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Abstract. The min-hash sketch is a well-known technique for low-communication
approximation of the Jaccard index between two input sets. Moreover, there is a
folklore belief that min-hash sketch-based protocols protect the privacy of the inputs.
In this paper, we consider variants of private min-hash sketch based-protocols and
investigate this folklore to quantify the privacy of the min-hash sketch.
We begin our investigation by presenting a highly-efficient two-party protocol for
estimating the Jaccard index while ensuring differential privacy. This protocol adds
Laplacian noise to the min-hash sketch counts to provide privacy protection.
Then, we aim to understand what privacy, if any, is guaranteed if the results of the min-
hash are released without any additional noise, such as in the case of historical data.
We begin our investigation by considering the privacy of min-hash in a centralized
setting where the hash functions are chosen by the min-hash functionality and are
unknown to the participants. We show that in this case the min-hash output satisfies
the standard definition of differential privacy (DP) without any additional noise.
We next consider a more practical distributed setting, where the hash function must
be shared among all parties and is typically public. Unfortunately, we show that in
this public hash function setting, the min-hash output is no longer DP. We therefore
consider the notion of distributional differential privacy (DDP) introduced by Bassily
et al. (FOCS 2013). We show that if the honest party’s set has sufficiently high
min-entropy, the min-hash output achieves DDP without requiring noise.
Our findings provide guidance on how to use the min-hash sketch for private Jaccard
index estimation and clarify the extent to which min-hash protocols protect input
privacy, refining the common belief in their privacy guarantees.
Keywords: Differential Privacy · MPC · Sublinear Communication · Sketching ·
Min-hash · Jaccard Index

1 Introduction

Min-hash sketch. The min-hash sketch is a simple and well-known technique to produce
an unbiased estimate of the Jaccard index [Bro97, LOZ12]. The Jaccard index [Jac01] is a
similarity measure between two sets A and B, denoted J(A, B), defined as the fraction
of the elements in the intersection of A and B divided by the number of elements in
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their union. That is, J(A, B) = |A∩B|
|A∪B| . The Jaccard index has seen wide application for

clustering of websites and documents [Bro97, BGMZ97], community identification [TBK07],
DNA matching [CFGT12], and machine learning [WWT+19, JKWC22].

Computing the Jaccard index exactly, especially when the input sets are large, can be
costly. The min-hash sketch allows communication-efficient approximation [Bro97]. The
basic idea behind the min-hash sketch is to apply a random hash function h to both sets
A and B and then compare the minimum hashes (denoted min h(A), min h(B)) in both
sets. If min h(A) = min h(B), it means that an element in A ∩B has been hashed to the
minimum value among elements in A ∪B. This occurs with probability J(A, B). Thus, to
get an unbiased approximation of the Jaccard index, it suffices to repeat this procedure
with sufficiently many random hashes.

Private Jaccard index via min-hash. Due to its simplicity and efficiency, the min-hash
sketch has become a popular tool to approximate the Jaccard index. Moreover, since the
min-hash sketch only needs to compare the minimum hashes, it has been a key building
block when maintaining privacy of the input sets is important, e.g., if the input sets
represent fingerprints, DNA, or medical records.

There are two classes of solutions for privacy-preserving min-hash. The first class of
solutions (e.g. [CFGT12, BCG14, RCS+19, Fab16]) considers how to compute the min-hash
and Jaccard index in a two-party setting, where the parties do not trust each other with
their private inputs. The goal of these works is to design secure two-party computation
protocols for computing the min-hash sketch as efficiently as possible, but they generally
do not consider the privacy implications of revealing the output. The second line of work
(e.g. [YLL+17, YWR+19, ABS20]) considers how to make the min-hash approximation
privacy-preserving by adding noise to the local min-hash sketches.

Our work. These works serve as the starting point for our study. In particular, we first
present a protocol that addresses the privacy of min-hash-based approximations from two
perspectives. Similar to the first class of solutions, our protocol ensures that no private
information about the input is revealed beyond the Jaccard index. Additionally, in line
with the second class of solutions, our protocol guarantees that even the Jaccard index
output satisfies differential privacy, which is achieved through adding a small amount
of noise. Next, we explore whether any variant of differential privacy can be achieved
without adding noise to the protocol, which would improve its accuracy. Interestingly,
we demonstrate that under specific constraints on the inputs, the resulting protocol still
provides a certain level of privacy guarantees.

More formally, we define three ideal functionalities to capture flavors of min-hash.
FminH computes the min-hash and then outputs both the min-hash count and the random
hashes used. On the other hand, FprivH computes the min-hash functionality and outputs
only the min-hash count. This corresponds to a setting where the min-hash is computed
by a trusted curator who does not disclose the hashes used. Finally, we define Fnoisy-minH
which adds noise to the min-hash count computed by FminH. For our first result we show
that for appropriate noise levels, the Fnoisy-minH functionality achieves both high accuracy
and differential privacy, and design a secure two-party computation of Fnoisy-minH that
is both computation and communication-efficient. For our second result, we consider a
setting in which the outputs of FminH or FprivH have already been released without added
noise and show that, under certain conditions on the inputs, this setting also provides
privacy guarantees for individuals’ inputs.

Differentially-private and secure computation of min-hash. To build a protocol
for differentially-private min-hash we observe that the min-hash count has low global
sensitivity. This allows us to define a functionality Fnoisy-minH, parameterized by (ϵ, δ)
which adds (properly-tuned) Laplace noise to the output of the min hash (See Figure 2 for
details.) We then prove the following theorem about this functionality.
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Theorem 1 (Informal). Fnoisy-minH is (ϵ, δ)-DP against an adversary corrupting either
party.

To realize a protocol for DP estimation of the Jaccard index, we now just need to
instantiate this functionality. We show how this can be done efficiently using a PSI-CA
functionality in Section 4. In Section 9, we evaluate the performance when instantiating
the PSI-CA protocol [CGT12, TL24] in the semi-honest setting. The resulting protocol
has better accuracy compared to the prior work [HTC23, ABS20]. We recommend this
protocol to compute differentially-private estimates of the Jaccard index.
Privacy after leakage of min-hash output. While ideally, parties should follow
recommendations to add noise to the output of the min-hash count before releasing it
(as in functionality Fnoisy-minH), in practice, this may not happen. Further, there may be
historical counts that have already been released without added noise. We refer to settings
in which such output is released as “output leakage.” We ask whether any privacy for an
individual can be salvaged in this case. Somewhat surprisingly, we show that under certain
conditions on the inputs to FminH or FprivH, the error of the min-hash approximation itself
is sufficient to achieve (variants of) differential privacy–meaning that the presence of an
individual element in one of the two input sets cannot be inferred given the output of
FminH or FprivH. Essentially, the error of the sketch acts as noise to protect the privacy
of the inputs. Similar observations that sketching algorithms inherently preserve privacy
under certain input restrictions have previously been shown for the Johnson-Lindenstrauss
sketch [BBDS12], the LogLog sketch [CDSKY20, SSGT20], and other sketches [WPS22].

We first consider the simpler case of the privacy of an individual once the output of
FprivH has been released. Recall that in this setting a set of private hashes is chosen by the
functionality and these hashes are not returned as output of the functionality. Standard
differential privacy in this setting requires that conditioned on knowledge of A and all
but one element of B (denoted by x∗), the probability that the functionality outputs any
value out when x∗ ∈ B versus when x∗ /∈ B differs by a factor of at most eϵ with all but
negligible probability.

We note that min-hash is not differentially private in this setting if A ∩ B is either
too large or too small. For example, if |A ∩ B| = 0 when x∗ /∈ B and 1 when x∗ ∈ B,
then min-hash always outputs 0 in the first case and outputs a count ≥ 1 with noticeable
probability in the second. We prove the following theorem showing that when this is not
the case the min-hash output is differentially private:

Theorem 2 (Informal). If the size of the intersection is a constant fraction of the size of
A and B, then the output of FprivH is (ϵ, δ)-DP for negligible δ.

We stress that this theorem crucially relies on the fact that the parties, and the
adversary, do not have any information about the chosen hashes, and cannot learn the
evaluation of the hashes on their own inputs. Note that for this theorem to be useful in a
two-party protocol, the parties must compute the hashes under a 2-PC or FHE. This is
unlikely to be done in practice. Thus, typically, the parties will locally store the hashes1

during the computation. To understand the privacy of this approach, we consider the case
of the FminH functionality where the output leakage includes the hash functions as well as
the counts.

Unfortunately, in this case there is a problem when trying to argue privacy. In the
standard DP setting, we assume that the adversary knows all of the inputs (in this case,
all entries in both sets A and B) except for some input x∗ and wants to determine, from
the output of the computation, whether x∗ was in the other party’s set. If the hashes are
known, then the output of min-hash is deterministic: The adversary can exactly reconstruct
the min-hash execution for the case when x∗ is in the set and when it is not, and then

1As noted previously, it is sufficient to store a short seed to identify the hash.
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see which of these matches the output it received. Since the min-hash protocol provides a
good approximation of the Jaccard index, the adversary will be able to exactly determine
whether or not x∗ ∈ B with noticeable probability.

Note that the above attack works only if the adversary knows the entirety of both
sets A, B and just tries to distinguish whether x∗ ∈ B or not. Realistically, especially
when the inputs are large, the adversary would not know the entire input of the honest
party. More precisely, we assume that given the adversary’s set (and even the intersection
between the two sets), the honest party’s set still has sufficiently high min-entropy. With
this assumption, we turn to the tool of distributional DP (DDP) [BGKS13] which allows
us to analyze differential privacy when the distribution of inputs has sufficient uncertainty.

We begin with a relatively strong assumption on the amount of uncertainty the
adversary has about the honest set. Specifically, we assume that every element that is not
in the intersection is highly unpredictable (i.e., has a high amount of min-entropy), even
conditioned on all the other set elements. Under this assumption, we prove the following
theorem:

Theorem 3 (Informal). If each non-intersecting item has sufficiently high min-entropy,
revealing the hash functions2 together with the min-hash counts (as in the FminH func-
tionality) preserves (ϵ, δ)-DDP for negligible δ, as long as the size of the intersection is a
constant fraction of the size of A and B.

Not surprisingly, the proof of this Theorem (given in Section 6) leverages the fact that
when each element has individual high min-entropy, hashing each element acts as a strong
randomness extractor, thus resulting in sufficient random noise for privacy.
DDP over a polynomial-size universe. However, this assumption that every item
has high min-entropy is quite strong. For example, consider the setting where each item in
B is chosen from a polynomial-size universe. In this case, while individual items cannot
have much min-entropy, the honest party’s set may still collectively have high min-entropy
as long as it is large enough. Thus, for our third result, we analyze what happens under
this weaker assumption that only the full honest set, instead of each individual item, has
high min-entropy.

Note that in this case, we cannot apply the hash function as randomness extractor
technique. This is because in order to guarantee that the randomness extractor yields
output that is negligibly close to uniform, we must lose superlogarithmic in n bits of
entropy from each input. However, in the case we are currently considering, each element
has at most O(log n) bits of min-entropy. Further, we in fact have no guarantee that
each element has individually high min-entropy (since the elements are not necessarily
independent), but only that the total min-entropy of the non-intersection items is high.
Nevertheless, we show FminH still achieves DDP, by proving a new strong chain rule for
min-entropy (see Section 8.5).

Specifically, we consider the following class of distributions C over secret sets R of size
n:

• Let U be a universe of polynomial size n · ℓ, where ℓ = Ω(n3).

• R is chosen uniformly from all subsets of U of size n.

• In general, to relax the uniformity above, we additionally allow arbitrary leakage
L = L(R) computed on R, such that the length of the leakage L is at most |L| ≤
c · n log ℓ, for a fixed constant c ∈ (0, 1).

• We consider the resulting conditional distribution D on R given leakage L.
2We use cryptographic hash functions to instantiate the hashes in the random oracle model.
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Theorem 4 (Informal). Assume the set R is drawn from a distribution D ∈ C. Then
the min-hash protocol in the random oracle model (corresponding to functionality FminH)
preserves (ϵ, δ)-DDP for negligible δ, as long as the size of the intersection is a constant
fraction of the size of A and B.

On spoiling bits and leakage resilience. Consider a distribution over sets of n
elements R = R1, . . . , Rn, where each Ri is chosen from a universe of size ℓ ∈ Ω(n). Note
that the set R can have min-entropy Ω(n lg(ℓ)) while it can still be possible that for
every i, the marginal distribution over Ri has only constant min-entropy (see Example 1.1
in [DKZ18]). To deal with such situations, Skórski [Skó19] proves a theorem showing the
existence of “spoiling bits.” Namely, given R1, . . . , Rn, some additional information known
as spoiling bits can be released such that, conditioned on this information, for each i ∈ [n],
the distribution of Ri conditioned on R<i, where R<i denotes (R1, . . . , Ri−1), is nearly
flat (in the sense that the min/max entropy gap is at most a small additive constant).
Further, the total number of spoiling bits that are released is small.

It is not hard to use Skórski’s result to show that if R starts out with sufficiently high
min-entropy then for a large fraction of i (those in the set V ⊆ [n]), the distribution of
Ri conditioned on R<i has high min-entropy of at least Ω(log(n)), while the remaining
indices (those in the set W = [n] \ V )) may have low min-entropy.

Unfortunately, this result is very brittle in the sense that the flatness conditions hold
only for this particular distribution of R conditioned on the spoiled bits. Specifically,
despite the flatness condition being satisfied for this distribution, the random variables Ri

are not independent of one another. Thus, if additional information is leaked on Rj after
the spoiling bits are computed, then the flatness guarantees may no longer hold for Ri.

In our setting, we require additional leakage {ℓi}i∈W on the elements {Ri}i∈W . One
issue is that the set W (i.e., low min-entropy elements conditioned on the spoiling bits) is
only known after the spoiling bits are computed. This leaves us with a dilemma:

• Leaking {ℓi}i∈W additionally after the spoiling leakage can destroy the flatness
property.

• On the other hand, we cannot leak {ℓi}i∈W before computing the spoiling bits, since
we don’t know the set W yet! We could leak from all the blocks (R1, . . . , Rn), but
this may deplete the entropy needed from the random variables {Ri}i∈V .

To solve this problem, we prove a new variant of the spoiling lemma that computes the
spoiling bits at the same time as the additional leakage ℓi for i ∈W is computed so that
the spoiling bits also contain {ℓi}i∈W , while still maintaining the flatness condition. The
types of leakage that can be captured are essentially those such that the leakage ℓi for
i ∈W can be expressed as a function of Ri and the leakages {ℓj : j > i, j ∈W}. It turns
out that the leakage we need for our result has this form.

