F), where A = {A, A,, .-+, A, } is
a finite set of agents (emergency vehicles), X = {X,,X,, -+,
X, } is a finite set of variables, D = {D,, D,, --+, D, } is a finite
set of domain values for each variable, and F is a finite set of
constraints between variables. Each variable X; is held by an
agent who chooses a value to assign it from the finite set of
values in domain Dj; each constraint € € [F is a function C
:D; xD; x -+ xD; — R, U{0} that maps assignments of
a subset of the variables to a nonnegative cost. The cost of a
complete assignment of values to all variables is computed
by aggregating the costs of all constraints. The agents have
control over the assignment of values to their variables, and
they are assumed to know only the constraints involving their
variables, thus the distributed knowledge structure of DCOP.
Agents coordinate by passing messages with other agents
who hold variables constrained by their own variables called
their neighbors. The goal of the DCOP is to find a sequence
of assignments to variables with a minimum total cost.

4.2. Proactive Dynamic EVT in TIM as DCOP. The proactive
and dynamic EVT in TIM problem is formulated as DCOP
as follows: Each vehicle holds a single variable for its posi-
tion with a domain that includes all possible locations in
the transportation network. A vehicle can be assigned to
an incident in the current stage if it is available and not busy
serving other incident locations. The total travel time
required by the vehicle to reach the incident location and

the clearance time for the incident determines the vehicles
availability for a next assignment. Considering each incident
location /€L, a constraint C; relates the vehicles’ current
location to the delay impact TD, of the incident in the net-
work. The set of constraints [F changes over time as incidents
occur (TOC surveillance system discovers new incidents)
and are cleared. In addition, the constraints’ cost can change
over time due to changing impact of the incident on the net-
work due to new and more accurate estimates of the impact
from superior UAV surveillance systems. As discussed ear-
lier, the TD function models the delay impact of incidents
in the network. Realistically, the vehicles’ knowledge of the
number of incidents and their impact on the network will
be dynamic, reflecting the inherent dynamism in the TIM
problem. We assume these inherent changes in the network
are reported by the TOC. Vehicles that are available after the
current stage assignment can be relocated to other locations
in the network in anticipation of near-future changes in the
TD function at those locations. We model the relocation
decision by considering the dependencies in incident occur-
rences. Since we are only anticipating an incident at a given
location, the benefits of such a decision are discounted to
ensure that vehicles are first dispatched to the known inci-
dent locations before the relocation of the free vehicles, if
any, in anticipation of a near-future incidents.

4.2.1. Probability of Incident Occurrences. The relocation of
free emergency vehicles is based on expected probability of
near-future incident occurrences. For the set of possible
locations j € ], we define Pr;, as the probability of incident

occurring at location j in the next future stage r. The
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incident occurrence includes accumulated probabilities of
secondary incidents in future stages, in which the impact
of primary incidents overlaps. In general, a secondary inci-
dent may occur during the clearance or recovery of a pri-
mary incident. Therefore, we look-ahead two future stages.
For example, the conditional probability of a secondary inci-
dent at Site 2 at the first future-stage may depend on the
probability of a primary incident at Site 1 during the past
and Site 3 during the current stage. The second-future stage
may depend on the probability of a primary incident at Site
1 and Site 3 during the current stage (Figure 2).

In this study, the expected probability of incidents in the
near-future stages is developed as presented in the previous
study [31]. Let 7(j, r) be the normalized probability of inci-
dents (probability of incidents at site j over all locations ]
in one stage) for each stage r. The expected probability of
incidents E[z(j, r)] for each location (j = k) and stage (r = u)
is a sum of Prf-) ,and Pry .

[E[T(j’r)]:PfiJPr’;lu for j=kr=u. (1)

Pri . is the probability of primary and independent
incidents at site j during stage r, and Pr; , is the probability
of secondary incident occurrences at location k during stage
u. The expected probability of incident at each location in
the near-future stages is written as follows:

E[z(jr)] = Prl()j,r) + ZS(Q’ A)(j,r—l)(k,u)Prir—l
j

(2)
+ 20 A) oy Prias
J

where the second and third terms are the explicit model for the
probability of secondary incidents. The primary incident den-
sity ratio 6(£2, A) k) is defined to measure relative differ-
ence ratio and is not 0 only when an interrelation between
incidents exists. P-DRONETIM estimates the expected proba-
bility of incident occurrence at all locations in the network in
the first and second future stages using Equation (2).

4.2.2. Total Delay Impact on Network due to Incident. The
total delay, TD,, at incident location / can be estimated using
variables considered in the Highway Capacity Manual 2010
[32]. The deterministic incident delay model has underesti-
mated the variance of actual delay and therefore the true
impact of an incident in the freeway. In this study, the sto-
chastic incident delay model is used to estimate the expected
delay at incident location [ as follows [33]:

{(§%+Ufl)—(s+q).§l+s.q},(7z+a£)
2-(s—q)

E[TD,(t,7,5,)] =

>

(3)

where the parameters in the model is defined as follows: s is
the freeway capacity, which is also the departure rate after
the incident [vehicles per hour (vph)]; 5, is the mean
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reduced freeway capacity during the incident (vph); o, is
the standard deviation of the reduced freeway capacity; g is
the traffic flow rate (vph); 7 is the mean incident duration,
and o, is the standard deviation of the incident duration.

