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Abstract— A coverage-based collaborative control strategy is
developed in this paper for a multi-robot system with hetero-
geneous effective sensing ranges and safe operation zones to
simultaneously estimate the states of and follow multiple targets
governed by stochastic dynamics. Multiplicatively weighted
Voronoi diagrams are exploited to define each robot’s dominant
region considering its limited sensing radius. The asymptotically
stable system dynamics enabling the heterogeneous multi-robot
system to (locally) optimally cover the time-varying probability
density distributions that characterize the uncertainties of
the targets’ positions is derived, and minimally perturbed by
control barrier functions designed to ensure that each robot
moves within its safe operation zone in a collision-free manner.
Specific target dynamics and measurement models are chosen
in the experiment, whose results demonstrate the effectiveness
of the proposed dynamic multi-target tracking approach.

I. INTRODUCTION

Autonomous target tracking and following has a wide
range of applications in both collaborative and adversar-
ial scenarios, such as environmental monitoring, wildlife
tracking, search and rescue, pursuit-evasion, and adversarial
agent tracking and following [1]-[3]. The primary objective
of target tracking is to estimate the states, e.g., positions,
velocities, and accelerations, of targets of interest, as re-
viewed in [4]. For example, deploying a multi-robot team
to track space-time dependent physical phenomena that may
be harmful to human beings, such as pollution sources [5],
radioactive wastes [6], and tornadoes [7].

Heterogeneous multi-robot systems are desired to collab-
oratively, efficiently, and robustly accomplish missions such
as target tracking in complex and dynamic environments
since it is burdensome for a single autonomous robot or
a team of homogeneous robots to adapt to every potential
circumstance, as discussed in [8]. Additionally, when the
domain where targets of interest are moving is relatively
large, it is more efficient to deploy mobile robots equipped
with sensors that can dynamically track and follow the
targets’ motions rather than static robots because the larger
the domain is, the more static robots need to be deployed in
order to achieve certain task requirements, e.g., [9].

In [9], an optimal trajectory planning method is proposed
for target tracking tasks using multiple sensors with a mixture
of different measurement models, but the method can be
only used to track a single moving target. A Voronoi-based
joint optimization approach is introduced in [10] for a team
of homogeneous sensors to cover the environment while
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Fig. 1. Tllustrating a multi-robot multi-target tracking scenario at a time
moment: Two ground robots (left), whose safe operation zones are the
domain excluding the hill, are dynamically tracking Target 2 while taking
measurements of it, and three aerial robots (middle and right), whose safe
operation zones are the entire domain of interest, are dynamically tracking
Target 1 and Target 2 while taking measurements of them. The dashed lines
with arrows represent the past and possible future trajectories of the targets
with corresponding colors, and the dashed green lines reveal which robots
can take measurements of which targets.

estimating the states of multiple targets, but the probability
density distributions characterizing the uncertainties of the
targets’ states are not considered in the process of sensors’
coverage in that work. In addition, in [11], the problem of
simultaneous coverage and multi-target tracking is solved
based on mixed-integer programming with quadratic con-
straint, but the strategy is only suitable for the case of a
single robot (tracker), although the robot is equipped with
two types of sensors.

The main novelty of this paper is to propose a coverage-
based heterogeneous multi-robot collaborative control strat-
egy for simultaneous multi-target tracking and following,
where the heterogeneities consist of: 1) The robots have
heterogeneous perception characteristics, reflected by their
different sensing radii; 2) When a target is located within
any robots’ effective sensing ranges and have the same
distances to these robots, the measurement noises of the
target taken by different robots are nonidentical; 3) The
robots have heterogeneous mobility characteristics, reflected
by their various safe operation zones, for example, when
a multi-robot team consisting of aerial robots and ground
robots is collaboratively tracking dynamic targets moving in
a domain composed of flat lands and terrains with hills or
bumps, aerial robots can fly over those terrains while ground
robots are constrained in the flat lands, as illustrated in Fig. 1.