We state our theorem in general terms as we believe it may find further applications in
leakage resilient cryptography. For the formal theorem statement see Theorem 5.
A note on composition. One known weakness of the DDP definition is the lack of a
general composition theorem [BGKS13]. However, for the specific setting of our min-hash
protocols we can leverage the small output of min-hash to argue composition properties
after leakage of several outputs. Specifically, suppose that the adversary executes a min-
hash protocol with (ϵ, δ)-DDP security twice with the same honest party’s input both
times. Since each min-hash protocol outputs a single number between 0 and k (i.e., lg k
bits long), when we apply Theorem 3, the leakage profile increases to a total of at most
L + 2 · lg k bits. However, according to Theorem 3, as long as |L|+ 2 lg k ≤ c · n lg ℓ, each
protocol execution will preserve DDP, and therefore the composition of the two protocol
executions will preserve (2ϵ, 2δ)-DDP. In general, assuming that the initial leakage |L| is a
small constant, this type of DDP composition will hold for O(n · lg ℓ

lg k ) executions.
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Comparison to other approaches. We note that an alternative approach to get a
differentially-private estimate of the Jaccard index is via mergeable cardinality estimation
sketches (e.g. [HTC23]) to compute (an approximation of) the set intersection cardinality
and use this via the inclusion-exclusion principle to compute the Jaccard index. We
give a detailed comparison of error from our protocol vs. the best known cardinality
estimator [HTC23] in Section 9.

2 Related Works

Differential privacy (DP). Differential privacy protects the privacy of individuals by
limiting an adversary’s ability to learn information about an individual input from the
output of a computation [Dwo06, DMNS06]. For a good overview of differential privacy
and many of the algorithms to achieve it, both in the standard curator setting and in
distributed settings, we refer the reader to the book by Dwork and Roth [DR+14].
Optimizing secure computation using differential privacy. Another direction of
work has considered how to use DP to reduce the cost of secure computation, especially
when we aim for DP-style guarantees from the final output. [BNO08] first proposed such
optimization for the problem of secure summation. [HMFS17] and [GRR19] applied the
differential privacy relaxation to improve efficiency of set-intersection protocols. [MG18],
and [MLRG20] consider graph-parallel computations and design more efficient solutions
with differential private leakages. [CCMS19] consider classic tasks like sorting, merging,
and range-query data structures with differential privacy relaxation. [GKLX22] consider
multiparty shuffle that allows a differentially private leakage and shows that it suffices to
achieve end-to-end differential privacy in the shuffle model of DP.
Private sketching. Sketching algorithms, or “sketches” are sublinear space algorithms
for approximating certain properties of large inputs or data streams. The main idea behind
sketching algorithms is to generate a compact summary data structure that allows for
efficient storage, merging, and processing.

Some recent works [BBDS12, CDSKY20, SSGT20, WPS22, HTC23, DTT22, LLSS19,
PT22, MMNW11, MDDC16, BS15, BNSGT17, HQYC22, ZQR+22] have additionally
observed that sketches can often also aid in achieving privacy as the inherent loss of
information in the sketch can essentially make the sketch itself be differentially private or
to only require a little additional noise.

A line of research pertinent to our work involves constructing private sketches for set
cardinality estimations [SNY17, STS18, NvVT20, KWS+20, PS21]. Recently, [HTC23]
proposed a private mergeable sketch that can be used to estimate the size of the intersection
and union of sets.
Secure approximation. Secure approximation studies what functions can be securely
approximated without revealing anything beyond the true output [FIM+01, HKKN01].
While this notion is quite different from that of differentially private approximation that
we consider here, we note that our FHE-based protocol described in Section 5 additionally
achieves this.
Adversarially robust property-preserving hash functions and robust sketch-
ing. Property-preserving hash (PPH) functions allow compressing large input x into a
short digest h(x) such that some property P (x, y) can be computed given only h(x) and
h(y). Adversarially-robust PPH [BLV19, FS21, FLS22, HLTW22] aim to further guarantee
that P (x, y) is correctly computed (i.e., robust) even if the inputs x and y are chosen after
the hash function h is fixed. A related concept of robust sketching, e.g. [ACSS23, BJWY22]
aims to construct sketches that provide good approximations even when inputs are chosen
after the randomness of the sketch is fixed.
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Both of these approaches are similar to our work in that they also study the consequences
of making the choice of hash (or sketch) known to the adversary. However, these works
focus on robustness to adversarial inputs, while we instead focus on the privacy of the
output when the adversary additionally sees the hash functions.
Differentially private min-hash DP min-hash aims to make min-hash approximation
differentially private by adopting standard DP mechanisms such as adding DP noises to
the output to hide individual items in the input sets. In particular, [ABS20] achieves local
DP (LDP) min-hash by either adding Laplacian noise, or using generalized randomized
response to perturb the minhash vectors. Other than this, there are also other earlier
efforts. For example, [YWR+19] attempts to use a flawed exponential mechanism to
achieve DP. This leads to a faulty claim of ϵ-DP, as pointed out in [ABS20]. [YLL+17]
correctly applies exponential mechanism. However, this results in a large amount of noise
being added to the results.

3 Preliminaries
A function g is negligible, denoted negl(·), if for every positive integer c, there is an integer
nc such that for all n ≥ nc we have g(n) ≤ 1/nc. Let κ denote the security parameter.
Range of hash functions and the random oracle model. We model each hash
function as a random oracle that maps each item to a real value in [0, 1], and the output of
the hash function is long enough to ensure that the probability of any two different items
having a hash collision is negligible.
Notation. Let U denote the universe of input elements. In this paper, we will consider
two input sets A, B ⊆ U . Let nA = |A|, nB = |B|. Let I = A ∩B, nI = |I|. We will also
let B+x∗ = B ∪ {x∗}.

Let Eq be an equality function; i.e., Eq(a, b) = 1 if a = b and 0 otherwise. For a
hash function h and a set A, we let h(A) := {h(a) : a ∈ A}. Let B(m, p) be the binomial
distribution with m trials and each trial having success probability p.
Basic min-hash functionality. We describe the basic min-hash functionality in Figure 1.
In this work, we will consider several variants and consider privacy implications.

The Basic Min-Hash Functionality FminH

The functionality is parameterized with a random oracle O.

Input: P1 and P2’s input vectors A = (xA
1 , . . . , xA

nA
) and B = (xB

1 , . . . , xB
nB

).

Minhash:
1. Randomly sample prefix pre, which is used to define hash functions h1, h2, . . . , hk,

where for i ∈ [k], hi(·) := O(pre||i||·).
2. For input A, compute the min-hash vector (uA

1 , uA
2 , . . . , uA

k ) as follows:

For each iteration j ∈ [k]:
i. For each item xA

i ∈ A, compute yA
i,j = hj(xA

i ).
ii. Compute the min-hash for iteration j; that is, uA

j = min{yA
i,j : i ∈ [nA]}.

3. Likewise, compute another min-hash vector (uB
1 , uB

2 , . . . , uB
k ) for input B similarly.

4. Compute c =
∑k

j=1 Eq(uA
j , uB

j ).

Output: Return (pre, c) to P1 and P2.

Figure 1: The Basic Min-Hash Functionality
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Differential privacy. The definitions of (ϵ, δ)-differential privacy are given below.

Definition 1 ((ϵ, δ)-indistinguishablity). Two random variables X and Y are (ϵ, δ)-
indistinguishable (denoted as X ≈ϵ,δ Y ) if, for all events S, we have

Pr[X ∈ S] ≤ eϵ · Pr[Y ∈ S] + δ, Pr[Y ∈ S] ≤ eϵ · Pr[X ∈ S] + δ.

Definition 2 (Computational (ϵ, δ)-indistinguishablity). Two random variables X and Y

are computationally (ϵ, δ)-indistinguishable (denoted as X
c
≈ϵ,δ Y ) if, for any polynomial

time adversary A, it holds

Pr[A(X) = 1] ≤ eϵ · Pr[A(Y ) = 1] + δ, Pr[A(Y ) = 1] ≤ eϵ · Pr[A(X) = 1] + δ.

Definition 3 ((Computational) (ϵ, δ)-differential privacy). Let X be an input space and
≃X be a relation capturing the notion of neighboring inputs. Let M : X → Z be a
randomized algorithm that takes input x ∈ X and outputs a value over Z. We say that
the mechanism M is (ϵ, δ)-differentially private if the following holds:

∀x, x′ ∈ X s.t. x ≃X x′ : M(x) ≈ϵ,δ M(x′).

The mechanism M is (ϵ, δ)-computationally differentially private if ∀x, x′ ∈ X s.t. x ≃X

x′ : M(x) c
≈ϵ,δ M(x′).

Definition 4. The global sensitivity of a function f : N|X | → Rk is:

∆f = max
X,Y ∈N|X |,∥X−Y ∥1=1

∥f(X)− f(Y )∥1

Definition 5. The Laplace Distribution (centered at 0) with scale b is the distribution
with probability density function: Lap(x|b) = 1

2b e−|x|/b.

We will write Lap(b) to denote the Laplace distribution with scale b. Given any function
f : N|X | → Rk, the Laplace mechanism that adds noise drawn from Laplace distribution;
that is, given an input database X, the mechanism outputs f(X) + (Y1, . . . , Yk), where
Yi are i.i.d. random variables drawn from Lap(∆f/ϵ). It is known that the Laplace
mechanism achieves (ϵ, 0)-differential privacy [DR+14, Theorem 3.6].
Distributional differential privacy (DDP). We adapt the original definition [BGKS13]
for our purpose to consider a two-party protocol that takes sets as input more explicitly.
Specifically, we consider a computational indistinguishability variant for our DDP definition.

Definition 6 (View of a party in a two-party functionality). Given a two-party functionality
F with parties P1 and P2, let viewFP1

(A, B) denote the view of P1 for the execution of
functionality F with A and B being the input of P1 and P2 respectively. In particular,
viewFP1

(A, B) consists of the following (the view of P2 is defined similarly):

• The input A of P1, the private random coins of P1, and the output of the functionality.

• If the functionality is in the random oracle model, we allow a semi-honest P1 to
make a polynomial number of arbitrary queries to the random oracle and to add the
input/output information to its view.

Definition 7 (DP and DDP of a two-party functionality). A two party functionality F is
(computationally) (ϵ, δ)-DP against an adversary corrupting P1, if for every (A, B) and
every x∗ ∈ U , it holds that viewFP1

(A, B) is (compuatationally) (ϵ, δ)-indistinguishable from
viewFP1

(A, B+x∗).
Let X denote a random variable for two sets over universe U . Let Z denote the

random variable measuring the additional auxiliary information known to the adversary.
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A two party functionality F is (computationally) (ϵ, δ, ∆)-DDP against an adversary
corrupting P1, if for every distribution D ∈ ∆ on (X ,Z), every (X = (A, B), Z) in the
support of (X ,Z) and every x∗ ∈ U , it holds that

(
viewFP1

(A, B), Z
)

is (computationally)
(ϵ, δ)-indistinguishable from

(
viewFP1

(A, B+x∗), Z
)
. Here, (A, B) and Z are sampled from

D, and each party may use additional randomness.
DP and DDP against an adversary corrupting P2 is defined symmetrically.

Tail bound for a Binomial distribution. We will use this well-known inequality.

Lemma 1 ([Doe18]). Consider a Binomial distribution B(n, p). We have

Pr
X∼B(n,p)

[X ≥ k] ≤
(

n

k

)
pk.

4 Min-Hash with DP
Since the noiseless min-hash functionality cannot achieve DP as discussed above, we
consider a noisy variant that provides DP. We first consider the global sensitivity of FminH
and use the standard Laplace mechanism to provide DP.

4.1 Sensitivity
Let B = (xB

1 , . . . , xB
nB

) and B+x∗ = (xB
1 , . . . , xB

nB
, x∗), and WLOG, we consider two

neighboring inputs (A, B) and (A, B+x∗); the case in which x∗ is added into A can be
shown symmetrically.

We show how changing the input sets from B to B+x∗ affects the final count. Let x∗

be the (nB + 1)-th element of B+x∗ . Consider iteration j of Step 2 in Figure 1. Since
we model each hash function hj as a random oracle, (yB

1,j , . . . , yB
nB+1,j) will be uniformly

distributed. Now, consider how the min-hash uB
j is computed. The value x∗ from B+x∗

can affect the min-hash uB
j (and thereby the final count c), only if yB

nB+1,j is smaller than
(yB

1,j , . . . , yB
nB ,j).

The probability that yB
nB+1,j will be less than all yB

i,js is at most 1/(nB + 1) by a
symmetry argument. Note the final output is computed as the sum of k of these trials. Let

Sx∗ =
{

j ∈ [k] : yB
nB+1,j < min

i∈[nB ]
{yB

i,j}
}

.

Therefore, we consider a binomial distribution |Sx∗ | ∼ B(k, 1/(nB + 1)), which represents
how many iterations j cause x∗ to be the min-hash uB

j . In other words, |Sx∗ | captures the
sensitivity of min-hash. Therefore, given the failure probability δ, the following measure
can be used as the global sensitivity:

σ(δ, k, nB) := arg min
s
{s : Pr

h1,...,hk

[|Sx| ≥ s] ≤ δ}

Lemma 2. For any {xB
i }i∈[nB ] and x ∈ U , we have σ(δ, k, nB) ≤

(
k
s

)
·
(

1
nB+1

)s

.

Proof. The result immediately follows from Lemma 1.

According to the above lemma, Asymptotically, with k = Ω(κ), we have σ(δ =
negl(κ), k, n = Θ(k2)) = O(lg lg k).
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Noisy Min-Hash Functionality Fnoisy-minH

1. Run FminH and let (pre, c) be the output from FminH.

2. Sample ζA and ζB from Laplace distributions Lap( σ(δ/2,k,nA)
ϵ

) and Lap( σ(δ/2,k,nB)
ϵ

)
respectively. Let coinsA and coinsB the random coins that the functionality used
to sample them.

3. Let ℓA and ℓB be the minimum integers satisfying Pr[|ζA| > ℓA] ≤ δ/2 and
Pr[|ζB | > ℓB ] ≤ δ/2. If |ζA| > ℓA, then truncate it so that it holds |ζA| = ℓA.
Likewise, truncate ζB if necessary.

4. Let r(·) be a rounding function. Output (pre, coinsA, r(c + ζB)) to P1 and
(pre, coinsB , r(c + ζA)) to P2.

Figure 2: Noisy Min-Hash Functionality

4.2 Noisy Min-Hash
We consider a variant Fnoisy-minH of FminH described in Figure 2.

Theorem 1. Fnoisy-minH is (ϵ, δ)-DP against an adversary corrupting either party.

Proof. Based on the definition, σ(·) works as the upperbound on the sensitivity with
probability 1− δ/2. For the honest party’s noise (i.e., ζA or ζB), truncation takes place
with probability at most δ/2. Therefore, using the standard Laplace mechanism [DR+14,
Theorem 3.6], and since DP is preserved even with post-processing, Fnoisy-minH provides
(ϵ, δ)-DP.

