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Anderson criticalmetal phase in trivial states
protected by average magnetic crystalline
symmetry

Fa-Jie Wang1, Zhen-Yu Xiao1, Raquel Queiroz 2, B. Andrei Bernevig 3,

Ady Stern 4 & Zhi-Da Song1,5,6

Transitions between distinct obstructed atomic insulators (OAIs) protected by

crystalline symmetries, where electrons form molecular orbitals centering

away from the atom positions, must go through an intermediate metallic

phase. In this work, we find that the intermediate metals will become a scale-

invariant critical metal phase (CMP) under certain types of quenched disorder

that respect the magnetic crystalline symmetries on average. We explicitly

construct models respecting average C2zT,m, and C4zT and show their scale-

invariance under chemical potential disorder by the finite-size scalingmethod.

Conventional theories, such as weak anti-localization and topological phase

transition, cannot explain the underlying mechanism. A quantitative mapping

between lattice and network models shows that the CMP can be understood

through a semi-classical percolation problem. Ultimately, we systematically

classify all the OAI transitions protected by (magnetic) groups Pm,P20,P40, and

P60 with and without spin-orbit coupling, most of which can support CMP.

The interplay between topology and the Anderson (de)localization

has provided an understanding of the quantum Hall transition1,2 and

the classification (not including crystalline symmetries)3–5 of topo-

logical insulators (TIs)6–9. A remarkable result of this interplay is the

delocalization in TIs protected by local symmetries3,5: In the presence

of disorder that does not induce a bulk phase transition, the TI sur-

face states10–13 are guaranteed to be delocalized; In the bulk, a

disorder-induced transition between trivial and topological insula-

tors must go through a divergent localization length14,15. Similar

behavior occurs also in topological phases that require crystalline

symmetry to be preserved, despite the breaking of that symmetry by

disorders, as long as the symmetry is preserved on average. Examples

include weak topological insulators14,16–22 and some topological

crystalline insulators (TCIs)23–35 (including higher-order states with

hinge modes36–42). For instance, inversion-symmetry-protected axion

insulators26,43–45 have hinge modes46, and their phase transitions to

trivial insulatorsmust experience a delocalized diffusivemetal phase

if the disorder respects an average inversion symmetry47,48. Here, as

defined in refs. 14,49, average symmetry is the symmetry of an

ensemble comprising different disorder realizations on a local

Hamiltonian. The average symmetry operation transforms an indi-

vidual system into another with the same realization probability.

Also, we require each system in the ensemble to be self-average. Even

though not mathematically proven, most TCIs with protected

boundary states are believed to be stable against disorders respect-

ing the crystalline symmetries on average. This can be understood

intuitively: Suppose the disorder potential slowly varies in real space.

Then, during the transition, the disordered system can be divided

into topological and trivial regions. Boundary states between the two

types of regions must exist as promised by stable topology, giving

rise to the delocalized phase transition.

In this work, we find that such delocalization behavior also

generalizes to some topologically trivial states. There are two types

of non-atomic states that are not conventional TIs or TCIs—the fragile
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topological insulators50–53 and the obstructed atomic insulators

(OAIs)30,54–56. The former has a Wannier obstruction that can be

removed by adding trivial bands and was recently found to hold

delocalized critical states57. However, the latter is completely trivial

and can be wannierized to molecular orbitals with charge centers

away from the atoms. Given OAIs’ localized nature, it would be sur-

prising if they can have delocalized states in the presence of disorder.

In this work, we demonstrate that such delocalization does exist and

is actually a common feature in transitions between magnetic OAIs.

Conventional scenarios for delocalization theories, such asweak anti-

localization (requiring time-reversal symmetry) and topological

phase transition (requiring stable boundary states) cannot explain

the underlyingmechanismbehind the delocalized states that wefind.

Results
A C2zT-symmetric quantum network model
We first investigate several OAIs protected by the C2zT symmetry

without time-reversal symmetry (TRS)58–61. Later, we will generalize

the discussion to other magnetic point groups in subsection “OAI

transitions in genericmagnetic point groups”. TheOAIs belong to the

Altland-Zirnbauer symmetry class A62, where all states except the

quantumHall transition point were expected to be localized63. These

OAIs are characterized by theZ2 Real Space Invariant (RSI) δw, which

is protected by C2zT
64,65 and takes the value δw = 1 if the associated

C2zT center w is occupied by an odd number of Wannier functions

and zero otherwise. When the δw’s of a system have the same value at

all theC2zT centers, they are equivalent to the second Stiefel-Whitney

class w2
60,66.

Two features of a w2 = 1 insulator are worth emphasizing

here: First, it can be regarded as a C2zT-protected fragile insulator

plus two additional trivializing bands. And second, to tune a w2 = 1

insulator into a w2 = 0 insulator, one has to first close the gap by

creating pairs of Dirac points, which are locally stabilized by the C2zT

symmetry, then braid60,67,68 these Dirac points with other Dirac points

inside the valence bands, and only then reopen a gap by annihilating

the Dirac points (see subsection “Regularizing the network model to

lattice models” below). As a consequence, when the transition is

driven by the variation of one parameter, there is a gapless transition

region rather than a transition point. Using a finite-size scaling

procedure, we find that this gapless region becomes a critical

metal phase (CMP) when disorder is added, provided that the dis-

order respects C2zT on average. Electronic states in CMP are delo-

calized and contribute to a scale-invariant conductance in the

thermodynamic limit. We also find CMPs with other average sym-

metries and RSIs, suggesting CMP is a common feature of magnetic

OAI transitions.

CMP has been numerically observed in systems with random

fluxes69–71 or random spin-orbit coupling combined with a magnetic

field72. Inspired by these works, we first argue the existence of C2zT-

stabilized CMP through a semi-classical percolation theory. We then

relate the percolation theory to a quantum network model73 and fur-

ther map it to lattice models for the C2zT-protected OAIs.

