
Accurate Identification of IoT Devices in the
Presence of Wireless Channel Dynamics

Bhagyashri Tushir, Vikram K Ramanna, Yuhong Liu, Behnam Dezfouli
Internet of Things Research Lab, Department of Computer Science and Engineering, Santa Clara University, USA

{btushir, vramanna, yhliu, bdezfouli}@scu.edu

Abstract—Identifying IoT devices is crucial for network mon-

itoring, security enforcement, and inventory tracking. However,

most existing identification methods rely on deep packet in-

spection, which raises privacy concerns and adds computational

complexity. Moreover, existing works overlook the impact of

wireless channel dynamics on the accuracy of layer-2 features,

thereby limiting their effectiveness in real-world scenarios. In

this work, we define and use the latency of specific probe-

response packet exchanges, referred to as “device latency," as the

main feature for device identification. Additionally, we reveal the

critical impact of wireless channel dynamics on the accuracy of

device identification based on device latency features. Specifically,

this work introduces “accumulation score" as a novel approach

to capturing fine-grained channel dynamics and their impact

on device latency when training machine learning models. We

implement the proposed methods and measure the accuracy

and overhead of device identification in real-world scenarios.

The results confirm that by incorporating the accumulation

score for balanced data collection and training machine learning

algorithms, we achieve an F1 score of over 97% for device iden-

tification, even amidst wireless channel dynamics, a significant

improvement over the 75% F1 score achieved by disregarding

the impact of channel dynamics on data collection and device

latency.

Index Terms—Security, Wi-Fi, Channel Utilization, Machine

Learning, Privacy, Feature Collection

I. INTRODUCTION

The rapid growth in the number and variety of Internet of
Things (IoT) devices underscores the critical need for pre-
cise device identification, which empowers network middle-
boxes and appliances (such as wireless Access Points (APs),
switches, and network controllers) to enhance the management
and security of connected devices [1], [2]. For example,
micro-segmentation strategies can be employed to segregate
devices based on their functions and security requirements [3].
Additionally, should a device exhibit unusual traffic pattern
indicative of potential security threats [4], it can be temporarily
isolated for investigation. Moreover, accurate identification of
IoT devices enables fine-tuning connectivity settings tailored
to the specific needs of each device [5]. This customization
prioritizes devices with higher importance or specific latency
demands and significantly improves the overall user experi-
ence. Beyond operational efficiency, IoT device identification
offers valuable insights into device usage, revealing patterns
and behaviors instrumental in enhancing existing services or
inspiring new product developments. Proactively monitoring
devices’ performance and status through identification also

aids in the early detection of potential malfunctions, allowing
for timely interventions to prevent failures.

The conventional techniques for identifying IoT devices,
primarily based on IP and MAC addresses, are inadequate
due to their limited applicability and susceptibility to secu-
rity threats such as spoofing [6]. Various recent works have
leveraged the unique traffic patterns of IoT devices [7], [1],
[8], [9], [10], [11], [12], [13], [14]. However, these studies
have some fundamental limitations. Firstly, their proposed
features rely on specific network configurations and traffic
conditions, limiting their applicability over time and across
different deployment environments. For instance, while fea-
tures such as packet length and packet rate are impacted by the
dynamics of traffic patterns, wireless channel, and the number
of devices accessing the wireless channel, such impacts have
been overlooked [7], [11]. Secondly, the process of extracting
features at various levels of the protocol stack (including
attributes like destination DNS queries, IP addresses, and port
numbers) not only risks compromising user privacy due to
the sensitivity of the information involved but also results in
increased computational complexity and memory demands [7].
Thirdly, existing approaches involve collecting training data
over one or several weeks, causing a long delay before the
data can be used for device identifications [7].

In light of the identified challenges, this paper is guided by
two key design considerations: (i) given the sensitivity of IoT
devices (such as smart homes where personal data is handled
within the privacy of individual homes), it is imperative to
identify these devices in a manner that safeguards users’ per-
sonal information; (ii) the dynamic nature of deployment envi-
ronments, characterized by evolving traffic patterns of devices
and fluctuating wireless channel properties. Addressing these
critical concerns, this paper makes the following contributions
towards more reliable identification of Wi-Fi (802.11) IoT
devices. We introduce measurement techniques and features
based on device response times to TCP and UDP probe
packets, enabling the fingerprinting of various IoT device
types. While latency features are useful for privacy-preserving
device fingerprinting, our analysis reveals that such features
are significantly influenced by wireless channel dynamics,
limiting their stability and accuracy under various wireless
channel conditions. Although Channel Utilization (CU) is a
common metric for assessing wireless channel dynamics, its
granularity and reliability are hampered by inherent short-
term dynamicity and hardware limitations. To overcome these



limitations, we introduce accumulation score as a robust metric
for instantaneous measurement of channel dynamics and their
influence on device latency. This metric provides a more
reliable approach for understanding and adapting to changing
network conditions. We implement the proposed methods and
build a testbed to measure identification accuracy and system’s
overhead in real-world settings. Our empirical evaluations
demonstrate that device identification methodologies that fail
to account for channel dynamics yield accuracy rates ranging
from 25% to 75%. In contrast, by incorporating the accumu-
lation score into our data collection and Machine Learning
(ML) algorithm training processes, we achieve identification
accuracy exceeding 97% in the presence of diverse wireless
channel conditions. We will also present training and inference
overhead analysis of the ML algorithms when used on a
residential AP.

The rest of the paper is organized as follows. In Section
II, we study the opportunities and challenges of using device
latency for device identification. In Section III, we present
accumulation score and its importance for device identifica-
tion. We present empirical performance evaluation of device
identification accuracy and overhead of ML algorithms in
Section IV. We overview related work in Section V and
conclude the paper in Section VI.

II. SIGNIFICANCE OF DEVICE LATENCY

In this section, we present the motivation behind considering
device latency as a feature for IoT device (hereinafter referred
to as device) identification. We also identify the challenges of
measuring this feature and discuss our proposed methodology.
Finally, we illustrate how device latency varies among devices
across different CU ranges.