The motivation of the consideration of these heterogeneous
modalities presented above is that heterogeneous robots
can collaborate with each other on tasks that can not be
accomplished by a single robot or a team of homogeneous
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robots effectively, efficiently, or robustly. For instance, a)
For tasks carried out by aerial robots and underwater robots
in collaboration, although underwater robots are constrained
in the water, they can take more accurate measurements un-
derwater using sophisticated sonar sensors than aerial robots
that have larger operation zones; b) The sensors installed
on certain robots may have disadvantages of less sensing
ranges but advantages of lower sensor noise intensities when
taking measurements than other sensors; ¢) The robots with
relatively smaller sensing ranges and higher noisy intensities
may have lower power consumption and thus have longer
operation duration compared to other robots.

This paper’s remaining part is structured as follows: In
Section II, the stochastic system dynamics of targets and
measurement models of robots are briefly introduced. The
control barrier certificates are presented in Section III to be
employed to ensure that each robot in a multi-robot system
moves only in its safe operation zone and does not collide
with any other robots. In Section IV, the heterogeneous
region of dominance of each robot according to its limited
sensing range is defined and the resulting heterogeneous
dynamics of the multi-robot system is derived for multi-
target tracking tasks. Experimental results and conclusions
are presented in Section V and Section VI, respectively.

II. STOCHASTIC MODELS OF TARGETS

Consider a team of Ny mobile robots to be deployed in
a convex domain of interest D C R? to track N, targets
while taking measurements of them. Each robot is equipped
with a sensory system with a particular sensing radius, and
its position is assumed to be known by its neighboring (in
the sense of Delaunay neighbors which will be discussed
in detail in Section IV) robots. Denote the set of targets’
indices as V; = {1,2,..., N;}, the set of robots’ indices as
Ns ={1,2,..., Ny}, where Ny, N, € Z™, the position of
Target n, where n € Ny, at time ¢ as p;,,(t) € D, and the
position of Robot 4, where i € N, at time ¢ as p, ;(t) €
D. Let p,(t) = [p71(1), 97 (1), .. DLy, (0] € RN be
the vector consisting of the N, robots’ positions at time ¢,
rs = [rs1,7s2,---,7s.n.]7 € RYs be the vector of their
corresponding sensing radii, where r; € Ry, Vi € N.

Denote the discrete-time dynamics of Target n as

wt,n(k + 1) = ft,n(wt,n(k)a ut,n(k); ét,n(k))a (1)

for all n € N, in which @, (k) = [p,,(k),pl, (k)" is
the state of Target n at time step ¢ = k7" consisting of the
position part p; ,,(¢) and the velocity part p; ,,(t), where k €
Z* and T is a constant sampling interval, u (k) denotes
the control input at time step ¢ = k7', the vector-valued
function f;, represents Target n’s dynamics, and &, (k)
stands for the process noise at time step ¢ = k7T encoding
the stochasticity of Target n’s dynamics.

the measurements of Target n taken by certain robots, where
the discrete-time measurement model is defined as

Zn,i(k) = hn,i(ajt,n(k)v Cn,t(k))v )
for all n € M, i € N, such that
[Pt (k) = ps,i ()|l < 750 3)

where ¢, ;(k) stands for the measurement noise at time step
t = kT encoding the stochasticity of the measurements of
Target n taken by Robot ¢, and r,; € Ry is the effective
sensing radius of Robot 1.

Based on specific dynamics and measurement models,
and task requirements, one can employ any feasible state
estimation techniques, e.g., [12], to obtain f;m (q,t).

III. SAFETY OF MULTI-ROBOT SYSTEMS

The safety of collaborative multi-robot systems working
in the domain of interest D considered in this paper is two-
fold: A) Each robot has a safe operation zone; B) Each robot
should not collide with any other robots.

Assume the dynamics of Robot ¢ is in control-affine form

ps,i = fs,i(ps,i) + gs,i(ps,i)us,ia Vi € -/V;w 4

with the vector fields fs;(-) : D — R? and g;(-)
D — R?*™ both locally Lipschitz continuous, where u; ; €
Us,; C R™ is an admissible control input for Robot ¢. Denote

Ds,ij = [piiapf,j]T and wus;; = [u?w“?g]T € Usij C
R2™, Vi # 4, 1,7 € N, then
Ds,ij = Fo.ij(Ds,ij) + Gs,ij(Ps,ij) Ws,ij @)

where f5 () : DxD — R* and g5 ;;(-) : DxD — RIx2m
are locally Lipschitz continuous vector fields.
Define the safe operation zone for Robot ¢ as

As,i(ps,i) = {ps,i €D ’ hﬁi(ps,i) Z O} ) (6)

where hfl() : D — R is continuously differentiable.
Define the collision-free set for the multi-robot team as

Bsij(Ps,ij) = {Ps,ij € D x D| Al ;(psij) =0}, (D)

where the continuously differentiable function hfij(-) :Dx
D — R is specified as

hE i (Psij) = IPsi — PsilI* — D345 3

where D ;; is the safe distance between Robots ¢ and j.