To present a scenario that naturally leads to a CMP, we consider

a system that is tessellated by three types of randomly sized and

shaped insulating regions, whose Chern numbers are 0, 1 and −1,

respectively, as shown in Fig. 1a, b. Physically, the fluctuation of

Chern numbers could arise from random fluxes. The area fraction of

Chern number C is pC. By definition3CpC = 1. Since the operation C2zT

reverses the sign of Chern numbers, an average C2zT symmetry

means p1 = p−1. Then there are two distinct phases. If p0>
1
2, according

to the classical percolation theory74, the C = 0 regions form an

extensive cluster while the C = ±1 regions form isolated islands and

canbe continuously shrunk to zero. Thus, p0>
1
2 should correspond to

a localized phase (LP). If p0<
1
2, it is instead the C = 0 regions that can

be shrunk to zero, and the system is equivalently tessellated by the

C = ±1 regions with the same area fraction 1
2. As in the quantum Hall

transition73, the chiral edge states between theC = ±1 regions connect

to an extensive cluster with a fractal dimension and contribute to a

scale-invariant conductance in the thermodynamic limit. Thus, p0<
1
2

should correspond to the CMP.

We can simulate the above percolation problem with a quantum

network model on the Manhattan lattice75 (Fig. 1c). The red and blue

squares are Chern blocks with C = 1, −1, respectively. The chiral edge

modes between them and the trivial (white) regions form horizontal

and vertical wires, and at each intersection, an electron can go straight

or turn either left or right, depending on the type of intersection. The

scattering equation at one intersection reads

ψ3

ψ4

� �

=
cos θ �i sinθ

�i sinθ cosθ

� �

ψ1

ψ2

� �

, ð1Þ

where ψ3,4 and ψ1,2 are the outgoing and incoming modes, respec-

tively, and θ is the single parameter that determines the probability

amplitudes of going straight (cos θ) and turning left or right

(�i sinθ). The model in the clean limit has symmetries of the mag-

netic space group PC4bm (#100.177 in BNS setting) generated

by C2zT, C4z, and mxy symmetries76. The symmetry elements of

the generators are shown in Fig. 1c. (Notice that C2zT centers do

not coincidewithC4z centers, andC2
4z � C2zT is amagnetic translation,

i.e., a translation followed by time reversal. See Supplementary

Information for more details.) One can see that the C2zT operation

interchanges the C = ±1 regions. Note that the Manhattan lattice

is not the only way to simulate the percolation problem.

A Kagome-like network also works, with a localization behavior

that is similar to the Manhattan lattice (See Section II.A of

Supplementary Information).

Random sizes of the Chern blocks are simulated by the random

propagation phases, or, equivalently, random vector potentials, along

the bonds between intersections. When θ= ± π
2, the chiral modes form

local current loops surrounding C = ±1 regions, and the C = 0 regions

are effectively connected. When θ→0, the chiral modes are almost

decoupled wires, and C = 0 regions are effectively separated. Thus,

θ= ± π
2 and θ→0 should correspond to the localized limits (p0 = 1) and

the CMP limit (p0 =0), respectively. According to the percolation

argument, there will be a critical value θc below (above) which the

system enters the critical (localized) phase.

We use the transfer matrix techniques77 of quasi-1D systems,

where longitudinal size M is much larger than transversal size L, to

calculate the quasi-1D localization length ρ for finite L’s. More on this

is summarized in the Method section, and one can read Section V of

Supplementary Information for the full technical details. The nor-

malized quasi-1D localization length Λ = ρ/L is an indicator of the (de)

localization: Divergent, finite, and vanishing Λ’s in the limit L→∞

indicatemetallic, critical, and localized states, respectively. As shown

in Fig. 1e, Λ decreases with L for jθj>θcj
π
4 and is almost independent

of L for ∣θ∣ < θc. Hence, jθj 2 θc,π=2
� �

and ∣θ∣* (0, θc) correspond to

LP and CMP, respectively, which confirms the percolation argument.

Note that error bars in plots of this work represent the standard

deviations (SD) of corresponding data points. The conductance is

also calculated and shown in Fig. 1f. The β-function β =d lnG=d ln L

derived from the conductance data vanishes in the thermodynamics

limit above some critical conductance Gc = 2 ~ 3e2/h (see subsection

“β-function of the CMP” for details). The behavior of β-function

further establishes the criticality of CMP and may suggest that the

CMP-LP transition is similar to the Berezinskii-Kosterlitz-Thouless

transition78,79.

We can define the network model through its Hamiltonian HN

rather than through the scattering matrix Eq. (1). The Hamiltonian has

only three parameters, velocity v of the chiral modes, the δ-potential λ
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at each intersection, and the lattice constant 2a.

HN =
X

d,l

ið�1Þlv
Z

dξψy
d,l
ðξÞ"ξψd,lðξÞ

+
X

ll
0
λ½ψy

h,l
ðl0aÞψv,l

0 ðlaÞ+h:c:�
ð2Þ

The subscript d = v, h represents the vertical or horizontal orientations

of the wires. l =0, ± 1ï distinguishes different parallel wires. ξ is the

coordinate inside one wire. The operators ψv,l(ξ) and ψh,l(ξ) act at the

real space positions (x, y) = (la, ξ) and (ξ, la), respectively. As estab-

lished in Section III.B of Supplementary Information, the scattering

angle θ is determined by the Hamiltonian parameters as θ = λ/v. The

evolution of the band structure as θ changes from the localized limit

θ = −π/2 to the other localized limit θ =π/2 is illustrated in Fig. 1g–i. At

θ =0, the network model decouples to vertical and horizontal chiral

wires, and the corresponding dispersion becomes quasi-1D (Fig. 1h).

The symbols appearing in thefigure, �n,Mn (n = 1ï 5) andX1, represent

irreducible representations (irreps) of PC4bm and are defined in

Table 1. It is worth mentioning that because the chiral modes have

Fig. 1 | The network model HN. a, b Percolation systems with p0 > 1/2 and p0 < 1/2.

c The networkmodel on theManhattan lattice, where the dashed line, dark red and

blue rhombuses, and green oval indicate theMxymirror plane, C4z centers and C2zT

center, respectively. At every intersection (e.g. yellow circle), there is a scattering

potential λ, and the scattering angle θ is determined by λ = θv with v being the

velocity of chiral modes. d Brillouin zone and high symmetry points. e Normalized

quasi-1D localization length Λ’s as functions of θ at different transversal system

sizes L. The used longitudinal system size is M = 107 and the precision (σΛ/Λ) has

reached 1%. (For network model, `size’ refers to the number of squares.) Λ only

dependson ∣θ∣, henceonly datawith θ <0 is shown. fThemean conductances (over

103 square-shaped samples) as the function of θ and the precision (σG/G) has

reached 0.5% in the delocalized phase. g–i Band structures of the networkmodel at

θ = −π/2, 0, π/2−0.2. Blue capital letters indicate the associated irreps. The inset in

h is the 3D plot of the dispersion of the middle two bands around the zero energy

indicated by the dashed lines.