A. Motivation for Utilizing Device Latency
In this work, we adopt device latency (denoted as l) as the

primary feature for device identification in Wi-Fi networks.
Device latency is defined as follows: once a device receives
a packet, how long it takes to process the packet, generate a
response, and start the transmission of the response packet.
This paper refers to the packets used to measure device
latency as probe packets. Referring to Figure 1, t4 denotes
the time instance at which the device has wholly received a
probe packet, and device latency is the interval between t4 to
t6. Specifically, device latency comprises the following two
components: response generation and channel contention, cor-
responding to time intervals t4 to t5 and t5 to t6, respectively.

Several factors contribute to the variability of these latency
components, including the packet type, the device’s hardware
characteristics such as processor type and memory, the type
of wireless Network Interface Card (NIC) employed, NIC’s
driver, operating system and the network stack implemented on
the device. These attributes collectively influence how a device
handles latency-related tasks. For instance, the processor, NIC
driver, operating system, and network stack impact incoming
and outgoing packet processing, while the wireless NIC and

Probe 
Packet 

Generation

Probe 
Packet 

Transmission

Response 
Packet 

Generation 

Channel 
Access 

Contention

Device Latency

Channel 
Access

Contention 

Probe Packet 
Received by Device

Resposne Packet 
Received by AP

Probe Packet 
Generation by AP

Round-Trip Time (RTT) 

<latexit sha1_base64="kxmKpWLDE2K1Hb3yszqdkBRza/0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMevEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlh7I47xVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi4p3WaneV0u1myyOPJzAKZTBgyuowR3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AnFCNXg==</latexit>

(l)

Response 
Packet 

Transmission

Fig. 1. Device latency (l) is defined as the interval between t4 to t6. Round-
Trip Time (RTT) is defined as the interval between crafting a probe packet by
the AP until the reception of the response packet (generated by the device) by
the AP. Extracting device latency (t4 to t6) from RTT (t1 to t7) is challenging
due to the variability of t1 to t4.

its driver determine how a device contends for channel access
before transmitting each packet.

B. Feature Measurement Methodology

The precise measurement of device latency is essential for
accurate device identification. One potential method is using
Round-Trip Time (RTT), which includes the various time
intervals illustrated in Figure 1: (i) packet generation interval,
from t1 to t2, which represents the time taken by the AP to
craft a probe packet, (ii) channel access contention by the AP
during t2 to t3 to send the probe packet, (iii) actual trans-
mission of probe packet from t3 to t4, (iv) packet processing
and response generation during t4 to t5 by the device, (v)
channel access contention by the device during t5 to t6 to send
the response packet, and (iv) actual transmission of response
packet during t6 to t7. Among these delay components, the
time interval from t1 to t4 does not represent device latency. It
can be easily impacted by different factors, such as the packet
switching load of the AP or the network traffic. Therefore, the
variability of this time interval can negatively affect device
latency measurement accuracy, impacting the effectiveness of
device identification.

We propose an alternative method to address the above
challenges. Instead of relying on the RTT method to measure
the time intervals encompassing t1 to t7, we focus on the
interval from t4 to t7 and subtract t6 to t7 to extract device
latency. To this end, we employ a packet sniffer to capture
probe packets and the corresponding response packets. A
program then parses the captured data and correlates probe and
response packets for each device. Detailed packet information,
such as packet type and duration, can be extracted from the
captured data to compute the proposed features. For instance,
if the probe packet is a TCP-SYN sent to a closed port,
the packet parser matches the TCP-SYN with a TCP-RST
packet by correlating their sequence number fields. Once a
pair of packets (probe and response) is found, the packet parser
extracts t4 as the time of receiving the probe packet and t7 as
the time of receiving the response packet. Then, the duration
of the response packet (t7 → t6) is subtracted from t7 → t4 to
extract device latency.

It is worth noting that the packet capture process does not
necessarily require a sniffer in addition to the AP. For example,
many modern APs provide an additional NIC that can be
used for capturing packets on the desired channel. From the



Machine 1

Sniffer

Machine 2

Access Point (AP)

Ethernet Connection Wi-Fi Connection

Machine 3

Google Home (G)

Amazon Echo Dot (A)

Kasa Camera (K)

Philips Light (P)

Amazon Air Quality (AQ)

Fig. 2. The testbed components including machines used for background
traffic generation, IoT devices, and sniffer. Note that various experiments
of this work utilize subsets of these components, depending on the specific
objectives and requirements of each study.

memory utilization perspective, considering that Wi-Fi APs
typically have limited storage capacity, the proposed approach
is designed to optimize storage use. For example, the Netgear
WAX218 has 256 MB of flash memory and 512 MB of
RAM. The parser program processes captured packet headers
in real-time and selectively stores only essential information
from the packets of interest. It is also essential to note that
the packet parser only stores packet latency information and
probe packet type for each device. Therefore, no user-sensitive
information (such as destination IP addresses) is stored and
used by the identification algorithm. This approach ensures
that the proposed method is privacy-preserving.

C. Device Latency versus Device Type
We empirically validate the significance of device latency

in two essential aspects: its role in facilitating device iden-
tification and its sensitivity to variations in CU intensity. To
this end, we conduct preliminary experiments within a smart
home testbed, as shown in Figure 2. The testbed includes
off-the-shelf devices, each denoted by the notation enclosed
in parentheses: Google home (G), Amazon echo dot (A),
Kasa camera (K), Philips light bulb (P), and Amazon air
quality monitor (AQ). All of these devices are connected to
the AP. Machine 1 is connected to the AP’s Ethernet port, and
Machine 2 and Machine 3 are connected to the AP wirelessly.
The AP monitors CU intensity using the ethtool utility,
which captures measurements at 10 millisecond (ms) intervals
(shortest possible interval) to determine the percentage of time
the channel remains occupied during each interval [15]. To
evaluate the impact of CU on device latency, we adjust CU
intensity (from 0% to 100%) by using iperf and varying the
data rates of the flows being exchanged between Machine 1
and Machine 2 and Machine 3 via. To elicit responses from
the devices, the AP transmits one low-payload (0 byte) TCP-
SYN probe packet per second to a closed port of each device,
anticipating a corresponding TCP-RST response packet.

