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Abstract

Convolutional neural network (CNN)-based deep learning (DL) methods have transformed

the analysis of geospatial, Earth observation, and geophysical data due to their ability to

model spatial context information at multiple scales. Such methods are especially applicable

to pixel-level classification or semantic segmentation tasks. A variety of R packages have

been developed for processing and analyzing geospatial data. However, there are currently

no packages available for implementing geospatial DL in the R language and data science

environment. This paper introduces the geodl R package, which supports pixel-level classifi-

cation applied to a wide range of geospatial or Earth science data that can be represented

as multidimensional arrays where each channel or band holds a predictor variable. geodl is

built on the torch package, which supports the implementation of DL using the R and C++

languages without the need for installing a Python/PyTorch environment. This greatly simpli-

fies the software environment needed to implement DL in R. Using geodl, geospatial raster-

based data with varying numbers of bands, spatial resolutions, and coordinate reference

systems are read and processed using the terra package, which makes use of C++ and

allows for processing raster grids that are too large to fit into memory. Training loops are

implemented with the luz package. The geodl package provides utility functions for creating

raster masks or labels from vector-based geospatial data and image chips and associated

masks from larger files and extents. It also defines a torch dataset subclass for geospatial

data for use with torch dataloaders. UNet-based models are provided with a variety of

optional ancillary modules or modifications. Common assessment metrics (i.e., overall accu-

racy, class-level recalls or producer’s accuracies, class-level precisions or user’s accura-

cies, and class-level F1-scores) are implemented along with a modified version of the

unified focal loss framework, which allows for defining a variety of loss metrics using one

consistent implementation and set of hyperparameters. Users can assess models using

standard geospatial and remote sensing metrics and methods and use trained models to

predict to large spatial extents. This paper introduces the geodl workflow, design philoso-

phy, and goals for future development.
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Introduction

Need and justification

Pixel-level classification, also referred to as semantic segmentation within the computer vision

community, has many applications in the geospatial sciences including land cover, forest type,

and agricultural mapping. It is also used for differentiation of a class or feature of interest, such

as buildings, ships, or landslides, from the surrounding landscape or background [1–3]. Such

mapping or modeling tasks commonly rely on supervised learning, where predictor variables

and pixel-level labels are used to train an algorithm to generate a model that can then be

applied to new geographic extents to generate wall-to-wall predictions or maps. These meth-

ods employ geospatial data, structured as multidimensional arrays or data cubes. Representing

geospatial data in a consistent multidimensional array format allows the use of a common

supervised learning framework [4–6]. Data that can be represented in this format are collected

from a variety of platforms (e.g., satellites, aircraft, or drones) and at a wide range of spatial

and temporal resolutions. Further, a variety of data types can be represented as multidimen-

sional arrays including true color, color infrared (CIR), multispectral, and hyperspectral imag-

ery and synthetic aperture radar (SAR) backscatter. Additional predictor variables can be

derived from individual images (e.g., band indices or principal components) or a timeseries of

images (e.g., seasonal medians or coefficients generated from harmonic regression analysis).

Other data sources include historic maps and other cartographic representations, land surface

parameters (e.g., slope, topographic position index (TPI), topographic roughness index (TRI),

and hillshades) derived from digital terrain models (DTMs), derivatives of light detection and

ranging (lidar) point clouds (e.g., canopy height models (CHMs) and return intensity images),

and subsurface geophysical measurements.

Semantic segmentation via supervised learning that relies purely on convolutional neural

network (CNN)-based deep learning (DL) architectures were first introduced in 2014–2015

[7]. Such methods have been shown to be especially powerful due to their ability to use large

amounts of labeled data in order to capture spatial context information at varying spatial scales

and perform automatic feature extraction for classification tasks [8]. As a result, CNN-based

methods are now replacing more established machine learning (ML) algorithms (e.g., support

vector machines (SVMs), random forest (RF), and boosted decision trees (BDTs)) which have

been traditionally used to label individual pixels or objects derived using geographic object-

based image analysis (GEOBIA). CNN-based semantic segmentation has been operationalized

and integrated into commercial geospatial software, including ArcGIS Pro [9] via the Image

Analyst Extension [10] and ENVI [11] via the Deep Learning Module [12].

Open-source software, data science tools, and datasets have had a positive impact on how

science is conducted, and the development of new tools and techniques has hastened the speed

of scientific innovation and the transition of knowledge to action while also fostering repro-

ducible and transparent research [13, 14]. Open-source software and datasets have reduced

cost, increased the accessibility of research tools, and become key components of research and

training infrastructure. Open-source DL tools (i.e., code to support data preparation; model

creation, training, and validation; and inference to new data) are currently well developed in

the Python [15] language and data science environment, resulting from the development of

libraries including Tensorflow [16], Keras [17], and PyTorch [18]. This can be partially attrib-

uted to the development of DL amongst the computer vision research community, wherein

Python is more popular than other common data science environments [19]. Base DL libraries,

such as Tensorflow and PyTorch, have been extended with additional libraries specifically

focused on semantic segmentation tasks. These libraries include Kornia [20], MMSegmenta-

tion [21], PixelLib [22], and Segmentation Models [23, 24]. The TorchGeo [25] and Raster
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Vision [26] libraries support the use of geospatial data within the PyTorch ecosystem while eo-

learn [27] supports processing Earth observation data with Python.

Many data, geospatial, and Earth scientists use R [28, 29] which was originally developed

for statistical computing, data wrangling, and data analysis. This flexible environment offers a

large number of specialized packages, familiarity and ease of use, quality of documentation, a

large user base, and available integrated development environments (IDEs), such as RStudio

[30]. Specialized R packages include those targeted for machine learning tasks such as cluster-

ing (e.g., dtwclust [31]) as well as those used for data wrangling (e.g., tidyverse [32]).

A large set of R packages have already been developed for reading, working with, and ana-

lyzing geospatial data specifically, such as sf [33], terra [34], stars [35], tmap [36], and sits,

which supports Earth observation time series analysis [37]. The recent release of the terra pack-

age, which replaced the raster package [38] and currently (in early 2024) has had over six mil-

lion downloads from the Comprehensive R Archive Network (CRAN) since its release in

March 2020 based on download statistics obtained using the dlstats package [39], has

improved computational efficiency for processing large raster grids, including digital elevation

data and multispectral imagery [34]. Using the C++ language [40] via the rcpp package [41,

42], terra allows for reading in portions of large raster grids from disk as opposed to reading

the entire dataset to memory, which has greatly improved the practical application of raster-

based geospatial data handling and analysis in R [34].

Many DL tools in R rely on Python and act as a wrapper for Python libraries. Using the

reticulate package [43], R packages such as keras [44], tensorflow [45], and fastai [46] allow for

the execution of Python-based DL from the R environment using R code, and therefore

requires the installation of Python environments and libraries. Highlighting the interest in

implementing DL in R, the keras package has had over two million downloads from CRAN

since its release in July 2017. The recently released torch package [47], which is written in R

and C++ and built directly on libtorch (the PyTorch C++ backend) [48], simplifies the soft-

ware stack by eliminating the need for the Python “middleman”, thus avoiding reliance on

Python and the associated issues stemming from incorrect versions of software or libraries and

complications in setting up analytical environments, as well as the difficulties with trouble-

shooting errors. This is a large step forward in developing a DL experimentation environment

and ecosystem native to R and C++. The torch package has been downloaded from CRAN

over 160,000 times since its release in August 2020. We argue that there will be increased use

of torch as an ecosystem of packages develops around it, as has occurred for the Python-based

PyTorch implementation.