Table 1 | Character table of irreps at high symmetrymomenta inmagnetic space group PC4bm (#100.177 in BNS setting), taken
from the COREPRESENTATIONS program on the Bilbao Crystallographic Server80

Γ1 Γ2 Γ3 Γ4 Γ5 M1 M2 M3 M4 M5 X1

{1∣0, 0, 0} 1 1 1 1 2 {1∣0, 0, 0} 1 1 1 1 2 {1∣0,0, 0} 2

C2z = f2001j � 1
2
, 1
2
,0g 1 1 1 1 −2 C2z = f2001j � 1

2
, 1
2
,0g −1 −1 −1 −1 2 C2z = f2001j � 1

2
, 1
2
,0g 0

C4z = f4+
001j0, 12 ,0g 1 −1 −1 1 0 C4z = f4+

001j0, 12 ,0g i −i −i i 0 fm100j0, 12 ,0g 0

Mxy = fm1�10j0,0,0g 1 −1 1 −1 0 Mxy = fm1�10j0,0,0g −1 1 −1 1 0 fm010j 12 ,0,0g 0

Characters of the listed symmetry operations can uniquely determine the irreps One should notice that we use a different convention of the origin point as the Bilbao Crystallographic Server. Our

C2z = f2001j � 1
2 ,

1
2 ,0g,C4z = f4+

001j0, 12 ,0g,Mxy = fm1�10j0,0,0g,fm100j0, 12 ,0g, and fm010 j 12 ,0,0g correspond to f2001j0,0,0g,f4+
001j0,0,0g,fm1�10j 12 ,� 1

2 ,0g,fm100j 12 , 12 ,0g, and fm010 j 12 ,� 1
2 ,0g in the standard

convention of the Bilbao Crystallographic Server, respectively.
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unbounded energies, this Hamiltonian has an infinite number of bands

that are periodic in energy, i.e., En(k) = En+8(k) + 2πv/a. For example,

the lowest branch (two connected bands) in Fig. 1g–i is identical to the

highest branch. Tracing the evolution (detailed in Supplementary

Fig. 18), we find the phase transition process between these two LPs

can be depicted by the irrep exchange at the zero energy (dashed lines

in Fig. 1g–i)

��1 �M1 + �2 +M2, ð3Þ

where a minus (plus) sign means an energy level with the associated

irrep crosses the zero energy from below (above) to above (below)

during the phase transition. Onemay notice that the occupied �4 state

in Fig. 1g also changes into �3 in Fig. 1i. However, this change is realized

by level exchanges between the lowest branch in the figures and the

lower branches beyond the scope of the figures. Since �3,4 do not cross

the zero energy, they are not counted in the phase transition. We now

relate the phase transition (3) to a change in the index δw.

Regularizing the network model to lattice models
In order to see the band topology, we need to regularize the network

model to a lattice model. Our strategy is to use the local current loop

states (flat bands in Fig. 1g) in the localized limit θ= � π
2 as a basis set

and then truncate the basis according to their energies. The minimal

model that can reproduce the phase transition in Eq. (3) is constructed

from the upper eight consecutive flat bands in Fig. 1g to obtain the

Hamiltonian H8B shown in Fig. 2a. (See Section IV.C of Supplementary

Information formore details.) It has eight orbitals that are respectively

located at the eight corners of the two squares in one unit cell, which

correspond to the two Chern blocks in Fig. 1c. The explicit form ofH8B

can be expressed as

H8B =~t
X

hp,qi
cypcq + t

X

hhp,qii
eiϕpqcypcq + t

0
X

hhhp,qiii
cypcq, ð4Þ

where p, q are the site indices, 〈ç〉,〈〈ç〉〉, and 〈〈〈ç〉〉〉

represent the green (nearest neighbor), orange (square edges), and

dashed black (square diagonals) bonds in Fig. 2a, respectively. The

hopping parameters are given by ~t = ðθ+ π
2Þ va ,t =

ffiffi

2
p

πv
4a ,t0 = � πv

4a. The

phase factor ϕpq equals
3
4π (� 3

4π) if the associated hopping is parallel

(anti-parallel) to the orange arrows, which are clockwise and antic-

lockwise for squares formedby the blue and red sites, respectively. For

simplicity, we also denote the complex hopping te ± i34π as t± in the

following.

We take the Fermi level to be at EF =0 and focus on that energy.

The Hamiltonian H8B reproduces the flat bands in the localized limit

θ= � π
2 when ~t =0, where blue and red squares are decoupled from

each other (Fig. 2c). The four flat valence bands are molecular orbitals

1 1.5 2

2.5

3

3.5

4

CMP

LP

Fig. 2 | The latticemodelH8B. a The unit cell and hoppings ofH8B. b The evolution

of Dirac points between the fourth and fifth bands. Red (blue) circles indicate Dirac

points with positive (negative) chirality (defined in Section IV.D of Supplementary