The functions hf’i(p&i) and hgij(ps,zj) are said to be
control barrier functions, e.g., [13], if there exists extended
class Ko functions o) : R — R and 8(-) : R — R such
that for the systems (4) and (5),

Denote the space-time dependent functions f,, . (g,t) : sup %Ai (Ps.isusi) >0, 9)
D x R>op — Rso and f (g,t) : D x Ry — Ry as us,i€ Us,i
the prior and posterior probability density functions of the .4
position part p; ,,(t) of the state of Target n respectively. The sup CE (Do we ) >0 10
posterior probability f, is obtained by fusing f,, =~ with us,ije%s,ij 541 (Pssigs Wsiis) 2 0, (10)
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respectively, where

%;?i(p&i’us,i) ‘Cfe7 31(ps l) +£g” sz(ps,i)usﬁi

+a(hs,i(ps,i))7 (11)

and

Gl (Pssijr Wsis) = L. hE 5 (Dsig)
+Lg, , BT (Psij)s i + BhD 5 (psij)), (12)

in which £ stands for the Lie derivative. The corresponding
safe control sets are

Usi(Ps,i) = {ttsi € Usi | €L (psinusi) >0}, (13)

and

us,ij (ps,zj {us' ij S Ue zy| 8,i] p‘z,z’ja us,ij) Z 0} ) (14)

respectively.

However, the nominal control inputs u; and u,;; may
not belong to Us ;(ps,) defined in (13) and U ;;(ps,ij)
defined in (14) respectively, in which situation the actual
control input % ;, Vi € N, can be obtained in a minimally

perturbed manner while ensuring safety by, e.g., [13],
mln ||u8 - us”
s €U,
st €A (Psintsi) 20, VieN, (15)
(gs,ij(ps,ijaﬁfs,ij) >0, Vi#£j, 1,5 €N,

where 4, = [a£1»ﬁ£2a~'vﬁ£N§]T € Us C R™Vs,
— T T T T N, ho

Us = [Ug 1, U9, U v, |7 € Us CR™, and ;5 =

2T ol 2m

[us,z? S,J ] € US i C R

Note that in [14], the concept of mobility-based operating
regions is formulated similarly as (6) and (9), whereas the
difference between it and the concept of safe operation zones
formulated in this paper is that the safe operation zones we
defined in this paper are assumed to not affect the dominant
region partitioning among robots, which will be discussed in
detail in Section IV, because the tasks of robots in this paper
is to take measurements of targets through remote sensors,
rather than to physically visit locations for event services.

IV. HETEROGENEOUS MULTI-ROBOT SYSTEM
DYNAMICS FOR MULTI-TARGET TRACKING

In this section, we investigate the nominal system dynam-
ics (which needs to be perturbed in a minimally invasive
manner to ensure the safety of the robots using the method
proposed in Section III) of a multi-robot team for the
task of multi-target tracking based on the assumption of
heterogeneous sensing radii of robots.

Suppose the larger effective sensing radius a robot has, the
larger region of dominance the robot should have. Therefore,
analogous to [15], we assign the robots with multiplicatively
weighted Voronoi cells (consisting of Apollonian circles)
as their regions of dominance, and the weighting factors
are assumed to have positive linear correlations with their

Fig. 2. Each robot has a region of dominance, i.e., a multiplicatively
weighted Voronoi cell, with a set of black curves as its boundary, and an
effective sensing circular region represented by a green circle. Target 1 is
within no robot’s effective sensing range, while Target 2 is within three
robots’ effective sensing ranges.

sensing radii 7, ;, Vi € N. Specifically, the dominant region
of Robot ¢ at time ¢ is defined as
s,J t) — .
ool )}
)

St = {acp| 240l .
fpe(rs,i) fpe(rs

(16)
where j # i, i,j € Ny, and fpe(:) : Rsg — Ryg is a
positive linear correlation mapping, i.e., fpc(2) = kpe - 2,
where z,k,. € Rs. According to [15], it can be shown
that if Target n,Vn € A; in the dominant region of Robot i
at time ¢ is not located within the sensing radius of Robot
1, then Target n is not located within the sensing radius of
Robot j, Vj # i,1,j € N, as illustrated in Fig. 2.