A two party protocol πNMH securely realizing Fnoisy-minH . We construct a two party
protocol that securely realizes functionality Fnoisy-minH. The protocol takes advantage of
an ideal functionality Fpsi-ca of private set intersection cardinality (PSI-CA) [CGT12] that
computes the exact cardinality of the intersection of the two input sets, as described in
Figure 3.

Functionality of Private Set Intersection Cardinality Fpsi-ca

Input: P1 has a set A and P2 has a set B.
Output: Return |A ∩B| to P1 and ⊥ to P2.

Figure 3: Functionality Fpsi-ca

In particular, in order to compute the noisy min-hash match counts, the parties
construct two sets consisting min-hash values and additional dummy elements and then
run Fpsi-ca on these sets. To reflect the Laplace noise into elements of a set, the protocol
uses unary encoding, which introduces some inefficiency. However, as the tail probability
of Laplace noise decreases exponentially, the unary encoding length can be bounded with
a small value, and the protocol’s overall efficiency is still maintained. Detailed steps of the
protocol are provided in Figure 4.

It is worth noting that the above task could also be implemented using a generic
two-party computation (2PC) protocol. However, [CGT12] proposed an efficient PSI-CA
protocol that outperforms 2PC protocols for small input sizes (using the start-to-finish
comparison including the 2PC preprocessing steps). See Section 9.1 for more details of
this PSI-CA protocol. Since our input sets are small, we chose to present protocol πNMH
using the PSI-CA functionality.
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We will prove below that protocol πNMH securely realizes Fnoisy-minH. It implies that
protocol πNMH is also (ϵ, δ)-computational-DP [SCRS17]. The main benefit of the protocol
is that the hash computations can be computed locally and the communication complexity
of the protocol is sub-linear in nA and nB even when the protocol implementing Fpsi-ca
has a linear communication complexity.

Two-party Noisy Min-hash Protocol πO
NMH

Input: P1 and P2’s input vectors A = (xA
1 , . . . , xA

nA
) and B = (xB

1 , . . . , xB
nB

).

Protocol:
1. P1 samples prefix pre and sends it to P2. This prefix is used to define hash functions

h1, h2, . . . , hk, where for i ∈ [k], hi(·) := O(pre||i||·).
2. P1 computes the min-hash vector (uA

1 , uA
2 , . . . , uA

k ) locally exactly as described in
FminH. Likewise, P2 locally computes (uB

1 , uB
2 , . . . , uB

k ).

3. P1 (resp. P2) samples ζA (resp. ζB) from Laplace distribution Lap( σ(δ/2,k,nA)
ϵ

)
(resp. Lap( σ(δ/2,k,nB)

ϵ
)). Let coinsA (resp. coinsB) be the random coins that P1

(resp. P2) used in sampling the noise ζA (resp. ζB). As in Fnoisy-minH, parties
truncate ζA and ζB based on ℓA and ℓB , if necessary.
Let ZB be a 2ℓB-bit vector representing the unary encoding of r(ζB + ℓB). That is,
the first r(ζB + ℓB) bits are 1’s and the remaining bits are 0’s. We let ZB

j denote
the jth bit of ZB .

4. P1 and P2 invokes Fpsi-ca with the following inputs:

• P1’s input: {(i, uA
i ) : i ∈ [k]} ∪ {(j + k, 1) : j ∈ [2ℓB ]}

• P2’s input: {(i, uB
i ) : i ∈ [k]} ∪ {(j + k, ZB

j ) : j ∈ [2ℓB ]}

Let out be the output to P1 from functionality Fpsi-ca. Set cA = out− ℓB .
5. P1 computes c+ = cA + r(ζA) and sends c+ to P2. P2 computes cB = c+ − r(ζB).

Output: P1 and P2 output (pre, coinsA, cA) and (pre, coinsB , cB) respectively.

Figure 4: A two-party min-hash protocol with noise

Proposition 1. Protocol πONMH described in Figure 4 securely realizes Fnoisy-minH in the
semi-honest model.

Proof. First note that the protocol will correctly compute cA = r(c+ζB) and cB = r(c+ζA)
as in Fnoisy-minH. For privacy, when P1 is corrupted, the only message to simulate is cA,
the output from Fpsi-ca. Since the protocol is in the Fpsi-ca hybrid, this message cA can
be perfectly simulated by using the output from Fnoisy-minH. The simulator can also make
sure that pre and ζA are correctly sampled by using pre and coinsA from Fnoisy-minH. For
corrupted P2, first the simulator makes sure that pre and ζB are correct by using pre and
coinsB from Fnoisy-minH. The message c+ = cB + r(ζB) can also be perfectly simulated,
since the simulator can obtain cB from Fnoisy-minH.

5 Noiseless Protocol in the Private Hash Setting
In Figure 5, we describe the min-hash protocol FprivH in the private hash setting. We show
that if J(A, B) is a constant, there exist parameter regimes where FprivH without noise
satisfies differential privacy. Our observation is that the final count c follows a binomial
distribution in the private hash setting, which can be treated as noise to obscure the
sensitivity.
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Min-Hash in the Private Hash Setting FprivH

FprivH works exactly the same as FminH except that it outputs only the final count c (with
the prefix pre hidden to the participants).

Figure 5: Min-Hash in the Private Hash Setting

Theorem 2. For any constant ϵ > 0, if k = k(ϵ, κ) ∈ Ω(κ), nA/k ∈ Ω(κ), nB/k ∈ Ω(κ),
and J(A, B) ∈ (0, 1) is a constant independent of κ, then FprivH is (ϵ, δ)-DP with δ ∈ negl(κ).

Proof. WLOG, let B = (xB
1 , . . . , xB

nB
) and B+x∗ = (xB

1 , . . . , xB
nB

, x∗). Let p = J(A, B),
s = σ(δ, k, min(nA, nB)) = O(lg lg κ). Recall the definition Sx∗ in Section 4.1 and let
Kx∗ = [k] \ Sx∗ . Note that for the iterations in Kx∗ , the min-hash matches (denoted as
cKx∗ ) for both (A, B) and (A, B+x∗) will be identically distributed. This match count cx∗

will work as an additive noise. Since h1, . . . , hk are private, we have cKx∗ ∼ B(k − s, p).
By applying Lemma 3 below, we conclude that FprivH is differentially private.

Lemma 3. Consider a Binomial distribution B(n, p), where n ∈ Ω(κ) and p ∈ (0, 1) is a
constant independent of κ. Then, for any constant ϵ and s = O(lg lg κ), there are a, b ∈ [n]
with a < np < b such that

• For any ℓ ∈ [a, b], e−ϵ ≤ PrX∼B(n,p)[X=ℓ]
PrX∼B(n,p)[X+s=ℓ] ≤ eϵ.

• For any ℓ ̸∈ [a, b], Pr[B(n, p) = ℓ] = negl(κ) and Pr[B(n, p) + s = ℓ] = negl(κ).

The proof of the lemma is found in Appendix A.
Remark. While FprivH could be considered as a trusted curator model, a two-party
protocol realizing it can be constructed without relying on a trusted curator. In particular,
the computation of (uA

1 , . . . , uA
k ) (including all n hash evaluations) can be performed locally

under a threshold FHE so that only the encryption of them may be sent to party B. Then,
by computing the remaining steps under FHE and delivering the result using a threshold
decryption, the protocol will securely realize FprivH in the semi-honest setting. We note
that the resulting protocol has sublinear communication in n since only the k inputs to
the comparisons need to be communicated.

6 DDP of FminH

In this section, we show that there are parameter regimes where the public min-hash
protocol FminH can satisfy DDP without adding noise. In Figure 6, we first describe
the family of distributions we consider in the context of our min-hash protocol. The
distribution models a situation in which the adversary, having corrupted one of the two
parties, has access to the view of the party and even the actual intersection. However, the
adversary does not know the other party’s input set (except from the intersection).

Below, we show that FminH achieves DDP under certain circumstances.

Theorem 3. For every constant ϵ > 0, consider FminH in the random oracle model with
k = k(ϵ, κ), where k ∈ Ω(κ). Let R = B \ I, each element of which has min-entropy
at least κ. Let nA/k, nB/k ∈ Ω(κ), and nI/nA ∈ (0, 1) is a constant independent of κ.
Then, FminH is computationally (ϵ, δ, ∆PH)-DDP against an adversary corrupting P1 with
δ ∈ negl(κ). DDP against an adversary corrupting P2 holds when the parameters are set
symmetrically.

Theorem 4. For security parameter κ, every constant ϵ > 0, and every constant γ ∈ (0, 1),
consider FminH in the random oracle model with k = k(ϵ, κ), where k ∈ Ω(κ · lg lg κ). Let
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Distribution Family ∆PH

Parameterized with (nA, nB , nI), a distribution DA,B in this family samples (A, B) such
that

• Letting I = A ∩B, it holds that |A| = nA, |B| = nB , and |I| = nI

Output:
• The inputs to the parties P1 and P2 are A and B respectively.
• Give I to the adversary as the auxiliary information.

Figure 6: The family of distributions that we consider in our min-hash protocol

R = B\I be a set of size nR, with nR/k2 ∈ Ω(κ). Let the universe U be of size nR ·ℓ, where
ℓ = Ω(n3

R). Assume the secret set R is chosen chosen uniformly from all subsets of U of size
nR, conditioned on arbitrary leakage on R of length L, where nR lg ℓ−L ≥ 8nR

9 lg ℓ + 2nR.
Let |I| ∈ Θ(n). Then the output of FminH achieves computational (ϵ, δ, ∆PH)-DDP with
δ ∈ negl(κ) against an adversary corrupting P1. DDP against an adversary corrupting P2
holds when the parameters are set symmetrically.

Remark. An easy way to realize FminH is to have each party locally hash their inputs
using the k public hash functions and to locally compute the minimum for each iteration.
The parties can then run a simple two-party computation to compute the number of times
these minimums match. We note that this protocol has communication and computation
that is sublinear in the input size as it only depends on the number of hash functions.
By Theorems 3 and 4 this protocol achieves DDP when the conditions of either of the
theorems are satisfied.

7 Proof of Theorem 3
We first give the intuition of the proof. We assume that each of the non-intersecting
elements has high min-entropy. WLOG, consider an adversary corrupting P1. The view of
the adversary will be

viewFminH
P1

(A, B) := (A, c, h1, . . . , hk).
As shown above, the sensitivity can be upper-bounded by a small value s.

Unlike FprivH, however, when we show the existence of sufficient noise from the remaining
iterations, we need to take the additional leakage into consideration.

First, since the hash functions are public, iterations are no longer independent of each
other as needed by the analysis in Section 5. We address this issue by employing the fact
that each of the non-intersecting items has high min-entropy. In the random oracle model,
as long as the adversary does not query hash function h on some point x, h(x) is uniformly
random to the adversary. Since the non-intersecting items have high min-entropy, the
adversary is negligibly likely to query any of them to the hash functions, thus guaranteeing
independence.
Good iterations and Poisson Binomial distribution. Now, to see how the remaining
iterations still hide the sensitivity even with the public hash functions, let R = B \ I. For
the remaining k − s iterations, the high min-entropy of each element in R will jitter the
final count. In particular, consider the jth hash function hj in the protocol (among the
k − s remaining iterations) and let

vA
j = min hj(A), vI

j = min hj(I), vR
j = min hj(R).

Suppose vA
j = vI

j . Then, if vR
j ≥ vI

j , the min-hash uA
j of A will be equal to the min-hash

uB
j of B (both of which are equal to vI

j ) and the final count c will be incremented due to
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this jth iteration. However, if vR
j < vI

j , then it will be uA
j ≠ uB

j , and the final count will
not be incremented. This way, the distribution of vR

j will jitter the final count. The above
discussion can be formalized into the following definition.

Definition 8 (θ-good iteration). Let nR = nB − nI , we define goodθ(hj , A, I, nB) to be
true if and only if the following holds:

min hj(A) = min hj(I), and min hj(I) ∈
[

1−
(

1
2 + θ

)1/nR

, 1−
(

1
2 − θ

)1/nR
]

.

The second condition of the definition requires that min hj(I) is somewhere in the
middle (parameterized by θ ∈ Θ(1)) so that the distribution of R (i.e., random vR

j ) may
reduce the final count with a decent chance (and also keep the count with a decent chance).
As long as nI/nA is a constant fraction, there are sufficiently many θ-good iterations,
although we lose some iterations. In particular, if we let kg be the number of good
iterations, we have kg = Θ(k).

With public hash functions and thereby min hj(I) being leaked to the adversary, it turns
out that the noise from the kg iterations follows a Poisson Binomial distribution, which is a
generalization of a Binomial distribution where each trial has a different success probability.
However, using the techniques of [COK22], we can still show that this distribution works
as a good noise to hide the private data.

7.1 Proof
WLOG, we consider two neighboring inputs (A, B) and (A, B+x∗). DDP for the case in
which x∗ is added into A can be shown symmetrically. We prove the theorem by a hybrid
argument. In particular, we define a slightly different ideal functionality FminH

(1) as follows:

• Let FminH
(1) be the same as FminH except that for each xB

i ∈ B \A, each element in
{yB

i,j}j is chosen uniformly at random from [0, 1].

We set up the following hybrids. We will argue that for any x∗ ∈ U and over
(A, B, I)← ∆PH, it holds

(viewFminH
P1

(A, B), I) c
≈ (viewFminH

(1)

P1
(A, B), I)

≈ϵ,δ (viewFminH
(1)

P1
(A, B+x∗), I) c

≈ (viewFminH
P1

(A, B+x∗), I)

for any constant ϵ > 0 and for some δ ∈ negl(κ), as long as each element in B \ I has high
min-entropy.

Recall that the min-entropy of each element xB
i with i ∈ B \A is at least κ. Therefore,

the probability that any adversary making at most polynomially many oracle queries
queries any xB

i is negl(κ). Conditioned on the adversary not querying any such xB
i ,

any yB
i,j for j ∈ [k] is chosen uniformly random from U . The same argument shows

viewFminH
P1

(A, B+x∗), I) c
≈ (viewFminH

(1)

P1
(A, B+x∗), I). Therefore, we are left only to show

(viewFminH
(1)

P1
(A, B), I) ≈ϵ,δ (viewFminH

(1)

P1
(A, B+x∗), I).

DDP of FminH
(1). We show (A, I, h1, . . . , hk, c) ≈ϵ,δ (A, I, h1, . . . , hk, c+x∗), where c is

the final count from FminH
(1)(A, B) and c+x∗ is the final count from FminH

(1)(A, B+x∗).
We show how to leverage the uncertainties of xB

i ∈ R = B \A so that good iterations work
like the needed noise to guarantee DP.

Lemma 4. For any A, I, nB and nR = nB − nI , we have

pθ
def= Pr

h
[goodθ(h, A, I, nB)] ≥

((
1
2 + θ

)nA
nR

−
(

1
2 − θ

)nA
nR

)
· nI

nA
.
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The proof is found in Appendix B. This lemma shows that a random hash leads to a
good iteration with probability pθ, which is constant in our setting based on the assumption
about nA, nI , nR.