Information), and the green crosses correspond to Dirac points between the third

and fourth bands. The blue and red arrows indicate the evolution directions of

Diracpointswhen~t increases. c–eBand structureswith a~t=v =0,π=2,π (correspond

to θ = −π/2, 0,π/2, respectively). The blue capital letters indicate the irreps at high

symmetry points. The dashed lines indicate zero energy. f The normalized locali-

zation length as functions of ~t at various transversal sizes L and fixed disorder

strength W = 2v/a and Fermi level EF =0. The used longitudinal size is M = 107 and

the precision (σΛ/Λ) has reached 3%. (For latticemodels, `size' refers to the number

of unit cells.) g The phase diagram in~t �W plane for EF =0, where the green region

represents the CMP enclosed by the LP.
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at the square centers (C4z centers). Since they do not occupy the C2zT

centers (squares corners), all the corresponding RSIs δw =0 and the

Stiefel-Whitney classw2 =0.As~t increases,H8B closes its gap, andwhen
~t = πv

2a, it reproduces the quasi-1D bands of the network in the decou-

pled wire limit θ =0 except for small deviations (non-linear disper-

sions) as if the wires are weakly coupled. As a consequence of the C4

symmetry, the Dirac points between the gapless bands occur at the

same energy. (See Figs. 1h and 2d) As ~t continues to increase, H8B

reopens a gap (Fig. 2e), and this gap continues to the limit ~t ! 1. By

tracing the evolution of the energy levels, one can verify that the irrep

exchange at E =0 is indeed the same as Eq. (3). In the limit ~t ! 1,

electrons form bonding states at the four C2zT centers (per cell), i.e.,

green bonds in Fig. 2a. Thus, the final state has δw = 1 at allC2zT centers,

i.e., w2 = 1. As detailed in the Method section, the phase transition can

be further confirmed through the machinery of Topological Quantum

Chemistry30,80.

As shown in Fig. 2d, (tilted) Dirac points between the fourth and

fifth bands are created in thephase transitionprocess. Theevolutionof

Dirac points is sketched in Fig. 2b, where the trajectory forms a closed

path enclosing the underlying Dirac point at X between the third and

fourth bands60,67,68. A more detailed discussion is given in Section IV.D

of Supplementary Information.

It is worth mentioning that the vector potential disorder we used

in the network model is nowmapped to a chemical potential disorder

in H8B (plus two times weaker hopping disorders that will be omitted).

We leave the mathematical analysis in Section IV.F of Supplementary

Information and only present a heuristic argument here. The basis of

H8B (Fig. 2a) can be thought as wave-packets of the chiral modes that

simultaneously have position centers and momentum centers. The

position centers, by construction, are located at the square corners.

We denote their 1Dmomentum centers as qc. Then a vector potentialA

will shift a momentum center qc to qc +A and result in an energy shift

vA. Therefore, the resulting disorder potential in H8B should have a

large on-site component. We also ignore the correlations among on-

site random potentials for simplicity and efficiency. In numerical cal-

culations, we only use uncorrelated on-site disorder and choose the

disorder potential equally distributed in [−W/2,W/2]. Test calculations

with full projected disorder potentials and correlations show no qua-

litative difference (see Supplementary Fig. 30).

We calculated the normalized localization length Λ as a function

of ~t with EF =0 and W = 2v/a (Fig. 2f). The system is localized when

j~t � πv=2aj>�cj0:6v=a, corresponding to the two OAI limits, and

becomes critical when j~t � πv=2aj<�c. The criticality has been exam-

ined for large transversal sizes up to L = 500 unit cells (2000 atoms).

We also calculate Λ at other ~t’s and W’s. From these data, we can

determine a phase diagram shown in Fig. 2g, where the dashed line

separates the CMP inside and the LP outside it. (See Supplementary

Fig. 8 for details of large-scale examination and phase boundary

determination.) Since H8B does not have chiral or particle-hole sym-

metries, the choice EF = 0 is not special in terms of symmetries. We

have confirmed that CMP also exists when EF b0 as long as the OAI

limits are intact (See Supplementary Fig. 9).

For the CMP in Fig. 2g, if we turn off the disorder, the resulting

clean system has a finite density of states (DOS) around the zero

energy, which may lead to a large localization length that may exceed

the numerically accessible transversal size. To rule out possible finite-

size effects, we consider a lattice model H0
8B that has the same crys-

talline symmetries and topology as H8B but vanishing DOS at the zero

energy. Such a H0
8B can be obtained fromH8B by (i) removing diagonal

hopping t0 and (ii) changing the edge hopping to t± = ( ±Ai − 1)t, where

A, chosen as 1.2 hereafter, is an extra parameter that controls the range

of the critical phase. (See Section IV.E of Supplementary Information

for more details.) The hopping ~t (green bond in Fig. 2a) at C2zT center

remains unchanged. The ~t =0 and ~t ! 1 limits still represent the two

OAI limits with charge centers at the C4z and C2zT centers, respectively.

Hence, changing~t =0 to~t =1will changew2 =0 tow2 = 1 for the lower

1.6 1.7 1.8 1.9

2

2.5

3

3.5

CMP

LP

Fig. 3 | The lattice model H 0
8B. a–c Evolution of the middle two bands with ~t.

d Normalized localization length Λ as functions of ~t with W = 1.5v/a, EF =0 and

various transversal sizes L. The used longitudinal size is M = 107 and the precision

(σΛ/Λ) has reached 2%. e The phase diagram in ~t �W plane with EF =0, where the

green region represents the critical metal phase enclosed by the localized phase.

Note that H0
8B in the clean limit has an additional chiral symmetry which fixes the

Dirac points at zero energy. However, the chiral symmetry is broken by the che-

mical potential disorder and is not responsible for CMP (See Supplementary Fig. 10

and Section IV.E for details).
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four bands as it did in H8B. Fig. 3a–c depict the evolution of the fourth

and fifth bands, where the gap only closes at the four (untilted) Dirac

points, resulting in a zero DOS at the zero energy.

Parallel to the results of H8B shown in Fig. 2f, g, we show Λ with

EF = 0 and fixed W and the phase diagram for H0
8B in Fig. 3d, e,

respectively, where no qualitative difference for the CMP is found.

Thus, the potential finite-size effect of H8B due to large DOS is ruled

out. Additionally, we did calculations with EF b0 and obtained similar

results as EF =0 (See Supplementary Fig. 10).

Local Chern markers
In order to verify the percolation argument directly, we refer to a

widely used local topological marker called local Chern marker

(LCM)81–83, which reformulates the Chern number locally in real space

without summing over the whole sample. The LCM of one unit cell is

CðRÞ= 4π

Ac

X

α

Im Rαh ∣P̂x̂P̂ŷP̂∣Rαi ð5Þ

where R is the position of the unit cell, α indicates the orbitals inside

one unit cell, Ac is the area of one unit cell, and P̂ is the projection

operator of the occupied states.