Figures 3 (a) through (e) present statistical metrics encom-
passing the median, minimum, and maximum device latency
for various devices and CU ranges. Device latency is denoted
as llotcp because of the use of TCP-SYN probe packets with
0-byte (low) payload size. The statistical metrics are shown
for different ranges of CU intensity, corresponding to the
five sub-figures. Three primary observations can be made
from Figure 3. Firstly, within each CU intensity range, the

median device latency varies for each device. For instance, in
Figure 3(a), the air quality monitor (AQ) shows the highest
median device latency at 3.27 ms, while Google home (G)
exhibits the shortest median latency at 0.62 ms. Secondly,
significant differences exist in the minimum and maximum
device latency values across all devices, with some overlapping
within these metrics. These differences stem from variations
in device hardware and software characteristics. Thirdly, when
comparing the figures, we observe a simultaneous shift in
median, minimum, and maximum device latency with changes
in CU intensity across all devices. This relationship between
CU intensity and device latency highlights the significance of
considering both factors when addressing device identification.

Based on these findings, it becomes evident that leveraging
device latency as the key feature for device identification has a
significant potential. However, relying solely on 0-byte TCP-
SYN probe packets may be insufficient for accurate device
identification. With these insights, we introduce four distinct
probe packet types to collect device latency features: low-
payload (0 B) TCP-SYN, high-payload (1400 B) TCP-SYN,
low-payload (0 B) UDP, and high-payload (1400 B) UDP. The
respective device latency associated with these packet types are
labeled as llotcp, lhtcp, lloudp, and lhudp. The motivation for utilizing
different payload sizes lies in the fact that larger payloads
have an evident impact on various essential stages within the
packet processing workflow, such as memory allocation and
deallocation for packets, and Direct Memory Access (DMA) of
packets from the NIC to the driver’s receiver buffer. Therefore,
exploring how device latency varies across these packet types
and sizes yields insights into the latency variation among
devices, enabling us to differentiate devices effectively. Note
that the AP sends all these probe packets to the closed ports
of the devices. Responses to UDP and TCP-SYN probes are
ICMP destination unreachable packets and TCP-RST packets,
respectively.

III. ACCOUNTING FOR THE IMPACT OF CHANNEL
UTILIZATION ON DEVICE LATENCY

Some wireless NICs can measure and report CU by dividing
channel activity time by a reference time period. For instance,
Atheros NICs can measure CU every 10 ms [15], [16]. Since
device latency can often be under 10 ms, as shown in Figure 3,
and given the dynamic nature of CU, the coarse granularity
of the CU measurements performed by these drivers is in-
sufficient to accurately quantify the impact of CU on device
latency. This limitation is increasingly significant in light of
the higher physical layer rates introduced by new standards
like 802.11be and the use of faster processors on IoT devices.
Therefore, we propose a novel approach for a more granular
and accurate analysis of the intensity of CU and its impact on
each probe-response exchange.

A. Accumulation Score
In this section, we present the formulation of the accu-

mulation score, a novel metric to measure instantaneous CU
and its impact on device latency. We use the notation pi



Fig. 3. Device latency (llotcp) for various devices and CU ranges. Results are collected when using low-payload (0 B) TCP-SYN probe packets. Circles,
squares, and horizontal lines represent maximum, minimum, and median values, respectively.

Probe Packet 
Sent by AP

Response Packet 
Sent by Device

Predecessor Packets Successor Packets

tsp1
tep1

tep2
tsp2

tsp3
tep3

tep4
tsp4

Bell Weight Function
Gamma Weight Function

Packet 
Duration

Inter-packet
 Interval

<latexit sha1_base64="3ASvrsQmFqifhsmPCyvUDQO30QQ=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVRY9FLx4r2A9p1yWbpm1okg1JVihLf4UXD4p49ed489+YtnvQ1gcDj/dmmJkXK86M9f1vr7Cyura+UdwsbW3v7O6V9w+aJkk1oQ2S8ES3Y2woZ5I2LLOctpWmWMSctuLRzdRvPVFtWCLv7VjRUOCBZH1GsHXSg40yFanJo4nKFb/qz4CWSZCTCuSoR+Wvbi8hqaDSEo6N6QS+smGGtWWE00mpmxqqMBnhAe04KrGgJsxmB0/QiVN6qJ9oV9Kimfp7IsPCmLGIXafAdmgWvan4n9dJbf8qzJhUqaWSzBf1U45sgqbfox7TlFg+dgQTzdytiAyxxsS6jEouhGDx5WXSPKsGF1X/7rxSu87jKMIRHMMpBHAJNbiFOjSAgIBneIU3T3sv3rv3MW8tePnMIfyB9/kDQMeQsw==</latexit>

tspp

<latexit sha1_base64="3Lwu4CiC1YDvOGqGI+GB8fxbfw4=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqeyKoseiF48V7Ie065JNp21okg1JVihLf4UXD4p49ed489+YtnvQ1gcDj/dmmJkXK86M9f1vr7Cyura+UdwsbW3v7O6V9w+aJkk1hQZNeKLbMTHAmYSGZZZDW2kgIubQikc3U7/1BNqwRN7bsYJQkIFkfUaJddKDjTIVqckjROWKX/VnwMskyEkF5ahH5a9uL6GpAGkpJ8Z0Al/ZMCPaMsphUuqmBhShIzKAjqOSCDBhNjt4gk+c0sP9RLuSFs/U3xMZEcaMRew6BbFDs+hNxf+8Tmr7V2HGpEotSDpf1E85tgmefo97TAO1fOwIoZq5WzEdEk2odRmVXAjB4svLpHlWDS6q/t15pXadx1FER+gYnaIAXaIaukV11EAUCfSMXtGbp70X7937mLcWvHzmEP2B9/kDK4+QpQ==</latexit>

