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BSCAMPP: Batch-Scaled Phylogenetic Placement
on Large Trees

Eleanor Wedell

Abstract—Phylogenetic placement is the problem of placing se-
quences into a given phylogenetic tree, called a “backbone tree™.
EPA-ng and pplacer are the two most accurate phylogenetic place-
ment methods, but both can fail to complete when the backbone
tree is very large. Our recently designed SCAMPP framework has
been shown to scale both pplacer and EPA-ng to larger backbone
trees of up to 180,000 sequences by building a small placement
subtree for each query sequence and then using the phylogenetic
placement method to place that query sequence into that subtree.
However, the technique in SCAMPP produces many placement
subtrees (potentially a different one for each query sequence),
making it computationally expensive when placing many query
sequences. Here we present BSCAMPP (Batch-SCAMPP), a new
technique that overcomes this barrier by using the query sequences
to select a much smaller number of placement subtrees. We show
that BSCAMPP used with EPA-ng is much faster than SCAMPP
used with EPA-ng, and scales to ultra-large backbone trees. We
also show that BSCAMPP used with pplacer is much faster than
SCAMPP used with pplacer, and somewhat more accurate but
slower than BSCAMPP used with EPA-ng.

Index Terms—Phylogenetic placement, EPA-ng, microbiome
analysis, taxonomic identification, abundance profiling, pplacer.

1. INTRODUCTION

HYLOGENETIC placement is the problem of placing one

or more query sequences into a phylogenetic “backbone”
tree, which may be a maximum likelihood tree on a multiple
sequence alignment for a single gene, a taxonomy with leaves
labeled by sequences for a single gene [1], [2], [3], or a species
tree [4]. Phylogenetic placement has been used to taxonomically
characterize shotgun sequencing reads generated for an environ-
mental sample in a metagenomic analysis; the methods in the
TIPP family [1], [2], [3] are based on pplacer and achieve high
accuracy, but other approaches have also been used, see [5].
Phylogenetic placement into gene trees can also be used to
update existing gene trees with one or more new sequences,
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an application that is relevant to evolutionary biologists study-
ing specific gene families. Thus, phylogenetic placement is a
general tool with applications in both incremental tree building
and taxon identification and abundance profiling in microbiome
analysis [1], [2], [3], [3], [6], [7]. [8], [9].

Prior studies [10], [11], [12], [13], [14] have established
the high accuracy of phylogenetic placement methods based
on maximum likelihood (e.g., EPA-ng [15] and pplacer [16]).
However, the runtime of these methods is impacted by the
number of query sequences, the size of the backbone tree, and
the length of the reference alignment, and each of these can be
very large, depending on the application. In particular, for the
metagenomics application, the number of sequences placed into
the backbone tree can be very large (in the tens or hundreds of
thousands) [1], and future analyses might involve millions of
reads. Furthermore, many studies have shown improvement in
accuracy for abundance profiling, phylogenetic tree estimation,
etc., when placing into large backbone trees (e.g., [3]); hence,
phylogenetic placement methods that can process large numbers
of query sequences and run on large backbone trees are useful
tools.

Unfortunately, prior studies [10], [11], [12], [13] have also
shown that EPA-ng [15] can fail to complete due to high mem-
ory requirements and pplacer [16] can fail to complete due
to numerical issues (reporting negative infinity log likelihood
scores) when they are used on very large backbone trees. This
observation has led to the development of methods, such as
APPLES-2 [17], which use distances to place into large trees.
There are also methods for phylogenetic placement that are
alignment-free, such as RAPPAS [18] and App-SpaM [19].
These methods are potentially faster and more scalable than
pplacer and EPA-ng.

While pplacer has shown some accuracy advantages com-
pared to EPA-ng, EPA-ng is much faster [12]. In particular,
EPA-ng is optimized for placing a large number of query se-
quences (see Fig. 2 from [17]) and is capable of placing millions
of sequences into phylogenetic trees of up to a few thousand
sequences [15]. However, other studies have shown that EPA-ng
has a memory requirement that can be large for large backbone
trees [11]; hence, the backbone trees used with EPA-ng will be
limited to a few thousand sequences unless there is access to a
large amount of memory.