Since the true positions of the targets are unknown to the
robots, we want the robots to optimally cover the probability
density distributions characterizing the uncertainties of the
targets’ positions to increase the robots’ chances of detecting
the targets considering their heterogeneous effective sensing
radii, resulting in more robots in the area (with a given
Lebesgue measure) in which the targets are more likely to
show up, where the optimality is in terms of the cost function
that will be defined below. Assuming the coverage quality
of a point g € D by Robot ¢ at the position p, ;(t) degrades
with the weighted distance ||ps;(t) — q||/ fpc(7s,:) between
Ps.i(t) and g, the cost function encoding the lack of coverage
quality over D can be defined as

2
p q
C(ps,t) = j/ Ips(t) = gl E || ji: ma (@) dg.
€N, (Ps)

(17)
Similar to [16], [17], we rewrite (17) as a summation of
three terms C(ps,t) = C1(ps,t) + Ca(ps,t) + C3(ps,t),

where
2
D. q
”9’()” > 4 (a,t)dqg,
neN;

Ci(ps,t :/
1 ) Si(ps) fpc(r

2
Ds, —q

h/a ” 337 “ > f (q.t)dqg,
S;(ps) pc TSJ)

neN;

Co(ps,t) =
JENS,

and

”pSJ QH
(ps) fpc (7s,5)

>t (at) dg,

TLENf,

5(part) = Y /Q

J¢Ns;
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where Ns, and Ns; stand for the set of indices of Delaunay
neighbors of Robot ¢ and the set of indices of the closed
neighborhood of Robot 7 in the Delaunay graph, respectively.

Lemma 1: (Leibniz Integral Rule, e.g., [18]) For the func-
tion

F(p,1) /Q( )f(p7t,q)dq,
p

where f(p,t,q) : R?N: x R5o x R? — R, and Q(p) C R?

depends smoothly on p,

OF (p, t) :/ 0f(p,t, q)
op) P

_r 0qaq
f(p.t, q)nk dq,
99(p) % 9p

dq +

Op

where gsq denotes a point on 92, and ngo denotes an
outward-pointing unit normal uniquely defined at almost

every goq.
Proof: See [18]. O
Utilizing Lemma 1, we have
9C1(ps,t) _ S en, 205 (a,t) e o
8ps,i Si(ps) f;gc(rs,i) S,
vy lIpi(t) ~ all”,
JENS, 0Si;(ps) fﬁc(rs,i)
. 9q0s., (Ps
> faa(at) ”gsu(Q)ap(-) dg, (18)

neNy

where 9S;;(ps), gas,, (Ps), and s, (q) denote the bound-
ary shared by the dominant regions of Robot ¢ and Robot j, a
point on 9S;,;(ps), and the unit outward normal on 9S;;(ps)
pointing from p; ; to p, ;, respectively.

Note that only gas,; (ps) is left in (18) as the integration
variable because the partial derivative of any point in any
subset of the boundary of the dominant region of Robot ¢
that coincide with the boundary of D with respect to p, ; is
zero. Likewise,

Wotont) 5 [ e al?
Ops.i NS, ) 05i5(p2) foe(rs.5)
_ 0qas,;(Ps)
Z fa (@ t) ngsw(Q)T dg, (19)
neN ps,z
and 0Cs(ps,t)
9s\Ps:t) _ (20)
8ps,i
As such, according to the property of 9S;;(ps).
3C(ps,t) o ZnENt 2f;n (q7t) (p o q)T dq
81)571‘ Si(ps) f]?c(rs,i) EX .
(21

Define the mass m ;(ps, t) and center of mass ¢ ;(ps,t)
of the dominant region of Robot 7 as

respectively. Then (21) can be rewritten as

80(1)5,7?) 27715 z(péat) T
= : ER t — Cs,i s7t )
Ops.i fgc(TS,i) (P2.() (Per2)

which implies that a critical point of (17) with respect to
Ps,is Vi e NS is

(24)

Psi(t) = Csi(ps, t). (25)

Note that the requirement of f, (g,t) € R, Vn € Nj,
presented in Section II can be relaxed to ms ;(ps,t) € R,
Vi € N, as long as (23) is well-defined.