tepp

<latexit sha1_base64="w4NfOeVOwiFTMlRMlfTMBqJdWnU=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4Kokoeix68VjBfkAaw2a7aZdudsPuRCghP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUsENuO63s7K6tr6xWdmqbu/s7u3XDg47RmWasjZVQuleRAwTXLI2cBCsl2pGkkiwbjS+nfrdJ6YNV/IBJikLEjKUPOaUgJV8CPM0zHVRPLKwVncb7gx4mXglqaMSrbD21R8omiVMAhXEGN9zUwhyooFTwYpqPzMsJXRMhsy3VJKEmSCfnVzgU6sMcKy0LQl4pv6eyElizCSJbGdCYGQWvan4n+dnEF8HOZdpBkzS+aI4ExgUnv6PB1wzCmJiCaGa21sxHRFNKNiUqjYEb/HlZdI5b3iXDff+ot68KeOooGN0gs6Qh65QE92hFmojihR6Rq/ozQHnxXl3PuatK045c4T+wPn8AfkAkbM=</latexit>

tepr

<latexit sha1_base64="TxLodk0eGR9+N/mnAgPWXGGLt38=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4Kokoeix68VjBfkAaw2a7aZdudsPuRCghP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUsENuO63s7K6tr6xWdmqbu/s7u3XDg47RmWasjZVQuleRAwTXLI2cBCsl2pGkkiwbjS+nfrdJ6YNV/IBJikLEjKUPOaUgJV8CPM0zHVRPJqwVncb7gx4mXglqaMSrbD21R8omiVMAhXEGN9zUwhyooFTwYpqPzMsJXRMhsy3VJKEmSCfnVzgU6sMcKy0LQl4pv6eyElizCSJbGdCYGQWvan4n+dnEF8HOZdpBkzS+aI4ExgUnv6PB1wzCmJiCaGa21sxHRFNKNiUqjYEb/HlZdI5b3iXDff+ot68KeOooGN0gs6Qh65QE92hFmojihR6Rq/ozQHnxXl3PuatK045c4T+wPn8AQ5HkcE=</latexit>

tspr

f(tmp1
)

f(tmp2
)

f(tmp3
)

f(tmp4
)

Va
lu

e 
re

tu
rn

ed
 b

y t
he

 w
ei

gh
t f

un
ct

io
n

<latexit sha1_base64="2SE73lb4KT15f4r1U+2Wfav8Y8I=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZdFNy4r2Ae0Y8mkmTY0yYxJplCG+Q43LhRx68e4829M21lo6+FeOJxzL7k5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRS0eJIrRJIh6pToA15UzSpmGG006sKBYBp+1gfDvz2xOqNIvkg5nG1Bd4KFnICDZW8s1jKrJ+GtvKsn654lbdOdAq8XJSgRyNfvmrN4hIIqg0hGOtu54bGz/FyjDCaVbqJZrGmIzxkHYtlVhQ7afzozN0ZpUBCiNlWxo0V39vpFhoPRWBnRTYjPSyNxP/87qJCa/9lMk4MVSSxUNhwpGJ0CwBNGCKEsOnlmCimL0VkRFWmBibU8mG4C1/eZW0LqreZbV2X6vUb/I4inACp3AOHlxBHe6gAU0g8ATP8ApvzsR5cd6dj8Vowcl3juEPnM8fz5+Syg==</latexit>

tmpp

<latexit sha1_base64="JJqpUBRjRRqKqUxp3cfuNJojsY0=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9mVoh6LXjxWsB/Qrks2TdvQJLsm2UJZ9nd48aCIV3+MN/+NabsHbX0w8Hhvhpl5YcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRS0eJIrRJIh6pTog15UzSpmGG006sKBYhp+1wfDvz2xOqNIvkg5nG1Bd4KNmAEWys5JvHVGRBGgepyrKgXHGr7hxolXg5qUCORlD+6vUjkggqDeFY667nxsZPsTKMcJqVeommMSZjPKRdSyUWVPvp/OgMnVmljwaRsiUNmqu/J1IstJ6K0HYKbEZ62ZuJ/3ndxAyu/ZTJODFUksWiQcKRidAsAdRnihLDp5Zgopi9FZERVpgYm1PJhuAtv7xKWhdV77Jau69V6jd5HEU4gVM4Bw+uoA530IAmEHiCZ3iFN2fivDjvzseiteDkM8fwB87nD9Krksw=</latexit>

tmpr

Fig. 4. A sample probe-response packet exchange with Predecessor and
Successor packets. Accumulation score calculation associated with each
device latency value uses three major parameters: the duration of Predecessor
and Successor packets, inter-packet intervals, and value obtained from the
projection of packets’ midpoints onto the Bell or Gamma function.

to denote a generic packet. Specifically, probe and response
packets are represented as pp and pr, respectively. For each
packet pi, we denote its start and end times as tspi

and tepi
. We

begin by introducing two essential concepts employed in the
accumulation score formulation: (i) Predecessor Packets and
(ii) Successor Packets. Figure 4 illustrates these concepts in the
context of a probe-response exchange. Predecessor Packets are
defined as the packets sent during the time interval between
the transmission of the probe packet and the transmission
of the response packet. In Figure 4, packets p1 and p2 are
examples of Predecessor Packets. The occurrence of these
packets indicates competition for channel access, potentially
increasing the CU and resulting in increased device latency,
particularly when these packets are transmitted close to the
transmission of response packet. On the other hand, Successor
Packets refer to the packets transmitted after the response
packet, up until a specific time instance that will be further
detailed later in this section. Packets p3 and p4 in Figure 4 are
examples of Successor Packets. The rationale for considering
Successor Packets lies in their potential impact on device
latency, especially when a series of packets immediately
follows the response packet. A cluster of such packets can
suggest possible contention at the time the device was trying
to transmit the response packet, thereby influencing device
latency.

