

BSCAMPP: Batch-Scaled Phylogenetic Placement on Large Trees

Eleanor Wedell¹, Chengze Shen¹, and Tandy Warnow¹

Abstract—Phylogenetic placement is the problem of placing sequences into a given phylogenetic tree, called a “backbone tree”. EPA-ng and pplacer are the two most accurate phylogenetic placement methods, but both can fail to complete when the backbone tree is very large. Our recently designed SCAMPP framework has been shown to scale both pplacer and EPA-ng to larger backbone trees of up to 180,000 sequences by building a small placement subtree for each query sequence and then using the phylogenetic placement method to place that query sequence into that subtree. However, the technique in SCAMPP produces many placement subtrees (potentially a different one for each query sequence), making it computationally expensive when placing many query sequences. Here we present BSCAMPP (Batch-SCAMPP), a new technique that overcomes this barrier by using the query sequences to select a much smaller number of placement subtrees. We show that BSCAMPP used with EPA-ng is much faster than SCAMPP used with EPA-ng, and scales to ultra-large backbone trees. We also show that BSCAMPP used with pplacer is much faster than SCAMPP used with pplacer, and somewhat more accurate but slower than BSCAMPP used with EPA-ng.

Index Terms—Phylogenetic placement, EPA-ng, microbiome analysis, taxonomic identification, abundance profiling, pplacer.

I. INTRODUCTION

PHYLOGENETIC placement is the problem of placing one or more query sequences into a phylogenetic “backbone” tree, which may be a maximum likelihood tree on a multiple sequence alignment for a single gene, a taxonomy with leaves labeled by sequences for a single gene [1], [2], [3], or a species tree [4]. Phylogenetic placement has been used to taxonomically characterize shotgun sequencing reads generated for an environmental sample in a metagenomic analysis; the methods in the TIPP family [1], [2], [3] are based on pplacer and achieve high accuracy, but other approaches have also been used, see [5]. Phylogenetic placement into gene trees can also be used to update existing gene trees with one or more new sequences,

Received 17 July 2024; revised 15 April 2025; accepted 15 April 2025. The work of Eleanor Wedell was supported by a SURGE Fellowship and a Wing Kai Cheng Fellowship. The work of Chengze Shen was supported by NSF under Grant 2006069 and Grant 2316233 (to Tandy Warnow). This work was supported by the Siebel School of Computing and Data Science at the University of Illinois Urbana-Champaign. (Corresponding author: Tandy Warnow.)

The authors are with the Siebel School of Computing and Data Science, The University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA (e-mail: warnow@illinois.edu).

BSCAMPP is freely available at <https://github.com/ewedell/BSCAMPP>.

This article has supplementary downloadable material available at <https://doi.org/10.1109/TCBBIO.2025.3562281>, provided by the authors.

Digital Object Identifier 10.1109/TCBBIO.2025.3562281

an application that is relevant to evolutionary biologists studying specific gene families. Thus, phylogenetic placement is a general tool with applications in both incremental tree building and taxon identification and abundance profiling in microbiome analysis [1], [2], [3], [5], [6], [7], [8], [9].

Prior studies [10], [11], [12], [13], [14] have established the high accuracy of phylogenetic placement methods based on maximum likelihood (e.g., EPA-ng [15] and pplacer [16]). However, the runtime of these methods is impacted by the number of query sequences, the size of the backbone tree, and the length of the reference alignment, and each of these can be very large, depending on the application. In particular, for the metagenomics application, the number of sequences placed into the backbone tree can be very large (in the tens or hundreds of thousands) [1], and future analyses might involve millions of reads. Furthermore, many studies have shown improvement in accuracy for abundance profiling, phylogenetic tree estimation, etc., when placing into large backbone trees (e.g., [3]); hence, phylogenetic placement methods that can process large numbers of query sequences and run on large backbone trees are useful tools.

Unfortunately, prior studies [10], [11], [12], [13] have also shown that EPA-ng [15] can fail to complete due to high memory requirements and pplacer [16] can fail to complete due to numerical issues (reporting negative infinity log likelihood scores) when they are used on very large backbone trees. This observation has led to the development of methods, such as APPLES-2 [17], which use distances to place into large trees. There are also methods for phylogenetic placement that are alignment-free, such as RAPPAS [18] and App-SpaM [19]. These methods are potentially faster and more scalable than pplacer and EPA-ng.

While pplacer has shown some accuracy advantages compared to EPA-ng, EPA-ng is much faster [12]. In particular, EPA-ng is optimized for placing a large number of query sequences (see Fig. 2 from [17]) and is capable of placing millions of sequences into phylogenetic trees of up to a few thousand sequences [15]. However, other studies have shown that EPA-ng has a memory requirement that can be large for large backbone trees [11]; hence, the backbone trees used with EPA-ng will be limited to a few thousand sequences unless there is access to a large amount of memory.

Previously we introduced the SCAMPP framework [11] to enable both pplacer and EPA-ng to perform phylogenetic placement into ultra-large backbone trees, and we demonstrated its utility for placing into backbone trees with up to 200,000

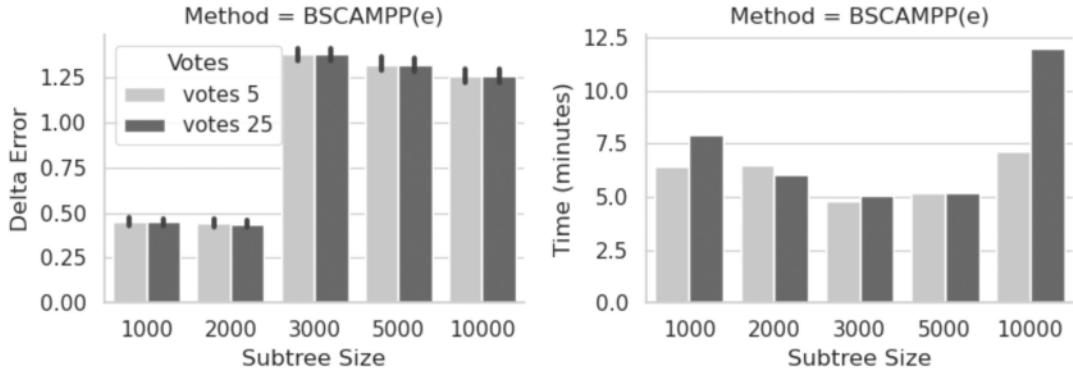


Fig. 1. Experiment 1: Impact of subtree size and number of votes for BSCAMPP(e) on algorithm design dataset using the true query alignments. Mean Delta Error plus standard error (left) and total runtime (right) for placement of all 10,000 fragmentary query sequences on an RNAsim backbone tree with 50,000 leaves. We show placement time and error for BSCAMPP(e) varying parameter v (the number of votes per query) and the parameter B (the size of the subtree). The fragmentary sequences are a mean of 10% of the original ungapped sequence length (i.e., ~ 155 nt) with a standard deviation of 10 nucleotides.

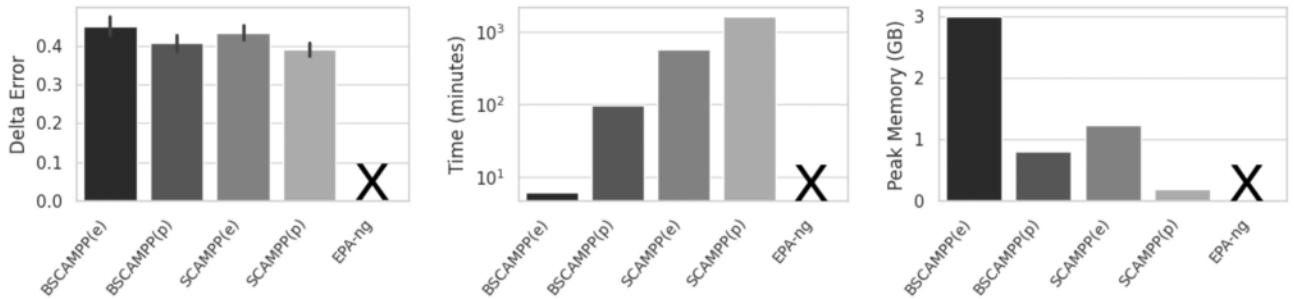


Fig. 2. Experiment 1: Performance on the RNAsim 50 k algorithm design dataset, placing 10 k query sequences using true query sequence alignments. Mean delta error (left), runtime (center), and peak memory usage in GB (right) for placement of all 10,000 query sequences on the estimated RNAsim backbone tree with 50,000 leaves. The query sequences are a mean of 10% of the original ungapped sequence length (i.e., ~ 155 nt) with a standard deviation of 10 nucleotides. We show placement time for BSCAMPP(e) and BSCAMPP(p) for 5 votes using a subtree of 2000 leaves. SCAMPP(e) and SCAMPP(p) similarly use a subtree size of 2000 leaves. The results from SCAMPP are also included for runtime, peak memory usage, and delta error. EPA-ng is not included because it was unable to run given 64 GB of memory and 16 cores on these datasets due to out-of-memory issues. SCAMPP produced 8778 subtrees on this dataset but BSCAMPP produced only 101 subtrees.

85 sequences. SCAMPP places each query sequence independently
 86 into the backbone tree. To place a given query sequence, it finds
 87 a “nearest leaf” in the tree, extracts a small subtree around that
 88 leaf, and then places the query sequence into that subtree using
 89 the selected phylogenetic placement method. In the final step, the
 90 location of that placement is used to find the corresponding lo-
 91 cation in the backbone tree. This divide-and-conquer technique
 92 enables SCAMPP to scale pplacer and EPA-ng to ultra-large
 93 backbone trees (up to 180,000 leaves so far) and achieves high
 94 accuracy. However, because each query sequence extracts its
 95 own subtree, this technique has the potential to pick as many
 96 subtrees as there are query sequences, with the consequence
 97 that SCAMPP has a high runtime and is memory-intensive.