Currently, there are no R packages available specifically for DL applied to raster-based geos-

patial and Earth science data. This is problematic, as there are many demands and issues spe-

cific to geospatial and Earth science data, including the need to make use of raster data with

varying numbers of channels or bands, maintain map coordinate reference information, assess

models using discipline-specific methods and metrics, and merge results to generate wall-to-

wall map products over large spatial extents. We argue that the torch and terra packages pro-

vide a unique framework to implement geospatial semantic segmentation in the R language

and data science environment. The torch package provides an R/C++ implementation of DL

that does not require Python/PyTorch while terra provides efficient handling and processing

of large geospatial raster grids that may not fit into memory.

In this paper, we introduce the geodl package, which builds on torch and terra to support a

general supervised learning, CNN-based semantic segmentation DL workflow that can be

applied to a variety of geospatial data types structured in multidimensional arrays to character-

ize two-dimensional patterns to support pixel-level classification tasks. The package focuses

specifically on semantic segmentation and is not designed to support scene classification,
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object detection, or instance segmentation. It fills a key gap in the R environment and can ease

the adoption of DL by geospatial scientists who have adopted R for research and applied map-

ping and modeling tasks. It provides utility functions to create raster masks from vector geos-

patial data, generate image chips from larger raster grids and associated masks, and collate

image chip names and paths into R data frames; implements a generalized UNet-based frame-

work with options to include a variety of ancillary modules; interfaces with the luz package to

train models using loss metrics appropriate when class proportions are imbalanced and/or

when difficult-to-predict samples should be prioritized; supports assessment of models using

standard remote sensing methods and metrics; and allows for trained models to be applied to

new data to generate map output.

The geodl package is available on CRAN (https://cran.r-project.org/web/packages/geodl/

index.html) and can be installed in R using install.packages(). The source code is available on

GitHub (https://github.com/maxwell-geospatial/geodl), and the package can alternatively be

installed from GitHub using the remotes package [49]. Please consult the following page for

details on how to install torch and its dependencies: https://torch.mlverse.org/docs/articles/

installation. This page also links to documentation for configuring the environment for GPU-

based computation, which is necessary to train CNN-based semantic segmentation models.

The package’s official website is available at https://wvview.org/geodl/index.html. The package

webpage complements the material presented here by providing code and detailed vignettes

demonstrating the package’s workflow and associated functions. The data required to imple-

ment the examples have been provided via FigShare [50]: https://figshare.com/articles/dataset/

geodl_example_data/23835165. A separate and smaller version of the data without the image

chips used in the training workflow examples is also available on FigShare [51]: https://

figshare.com/articles/dataset/geodl_example_data_no_chips_/26824909. More general torch

examples are provided on the torch website: https://torch.mlverse.org/.

This article has two primary purposes. First, it provides an introduction to the geospatial

semantic segmentation workflow implemented by geodl and introduces reference materials

and documentation to help researchers and analysts implement the package for their own

needs. Second, it provides a detailed documentation of the package’s functions and design phi-

losophy, including the configuration of the provided UNet architectures and their associated

modules and the implementation and parameterization of the provided loss and assessment

metrics. For specific code-based examples, please see the package webpage and associated

vignettes.

Data used in examples

In the examples provided on the package website and in this paper we make use of two data-

sets: topoDL [52] and landcover.ai [53]. We plan to add additional examples to the geodl web-

page in the future to demonstrate more use cases and workflows using varying data sources.

The topoDL dataset [52] was created by some of the authors of this paper and represents a

binary semantic segmentation problem. Surface coal mining is denoted on topographic maps

with a pink or brown pattern or symbology that is meant to represent surface disturbances.

The topoDL dataset was developed to explore the use of semantic segmentation DL to extract

the extents of historic surface mining from topographic maps [54]. The dataset consists of 123

1:24,000-scale, 7.5-minute topographic maps from the United States covering parts of eastern

Kentucky, 23 covering parts of eastern Ohio, and 25 covering parts of southwestern Virginia.

Mine extent masks were derived from the prospect- and mine-related features from U.S. Geo-

logical Survey 7.5- and 15-minute topographic quadrangle (version 10.0) dataset [55] gener-

ated by the USGS with some additional editing performed by the researchers. Only 7.5-minute
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maps were used in the dataset. From the provided topographic maps and vector-based mine

extent masks, it is possible to generate a large number of chips to train a DL model, as is dem-

onstrated in the vignettes provided on the package webpage. These data are available on Fig-

Share [52].

The Land Cover from Aerial Imagery, or landcover.ai, dataset [53] represents a multiclass

classification problem in which five classes are differentiated: background, building, woodland,

water, and road. Wall-to-wall pixel-level masks or labels were manually generated by the data

originators using true color orthophotographs. Of the available photos, 33 have a spatial reso-

lution of 25 cm, while eight have a resolution of 50 cm. A total area of 216.27 km2 is mapped

across different regions in Poland. These image extents can be divided into image chips and

associated pixel-level masks using a Python script provided by the data originators. These data

can be downloaded from the following website: https://landcover.ai.linuxpolska.com/.

Overview of geodl workflow

In this section, we provide a general overview of the semantic segmentation workflow before

discussing its functions and components in more detail in later sections. To aid readers in bet-

ter understanding the general DL workflow, Table 1 explains some key terminology associated

Table 1. Overview of deep learning terminology.

Term Explanation

Chip Image or raster-based predictor variable extent of a defined size (e.g., 64×64, 128×128, 256×256,

or 512×512 cells) used as samples to train and validate models.

Mask or label Raster-based reference data associated with each chip in which each cell is assigned an integer

class label.

Training data Data partition of chips and associated masks used to guide the parameter updates during the

training process.

Validation data Data partition of chips and associated masks which are commonly predicted at the end of each

training epoch; used for hyperparameter tuning.

Test data Withheld data partition of chips and associated masks used to assess the final model.

Loss metric Measure used to guide parameter updates during the training process. The goal of the training

process is to minimize this metric. Examples include cross entropy loss, Dice loss, and Tversky

loss.

Assessment

metric

Measure of model performance that can be monitored during the training process or calculated

from the withheld test data. These metrics are not used to guide the parameter updates.

Examples include overall accuracy, F1-score, recall, and precision.

Dataset A torch class used to define how individual samples are processed before being provided to the

dataloader and model.

Dataloader A torch class that defines how mini-batches of data are provided to the model during training

and inference.

Mini-batch A subset of samples that are collectively provided to the model using a dataloader. Commonly,

parameter updates are made after each mini-batch is processed as opposed to after one

complete iteration over all training samples.

Epoch One iteration over the entire training set or all mini-batches making up the entire training

dataset.

Training loop Process of iteratively training the model using the training data, a loss metric, backpropagation,

and an optimization algorithm.

Optimizer Algorithm used to update the model’s trainable parameters. Examples include mini-batch

stochastic gradient descent, RMSProp, and Adam.

Hyperparameter A model or training process setting that is not learned during the training process. Examples

include the optimizer’s learning rate and the number of feature maps generated by each block in

the encoder.