Inside a macroscopic region where a gap is well preserved, the

LCM converges to the quantized Chern number, whereas around

gapless regions such as the boundaries, LCMmay strongly fluctuate82.

In our models, due to the percolation argument, regions with a single

Chern number C (= ±1) never become extended because the fraction

pC, as required by the C2zT, is always smaller than 1
2 for p0 >0.

Therefore, nomacroscopicChern block is expected for a general point

in the CMP. Nevertheless, the microscopically inhomogeneous LCM

can still reflect the local topological properties and can be applied to,

for example, disordered systems near topological phase transitions84.

Figure 4a and c show the topography of LCMofH0
8B in the CMP and LP

with given disorder configurations, respectively. In the CMP, the

sample is dominated by randomly distributed positive and negative

Chern cells, consistent with the percolation argument that C = ± 1

regions together are extended through thewhole system. In the LP, the

LCM almost vanishes everywhere. We also calculate the distribution of

the secondmoment of LCM

ffiffiffiffiffiffiffiffiffi

hC2i
q

over 500disorder configurations in

both the CMP and LP (Fig. 4b, d), where〈ç〉means averaging over all

the cells. In the CMP (LP),

ffiffiffiffiffiffiffiffiffi

hC2i
q

> 1
2 (<

1
2) for most configurations, i.e.,

the regions with non-zero (zero) Chern numbers dominate. These

phenomena confirm our semi-classical percolation picture.

OAI transitions in generic magnetic point groups
For a qualitative understanding of the CMP, we note that a local

breaking of C2zT symmetry allows for a local gap of the Dirac nodes.

This gap makes the region of the Dirac point carry a spread Berry

curvature that integrates to ± π, with the sign being determined by the

chirality of theDirac pointmultiplied by the sign of the gapingmass. In

the cases we considered here, all Dirac points occur at the same

energy. Denoting the number of Dirac points by 2N, there are 22N

assignments of the signs of the gaping mass, out of which (2N)!/(N!)2

lead to a total Chern number of zero. If the signs of the masses are

uncorrelated, as would be expected for random disorder, then

Fig. 4 | Typical topographies and statistics of LCMs in CMP and LP. a Typical

topography (80 × 80 cells) of LCMs of H0
8B in the CMP (~t = 1:1πv=2a,W = 1:5v=a).

b Distribution of

ffiffiffiffiffiffiffiffiffi

hC2i
q

in 500 disorder configurations with the same parameters

as a. c and d are the same plots as a and b but in the localized phase with
~t = 1:1πv=2a,W = 5v=a.
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p0 =
ð2NÞ!

22N ðN!Þ2 f
1
2, with the equality occurring only for N = 1. In our case

N = 2 and p0 =
3
8. Thus, for weak disorder, we expect a percolating

network of edge states. If themasses arepositively correlated,p0 could

be further suppressed. To be concrete, p0<
1
2 even in the N = 1 model if

there is a higher possibility for the two masses to have the same sign.

Under strong disorder, all local Chern insulators become trivial, and

the system becomes localized.

The above argument can be immediately generalized to generic

OAI transitions beyond C2zT symmetry. As a direct verification, we

break C2zT in H0
8B while keeping mxy and C4zT for the percolation

mechanism and making two OAI limits at a~t=v =0 and ∞ inequivalent.

The unit cell of the modified model H00
8B is illustrated by Fig. 5a, where

the orange arrows indicate hopping t0+ = ð1 +AiÞ πv4a and the purple

arrows indicate t00+ =qt0+ ðq 2 CÞ. The magnetic space group of H00
8B

reduces to P40m0m (#99.165 in BNS setting), and the Wannier centers

of OAI limits at~t =0 and∞ are now located at theC2z centers 2c½2m0m0�
and mirror planes 4d[m], respectively. The band structure also goes

through an evolution of four Dirac points when ~t =0 ! 1. Figure 5b

shows the localization length of H00
8B with A = 1.2, q =0.625e−0.15πi. We

can see that CMP indeed survives at H00
8B.

To further show the generality, in Fig. 6, we enumerate all the

minimal OAI transitions protected by magnetic point groups

Pm,P20,P40, and P60. The details of enumeration are summarized in

Section II.B of Supplementary Information. Here, for a given symmetry

group, the minimal OAI transition is defined as the OAI transition with

minimal band deformation and molecular orbital transition. The band

deformation of a generic OAI transition can be viewed as a super-

position of minimal band deformations that can be band inversions at

high symmetry points or gap closures at generic k-points (see the third

column of Fig. 6). Also, since OAI can be wannierized to molecular

orbitals (each orbital forming a site symmetry irrep at some Wyckoff

position), an OAI transition can be characterized by occupation

changes of these orbitals. The minimal molecular orbital transition

refers to the minimal occupation change that can realize the corre-

sponding band deformation. For example, the third row of block “P4’-

NSOC" in Fig. 6 demonstrates a minimal OAI transition that replaces

some occupied band forming irrep X2 at X point by a band with X1 and

moves an electron from irrep A at the Wyckoff position 1b to irrep A

at 1a.

In terms of band deformation, these transitions can be divided

into three categories: quadratic touching from a 2-dim irrep, Dirac

points braiding, and immediate band gap closure-reopening. In the

former two categories, the band structure is gapless for a finite para-

meter region in contrast to a single point in the last category. For the

first category, if we add slow-varying disorders thatmainly open a local

gap with a nontrivial Chern number (p0 < 1/2), a CMP is highly possible

due to the percolation mechanism protected by the average sym-

metry. For the second category, as discussed above, the possibility of

CMP is higher withmore Dirac points and stronger positive Diracmass

correlations. For the third category, the transition can go through a

critical point at most since the gapless band structure is necessary for

delocalization. The number and correlations of Dirac points also

influence the possibility of delocalizing the gapless point.

Discussion
For the first time, our work points out that transitions between trivial

states (such asOAIs)without TRScan be critical under simple chemical

potential disorders and, through a quantitative mapping, reveals that

the criticality is due to a tricolor percolation mechanism of C = 0, ±1

regions. Since the chemical potential disorder is realistic and there are

many topologically trivial magnetic materials with symmetries that

forbid net (anomalous) Hall conductance80,85, our work also has

experimental relevance.