The incident duration r is the sum of the response time
to and clearance time of the incident. The current location
of the emergency vehicle is an important parameter for
determining the response time and, therefore, the incident
delay impact. Therefore, considering multiple available vehi-
cles, it is more reasonable to dispatch the closest available
emergency vehicle to mitigate the delay impact. However,
considering the global goal of minimizing the impact of all
incidents, this may not always be the case. P-DRONETIM
model considers the predictions of incident occurrences in
future stages when making the current stage decisions.
While this study assumes random values for clearance time
for each incident based on historical crash data, more bene-
fits will be achieved by accurately predicting the clearance
time for the incident. Accurately predicting the clearance
time for the incident improves the estimation of the incident
delay impact on the network. Several approaches, including
statistical and machine learning models, have predicted the
expected clearance time of an incident which will be adopted
for future study [34]. We assume that the above-listed traffic
parameters are known for each incident location (e.g., from
roadside sensors).

4.3. TIM With UAV Active Sensing. The role of a UAV sub-
team in TIM is to explore unknown traffic conditions and
unexpected situations on roads and to enhance prior infor-
mation from loop detectors, automatic vehicle identification
detectors, probe vehicle data, and other sensors (see
Figure 3).

P-DRONETIM makes the following assumptions to
ensure that our model satisfies potential operational require-
ments and scenarios:

e UAVs have superior imaging technology (e.g., HD cam-
era) and sensor payloads (e.g., infrared and LIDAR) and
can perform high-accuracy real-time surveillance by
capturing video and images at higher elevations (within
FAA regulations). In addition, the UAVs have a wider
field of view (sensing range) and can provide enhanced
information about an incident several miles ahead
of ERV;

e UAVs are launched from vehicles (e.g., trucks), serving
as ground stations that have installed navigational
computers and control stations for the UAVs. The
trucks can be placed at strategic locations and moved
when needed;

e Depending on battery life, operators can bring UAVs
back to the truck for battery exchange and relaunch;

e The UAV ground stations have a two-way communi-
cation setup that allows communication with the TOC.

The developed model deploys the UAVs by considering
factors that enhance the operation of the EVT in TIM,
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FIGURE 2: Dependency in incident occurrences [31].
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FiGure 3: TIM with UAV active sensing.

particularly to improve the response time to and clearance of
incidents and assess the true impact (e.g., delays) of the inci-
dents on the transportation network.

4.3.1. Uncertainty of Incident Delay Impact. UAV deployment
accounts for uncertainty in estimated incident delay impact.
Drones, equipped with superior surveillance, observe real-
time traffic queues and shockwaves, refining delay impact esti-
mates. The model combines enhanced UAV information with
prior delay estimates from traditional sensors, incorporating
uncertainty defined by the variance equation %, , ;. Previous
studies have estimated this uncertainty as follows (parameters
are defined as stated above) [33]:

7
Stage 1 Stage 2
32 4 g2 2,22
-5) +as}~(ar+r) (q-5)2 7
2 ' q-=5)"-7
o =Varld(t,r, = _
opy = Varld(t, 1, 51)] 3 g 4.p

Assuming that the variance of delay impact estimated
from UAV observation is o7, , then the improvement by
reducing uncertainty with enhanced UAV data is assessed
using data assimilation. This technique adjusts variable esti-
mates (e.g., delay impact) during the observation period [35].
The combined estimate from traditional sensors and UAV
observation yields the posterior uncertainty, represented as

2 2
GTD,Posterior,l = (1 - ﬁl)oTD,P,l' (5)

The weight parameter 3 considers the variance of the esti-
mate from traditional sensors (prior) and the estimates from
the UAV observation written as

O”ZFD P
Bi=5—"5—- (6)
Otppyt OTpo;

Since the UAVs provide enhanced sensing capabilities than
the traditional sensors, o, 1, is expected to be less than o7, ;.
Therefore, the posterior estimate of the uncertainty after UAV
observation is always less than the prior as seen in Equation (5).
To update the expected delay impact (Equation (3)) after UAV
observations, let TDp; = E[TD,(t, 1, s, )] be the prior estimated
total delay for incident location [ from traditional sensors, and
TD be the estimated total delay from UAV observation, then
the posterior estimate of the delay after UAV observation can
be written as

TDPosterior,l = (1 - ﬁZ)TDP,I + ﬁlTDO,l' (7)
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After UAV observations, the new information is transmit-
ted to the TOCs, who can then update the TD function with the
improved posterior estimate of the expected total delay impact
from the incident.