98 The goal of this study is to improve SCAMPP with respect
 99 to computational performance. Furthermore, although several
 100 factors impact the runtime and memory usage of phylogenetic
 101 placement methods, in this study we focus on the impact of
 102 the backbone tree size and number of query sequences. To
 103 achieve this, we have modified the divide-and-conquer strategy
 104 in SCAMPP so that we make a small number of subtrees that
 105 suffice for the given set of query sequences. As we will show,
 106 this approach, which we call BSCAMPP (for Batch-SCAMPP),
 107 has the same benefit for scalability as SCAMPP but dramatically
 108 reduces the runtime and memory usage compared to SCAMPP,

and incurs only a small reduction in accuracy. We also show
 109 that BSCAMPP used with EPA-ng is extremely fast, even on
 110 ultra-large backbone trees.
 111

112 The rest of the paper is organized as follows. We begin
 113 in Section II with preliminary experiments evaluating EPA-ng
 114 and pplacer accuracy and scalability, motivating the design of
 115 BSCAMPP to improve the scalability these methods. We present
 116 BSCAMPP in Section III but the experimental study where
 117 we design BSCAMPP is described in Section IV. Experiments
 118 evaluating BSCAMPP with EPA-ng and pplacer in comparison
 119 to other phylogenetic placement methods are presented in Sec-
 120 tion V. We provide a discussion of results in Section VI, and we
 121 finish with conclusions in Section VII. Due to space constraints,
 122 some of the results are provided in the Supplementary Materials.
 123

II. PRELIMINARY EXPERIMENT

124 In this preliminary experiment (described in full in Supple-
 125 mentary Materials Section S1, results in Figs. S1 and S2), we
 126 had two objectives: first, to compare EPA-ng and pplacer for
 127 accuracy and computational performance when placing a variable
 128 number of query sequences into a 1000-leaf tree, and second,
 129 to understand the impact of the query length and backbone tree
 130 size on EPA-ng. We explore phylogenetic placement error using

131 the “delta error” (see Section IV-G) and runtime. We found that
 132 pplacer is at least as accurate as EPA-ng and has a smaller peak
 133 memory usage, and that EPA-ng is much faster than pplacer. We
 134 also found that placement error increased for EPA-ng when the
 135 backbone tree size increased from 2000 to 5000 leaves, and that
 136 the increase in error was large for query sequences that were
 137 short (10% of full-length, so ~ 155 nt).

138 These observations were used in the design and development
 139 of BSCAMPP, the subject of the next section.

140 III. BSCAMPP

141 We designed BSCAMPP with the goal of developing a divide-
 142 and-conquer strategy that is much faster than SCAMPP but
 143 achieves the same scalability goal. The input to BSCAMPP is the
 144 same as for SCAMPP: a backbone tree T with relevant numeric
 145 parameters (e.g., branch lengths and substitution rate matrix), a
 146 set Q of query sequences, a multiple sequence alignment of
 147 the sequences at the leaves of the tree as well as Q , and a
 148 phylogenetic placement method M . In this study, we explore
 149 BSCAMPP only with pplacer and EPA-ng, but it could be im-
 150 plemented to work with other placement methods. In a sequence
 151 of experiments (see Supplementary Materials Section S2), we
 152 explored variants on the BSCAMPP design and developed one
 153 that we present here.

154 BSCAMPP has three stages (see Algorithm 1); here we de-
 155 scribe it for use with EPA-ng. Stage 1: The similarity score
 156 $S(q, s)$ is computed between every query sequence q and leaf
 157 sequence s , using the multiple sequence alignment (see Section
 158 S2.1 in the Supplementary Materials). Each query sequence q
 159 then votes for v leaves with the largest similarity scores to q ;
 160 the top-scoring leaf is called $\text{closest}(q)$. Stage 2a: Using the
 161 similarity scores and votes from Step 1, we iteratively grow a set
 162 \mathcal{T} of placement subtrees along with initial assignments of each
 163 query sequence to one of the subtrees, until each query sequence
 164 is assigned to a subtree. Stage 2b: We allow reassignments of
 165 each query sequence to a different subtree, based on a sensitive
 166 criterion. Stage 3: We run EPA-ng on the placement subtrees to
 167 add the assigned query sequences into the subtrees, and then use
 168 branch lengths to find appropriate positions in the backbone tree
 169 T . This three-stage approach is an elaboration on the SCAMPP
 170 technique, except that in SCAMPP, each query sequence picks
 171 a single placement subtree; therefore, in the SCAMPP design,
 172 it is possible that there will be as many placement trees as there
 173 are query sequences.

174 *Implementation details* BSCAMPP is written in Python with
 175 certain parts written using OpenMP in C++. Since computing
 176 the similarity score is a computationally intensive portion of the
 177 BSCAMPP framework (requiring $\mathcal{O}(rql)$ for q queries of length
 178 l compared to r reference leaves), a parallel implementation
 179 using OpenMP allows for easier batch processing of queries.

180 IV. PERFORMANCE STUDY DESIGN

181 A. Overview

182 We evaluate placement methods for use with short sequences,
 183 the application that would be encountered in placing short reads
 184 into phylogenetic trees or taxonomies. Since many reads are

Algorithm 1: BSCAMPP Algorithm.

Algorithmic parameters: B (default 2000), v (default 5),
 and phylogenetic placement method M .

Input: backbone tree T and leafset S , query sequences Q ,
 multiple sequence alignment A on $S \cup Q$.

Stage 1 (Initialization):

```
for every query sequence  $q \in Q$  do
  Compute similarity score  $S(q, s)$  between  $q$  and
   $s, \forall s \in S$ .
  Select  $v$  top-scoring leaves as the votes of  $q$ .
   $\text{closest}(q) \leftarrow \text{argmax}_s S(q, s)$ .
end for
Initialize  $\mathcal{T} \leftarrow \emptyset, Seeds \leftarrow \emptyset$ .
```

Stage 2a (Constructing \mathcal{T} , the set of subtrees, and initial assignment of query sequences):

```
while there are query sequences not yet assigned to any
subtree do
  Choose the most-voted leaf  $x$  in the tree as seed.
  Build a subtree  $t_x$  with  $B$  leaves using breadth-first
  search based on branch length.
   $Seeds \leftarrow x, \mathcal{T} \leftarrow t_x$ .
  for every unassigned query sequence  $q$  do
    if  $\text{closest}(q) \in t_x$  then
      assign  $q$  to  $t_x$  and remove the votes from  $q$ .
    end if
  end for
end while
```

Stage 2b (Allow reassignments of query sequences):

```
for every query sequence  $q$  and for every tree  $t_x \in \mathcal{T}$  do
  Let  $t$  be the tree that  $q$  is assigned in Stage 2a.
  Compute weighted path distance from  $\text{closest}(q)$  to  $x$ .
  Let  $y \in Seeds$  be the seed sequence that has the
  minimum distance to  $q$ .
  Reassign  $q$  to  $t_y$  if  $t_y \neq t$ .
end for
```

Stage 3 (Phylogenetic Placement):

```
for every subtree  $t_x \in \mathcal{T}$  do
  Run method  $M$  on  $t_x$  and its assigned query sequences
  to produce  $t'_x$ .
  Use the technique from SCAMPP to add query sequences
  in  $t'_x$  to  $T$  (the backbone tree).
end for
```

Output: a file containing all placements, with their
 requisite confidence score, distal length, placement edge
 number, etc.

placed in each run, scalability to large numbers of reads is a
 relevant question. We use simulated and biological datasets in
 this study, dividing the datasets into algorithm design data and
 testing data.

We use simulated datasets for both the algorithm design and
 testing phases, and we also include a biological dataset in the

TABLE I
TESTING DATASET STATISTICS.

Dataset	# backbone sequences	# queries	mean sequence length	alignment length	type (bio or sim)	p-distance mean	gaps proportion
16S.B.ALL [28]	20,000	5,093	1,366	6,857	biological	.210	.801
RNASeq 50k [25]	50,000	$\leq 10,000$	1,545	1,590	simulated	.373	.028
RNASeq 180k [25]	180,000	$\leq 20,000$	1,545	1,590	simulated	.373	.028
nt78 [22]	68,132	10,000	1,279	1,287	simulated	.404	.006
5000M2 [32]	4,000	10,000	1,018	52,606	simulated	.693	.981
5000M3 [32]	4,000	10,000	992	24,062	simulated	.660	.958
5000M4 [32]	4,000	10,000	966	22,403	simulated	.530	.957

The first column gives the name of the dataset and the publication describing the dataset. For each dataset, we show the number of sequences, the number of queries, the mean (ungapped) sequence length, the length of the reference alignment, its type (biological or simulated), the mean p-distance (i.e., normalized Hamming distances) between pairs of sequences in the alignment, and the proportion of the alignment that is gapped. Results shown for the RNASeq datasets are based on post-processed results (i.e., after sites with at least 95% gaps are masked).

191 testing data collection. The simulated datasets have known true
192 trees and the biological dataset has an estimated maximum
193 likelihood tree that serves as a reference tree. We report place-
194 ment error using “delta error”, a standard metric used in prior
195 studies [10], [13] (see Section IV-G).

196 Experiments 1–5 provide an evaluation of BSCAMPP used in
197 conjunction with pplacer or EPA-ng in comparison to SCAMPP
198 used with these methods, and we refer to these combinations as
199 BSCAMPP(e), BSCAMPP(p), SCAMPP(e), and SCAMPP(p).
200 Some of these experiments also include other phylogenetic
201 placement methods (App-SpaM, APPLES-2, UShER [20]).

202 The base experimental condition uses query sequences that
203 are 10% of the length of the average full-length sequence
204 (i.e., 1279–1545 nt, depending on the dataset, see Table I)
205 and estimated backbone trees. In our experiments, we explore
206 modifications to this default model condition by changing the
207 query sequence length, adding sequencing error into the query
208 sequences, and placing into true rather than estimated backbone
209 trees.

- 210 • Experiment 1 is the design of BSCAMPP, and uses the
211 algorithm design data.
- 212 • Experiment 2 compares our divide-and-conquer pipelines
213 (SCAMPP and BSCAMPP used with EPA-ng or pplacer)
214 to all other selected phylogenetic placement methods on
215 the base experimental condition.
- 216 • Experiment 3 compares BSCAMPP(e) to UShER [20],
217 APPLES-2, and App-SpaM, using reads with sequencing
218 error.
- 219 • Experiment 4 compares BSCAMPP(e) to UShER,
220 APPLES-2, and App-SpaM, on datasets with changing
221 rates of evolution.
- 222 • Experiment 5 evaluates scalability of phylogenetic place-
223 ment methods, and includes a comparison between placing
224 into true and estimated backbone trees.

225 See Supplementary Materials Section S7 for additional details
226 about datasets and commands used in our experimental study.