We notice that CMPs in 2D class A systems have been observed

in previous works57,86–88. Ref. 86 did not report a CMP, yet we find

its Fig. 2a may suggest a CMP similar to the one found by ref. 87.

Ref. 87 reported a CMP in the Kane–Mele model (Z2 TI) in the pre-

sence of a weak Zeeman field and ascribed the criticality to the

change of spin Chern number. Ref. 88 reported a CMP in the

Bernevig–Hughes–Zhang model (Z2 TI) in the presence of a random

magnetic field and ascribed the criticality to two coupled quantum

Hall transitions. Therefore, these CMPs exist in topological phase

transitions with additional weak perturbation terms. However, our

CMP exists between two topologically trivial OAIs far from any

topological state. The only difference between the two OAIs is the

center and representation of Wannier states. It is also worth men-

tioning that, to exclude possible finite-size effects, we have verified

the criticality of CMP up to system sizes L = 2000 for the network

model and L = 500 for the lattice model (see Section I of Supple-

mentary Information), which are larger than the system sizes

L = 24, 32, 128 used in refs. 86–88, respectively.

Methods
Topological quantum chemistry of the C2zT model
The CMPs in the C2zT models arise between inequivalent OAIs. To

depict the OAI transitions in the clean limit, we can use the tool of

topological quantum chemistry, i.e., analyzing the transition of occu-

pied magnetic element band representations (MEBRs)80. In our mod-

els, all the OAIs can be wannierized to molecular orbitals centering at

the C4z and C2zT centers (Wyckoff positions 2b and 4c). These orbitals

respect the site symmetries (4m0m0 and 20m0m for 2b and 4c,

2c

4d

1 1.2 1.4 1.6 1.8

1.6

1.8

2

2.2

2.4

Fig. 5 | The latticemodelH 00
8B. a The unit cell and hoppings ofH00

8B. bNormalized localization length Λ as functions of~t with A= 1:2,q=0:625 expð�0:15πiÞ,W = 1:5v=a,EF =0

and various transversal sizes L. The used longitudinal size is M = 107 and the precision (σΛ/Λ) has reached 1.5%.
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respectively) and hence can be characterized by the irreps of site

symmetries. According to the topological quantum chemistry, these

molecular orbitals will induce bands with MEBRs listed in Table 2. One

MEBR is the minimal group of bands formed by a type of molecular

orbitals, and the left part of an MEBR notation indicates the site sym-

metry irrep of the orbitals, e.g., Ab↑G indicates the MEBR formed by s

orbitals (trivial irrep A) at positions 2b. Therefore, we can deduce the

Wannier centers of OAIs from the occupied MEBRs, depicting the OAI

transitions by MEBR transitions.

We start with the network model. Although a network model has

infinitely many occupied bands, these bands form an infinite direct

sum of MEBRs and can be viewed as a special kind of OAI. The band

structure comprises disconnected branches, each containing two

bands. One branch forms one of the following four MEBRs defined in
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Table 2: Ab↑G, Bb↑G,
1Eb↑G,

2Eb↑G, result fromeffective s,dx2�y2 + idxy

(or equivalentlydx2�y2 � idxy),px − ipy, px + ipyorbitals, respectively. All

these orbitals center at the Wyckoff position 2b. Since 2b has multi-

plicity 2 (two C4z centers per unit cell), eachMEBR contains two bands.

Also, notice that the band structure comprises infinite repeating units.

Each unit contains eight bands, and one can generate the whole band

structure by energy translations of a unit with step 2πv/a. Hence, we

can focus on the upper eight of the ten bands in Fig. 1g–i. When θ <0,

direct gaps separate different branches, and the lower four of the

focused eight bands form a direct sum of two MEBRs: 2Eb↑G·Ab↑G.

When θ = 0, the gaps close, and the band structure is indeed that of a

ballistic 1Dmetal with linear dispersion relations. As θ increases across

0, irreps �1,M1 (�2,M2) go up (down) across the energy level. Similar

irrep exchanges also happen above and below the repeating unit, e.g.,

the lower two of the focused eight bands will exchange irreps with the

lower bands that exceed the scope of Fig. 1g–i. After the transition

(θ > 0), the gaps reopen, and the MEBRs of the lower four of the

focused eight bands change to 1Eb↑G·Bb↑G. Hence, θ = ±π/2 corre-

spond to two inequivalent trivial phases, although the molecular

orbitals of both phases center at the C4zT centers.

We now turn to the band evolution of H8B (H0
8B is similar). See

Fig. 2c–e, as ~t increases from 0 to πv/a, �1 andM1 rise across the Fermi

level while �2 andM2 fall below the Fermi level. We encounter the same

irreps exchange to the network model. Despite similarities near the

Fermi level, the MEBR transition of H8B is different from the network

model. The lower four bands of H8B change from 2Eb↑G·Ab↑G to

A00
c"G during the transition. TheWyckoff position of A00

c"G is 4c, which is

the C2zT center rather than the C4z center (Table 2). This difference in

molecular orbital transition is unavoidable since the transition in the

network model involves exchanges of representations between dif-

ferent repeating units, while H8B only has one unit. In the network

model with a sufficient number of bands, the four bands below the

Fermi level not only exchange representations with the bands above

them but also with the bands (in another repeating unit) below them.

However, H8B has no band below the lower four bands. Nevertheless,

since theorigin of this difference iswell below the Fermi level, it should

not affect the low-energy physics. Therefore, we can expect similar

low-energy behaviors between H8B and the network model, which our

numerical data confirms.