Recall that Sx∗ was the random variable that represents the set of iterations j such
that the min-hash uB

j comes from x∗ when P2’s input is B+x∗ . From Lemma 2, with
overwhelming probability |Sx∗ | = O(lg lg κ).

Now, fix A, I, x∗ and h1, . . . , hk and let Gθ be the set of iterations j in which a θ-good
event takes place; i.e.,

Gθ = {j ∈ [k] : goodθ(hj , A, I, nB)} .

Let Kθ = Gθ \ Sx∗ . The following lemma shows that the θ-good events takes place
Θ(κ)-many times, with overwhelming probability.

Lemma 5. Suppose k = Θ(κ), nB = Ω(κ2), and pθ ∈ Θ(1). Let s = |Sx∗ |. Then, we have

Pr
h1,...,hk

[
|Kθ| >

2
3(k − s)pθ

]
≥ 1− negl(κ).

The proof is found in Appendix C.
Our goal. For a set W , define cW

def=
∑

j∈W Eq(uA
j , uB

j ). Let Kθ := [k] \Kθ. Note that
the contributions to the final output can be divided into two parts:

• cKθ
: The contribution from the iterations in Kθ, which contains all the θ-good

iterations such that x∗ does not hash to the minimum across B+x∗ .

• cKθ
: The contribution from all the remaining iterations

Essentially, for any final count q, we are interested in comparing the two probabilities:

Pr[cKθ
+ cKθ

= q] and Pr[c+x∗

Kθ
+ c+x∗

Kθ
= q].

Following our discussion on sensitivity in Section 4, the difference of cKθ
and c+x∗

Kθ
is

upper-bounded by s = O(lg lg κ). Note that we have cKθ
= c+x∗

Kθ
because j ∈ Kθ implies

j ̸∈ Sx∗ . Therefore, we only need to analyze the single distribution of cKθ
as a noise and

compare the following two probabilities:

Pr[cKθ
= q] and Pr[cKθ

+ s = q].

Distribution of cKθ
. We have cKθ

=
∑

j∈Kθ
cj , where cj = Eq(uA

j , uB
j ). Note that since

we have j ∈ Kθ, a θ-good event takes place in iteration j, i.e., min hj(A) = min hj(I).
Let γj = 1 −min hj(I). Note that the hash of each item R is randomly distributed

in FminH
(1). Therefore, the probability that cj = 1 is (γj)nR , in which case every hash of

items in R must be at least min hj(I).
Let η−θ = 1/2 − θ and η+θ = 1/2 + θ. Since j is a good iteration, we have (γj)nR ∈

[η−θ, η+θ]. Therefore, letting pj = (γj)nR , we have cj ∼ Ber(pj), where Ber denotes the
Bernoulli distribution. Since these Bernoulli distributions are independent from each other,
can apply Lemma 6 below to conclude that CKθ

≈ϵ,δ CKθ
+ s.

For j ∈ [n], consider cj ∼ Ber(pj). With pJ = {pj}n
j=1, let PB(n, pJ) denote the dis-

tribution of
∑

j∈[n] cj . This distribution is called a Additive Poisson Binomial distribution.
We conclude the proof by showing that the Additive Poisson Binomial distribution

with appropriate parameters satisfies the following DP-like property.

Lemma 6. Consider an Additive Poisson Binomial distribution PB(n, pJ ), where n ∈ Ω(κ)
and for each pj, it holds that pj ∈ [1/2 − θ, 1/2 + θ] where θ ∈ (0, 1/2) is a constant
independent of κ. Then, for any constant ϵ and s = Θ(lg lg κ), there are a, b ∈ [n] such
that
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• For any ℓ ∈ [a, b], e−ϵ ≤ Pr[PB(n,pJ )=ℓ]
Pr[PB(n,pJ )+s=ℓ] ≤ eϵ.

• For any ℓ ̸∈ [a, b], Pr[PB(n, pJ) = ℓ] = negl(κ) and Pr[PB(n, pJ) + s = ℓ] = negl(κ).

The proof is found in Appendix D.

8 Highlights of Proof of Theorem 4
Here, we highlight only the important parts of the proof of Theorem 4. The full proof can
be found in Appendix E. We show that FminH satisfies DDP even when the size of the
universe U of size nR · ℓ is polynomial in κ with ℓ = Ω(n3

R), and the secret set R is chosen
from the uniform distribution on U , conditioned on arbitrary leakage on R of length L,
where L ≤ nR(lg ℓ− 3 lg nR − 2). WLOG, we assume that the adversary corrupts P1.

We set n′R := nR/3; looking forward, it is the size of a subset R′ ⊂ R, each of whose
elements has high remaining min-entropy even after leakage (that we will define in the
proof) is considered.

8.1 Min-hash Graph
Consider running the min-hash protocol FminH with k iterations such that kg of them
belong to Gθ. For this, we consider all the hash outputs in two different stages and define
the following sets:

H1 = {hj(A+x∗)}k
j=1, H2 = {hj(U \A+x∗)}k

j=1.

Since we are in the random oracle model, each hash value is chosen uniformly at random.
For our analysis, we construct the following bipartite graph (X ,Y, E), which we call the
min-hash graph, based on the sets A, I and x∗ along with the hash functions as follows:

MinhashGH1(A, I, x∗, H2):

1. Set X = U \A+x∗ . In other words, the graph considers all potential elements that
could be in R = B \ I. A distribution of R is equivalent to a distribution of how to
choose nR nodes from X . Note that H1 determines Gθ (based on the hash values of
A and I). We set Y = Gθ. In other words, Y corresponds to all the good iterations
that could potentially positively contribute to the final count.

2. Let pj = min hj(I). Use H2 to determine the set of edges:

E = {(i, j) : (i, j) ∈ X × Y and hj(xi) < pj = min hj(I)}.

In other words, existence of an edge (i, j) means that if node i belongs to R, iteration
j will not contribute to the final count.

3. Output the resulting bipartite graph (X ,Y, E).

Figure 7: Min-hash graph

1 2 3 4 5 6 7 8 9 10 11
h1 0.83 0.25 0.77 0.85 0.93 0.35 0.86 0.92 0.49 0.21 0.5
h2 0.62 0.83 0.27 0.59 0.63 0.26 0.4 0.26 0.72 0.36 0.6
h3 0.68 0.11 0.67 0.29 0.82 0.3 0.62 0.23 0.67 0.35 0.7
h4 0.02 0.43 0.22 0.58 0.69 0.67 0.93 0.56 0.11 0.42 0.8

Table 1: Example Hash Functions

Example. Let the universe be U = [11]. Let A = {1, 2, 3, 4}, I = {2, 3}, x∗ = 11. Let
the threshold range for the θ-good iterations be [0.2, 0.7]. Assume that our protocol runs
in 4 iterations using the hash functions defined in table 1.
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Figure 7 shows the constructed min-hash graph. We have X = {5, 6, . . . , 10} and
Y = {h1, h2}; h3 has been ruled out since p3 = h3(2) = 0.11 ̸∈ [0.2, 0.7], and h4 has been
ruled out because min h4(A) ̸= min h4(I). Moreover, we have p1 = h1(2) = 0.25 and
p2 = h2(3) = 0.27. Note that (8, h2) ∈ E , because h2(8) < p2.

8.2 Fixed Subsets (R′, T ) of Secret Items and Good Iterations
We fix H1 and thereby the nodes X and Y of the min-hash graph. In this section, as the
first step, we fix subsets R′ ⊂ X and T ⊆ Y and analyze the noise over the choice of H2.
In other words, we are treating H2 as private the adversary. Extending this, in the next
section, we will consider the actual protocol setting where the hash functions are public
and then analyze the noise over a distribution of R′.
Edge distribution in the min-hash graph. The probability (over the choice of H2)
that an edge (i, j) forms is exactly equal to pj . Moreover, since we are in the random
oracle model, the probability that (i, j) forms is independent of the probability that any
other edge in the graph forms.
Noise distribution. We are interested in the probability ER′

T,r over the choice of H2
that the final count is reduced by exactly r due to the elements of R′ over a bundle T of
iterations. In the random oracle model, the probability depends only on the size of the sets
n′ = |R′| and kb = |T |. Therefore, we will often use the notation En′

kb,r = ER′

T,r. We will
sometimes even omit kb and write En′

r . Observe that En′

r is another way of representing
an Additive Poisson Binomial distribution. That is, En′

kb,r = Pr[PB(kb, pJ ) = r]. Therefore,
based on Lemma 6, we have the following:

Corollary 1. Let kb ∈ Ω(κ), and consider any H1 that makes |Y| > kb in the min-hash
graph construction. For any s = O(lg lg κ), any constant ϵ, there are a, b ∈ [kb] such that
over the choice of H2, we have

• For any r ̸∈ [a + s, b], then E
n′

R

kb,r and E
n′

R

kb,r−s are both negligible in κ.

• For any r ∈ [a, b], then it holds e−ϵ/3 ≤ E
n′

R

kb,r/E
n′

R

kb,r−s ≤ eϵ/3.

The above indicates that the distribution over r is amenable for use as a noise distribu-
tion in a differential privacy context.

8.3 Noise Over the Choice of R′ with Public Hash Functions
Our main technical challenge is to show that the properties needed for differential privacy
hold even when the hash functions are public.

For this, we first fix H1 and H2. Then, we consider the derived min-hash graph
G = (X ,Y, E). Let D be the distribution of R′. For any set T of iterations of size kb

and any integer r, let IR′,T,r be the indicator random variable that is set to 1 if set R′

contributes −r to the total count in the min-hash protocol. We define a random variable
DT,r that is the probability that R′ contributes to the noise reduction r over iterations in
T :

DT,r(D) := Pr
R′∼D

[IR′,T,r] =
∑
R′

Pr
R′∼D

[R′] · IR′,T,r.

Conditions for the hash functions. Ideally, we would like to show the following:

For any fixed H1 and H2 and over distribution D, it holds that DT,r and DT,r−1
(and ultimately DT,r−s) are close, except with the tail case of r whose probability
weight is negligible.
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The universal quantifier for H1 and H2 in the above can be slightly relaxed so that
the condition holds with all but small probability over the choice of the hash functions,
which can be captured by showing that DT,r is close to its mean E

n′
R

k̂,r
(and then applying

Corollary 1).
Geometric collision property. This is essentially to show that DT,r is strongly
concentrated around its mean. We could try to apply Chernoff bound to show the
concentration property, but we cannot do so because IR′

i
,T,r and IR′

j
,T,r are not necessarily

independent if R′i ∩ R′j ̸= ∅. Therefore, we instead use Chebyshev for bounding the
tail, which requires DT,r to have small variance. Thus, our next goal is to upperbound
Var[DT,r]. To do so, we introduce a property of distributions D over sets R′ which we call
the “Geometric Collision Property”. In a nutshell, this property states that the probability
that two sets R′1, R′2 drawn independently from D have intersection of size z is at most
( 1

n0.5 )z for all z ∈ [n′]. We show that Var[DT,r] can be bounded for any distribution over
sets R′ that has this property.

Definition 9 (Geometric Collision Property). Let D be a distribution over sets R′ of size
n′R. We say that D has the Geometric Collision Property if for all z ∈ [n′R]

Pr
R′

i
,R′

j
∼D

[
|R′i ∩R′j | = z

]
≤
(

1
√

nR

)z

.

Based on this property, we can show the following lemma.

Lemma 7. Let kb ∈ Ω(κ), and consider any H1 that makes |Y| > kb in the min-hash
graph construction. Let D be a distribution over sets of size n′R with geometric collision
property. For any set T of size kb ∈ Ω(κ), there exist a, b ∈ [kb], such that with probability
1−O( kb·lg3(κ)√

nR
) over choice of H2, the following holds:

• For all r ̸∈ [a + s, b], DT,r is negligible, where s = O(lg lg κ).

• For all r ∈ [a, b], e−ϵ/3E
n′

R

kb,r ≤ DT,r ≤ eϵ/3E
n′

R

kb,r.

The proof is found in Appendix F.
Multiple bundles of iterations towards DDP with negligible δ. We are not quite
done yet. Using the above lemma, we are only able to reduce the failure probability only
to ∼ 1/

√
n, whereas we would like the failure probability to be negligible. In order to

do that, we split the “good” iterations into u bundles, where u is a small superconstant
number u = lg lg κ, and argue that with overwhelming probability at least one bundle
serves as a good noise. Note that hash outputs are independent in each bundle and so the
probability that all u bundles fail should be ( 1√

n
)u, which is negligible. For this, we set

the parameter kb = kg/u, where kg is the number of good iterations.

8.4 Geometric Collision Property In the Face of Leakage
We conclude the proof by showing that R′ indeed has the geometric collision property. It
is not hard to see that the uniform distribution over all sets R′ of size n′ from a universe
of size n′ · ℓ (where ℓ ∈ Ω(n3)) satisfies the “Geometric Collision Property”. It would seem,
therefore, that we could take this as our secret distribution and the analysis would be
complete. Unfortunately, even for the case in which the distribution is sets of size n′ chosen
uniformly at random from the universe, the analysis is not straightforward. The difficulty
stems from the fact that the “noise” in the protocol is tied to the input itself. Therefore, if
information about the input is leaked in any other part of the protocol, then the noise
distribution changes and may no longer satisfy the required properties. Specifically in our
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case, learning the number of matches across the two parties’ sets with respect to some of
the hash functions leaks information about the secret set of the honest party (since the
secret set affects those counts).
Strong chain-rule for min-entropy. We first observe that our initial min-entropy in
the distribution over secret sets R is high (approximately 8n

9 lg ℓ + 2n) and that the entire
information leaked about R from the counts of the iterations that are not θ-good is small.
We can lower-bound the remaining min-entropy in D, therefore, using the weak chain rule
for min-entropy [DORS08, Lemma 2.2].

If we want to use the weak chain rule to lower bound the remaining min-entropy with
all but 2−κ probability, however, we need to take a hit of κ in the min-entropy. Recall that
each individual element in R can be viewed as being chosen from a set of size ℓ and thus
has min-entropy of at most lg(ℓ)≪ κ. Thus, after applying the weak chain rule and losing
more than κ bits of min-entropy, we can have certain elements that have only constant
min-entropy, thus implying that collisions are likely in those positions. So the weak chain
rule, while leaking only a small number of bits overall, can ruin the geometric collision
property. Even worse, the min-entropy definition doesn’t rule out the case in which all
elements of R (i.e. the marginal distributions over each element in R) have only constant
min-entropy, while the total min-entropy in R remains high!

This phenomenon has been previously observed and studied in the literature [Skó19].
One way to deal with such a counter-intuitive situation is to actually leak a small amount
of additional information, known as “spoiled” bits. This will lower the total min-entropy
in R, but will ensure that a large fraction of blocks in R still have high min entropy of at
least 1.5 lg(n). We extend the techniques of [Skó19] to produce spoiling leakage so that
the min-entropy in R still stays high in our protocol. We discuss more details about the
strong chain rule in the next section.