227 B. Methods

228 We explore BSCAMPP used with either pplacer (v1.1.
229 alpha19) or EPA-ng (v0.3.8). We compare these to SCAMPP
230 (v2.1.1) used with pplacer and EPA-ng, and also to UShER [20],
231 App-SpaM, RAPPAS, and APPLES-2 (v2.0.11).

232 Some phylogenetic placement methods require numeric
233 parameters to be estimated for the backbone trees. All backbone

234 tree numeric parameters (branch lengths, 4×4 substitution rate
235 matrix, etc.) are re-estimated according to the specifications of
236 the phylogenetic placement method: RAxML-ng (v1.0.3) [21]
237 parameters were used for EPA-ng, UShER, App-SpaM,
238 SCAMPP(e), and BSCAMPP(e); FastTree-2 (v2.1.11) [22] under
239 Minimum Evolution parameters were used for APPLES-
240 2. When we run pplacer (whether on its own or inside
241 BSCAMPP(p) and SCAMPP(p)), we use taxtastic [23] with
242 FastTree-2 [22] numeric parameters, since this improves accu-
243 racy and scalability according to [12], [17].

244 C. Computational Resources

245 For Experiments 1–4, all methods are given four hours to
246 run with 64 GB of memory and 16 cores. These analyses were
247 run on the UIUC Campus Cluster, which is heterogeneous (i.e.,
248 some machines are older and hence slower than others). While
249 all methods are given 16 cores and 64 GB, different analyses
250 may have access to very different computational resources.
251 For these analyses on the Campus Cluster, when placement
252 time for SCAMPP(e), SCAMPP(p), and UShER, was over four
253 hours (which occurred in all experiments with 10,000 or more
254 query sequences), the query sequences were split into subsets
255 of 250 sequences each. SCAMPP(e), SCAMPP(p), and UShER
256 were then run for each subset containing 250 query sequences.
257 Experiment 5 is performed on a dedicated machine with 1 TB
258 of memory and where analyses of up to 4 weeks are permitted.

259 D. Datasets

260 All datasets in this study include a tree and a set of reference
261 sequences for a single gene that are in a multiple sequence align-
262 ment. The average ungapped length ranges from 966 to 1545 nt
263 (Table I). For the simulated datasets, we can place into either the
264 model tree or an estimated tree, while for the biological dataset,
265 we can only use an estimated tree. To construct an estimated
266 tree for the simulated datasets, we used FastTree-2 [22], a fast
267 maximum likelihood method, under the GTRGAMMA model.
268 For the 16S.B.ALL dataset, we use a published estimated tree
269 for this dataset, which is a maximum likelihood tree computed
270 using RAxML [24] on the reference sequence alignment. All
271 datasets are from prior studies and are freely available in public
272 repositories (see Data Availability statement).

273 1) *RNASeq*: We use samples from the RNASeq dataset [25],
274 which is a simulated dataset of 1,000,000 sequences that evolve
275 down a model tree under a biophysical model to preserve RNA

secondary structure. Subsets of the million-sequence simulated dataset were used in prior studies evaluating phylogenetic placement methods [11], [13], [17], and provide a substantial challenge due to the dataset size. For this study, we split this dataset into two subsets by taking the model tree and splitting it into two clades, with one having approximately 600,000 sequences and the other having approximately 400,000 sequences. This defines two sets of sequences, with the smaller one used for algorithm design (Experiment 1) and the larger one for testing (Experiments 2, 3, and 5). We place into a maximum likelihood tree on the true alignment (estimated using FastTree-2), using the true alignment for our Experiments 1 and 5 and using alignments estimated with UPP [26] for Experiments 2 and 3. We have also included an experiment on true trees in the supplementary materials.

2) *nt78*: We also use the nt78 datasets, which were simulated for FastTree-2 [22]; these contain 10 replicates, simulated with Rose [27], each with 78,132 sequences in a multiple sequence alignment and the simulated backbone tree. We picked one replicate randomly, using 68,132 sequences for the backbone and 10,000 sequences for the query sequences. We placed the query sequences into a maximum likelihood tree, estimated using FastTree-2 [22] on the true alignment. This dataset is used in the testing experiments.

3) *16S.B.ALL*: For biological dataset analysis, we use 16S.B.ALL, a large biological dataset with 27,643 sequences and a reference alignment based on structure from The Comparative Ribosomal Website (CRW) [28]. 16S.B.ALL contains some duplicate sequences; these were removed before analysis, producing a dataset with 25,093 sequences. Of these, 5,093 sequences were randomly selected as query sequences and the remaining were made backbone sequences. A maximum likelihood tree for this dataset was computed for the SATé-II [29] study on this reference alignment using RAxML [30] and serves as the backbone tree into which we place the query sequences. When computing delta error, we used the 75% bootstrap tree (i.e., the result of collapsing all edges with bootstrap support below 75%) as the reference topology. The maximum likelihood tree and the 75% bootstrap tree are available at [31].

4) *5000M(2-4)*: This dataset, originally from [32] was generated using INDELible [33] with a heterogeneous indel model. Each set contains 5000 simulated sequences. The 5000M2 condition reflects the highest rate of evolution in the dataset, and the 5000M4 condition reflects the lowest rate of evolution. For our experiments, 1000 sequences are randomly selected as queries and used to generate 10,000 query sequences under the Illumina or PacBio models. We place these queries into a maximum likelihood tree, estimated using FastTree-2 [22] on the true alignment of the remaining 4000 sequences.

325 E. Query Sequence Generation

326 For Experiments 1, 2, and 5 we generated fragments from the 327 full-length sequences for the nt78, 16S.B.ALL, and RNASim 328 datasets, starting at a randomly selected location. The fragmentary 329 sequence lengths are a mean of 10% of the original ungapped 330 sequence length with a standard deviation of 10 nucleotides.

331 Since the average full-length sequences for these datasets are 332 in the 1279–1545 range (Table I), these fragmentary sequences 333 have average lengths in the range 128–155.

334 For Experiments 3 and 4 we simulated reads with sequencing 335 error. Illumina reads (length 150) were generated using the ART 336 sequence simulator [34], and PacBio reads (length 450) with 337 higher sequencing error were simulated using PBSIM [35].

338 F. Additional Details About Experiments

339 For the RNASim datasets with at least 50,000 sequences, 340 we performed alignment site masking as follows. Those sites 341 containing more than 95% gaps were masked, i.e., removed; this 342 reduced the alignment length from 21,947 to 1,590. Masking was 343 not performed for any other dataset. For the nt78 datasets, we 344 used the third replicate for the experiment. We picked 10,000 345 sequences at random for the query sequences and used the 346 remaining 68,132 sequences as backbone sequences.

347 G. Evaluation Criteria

348 We report placement error using average delta error [10], [11], 349 [17], where the delta error for a single query sequence is the 350 increase in the number of missing branches (FN) produced by 351 adding the query sequence into the backbone tree, and hence is 352 always non-negative; this is the same as the node distance when 353 the backbone tree is the true tree. This requires the definition of 354 the “true tree”, which is the model tree for the simulated data 355 and the published reference tree for the biological data. See 356 Section S8 in the Supplementary Materials for additional details. 357 The methods are also evaluated with respect to runtime and peak 358 memory usage.

359 V. RESULTS

360 A. Experiment 1: BSCAMPP Design

361 To design BSCAMPP, we used EPA-ng as the base method 362 and the algorithm design data. We considered four differ- 363 ent strategies, described in Supplementary Materials Section 364 S2.1. We found that variant 4 (see Section III) provided 365 accuracy that was comparable with the next most accurate 366 method, but had better computational performance (Fig. S3 367 in the Supplementary Materials). Based on this, we selected 368 variant 4.

369 Having selected variant 4, we then performed additional 370 experiments on the two algorithm design datasets to set the values 371 for two parameters: the size of the subtrees and the number 372 of votes per query sequence. We varied the subtree parameter 373 setting from 1000, 2000, 3000, 5000 and 10,000 leaves. For each 374 subtree size, we ran BSCAMPP(e) with 5 and 25 votes per query 375 sequence. Results for this experiment are shown in Fig. 1 (see 376 also the Supplementary Materials Table S1).

377 When the subtree size exceeds 2,000 leaves, BSCAMPP(e) 378 had over twice the delta error than it did for 1,000- and 2,000-leaf 379 subtrees; therefore, we set the default subtree size to 2,000. We 380 also see a very small reduction in delta error as the number 381 of votes increases, but the reduction is extremely small and

382 increases the runtime; therefore, we set the default number of
 383 votes to 5.

384 Using these parameter settings for BSCAMPP(e) and
 385 BSCAMPP(p), we show a comparison to SCAMPP(e),
 386 SCAMPP(p), and EPA-ng in Fig. 2. EPA-ng was unable to place
 387 into the 50,000-leaf backbone tree given the memory limitations.
 388 SCAMPP(p) was the most accurate method, with a delta error
 389 of 0.39, followed by BSCAMPP(p) at 0.41, SCAMPP(e) at
 390 0.43, and BSCAMPP(e) at 0.45. These four methods differed
 391 substantially in runtime, with SCAMPP(p) the slowest, using
 392 over 27 hours to place the query sequences, and BSCAMPP(e)
 393 the fastest, using just 6 minutes. We also note that SCAMPP pro-
 394 duced 8778 subtrees for this dataset while BSCAMPP only pro-
 395 duced 101 subtrees; this is the driving factor for why BSCAMPP
 396 is so much faster than SCAMPP.

397 In Experiments 2–4, we will not examine BSCAMPP(p),
 398 SCAMPP(p), or SCAMPP(e), and will focus our attention just
 399 on BSCAMPP(e).

400 *B. Experiment 2: Comparison of BSCAMPP(e) to Other 401 Phylogenetic Placement Methods on the Base Experimental 402 Condition*

403 In this experiment, we compare BSCAMPP(e) to App-SpaM,
 404 RAPPAS, UShER, APPLES-2, and EPA-ng on the testing
 405 datasets: nt78, RNASim 50 K, and 16S.B.ALL. All query se-
 406 quences are fragmentary with lengths 10% of their full lengths.
 407 As with all our experiments, the methods were given 64 GB of
 408 memory and were run on the UIUC Campus Cluster, a hetero-
 409 geneous computational infrastructure, which limits all analyses
 410 to four hours.

411 To avoid biasing in favor of the alignment-based methods,
 412 we used estimated rather than true query alignments for this
 413 experiment. The results when query sequences are placed with
 414 an alignment using UPP [26] are shown in Fig. 3.