It is worth mentioning that the transition in H8B changes the

position of the MEBRs from C4z-centers (2b) to C2zT-centers (4c). No

C2zT center is occupied before the transition, and the RSI δw =0. Given

that there are fourC2zT centers per cell and four occupiedbands, every

C2zT center is occupied by one electron after the transition, and the

system has RSI δw = 1. Therefore, the second Stiefel-Whitney class

w2
60,66 must change from 0 to 1. As we have discussed in the second

paragraph of subsection “AC2zT-symmetric quantumnetworkmodel”,

the transition process must involve braiding of the Dirac points. In

addition, although the lower four bands form A00
c"G are always con-

nected in our models, in general cases, A00
c"G can be decomposed into

two fragile topological bands (�5,M5, X1) and two trivial bands (forming

MEBRA2↑GwithWyckoff position 2a ð14 1
4 ,0Þ,ð34 3

4 ,0Þ, i.e., the centers of
white squares in Fig. 1c), which is expected from w2 = 1.

Quasi-1D localization length and transfer matrix method
A commonly used physical quantity in research of localization is

the quasi-1D localization length ρq−1D. It is defined on a 2D/3D sample

prepared in a quasi-1D shape, e.g., a long, thin cylinder with

Laxialk Lradius. ρq−1D reflects the decaying rate of eigenstates in the

quasi-1D direction, e.g., the axial direction of a long thin cylinder. Since

any 1D system is localized under nonzero disorder strength, ρq−1D will

always be finite except for a perfectly clean sample. Localization of the

original 2D/3D system (in a 2D/3D shape) can be derived from a

scaling analysis of the dimensionless quasi-1D localization length

Λ = ρq−1D/L, where L is the transversal size of the quasi-1D sample. We

denote the localization length of a normally shaped (scales of dif-

ferent directions are similar) and sufficiently large sample as ρ. For a

metallic system, ρ in a (normally shaped and sufficiently large) sam-

ple ismuch larger than the sample size. Thus, ρq−1D(L) increases faster

than L, i.e., Λ(L)→∞ in the limit L→∞. For an insulating system, ρ

is finite in a (normally shaped and sufficiently large) sample. Hence,

ρq−1D will converge to ρ when Lk ρ, i.e., Λ(L)→ 0 as L→∞. In practice,

Fig. 6 | OAI transitions in (magnetic) space groups Pm,P20,P40,P60. The first

column contains symbols of the (magnetic) space groups, appearance of SOC, and

the Wyckoff positions except for the general positions. The “-NSOC” indicates the

absence of SOC in contrast to “-SOC''. For symmetry groups having the same

transition features with and without SOC, we only list the case without SOC. The

square brackets [ç] and parentheses (ç) contain the site symmetries and coordinates

of the Wyckoff positions, respectively. The second column contains the reciprocal

and real space information of the minimal OAI transitions defined in subsection

“OAI transitions in generic magnetic point groups''. The transition with a symbol of

momentum irrep exchange Rn→Rm induces band inversion(s) at high symmetry

point R (and its inequivalent symmetric partners), which replaces some occupied

band(s) forming Rn by band(s) with Rm. The transition with “NULL" closes the band

gap at general k-points. Equations inside “{" depict the minimal orbital occupation

changes, where �
f
Q denotes the occupation change of irrep Q at each Wyckoff

position f. The particle conservation is not explicitly stated, yet it is enforced in

every transition by default. The third column illustrates the transitions in reciprocal

space. A plot with a Brillouin zone is decorated by red crosses and arrows that

indicate thepositions andmovements ofDirac points, respectively. A plotwith four

curves suggests that the band inversion will go through a gapless region where a

quadratic touching from a 2-dim irrep dominates the physics near the Fermi level.

The last column illustrates the possibleminimal changes ofWannier centers during

the transitions. The colored dots indicate theWyckoff positions inside one cell, and

the colored numbers show the possible occupation changes of each position.

Table 2 | MEBRs of PC4bm (#100.177 in BNS setting) involved in this work, taken from the MBANDREP program on the Bilbao
Crystallographic Server80

Wyckoff pos. 2b ð3
4
1
4
0Þ,ð1

4
3
4
0Þ 4c ð000Þ,ð0 1

2
0Þ,ð1

2
00Þ,ð1

2
1
2
0Þ

Site sym. 4m0m0,4 20m0m,m

MEBR Ab↑G Bb↑G
1Eb↑G

2Eb↑G A00
c " G

Orbital 1 dx2�y2 + idxy px + ipy px − ipy py

Irreps at Γ Γ1· Γ4 Γ2· Γ3 Γ5 Γ5 Γ2· Γ4· Γ5

Irreps at M M5 M5 M2·M3 M1·M4 M2·M4·M5

Irreps at X X1 X1 X1 X1 2X1

The real space orbital character of each MEBR is shown in the “Orbital” row. For example, the MEBR Bb↑G can be generated by an dx2�y2 + idxy type orbital at the first 2b position ð3
4
, 1
4
,0Þ. Note that

A00
c " G is the only decomposable MEBR, although bands with this MEBR are always connected in this work. One should notice that we use a different convention of the origin point as the Bilbao

Crystallographic Server.
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we identify the region where Λ(L) monotonically increases as the

metallic phase and where Λ(L) monotonically decreases as the loca-

lized phase. If a system contains both localized and extended phases

in some parameter space, there will be a critical region (usually a

boundary with measure zero) in the parameter space where Λ(L) is

independent of (sufficiently large) L.

The transfermatrixmethod77 is a widely used numerical approach

in calculating ρq−1D. Although it has different formulae for (generic)

network and lattice models, the basic ideas are the same. A quasi-1D

sample is divided into layerswith normals along the quasi-1D direction.

The amplitudes of an energy-eigenstate on different layers are related

by the Schrodinger equation. A (2s × 2s shaped) transfer matrix Tn
generally transforms the amplitudes on the (l − r1)th ~ (l + r2 − 1)th lay-

ers to those on the (l − r1 + 1)th ~ (l + r2)th layers. Here, s 2 N
+ is pro-

portional to the number of degrees of freedom in one layer. And

r1,r2 2 N
+ represent that only the (l − r1)th ~ (l + r2)th layers can hop/

propagate (in one step) to the l th layer. The values of r1 and r2 depend

on the hopping of concrete models. Since the transfer matrix of a

(general) networkmodel is determined by the transmissionmatrix, the

amplitudes in the (l + 1)th layer depend only on the lth layer. Hence,

r1 = r2 = 1 for general network models (not only ours). For general lat-

tice models, r1 and r2 can take arbitrary finite non-negative integer

values. Nevertheless, in our models, r1 = r2 = 1.