4.3.2. Status of ERV’s Route-to-Incident. The TOC typically
informs ERVs about the best route to an incident. The
UAV subteam provides accurate information on this route,
reducing ERVS’ response time. The study assumes freeway
shoulders as the primary route. Besides incident delay uncer-
tainty, the P-DRONETIM UAV model considers how route
information affects ERV response time and total delay
reduction. With this support, ERVs can reach incidents fas-
ter, minimizing network delay impact. We make the follow-
ing assumptions to justify the different levels of reduction in
ERV response time when a UAV is deployed to observe an
ERV’s route-to-incident location:

e The best recommended route-to-incident location has
a hazard index (HI) based on past or current reported
obstacles (e.g., disabled vehicles and debris) on the
freeway shoulder.

e The initial travel speed of the ERV is based on the HI
for the route. For example, at a high HI, ERVs are
advised to travel at a slower speed to accommodate
enough stopping distance in case of an obstacle and
avoid a crash.

o An ERV will decelerate and change lane from shoulder
to main travel lane and back to shoulder after passing
the obstacle if there is one impeding the freeway shoul-
der. A lane change process briefly reduces the speed of
ERV and thus the response time.

e A UAV deployed to monitor the ERVS’ route-to-
incident location can confirm whether or not there is
an obstacle on the freeway shoulder and the exact loca-
tion of the obstacle, if any.

This study assumes that the HI for a given route-to-
incident location is categorized into five levels for simulation
purposes. Each category has an assumed percentage reduc-
tion in response time with UAV support.

1:verylow 3%
: low 5%
HI= caverage 7%

: high 9%

[0 B N S 8

:veryhigh 11%

For instance, if a UAV confirms a clear route for an ERV
with a HI of 5, the ERV can speed up, reducing response
time by approximately 11%. Effective coordination involves
aligning UAV and incident locations, enabling ERV's to ben-
efit from UAV information. Although each subteam has its
own task, they are both working towards a common goal.
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4.3.3. Priority Matrix for UAV Deployment. A priority
matrix is established to select optimal UAV deployment
locations, incorporating incident severity, delay uncertainty,
and HI, as outlined by previous studies [31]. The severity is
associated with lane closures, and the model decomposes
ERV and UAV tasks. Cooperation leads to reduced ERV
response time when both subteams are assigned to the same
location. The incident severity w; implicitly measures the
impact of the incident on the transportation network. In this
study, we define four levels of severity, where Level 1 (low)
indicates the lowest impact incident and Level 4 the highest
impact incident based on standard incident management
definition [36, 37].

low 1

moderate 2
w =

high 3

critical 4

Finally, we simplify the development of the priority
matrix by categorizing the prior uncertainty of the estimated
delay based on the sparsity of the freeway sensor network S§;
at the incident location / which cannot accurately estimate
the speed of nonrecurring congestion. The higher the spar-
sity of the sensor network at the incident location, the less
accurate the estimate of incident delay impact at the loca-
tion. The levels are developed as ranging from 1 to 5, where
Level 1 indicates a very low uncertainty and Level 5 indicates
a very high uncertainty corresponding to low and high spar-
sity of sensor network at the incident location.

verylow 1
low 2
8§;=( average 3
high 4
very high 5

P-DRONETIM quantifies the benefit for deploying a
UAV to incident location / as a mapping of the set of all
ordered pair w;xSS;xHI to the real number R. This
approach is similar to the design of priority matrix for inci-
dent management that shows the importance of each task
pair. In our case, the values indicate how much benefit the
UAYV will provide by deploying to a particular incident loca-
tion (see Figure 4).

4.4. Constraint Relations

4.4.1. Ground EVT. ERV deployment in P-DRONETIM aims to
find the best solution that minimizes the sum of the defined con-
straint costs. Since each vehicle can communicate with all other
vehicles in the network, the constraint graph is complete in
structure. Specifically, each vehicle (node) is connected to every
other vehicle in the EVT in the constraint graph. Each constraint
is a function C;;:D;xD; — R, U{0}(binaryconstraint).
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FIGURE 4: UAV deployment priority matrix based on hazard index of the ERVs route-to-incident location , delay impact uncertainty
(sparsity of sensor network at incident location), and incident type (severity).

TaBLE 2: Simulation parameters.

Severity s (vph) s; (vph) o, (vph) q (vph) O'f (h) Clearance time (h)
1 [750,800] [600,800] [100,200] [600,720] [0.1,0.2] [0.2,0.3]
2 [1130,1500] [900,1900] [100,300] [960,1120] [0.2,0.3] [0.3,0.4]
3 [1700,1900] [1000,1200] [100,300] [1440,1644] [0.2,0.4] [0.5,0.7]
4 [2200,2800] [1000,1500] [100,300] [1824,2015] [0.2,0.3] [0.5,1]

The constraint relation between any two ERVs in P-
DRONETIM is developed as

00 if X, == X,
C(X,, X,) = { , (8)

wjcx +wicy, otherwise,
where X, and X, are the variables held by ERVs a and b. The
weights w; is chosen from the set {w,, w,} dependent on
whether or not an incident has been reported at location j.
Specifically, if the value assignment of variable X, = j and loca-
tion j has a reported incident (ie., TD; > 0), the weight w; on
the function ¢y is equal to w,. The weight w, is applied to
discount the cost for dispatch assignments. On the contrary,
if location j has no reported incident (i.e, TD; <0), then

weight w; =w, is applied to the function ¢y . In this case,

weight w, > >w, is set to penalize such an assignment. That
is, increase the cost and indicate less importance. The values
of the weight w; will ensure that the relocation of emergency

vehicles is carried out only after dispatch to reported incident
locations is completed.