415 RAPPAS and EPA-ng failed to complete on these datasets
 416 (except for EPA-ng on 16S.B.ALL) due to needing more than
 417 the available memory (64 GB); the other methods succeeded in
 418 running on all the datasets and placed all the query sequences
 419 into the backbone trees.

420 APPLES-2 was consistently much less accurate than
 421 BSCAMPP(e) and UShER. App-SpaM was slightly more ac-
 422 curate than BSCAMPP(e) and UShER on the 16S.B.ALL
 423 dataset and then much less accurate on the other two datasets.
 424 UShER was slightly more accurate than BSCAMPP(e) on
 425 the 16S.B.ALL dataset but less accurate (by a slightly
 426 larger amount) on the other two datasets. Overall, therefore,
 427 BSCAMPP(e) and UShER are the two most accurate methods
 428 on these three datasets, with perhaps a small advantage to
 429 BSCAMPP(e).

430 App-SpaM was by far the fastest method and UShER was the
 431 slowest method. BSCAMPP(e) and APPLES-2 were very close
 432 in runtime, each with an advantage over the other on one dataset.
 433 EPA-ng only completed on one of the three datasets, and on this
 434 dataset its runtime was similar to BSCAMPP(e) and APPLES-2.
 435 As seen in Table S2 in the Supplementary materials, the speed
 436 advantage of App-SpaM over all other methods is due to the

time used to perform the query alignment (approx. 29 minutes
 437 for 16S.B.ALL, 115 minutes for RNASim, and 55 minutes for
 438 nt78). Thus, App-SpaM, which is alignment-free, is much faster
 439 than the other methods, which all require query alignments. The
 440 methods also differed with respect to peak memory usage, with
 441 EPA-ng having the highest memory requirement and App-SpaM
 442 the second highest; the other methods have very low memory
 443 usage on these datasets.

445 *C. Experiment 3: Performance Using Reads With Sequencing 446 Error*

447 In Experiment 3, we compare BSCAMPP(e) to APPLES-2,
 448 UShER, and App-SpaM on simulated reads under Illumina and
 449 PacBio error models for the testing datasets 16S.B.ALL, nt78,
 450 and RNASim 50 k. All simulated reads were aligned to the refer-
 451 ence sequences with UPP, and the alignment runtime is included
 452 along with the placement time for alignment-based methods
 453 (BSCAMPP(e), UShER, and APPLES-2) in this experiment.

454 On the Illumina read condition (Fig. 4), we see the fol-
 455 lowing trends. On the simulated datasets (RNASim and nt78),
 456 BSCAMPP(e) was the most accurate method, followed by
 457 UShER, APPLES-2, and then App-SpaM. On the biological
 458 dataset (16S.B.ALL), App-SpaM was the most accurate method,
 459 and BSCAMPP(e) and UShER closely follow. APPLES-2 shows
 460 over twice the placement error of BSCAMPP(e) and UShER.

461 Runtime for all alignment-based methods includes the read
 462 alignment process. As in Experiment 2, this accounts for the
 463 majority of the runtime for both BSCAMPP(e) and APPLES-
 464 2 (see Table S3 in the Supplementary Materials). UShER was
 465 the slowest method and App-SpaM was the fastest, with near
 466 instantaneous placement. App-SpaM used more memory than
 467 the alignment-based methods, requiring at least 30 GB for the
 468 simulated datasets and 15 GB for the biological dataset, while
 469 the alignment-based methods used at most 3 GB on each dataset.

470 Results on the PacBio-style reads show similar trends (Fig. 5).
 471 In all cases, BSCAMPP(e) was the most accurate method,
 472 closely followed by UShER. APPLES-2 had more than twice
 473 the error of BSCAMPP(e) and UShER, and App-SpaM had the
 474 highest error. Runtime trends are similar to the Illumina-style
 475 reads. For each condition, App-SpaM placed all query sequences
 476 in at most 7 minutes, while the other methods used at least
 477 two hours (with UShER using the most time). Furthermore, the
 478 query alignment step dominates the runtime for BSCAMPP(e)
 479 and APPLES-2 (see Table S4 in the Supplementary Materials).
 480 BSCAMPP(e) had slightly higher memory usage than UShER
 481 and APPLES-2, using up to 4 GB for the biological dataset, and
 482 App-SpaM used the most memory of all methods shown.

483 *D. Experiment 4: Performance on Datasets With Variable 484 Rates of Evolution*

485 The purpose of Experiment 4 is to evaluate placement meth-
 486 ods as the rate of evolution changes. We used the 5000M2–
 487 5000M4 datasets (see Table I). These datasets have 5000 se-
 488 quences and different rates of evolution (moderate for 5000M4 to
 489 high for 5000M2). We selected 4000 sequences for the backbone
 490 tree and used the remaining 1000 sequences to generate query

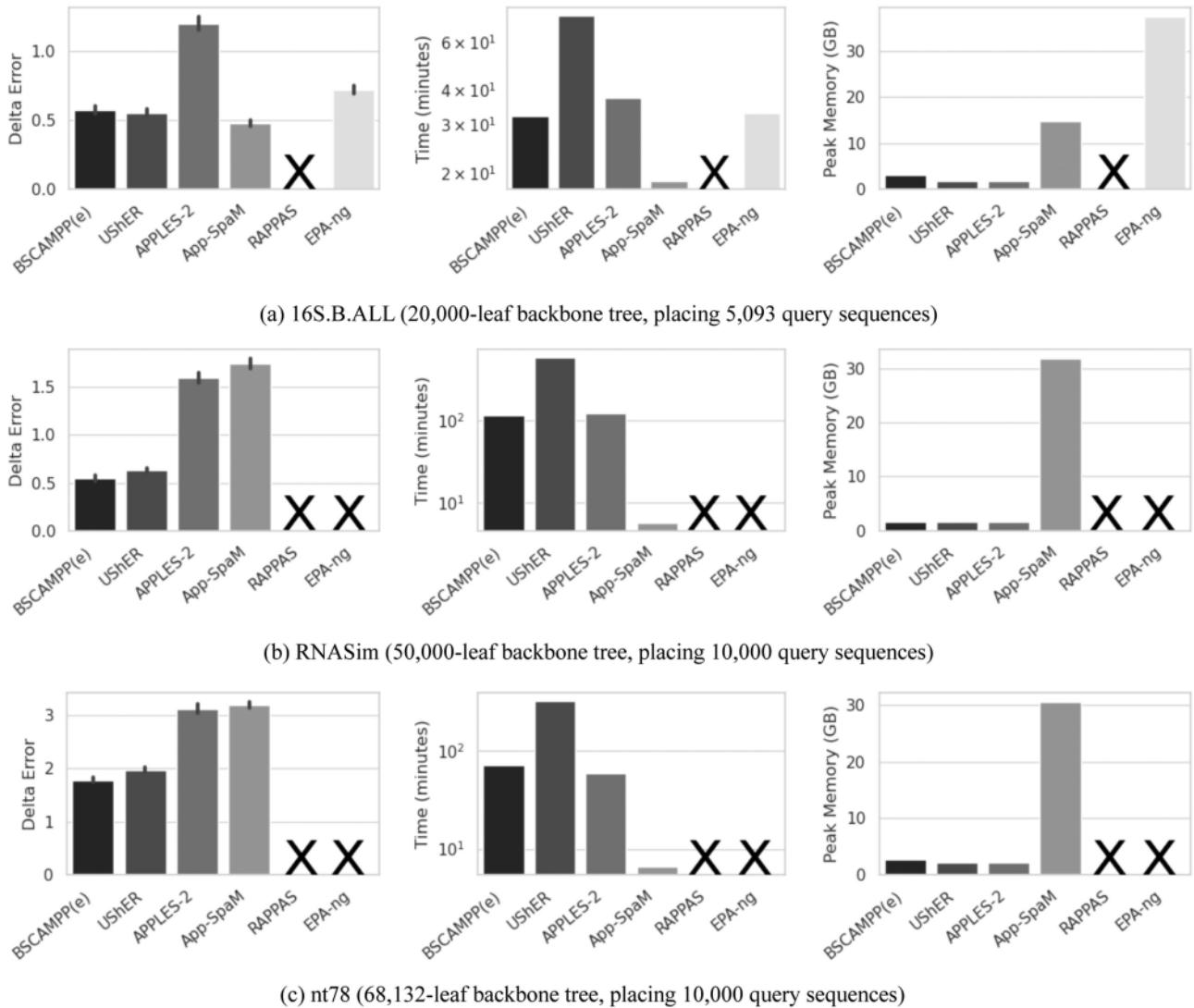


Fig. 3. Experiment 2: Performance using estimated query sequence alignments on testing data. We show from left to right - Mean delta error, total runtime, and peak memory usage in GB for three datasets placing large sets of queries into large estimated reference trees. The query sequences are a mean of 10% of the original ungapped sequence length (i.e., ~ 137 nt for 16S.B.ALL, 155 nt for RNASim, and 128 nt for nt78) with a standard deviation of 10 nucleotides. Query sequence alignments are estimated using UPP, and the alignment time is included in the runtime for the alignment-based methods (all except RAPPAS and App-SpaM). We show placement time for BSCAMPP(e) for 5 votes with a subtree size of 2000 (default settings). The results from USHER, APPLES-2, App-SpaM, RAPPAS, and EPA-ng are also included (an X indicates that RAPPAS and EPA-ng were unable to run due to out-of-memory issues).

491 sequences. These query sequences were generated under two
492 models of sequencing error: Illumina and PacBio.

493 APPLES-2 did not return placements for some queries for
494 many of these datasets (see Supplementary Materials Table S5).
495 We show delta error on placements for those query sequences
496 that returned placements for all methods in Fig. 6; for results
497 on all 10,000 queries (without APPLES-2), see Supplementary
498 Fig. S4.

499 On Illumina reads (Fig. 6(a)), BSCAMPP(e) was the most
500 accurate method for all conditions. On the 5000M2 data, the
501 condition with the highest rate of evolution, BSCAMPP(e)
502 had less than half the error of USHER, the second most
503 accurate method. The other two methods, APPLES-2 and
504 App-SpaM, had much higher error. As the rate of evolution
505 lowers, the relative accuracy remains the same, but all
506 methods improved in accuracy and the gap between methods
507 decreased.