In evaluating the impact of CU on device latency, we focus
on certain characteristics of Predecessor and Successor pack-
ets, including packet duration, mid-packet points, and inter-
packet intervals. The duration of a packet, indicating the length

of time it occupies the communication channel, is defined as
dpi = tepi

→ tspi
. Longer packet durations lead to extended

channel occupancy and longer device latency. The midpoint
of a packet’s transmission, defined as tmpi

= tspi
+

tepi→tspi
2 ,

represents the time at the center of the packet transmission.
The inter-packet interval is defined as vpi→1,pi = tspi

→ tepi→1

and refers to the interval between packets pi→1 and pi. Shorter
inter-packet intervals typically signify higher CU, increased
contention for channel access, and longer device latency.

To account for the impact of each Predecessor or Successor
packet on CU, we consider the relative distance (time differ-
ence) of each packet from the response packet (tpr ). The closer
a packet is to its corresponding response packet, the higher
its impact on device latency. To reflect this relationship, we
define and use weight functions that reach their peak at the
time of response packet transmission (tmpr

). Figure 4 demon-
strates two such weight functions, called the Bell and Gamma
curves. The Bell curve has a mathematical form similar to the
Probability Density Function (PDF) of the normal distribution
and is expressed as f(x; µ, ω) = 1

ω
↑
2ε

e→
1
2 (

x→µ
ω )2 , where

x is the variable of interest, µ is the mean, and ω is the
standard deviation. Similarly, the Gamma curve is expressed
as f(x; ε, ϑ) = 1

ϑε xϖ→1e→
x
ϑ , where ε and ϑ are parameters

that control the shape and scale of the function. Note that
the mean of both functions is at tmpr

, the middle point of the
response packet. A gamma curve considers both distance and
precedence, meaning that for a Predecessor and a Successor
packet both equidistant from tmpr

, a higher weight is given to
the Predecessor packet. In contrast, the Bell curve takes into
account distance only when assigning weight. It is important
to note that these weight functions assign relative weights to
each packet, reflecting their contribution to CU intensity within
a probe-response exchange rather than modeling the actual
packet distribution.

To integrate the above metrics and evaluate the impact of
Predecessor and Successor packets on each probe-response ex-
change, we introduce the accumulation score metric. Assume
the number of Predecessor and Successor packets, denoted as
n, may vary for each probe-response exchange. Accumulation
score is defined as follows:

Aj =






0 if n = 0

dp1 ↑ ω ↑ f(tmp1
) if n = 1

dp1 ↑ ω ↑ f(tmp1
)+ if n > 1

∑n
i=2(dpi ↑ 1

vpi→1,pi/ω
↑ f(tmpi

))

(1)



TABLE I
PROPOSED FEATURES FOR DEVICE IDENTIFICATION

Symbol Definition

llotcp Device latency for low-payload (0 B) TCP-SYN probe
Alo

tcp Accumulation score for low-payload (0 B) TCP-SYN probe

lhtcp Device latency for high-payload (1400 B) TCP-SYN probe
Ah

tcp Accumulation score for high-payload (1400 B) TCP-SYN probe

lloudp Device latency for low-payload (0 B) UDP probe
Alo

udp Accumulation score for low-payload (0 B) UDP probe

lhudp Device latency for high-payload (1400 B) UDP probe
Ah

udp Accumulation score for high-payload (1400 B) UDP probe

Here, f(·) refers to the value returned by the weight
function. If n = 0, we assign a zero value to the accumulation
score. For n = 1, since there is no inter-packet interval, we
normalize the duration of the packet by multiplying it by the
standard deviation of the curve, denoted as ω. When selecting a
weight function, we select function parameters that maximize
the correlation between accumulation score and device latency.
For n > 1, we further consider the impact of the inter-packet
interval on the accumulation score for all subsequent packets
beyond the first, ensuring that the influence of each packet on
the score intensifies as their inter-packet intervals decrease.
When normalizing the duration of a packet, we calculate the
ratio of the inter-packet interval between the current packet
and the subsequent one to the standard deviation (ω) of the
weight curve. This is represented as vpi→1,pi/ω.

B. Accumulation Score for Various Probe Packet Types

As discussed earlier, various probe packets trigger different
packet processing paths of devices. For instance, a TCP-SYN
packet requires more processing compared to a UDP packet.
Also, various packet sizes induce different overheads in terms
of reception processing. For instance, the reception of a larger
packet requires a longer reception time due to longer NIC
to memory transfer and buffer management. Based on these
observations, we use device latency and accumulation scores
for the four probe packets explained in Section II-C. Table I
summarizes the device latency and accumulation score features
we use to train the ML algorithms.

Following data collection, we determine the parameters of
the Bell and Gamma functions for each of the aforementioned
packet types to maximize the Pearson correlation between
device latency and accumulation score. We found correlation
values of 92% and 87% for the Bell and Gamma weight
functions, respectively. Consequently, we employ the Bell
curve to determine the accumulation score considering its
higher correlation.

C. Effectiveness of Representing CU via Accumulation Scores

To validate the effectiveness of the accumulation score as a
tool for modeling CU, we conduct an analysis estimating the
accumulation score of various probe packets across different
CU ranges. The details of data collection for this analysis

can be found in Section IV. The outcomes of this analysis
are depicted in Figures 5 (a) to (d). A key observation from
Figure 5 is the trend of increasing accumulation score values
directly related to CU levels. This trend is consistent across
all four types of probe packets. Specifically, we note that
lower CU ranges, particularly from 0 to 20%, are characterized
by lower accumulation scores, while the highest CU range
(80 to 100%) corresponds with the maximum accumulation
scores. This pattern indicates a positive correlation between
the accumulation score and CU, suggesting that higher CU
is associated with higher accumulation scores. Also, our
regression analysis demonstrates that an exponential function
captures the relationship between the accumulation score and
CU. This is evidenced by a Residual Sum of Squares (RSS)
value of less than 0.004, indicating a strong fit.