In order to find out a system dynamics of the heteroge-
neous multi-robot team to achieve and maintain the critical
point (25) for all 7 € Ns, we analyze the Lyapunov function

1
V(psat) = 5 Z ||ps,i(t) - Cs,i(ps7t)||2a
€N

(26)

whose time derivative is (some explicit dependencies of the
variables will be dropped for notational convenience in the
following content)

. decg \ . Ocg
V(pscs)T(<Iap >p98t)a

where cs(ps,t) = [czl(ps,t),...,cgm (ps, )] € RN,
and [ is an identity matrix with the corresponding dimension.
Analogous to [19], one way to enforce (27) to be negative
definite is to let

27)

e\ ! Jdc
ps = (I - aps) <ﬁ (cs - ps) =+ a:) ) (28)
S
where x € Ry, and
Ocs 1 9cs 1
9 Ops.1 OPs,Ng
Fr : = : : € R2N>2N: - (29)
Ps dcs, N, dcs, N,
aps,l aps,NS

Therefore, as long as the inverse term in (28) is well-
defined, p4(t) governed by (28) converges to c,(ps,t) as
t — oo with the exponential convergence rate exp(—2xt).

Lemma 2: The shared boundary of the dominant regions
of Robots ¢ and j is given by the Apollonius circle, e.g., [20]

3Sij ={aeD|lla—capijll =rapij}, (B0
where 9 5
- foe(rs j)Psi — fpe(Ts,)Ps.j
fe(rs,i) = fpe(rs,)
and

P Apgs = fpc(Ts,i)fpc(rs,j)“ps,i _ps,j”
P 3c(7”s,j) - fgc(rs’i) ’

where f;w(rs,i) < fPC(TSJ)' When fPC(TS,i) = fpc(rs,j)’

ms,;(Ps,t) = / Z fptm’(q,t) dq (22)  0S;; becomes a straight line, i.e., the radius of the corre-
Si(Pa)nen, sponding Apollonius circle becomes infinite.
and Proof: Squaring both sides of the equation defined as (16)
o) fsi o4 ZnENt f;;t,n( a.t) dq o) with the inequality replaced by equality yields
5,i\Psy 1) = ms,i(Ps, t) fpzc(rsd)(q - ps7i)2 = fp20(’r87i)(q - pS,j)2’ 3D
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where we define 22 := 272, Vz € R2. Manipulating (31)
yields

foers P2 = e (rs ))P3 i = (foe(rsg) — foo(rsi))d”
- 2qT( p?c(r&,j)psfi - f;%c(rs,i)ps,j)- (32)

Multiplying both sides of (32) by (f2.(rs;) — fr(rsi))
yields

f;c(’rs,i)( §c<r87j) - gc(rs,i))pi,j - f;?c(rs’j)(fzc(rsxj)
— [o(rsi))p3 i = (foe(rsg) = foe(rsi))?a® — 247
(fre(rsg) = Foe(rs i) (fre(rs i)Psi — fe(rsi)Ps ). (33)

Manipulating (33) yields

o (rai) foe(rs ) (Psi — Psj)®

(fpe(rs,i) = fe(rsi))?
_ 2qT fgc(rs,j)ps,i - prC(Ts,i)ps,j
pe(Ts,3) = f3e(rs,i)
(Foe(Ts,3)Psi = fe(7s,0)Ps 5)°
(fpe(rsg) = f3e(rs,i))?
Taking square root on both sides of (34) yields (30). When
fpe(rsi) = fpe(rs,;), one can see from (31) that 9S;;
becomes the perpendicular bisector of the line segment with
Ps,; and p; ; as the two endpoints. O
Utilizing Lemma 1 and Lemma 2, and based on (22) and
(23), the partial derivative g;l in (28) and (29) can be
calculated as