508 Results on PacBio reads (Fig. 6(b)) show a less clear de-
509 lineation between the accuracy of BSCAMPP(e) and USHER,
510 but BSCAMPP(e) was still more accurate, closely followed by
511 USHER and APPLES-2. App-SpaM had a higher error than all
512 other methods.

513 The runtime for the alignment-based methods have the align-
514 ment phase included. Of these methods, BSCAMPP(e) was the
515 fastest, followed by APPLES-2 and then USHER. App-SpaM,
516 which is alignment-free, was so fast that its runtime is not
517 even visible in Fig. 6, and required the least memory usage.
518 BSCAMPP(e) used more memory than all other methods, up to
519 15 GB.

520 E. Experiment 5: Scalability Experiment

521 In this experiment, we explore BSCAMPP(e) scalability. The
522 previous experiments were all run on the Campus Cluster, a

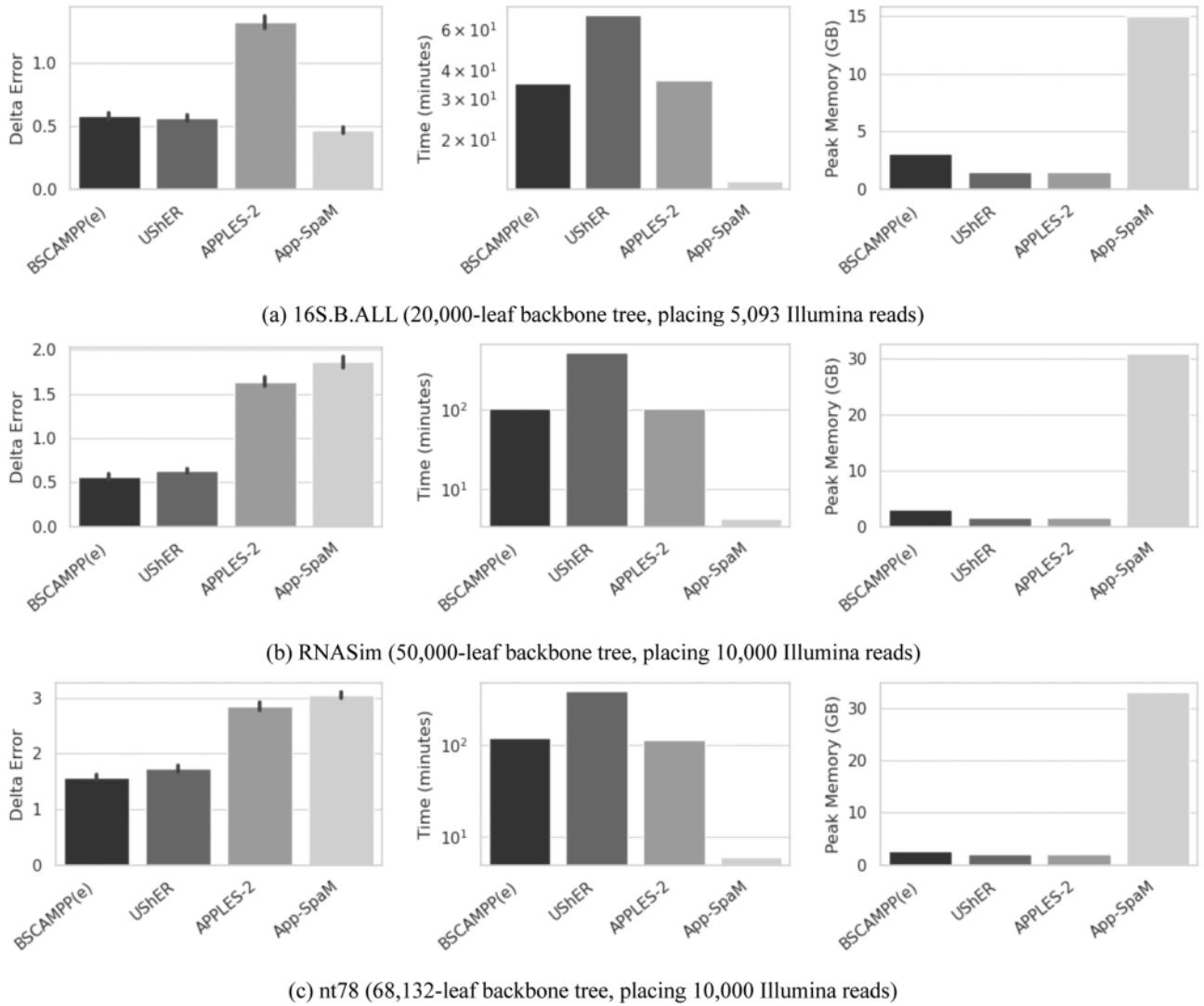


Fig. 4. Experiment 3: Results on Illumina reads (query length 150 nt). For each of the three testing datasets (given in subfigures (a)–(c)), we show mean delta error (left), total runtime (middle), and peak memory usage (right) for phylogenetic placement methods (BSCAMPP(e), APPLES-2, UShER, and App-SpaM). The runtime shown includes the time to add sequences into the reference alignment using UPP for BSCAMPP(e), APPLES-2, and UShER.

523 heterogeneous infrastructure. Although all analyses were guaranteed 64 GB of memory, the heterogeneity of the Campus
 524 Cluster means that the runtime comparisons are noisy. Hence, in
 525 this section, we provide a limited evaluation using a dedicated
 526 machine with 1 TB of memory. This machine also allows runtime
 527 of up to 4 weeks and so allows us to explore all the best methods,
 528 even when placing a large number of sequences into very large
 529 trees.
 530

531 We examine computational performance for BSCAMPP(e)
 532 under three conditions:

- 533 • as a function of the number of query sequences
- 534 • as a function of the query sequence length
- 535 • as a function of the backbone tree size

536 For the first three evaluations (see Supplementary Materials
 537 Figs. S5 to S7), BSCAMPP(e) runtime increased as the query
 538 sequence length, number of query sequences, or backbone tree
 539 size increased, with at most a linear impact. However, the tree
 540 size had the largest impact on the runtime, in that doubling the

541 tree size almost doubled the runtime, and the impact was less for
 542 the others. In addition, changes to these numbers did not impact
 543 the peak memory usage.

544 We also evaluated phylogenetic placement scalability to very
 545 large query sets and ultra-large backbone tree sizes. We limited
 546 this study to the alignment-based methods, which provided the
 547 highest accuracy in previous experiments, and so use the true
 548 alignment for this experiment. We used RNASim 180K for this
 549 study, with an estimated backbone tree (computed using Fast-
 550 Tree) of 180,000 leaves and placing 20,000 query sequences of
 551 10% of the full-length. We included all four of our pipelines, i.e.,
 552 BSCAMPP(e), BSCAMPP(p), SCAMPP(e), and SCAMPP(p).
 553 We also included EPA-ng and APPLES-2. We did not attempt
 554 to run pplacer, as our prior studies [11] shown it fails on smaller
 555 subtrees of the RNASim simulation due to numerics issues.

556 The methods ranged substantially in placement accuracy. All
 557 four of our pipelines (BSCAMPP or SCAMPP used with EPA-ng
 558 or pplacer) had lower error than EPA-ng (which had more than

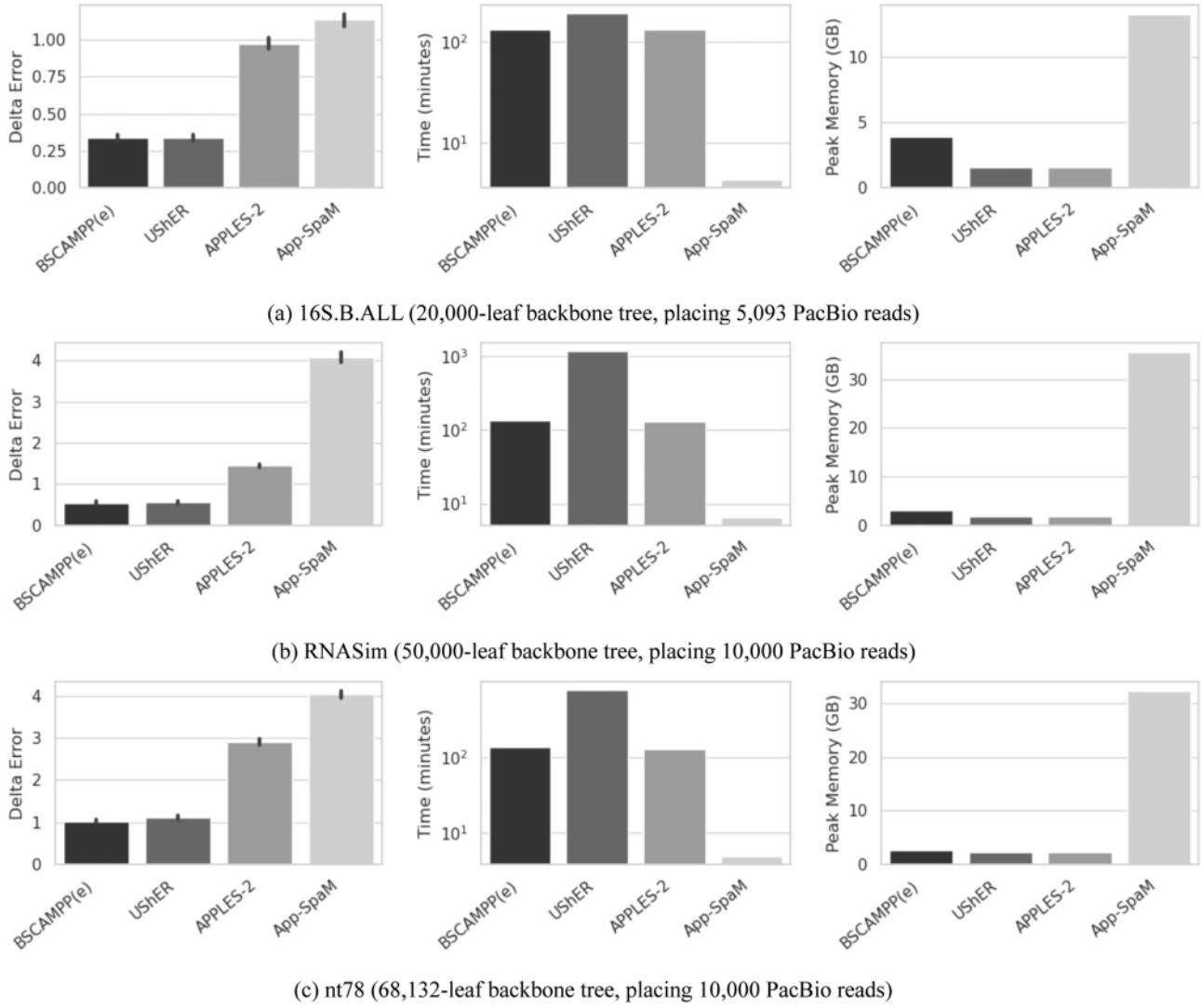


Fig. 5. Experiment 3: Results on PacBio reads (average query length 450 nt). For each of the three testing datasets (given in subfigures (a)–(c)), we show mean delta error (left), total runtime (middle), and peak memory usage (right) for phylogenetic placement methods (BSCAMPP(e), APPLES-2, UShER, and App-SpaM). The runtime shown includes the time to add sequences into the reference alignment using UPP for BSCAMPP(e), APPLES-2, and UShER.