To extract ρ1D from the transfer matrix, we can consider a con-

secutive product of transfer matrices OM =
QM

n= 1 Tn. Because of the

disorder, some elements in Tn are random variables. According to

the Oseledec theorem, the limit P = lim
M!1

ðOy
MOM Þ

1=2M
exists and has

eigenvalues fexpðν1Þ, expð�ν1Þ,::: expðνsÞ, expð�νsÞg where νi g νi

+1 g0, i = 1, 2. . . s. These (positive) exponents are so-called Lyapunov

exponents (LEs). The definition of P indicates that an eigenvector ηi

of P with eigenvalue expð�νiÞ satisfies k OMηik2 =η
y
i
ðOy

MOM Þηi =

ηy
i
½ðOy

MOM Þ
1=2M �

2M

ηijη
y
i
P2M ηi = k expð�MνiÞηik2 for sufficiently large

M. Therefore, the smallest LE νs determines the decaying rate of

energy-eigenstates (along the quasi-1Dc direction) since any energy-

eigenstate is a superposition of eigenvectors of P with eigenvalues

expð�νiÞ (the amplitudes cannot grow exponentially hence expðνiÞ is
excluded). Because of this, one can define the quasi-1D localization

length as the inverse of the smallest LE: ρq−1D = 1/νs.

Due to the space limitation, there are three main aspects we

cannot explain here: calculating conductance from the transfermatrix,

the technique for numerical stability of LE, and the concrete formulae

of the transfer matrices of our network and lattice models. Readers

interested in these details can refer to Section V of Supplementary

Information.

β-function of the CMP
The β-function β=d lnG=d lnL is an additional quantity to verify the

criticality of the observed delocalized phases. Figure 7a shows the β-

function of the network model derived from the finite difference

method (wehave ignored thedefault conductanceunit e2/h). Aswe can

see, all the data points fall into two parts corresponding to the delo-

calized and localized phases. A critical conductance Gc = 2~3 divides

these two phases. In the localized phase below Gc, data points collapse

to one curve, demonstrating the Anderson localization. In the delo-

calized phases above Gc, the data points distribute around zero below

G ~ 5. And aboveG ~ 5, data fromdifferent sizes deviate fromeachother

and become significantly positive. These positive data points result

from thefinite size effect of the ballistic limit at θ = 0. To justify that the

delocalized phase with −π/4r θ <0 is indeed a CMP, we have to prove

that β(G >Gc, L→∞)→0+.

When θ =0, the network degenerates to decoupled parallel chiral

wires in four directions (± x̂, ± ŷ). Since there are L channels in one

direction, the ballistic conductance GmaxðLÞ= L. Hence, for a given sys-

tem size L, the β-function should terminate at the point (G = L,β = 1),

which is confirmed numerically (the inset of Fig. 7a). Due to the finite

size effects, the ballistic limit will induce a diffusive metal phase with

θ→0 corresponding to the positive region of β-functions for large G.

Further, the data suggest a linear hypothesis of β-function for large G,

i.e., β(G, L) =G/LwhenGkGc. To verify this hypothesis, we can view it as

a differential equation and test its solution (as a hypothesis of con-

ductance) on conductance data. To be concrete, β(G, L) =G/L implies an

ansatz of conductance G(θ, L)−1 =G(θ,∞)−1 + L−1 when GkGc. Here, the

fitting parameterG(θ,∞) is the conductance in the thermodynamic limit

for a given θ. As illustrated in Fig. 7b, this ansatz fits our conductance

data very well when G > 5. Although we have not understood the

mechanism behind the linear β-function, we can conclude from the

above results that β(G >Gc, L→∞)→0+, proving the criticality of CMP.

Localized OAI transition in class AI
One should not conclude from the above results that CMP exists in any

transition between inequivalent 2DOAIs.Due to the localizednatureof

OAI, it is commonly believed that disorders should localize general

transitions between inequivalent 2D OAIs. We can obtain a localized

OAI transition bymodifying our latticemodelH8B. Recall Eq. (4),H8B is

described by four real parameters t,t0,~t, and ϕpq. The only parameter

breaking TRS is ∣ϕpq∣ = 3π/4. If we take ∣ϕpq∣ =0 or π, the system will

0 150 300 450 600 750 900

0

0.2

0.4

0.6

0.8

1

Fig. 7 | β-function and conductance fitting near the ballistic limit. a The β-

function of the networkmodel derived from finite differences of conductance data

in Fig. 1f. The legends inform the central sizes of the finite differences. The insect is

the zoom out of the β-function for large G. b Conductance fitting according to the

linear hypothesis of β-function for large G. Colored curves are fitting results while

the circles are raw data. The goodness of fit has reached 0.23 and will become

higher as getting closer to the ballistic limit. (1 corresponds to a perfect fitting and

0.05 is the frequently used threshold of accepting a fitting hypothesis).
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respect TRS even if on-site disorders are present. Now, the previous

C2zT centers are promoted to C2z centers. According to ref. 64, in the

presence of TRS, the Wyckoff position with site symmetry 2 has a

Z-valued RSI δ =m+ −m− where m+ (m−) is the occupation number of

orbital even (odd) under C2z. Hence, when ∣ϕpq∣ = 0 or π, tuning ~t from

0 (δ =0) to +∞ (δ = − 1) still drives a transition between inequivalent

OAIs. On the other hand, due to the weak localization effect in the

presence of spinless TRS, the system must be localized regardless of

t,t0, and ~t. In Fig. 8, we take ~t = πv
2a, corresponding to the middle of the

CMP in Fig. 2f, and tune ∣ϕpq∣ from 3π/4 to π. We can see a CMP-LP

transition in Fig. 8. For all the ∣ϕpq∣ scanned, the band structure in the

clean limit is gapless near the Fermi level EF =0, i.e., the clean system

stays at themetallic intermediate state of the OAI transition but will be

localized by disorders. Although the LP shrinks with weaker disorder

strength W, ∣ϕpq∣ =π is always localized.

Data availability
We provide all the raw data in Supplementary Dataset. Source data are

provided with this paper.

Code availability
Codes required for reproducibility are available upon request to the

authors.
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