Although a consistent increase in accumulation scores can
be observed with the increase of CU for all four probe packet
types, there are overlapping values of accumulation scores for
different CU ranges. This observation is due to the highly-
dynamic nature of CU and accumulation score, which result in
overlaps of collected data instances. While we strive to control
the CU values by generating background traffic (exchanged
between Machines 1, 2, and 3), such control is still very rough
and cannot ensure that the instantaneous CU values are always
accurately or stably enforced.

Figure 6 shows the distribution of device latency for various
ranges of accumulation score values and all the IoT devices in
our testbed. We adopt three bins of varying lengths to account
for the fluctuations observed in accumulation scores and the
presence of a long tail in the accumulation score distribution.
It is evident from Figure 6 that an increase in the accumulation
score corresponds to a rise in device latency. This further
validates the effectiveness of using accumulation scores to
represent CU.

IV. EMPIRICAL EVALUATIONS AND DISCUSSION

In this section, we demonstrate the importance of using
accumulation scores in data collection and model training.
Also, we study the impact of using various subsets of features
on accuracy and reveal the effectiveness of the proposed
features and various ML algorithms in identifying devices.

A. Impact of Accumulation Score and Channel Utilization

To demonstrate the influence of CU on device identification
accuracy, we use Light Gradient Boosted Machine (LGBM)
algorithm and train the model within predefined accumulation
score ranges and subsequently assess the performance of de-
vice identification across different accumulation score ranges.
Each defined accumulation score range bin comprises ap-
proximately 11,000 samples. We adopt a progressive training
approach in our analysis, where we start the training process
with an initial set of 1,000 samples and then gradually increase
the training dataset size, adding samples incrementally until
reaching 11,000. Throughout this process, we maintain a
constant number of test samples at 1,000 for each iteration.



Fig. 5. Illustration of different accumulation scores for various CU ranges and probe packets. With reference to Table I, each sub-plot represents a specific
accumulation score: (a) Alo

tcp, (b) Ah
tcp, (c) Alo

udp, and (d) Ah
udp. The y-axis is log-scaled to facilitate a better understanding of the relationship between

accumulation scores and the ranges of CU. Circles, squares, and horizontal lines represent maximum, minimum, and median values, respectively. These results
confirm the direct relationship between the accumulation score and CU.

Fig. 6. Device latency (l) distribution across all devices and various accu-
mulation score ranges. With the increase in accumulation score, the device
latency also increases.

Fig. 7. F1 score of device identification accuracy when the LGBM algorithm
is trained using the samples belonging to one accumulation score range but
tested with samples belonging to the other two accumulation score ranges.
The low F1 scores highlight the necessity of involving a diverse range of
accumulation scores in the training data.

The division of the accumulation score range is structured
into three distinct intervals: [0, 0.1), [0.1, 2), and [2, 1405).
These intervals are approximately mapped to the correspond-
ing CU ranges of [0, 33%), [33%, 66%), and [66%, 100%).
This mapping is established through the collection of accu-
mulation score samples under varying CU intensities, and then
employing a regression analysis to correlate the accumulation
scores with CU. The CU range is then segmented into three
intervals based on this correlation, with each interval’s starting
and ending points derived from the corresponding segments of
the regression line.

Figures 7 (a) through (c) present the variation of the F1
score as a function of different training sample sizes, with
the x-axis depicting the number of training samples used. The
analysis reveals a notable trend: when the algorithm is trained
exclusively within a specific accumulation score range, the F1
score consistently falls below 75%, sometimes even dropping
to as low as 25%. This pattern persists despite increases in the
size of the training dataset, with F1 scores remaining under the
75% threshold. This finding underscores an important limita-

tion: algorithms trained on data from a singular CU range ex-
hibit poor generalization when applied to device identification
tasks across different CU ranges. The model effectively learns
and recognizes patterns only within the narrow confines of its
training range; consequently, when confronted with CU levels
outside this familiar range, the model’s ability to accurately
identify devices diminishes. Merely increasing the training
dataset within the same accumulation score range does not
rectify this issue, as it does not expose the model to the broader
spectrum of patterns associated with different CU levels. We
also observe a relative improvement in accuracy when the
algorithm is trained using the middle accumulation score
interval (i.e., [0.1, 2)). We attribute this enhanced performance
to the overlap of CU samples from lower and upper intervals
within the middle range. As a result, the model gains partial
exposure to device behaviors across the broader spectrum of
CU ranges, and this exposure enables the algorithm to partially
understand device patterns outside its primary training interval.

To further validate the significance of utilizing accumulation
score for device identification, we assess the performance of
LGBM algorithm across various feature sets and present the
results in Figures 8. We utilize a randomized dataset partition-
ing method to evaluate the algorithm’s robustness and mitigate
the effects of potential data variability on performance. This
procedure is repeated by increasing the number of samples. We
iterate this process 30 times for each sample size. Compared
to Figure 7, the results presented in Figures 8 represent higher
accuracy when the model has been trained with samples
spanning the complete range of accumulation scores (and
CUs). Therefore, as expected, the F1 scores are considerably
higher than those presented in Figure 7. For instance, Figure 7
(c) shows F1 scores of around 25% when all the latency and
accumulation score features are used. Therefore, these results
confirm the importance of model training across the range of
accumulation scores.

The results in Figures 8 confirm that even when the model
has been trained across the range of accumulation scores,
including the accumulation score as a feature consistently
yields improved F1 scores. Also, the accumulation score
allows us to achieve higher F1 scores when some latency
features are ignored or when the number of samples is limited.
For instance, consider a scenario where only UDP features can
be used instead of TCP. Such restrictions may be enforced for
reasons such as UDP’s lower overhead on devices’ resource



Fig. 8. The F1 scores achieved by the LGBM algorithm, with each score
corresponding to the model trained on different subsets of features. The
legend’s columns represent various combinations of device latency features
and their associated accumulation score features. Error bars represent standard
deviation for 30 iterations.