Parameter A model component that is updated during the training process, such as weights and biases for

convolutional kernels and gain and shift for batch normalization.

https://doi.org/10.1371/journal.pone.0315127.t001
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with DL and the training and inference processes. Please see the package website (https://

wvview.org/geodl/index.html) for examples of full workflows and applications of specific func-

tions or routines.

CNN-based architectures attempt to capture spatial context information useful for differen-

tiating classes by learning weights and biases associated with moving windows or kernels [8,

56, 57]. Since the goal is to learn local spatial context information, samples cannot be provided

as individual cells. Instead, small image extents of a defined size, such as 64×64, 128×128,

256×256, or 512×512 cells, termed image chips, must be used. This is one of the key reasons

that the CNN-based supervised learning workflow is different from the workflow implemented

when using more traditional machine learning methods. The mask or label associated with

each chip will consist of a single band or channel in which each cell is assigned an integer value

representing one of the classes being differentiated.

Fig 1 conceptualizes the general workflow. It is common for labels to be provided as vector-

based geospatial data as opposed to categorical raster data. ThemakeMasks() function allows

for converting polygon vector geospatial data to raster grids. If raster-based masks are already

available, this conversion is not necessary. Once raster-based predictor variables and raster-

based labels are available, they can be broken into chips and associated masks of a user-defined

size using themakeChips() function. This function generates a folder that contains the image

chips and associated masks. ThemakeChipsDF() function generates an R data frame that lists

all of the chips and associated masks within a directory.

Once a data frame is generated that lists all of the chips in a directory, they can be parti-

tioned into non-overlapping training, validation, and test sets. It is also possible to generate

image chips from different image extents and execute themakeMasks(),makeChips(), and

makeChipsDF() functions separately for each partition as opposed to partitioning the data

after the chips and data frame have been generated. The training set is used to guide the model

parameter updates during the training process. The validation set is generally predicted at the

end of each training epoch, or after one pass over the entire training set or once all training

mini-batches are processed. The test set is reserved to assess the final model after the training

process is completed.

Fig 1. Overview of geodl workflow. Note that raster-based masks or labels can be used. ThemakeMasks() function is provided

to convert vector-based reference data into raster masks.

https://doi.org/10.1371/journal.pone.0315127.g001
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In the torch environment, the dataset class is used to define how a single image chip and

associated mask is processed before it is provided to the model while the dataloader class

defines how the samples are aggregated into mini-batches to be passed to the model during the

training loop [47]. The geodl package implements a dataset subclass, defineSegDataSet(), that

allows for reading geospatial raster data using the terra package. The base dataloader() func-

tion from torch is used to define mini-batches since a unique subclass is not necessary for

geospatial data.

The training process is implemented with the luz package [58], as is the standard within the

torch R ecosystem. The use of luz simplifies the training loop. Once a trained model is gener-

ated, it can be assessed using the withheld test data and the assessDL() function, which accepts

a trained model and a dataloader, generates assessment metrics, and aggregates the metrics

across mini-batches. Assessment can also be conducted using point locations, assessPnts(), and

raster-based predictions and associated raster-based reference data, assessRaster(). In order to

generate raster predictions over larger spatial extents, a stack of raster-based predictor vari-

ables and a trained model can be provided to the predictSpatial() function.

Details of package implementation

Now that we have provided a broad overview of the geodl semantic segmentation workflow,

we will discuss the details of the implementation for those interested in understanding its

inner workings and design philosophy. Fig 2 provides a detailed schematic of the geodl

workflow.

Table 2 lists the package dependencies of geodl and their associated uses. As noted above,

the torch package makes use of the libtorch C++ backend as opposed to PyTorch, so there is no

need to install a Python environment, in contrast to other DL implementations in R. The terra

package is used to read and generally handle raster geospatial data. Spatial reference informa-

tion is maintained throughout the workflow, and raster grids with varying numbers of channels

or bands can be efficiently read and processed. The luz package [58] simplifies the DL training

loop, provides implementations of common callbacks (e.g., loggers, model checkpoints, learn-

ing rate modifiers, and early stopping), and allows for defining custom assessment metrics, a

functionality that geodl makes use of to define new metrics, that can be monitored and aggre-

gated over mini-batches during the training process. It also simplifies the placement and trans-

fer of models and data between the central processing unit (CPU) and graphics processing unit

(GPU). The torchvision package [59] provides additional functionality to complement torch for

processing image data including applying image augmentations and implementing common

computer vision architectures, such as the MobileNet-v2 architecture [60] used within geodl.

The dplyr package [61], a key component of the tidyverse [32], is used for general data wran-

gling, manipulation, and summarization while sf [33] is used to read and process vector geospa-

tial data. The MultiscaleDTM package [62] is used to define custom moving windows for

calculating land surface parameters (LSPs) from digital terrain models (DTMs) within geodl’s

makeTerrainDerivatives() function while psych [63] is used for calculating summary statistics.

The DL workflow as implemented in open-source environments, such as PyTorch, is com-

plicated by inconsistent data representations, dimensionality, and/or data types due to differ-

ent developers using different conventions. For example, some loss functions require labels to

be provided in a 32-bit float data type while others require a long integer data type. Single

band, raster-based predictor variables can be represented as two- or three-dimensional arrays:

[Width, Height] vs. [Channels/Predictors, Width, Height]. Similarly, associated labels can be

stored with a [Class Indices, Width, Height] configuration or a [Width, Height] configuration.

The geodl package adheres to the following standards:
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1. All predictor variable tensors are expected to have a shape of [Channels/Predictors, Width,

Height], even if only one predictor variable is provided, and to have a 32-bit float data type.

All targets or labels are expected to have a shape of [Class Indices, Width, Height] and a

Fig 2. Conceptualization of geodl DL semantic segmentation workflow. Functions prefixed with torch:: are from the torch

package while those prefixed with luz:: are from the luz package. All other functions are from geodl. Functions with a green

check mark indicate those that are used as checks during the workflow or to assess trained models. Diamonds indicate outputs

or results: the trained model and predictions to new raster data. Note that raster-based masks or labels can be used. The

makeMasks() function is provided to convert vector-based reference data into raster masks.

https://doi.org/10.1371/journal.pone.0315127.g002

Table 2. geodl package dependencies, uses, and associated references.

Dependency Use Reference

torch Implement DL, tensor manipulations, computational graphs, neural network

modules, and optimization algorithms

[47]

terra Handle geospatial raster data [34]

luz Simplify training process, provide callbacks, implement assessment metrics, and

handle transfer and placement of data on CPU and GPU

[58]

torchvision Provide additional functionality for handling and processing image data with torch

and apply data augmentations

[59]

dplyr Generally wrangle, manipulate, and summarize data tables [61]

sf Process vector geospatial data [33]

MultiscaleDTM Generate moving windows of variable sizes and shapes for digital terrain analysis [62]

psych Calculate summary metrics [63]

https://doi.org/10.1371/journal.pone.0315127.t002
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long integer data type. Our defineSegDataSet() function processes input chips to meet these

criteria and can accept a variety of raster-based input data; as a result, it is not difficult to

adhere to the package standards.

2. All cases are treated as multiclass classification problems, even when only two classes are

differentiated. This means that both positive and background logits are returned and logits

are rescaled using a softmax as opposed to sigmoid activation for binary classification tasks.