8.5 Strong Chain Rule
Our strong chain rule considers min-entropy where leakage functions ℓ1(·), . . . , ℓn(·) are
additionally considered. We describe our theorem in a general way, and we hope that it
may find future applications in leakage-resilient cryptography.
Sequence of random variables. Recall that R is the set of secret items in the min-
hash protocol. Here, we treat R as a sequence of block-by-block random variables R =
(R1, . . . , Rn), associated with (potentially randomized) leakage functions ℓ1(·), . . . , ℓn(·)
with randomness ρ1, . . . , ρn. You can think of the blocks as coming in a streaming fashion
in order of R1, R2, . . . , Rn.
Leakage functions. Loosely speaking, the properties we require of the leakage functions
are that the i-th leakage ℓi can be computed given (Ri, ρi), and all the outputs of
(ℓi+1, ℓi+2, . . . , ℓn). We also require that the total number of valid sequences of leakages
from ℓ1(·), . . . , ℓn(·) should be sufficiently small (see Property 1 in Theorem 5 below).
Spoiling functions. Our theorem below states the existence of a spoiling function f(·)
with certain properties, as well as properties of the random variables (R1, . . . , Rn) and
(ρ1, . . . , ρn) conditioned on the output of the spoiling function f(R).

The properties of (R1, . . . , Rn) and (ρ1, . . . , ρn) are roughly the following: (1) There
exist disjoint sets V, W such that V ∪W = [n] that are determined by f(R). (2) Blocks
{Ri}i∈V have high min-entropy conditioned on f(R). (3) Blocks {Ri}i∈W have small
support size (low max-entropy) conditioned on f(R). (4) For i ∈ V , the random strings
ρi are uniform random and independent conditioned on f(R). (See Properties (5)-(8) in
Theorem 5).

The properties of f(·) are roughly the following: (1) The failure probability (out-
putting ⊥) is small. (2) As long as the total number of valid sequences of leakages from
ℓ1(·), . . . , ℓn(·) is sufficiently small, the image size of f is small. This property ensures that
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we do not lose too much of the total min-entropy of R by releasing f(R) (3) The leakages
{ℓi(·)}i∈W can be computed given f(R). (See Properties (2)-(4) in Theorem 5)
Our theorem. The main difference between our spoiling lemma and prior ones is that
our min and max entropy guarantees on R = (R1, . . . , Rn) | f(R) hold even with respect
to additional leakage {ℓi}i∈W which is included in the spoiled bits f(R).

Theorem 5 (Block structures with few bits spoiled and leakage). Let U = U1 × · · · × Un

be a fixed universe and R = (R1, . . . , Rn) be a sequence of (possibly correlated) random
variables where each Ri is over Ui (and all are disjoint) and |Ui| = ℓ for all i. Let ρ1, . . . , ρn

be a sequence of uniformly random strings over {0, 1}m and let ℓ1(·), . . . , ℓn(·) be leakage
functions. Then, for any ϵ ∈ (0, 1), any δ > 0 and any c ∈ [2δ, ℓ/2δ], there exists a spoiling
leakage function f(R) that satisfies the following properties.

1. A sequence β1, . . . , βn is valid if for all i ∈ V , βi = ⊥ and for all i ∈ W , βi =
ℓi(Ri, ρi, β>i), where β>i = (βi+1, . . . , βn). We require that the number of valid
sequences β1, . . . , βn is at most B.

2. It holds that PrR[f(R) = ⊥] ≤ ϵn.

3. |Im(f)| ≤ B · (2(lg(ℓ) + lg(1/ϵ))/δ)n.

4. Conditioned on any y ∈ Im(f) \ {⊥}, for all i ∈ W , the leakage ℓi(Ri, ρi, β>i) can
be computed from y. Here, βj = ⊥ if j ∈ V and βj = ℓj(Rj , ρj , β>j) otherwise.

5. Let Im(f) be the set of images of f . Every y ∈ Im(f) \ {⊥} specifies two disjoint
sets V and W such that V ∪W = [n].

6. Conditioned on any y ∈ Im(f) \ {⊥}, for every i ∈ V , every element in distribution
Ri | R<i has low probability weight, i.e.,

∀y ∈ Im(f) \ {⊥}, ∀r s.t. f(r) = y, ∀i ∈ V : Pr
[

Ri = ri

∣∣∣∣∣ R<i = r<i, y

]
≤ 2δ

c
.

7. Conditioned on any y ∈ Im(f) \ {⊥}, for every i ∈ W , it holds that Ri | R<i has
small support size, i.e.,

∀y ∈ Im(f) \ {⊥}, ∀r s.t. f(r) = y, ∀i ∈W :
|{ri : Pr[Ri = ri|R<i = r<i, y]] ≥ 0}| ≤ 2δ · c.

8. {ρi}i∈V are distributed independently and uniformly at random conditioned on f(R).

The proof is found in Appendix G. Typically, one would like to set c as large as possible,
while ensuring that the size of V remains above some threshold. The achievable tradeoffs
between c and |V | are determined by the min-entropy of R before the spoiling bits f(R) are
released. For our applications, we require c = n1.5 and |V | ≥ n/3. In Section H, We show
that our min-entropy assumption on R implies that this parameter setting is achievable.

9 Empirical Evaluation
9.1 Comparison With Prior Work
We compare our noisy min-hash (NMH) protocol πNMH with the current state-of-the-
art approach, called sketch-flip-merge (SFM) [HTC23] and the generalized randomized
response mechanism (GRR) [ABS20]. In particular, we evaluate the trade-off between
communication cost and cardinality estimation accuracy, while achieving (almost) the
same level of privacy guarantee as follows:
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• For a given privacy parameter ϵ (with δ fixed to 2−40), we choose the right amount
of noise for our protocol and vary the number of hash functions k to measure the
communication cost and estimation accuracy trade-off.

• We then compare these accuracy results with the state-of-the-art protocols using the
same communication and privacy parameter.
We use the relative root mean squared error (RRMSE) of the union size as our
accuracy metric. This choice is primarily to ensure a fair comparison between our
protocol and the SFM protocol. Further details on this matter are provided in the
discussion of the SFM protocol below.
In Figure 9, we demonstrate the comparison of NMH, SFM, and GRR.

Our protocol. We calculate the communication of our protocol πNMH with Fpsi-ca
instantiated with the PSI-CA protocol described in Figure 8. It is a variant of the
protocol in [CGT12], where H2 is applied to {a′i}i∈[v] and {b′j}j∈[w] in order to reduce
the communication. The original protocol is secure under the DDH assumption in the
random oracle model. Essentially the same security proof found in the original paper can
be applied to show the security of this variant, when H2 is also modeled as a random
oracle.

Private Set Intersection Cardinality

Let G be a multiplicative group of order q. Let H1 : {0, 1}∗ → G and H2 : {0, 1}∗ →
{0, 1}λ be hash functions.
Input: P1 has C = {c1, . . . , cv} and P2 has S = {s1, . . . , sw}.

1. P1 samples a random exponent Rc ← Zq. For i ∈ [v], P1 computes ai = H1(ci)Rc .
P1 sends (a1, . . . , av).

2. P2 samples Rs ← Zq and computes (a′
1, a′

2, . . . , a′
v) = shuffle(aRs

1 , . . . , aRs
v ).

P2 also computes (b1, b2, . . . , bw) = shuffle(H1(s1)Rs , . . . , H1(sw)Rs ). P2 sends
(H2(a′

1), . . . , H2(a′
w)) and (b1, . . . , bw) to P1.

3. P1 computes (b′
1, . . . , b′

w) = (bRc
1 , . . . , bRc

w ). P1 outputs the following value:

| {H2(a′
1), . . . , H2(a′

v)} ∩ {H2(b′
1), . . . , H2(b′

w)}|.

Figure 8: PSI-CA Protocol.

We briefly sketch the security proof here while referring the full proof to the original
paper [CGT12]. We first show the simulator for the corrupted P1. Let t be the protocol
output (i.e., set intersection cardinality). The simulator chooses random t indices (i1, . . . , it)
(resp., (j1, . . . , jt)) from [v] (resp., [w]). In order to prepare (b1, . . . , bw), the simulator
replaces H1(sjk

)Rs (for k ∈ [t]) with H1(cik
)Rs , and the remaining values H1(sh)Rs are

simulated with random numbers. Since H1 is a random oracle (i.e., for an input x, we
have H1(x) = gr for a random r), this simulation is indistinguishable under the DDH
assumption. When P2 is corrupted, the first message {ai = H1(ci)Rc : i ∈ [v]} is simulated
by random values. The simulation is also indistinguishable under the DDH assumption.
The above PSI-CA protocol exchanges v + w elliptic curve points and w hashes, resulting
in (v + w) · 256 + w · 80 bits. In protocol πNMH, the parties will run this PSI-CA protocol
by setting v = w = k + 2ℓB .
Sketch-Flip-Merge (SFM) [HTC23]. While our main focus is on comparing the
accuracy of Jaccard Index estimation, in the absence of available code, we had to rely on
their analysis of the relative root mean squared error (RRMSE) of cardinality estimation
instead of Jaccard Index estimation. This poses challenges in evaluating the accuracy of
the Jaccard Index for SFM. In particular, although the Jaccard Index can be estimated
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by calculating the ratio of estimated intersection size over the estimated union size, its
RRMSE cannot be directly calculated from RRMSEs for the intersection and union sizes.
This is because the two estimates have dependency, and we can only conjecture that the
derived estimate through the division operation will probably have a worse RRMSE.

In the end, giving a slight advantage to SFM, we decided to focus on the accuracy of
cardinality estimation of the size of the union only. In our case, the union size was estimated
based on the Jaccard Index from the min-hash protocol and nA and nB. Following the
approach of SFM [HTC23], we perform m = 1000 estimates to measure the accuracy in the
form of relative root mean squared error (RRMSE); that is, letting n̂U,1, . . . , n̂U,m be the
union size estimates, and nU be the real union size, we define RRMSE(n̂U,1, . . . , n̂U,m; nU )
to be 1

nU

√
1
m

∑m
i=1(n̂U,i − nU )2. To match the communication complexity, we set the

sketch of SFM to be a (B × P )-bit matrix such that B · P = 592w and P = 24.
Generalized Randomized Response (GRR) [ABS20]. We also compare our protocol
with the generalized randomized response MinHash protocol in [ABS20]. Following their
guidance in experiments, we select the range of their hash function to be a single bit and
let their protocol use 592w hash functions to match our communication cost.

Since their actual protocol would take too long to run for large n and k, in order to
facilitate the large number of hash functions, we wrote code simulating the error based on
their privacy and utility analysis. As with the other protocols, we perform 1000 estimates
to lower the variance of the errors. To align with our other comparison with SFM, we
report the relative root mean squared error of the union size.

Figure 9: Accuracy: NMH, SFM, GRR. Figure 10: DDP based on k, and JI

Comparison Results. In Figure 9, we demonstrate the comparison of NMH, SFM, and
GRR. We set n = 106. The result shows that our error is consistently smaller than both
SFM and GRR for a reasonable range of communication costs, which corresponds to the
usage of k ∈ [100, 500] hashes for our noisy min-hash protocol. Specifically, as we increase
the number of hash functions, both our protocol and SFM achieve increased accuracy,
due to larger sketch sizes that better represent the input sets. On the other hand, while
GRR performs well with smaller communication, adding more communication becomes
counter productive. This is because each additional bit in their protocol corresponds to an
extra hash function output, which increases the noise needed to achieve the same privacy
guarantee. Finally, both GRR and our protocol exhibit spikes in the accuracy trends,
corresponding to crossover points where a significant amount of additional noise is required
to keep δ from getting above 2−40.

In concluding remarks, it is noteworthy that both SFM and GRR protocol discloses
the entire noisy sketch, revealing collective information about the party’s input set. We
note that differential privacy does not prohibit revealing collective information about the
inputs; rather, it mandates that individual contributions should not be discernible in the
output. In contrast, our min-hash protocol employs secure two-party computation and
discloses no information about the input set, except for the final (lg k)-bit output. When
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deciding which scheme to use, depending on the specific use case, this observation may
need to be taken into account.

9.2 DDP of Noiseless Protocol
We empirically evaluate the DDP guarantee for the noiseless min-hash protocol in the
public hash setting, in which each element in the secret set has high entropy. As before
we set nA = nB = 106. Figure 10 shows how the privacy parameter ϵ changes with the
number k of iterations. Although we demonstrate the results for JI ≤ 0.5, the results for
JI > 0.5 are similar. We omit the data points where ϵ is greater than 5, which happens
when k is small, and focus on the more meaningful ϵ range. We observe the following:

• Roughly speaking, when the number k of iterations of the min-hash protocol is
reasonably large (at least 500), the noiseless min-hash protocol provides a decent
level of DDP with privacy parameter ϵ ∈ [0.5, 5].

• Higher values of k correspond to improved privacy parameters. Note that as k grows,
more iterations will be θ-good. Since hashes of non-intersecting items work as noise
in θ-good iterations, more θ-good iterations will essentially amount to adding more
noise, therefore offering better privacy guarantee.

• When k is the same, the best privacy parameter is achieved when JI is around 0.5.
This is due to the likelihood that a hash function is θ-good being maximized when
striking a balance between the two conditions stipulated in Definition 8: (i) the hash
of an intersecting item should be the minimum hash value, and (ii) the minimum
hash value is neither too large nor too small.
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A Proof of Lemma 3
Let c = p/(1− p). We need to find a < np and b > np satisfying the following condition.

PrB(n,p)[a]
PrB(n,p)+s[a] =

(
n
a

)
pa(1− p)n−a(

n
a−s

)
pa−s(1− p)n−a+s

<

(
n− a

a− s

)s

· cs ≤ eϵ.

PrB(n,p)[b]
PrB(n,p)+s[b] =

(
n
b

)
pb(1− p)n−b(

n
b−s

)
pb−s(1− p)n−b+s

>

(
n− b

b

)s

· cs ≥ e−ϵ.

Case 1: s ≥ ϵ. We set a = np+s(1−p)·eϵ/s

eϵ/s·(1−p)+p
and b = eϵ/s·np

(1−p)+eϵ/s·p . Note these values satisfy
the above inequalities.

To show the second requirement of the tail bound, it suffices to show that PrB(n,p)[X ≤
a + s] = negl(κ); the other case holds similarly.

Let µ := np ∈ Θ(κ) and let d = 1− (a + s)/µ. By applying the Chernoff bound, we
have

Pr
X←B(n,p)

[X ≤ a + s] = Pr[X ≤ (1− d)µ] ≤ exp(−d2µ/2).