Fig. 9. (a): F1 score of various ML algorithms. (b): Duration of training
(circles) and inference (square). Error bars represent standard deviation for
30 iterations.

consumption compared to TCP or the restrictions on sending
non-legitimate, crafted TCP-SYN packets in a network due to
security or firewall configurations. In this case, the extraction
and use of associated accumulation scores features with UDP
latency features result in considerable performance improve-
ment. For instance, when we have 500 samples, Figure 8(b)
shows that using feature vector x = [lloudp,Alo

udp] instead of
feature vector x = [Alo

udp] increases the F1 score from 67% to
73%. It is important to note that calculating the accumulation
score for each latency feature is implicit and does not impose
any additional data exchange overhead.

B. Performance Validation via Different ML Algorithms
Next, we further validate the effectiveness of the proposed

features by comparing the accuracy and overhead of various
ML algorithms, including Decision Tree (DT), Random Forest
(RF), LGBM and XGBoost. We employ random dataset par-
titioning to understand the impact of training data variations
on model performance and robustness. Specifically, we utilize
the whole dataset, including 125,336 samples, and partition it
into distinct training and testing sets with an 80:20 split ratio.
This process is iterated 30 times.

Figure 9(a) shows the accuracy of various ML algorithms.
DT demonstrates the lowest F1 score of 93.6%, whereas,
LGBM and Extreme Gradient Boosting (XGBoost) achieve
the highest score of around 97%. Figure 9(a) also shows the
low standard deviation of F1 scores, indicating low bias and
variances in these ML algorithms. It further suggests that

the proposed features are robust and stable across different
ML algorithms and not influenced by the dataset’s random
partitioning.

The Netgear WAX 218 AP includes an IPQ8074 SoC [17],
which integrates a quad-core Cortex-A53 processor. Using this
processor, we measure the duration of training and inference
and present the results in Figure 9(b). The results show that DT
is the fastest model to train and has the shortest inference du-
ration, suggesting a suitable solution for resource-constrained
scenarios. Considering the two models that achieve the highest
F1 scores, the inference duration of LGBM is significantly
shorter than that of XGBoost. Therefore, if offline training
can be conducted, using LGBM is specifically beneficial for
resource-constrained devices, such as home APs.

V. RELATED WORK

Recent works on IoT device identification center around
leveraging traffic-based features to achieve high accuracy. We
have classified these studies into a few distinct categories,
determined by the types of features they utilize.

The first category of features is extracted by analyzing
individual network packets. For example, [18] utilized TLS
protocol features, such as TLS version, server name, IP
address, and negotiated cipher suites, for device identifica-
tion. Similarly, the study in [19] adopted features like UDP
checksum, TCP window size, DNS query class, IP length, TCP
port, and TCP flags, focusing on packet headers and network
traffic. Expanding the scope, [10] extracted features across 16
protocols, including HTTP, DNS, and NTP, analyzing packet
size, port numbers, and IP address counts for each protocol
type. Moreover, [8] focused on features such as packet length
and the count of specific packet types, including STUN, NTP,
and MQTT. While these studies may achieve high accuracy
in device identification, their reliance on analyzing packet
contents raises privacy and computational resource concerns.
Also, stringent data protection regulations could further restrict
access to such packet contents, complicating the analysis.

The second category of features emphasizes flow-based
statistics aggregated across packets. For example, [12] pro-
posed flow-based features like the percentages of ICMP, TCP,
and UDP protocols, packet count and size, and the diversity
ratio of IP addresses. Shaikh et al. [20] utilized metrics such
as average time-to-live per IP address, total packet count,
unique IP addresses and port counts, and TCP/UDP packet
numbers. Cvitic et al. [21] focused on the length of both sent
and received packets. Features like packet and byte counts,
mean packet size, inter-arrival time, and the count of TCP
packets with specific flags were used in [22]. This approach
was refined in [1] and [11], where the former used packet size,
inter-arrival time, and specific TCP flag counts, while the latter
tailored their analysis to encrypted traffic, examining packet
length statistics over a one-second window. In [23], the study
identified IoT devices in Wi-Fi environments, emphasizing
feature selection from the 802.11 link layer, including frame
length, type, arrival time, and retransmission flag. Despite
the strengths of flow-based features, gathering comprehensive



training data to represent flow statistics accurately can be
challenging and time-consuming, especially for IoT devices
that operate intermittently and under resource constraints.
Furthermore, these flow-based features can be sensitive to
wireless channel conditions, significantly limiting their gen-
erality across different network environments. For instance, as
demonstrated in this paper, high CU during peak times can
alter flow patterns, impacting identification accuracy.

Several studies [9] have combined flow-based features with
packet-specific features to leverage the benefits from both
categories and improve identification accuracy further. For
example, both individual packet features, such as domain
names, cipher suites, DNS intervals, and port numbers, as
well as flow-level features, like the total number of bytes
exchanged, the duration of flows, and the inactive intervals of
IoT devices, are examined in [7]. Although these studies lead
to continuous improvement in identification accuracy, there
is a lack of solutions that can address privacy concerns and
features’ reliance on network conditions at the same time.

VI. CONCLUSION

In this paper, we focused on the accuracy of IoT device
identification, taking into account two critical design factors.
Firstly, we utilized device latency instead of deep packet
inspection methods due to the latter’s high computational
demands and privacy concerns. Secondly, we highlighted the
significant influence of wireless channel dynamics on device
latency features, underscoring the necessity of incorporating
these dynamics into the device identification process. To
effectively model channel dynamics, we introduced the accu-
mulation score as a metric that is derived from packet capture
data and accounts for the impact of wireless channel utilization
on the variability of features used in device identification. Our
findings reveal that the accumulation score facilitates enhanced
data collection for training and also significantly improves
the accuracy of device identification when incorporated as an
additional feature in training and testing ML algorithms.