Under limited resources, our developed constraint rela-
tions ensure that the emergency vehicles coordinate their
local decision-making so that only one vehicle is assigned
to a location at any time. Specifically, a partial or complete
assignment of vehicles where X, equals X, incurs a very high
cost (=00) to prevent or disincentive such assignment. For
all other scenarios, two main criteria determine the cost for
the constraint. Firstly, for X;=j where location j has a
reported incident, then cy is defined by Equation (3)
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F1GURE 5: MGM and DSA (varying probability threshold) solution and convergence for total delay impacting network (incident requests =5,

ERVs=3.)

(expected delay function). Secondly, if location j has no
reported incident, then ¢y is defined by considering the
probability of an incident occurring at that location in the
next time stage (Equation (2)). All locations with no
reported incidents are candidates for relocation decisions
for free emergency vehicles. In our formulation, because
relocation decisions are designed to achieve an anticipated
goal in a future stage, it is always less important than the
goals of dispatching to true incidents in the current stage.
The goal of the PDRONETIM model is to find a sequence
of assignments X" for all the decision variables in X. Agents
need to optimize a global objective function in a distributed
fashion using local communication.

X* = argmin " (X), 9)

xX€X

where X is the assignment space for the decision variables of
the P-DRONETIM model.

h
@ (X) = Ca,b(da’ dh) + z Cz,b (d;’ dlta)’
= (10)

Xa(—da EDa’Xh(_db EDb

Our model considers a look-ahead of two future stages
(h=2). The first term C,,(d,,d,) is the sum of the cost
functions over the current stage. Looking at the reported
incident set in the current time, our formulation of the cost
allows the model to find the configuration of emergency
vehicles for the incidents that will minimize the delay
impact. The second term Zi’leZ’b(d;, d;) looks ahead into
future stages by evaluating the first and second future stage
costs according to the probability of incident occurring in
that stage. Therefore, the configuration that minimizes the
sum of the cost considering a look-ahead of the two future
stages is the best deployment in the current stage.

4.4.2. UAV Team. With the appropriate adjustment, the con-
straint relations developed for the EVT are extended for the
UAVs. The goal is to find the best deployments for the
UAVs to maximize their benefits for TIM. We define utility
constraints that are based on the UAV deployment priority
matrix (Figure 4). Similar to ERVs, the constraint relation
for UAVs is developed as

UX,.X,) = { -

uXu + qu,

if X, ==X,,
(11)

otherwise,
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F1GURE 6: MGM and DSA solutions for mean incident delay for 100 randomly generated TIM scenarios.

where X, and X, are the variables held by UAVs u and v.
Since battery usage is a major limitation, UAV deployment
is considered for locations with reported incidents only.
Nonetheless, we can extend the model for surveillance to
detect or monitor locations where incidents are anticipated
by applying weights similar to those developed for the relo-
cation of EVT. The utilities uy and uy for deployments of

UAVs u and v are defined based on the priority matrix dis-
counted by the distance of the UAV to the incident location.
Specifically, the travel distance of the UAV to the incident
location is subtracted from the computed benefit from the
priority matrix. The goal of the UAV deployment model is
to find the optimal assignment to the incident locations as

(o max1mlzeZU (X, X,). (12)

The domain X, «—d, € D, X, «—d, € D, for the var-
iables held by the UAVs comprise of locations of reported
incidents only. We have described two subteams performing
tasks in the same network separately. However, it is reason-
able to assume that cooperation between the subteams can
lead to better results because although each subteam has its
task, they are both working towards a common goal of min-
imizing the delay impact of an incident in the network. For
example, when an emergency vehicle has UAV support
(assigned to the same incident), the estimated delay impact
reduces since UAV support allows the ERV to reach the
incident location safely and faster. In addition, the uncer-

tainty of estimated delay impact improves (reduced), giving
us a more accurate assessment of the impact of the incident
on the network.

5. Solution Approach

The local search algorithms MGM and DSA are used for
solving P-DRONETIM, justified by the typical standards
for choosing local over the complete search. Specifically,
time constraints and the limit on the scale of problems that
complete algorithms can be solved. Furthermore, P-
DRONETIM also has unique characteristics that support
using a local search algorithm. First, as required for a com-
plete search, exploring the entire search space is not practical
for large transportation networks with a large fleet of emer-
gency resources. Second, the dynamic changes such as new
incident requests while the current requests are being
evaluated limit the time agents have to perform a complete
algorithm because changes during the search for the best
solution make the computed solution outdated. In P-DRO-
NETIM, the expected incident duration, given by the sum
of the expected response and clearance time, is used to esti-
mate the availability of the resource for future stage deci-
sions. Therefore, not all possible assignment combinations
will be feasible. The resource availability is directly consid-
ered for all sequences of value assignments for any variable.
Specifically, a vehicle that is assigned multiple incidents in a
sequence has already estimated its availability for the next
assignment and, thus, how that impacts the total delay of
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FIGURE 7: DSA solution (prob =0.9) for total delay impacting network (ERVs = 3) for different numbers of incident requests.

the incidents in the network. The main steps developed for
the MGM and DSA solution approach are as follows:

Step 1: Make initial random assignments for all vehicles.
The vehicle initializes its information of the other vehicles’
assignment in the network (initial is null).