We will show that we have d = Ω( 1
lg lg κ ), which implies that with µ ∈ Θ(κ), the above

probability is negligible in κ. Let t = s(1− p) · eϵ/s and u = eϵ/s · (1− p) + p. Then, we
have a = µ+t

u . Note that we have ϵ/s · (1− p) + 1 ≤ u ≤ e. We have the following:

d = µ− a− s

µ
=
(

1− 1
u

)
− t/u + s

µ
≥ ϵ/s · (1− p)

e
− t/u + s

µ
= Ω

(
1

lg lg κ

)
− Õ(1/κ).

Case 2: s ≤ ϵ. Let a = c
c+e · (n + eϵ) < np and b = c

c+e−1 · n > np. Observe that
n−a
b−s · c = e and n−b

b · c = e−1. Therefore, given s ≤ ϵ, the above inequalities hold. The tail
bounds specified as the second condition of the lemma can be shown using the Chernoff
bound since np− a ∈ Θ(np) = Θ(κ) and so does b− np.

B Proof of Lemma 4
Let t = 1

nR
, Let low = 1−

( 1
2 + θ

)t and high = 1−
( 1

2 − θ
)t. Then, we have:

Pr
h

[goodθ(h, A, I, nB)]

= Pr
h

[(min h(I) ≥ low) ∧ (min h(I) = min h(A))]

− Pr
h

[(min h(I) ≥ high) ∧ (min h(I) = min h(A))]

= Pr
h

[min h(A) ≥ low] · Pr [min h(I) = min h(A) | min h(A) ≥ low]

− Pr
h

[min h(A) ≥ high] · Pr [min h(I) = min h(A) | min h(A) ≥ high]

≥
(

1
2 + θ

)t·nA

· nI

nA
−
(

1
2 − θ

)t·nA

· nI

nA

C Proof of Lemma 5
We can lowerbound |Kθ| with B(k−s, pθ). Recall s ∈ O(lg lg κ). Let µ = (k−s)pθ = Ω(κ).
Applying the Chernoff Bound, we have Pr [|Kθ| ≤ (1− 1/3)µ] ≤ exp(−µ/18) ≤ negl(κ).
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D Proof of Lemma 6

Hockey stick divergence. We first review hockey stick divergence [SV15, Ös02, BO13].
The hockey-stick divergence between two probability measures P, Q over Z is defined as:

Dhs
α (X, Y ) = sup

S⊆Z
(X(S)− αY (S)) =

∑
z∈Z

[(X(z)− αY (z)]+,

where α ≥ 1 and [x]+ = max{x, 0}. We observe that the following holds directly from the
definition of the hockey stick divergence.

Corollary 2. For any probability measures X, Y over Z and for any ϵ, δ, it holds

X ≈ϵ,δ Y if and only if Dhs
eϵ (X, Y ) ≤ δ and Dhs

eϵ (Y, X) ≤ δ.

Proof of Lemma 6. Let η−θ = 1/2− θ and η+θ = 1/2 + θ. For brevity, we let C denote
PB(n, pJ ). For any distribution D, let PD denote the probability measure with respect to
D. We first show that for any ϵ > 0, it holds that Dhs

eϵ (PC , PC+1) is at most

max
(

Dhs
eϵ

(
PB(⌈n

2 ⌉,η+θ), PB(⌈n
2 ⌉,η+θ)+1

)
, Dhs

eϵ

(
PB(⌈n

2 ⌉,η−θ), PB(⌈n
2 ⌉,η−θ)+1

))
.

We start with an upper bound of the hockey-stick divergence is reached at extreme
points. We rely on the results in [COK22]. Although they use the Renyi divergence, their
results are general enough to be applied to any f -divergence.

Lemma 8. ([COK22, Lemma 3.5])

Dhs
eϵ (PC , PC+1) ≤ max

j∈[n]
Dhs

eϵ

(
PB(j,η−θ)+B(n−j,η+θ), PB(j,η−θ)+B(n−j,η+θ)+1

)
. (1)

Next, we apply data processing inequality to simplify (1) from the above lemma.

Lemma 9. ([COK22, Lemma 3.6]) (1) is upper bounded by

max
(

Dhs
eϵ

(
PB(⌈n

2 ⌉,η+θ), PB(⌈n
2 ⌉,η+θ)+1

)
, Dhs

eϵ

(
PB(⌈n

2 ⌉,η−θ), PB(⌈n
2 ⌉,η−θ)+1

))
. (2)

We extend the above to upper bound the hockey-stick divergence between probability
measures differed by an integer amount greater than 1, i.e., PC and PC+s for s > 1.

Corollary 3. For any ϵ > 0, it holds that Dhs
eϵ (PC , PC+s) is at most

max
(

Dhs
eϵ

(
PB(⌈n

2 ⌉,η+θ), PB(⌈n
2 ⌉,η+θ)+s

)
, Dhs

eϵ

(
PB(⌈n

2 ⌉,η−θ), PB(⌈n
2 ⌉,η−θ)+s

))
.

Finally, to give a bound on the divergence, we can apply Lemma 3 to argue that the
binomial distribution hides the small sensitivity. Specifically, as ⌈n

2 ⌉ ∈ Θ(κ) and s = lg lg κ,
we can claim (ϵ, δ)-DDP with δ = negl(κ).

Similarly, it holds that Dhs
eϵ (PC+s, PC) ≤ negl(κ).

E Proof of Theorem 4

On the definition of a θ-good iteration. We keep the same definition of a θ-good
iteration, except we set the exponent to 1/n′R, instead of 1/nR, and we also require
θ ≤ 1/10. In particular,

• min h(A) = min h(I) and min h(I) ∈
[
1−

( 1
2 + θ

)t
, 1−

( 1
2 − θ

)t
]

with t = 1
n′R

.
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Bundle of good iterations Kθ. The total number of iterations in the min-hash protocol
πNMH is k = Ω(κ · lg lg κ). We require that nR/k2 = Ω(κ).

Using Lemma 4, with all but negligible probability, at least Ω(κ · lg lg κ) iterations are
θ-good. Recall that Gθ denotes the set of θ-good iterations, and Kθ = Gθ \ Sx∗ . We set
kg = |Kθ|. We further divide these kg iterations into u = lg lg κ bundles, each of which is
of size kb = Ω(κ). Those bundles are denoted by Kθ,1, . . . , Kθ,u. We also let Kbad := Kθ.
Random variables for the protocol output. Let out+

bad be the protocol’s match
count for sets A, B+x∗ w.r.t. the hash functions in Kbad:

out+
bad := |{j ∈ Kbad : min hj(A) = min hj(B+x∗)}| .

Likewise, let outbad be the number of matches for sets A and B (instead of B+x∗) in
iterations in Kbad. Similarly, for i ∈ [u], we let out+

i and outi denote the output for the
i-th bundle, with or without x∗ respectively. Note that out+

i = outi, since we ruled out
Sx∗ from Kθ. Note that the final output of the min-hash protocol for input B+x∗ is equal
to out+

bad +
∑u

i=1 outi; the final output for input B is outbad +
∑u

i=1 outi. Let

o⃗ut = out+
bad||outbad||out1|| · · · ||outu.

We also consider the output with the ith bundle missing; that is, for i ∈ [u] let

o⃗ut−i = out+
bad||outbad||out1|| · · · ||outi−1||outi+1|| · · · ||outu.

Upper-bounding leakage from the output. Since |Kbad| and |Kθ,i| are at most
k ∈ poly(κ), we can safely assume that the total number of bits in o⃗ut is

2 lg |Kbad|+
u∑

i=1
lg |Kθ,i| ≤ (2 + lg lg κ) lg |poly(κ)| ≤ κ.

Distribution of R and its min-entropy. The original distribution on the secret set
R is the uniform distribution over all sets of size nR with each element is chosen from a
universe U . The universe U has size ℓ · nR with ℓ ≥ 4(nR)3.

Now choose, uniformly at random, a partition {U1, . . . , UnR
} of U where each |Uj | = ℓ

such that the element in the jth slot of R belongs to Uj . These universes {U1, . . . , UnR
}

are leaked in the analysis.
Let D denote the original distribution over the set R, but conditioned on the leaked

information {U1, . . . , UnR
}. The distribution D is equivalent to a distribution over streams

of nR elements, where the element in the i-th slot is chosen uniformly at random from Ui.
Therefore, D has min-entropy nR lg ℓ.

We additionally consider arbitrary leakage f(R) of length L such that

nR lg ℓ− L ≥ 8nR

9 lg ℓ + 2nR.

Available iterations in a bundle. For a fixed set Z ⊆ R, in a min-hash graph, we say
that a set of iterations in the ith bundle Kθ,i is available with respect to Z if there are no
edges from Z to that set. In other words, no elements in Z contribute to the final count
reduction for any of those iterations. In this sense, those iterations are is still available
for the count reduction by the other elements than those in Z. More formally, consider a
graph G←MinhashGH1(A, I, x∗, H2) and letting G = (X ,Y, E), we define

AvailG(Kθ,i, Z) := {j ∈ Kθ,i : ∀z ∈ Z : (z, j) ̸∈ E)}.

Existence of a good bundle. We now describe an experiment to check if the ith bundle
of iterations is good in the sense that given the fixed hash, the distribution D (after the
leakage) satisfies the DP-like property conditions specified in Lemma 7. Roughly speaking,
Lemma 7 shows that a bundle will be good with a high probability.
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Process IsAGoodBundle(i, o⃗ut−i,D, A, I, x∗, H1, H2):

1. Consider G←MinhashGH1(A, I, x∗, H2).

2. Let D1,i := D | o⃗ut−i. In other words, D1,i is the distribution D on R, but conditioned
on the output vector o⃗ut−i. If D1,i has min-entropy less than nR lg(ℓ)−L− 2κ then
output FAIL1,i and terminate.

3. Check if if there is a leakage function fG(R) which leaks V = {j1, . . . , jn′
R
} and

T = AvailG(Kθ,i, R \ R′) such that there exists a distribution with the Geometric
Collision Property over sets R′ = {xj ∈ R : j ∈ V }. If there is no such distribution,
output FAIL2,i and terminate. Let D2,i := D1,i|fG(R).

4. If it holds |T | ≤ 1
10 |Kθ,i|, output FAIL3,i and terminate. Let kv = |T |.

5. Compute DT,r(D2,i) and check if DT,r satisfies the conditions given in Lemma 7.
Output FAIL4,i and terminate, if the above check fails.

6. Output SUCCESS.

Failure probability FAIL1,i. We claim that FAIL1,i takes place with a negligible
probability. By applying [DORS08, Lemma 2.2], the average min-entropy of D|o⃗ut−i

is at least nR lg ℓ − L − κ, which implies that the min-entropy of D|o⃗ut−i is at least
nR lg ℓ− L− 2κ ≥ 8nR

9 lg ℓ + nR with probability 1− 2−κ (assuming that nR ≥ 2κ).
Failure probability FAIL2,i.

Lemma 10. The experiment outptus FAIL2,i with a negligible probability.

We give the proof later in Appendix H.
Failure probability FAIL3,i We show that FAIL3,i occurs with negligible probability.
Let n = nR and n′ = n′R for brevity of notation. Recall that n′ = n/3. Let Xj be an
indicator variable that represents whether there is an edge from (n− n′) nodes to iteration
j. Therefore, we have

Pr
H2

[|T | = r] = Pr
H2

 kb∑
j=1

Xj = kb − r

 .

Recall that pj ≤ 1 − (η−θ)1/n′ and Pr[Xj = 1] = 1 − (1 − pj)n−n′ ≤ 1 − (η−θ)
n−n′

n′ =
1− (η−θ)2 ≤ 1− (2/5)2. Therefore, we have

m := E

 kb∑
j=1

Xj

 ≤ kb · (1− (η−θ)2) ≤ 0.84kb

Using the Chernoff bound and due to kb ∈ Ω(κ), we have

Pr
H2

[
|T | ≤ kb

10

]
= Pr

H2

 kb∑
j=1

Xj ≥
9
10kb

 ≤ exp
(
− (0.9kb −m0)2

2m0

)
= exp(−Ω(κ)).

Failure probability FAIL4,i. By Lemma 7, for all i ∈ [u], conditioned on FAIL1,i, FAIL2,i,
FAIL3,i not occurring, let

p4 := Pr
H1,H2

[IsAGoodBundle(i, o⃗ut−i,D, A, I, x∗, H1, H2) = FAIL4,i].

Then, we have p4 ∈ O(kv lg3(κ)/(nR)0.5).
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Existence of a good bundle out of u bundles. Observe that conditioned on FAIL1,i,
FAIL2,i, FAIL3,i not occurring, the process outputs FAIL4,i independently of (o⃗ut−i, R′),
since the hash values in H2 for any iteration are chosen independently of those for the
other iterations. Using the above, since kv/

√
nR = O(1/

√
κ), we have the following:

The experiment IsAGoodBundle outputs SUCCESS for at least one bundle with
probability 1− pu

4 = 1− negl(κ).

Noise distribution. We define a noise distribution Φ and give an analysis of the hockey
stick divergence of Φ(r) and Φ(r − lg lg(κ)).

Definition 10 (Noise distribution Φ). We define Φ(r) as follows:

• Choose H1 and H2 randomly.

• Let i∗ ∈ [u] be the index to the bundle that IsAGoodBundle outputs SUCCESS.

• For r ∈ [0, kv], output DT,r(D2,i∗), where T = AvailG(Kθ,i∗ , R \R′).

• For r ̸∈ [0, kv], Φ(r) := 0

Lemma 11. The hockey stick divergences Dhs
eϵ (Φ(r), Φ(r − lg lg(κ))) and

Dhs
eϵ (Φ(r − lg lg(κ)), Φ(r)) are both negligible in κ.

Proof. For brevity, for any r, denote Dr := DT,r(D2,i∗). Conditioned on IsAGoodBundle
outputting SUCCESS with input o⃗ut−i∗ , we have a and b such that for r ∈ [a + lg lg κ, b],

e−ϵ ≤
e−ϵ/3En′

kv,r

eϵ/3En′

kv,r−lg lg(κ)
≤ Dr

Dr−lg lg(κ)
≤

eϵ/3En′

kv,r

e−ϵ/3En′

kv,r−lg lg(κ)
≤ eϵ.

The first and last inequalities are from Corollary 1. The second and third inequalities
are from the condition that the process outputs SUCCESS. The hockey stick divergence
Dhs

eϵ (Φ(r), Φ(r − lg lg(κ))) is therefore at most∑
r ̸∈[a+lg lg κ,b]

Dr ≤ kv · negl(κ) = negl(κ).

Similarly, Dhs
eϵ (Φ(r − lg lg(κ)), Φ(r)) is also negl(κ).

Putting it all together. Let c be the final count produced by running protocol πNMH.
We consider the probabilities

Pr
H1,H2,D

[c | B+x∗ ] and Pr
H1,H2,D

[c | B].