This design decision was made to standardize and simplify the implementation of losses

and assessment metrics. Class weightings can be used to specify the relative weightings of

classes in loss and assessment metrics. When a positive class is being differentiated from the

image background, weightings can be useful for controlling the relative importance of pre-

dicting the positive and background classes.

3. Class indices can start at zero or one. However, no integer values can be skipped. Since R

begins indexing at one and due to the use of one-hot encoding in some components of the

package, zero index values can cause errors. As a result, sometimes it is necessary to adjust

indices such that they start at one. This is the purpose of the zeroStart parameter used in

many of the implemented functions.

Data preparation and utilities

It is common for reference labels to be generated as geospatial vector data and stored within a

geospatial vector data format, such as a feature class within a file geodatabase, a shapefile, or a

layer within a GeoPackage. As a result, it is necessary to provide utilities to convert vector data

into categorical or integer raster grids where unique indices differentiate each class or the class

of interest and the background. ThemakeMasks() function serves this purpose within geodl; it

generates raster masks that align with the available raster predictor variables (i.e., have the

same coordinate reference system, spatial resolution, origin, extent, and number of rows and

columns of cells). It can also crop predictor variable raster grids and generated masks to a

defined extent, as defined by a vector-based polygon boundary. A column in the vector layer

attribute table is used to define the class codes. For binary classification problems, the back-

ground class should be coded as zero and the presence or positive class should be coded as

one. If masks are already represented as raster grids, this conversion process is not required.

ThemakeChips() andmakeChipsMultiClass() functions are used to generate chips and asso-

ciated masks. ThemakeChips() function is used for two-class problems where the positive class

is assigned a value of one and the background class is assigned a value of zero. When more

than two classes are differentiated using unique numeric codes, themakeChipsMultiClass()
function should be used. If the data are sparsely labeled (i.e., not all pixels have class labels

even though they belong to a specific class), these pixels should be assigned a unique numeric

code that can then be flagged in the loss and/or assessment metric(s) to be assigned a weight of

zero, and thus ignored. When usingmakeChips(), all chips can be generated, just those con-

taining at least one pixel mapped to the positive case, or both background-only and positive

case chips, which are written to separate folders. This allows the user to control whether all

background-only chips are used in the training and/or validation process, or whether only a

subset of background-only chips are used.

Once chips and associated masks are written to disk, themakeChipsDF() function is used to

list the names of each chip and associated mask into an R data frame and, optionally, a

comma-separated values (CSV) file written to disk. If positive and background-only chips are

differentiated, a column is added to the data frame to denote this, which the user can use to fil-

ter or subsample the available chips. The viewChips() function plots a random set of chips and
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associated masks from the specified directory. Figs 3 and 4 provide example outputs from this

function for the topoDL and landcover.ai datasets, respectively. In order to apply normaliza-

tion and/or estimate the relative proportion of classes within the dataset, which can be useful

Fig 3. Output from viewChips() function for surface mine disturbance extraction from topographic maps using topoDL dataset [52]. (a) image chips; (b)

reference masks.

https://doi.org/10.1371/journal.pone.0315127.g003

Fig 4. Output from viewChips() function for general land cover mapping from landcover.ai dataset [53]. (a) image chips; (b) reference masks.

https://doi.org/10.1371/journal.pone.0315127.g004

PLOS ONE geodl R package

PLOS ONE | https://doi.org/10.1371/journal.pone.0315127 December 5, 2024 10 / 28

https://doi.org/10.1371/journal.pone.0315127.g003
https://doi.org/10.1371/journal.pone.0315127.g004
https://doi.org/10.1371/journal.pone.0315127


for applying class weightings within loss metrics, statistics must be calculated from the chips

and associated masks. This is the purpose of the describeChips() function.

Datasets and data augmentations

The geodl defineSegDataSet() function is implemented by subclassing the dataset class defined

within torch. It accepts a data frame created by themakeChipsDF() function to read chip and

mask files from disk and generate tensors. It also provides a set of options for performing data

rescaling (by dividing by a specified value), normalization to z-scores using band means and

standard deviations, and random augmentations. Random augmentations are implemented

with torchvision and include horizontal or vertical flips and augmentations of brightness, con-

trast, gamma, hue, and saturation. The user is able to specify the probability that an augmenta-

tion will be performed, the maximum number of augmentations to apply to a single chip, and

the range of augmentation-specific parameters from which to select a random value. The goal

of performing these augmentations is to potentially combat overfitting [64, 65]. Note that if a

chip is flipped, the mask will also be flipped to maintain alignment. Also, some transforma-

tions are not possible for all data types; for example, changes in hue and saturation are only

applicable to RGB data.

Once an instance of defineSegDataSet() is instantiated, it can be provided to the dataloader
() function from torch to define a dataloader. A mini-batch of predictor variables and associ-

ated masks provided by the dataloader can be visualized using viewBatch() while describeBatch
() provides a check of a mini-batch by returning the mini-batch size; data type, dimensionality,

and shape of the predictor variables and masks tensors; predictor variable means and standard

deviations; and count of pixels mapped to each class index.

UNet-based models

Model overview. This section describes the UNet implementations provided by geodl.

The UNet architecture was proposed in 2015 by Ronnenberger et al. [66] for semantic segmen-

tation of biomedical imagery. Since its inception, it has expanded into a more general frame-

work. UNet-like architectures share several common components; they consist of an encoder

that is used to learn spatial patterns or context at multiple scales via learnable convolution ker-

nels that are applied to input data or prior feature maps to generate new feature maps. The

encoder is broken into separate blocks that consist of 2D convolution layers, activation func-

tions (e.g., rectified linear unit (ReLU)), and, commonly, batch normalization. Each block is

separated by a max pooling operation, which reduces the size of the array in the spatial dimen-

sions and aids in allowing for learning patterns at varying spatial scales. The bottleneck sepa-

rates the encoder and decoder components and represents the stage at which the data have

been reduced to the smallest spatial resolution within the architecture.

The purpose of the decoder is to restore the spatial resolution of the data in order to make

pixel-level predictions as opposed to scene-level predictions. Similar to the encoder, the

decoder is separated into blocks consisting of 2D convolution layers, activation functions, and

batch normalization. Instead of decreasing the size of the array in the spatial dimensions using

max pooling, the array is upsampled using either resampling algorithms, such as bilinear inter-

polation, or transpose convolution. Between encoder and decoder blocks with the same spatial

resolution, skip connections are added that allow for semantic information to be shared across

the model. Lastly, the pixel-level classification is performed using 1×1 2D convolution to

return logits for each differentiated class [66].

The package’s defineUNet() function provides a flexible means to generate a UNet-like

architecture for semantic segmentation tasks. This architecture is conceptualized in Fig 5 and
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its associated parameters are described in Table 3. It can accept a variable number of input pre-

dictor variables (i.e., does not require RGB or three-band input data) and output classes. It

contains four encoder blocks, a bottleneck block, and four decoder blocks, and the user can

specify the number of output feature maps from each block. By default, rectified linear unit

(ReLU) activation functions are implemented throughout the architecture to incorporate non-

linearity, and batch normalization is used to combat gradient issues and aid in convergence. In

the encoder, the size of the array in the spatial dimensions is reduced by half following each

block using 2×2 max pooling with a stride of two. In the decoder, 2D transpose convolution is

used to double the spatial resolution of the feature maps provided from the prior block, also

using a stride of two. The final class logits are predicted using 1×1 2D convolution.