Step 2: Each vehicle updates their information about the
neighboring vehicles” assignment by receiving the current
assignment of the neighbors.

Step 3: Each vehicle computes its cost (estimated inci-
dent delay) for the current assignment while considering
its information on the neighboring vehicles.

Step 4: Each vehicle then calculates its gain by finding
the difference between the current assignment cost and the
assignment that will result in the minimum cost.

Step 5: Each vehicle sends and receives the neighbor’s
gain. The vehicles then update the locations of the current
assignments if their gain is greater than 0 and the maximum
gain of the neighbors. In the case of the DSA, the vehicle
uses a stochastic strategy to decide whether or not it values
assignment. Specifically, a probability threshold is set, and
the vehicle’s assignment is only updated if a randomly gen-
erated number is less than the threshold.

Step 6: Terminate if the set number of iterations are per-
formed else restart Step 2 by sending a message that contains
its new locations to its neighbors.

6. Scenarios and Experiments

The proposed P-DRONETIM model is evaluated in a proto-
type network abstracted with an existing highway network’s
traffic parameter data. The problem scenarios are simulated
in a 10-by-10 city block-like grid network, with 180 links
representing the road segments and 100 points of intersec-
tions representing the possible crash locations. The weight
on each edge, representing the average time to traverse the
edge, is randomly drawn from a uniform distribution
between 0.1 and 1.5 (h). The total delay for an incident
request is estimated based on Equation (3) with parameters
described in Table 2 and the response time to the incident
estimated from a distance function on the grid network.
Each incident is given a random severity number drawn
from a uniform distribution between 1 and 4, which deter-
mines the values for traffic parameters used to estimate the
total delay of the incident. For example, looking at Table 2,
an incident request of Severity 1 will has parameters drawn
uniformly from the ranges defined for each of the variables
in Row 1. The incidents are randomly located in the network
through a random draw from a uniform distribution whose
range is the size of the grid network. We assume each ERV
and UAYV are given an initial random location following cur-
rent practice. The expected probability of an incident at
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FiGURE 8: DSA solution (prob=0.9) for total delay impacting network for different numbers of emergency vehicles for scenario with 15

incident requests.

different locations in the network is estimated based on
Equation (2). We randomly generate probabilities of inci-
dent occurrence for the near-future stage for simulation pur-
poses dependent on each current stage request. The incident
interdependency indicator between locations and stages is
randomly drawn between 0 and 1 for the pairs of locations
and stages. A highly functional UAV that supports reliable
communication over long distances with the TOCs is
assumed for this study.

A typical example is the Autel DragonFish Fixed Wing
UAYV, featuring Beyond Visual Line of Sight (BVLOS)
UAYV, Vertical Takeoff and Landing (VTOL), 120 Minute
Flight Time, 18.6 Mile Transmission Range, and 50x Optical
Zoom Capability. For simplicity, we assume that UAVs
maintain a fixed altitude during their flights and covers a
given region in the network once assigned to a given loca-
tion. Vehicles can communicate with each other using a
low-bandwidth radio frequency.

7. Results and Discussions

The results for different TIM scenarios are first presented for
the MGM and DSA approach to P-DRONETIM to assess its
performance. The MGM algorithm is highly exploitative,

preventing the exploration of other possible solutions. On
the contrary, DSA uses a stochastic exploration technique
to find other solutions that might be optimal [38]. In DSA,
a vehicle’s assignment to a location is updated only if a spec-
ified probability threshold condition has been satisfied,
introducing randomness in selecting other feasible solutions.
In our assessments, each scenario is repeated in 10 experi-
ments, and each solution point represents the mean and
standard error values for that scenario.

Figure 5 shows the solution and convergence for MGM
and DSA (considering different probability thresholds) for
total incident delay for a scenario with five incident requests
and three emergency vehicles. The MGM and DSA
approaches find better deployment for emergency vehicles
as the number of iterations increases. Performing more iter-
ations forces the algorithm to find better solutions than the
previous since, in each iteration, the model evaluates other
potential solutions. In the DSA approach, the deployment
solution improves for higher probability threshold values.
The probability threshold determines the level of explora-
tion, and the higher this level, the more likely the algorithm
escapes a local optimal to find a better solution. Comparing
MGM and DSA, we clearly show the benefit of incorporating
exploration over just exploitation. In the case of MGM, the
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FIGURE 9: DSA solution (prob =0.9) for total utility for different numbers of incident requests for scenario with three UAVs.

best deployment solution resulted in a total delay of approx-
imately 40,000 vehicle hours compared to about 25,000 vehi-
cle hours for DSA at a probability threshold of 0.9. Arguably,
while MGM got stuck in a local optimal solution, DSA
escaped the local optimal through the exploration to find a
better deployment solution.