(34)

acs,i . 1 / anENt f;;t:n (q7t)(q _ps,i)T dq
Osi Mo IF Josu f2,(rs ) || 57225 — ooy ’
G Y onen, f;rtm (q,t)(q — psi)” iq
Ms,q kEN, Sk 5C(Ts,i) J%C_(I:jZ) - fg:(];;:) ‘
Likewise, g;s’f can be calculated as
s,J
acs,i o —1 / qznej\[t f;—):n(qat)(q_ps,j)T dq
e~ s os, e | it — s
+ _ AT
i ;Ls,i Zne/\ft fpt:(;]7t)<q qp;,J) dq.
) . f2 . —Ps,j —Ps,i
5,1 JOS;; pC(Ts,]) fgc(nj) - F2.(re.i) ‘
for all j € Ns,, and
des
s 0, (37)
apﬁ,j

for all j ¢ Ns;. In addition, the time derivative of ¢ ; can
be calculated as

805,1‘_ 1 3 g .
ot /si(q €si) 5 > (a,t)dg.  (38)

M s
$? neN

In order to avoid the situation of nonexistence of the
inverse term in (28), one can use the first N; + 1 entries

of the Neumann series, e.g., [19], of the inverse term in (28)
to approximate (28) as

. N oes\! e,
ps:Z(ap) <n(cs—ps>+ o) 09

=0

The multi-robot system dynamics (39) drives a team of
robots to optimally (in terms of (17)) cover the proba-
bility density distributions characterizing the uncertainties
of the targets’ positions. Meanwhile, the robots are taking
measurements of the targets, based on which any feasible
state estimation techniques can be applied to minimize the
uncertainties of targets’ states consisting of position parts
and velocity parts.

V. EXPERIMENT

In this section, we implement the multi-target tracking
strategy proposed in this paper on N; = 2 targets and
N, = 5 differential-drive wheeled robots at the Robotarium
[21], where D is a rectangular domain with z-axis ranging
from —1.6 to 1.6, y-axis ranging from —1 to 1, and origin
at the center. We assume the single integrator dynamics of
ps in (39) and p, corresponds to points near off the axles
of the wheels of the robots.

A. Targets’ Dynamics and Measurement Models

Although the multi-target tracking strategy proposed in
this paper can work for targets with any dynamics model
(1) and measurement model (2) presented in Section II, we
need to specify ones to demonstrate the proposed strategy
in robotic experiments. Since studying state estimation tech-
niques for general dynamics and measurement models is not
the main point of this paper, we simply choose a linear
dynamics with an additive white noise for the dynamics of
a target. Specifically, we define the discrete-time dynamics
of Target n as the coordinated turn model, e.g., [4]

xt,n(k + 1) = Ft,n(wt,n)xt,n(k) + €t,n(k)7

where wy ,, is the turn rate, each entry of F} ,(w; ) € R4
is defined as F}'}, = F?2 =1, F{'2 = F?L = FPL = F?) =
Fin = Fih =0, B = FPy = sin(wn D) /win, Fiy =
—F23 = (cos(winT) — 1) /wim, F = F = cos(wnT),
and F/3 = —F?} = sin(w¢,T), in which F% stands for the
element at a'" row and b*" column of F; ,,, T is a constant
sampling interval, and &, ,, (k) is a discrete-time zero-mean
white process noise of Target n, whose covariance is

Qe (k) == El&en(k)EL, (k)] = Se, ,, Me.n,

where each entry of M;, € R** is defined as M}. =
M2 = 2w, T — sin(wtmT))/wgn, Mt{%
Mt:%i = Mt%% = O’ Mtl,i = Mtg,}L = MtZZrlL = Mt4,$z =
(1= cos(wnT)) /wh . M4 = ML = —MP, = — M2 =
(winT — sin(w;, 1)) /w2, M3 = M} = T, in which
M, represents the element at a'* row and bt column of
M, ,,, and ng stands for the power spectral density of &; ,,.