We consider only runs of the protocol that yield c and for which there exists some
i∗ ∈ [u] such that the process IsAGoodBundle returns SUCCESS given o⃗ut−i∗ as input.
We just have argued that such an i∗ exists with all but negligible probability.

Further, we consider only runs of the protocol for which out+
bad − outbad ≤ s = lg lg(κ).

By Lemma 2, this also occurs with all but negligible probability, We will also leak
kv = |Avail(Kθ,i∗ , R \R′)|.

Conditioned on the above events, by the definition of the distribution Φ, the value
outi∗ contributes (kv − r) to the final count c with probability p = Φ(r). Recall that every
iteration j in Kθ,i∗ is good, which means min hj(A) = min hj(I), potentially contributing
to the output.

Therefore, assuming none of bad events occur (which happens with overwhelming
probability), by applying Lemma 11, the probability that the ratio of probabilities of a
certain output out for B+x∗ and B is not contained in [e−ϵ, eϵ] is negl(κ), and therefore
we conclude that the protocol satisfies the DDP security.
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F Proof of Lemma 7
When considering the probability of DT,r(D) and IR′,T,r over the choice of H2, the identity
of T doesn’t matter except for its size kb = |T |. Therefore, in this case, we will simply use
Dkb,r(D) and IR′,kb,r Moreover, when it is clear from the context, we will sometimes omit
kb and D and say ER′

r = E
n′

R
r and IR′,r = IR′,kb,r, and Dr = Dkb,r(D).

We first show the following lemma holds.

Lemma 12. Let D be a distribution over sets of size n′R with geometric collision property.
Fix H1 and consider kb, θ, a, b specified in Lemma 1 with the same requirements. Then, we
have the following:

Case 1: If r ̸∈ [a + s, b], we have PrH2 [Dkb,r(D) ≤ negl(κ)] ≥ 1− negl(κ).

Case 2: If r ∈ [a, b], then we have

Pr
H2

[
e−ϵ/3E

n′
R

kb,r ≤ Dkb,r(D) ≤ eϵ/3E
n′

R

kb,r

]
≥ 1− (eϵ/3 − 1)−2 · 16 lg3(κ)

√
nR

.

Then, Lemma 7 follows by taking a union bound over different cases of r ∈ [kb].

F.1 Proof of Lemma 12
We also define ρ(R′) := PrR′∼D̃[R′].
Proof for Case 1. We first consider Case (1). By applying the Case (1) of Corollary 1,
we have E

n′
R

r ∈ negl(κ). Given E
n′

R
r ∈ negl(κ), we show

Pr
H2

[Dr(D) ≤ negl(κ)] ≥ 1− negl(κ).

Recall that Dr(D) =
∑

R′ ρ(R′) · IR′,r. Assume toward the contradiction that the
negation of the statement holds. This means there are polynomials p and q, and a collection
Heavy of R′s such that

Pr
H2

 ∑
R′∈Heavy

ρ(R′) · IR′,r ≥ 1/p(κ)

 ≥ 1/q(κ).

The above implies that
∑

R′∈Heavy ρ(R′) ≥ 1/p(κ). Now, since D and H2 are in-
dependent, we have

∑
R′∈Heavy ρ(R′) PrH2 [IR′,r] ≥ 1

p(κ)q(κ) . However, considering that
PrH2 [IR′,r] = E

n′
R

r , which is negligible, the above is a contradiction.
Proof for Case 2. We will bound Dr =

∑
R′ ρ(R′) · IR′,r using Chebyshev inequality.

For this, we would like to bound the variance of Dr.
We start with showing the following lemma, which will allow us to ignore the tail when

we bound the variance. Below, the value z will correspond to the size of the intersection of
the two sets R′i and R′j .

Lemma 13. Fix H1. Consider a graph G←MinhashGH1(A, I, x∗, H2). Consider any
set T of iterations in G such that |T | = kb. Let Z be a set of left nodes in G such that
|Z| ≤ n′R. Let z = |Z|. Consider the probability (over the choice of H2) that Z has more
than z lg lg κ outgoing edges in G. This probability is negligible in κ.
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Proof. Let p = 1 − (η−θ)1/n′
R . We first show that p ≤ 1/n′R. Recall θ ≤ 1/10, which

implies e−1 ≤ 1/2 − θ = η−θ. Therefore, we have (1 − 1/n′R)n′
R ≤ e−1 ≤ η−θ, so

1− 1/n′R ≤ (η−θ)1/n′
R . Therefore, we have p = 1− (η−θ)1/n′

R ≤ 1/n′R.
Let Edges(Z, T ) be the set of edges from Z to T . Over the choice of H2, the probability

that each pair in Z × T forms an edge is at most p. Therefore, we can simply use a
Binomial distribution to bound the probability. In particular, with t = lg lg κ we have

Pr
H2

[
|Edges(Z, T )| ≥ zt

]
≤ Pr

[
B(zk̂, p) ≥ zt

]
≤
(

zk̂

zt

)
· pzt ≤

(
zk̂

zt

)
·
(

1
n′R

)zt

≤

(
ek̂

tn′R

)zt

Since n′R is much larger than kb, the above probability becomes negligible in κ.

Now we prove the following lemma towards bounding the variance of Dr.

Lemma 14. Fix H1. We set the parameters for kb, a and b as stated in Lemma 7. Let
R′i, R′j be sets of nodes on the left of size n′R such that with |R′i ∩R′j | = z. Let ζ = z lg lg κ.
Then for all a ≤ r ≤ b, we have

Pr
H2

[IR′
i
,r ∧ IR′

j
,r] = E

H2
[IR′

i
,r · IR′

j
,r] ≤

(
1 + ζ · (eζϵ/3 + 1)

η−θ
zkb/n′

R

)(
E

n′
R

r

)2

Proof. Fix R′i, R′j with |R′i ∩R′j | = z. Let Z = R′i ∩R′j and X = R′i − Z. Then, we have

Pr
H2

[IR′
i
,r ∧ IR′

j
,r] =

r∑
m=0

Pr[IX,m ∧ IZ,r−m ∧ IR′
j
,r]

≤
r−ζ∑
m=0

Pr[IZ,r−m] +
r∑

m=r−ζ+1
Pr[IX,m ∧ IR′

j
,r]

=
r∑

m=ζ

Pr[IZ,m] +
r∑

m=r−ζ+1
Pr[IX,m] · Pr[IR′

j
,r]

≤ negl(κ) +
r∑

m=r−ζ+1
Pr[IX,m] · Pr[IR′

j
,r]

= negl(κ) + E
n′

R
r ·

r∑
m=r−ζ+1

Pr[IX,m].

The second inequality holds due to Lemma 13.
It is left to bound Pr[IX,m] for m ∈ (r − ζ, r]. We observe that PrH2 [IX,m] =

Pr[IR′
i
,m| IZ,0]. In other words, the event that X contributes to noise pattern m is

equivalent to the event that R′i contributes to m conditioned on the intersection having no
contribution. Therefore, we have

Pr
H2

[IX,m] =
Pr[IR′

i
,m ∧ IZ,0]

Pr[IZ,0] ≤
Pr[IR′

i
,m]

η−θ
zkb/n′

R

= E
n′

R
m

η−θ
zkb/n′

R

.

We now bound E
n′

R
m for m ∈ (r − ζ, r]. Let m∗ := arg maxm{E

n′
R

m : m ∈ (r − ζ, r]}.
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Using Corollary 1 we have E
n′

R
m∗ ≤ (eϵ/3)ζ · En′

R
r + negl(κ). Therefore, we have

Pr
H2

[IR′
i
,r ∧ IR′

j
,r] ≤ negl(κ) + E

n′
R

r ·
r∑

m=r−ζ+1
Pr[IX,m] ≤ negl(κ) + ζ · En′

R
r · Pr[IX,m∗ ]

= negl(κ) + ζ · En′
R

r · E
n′

R
m∗

η−θ
zkb/n′

R

= negl(κ) + ζ · En′
R

r · eζϵ/3E
n′

R
r + negl(κ)

η−θ
zkb/n′

R

≤
(

1 + ζ · (eζϵ/3 + 1)
η−θ

zkb/n′
R

)(
E

n′
R

r

)2

We set the parameters for H1, kb, a and b as stated in Lemma 7. Let D be a distribution
with the geometric collision property. Then, we show that for every a ≤ r ≤ b, we have

VarH2 [Dr] ≤ 16 lg3(κ)
√

nR

(
E

n′
R

kb,r

)2
.

Consider any r ∈ [a, b]. Recall that Dr :=
∑

R′∈Supp(D̃) ρ(R′) · IR′,r.

VarH2 [Dr] =
∑

R′
i
,R′

j

ρ(R′i) · ρ(R′j) · (E[IR′
i
,r · IR′

j
,r]− E[IR′

i
,r] · E[IR′

j
,r])

≤
∑

R′
i
,R′

j
:|R′

i
∩R′

j
|≥1

ρ(R′i) · ρ(R′j) · E[IR′
i
,r · IR′

j
,r]

=
n′

R∑
z=1

Pr
R′

i
,R′

j
∼D

[|R′i ∩R′j | = z] · E[IR′
i
,r · IR′

j
,r]

≤
n′

R∑
z=1

(
1
√

nR

)z

·
(

1 + ζ · (eζϵ/3 + 1)
η−θ

zk/n′
R

)
·
(

E
n′

R
r

)2

≤
n′

R∑
z=1

(
1
√

nR

)z

·
(

ζ · eζ + 2
(2/5)ζ/3

)
·
(

E
n′

R
r

)2

≤
n′

R∑
z=1

(
1
√

nR

)z

·
(
8ζ+1) · (E

n′
R

r

)2

The first inequality holds because if R′i are R′j are disjoint, then IR′
i
,r and IR′

j
,r are

independent over the choice of H2, and the relevant terms are canceled out. The second
inequality is due to the geometric collision property of D and Lemma 14. The third
inequality holds with ϵ ≤ 3 since θ < 1/10 and kb is much smaller than n′R. Therefore, we
have VarH2 [Dr] ≤ 8 ·

(
E

n′
R

r

)2
·
∑n′

R
z=1

(
lg3 κ√

nR

)z

≤ 16 lg3 κ√
nR

(
E

n′
R

r

)2
.

Finally, by Chebyshev, we have that for all a ≤ r ≤ b,

Pr
H2

[
Dr /∈ [e−ϵ/3(En′

R

kb,r), eϵ/3(En′
R

kb,r)]
]
≤ Pr

[
|Dr − E

n′
R

kb,r| ≥ (1− e−ϵ/3) · En′
R

kb,r

]
≤ Var[Dr]

(1− e−ϵ/3)2 · (En′
R

kb,r)2
≤ 16 lg3(κ)

(1− e−ϵ/3)2√nR
.

G Strong Chain Rule
Strong chain rule for a special case: achieving flatness through clustering. For-
tunately, a stronger version of the chain rule is known to hold for a special leakage pattern,



S. Choi, D. Dachman-Soled, M. Liang, L. Liu and A. Yerukhimovich 37

i.e., when elements are conditioned in order [Skó19]; very roughly speaking, for every i, the
min-entropy of Ri|(R1, . . . , Ri−1) is essentially the same as the min-entropy of (R1, . . . , Ri)
minus the min-entropy of (R1, . . . , Ri−1) at the sacrifice of an additional small leakage,
which is called a spoiling leakage.

They achieve this by grouping possible sequences with a similar distributional char-
acteristic into the same cluster. Then, in every cluster, the distribution of sequences
conditioned on that cluster will be essentially flat. Now, the spoiling leakage corresponds
to the cluster identifier. By making every cluster contain sufficiently many sequences
(leading to sufficient min-entropy due to flatness), the total number of clusters can be
small (leading to a short spoiling leakage).
Notes on notations. For brevity, in this section, we omit the subscript from nR, i.e.,
we denote n = nR. For any sequence of random variables R = R1, . . . , Rn (for the secret
input R), we denote R<i = R1, . . . , Ri−1 and R≤i = R1, . . . , Ri. Likewise, we extend such
subscript notations and use R>i and R≥i. We use lower case r = r1, . . . , rn to denote the
actual set/sequence.
Strong chain rule for our setting. We first adapt the result in [Skó19] into our
setting. Then, we argue that a sufficient number of elements still have high min-entropy,
even conditioned on the previous elements. Finally, we show that these high min-entropy
(conditioned) elements provide the geometric collision property.

Theorem 6 (Block structures with few bits spoiled in our setting). We consider a min-
hash graph G = (X ,Y, E) constructed from MinhashGH1(A, I, x∗, H2), while focusing on
a single bundle Kθ,∗ of iterations.

Let U = U1 × · · · × Un be a fixed universe and R = (R1, . . . , Rn) be a sequence of
(possibly correlated) random variables where each Ri is over Ui (and all are disjoint) and
|Ui| = ℓ for all i. Then, for any ϵ ∈ (0, 1) and any δ > 0, there exists a spoiling leakage
function fG(R) that satisfies the following properties.

1. It holds that PrR[f(R) = ⊥] ≤ ϵn.

2. Let Im(f) be the set of images of f . Every y ∈ Im(f) \ {⊥} specifies two disjoint
sets V and W such that V ∪W = [n].

3. Conditioned on any y ∈ Im(f) \ {⊥}, for every i ∈ V , every element in distribution
Ri | R<i has low probability weight, i.e.,

∀y ∈ Im(f) \ {⊥}, ∀r s.t. f(r) = y, ∀i ∈ V : Pr
[

Ri = ri

∣∣∣∣∣ R<i = r<i, y

]
≤ 2δ

n1.5 .

4. Conditioned on any y ∈ Im(f) \ {⊥}, for every i ∈ W , it holds that Ri | R<i has
small support size, i.e.,

∀y ∈ Im(f) \ {⊥}, ∀r s.t. f(r) = y, ∀i ∈W :
|{ri : Pr[Ri = ri|R<i = r<i, y]] ≥ 0}| ≤ 2δ · n1.5.

5. |Im(f)| ≤ n · (2e)n/2 · (n+kb)!
n! · (2(lg(ℓ) + lg(1/ϵ))/δ)n.

6. AvailG(Kθ,∗, RW ) can be computed from f(R), where RW := {Ri : i ∈W}.

G.1 Proof of Theorem 6
By following the general idea of [Skó19], we will build clusters, and the spoiling leakage
will be the cluster identifier. However, we will slightly change the way we build clusters.
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Condition 1. Throughout our proof, we let Pr[ri] denote Pr[Ri = ri] for brevity,
whenever the referred random variable is clear. Before forming the clusters, we will first
like to exclude all sequences r ∈ U = U1 × · · · × Un having a very small probability
PrR[Ri = ri | R<i = r<i] < ϵ/ℓ for any i ∈ [n] and only consider the remaining U ′ ⊂ U .
Specifically, we let f(r) =⊥ for all r /∈ U ′. As we will see later, this probability lower
bound is vital to upper bound |Im(f)|.