To further assess the performance of the two solution
approach, we conduct a Monte Carlo simulation with 100
scenarios of randomly sampled vehicle numbers, number
of incident requests, incident type, and incident locations
for MGM and DSA. As seen in Figure 6, implementing the
exploration heuristic (DSA) improves the solution for the
vehicle assignments, seen with a lower mean total incident
delay (=50,000 at prob=0.9) compared to the highly exploit-
ative solution approach (MGM, =78,000). Furthermore,
DSA finds the best solution at higher probability thresholds.
The higher the probability threshold, the more exploration,
allowing DSA to find better solutions. Previous studies have
confirmed the effect of the probability threshold on the solu-
tion quality of DSA [39].

By increasing the probability threshold beyond the 0.5
mark, DSA’s stochastic exploration technique unveils a
remarkable capacity to discover solutions surpassing those
of MGM. While this demonstration utilizes an incident
request of 5 and an ERV of 3 in Figures 6 and 7, adjusting
these parameters can highlight the sensitivity of the proba-

bility threshold and flxbility of the DSA preventing the local
optimal solution. The subsequent experiments in this com-
prehensive study leverage the potent DSA approach at a
probability threshold of 0.9, providing a rigorous examination
of P-DRONETIM’s performance across diverse TIM scenarios.

Figure 7 illustrates how DSA (with a probability of 0.9)
performs for three emergency vehicles under varying num-
bers of incident requests. As the number of incidents
increases, there is a corresponding rise in the total delay that
affects the network. Conducting more iterations enhances
the ability to search for an optimal deployment solution.
For example, performing 45 iterations for 15 incident
requests finds a deployment solution that results in a
reduced total incident delay (=800,000 vehicle hours) com-
pared to performing only 5 iterations (=1,100,000 vehicle
hours). As the number of incident requests increases from
9 to 11 across all iterations, there is a significant increase
in the total incident delay. This is especially remarkable for
5 iterations, but the rate of increase lessens as it approaches
45 iterations.

Figure 8 shows the performance of DSA (prob=0.9) for
different numbers of emergency vehicles for 15 incident
requests. Increasing the number of emergency vehicles
implies more vehicles available to respond to incident
requests and minimizing the delay impacting the network.
In the case of three emergency vehicles, the vehicles have
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FIGURE 10: DSA solution (prob =0.9) for total utility for different numbers of UAVs for scenario with 15 incident requests.

to respond and clear the initially assigned incidents before
they are available to respond to the next incident. The total
delay on the network increases when incidents are not
responded to quickly. As expected, the higher the number
of emergency vehicles, the lower the total delay on the
network. For example, considering 15 incident requests, a
team of nine emergency vehicles results in a lower total delay
(200,000 vehicle hours) than a team with three emer-
gency vehicles (=750,000 vehicle hours) for 45 iterations.
Similar to our prior observation, increasing the number
of iterations performed improves the search for the opti-
mal deployment solution.

Similar to the ground emergency vehicles, two experi-
ments are conducted to assess our model’s performance for
UAV deployment based on the utilities defined by the
priority matrix. The first experiment evaluates the effect of
varying the number of incidents considering three UAVs.
The second experiment evaluates the effect of varying the
number of UAVs considering 15 incident requests.

Figure 9 shows the performance of P-DRONETIM for
three UAV:s for different numbers of incident requests. With
three UAVs, increasing the number of incidents implies
more locations than the number of UAVs required for
immediate observations. Therefore, the UAVs coordinate
and decide on a sequence of assignments for each UAV.

The results indicate that, as the number of incident requests
increases, the UAVs coordinate effectively to provide signif-
icant benefits.

Figure 10 shows the performance of P-DRONETIM for
different numbers of UAVs considering 15 incident requests.
Increasing the number of UAV's implies more aerial vehicles
are available to quickly support the incident tasks and
update the estimates of the delay in the network. Therefore,
the total benefit for the network increases when more UAVs
are available to support the task of ERVs in TIM. For exam-
ple, considering 15 incident requests, a fleet of nine UAVs
results in a higher total benefit (=850) than a fleet with three
UAVs (=610) for 45 iterations. Increasing the number of
iterations performed improves the search for the optimal
deployment solution.

Distributed local search algorithms such as MGM and
DSA exhibits favorable time complexity making it suitable
for practical implementations. While the algorithm’s runtime
largely depends on the size of the system and the density of
constraints, MGM and DSA typically have fast convergence,
an essential property in dynamic environment [23, 39, 40].

MGMSs’ ability to efficiently evaluate alternate solutions
and select the optimal one among them is well documented,
even in systems with large constraints density [23, 40-42].
The algorithm’s parallelizable nature allows for optimization
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on modern parallel computing architectures, further
enhancing its scalability and applicability to problems of
large size [23, 40].