The discrete-time measurement model is defined as

zn,i(k) = Hn,L(k)mt,n(k) + Cn,z(k)v

(40)

(41)

(42)
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Fig. 3. Instantaneous cost C'(ps, k) in (17) along time step k.

for all n € NV} and i € N such that ||p; (k) — ps,i(k)| <
rsi» where H, ;(k) € R*¥%, (,.(k) is the vector of a
discrete-time zero-mean white noise sequence of the mea-

surement of Target n taken by Robot ¢, whose covariance is
defined as

Rui(k) == ElCn,i (k)G i (k)] = Ani (k) M, (K),

where MY, (k) is a symmetric and positive semi-definite
matrix, and A, (k) = 1l (k) — psi(k)|| € Rso
reflects that the noise intensity of the measurement of Target
n taken by Robot ¢ is larger when Target n is farther
from Robot ¢, and vice versa, where 7, ; € Ry encodes
Heterogeneity 2) presented in Section I

Now that the targets’ system model and measurement
model are both assumed linear and subject to zero-mean
white Gaussian noise, we can employ the Kalman filter to
recursively estimate the state of Target n as follows.

Prediction:

@, (k) = Fyn(win)el, (k= 1),
P (k) = Ft,n(wt,n)PtTn(k - 1)Ft:{1n(wt,n) + th(k),

t.n
Correction:

(43)

Sn(k) = Hy (k) P, (k) Hy (k) + Ry (K),
K (k) = Py, (k)H,y (k)S; (k),
Yn(k) = zn(k) — Hn(k)w;n(k)a
(k) = @y (k) + Ko (k)yn (k)
Pl (k) = (I = Kn(k)Hy (k) P, (K),
in which

P, (k) o= E(xy (k) =, (k) (e (k) — 2, (k)]

denotes the posterior estimation error covariance and
Py (k) denotes the corresponding prior estimation er-
ror covariance, Hy, (k) = [...,H}(k),...]", Ru(k) =
diag(...,Rni(k),...), and z,(k) = [..,z1(k),...]%,
Vn € Ny and i € N such that ||p; (k) — ps,i(k)|| < 7s.
Note that K, (k) = O, Vn € Ny(k), where O is a zero

matrix with the corresponding dimension, and

NO(k) = {n S M|Hpt,n(k) _ps,i(k)H > T(s,ivvz' S Ns} .
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Fig. 4. Estimation errors of targets’ positions and the corresponding two
standard deviations along time step k. (a) Target 1’s x-position estimation
error; (b) Target 1’s y-position estimation error; (c) Target 2’s x-position
estimation error; (d) Target 2’s y-position estimation error.

Ideally, f;rt ’n(q, k) is the probability density function of
the Gaussian distribution with «;, (k) as its mean and
P;rn(k) as its covariance, but the true state of a target is
unknown to the robots in practice, so we approximate its
mean as the posterior estimate x;, (k), and this approxima-
tion becomes more and more accurate as time approaches
once the robots start to take measurements of the target.

B. Experimental Setup and Results

The initial conditions of the experiment are as shown
in Fig. 5(a). Let fp.(rs:) = 10 - ry,;, where 7,1 = 0.5,
Ts2 = 06, Ts,3 = 07, s a4 = 08, and Ts5 = 09, and
Wi = we2 = —2, Se¢,, = S¢,, = 3 x 1072, Additionally,
let H, (k) =1 € R¥, Vn e N, i€ Ns, nn1 = 0.5,
M2 = 0.6, Np3 = 0.7, Mug = 0.8, s = 0.9, Vn € N,
and M, ;(k) = diag(10,10,1,1), Vn € N, i € N;. Also,
we choose N; = 1 to approximate (28). Strictly speaking,
the theoretical validity of (39) replies on the differentiability
of 3. cn, fa,. (@) with respect to time. However, it
is impossible to avoid noisy signals in practice, i.e., the
differentiability of 3\, fy,  (g,t) with respect to time
does not strictly hold in practice. Nonetheless, we found
in robotic implementations that one can adopt numerical
methods, e.g., finite difference schemes, to approximately
calculate % > nen, far. (@:1), and the smaller the sampling
interval is, the better the approximation is. We set the
sampling interval as 3 x 1073, In addition, since each robot
is assumed to have a single integrator dynamics, then m = 2,
Fsi(psi) =0 €R?, gsi(psi) =1 € R**2, fo1i(psij) =
0 € RY, 9s,ij(Dsij) =1 € R**4. Then the nominal con-
troller u, based on (39) needs to be perturbed in a minimally
invasive manner by (15) to ensure that each robot only moves
within its safe operation zone while avoiding collisions with
any other robots. Let al(hZ;(ps,i)) = 5 x 10%(hZ;(ps.i))®,
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where 1!, (ps,i) = pL,diag(b? ;, a2 ,)psi—aZ ;b2 ;, in which

g2 = 0.7, b371 = bs72 = 0.4, and as3 =
bs,3 = Qs4 = bs,4 = Qg5 = bs,5 = 0. Additionally, let
ﬂ(hiij(ps,ij)) =1x 102(h£ij(ps7ij))37 and D, ;; = 0.6,
Vi # 3, 1,7 € Ns.