559 twice the error of the least accurate of these pipelines) and
 560 APPLES-2 had much higher error. Between the four pipelines,
 561 from most accurate to least accurate, we have SCAMPP(p),
 562 BSCAMPP(p), SCAMPP(e), and BSCAMPP(e), but the differ-
 563 ence in error was extremely small (and all four pipelines had
 564 average delta error between 0.35 and 0.40).

565 The pipelines also differed for running time and memory us-
 566 age. The three fastest methods were APPLES-2, BSCAMPP(e),
 567 and EPA-ng (and in that order), and all finished in under
 568 20 minutes. BSCAMPP(p) was also reasonably fast, finish-
 569 ing in under an hour. The other two methods were much
 570 slower, with SCAMPP(e) finishing in almost 8 hours and
 571 SCAMPP(p) needing more than 13 hours to complete. Peak
 572 memory usage also varied between methods. From least to
 573 most peak memory usage we have APPLES-2 at 0.9 GB,
 574 BSCAMPP(p) at 0.9 GB, BSCAMPP(e) at 2.8 GB, SCAMPP(e)
 575 at 18.8 GB, SCAMPP(p) at 18.8 GB, and EPA-ng at 270.5 GB,
 576 Thus, BSCAMPP(e) and BSCAMPP(p) used a small amount
 577 of memory, SCAMPP(e) and SCAMPP(p) used a moderate

578 amount of memory, and only EPA-ng used a large amount of
 579 memory.

580 We also compared results for placing 2000 sequences into
 581 the RNASim 180 k tree using BSCAMPP(e), BSCAMPP(p),
 582 SCAMPP(e), SCAMPP(p), and APPLES-2 on true and esti-
 583 mated backbone trees; see Supplementary Materials Fig. S8.
 584 Using the true tree rather than estimated backbone tree had no
 585 impact on runtime or peak memory usage, as expected. Using
 586 true rather than estimated backbone trees had no impact on
 587 delta error for BSCAMPP(p) and SCAMPP(p), very slightly
 588 increased error for BSCAMPP(e) and SCAMPP(e), and then
 589 reduced error for APPLES-2. However, even on true trees as
 590 well as estimated backbone trees, the four SCAMPP/BSCAMPP
 591 pipelines were still much more accurate than APPLES-2.

VI. DISCUSSION

592 The methods we explored differed in runtime, memory usage,
 593 and placement accuracy. RAPPAS, App-SpaM, and EPA-ng had
 594

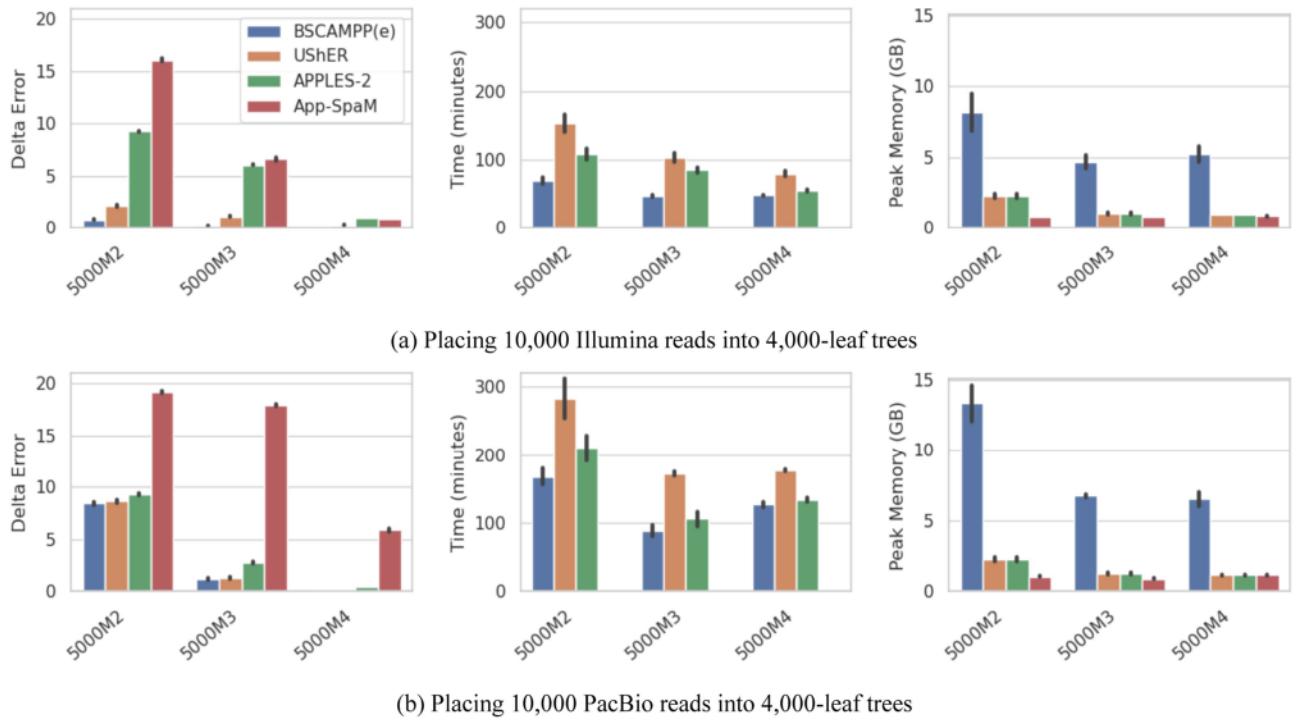


Fig. 6. Experiment 4: Impact of the rate of evolution and sequencing error model. Results are shown for three rates of evolution: 5000M2 (highest) to 5000M4 (lowest). (a) Illumina reads (query length 150 nt) and (b) PacBio reads (average query length 450 nt). Each row shows delta error (left), runtime (middle), and memory usage (right) for BSCAMPP(e), UShER, APPLES-2, and App-SpaM. Each method places 10,000 queries into 4,000-leaf estimated trees on two replicates for each dataset. Delta error is shown only for sequences that all methods successfully placed. APPLES-2 failed to place some query sequences (up to 208 out of 10,000) in some model condition; see Supplementary Material Table S5. The runtime shown includes the time to align the query sequences to the reference alignment (needed for all methods other than App-SpaM).

595 high memory requirements, making all of these methods unable
 596 to scale to the largest dataset we examined (RNAsim 180K,
 597 with 180K sequences in the backbone tree and 20,000 query
 598 sequences) on the UIUC Campus Cluster, with the limit to
 599 64 GB of memory. Indeed, EPA-ng and RAPPAS were unable
 600 to run on the RNAsim 50 K dataset under these conditions,
 601 due to their memory requirements. Thus, these three methods
 602 had higher memory requirements than the remaining methods,
 603 which included APPLES-2, UShER, and the four SCAMPP and
 604 BSCAMPP pipelines. This finding is perhaps as expected, as
 605 APPLES-2 and the four SCAMPP/BSCAMPP pipelines use
 606 divide-and-conquer, limiting the phylogenetic placement effort
 607 to small placement subtrees, and UShER's mutation-annotated
 608 tree reduces the memory requirements. However, we also con-
 609 firmed that EPA-ng *can* complete on the RNAsim 180K tree,
 610 placing 20,000 sequences into the tree, when given adequate
 611 memory (Experiment 5).

612 APPLES-2, BSCAMPP(e), and App-SpaM were the fastest
 613 methods, with a definite advantage to App-SpaM that is due
 614 to its not needing to perform a query alignment. However, as
 615 noted above, App-SpaM did not complete on the largest back-
 616 bone trees, due to the limitation to 64 GB, while SCAMPP(p),
 617 SCAMPP(e), and UShER were the slowest of the methods we
 618 tested.

619 The large speed advantage of BSCAMPP over SCAMPP is
 620 due to its producing a much smaller number of subtrees (at most
 621 300 for any condition, whereas SCAMPP produced 39-86 times

as many subtrees as BSCAMPP (Table S6 in the Supplementary Materials); for example, SCAMPP produced 18,590 subtrees for placing 20,000 query sequences into the RNAsim 50 K tree, while BSCAMPP produced only 300. This is the driving reason that BSCAMPP is so much faster than SCAMPP.

622 Our experiments showed that the four pipelines we present
 623 usually had the lowest delta error of the tested methods, with
 624 relatively minor differences between them, making computa-
 625 tional performance the main distinguishing feature. Therefore,
 626 the finding that BSCAMPP(e) is much faster than the other
 627 likelihood-based methods on these datasets makes it perhaps the
 628 method of choice for most applications where speed is important.

629 The accuracy achieved by BSCAMPP(e) on the condi-
 630 tions explored in this study was very high, surpassed only
 631 by BSCAMPP(p), SCAMPP(e), and SCAMPP(p). Moreover,
 632 BSCAMPP(e) had high accuracy even when placing into very
 633 large trees (e.g., the RNAsim 180K tree studied in Experiment 5,
 634 see Fig. 7). It also had high accuracy, better than the methods it
 635 was compared to, when placing Illumina reads into trees with
 636 high evolutionary diameters and where the reference alignment
 637 was very gappy (the 5000M2 condition studied in Experiment 4,
 638 see Fig. 6).