DSA, as a stochastic algorithm, exhibits variable time
complexity, typically converging within a reasonable num-
ber of iterations [39]. DSA algorithms are known for their
simplicity and efliciency, requiring fewer iterations com-
pared to other methods. For instance, in contrast to MGMs’
two cycles per iteration, DSA incurs a cost of one cycle per
iteration [39]. Moreover, DSA’s decentralized approach facili-
tates efficient utilization of computational resources. The algo-
rithm’s inherent parallelism allows it to leverage distributed
computing environments effectively, making it particularly
suitable for systems with large constraints density.

We further perform experiments that assess the effect of
cooperation between the two subteams of ERVs and UAVs
on the total incident delay on the network. Figure 11 shows
the total incident delay in the network for the TIM scenario
with different numbers of incidents, with and without coop-
eration, between three ERVs and UAVs. It is clear that when
ERVs have UAV support, there is a lower incident delay
compared to when there is no support. This is because the
ERVs with UAV support can use the information they
receive from the UAVs to improve their response time to
incident locations and thus reduce the incident delay impact.

Depending on the hazard level on the route, the percentage
reduction in response time is estimated to calculate the
expected incident duration and delay.

Figure 12 assess the level of improvement in incident
delay estimation by evaluating the percentage reduction in
uncertainty of the total delay when there are observations
of incident location by the UAVs. Considering three UAVs,
we observe a significant reduction in the estimated total
delay ranging between 5% and 45% for the different num-
bers of incidents. UAV actively sensing the incident loca-
tions provides enhanced observations used to update the
posterior estimates of the expected delay impact as described
in Equations (5) and (7).

In general, UAVs face limitations in terms of operation
time due to constraints on battery capacity. The onboard cir-
cuitry and sensors contribute to energy consumption,
thereby restricting the duration of UAV missions. The pro-
posed algorithms, namely, the MGM and the DSA, are
designed with a focus on algorithmic efficiency, balancing
algorithmic complexity and energy efficiency, with the goal
of achieving high-quality solutions. Although developing
specific energy efficient strategies are beyond the current
scope of our study, the incomplete characteristics of these
algorithms is designed to achieve convergence within a rea-
sonable timeframe, allowing them to quickly and efficiently
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TaBLE 3: Comparison of total incident delay (vehicle hours) for
three models for different sequences of incident requests.

Scenario Conventional TIM P-DRONETIM OPT

3,2,2,2,1 72,002 68,200 62,200
2,2,2,1,2 70,330 60,300 58,211
4,2,1,3,3 75,000 63,200 60,235
5,3,4,2,2 88,430 78,500 68,112
1,3,5,2,1 73,500 71,500 65,170
2,5,1,1,3 74,340 70,100 65,981
3,3,3,2,1 73,800 69,501 63,730

find good solutions [23, 39]. These algorithms offer substan-
tial potential alignment with UAV operational restrictions,
even if they may not fully satisfy UAV energy requirements.

To further mitigate the impact of limited UAV operation
time, future algorithms within P-DRONETIM can incorpo-
rate adaptive strategies. UAVs can intelligently decide when
to activate sensors or perform computations based on the
urgency of the task or available energy resources. This adapt-
ability ensures the efficient use of the limited onboard power.
This can be similar to energy-aware priority function that
assesses the remaining energy in the vehicle at the end of each
interval and compares it with the energy required to reach the
desired exit state. If the remaining energy exceeds the require-
ment, the priority function directs the vehicle to continue
searching. Conversely, if the remaining energy is insufficient

for a direct path to the exit, the function prioritizes an imme-
diate journey to the exit. This adaptive decision-making pro-
cess ensures efficient energy utilization [43, 44].

Depending on the type of UAV (e.g., fixed wing), it
becomes possible to design and implement sampling-based
path algorithms to generate flight patterns that leverage air
flow dynamics to mitigate energy consumption [45]. Such
a method aims to improve the UAV’s overall coverage dis-
tance in accordance with energy-conscious strategies.

Last but not least, building upon the mutually beneficial
connections between UAVs and ground emergency vehicles,
in future studies, UAV energy constraint in P-DRONETIM
can be addressed by refining the algorithm to make dynamic
decisions regarding when and where to recharge. This could
involve assessing the energy levels of the UAV, considering
the proximity to recharge stations, and strategically planning
recharging intervals to maximize mission coverage. For
instance, in addition to the stationary charging infrastruc-
ture, portable recharge stations can be made available on
each ground emergency vehicle, further promoting coverage
and operational efficiency.

Considering three emergency vehicles, we evaluate the
performance of the proposed model against the conventional
model in multiple experiments. Each experiment has different
sequences of incident requests. We consider five incident
request stages for which new incident numbers are reported.