A variety of optional configurations or modules can be added to the architecture including

residual connections, squeeze and excitation modules, attention gates, a modified atrous spa-

tial pyramid pooling (ASPP) module as the bottleneck block, and/or deep supervision. These

additional modules are described in the following sections.

Activation functions. The ReLU activation function is used by default within the archi-

tecture. This function simply converts all negative activations to zero and maintains all positive

activations as their original value (Eq 1) [8, 67]. To combat the “dying ReLU” problem, it may

be desirable to maintain negative activations, but with a reduced magnitude. Leaky ReLU

accomplishes this by maintaining positive activations and multiplying negative activations by

a positive value smaller than one (called a negative slope term (nst) in Eq 2) in order to reduce

Fig 5. UNet architecture implemented in geodl and associated modules. Blocks prefixed with E represent encoder blocks while those

prefixed with D represent decoder blocks. w = width, h = height. Purple text corresponds to function parameters as implemented in geodl.

See Table 3 for explanations of function parameter names.

https://doi.org/10.1371/journal.pone.0315127.g005
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their magnitude (Eq 2) [68]. Another option is the swish activation, which is calculated by

multiplying the activation by the activation modified using a sigmoid function (Eq 3) [69].

ReLU ¼
activation if activation > 0

0 if activation � 0
ðEq1Þ

(

Leaky ReLU ¼
activation if activation > 0

activation∗nst if activation � 0
ðEq2Þ

(

Swish ¼ activation � sigmoidðactivationÞ ðEq3Þ

Residual connections. The traditional double-convolution layers used in UNet consist of

passing the input predictor variables or feature maps produced from prior layers through a

3×3 2D convolution block to produce a set of feature maps equal to the number of input fea-

ture maps. These results are then passed through a second 3×3 2D convolution layer to gener-

ate the user-defined number of output feature maps for that stage in the architecture [66]. This

is conceptualized in Fig 6(A).

A residual connection or residual block augments this architecture by adding the input fea-

ture maps directly to the output from the second 2D convolution layer (Fig 6(B)). The goal is

to potentially reduce the vanishing gradient issue by maintaining this original signal provided

to the block in the output of the block [70]. Note that the input data are augmented along the

residual path so that the number of input feature maps matches the number of feature maps

generated by the convolution operations, since this is required to add the input and output

tensors.

Squeeze and excitation module. The goal of a squeeze and excitation (SE) module is to

capture interrelationships between channels or feature maps [71]. Fig 7 provides a conceptuali-

zation of this module. Fig 7(A) shows a version of the module that does not include a residual

connection while Fig 7(B) does include a residual connection. First, each input channel is

reduced to a single value using global average pooling, resulting in a vector of input channel or

Table 3. defineUNet() function parameters and associated explanations.

Parameter Explanation

inChn Number of input channels or predictor variables

nCls Number of classes being differentiated

actFunc Activation function to use (ReLU, leaky ReLU, or swish)

useAttn Whether or not to include attention gates along skip connections

useSE Whether to include squeeze and excitation modules in the encoder blocks

useRes Whether or not to include residual connections throughout the architecture

useASPP Whether or not to replace the bottleneck block with an ASPP module

useDS Whether or not to use deep supervision

enChn Number of output feature maps produced by each encoder block

dcChn Number of output feature maps produced by each decoder block

btnChn Number of output feature maps produced by bottleneck block

dilRates Dilation rates to use in ASPP module

dilChn Number of feature maps produced by each branch in the ASPP module

negative_slope Negative slope term to apply if leaky ReLU is used

seRatio Squeeze and excitation reduction ratio

https://doi.org/10.1371/journal.pone.0315127.t003
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feature map means. This is the "squeeze" component of the module. Following the global aver-

age pooling, the remainder of the module is the "excitation" component where the rescaling of

the input data is guided by the learned interrelationships between the channels. First, the

means are modified using a fully connected layer, ReLU activation, and a final fully connected

layer. The goal of this sequence of operations is to model non-linear interrelationships between

the means. The output from the last fully connected layer is then passed through a sigmoid

activation function to rescale the values to a range of zero to one. The input channels or feature

maps are then multiplied by the rescaled values on a per channel basis to augment the input

data.

Attention gates. An attention gate (AG) module provides a mechanism to allow for forc-

ing the model to focus on key features or regions within the image [72, 73]. The idea is to use

the results from the subsequent layer in the network, where a deeper set of features have been

extracted, to add focus, or attention, to the feature maps from the prior layer that are then

concatenated with the upscaled feature maps from the following block and fed to the decoder

block. This process is conceptualized in Fig 8. The feature maps from the next layer in the

sequence (for example, the feature maps produced by decoder block three when the attention

gate is applied to the feature maps from encoder block one) are passed through a 1×1 2D con-

volution layer with a stride of one and a padding of zero, and the number of channels is

changed to match those from the prior block. A batch normalization is then applied. The fea-

ture maps from the current layer are passed through a 1×1 2D convolution layer with a stride

of two and a padding of zero, and the number of output feature maps is equal to the number of

input feature maps. Since a stride of two is used, the spatial resolution is reduced by half such

Fig 6. (a) double convolution block. (b) double convolution block with residual connection. Double convolution

blocks are the primary components of the encoder and decoder blocks within the UNet architecture.

https://doi.org/10.1371/journal.pone.0315127.g006

Fig 7. Squeeze and excitation (SE) module after Hu et al. [71] optionally implemented between encoder blocks of geodl’s

UNet architecture.

https://doi.org/10.1371/journal.pone.0315127.g007
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that the size is the same as those from the next block. Batch normalization is then applied. The

gating signal and augmented feature maps are then added together and passed through a

ReLU activation. This result is then passed through a 1×1 2D convolution layer to produce a

single output feature map. This feature map is then passed through a batch normalization

layer followed by a sigmoid activation. In order to return the original spatial resolution of the

input feature maps, upsampling is then applied using bilinear interpolation. The original fea-

ture maps from the encoder block of interest are multiplied by this upscaled result. Lastly, the

results are concatenated with the upsampled feature maps from the next block, which are first

upscaled using 2D transpose convolution, to be fed into the associated decoder block as nor-

mal [72, 73].

Atrous spatial pyramid pooling (ASPP) module. The goal of atrous spatial pyramid

pooling (ASPP) is to capture spatial context information at varying scales by increasing the

size of the receptive field using dilated convolution. This technique is applied within the

DeepLabv3+ architecture [74–76]. We implement a modified version of this module (Fig 9) as

an optional replacement for the traditional UNet bottleneck block. It consists of performing

dilated convolution using varying dilation rates. The results are then concatenated and passed

through a 1×1 2D convolution layer to augment the number of total feature maps returned.

Deep supervision. The goal of deep supervision is to offer additional training guidance by

calculating auxiliary losses generated using predictions derived from feature maps generated

in earlier stages of the architecture [77–80]. The feature maps produced by decoder blocks

one, two, and three are upsampled to match the original resolution of the input data using

bilinear interpolation. Next, 1×1 2D convolution is used to predict logits for each class at each

pixel location using the feature maps generated by each decoder block separately. See Fig 5

above. These ancillary predictions are then used to calculate additional losses. Further, the user

can control the relative weight of each of the four losses in the final loss calculation.