The experimental results are as shown in Fig. 3, Fig. 4,
and Fig. 5. The control barrier certificates defined in Section
IIT ensure that each robot pair has a minimum safe distance
such that the robots do not collide with each other, and each
robot only moves within its corresponding safe operation
zone, Robot 1 or Robot 2 are sometimes prevented (in a
minimally perturbed manner) from approaching the centers
of mass of their Voronoi cells, i.e., the critical points of the
cost function C(ps,t) defined in (17), which are inside the
ellipse zone enclosed by the yellow line as shown in Fig. 5,
and sometimes the robots are prevented from approaching
the centers of mass of their Voronoi cells, which are located
within their corresponding safe operation zones, due to the
collision avoidance guarantee. These situations are expected
and acceptable because the safety of multi-robot systems has
priority over task accomplishments. Additionally, there exists
unavoidable noise in practice. Consequently, the value of
the cost function C(ps,t) does not ideally monotonically
decrease along time steps as shown in Fig. 3, but on the
whole, the cost value reflects a pattern of decline.

Besides, as shown in Fig. 4, the estimation errors of the
positions of Target 1 and Target 2 are both bounded and
converging to zeros along time steps, which is consistent with
the “shrinking” blue ellipses representing the uncertainties of
the targets’ positions along time steps as shown in Fig. 5,
and also consistent with the tendency of the estimated
trajectories approaching their corresponding true trajectories
as shown in Fig. 5(1). Therefore, the effectiveness of the
dynamic multi-target tracking strategy proposed in this paper
is demonstrated.

s 1 =

VI. CONCLUSIONS

In this paper, we proposed a coverage-based simultaneous
multi-target tracking and following strategy using a team
of heterogeneous robots. The heterogeneous modalities are
reflected by the robots’ different effective sensing ranges,
varied measurement noise, and diverse safe operation zones.
The proposed system dynamics of the multi-robot team
automatically assigns more robots to be in the area in which
the targets are more likely to be, and enables the robots to
dynamically and (locally) optimally cover the time-varying
probability density distributions characterizing the uncertain-
ties of the targets’ positions. The single integrator dynamics
model is assumed for each robot and augmented by control
barrier certificates to constrain each robot to move within
its safe operation zone and guarantee collision avoidance
among robots. The effectiveness of the proposed dynamic
multi-target tracking approach is demonstrated through an
experiment performed on a team of mobile robots, where
5 heterogeneous robots are tracking and following 2 targets
under noisy circular maneuvers while minimizing the uncer-
tainties of the targets’ states simultaneously.
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(a) Time Step 1

(e) Time Step 343

(g) Time Step 500 (h) Time Step 602 (1) Time Step 702

(k) Time Step 900

(j) Time Step 800 (1) Time Step 1000
Fig. 5. The process of a team of 5 robots, with the blue-labeled Robots 1 and 2 having similar operation zones to the two ground robots illustrated in
Fig. 1 and the yellow-labeled Robots 3, 4 and 5 having similar operation zones to the three quadrotors illustrated in Fig. 1, tracking Target 1 and Target 2,
whose true positions are represented by the pink and aquamarine diamonds respectively. The green dashed line connecting a target and a robot represents
that the target is within the robot’s effective sensing region and taken measurements by the robot. The probability density distributions characterizing the
uncertainties of the targets’ positions are represented by the blue ellipses. Each robot has a dominant region, i.e., a multiplicatively weighted Voronoi cell,
with a set of black curves as its boundary. The ellipse zone located at the center and enclosed by the yellow line is similar to the hill as shown in Fig. 1,
and is the unsafe operation zone for Robots 1 and 2. In the figure of time step 1000, the pink, aquamarine, blue, and magenta trajectories represent the
true trajectory of Target 1, the true trajectory of Target 2, the estimated trajectory of Target 1, and the estimated trajectory of Target 2, respectively.
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