For example, in Table 3, Scenario 1 (3,2,2,2,1) indicates
that three incidents were reported in the first stage, followed
by two in the next stage, in that order. The total incident
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FIGURE 13: Runtime example for two ERVs and UAVs for five incidents with different request times.

delay for the deployment solution for the three models is
presented. First, the conventional TIM model makes current
stage decisions without considering near-future stage deci-
sions. Second, the proposed P-DRONETIM considers the
near-future stage decisions when making the current stage
decision. Finally, the optimal strategy model (OPT) assumes
knowledge of the exact dependencies and sequences of the
incident and thus makes the best deployment decision.

As shown in Table 3, P-DRONETIM showed significant
improvement when compared to the conventional TIM.
Specifically, the three emergency vehicles successfully coor-
dinated to find the best sequences of assignments in each
current stage. On average, P-DRONETIM reduced the total
delay impact by approximately 8% than the conventional
TIM. The minimum and maximum improvements were
estimated as 3% and 15%, respectively. Compared to OPT,
P-DRONETIMS’ percentage improvement decreased, rang-
ing between 3% and 13%, but much worse when OPT is

compared to conventional TIM (11% and 22%). OPT finds
the best deployment solution since it assumes knowledge
of the exact sequence of incident requests.

Figure 13 shows the runtime example for a scenario with
five incident requests in sequence (1,1,1,1,1) with no concur-
rent emergencies at different times. Incidents Requests 1 to 4
have a severity of 1, and Incident Request 5 has a severity of
4. The response time estimates for the conventional TIM
model ranges between 3.6 and 17.4 min, with a total response
time of 62.4 min and a total estimated incident delay of 50,022
vehicle hours. ERV1 is dispatched to Incident Requests 1, 2, 4,
and 5, and ERV2 to Incident Requests 3 and 4. Similarly,
P-DRONETIM dispatched ERV1 to Incident Requests 1,
2, 4, and 5 and ERV2 to Incident Request 3.

However, ERV2 was relocated twice based on the esti-
mated probability of incident occurrences at the request
times of Incident 1 and 2. With this look-ahead to anticipate
the near-future incident, ERV2’s response time to Incident
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Request 3 is drastically reduced since it is already in the
vicinity of Incident Request 3. The total response time for
P-DRONETIM is estimated as 59.1 min, with a total incident
delay of 45,200 vehicle hours representing a 5.28% reduction
in total response time and 9.64% reduction in total incident
delay compared to the traditional TIM as DCOP strategy.

In OPT, ERV1 is dispatched to Incident Requests 1, 2,
and 4, and ERV2 dispatches ERV2 to Incident Requests 3
and 5. Since OPT assumes to know precisely where the inci-
dent will happen, it makes the best relocation decisions at
the different request times. The total response time and inci-
dent delay for OPT is estimated as 51.5 min and 40,520 vehi-
cle hours. Compared to OPT, P-DRONETIM’s percentage
improvement in response and incident delay fell short by
12% and 10%, but much worse when OPT is compared to
conventional TIM (17% and 19%).

8. Conclusions

Traditionally, TIM programs coordinate the deployment of
emergency resources to immediate incident requests without
anticipating near-future requests and the associated interde-
pendencies in the network. In this work, a new proactive and
dynamic framework, P-DRONETIM, based on the DCOP,
provides a roadmap for practical resource allocation for
highway incident management by accommodating interde-
pendencies in network events. Furthermore, the optimiza-
tion objective is formulated to accommodate near-future
stage decisions when making current stage decisions. In
addition, we develop a new framework for allocating UAV's
and coordinating their benefits for emergency vehicles’
response time to incident locations and improving the esti-
mates of the total delay impact.

The proposed framework is solved with the DCOP
local search algorithms MGM and DSA. In multiple exper-
iments, P-DRONETIM showed satisfactory performance.
P-DRONETIM model actively relocates emergency vehicles
to anticipate future incidents to improve the overall response
time to incident requests and showed significant performance
improvement compared to the conventional TIM. Further-
more, coordinating the benefit of UAV assignment for ERV's
resulted in further improvement in performance.

Future research can enhance the allocation process for
UAVs by accommodating its routing decisions. For example,
the routing decision can be modeled to maximize the reduc-
tion in entropy for observed traffic parameters such as link
travel time [45-47], shockwave parameters, and discharge
rate resulting from an incident while en-route to an assigned
location. In addition, to optimize the monitoring of locations
by UAVs and manage the limited resources, a coordination
constraint that considers deployments having overlapping
surface areas can be investigated. Such a constraint will limit
the assignment of UAVs to the same neighborhood.

To facilitate the future implementation of aerial resource
allocation and support the deployment of drones as first
responders, the FAA must approve waivers for BVLOS oper-
ations. There are several challenges associated with using
human pilots as visual observers for UAVs: (1) the need to
keep licensed pilots up to date with regular training; (2)

19

the high expense of employing human pilots; and (3) the
requirement for pilots to remain on standby 24/7, leading
to considerable costs and posing a significant bottleneck.
After the decision on UAV allocation is made, real-world
dispatching will need to occur through BVLOS without
human pilots, utilizing advanced detect-and-avoid technolo-
gies in the airspace, which is currently a subject of emerging
research in the field.
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