UNet with MobileNet-v2 encoder. A second UNet model has also been included as part

of this package. The defineMobileUNet() function defines a UNet architecture with a Mobile-

Net-v2 backbone or encoder (Fig 10) [60, 81]. The MobileNet-v2 architecture is a lightweight

CNN for use on mobile devices that incorporates many design innovations including depth-

Fig 8. Attention gate (AG) module after Abraham and Khan [72] and Oktay et al. [73] optionally implemented along skip connections of geodl’s UNet

architecture.

https://doi.org/10.1371/journal.pone.0315127.g008
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wise separable convolution and inverted residual and linear bottleneck layers [60]. This UNet

implementation was inspired by a blog post by Sigrid Keydana [82, 83]. The model can be ini-

tialized using pre-trained weights based on ImageNet [84], and the encoder can be frozen (i.e.,

made not trainable during the learning process). Since this architecture makes use of Ima-

geNet-based weights, and in contrast to our more general UNet implementation described

above, it can currently only accept predictor variables with three input channels.

Training, validation, and inference

Loss metrics. Cross entropy (CE) loss is generally the default multiclass classification loss

metric [8]; however, alternative loss metrics have been proposed that can be especially useful

when class proportions in the training set are imbalanced, which is a common occurrence in

spatial predictive modeling, and/or when the user desires more control over the relative

weightings of false positive (FP) and false negative (FN) errors relative to specific classes. The

Dice (Eq 4) [85, 86] or Tversky (Eq 5) [87] loss is often used, which are generally termed

region-based losses. The Tversky loss allows for specifying the relative weights of FN and FP

errors using α and β terms, respectively. Dice- and Tversky-based losses make use of the

rescaled class logits, obtained by applying a sigmoid or softmax activation, as opposed to the

"hard" classification, as is the case when Dice, or the equivalent F1-score, is used as an accuracy

assessment metric. Other options include macro-averaging, which gives equal weight in the

aggregated assessment metric, or weighted macro-averaging, which allows the user to control

the relative weight of the classes [85–89]. We do not implement micro-averaging, because that

method is equivalent to overall accuracy, and thus is sensitive to class proportions [88].

Focal losses, such as focal CE, focal Dice, and focal Tversky, allow for adding additional

weight to difficult-to-predict samples or classes, which are defined as those that have a low pre-

dicted rescaled logit for their correct class [72, 89, 90].

Multiclass macro�averaged Dice loss

¼
1

N

XC

j¼1
ð1� ð

ð2� Sp̂TPÞ þ ε
ð2� Sp̂TPÞ þ Sp̂FN þ Sp̂FP þ ε

ÞÞ ðEq4Þ

Fig 9. Modified atrous spatial pyramid pooling (ASPP) module inspired by the DeepLabv3+ architecture and optionally implemented as a replacement

bottleneck layer of geodl’s UNet architecture. w = width, h = height. See Table 3 for explanations of function parameter names. (a) conceptualizes an

implementation without a residual connection while (b) includes a residual connection.

https://doi.org/10.1371/journal.pone.0315127.g009
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Multiclass Tversky loss ¼
1

N

XC

j¼1
ð1� ð

Sp̂TP þ ε
Sp̂TP þ aSp̂FN þ bSp̂FP þ ε

ÞÞ ðEq5Þ

In order to expand the range of loss functions available, we implemented a modified version

of the unified focal loss proposed by Yeung et al. [91]: defineUnifiedFocalLoss(). Modifications

from the original implementation include: (1) allowing users to define separate class weights

for both the distribution-based and region-based metrics, (2) using class weights as opposed to

the symmetric and asymmetric methods implemented by the authors, and (3) including an

option to apply a logcosh transform for the region-based loss, which can help stabilize the

learning process by providing smoother gradients [92]. Eq 6 describes the implemented modi-

fied unified focal loss while the modified focal CE loss component is provided in Eq 7 and the

modified Tversky loss is provided in Eq 8. The equation for the modified Tversky index, on

which the modified Tversky loss is based, is provided in Eq 9.

Modified unif ied focal loss ¼ l�mFLþ ð1� lÞ �mTL ðEq6Þ

Fig 10. UNet with MobileNet-v2 encoder, attention gates along skip connections, and deep supervision as implemented in geodl. Blocks prefixed with E

represent encoder blocks while those prefixed with D represent decoder blocks. Encoder blocks are derived from the MobileNet-v2 architecture. L = layer,

w = width, h = height. See Table 3 for explanations of function parameter names.

https://doi.org/10.1371/journal.pone.0315127.g010
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Modified focal CE loss mFLð Þ ¼ �
1

Pn
i¼1
wj

Xn

i¼1

XC

j¼1
wj ð1� ŷijÞ

1�g
� yij � logðŷijÞ

h i
ðEq7Þ

Modified Tversky loss mTLð Þ ¼
1

PC
j¼1
wj

XC

j¼1
wjð1�mTIjÞ

g
ðEq8Þ

Modified Tversky Index mTIð Þ ¼
Sp̂TP þ ε

Sp̂TP þ dSp̂FN þ ð1� dÞSp̂FP þ ε

� �

ðEq9Þ

As described in Table 4, by adjusting the lambda (λ), gamma (γ), delta (δ), and class weight

terms (clsWghtsDist and clsWghtsReg), the user can implement a variety of different loss met-

rics. λ controls the relative weight of the distribution- and region-based losses. If λ = 0.5, equal

weighting between the losses is applied. If λ = 1, only the distribution-based loss is considered.

If λ = 0, only the region-based loss is considered. γ controls the application of focal loss and

the application of increased weight to difficult-to-predict pixels (for the distribution-based

loss) or difficult-to-predict classes (for the region-based loss). Smaller γ values put increased

weight on difficult samples or classes. Using a γ of 1 equates to not using a focal adjustment.

The δ term controls the relative weight of FP and FN errors for each class. The default is 0.6 for

each class, which results in placing a higher weight on FN as opposed to FP errors [91].

Assessment metrics. The luz package provides the luz_metric() function to allow users to

define new or custom metrics for use within training and validation loops [58]. The geodl

package makes use of this function to create new implementations of recall, precision, and

F1-score, which are not already implemented within luz. The geodl package also includes a

version of the overall accuracy (OA) metric (luz_metric_overall_accuracy()) that accepts pre-

dictions and targets defined with the shapes and data types used within the package for stan-

dardization. Table 5 provides descriptions of the implemented assessment metrics. Macro-

averaging is used in which the metric is calculated separately for each class and then averaged.

Each class has equal weight in the resulting metric by default; however, users can choose to

apply relative weightings. This is especially useful for binary classification problems when the

user wishes to calculate precision, recall, and F1-score for only the positive case as opposed to

averaging these metrics for both the positive and negative cases. As noted in Table 5 and in

Table 4. Modified unified focal loss framework parameterization after Yeung et al. [91]. This framework is imple-

mented by the defineUnifiedFocalLoss() function in geodl.