ACKNOWLEDGMENT

This work was partially supported by NSF grant #2138633.
The authors would like to thank Netgear Inc. (San Jose,
CA) for donating some of the materials used to conduct this
research.

REFERENCES

[1] M. R. Santos, R. M. Andrade, D. G. Gomes, and A. C. Callado, “An
efficient approach for device identification and traffic classification in iot
ecosystems,” in IEEE Symposium on Computers and Communications
(ISCC). IEEE, 2018, pp. 00 304–00 309.

[2] B. Tushir, Y. Dalal, B. Dezfouli, and Y. Liu, “A quantitative study of
ddos and e-ddos attacks on wifi smart home devices,” IEEE Internet of
Things Journal, vol. 8, no. 8, pp. 6282–6292, 2020.

[3] A. Osman, A. Wasicek, S. Köpsell, and T. Strufe, “Transparent microseg-
mentation in smart home iot networks,” in 3rd USENIX Workshop on
Hot Topics in Edge Computing (HotEdge), 2020.

[4] A. Sivanathan, H. H. Gharakheili, and V. Sivaraman, “Detecting be-
havioral change of iot devices using clustering-based network traffic
modeling,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7295–
7309, 2020.

[5] S. Marchal, M. Miettinen, T. D. Nguyen, A.-R. Sadeghi, and N. Asokan,
“Audi: Toward autonomous iot device-type identification using periodic
communication,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1402–1412, 2019.

[6] R. R. Chowdhury, S. Aneja, N. Aneja, and E. Abas, “Network traffic
analysis based iot device identification,” in Proceedings of the 4th
International Conference on Big Data and Internet of Things, pp. 79–89.

[7] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake,
A. Vishwanath, and V. Sivaraman, “Classifying iot devices in smart
environments using network traffic characteristics,” IEEE Transactions
on Mobile Computing, vol. 18, no. 8, pp. 1745–1759, 2018.

[8] V. Thangavelu, D. M. Divakaran, R. Sairam, S. S. Bhunia, and M. Gu-
rusamy, “Deft: A distributed iot fingerprinting technique,” IEEE Internet
of Things Journal, vol. 6, no. 1, pp. 940–952, 2018.

[9] N. Ammar, L. Noirie, and S. Tixeuil, “Autonomous identification of iot
device types based on a supervised classification,” in IEEE International
Conference on Communications (ICC). IEEE, 2020, pp. 1–6.

[10] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and
S. Tarkoma, “Iot sentinel: Automated device-type identification for
security enforcement in iot,” in IEEE 37th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2017, pp. 2177–2184.

[11] A. J. Pinheiro, J. d. M. Bezerra, C. A. Burgardt, and D. R. Campelo,
“Identifying iot devices and events based on packet length from en-
crypted traffic,” Computer Communications, vol. 144, pp. 8–17, 2019.

[12] H. Gordon, C. Batula, B. Tushir, B. Dezfouli, and Y. Liu, “Securing
smart homes via software-defined networking and low-cost traffic clas-
sification,” in IEEE 45th Annual Computers, Software, and Applications
Conference (COMPSAC). IEEE, pp. 1049–1057.

[13] H. Gordon, C. Park, B. Tushir, Y. Liu, and B. Dezfouli, “An efficient
sdn architecture for smart home security accelerated by fpga,” in IEEE
International Symposium on Local and Metropolitan Area Networks
(LANMAN). IEEE, 2021, pp. 1–3.

[14] A. Aksoy and M. H. Gunes, “Automated iot device identification using
network traffic,” in IEEE International Conference on Communications
(ICC). IEEE, 2019, pp. 1–7.

[15] J. Sheth and B. Dezfouli, “Monfi: A tool for high-rate, efficient, and
programmable monitoring of wifi devices,” in 2021 IEEE Wireless
Communications and Networking Conference (WCNC). IEEE, 2021,
pp. 1–7.

[16] J. Sheth, V. Ramanna, and B. Dezfouli, “Flip: A framework for
leveraging ebpf to augment wifi access points and investigate network
performance,” in Proceedings of the 19th ACM International Symposium
on Mobility Management and Wireless Access (MobiWac), 2021, pp.
117–125.

[17] Qualcomm. (2020) IPQ8074: High-capacity 802.11ax
SoC for Routers, Gateways and Access Points.
https://www.qualcomm.com/products/internet-of-things/networking/wi-
fi-networks/ipq8074.

[18] E. Valdez, D. Pendarakis, and H. Jamjoom, “How to discover iot devices
when network traffic is encrypted,” in IEEE International Congress on
Internet of Things (ICIOT). IEEE, 2019, pp. 17–24.

[19] A. Aksoy and M. H. Gunes, “Automated iot device identification using
network traffic,” in IEEE International Conference on Communications
(ICC), 2019, pp. 1–7.

[20] F. Shaikh, E. Bou-Harb, J. Crichigno, and N. Ghani, “A machine learning
model for classifying unsolicited iot devices by observing network
telescopes,” in 14th International Wireless Communications & Mobile
Computing Conference (IWCMC). IEEE, 2018, pp. 938–943.

[21] I. Cvitić, D. Peraković, M. Peri!a, and B. Gupta, “Ensemble machine
learning approach for classification of iot devices in smart home,”
International Journal of Machine Learning and Cybernetics, vol. 12,
no. 11, pp. 3179–3202, 2021.

[22] O. Salman, I. H. Elhajj, A. Chehab, and A. Kayssi, “A machine learning
based framework for iot device identification and abnormal traffic
detection,” Transactions on Emerging Telecommunications Technologies,
vol. 33, no. 3, p. e3743, 2022.

[23] H. F. Fakhruldeen, M. J. Saadh, S. Khan, N. A. Salim, N. Jhamat,
and G. Mustafa, “Enhancing smart home device identification in wifi
environments for futuristic smart networks-based iot,” International
Journal of Data Science and Analytics, pp. 1–14, 2024.