Claim. Let U ′ be the set containing all the sequences r such that PrR[Ri = ri | R<i =
r<i] ≥ ϵ/ℓ for all i ∈ [n] . Then, we have Pr[r ∈ U ′] ≥ 1− ϵn.

Proof. For each i ∈ [n], and any r<i ∈ U1 × · · · × Ui−1, we have∑
u∈Ui:PrR[Ri=u|R<i=r<i]<ϵ/ℓ

Pr
R

[Ri = u | R<i = r<i] <
∑

u∈Ui

ϵ/ℓ = ϵ.

Therefore, using a union bound across all i ∈ [n], we have Pr[r ̸∈ U ′] ≤ ϵ · n.

Building clusters. For each r ∈ U ′, we describe how to compute f(r) = (f1(r), f2(r),
. . . , fn(r)), which will serve as the cluster identifier. Let r(a) denote a rounding function
that rounds a to the closest multiple of δ/2. We say a ≈r a′ if r(a) = r(a′).

For each r, do the following:

1. Let f>n(r) = ⊥ for any r, and initialize W = ∅.

2. For i = n, . . . , 1, do the following:

(a) Let sp1
i (r) denote the surprise of the ith element of r. More formally,

sp1
i (r) = − lg Pr

R
[Ri = ri | R<i = r<i, f>i(R) = f>i(r)].

This surprise measure represents how rare and surprising the event ri is, condi-
tioned on r<i, f>i(r). In a sense, we will group sequences with similar surprises
into a cluster.

(b) Let sp2
i (r) denote the surprise of the sequences with a similar surprise level in

aggregate.

sp2
i (r) = − lg Pr

R
[sp1

i (R) ≈r sp1
i (r) | R<i = r<i, f>i(R) = f>i(r)].

Note sp1
i (r) ≥ sp2

i (r), since at least sequence r has sp1
i (r) and possibly more

points may approximately share the surprise. Note also that sp2
i (r) is a deter-

ministic function of sp1
i (r), r<i, f>i(r).

(c) If r(sp1
i (r))− r(sp2

i (r)) ≥ 1.5 lg(n) then let fi(r) = (r(sp1
i (r)), true).

(d) Otherwise, let fi(r) = (r(sp1
i (r)), false, Hi) and add i to W . Here, Hi is defined

as N({ri}) \ N(rW ), where N refers to the neighbors (restricted to Kθ,∗) of
the input set of nodes in G. In other words, Hi contains the iterations newly
covered by element ri; any iterations previously covered by rW are ruled out in
Hi. In this way, we can reduce the length of the cluster identifier.

3. Set f(r) = f1(r), . . . , fn(r). Set V = [n] \W .

Conditions 2 and 3. Condition 2 follows from how V is computed in step 3. We now
show that condition 3 holds. In particular, ∀y ∈ Im(f(·)) \ {⊥}, ∀r s.t. f(r) = y, ∀i ∈ V
we have

Pr[ri | r<i, y] = Pr[ri | r<i, y≥i] = Pr[ri ∧ r<i ∧ y≥i]
Pr[r<i ∧ y≥i]

= Pr[ri ∧ r<i ∧ y>i]
Pr[r<i ∧ y>i] Pr[yi | r<i ∧ y>i]
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The first equality is due to y<i being a deterministic function of r<i, y≥i. Similarly,
the nominator of the final fraction is due to yi being a deterministic function of r≤i,
y>i. Moreover, yi,2 (i.e., true) can be deterministically computed from yi,1(i.e., r(sp1

i (r))),
r<i, y>i. Therefore, the above is equal to

Pr[ri ∧ r<i ∧ y>i]
Pr[yi,1 | r<i ∧ y>i] Pr[r<i ∧ y>i]

= Pr[ri | r<i ∧ y>i]
Pr[y1,i | r<i ∧ y>i]

= 2−sp1
i (r)

2−sp2
i
(r) ≤

2δ

n1.5 . (3)

The last inequality holds since i ∈ V , r(sp1
i (r))− r(sp2

i (r)) ≥ 1.5 lg(n).
Condition 4. For r, y, i as quantified in the theorem statement, we have

|{ri : Pr[Ri = ri|R<i = r<i, y]] ≥ 0}|
= |{ri : Pr[Ri = ri ∧R<i = r<i ∧ y]] ≥ 0}|
= |{ri : Pr[Ri = ri ∧R<i = r<i ∧ yi,1, yi,2, y>i]] ≥ 0}|
≤ |{ri : Pr[Ri = ri|R<i = r<i, yi,1, yi,2, y>i]] ≥ 0}|

By a similar argument as above, for all ri s.t. Pr[Ri = ri|R<i = r<i, yi,1, yi,2, y>i]] ≥ 0, it
holds

Pr[Ri = ri|R<i = r<i, yi,1, yi,2, y>i] = Pr[ri | r<i ∧ y>i]
Pr[yi,1 | r<i ∧ y>i]

= 2−sp1
i (r)

2−sp2
1(r) ≥

2−δ

n1.5

where the inequality holds since i ∈ W , we know that r(sp1
i (r)) − r(sp2

i (r)) ≤ 1.5 lg(n).
This means that |{ri : Pr[Ri = ri|R<i = r<i, y≥i]] ≥ 0}| ≤ 2δ · n1.5.

Condition 5. To bound |Im(f)|, we first upper bound yi,1. Recall that PrR[Ri = ri |
R<i = r<i] ≥ ϵ/ℓ for all i ∈ [n] and r ∈ U ′. Therefore, PrR[Ri = ri | R<i = r<i, y] ≥ ϵ/ℓ
for all i ∈ [n], and ∀r such that f(r) = y.

Therefore, for all r ∈ U ′, i ∈ [n], we have sp1
i (r) ≤ lg(ℓ) + lg(1/ϵ), which implies that

yi,1 has at most 2(lg(ℓ)) + lg(1/ϵ))/δ different possibilities.
To upper bound the number of possibilities of the remaining parts, it suffices to upper

bound the number of choices for set W of size m, as well as the number of possibilities
for Hi’s in each slot i ∈ W . Clearly, the former is

(
n
m

)
. For the latter part, note that

each iteration appears at most once over all m slots. Therefore, the problem becomes how
we can assign kb different iterations into m + 1 positions (with some positions possibly
containing none) while assigning them to the m + 1th position when they never appear
in any slot of W . This is a well-known problem of stars and bars with m + 1 variables
and sum kb, which has

(
m+kb

m

)
possibilities. Since we have kb! different orderings for kb

iterations, the upper bound is
(

m+kb

m

)
· (kb!). We have:

|Im(f)| ≤ (2(lg(ℓ) + lg(1/ϵ))/δ)n

(
n∑

m=0

(
n

m

)(
m + kb

m

)
· kb!

)

= (2(lg(ℓ) + lg(1/ϵ))/δ)n

(
n∑

m=0

(
n

m

)
(m + kb)!

m!

)

≤ n ·
(

n

n/2

)
· (n + kb)!

n! · (2(lg(ℓ) + lg(1/ϵ))/δ)n

≤ n · (2e)n/2 · (n + kb)!
n! · (2(lg(ℓ) + lg(1/ϵ))/δ)n

.

Condition 6. Finally, condition 6 follows from the definition of the clustering procedure.
In particular, HW =

⋃
i∈W Hi contains all the iterations that rW covers. The available set

can be computed by Kθ,∗ \HW . This concludes our proof.
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G.2 Generalization
It can be seen that in the above proof, the only properties that we used of the additional
leakage Hi is that for i ∈W , Hi depends only on Ri, y>i and that the number of choices
for the output of the sequence of leakages [Hi]i∈W is bounded by some B. Theorem 5
stated in Section 8.5 is restatement of Theorem 6 with respect to any such leakage function.
Note that the leakage functions ℓi specified above can model leakage with respect to a
random oracle h, by letting ρi = h(Ri).

H Proof of Lemma 10
For brevity, we denote D = D2,i and Dleak = D1,i in the experiment IsAGoodBundle. We
show that D has the geometric collision property. In other words, we would like to show
that when R is chosen uniformly at random from universe U then the distribution of these
nR = nB − nI elements has the geometric collision property even with the leakage.

Towards this goal, by applying Theorem 6 to this distribution, we show that even with
the leakage, there are at least nR/3 elements that preserves enough min-entropy. We next
show how these elements with sufficient min-entropy give the geometric collision property.
Remark 1 (Getting rid of tiny parts). Similar to [Skó19, Remark 2], we can further require
that each cluster should have a probability that is “not too small”. Therefore, we define a
new leakage function f ′ by substituting the ϵ in the above theorem with ϵ/2, and additionally
letting f ′(r) =⊥ for all r such that y ∈ f(r) and PrR[f(R) = y] < ϵn/(2|Im(f)|) (their
total probability is at most ϵn/2), we obtain the following: f ′ satisfies all conditions in
Theorem 6. Additionally, ∀y ∈ Im(f ′), we have PrR[f ′(R) = y] ≥ ϵn/(2|Im(f)|).

Fraction of blocks with high entropy. Using Theorem 6, with setting ℓ ≥ 4n3 and
assuming sufficient min-entropy of R, we first show that one can ensure more than 1/3
fraction of the blocks having min-entropy at least 1.5 lg(n), upon leaking the outcome of
f ′ and all previous blocks.

First notice that with all but ϵn probability, f ′(R) ̸=⊥. Therefore, it suffices to let
ϵ = 2−κ. Then, by setting δ = 1, we have

lg(|Im(f)|) ≤ n · (2e)n/2 · (n + kb)kb · (2(lg(ℓ) + lg(1/ϵ))/δ)n

=
(

lg(n) + n/2 · lg(2e)
)

+ kb · lg(n + kb) + n · (1 + lg(lg(ℓ) + κ))

< 3n/2 + 2kb lg n + n(2 + lg κ) < 0.5n lg n

for sufficiently large n with kb = Ω(κ) and n/k2
b = Ω(κ).

Combining the above with Remark 1, we have PrDleak [f ′(R) = y] ≥ ϵn/(2 · 20.5n lg(n))
and for every y ∈ Im(f ′) \ {⊥}. Moreover, for every r such that f ′(r) = y, we have

Pr
D

[r] = Pr
Dleak

[r | y] = PrDleak [r ∧ y]
PrDleak [y] ≤ 2−( 8n

9 lg ℓ+n)

(ϵn/2) · 2−0.5n lg n
= 2−( 8

9 log ℓ−0.5 lg n+1)·n · (2/ϵn),

(4)

which suggests D has min-entropy at least ( 8
9 log ℓ− 0.5 lg n + 1) · n− lg(2/ϵn). We show

that the following holds: The min-entropy of at least n′ = n/3 blocks, conditioned on the
outcome of all prior blocks as well as y, is at least lg(n1.5).

Towards a contradiction, assume otherwise. Let V be the set of blocks with min-entropy
at least lg(n1.5) and let W be the set of blocks with min-entropy less than lg(n1.5) (as
defined in Theorem 6). We will show that if |V | ≤ n/3 there exists a point r in the support
of D such that PrD[r] > 2−( 8

9 log ℓ−0.5 lg n+1)·n · (2/ϵn), contradicting the min-entropy of D.
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First, find any value r∗V such that PrD[RV = r∗V ] ≥ 1
ℓ|V | . Note that r∗V must exist since

the support size of RV is at most ℓ|V |. Let SuppW (r∗V ) = {r : rV = r∗V ∧ PrD[R = r] > 0}.
Then, we have PrD[R ∈ SuppW (r∗V )] = Pr[RV = r∗V ] ≥ 1

ℓ|V | .

Second, we show that |SuppW (r∗V )| ≤ (2 · n1.5)|W |. Consider any r ∈ SuppW (r∗V ).
Applying the fourth condition of Theorem 6 with δ = 1, condition on any y ∈ Im(f ′)\{⊥},
for any i ∈ W and any fixing of R<i = r<i, the number of elements in the support of
Ri | r<i is at most 2 · n1.5, which implies that |SuppW (r∗V )| must be at most (2 · n1.5)|W |,
since the positions for V are fixed to r∗V .

Based on the above two arguments, by the averaging argument, there must be some
r∗ ∈ SuppW (r∗V ) for which PrD[R = r∗] ≥ 1

(ℓ)|V | · 1
(2·n1.5)|W | . Therefore, we have

− lg Pr
D

[r∗] = |V | lg(ℓ) + |W | lg(2n1.5) = |V | lg ℓ + |W |+ 1.5(n− |V |) lg n

≤ n + |V | lg(ℓ/n) + 1.5n lg n ≤ n + n/3 lg(ℓ/n) + 1.5n lg n

= n + n/3 lg(ℓ)− 1/3n lg n + 1.5n lg n,

where the second to last line follows assuming |V | < n/3.
To reach contradiction to (4), we require that

n + n/3 lg(ℓ)− 1/3n lg n + 1.5n lg n ≤
(

8
9 lg ℓ− 0.5 lg n + 1

)
· n− lg(2/ϵn).

The above is implied by 5/3n lg n ≤ 5/9n lg ℓ− lg(2/ϵn).
When ℓ ≥ 4n3 the above is implied by 5/3n lg n ≤ 5/3n lg n + 10/3n− lg(2/ϵn), which

is true for n ≥ lg(1/ϵ) = κ. Thus we reach contradiction to (4). We therefore conclude
that |V | ≥ n/3.
Geometric collision property. Note that we can equivalently view R′ in the support
of D as a set of size n′, or as a stream of elements of length n′, where the element in the
i-th block (for i ∈ [n′]) comes from universe Ui, and {U1, . . . , Un′} are mutually disjoint.
Taking the second view, given R′, S′ in the support of D, we have that |R′ ∩ S′| = z if and
only if there exists some set Z ⊆ [n′] of size z such that (1) the ordered set of elements in
the blocks of R′ indexed by Z (denoted R′Z) is equal to the ordered set of elements in the
blocks of S′ indexed by Z (denoted S′Z) and (2) the set of elements in the blocks of R′

indexed by [n′] \ Z (denoted R′
Z

) and the set of elements in the blocks of S′ indexed by
[n′] \ Z (denoted S′

Z
) are disjoint.

We are now ready to analyze the probability that |R′ ∩ S′| = z for R′, S′ drawn from
D, and for z ∈ [n′]:

Pr
R′,S′←D

[|R′ ∩ S′| = z] =
∑

Z⊆[n′],|Z|=z

Pr
R′,S′←D

[
(R′Z = S′Z) ∧

(
R′

Z
∩ S′

Z
) = ∅

)]
≤

∑
Z⊆[n′],|Z|=z

Pr
R′,S′←D

[R′Z = S′Z ] ≤
∑

Z⊆[n′],|Z|=z

(
1

n1.5

)z

The second inequality holds since each element in the stream has min-entropy at least
lg(n1.5). Therefore, we have PrR′,S′←D[|R′ ∩ S′| = z] ≤

(
n/3

z

)
·
( 1

n1.5

)z ≤
( 1

n0.5

)z
.
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