Distribution-Based Compound Region-Based

λ = 1 λ < 1 & λ > 0 λ = 0

γ > 0 & γ < 1 Focal CE Loss Unified Focal Loss Focal Tversky Loss

δ 6¼ 0.5

γ = 1 CE Loss Tversky + CE Loss Tversky Loss

δ 6¼ 0.5

γ = 1 CE Loss CE + Dice Loss Dice Loss

δ = 0.5

clsWghtsDist = relative weighting of classes in distribution-based loss (applied to each sample)

clsWghtsReg = relative weighting of classes in region-based loss (applied to each class when calculating a macro

average)

useLogCosH = whether or not to apply a log cosh transformation to the region-based loss

https://doi.org/10.1371/journal.pone.0315127.t004
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alignment with terminology used in remote sensing, class-level recalls are equivalent to pro-

ducer’s accuracies (1 –omission error) while class-level precisions are equivalent to user’s accu-

racies (1 –commission error) [93, 94].

Other training and validation considerations. We recommend using the luz package

both to train and assess models, as implementing custom training and validation loops is error

prone. The torch and luz documentation provides examples of training processes: https://

torch.mlverse.org/. The geodl package webpage provides additional examples. The torch pack-

age provides access to many common optimization algorithms including mini-batch stochastic

gradient descent [8, 57, 95, 96], Adagrad [97], Adadelta [98], RMSprop [99], Adam [100], and

AdamW [101].

Generally, the learning rate is an important hyperparameter. One means to select a learning

rate is described by Smith [102, 103]. The luz package provides an implementation of this

learning rate finder method via the lr_finder() function [58]. luz also provides the luz_call-
back_lr_scheduler() function for defining and implementing callbacks to change or adapt the

learning rate during the training process. The luz package provides additional callbacks that

can be very useful during the learning process. For example, luz_callback_early_stopping() can

be used to stop the learning process early if the model is no longer improving based on the loss

or an assessment metric of interest. luz_callback_csv_logger() allows for logging calculated

losses and metrics data to disk as a CSV file. luz_callback_model_checkpoint() can be used to

save models to disk after each epoch or only if the model has improved based on the loss or an

assessment metric [58].

Model assessment and spatial predictions. The viewBatchPreds() function allows for

visualizing a mini-batch of predictions, reference masks, and predictor variables that were cre-

ated using defineSegDataSet() and a data loader, and subsequently predicted with a trained

model. geodl provides an assessDL() function for calculating assessment metrics from a data-

loader. It also provides the assessPnts() function, which allows for performing assessments at

point locations, and the assessRaster() function, which allows for assessment using entire raster

grids.

These functions generate a set of summary metrics when provided reference and predicted

classes. Alongside the complete confusion matrix, the following metrics are calculated: OA,

average class user’s accuracy (i.e., precision), average class producer’s accuracy (i.e., recall),

and average class F1-score. For average class user’s accuracy, producer’s accuracy, and

F1-score, macro-averaging is used where all classes are equally weighted [88, 104, 105]. All

class user’s and producer’s accuracies are also returned. For assessing map output, we generally

recommend using a testing set that honors the true landscape proportions of each class. When

a confusion matrix is generated using proportions that approximate the true landscape pro-

portions, it is termed an estimated population confusion matrix [106].

Table 5. Accuracy assessment metrics implemented by geodl using the luz_mteric() function from the luz package.

Metric Function Equation Notes

Overall Accuracy (OA) luz_metric_overall_accuracy() Total Correct
Total Samples

Precision luz_metric_precision()
1

N

XC

j¼1

TPj
TPjþFPj

Equivalent to average of class-level producer’s accuracies

Recall luz_metric_recall()
1

N

XC

j¼1

TPj
TPjþFNj

Equivalent to class-level user’s accuracies

F1-Score luz_metric_f1score() 2�Recall�Precision
RecallþPrecision Harmonic mean of precision and recall

https://doi.org/10.1371/journal.pone.0315127.t005
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The predictSpatial() function allows for predicting to a raster extent. In order to process

large raster extents, chips are extracted relative to the chpSize parameter. Overlap between

chips is specified using the stride_x and stride_y parameters. We generally recommend using

an overlap of at least 25% between adjacent chips. It has generally been found that predictions

nearer to the margin of a chip have lower accuracy than those in the interior of the chip, likely

due to the lack of a full set of neighboring pixels. As a result, the crop parameter can be set to

remove outer rows and columns of pixels and not include them in the final, merged product.

Using an overlap via the stride_x and stride_y parameters in combination with cropping (crop)

allows for only predictions in the center of each processed chip to be included in the final,

merged product. The predType parameter controls the type of prediction returned, either class

numeric codes (i.e., “hard” labels), class logits, or logits rescaled using a softmax function. It is

also important that data being predicted be rescaled and/or normalized using the same settings

defined for the training dataset.

Case studies

In this section, we present some sample classification results obtained using geodl. All experi-

ments were conducted on a Windows-based workstation with an Intel i7 2.5 GHz processor,

64 GB of RAM, and a single GeForce RTX 3060 GPU with 12GB of VRAM. Two different

experiments were conducted. First, models were trained for 25 epochs using a larger training

set: 3,886 samples for the topoDL datasets and 4,000 samples for the landcover.ai dataset. Sec-

ond, model replicates were tested using different random 2,000 sample training subsets for the

topoDL problem and random 3,000 sample training subsets for the landcover.ai problem. A

smaller set was used to reduce computational time and to document model variability when

different random subsets of the data are used and models are initialized using different ran-

dom seeds. For all experiments, the epoch that provided the lowest loss for the validation set

was selected as the final model and used to predict to the withheld test data to calculate assess-

ment metrics. When using the larger training sets, a single training and associated validation

epoch took between 10 and 20 minutes to run for the topoDL problem and 1 and 1.5 hours to

execute for the landcover.ai problem. We attribute the longer runtime for the lancover.ai mod-

els to the larger chip size, 512-by-512 cells as opposed to 256-by-256 cells, and the more com-

plex model architecture that integrated the MobileNet-v2 backbone.

Surface mine disturbance from historic topographic maps

Within our larger training set example for the topoDL problem, 3,886 256-by-256 cell image

chips were used to train the model while 812 chips were used to validate the model at the end

of each training epoch and 1,246 were maintained as a test set to assess the final model. The

data were partitioned such that all chips from the same topographic map were included in the

same data partition in order to avoid spatial autocorrelation between the data partitions. For

the training set, a maximum of two augmentations were performed per chip, vertical or hori-

zontal flips, with a 0.75 probability of being applied. In other words, up to two augmentations

were applied to a single chip, and there was a 75% chance of applying each augmentation. If no

augmentation is applied, the original chip is returned. A mini-batch size of 15 was used, and

the model was trained for 25 epochs. The model that returned the lowest loss for the validation

data was maintained as the final model, which was the model state after epoch 20. The modi-

fied unified focal loss was configured as a Tversky loss using λ = 0, γ = 1, and δ = 0.6. In other

words, only the region-based loss was included with no focal adjustment but unequal weight-

ing for FN and FP errors per class. The AdamW optimizer was used with a learning rate of 1e-

3, which was selected using the learning rate finder implementation in the luz package.
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Table 6 provides the confusion matrix and derived metrics calculated for the withheld test

set and using the assessDL() function while Fig 11 provides an example set of image chips (a),

reference masks (b), and predictions (c) for a mini-batch of test samples created using the

viewBatchPreds() function. The OA for the prediction was 0.990 while the F1-score was 0.963.