639 Indeed, in this study, the only substantially challenging con-
 640 dition for our pipelines was placing PacBio reads into trees with
 641 very high rates of evolution, i.e., the 5000M2 condition. Even
 642 here, BSCAMPP(e) was more accurate than the other tested
 643 methods, although the accuracy gap between BSCAMPP(e),
 644

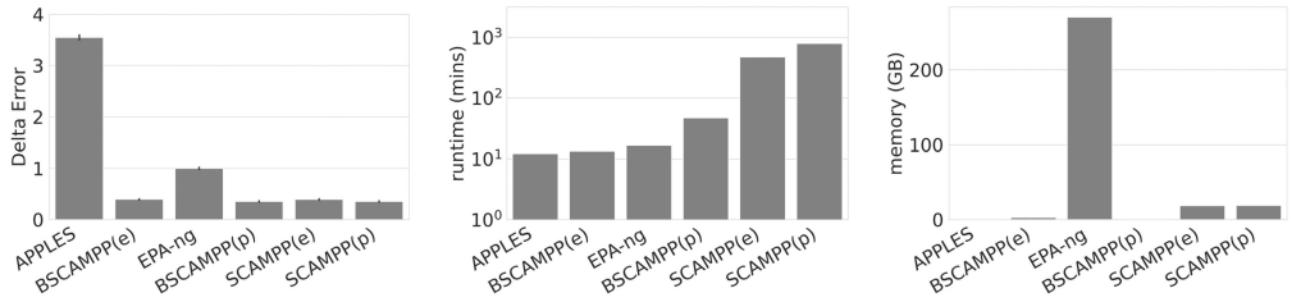


Fig. 7. Experiment 5: Evaluation of methods for placing 20,000 query sequences into the estimated RNA 180 K tree, using a dedicated machine. We show results for APPLES-2, BSCAMPP(e), BSCAMPP(p), SCAMPP(e), SCAMPP(p), and EPA-ng. Each method was given 16 cores and 512 GB of memory, and allowed to run to completion. We show delta error (left), runtime in minutes (middle, logarithmic scale) and peak memory usage in GBs (right) when placing 20,000 query sequences (average length 155 nt) into an RNAsim tree with 180,000 leaves. All methods use the true alignment of query sequences to the reference alignment. SCAMPP produced 18,590 subtrees for this dataset but BSCAMPP produced only 300 subtrees.

649 UShER, and APPLES-2 was small. However, we also see that
 650 when the rate of evolution dropped (the 5000M3 and 5000M4
 651 conditions), placement accuracy improved substantially. Thus,
 652 placement of reads with high sequencing error is in itself not a
 653 major challenge, nor is placing into trees with high evolutionary
 654 diameters; rather, it is the combination of the two that presents
 655 a large challenge to phylogenetic placement accuracy.

656 Also of interest is the comparison between EPA-ng and our
 657 four pipelines (BSCAMPP and SCAMPP used with either EPA-
 658 ng or pplacer) when placing into the largest tree we examine,
 659 RNAsim 180K (see Fig. 7). In this experiment, each of our
 660 pipelines was much more accurate than EPA-ng. We also see that
 661 the pipelines based on pplacer were slightly more accurate than
 662 the pipelines based on EPA-ng, and pipelines based on SCAMPP
 663 were slightly more accurate than pipelines based on BSCAMPP.
 664 Even so, on this dataset, these differences were small compared
 665 to the gap between EPA-ng and BSCAMPP(e) (the least accurate
 666 of the four pipelines).

667 To understand why EPA-ng has high error in this experiment,
 668 we consider what we learned about EPA-ng scalability on large
 669 backbone trees, both in terms of computational performance but
 670 also accuracy. Prior studies have suggested limits for EPA-ng
 671 to relatively small backbone trees due to computational rea-
 672 sons [11], [13], [17], but our preliminary study showed that
 673 EPA-ng had a jump in placement delta error as we increased the
 674 subtree size for the RNAsim dataset. Thus, our study potentially
 675 suggests that EPA-ng may have some numeric issues when plac-
 676 ing into very large trees that result in increased placement error, a
 677 trend that has been previously observed for pplacer [11]. Further
 678 research is needed to understand whether this explanation is
 679 correct.

680 VII. CONCLUSION

681 Phylogenetic placement of sequences into large backbone
 682 trees is fundamental to several bioinformatics problems, in-
 683 cluding microbiome analysis (e.g., taxonomic characteriza-
 684 tion of shotgun sequencing reads) and updating large phy-
 685 logenetic trees. Our prior work has shown that EPA-ng and
 686 pplacer, the two leading maximum likelihood based methods for

687 phylogenetic placement, failed to run on large backbone trees
 688 (EPA-ng due to memory requirements and pplacer due to numer-
 689 ical issues). SCAMPP [11] was designed to improve scalability
 690 of likelihood-based phylogenetic placement methods to large
 691 backbone trees: each query sequence extract a small subtree,
 692 into which it is then placed using the likelihood-based method.
 693 This approach provides high accuracy and scalability to large
 694 trees, but is nevertheless computationally intensive for placing
 695 large numbers of sequences, because of the number of subtrees
 696 that are extracted.

697 We designed BSCAMPP in order to achieve comparable
 698 scalability but much reduced speed compared to SCAMPP. To
 699 reduce the number of subtrees that are extracted, BSCAMPP
 700 uses a voting technique to select a small number of subtrees
 701 that suffices for all the query sequences. Our study shows that
 702 BSCAMPP, used with either pplacer or EPA-ng, is very close
 703 to the accuracy of SCAMPP and provides the same scalability
 704 improvement for both EPA-ng and pplacer, while dramatically
 705 reducing the runtime. Moreover, BSCAMPP used with EPA-ng,
 706 i.e., BSCAMPP(e), is extremely fast, and in many cases as fast
 707 as APPLES-2. Furthermore, BSCAMPP(e) scales well with the
 708 number of query sequences and query sequence length, making
 709 it suitable for phylogenetic placement whenever the backbone
 710 tree or number of sequences is large. Our study also shows
 711 that BSCAMPP used with pplacer, i.e., BSCAMPP(p), provides
 712 slightly better accuracy than BSCAMPP(e) but is somewhat
 713 slower. Whether this improvement in accuracy is worth the extra
 714 time depends on the application and dataset.

715 This study leaves several directions for future research. A
 716 more extensive study should explore phylogenetic placement of
 717 full-length sequences, and possibly also consider the problem
 718 of placing genome-length sequences. This particular direction
 719 raises issues of heterogeneity across the genome [36], a problem
 720 that is addressed by the DEPP [4] method for phylogenetic
 721 placement. In addition, while BSCAMPP(e) is fast, a possible
 722 improvement for the runtime could be explored by implementing
 723 parallel processing of subtrees (i.e., running instances of EPA-ng
 724 in parallel for different query/subtree sets). This might be partic-
 725 ularly helpful in cases with few queries per subtree. Future work
 726 should include an analysis of the runtime and memory usage

727 impacts of running EPA-ng concurrently on multiple compute
 728 nodes, in addition to running multiple instances of EPA-ng using
 729 fewer threads on a single compute node. Furthermore, given the
 730 cost of computing the query alignments, research into speeding
 731 up these alignments while maintaining high accuracy is also
 732 merited.

733 There are applications of phylogenetic placement methods
 734 that could be improved through the use of larger backbone
 735 tree sizes and many query sequences, now enabled with better
 736 accuracy through BSCAMPP. One such application is maximum
 737 likelihood tree estimation when there is substantial sequence
 738 length heterogeneity. Our prior work has shown that FastTree2,
 739 a very fast maximum likelihood method, has reduced accuracy
 740 on datasets with many short sequences [14], [37]. Alternative
 741 approaches that first construct a tree on the full-length se-
 742 quences and then add the short sequences into the tree using
 743 phylogenetic placement methods have the potential to provide
 744 improved accuracy and scalability on large trees. Exploring
 745 BSCAMPP in this context is therefore a good direction for future
 746 research.

747 This study also suggests a potential benefit for BSCAMPP(p),
 748 compared to BSCAMPP(e), for applications where high accu-
 749 racy is important. TIPP3 [3] is a method for taxonomic abun-
 750 dance profiling of metagenomic reads that uses pplacer to locate
 751 reads within gene-based taxonomies, and provides improved ac-
 752 curacy over TIPP [1] and TIPP2 [2], mainly because it performs
 753 phylogenetic placement into larger trees. A fast variant of TIPP3,
 754 called TIPP3-fast, uses BSCAMPP(e) instead of pplacer [3], and
 755 provides a great improvement in speed over TIPP3, but increases
 756 the abundance profiling error slightly. The results in this paper
 757 suggest the possibility that using BSCAMPP(p) within TIPP3
 758 might be a fruitful compromise between pplacer (which had the
 759 highest accuracy) and BSCAMPP(e) (which was the fastest),
 760 suggesting another direction for future work.

761 Overall, this study shows the potential for phylogenetic place-
 762 ment methods based on maximum likelihood to provide very
 763 high accuracy, even under very challenging conditions, such
 764 as placing into very large trees, placing into trees with high
 765 evolutionary diameters, or placing reads with high sequencing
 766 error. While the relative accuracy between methods depends on
 767 the conditions (properties of the query sequences and backbone
 768 tree), very often maximum likelihood-based methods provide
 769 better accuracy than other approaches, and especially better than
 770 methods that are alignment-free. These observations support the
 771 continued development of methods that methods like EPA-ng
 772 and pplacer, as well as methods like BSCAMPP that aim to
 773 improve the scalability of these methods to large trees.

774 VII. DATA AVAILABILITY

775 All datasets used in this study are from prior publica-
 776 tions. The RNAsim dataset is available at <https://databank.illinois.edu/datasets>IDB-1048258>. The 16S.B.ALL and nt78
 777 datasets are available at <https://databank.illinois.edu/datasets>IDB-9257957>. The 5000M2–5000M4 datasets are available at
 779 <https://databank.illinois.edu/datasets>IDB-2567453>.