The precision was 0.954 while the recall was 0.971, suggesting a good compromise between

commission and omission errors. Table 7 shows summary statistics for the assessment metrics

calculated using ten model replicates, different random seeds, and different random subsets of

2,000 training chips. Again, this second experiment was conducted to document performance

variability and is not meant to indicate best performance since a subset of the training chips

were used and each model replicate was trained for up to only ten epochs.

Landcover.ai multiclass land cover classification

For the landcover.ai experiment, 4,000 512-by-512 cell image chips were used to train the

model while 1,000 chips were used to validate the model at the end of each training epoch and

Table 6. Confusion matrix and derived metrics for topoDL [52] classification.

Reference

Background Mine

Prediction Background 69,762,584 326,278 NPV = 0.995

Mine 527,709 10,975,749 Precision = 0.954

Specificity = 0.993 Recall = 0.971 F1-Score = 0.963

OA = 0.990

Values represent counts of pixels or cells. OA = overall accuracy; NPV = negative predictive value.

https://doi.org/10.1371/journal.pone.0315127.t006

Fig 11. Example prediction of surface mine disturbance extents from topoDL dataset [52]. (a) example image chips; (b) reference labels or masks, (c)

predictions generated using geodl workflow.

https://doi.org/10.1371/journal.pone.0315127.g011
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792 were maintained as a testing set to assess the final model. Data partitions were defined by

the data originators. For the training set, a maximum of two augmentations were performed

per chip, vertical or horizontal flips, with a probability of 0.75 of being applied. A mini-batch

size of 20 was used, and each model was trained for 25 epochs. The model that returned the

lowest loss for the validation data, the model state after epoch 21, was maintained as the final

model. The modified unified focal loss was configured as a focal Dice loss using λ = 0, γ = 0.8,

and δ = 0.5. In other words, only the region-based loss was included, a focal adjustment was

applied to increase the relative cost of misclassifying difficult classes, and FN and FP errors per

class were equally weighted. The AdamW optimizer was used with a learning rate of 1e-3,

which was selected using the learning rate finder implementation in the luz package.

Table 8 provides a confusion matrix, class-level user’s and producer’s accuracies, and class-

level F1-scores calculated for the withheld test set and using the assessDL() function while Fig 12

provides an example set of image chips (a), reference masks (b), and predictions (c) for a mini-

batch of testing samples created using the viewBatchPreds() function. The OA was 0.908 and the

macro-averaged, class-aggregated F1-score was 0.823. The woodland class showed both the low-

est producer’s and user’s accuracies. Table 9 provides the OA and macro-averaged, class-aggre-

gated F1-score (aF1), producer’s accuracy (recall) (aPA), and user’s accuracy (precision) (aUA)

summary metrics calculated for the ten model replicates using different random seeds and

3,000-sample subsets of the available training chips. Again, this second experiment was con-

ducted to document variability and is not meant to indicate best performance since a subset of

the training chips were used and each model replicate was trained for only ten epochs.

Conclusions and future development

The goal of geodl is to provide a complete workflow as an R-based tool to perform DL-based

semantic segmentation that adheres to standards and best practices within geospatial

Table 7. Model assessment metrics based on ten model replicates with different random seeds and training subsets.

OA F1-score Recall Precision Specificity NPV

Mean 0.981 0.930 0.938 0.923 0.987 0.990

Median 0.983 0.937 0.941 0.935 0.990 0.991

SD 0.004 0.014 0.023 0.023 0.004 0.004

Minimum 0.972 0.903 0.892 0.864 0.976 0.983

Maximum 0.985 0.947 0.968 0.940 0.991 0.995

OA = overall accuracy; NPV = negative predictive value.

https://doi.org/10.1371/journal.pone.0315127.t007

Table 8. Confusion matrix and class-level user’s and producer’s accuracies for landcover.ai [53] classification. Overall accuracy = 0.908, macro-averaged producer’s

accuracy = 0.885, macro-averaged user’s accuracy = 0.770, and macro-averaged F1-score = 0.823.

Reference

Background Building Woodland Water Road User’s Accuracy

Prediction Background 102,511,856 197,898 381,378 561,041 2,120,744 0.969

Building 588,494 1,843,051 23,588 3,089 5,063 0.748

Woodland 4,356,259 46,980 2,984,637 15,177 153,713 0.395

Water 1,386,604 13,854 27,477 9,723,005 295,632 0.849

Road 8,400,555 27,141 402,337 86,647 71,461,828 0.889

Producer’s Accuracy 0.874 0.866 0.781 0.936 0.965

F1-score 0.919 0.803 0.525 0.891 0.926

https://doi.org/10.1371/journal.pone.0315127.t008
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predictive modeling and remote sensing. The use of the torch package simplifies the software

stack since it is not necessary to interface with a Python environment and associated libraries.

It also supports the use of GPU-based computation, which is necessary for practical use of DL

applied to large datasets. The use of terra allows for efficient handling of large raster datasets

with varying number of bands. Lastly, luz greatly simplifies the DL training and validation pro-

cesses and the placement and transfer of models and data between the CPU and GPU. We

argue that geodl provides an intuitive workflow applicable to a wide variety of geospatial

semantic segmentation problems and input data that can be represented as multidimensional

arrays. It makes well established DL workflows and UNet-like architectures available to geos-

patial, remote sensing, and Earth scientists, and is particularly useful for users who are more

comfortable in the R environment than other languages, such as Python.

Fig 12. Example prediction of general land cover from landcover.ai dataset [53]. (a) example image chips; (b) reference labels or masks, (c) predictions

generated using geodl workflow.

https://doi.org/10.1371/journal.pone.0315127.g012

Table 9. Overall accuracy and macro-averaged class aggregated assessment metrics for landcover.ai [53] classifi-

cation using ten replicates and different 3,000 chip random data partitions.

OA aF1 aPA aUA

Mean 0.921 0.829 0.816 0.843

Median 0.922 0.831 0.824 0.847

SD 0.004 0.020 0.021 0.025

Minimum 0.915 0.774 0.763 0.786

Maximum 0.928 0.852 0.836 0.881

OA = overall accuracy, aF1 = macro-averaged, class aggregated F1-score, aPA = macro-averaged, class aggregated

producer’s accuracy (recall), aUA = macro-averaged, class aggregated user’s accuracy (precision).

https://doi.org/10.1371/journal.pone.0315127.t009
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We plan to further develop geodl with future releases. First, we plan to implement a torch

dataset subclass that allows for sampling from larger raster grids dynamically as opposed to

generating image chips, similar to the implementation in the TorchGeo Python package [25].

We plan to implement additional CNN-based models including UNet3+ [80] and DeepLabv3

+ [74, 75, 107]. Generally, we would like to provide a wider range of semantic segmentation

algorithms and backbones, similar to the Segmentation Models Python package [23, 24]. Addi-

tional development of loss functions would also be valuable, such as the ability to weight pixels

based on their distance from class boundaries or select subsets of pixels for loss calculations.

We would also like to expand the package to include transformer-based segmentation DL

architectures, such as SegFormer [108]. We plan to develop additional functions for customiz-

ing the training loop, such as using different learning rates for different components of the

model architecture. We intend for the package to maintain its focus on geospatial semantic

segmentation and do not plan to implement scene classification, object detection, and instance

segmentation methods. We are interested in finding others to contribute to the package. Ulti-

mately, we hope that geodl is a useful contribution to the torch ecosystem in R.
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