781 REFERENCES

- [1] N.-P. D. Nguyen, S. Mirarab, B. Liu, M. Pop, and T. Warnow, "TIPP: Taxonomic identification and phylogenetic profiling," *Bioinformatics*, vol. 30, no. 24, pp. 3548–3555, 2014.
- [2] N. Shah, E. K. Molloy, M. Pop, and T. Warnow, "TIPP2: Metagenomic taxonomic profiling using phylogenetic markers," *Bioinformatics*, vol. 37, pp. 1839–1845, 2021, doi: [10.1093/bioinformatics/btab023](https://doi.org/10.1093/bioinformatics/btab023).
- [3] C. Shen, E. Wedell, M. Pop, and T. Warnow, "TIPP3 and TIPP3-fast: Improved abundance profiling in metagenomics," *PLoS Comput. Biol.*, vol. 21, no. 4, 2025, Art. no. e1012593.
- [4] Y. Jiang, M. Balaban, Q. Zhu, and S. Mirarab, "DEPP: Deep learning enables extending species trees using single genes," *Systematic Biol.*, vol. 72, no. 1, pp. 17–34, 2023.
- [5] L. Czech, A. Stamatakis, M. Dunthorn, and P. Barbera, "Metagenomic analysis using phylogenetic placement—a review of the first decade," *Front. Bioinf.*, vol. 2, 2022, Art. no. 871393. [Online]. Available: <https://www.frontiersin.org/articles/10.3389/fbinf.2022.871393>
- [6] S. Conlan, H. H. Kong, and J. A. Segre, "Species-level analysis of DNA sequence data from the NIH human microbiome project," *PLoS One*, vol. 7, no. 10, 2012, Art. no. e47075.
- [7] C. O. McCoy and F. A. Matsen, "Abundance-weighted phylogenetic diversity measures distinguish microbial community states and are robust to sampling depth," *PeerJ*, vol. 1, 2013, Art. no. e157.
- [8] P.-A. Chaumeil, A. J. Mussig, P. Hugenholtz, and D. H. Parks, "GTDB-Tk: A toolkit to classify genomes with the genome taxonomy database," *Bioinformatics*, vol. 36, no. 6, pp. 1925–1927, 2020.
- [9] H. M. Bik, D. L. Porazinska, S. Creer, J. G. Caporaso, R. Knight, and W. K. Thomas, "Sequencing our way towards understanding global eukaryotic biodiversity," *Trends Ecol. Evol.*, vol. 27, no. 4, pp. 233–243, 2012.
- [10] S. Mirarab, N. Nguyen, and T. Warnow, "SEPP: SATé-enabled phylogenetic placement," in *Biocomputing*. Singapore: World Scientific, 2012, pp. 247–258.
- [11] E. Wedell, Y. Cai, and T. Warnow, "SCAMPP: Scaling alignment-based phylogenetic placement to large trees," *IEEE/ACM Trans. Comput. Biol. Bioinf.*, vol. 20, no. 2, pp. 1417–1430, Mar./Apr. 2022, doi: [10.1109/TCBB.2022.3170386](https://doi.org/10.1109/TCBB.2022.3170386).
- [12] G. Chu and T. Warnow, "SCAMPP+FastTree: Improving scalability for likelihood-based phylogenetic placement," *Bioinf. Adv.*, vol. 3, no. 1, 2023, Art. no. vbad008, doi: [10.1093/bioadv/vbad008](https://doi.org/10.1093/bioadv/vbad008).
- [13] M. Balaban, S. Sarmashghi, and S. Mirarab, "APPLES: Scalable distance-based phylogenetic placement with or without alignments," *Systematic Biol.*, vol. 69, no. 3, pp. 566–578, 2020.
- [14] P. Zaharias and T. Warnow, "Recent progress on methods for estimating and updating large phylogenies," *Philos. Trans. Roy. Soc. B*, vol. 377, no. 1861, 2022, Art. no. 20210244.
- [15] P. Barbera et al., "EPA-ng: Massively parallel evolutionary placement of genetic sequences," *Systematic Biol.*, vol. 68, no. 2, pp. 365–369, 2019.
- [16] F. A. Matsen, R. B. Kodner, and E. V. Armbrust, "pplacer: Linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree," *BMC Bioinf.*, vol. 11, no. 1, 2010, Art. no. 538.
- [17] M. Balaban, Y. Jiang, D. Roush, Q. Zhu, and S. Mirarab, "Fast and accurate distance-based phylogenetic placement using divide and conquer," *Mol. Ecol. Resour.*, vol. 22, no. 3, pp. 1213–1227, 2022.
- [18] B. Linard, K. Swenson, and F. Pardi, "Rapid alignment-free phylogenetic identification of metagenomic sequences," *Bioinformatics*, vol. 35, no. 18, pp. 3303–3312, 2019, doi: [10.1093/bioinformatics/btz068](https://doi.org/10.1093/bioinformatics/btz068).
- [19] M. Blanke and B. Morgenstern, "App-SpaM: Phylogenetic placement of short reads without sequence alignment," *Bioinf. Adv.*, vol. 1, no. 1, 2021, Art. no. vbab027, doi: [10.1093/bioadv/vbab027](https://doi.org/10.1093/bioadv/vbab027).
- [20] Y. Turakhia et al., "Ultrafast Sample placement on Existing tRees (UShER) enables real-time phylogenetics for the SARS-CoV-2 pandemic," *Nature Genet.*, vol. 53, no. 6, pp. 809–816, 2021.
- [21] A. M. Kozlov, D. Darriba, T. Flouri, B. Morel, and A. Stamatakis, "RAxML-ng: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference," *Bioinformatics*, vol. 35, no. 21, pp. 4453–4455, 2019.
- [22] M. N. Price, P. S. Dehal, and A. P. Arkin, "FastTree 2—approximately maximum-likelihood trees for large alignments," *PLoS One*, vol. 5, no. 3, 2010, Art. no. e9490.
- [23] FHRC, "Taxtastic software, version 9.9. 2," 2022. Accessed: Feb. 20, 2022. [Online]. Available: <https://github.com/fhrc/taxtastic>
- [24] A. Stamatakis, "RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies," *Bioinformatics*, vol. 30, no. 9, pp. 1312–1313, 2014.

855 [25] S. Mirarab, N. Nguyen, S. Guo, L.-S. Wang, J. Kim, and T. Warnow,
 856 “PASTA: Ultra-large multiple sequence alignment for nucleotide and
 857 amino-acid sequences,” *J. Comput. Biol.*, vol. 22, no. 5, pp. 377–386,
 858 2015.

859 [26] N.-P. D. Nguyen, S. Mirarab, K. Kumar, and T. Warnow, “Ultra-large
 860 alignments using phylogeny-aware profiles,” *Genome Biol.*, vol. 16, no. 1,
 861 2015, Art. no. 124.

862 [27] J. Stoye, D. Evers, and F. Meyer, “Rose: Generating sequence families,”
 863 *Bioinformatics*, vol. 14, no. 2, pp. 157–163, 1998, doi: [10.1093/bioinformatics/14.2.157](https://doi.org/10.1093/bioinformatics/14.2.157).

864 [28] J. J. Cannone et al., “The comparative RNA web (CRW) site: An online
 865 database of comparative sequence and structure information for ribosomal,
 866 intron, and other RNAs,” *BMC Bioinf.*, vol. 3, no. 1, 2002, Art. no. 2.

867 [29] K. Liu et al., “SATé-II: Very fast and accurate simultaneous estimation of
 868 multiple sequence alignments and phylogenetic trees,” *Systematic Biol.*,
 869 vol. 61, no. 1, 2012, Art. no. 90.

870 [30] A. Stamatakis, “RAxML-VI-HPC: Maximum likelihood-based phyloge-
 871 netic analyses with thousands of taxa and mixed models,” *Bioinformatics*,
 872 vol. 22, no. 21, pp. 2688–2690, 2006.

873 [31] S. Mirarab and T. Warnow, “Data for 16s and 23s rRNA alignments,” 2017.
 874 [Online]. Available: https://doi.org/10.13012/B2IDB-1614388_V1

875 [32] C. Shen, B. Liu, K. P. Williams, and T. Warnow, “EMMA: A new method
 876 for computing multiple sequence alignments given a constraint subset
 877 alignment,” *Algorithms Mol. Biol.*, vol. 18, no. 1, Dec. 2023, Art. no. 21,
 878 doi: [10.1186/s13015-023-00247-x](https://doi.org/10.1186/s13015-023-00247-x).

879 [33] W. Fletcher and Z. Yang, “INDELible: A flexible simulator of biological
 880 sequence evolution,” *Mol. Biol. Evol.*, vol. 26, no. 8, pp. 1879–1888, 2009.

881 [34] W. Huang, L. Li, J. R. Myers, and G. T. Marth, “ART: A next-generation
 882 sequencing read simulator,” *Bioinformatics*, vol. 28, no. 4, pp. 593–594,
 883 Feb. 2012, doi: [10.1093/bioinformatics/btr708](https://doi.org/10.1093/bioinformatics/btr708).

884 [35] Y. Ono, K. Asai, and M. Hamada, “PBSIM: PacBio reads simulator—
 885 toward accurate genome assembly,” *Bioinformatics*, vol. 29, no. 1,
 886 pp. 119–121, Jan. 2013, doi: [10.1093/bioinformatics/bts649](https://doi.org/10.1093/bioinformatics/bts649).

887 [36] W. P. Maddison, “Gene trees in species trees,” *Systematic Biol.*, vol. 46,
 888 no. 3, pp. 523–536, 1997.

889 [37] V. Smirnov and T. Warnow, “Phylogeny estimation given sequence length
 890 heterogeneity,” *Systematic Biol.*, vol. 70, no. 2, pp. 268–282, 2021.

Eleanor Wedell received the undergraduate degree in applied mathematics from Drexel University, in 2015 and the MS degree in computer science from the University of Illinois Urbana-Champaign in 2022. She is currently working toward the PhD degree with Tandy Warnow in the Siebel School of Computing and Data Science, University of Illinois Urbana-Champaign. Her current work focuses on bioinformatics and network science.

892
 893
 894
 895
 896
 897
 898
 899
 900
 901

Chengze Shen received the bachelors’ degree with the University of California San Diego, and the MS degree from Carnegie Mellon University. He is currently working toward the PhD degree in the Siebel School of Computing and Data Science with the University of Illinois Urbana-Champaign. His current research is focused on bioinformatics.

902
 903
 904
 905
 906
 907
 908
 909

Tandy Warnow received the PhD degree in mathematics from the University of California at Berkeley in 1991 under the direction of Gene Lawler, and her research focuses on reconstructing complex and large-scale evolutionary histories. She is the Grainger Distinguished Chair in Engineering in the Siebel School of Computing and Data Science with the University of Illinois Urbana-Champaign.

910
 911
 912
 913
 914
 915
 916
 917
 918