Previously we introduced the SCAMPP framework [11] to
enable both pplacer and EPA-ng to perform phylogenetic place-
ment into ultra-large backbone trees, and we demonstrated
its utility for placing into backbone trees with up to 200,000
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Experiment 1: Impact of subtree size and number of votes for BSCAMPP(e) on algorithm design dataset using the true query alignments. Mean Delta

Error plus standard error (left) and total runtime (right) for placement of all 10,000 fragmentary query sequences on an RNASim backbone tree with 50,000 leaves.
We show placement time and error for BSCAMPP(e) varying parameter v (the number of votes per query) and the parameter B (the size of the subtree). The
fragmentary sequences are a mean of 10% of the original ungapped sequence length (i.e., ~155 nt) with a standard deviation of 10 nucleotides.
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Fig. 2. Experiment 1: Performance on the RNASim 50 k algorithm design dataset, placing 10 k query sequences using true query sequence alignments. Mean

delta error (left), runtime (center), and peak memory usage in GB (right) for placement of all 10,000 query sequences on the estimated RNASim backbone tree with
50,000 leaves. The query sequences are a mean of 10% of the original ungapped sequence length (i.e., ~ 155 nt) with a standard deviation of 10 nucleotides. We

show placement time for BSCAMPP(e) and BSCAMPP(p) for 5 votes using a

subtree of 2000 leaves. SCAMPP(e) and SCAMPP(p) similarly use a subtree size

of 2000 leaves. The results from SCAMPP are also included for runtime, peak memory usage, and delta error. EPA-ng is not included because it was unable to run
given 64 GB of memory and 16 cores on these datasets due to out-of-memory issues. SCAMPP produced 8778 subtrees on this dataset but BSCAMPP produced

only 101 subtrees.

sequences. SCAMPP places each query sequence independently
into the backbone tree. To place a given query sequence, it finds
a “nearest leaf” in the tree, extracts a small subtree around that
leaf, and then places the query sequence into that subtree using
the selected phylogenetic placement method. In the final step, the
location of that placement is used to find the corresponding lo-
cation in the backbone tree. This divide-and-conquer technique
enables SCAMPP to scale pplacer and EPA-ng to ultra-large
backbone trees (up to 180,000 leaves so far) and achieves high
accuracy. However, because each query sequence extracts its
own subtree, this technique has the potential to pick as many
subtrees as there are query sequences, with the consequence
that SCAMPP has a high runtime and is memory-intensive.
The goal of this study is to improve SCAMPP with respect
to computational performance. Furthermore, although several
factors impact the runtime and memory usage of phylogenetic
placement methods, in this study we focus on the impact of
the backbone tree size and number of query sequences. To
achieve this, we have modified the divide-and-conquer strategy
in SCAMPP so that we make a small number of subtrees that
suffice for the given set of query sequences. As we will show,
this approach, which we call BSCAMPP (for Batch-SCAMPP),
has the same benefit for scalability as SCAMPP but dramatically
reduces the runtime and memory usage compared to SCAMPP,

and incurs only a small reduction in accuracy. We also show
that BSCAMPP used with EPA-ng is extremely fast, even on
ultra-large backbone trees.

The rest of the paper is organized as follows. We begin
in Section II with preliminary experiments evaluating EPA-ng
and pplacer accuracy and scalability, motivating the design of
BSCAMPP to improve the scalability these methods. We present
BSCAMPP in Section III but the experimental study where
we design BSCAMPP is described in Section IV. Experiments
evaluating BSCAMPP with EPA-ng and pplacer in comparison
to other phylogenetic placement methods are presented in Sec-
tion V. We provide a discussion of results in Section VI, and we
finish with conclusions in Section VII. Due to space constraints,
some of the results are provided in the Supplementary Materials.

II. PRELIMINARY EXPERIMENT

In this preliminary experiment (described in full in Supple-
mentary Materials Section S1, results in Figs. S1 and S2), we
had two objectives: first, to compare EPA-ng and pplacer for ac-
curacy and computational performance when placing a variable
number of query sequences into a 1000-leaf tree, and second,
to understand the impact of the query length and backbone tree
size on EPA-ng. We explore phylogenetic placement error using
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the “delta error” (see Section I'V-G) and runtime. We found that
pplacer is at least as accurate as EPA-ng and has a smaller peak
memory usage, and that EPA-ng is much faster than pplacer. We
also found that placement error increased for EPA-ng when the
backbone tree size increased from 2000 to 5000 leaves, and that
the increase in error was large for query sequences that were
short (10% of full-length, so ~ 155 nt).

These observations were used in the design and development
of BSCAMPBP, the subject of the next section.

ITI. Bscampp

We designed BSCAMPP with the goal of developing a divide-
and-conquer strategy that is much faster than SCAMPP but
achieves the same scalability goal. The input to BSCAMPP is the
same as for SCAMPP: a backbone tree T" with relevant numeric
parameters (e.g., branch lengths and substitution rate matrix), a
set @ of query sequences, a multiple sequence alignment of
the sequences at the leaves of the tree as well as @), and a
phylogenetic placement method M. In this study, we explore
BSCAMPP only with pplacer and EPA-ng, but it could be im-
plemented to work with other placement methods. In a sequence
of experiments (see Supplementary Materials Section S2), we
explored variants on the BSCAMPP design and developed one
that we present here.

BSCAMPP has three stages (see Algorithm 1); here we de-
scribe it for use with EPA-ng. Stage 1: The similarity score
S(q, s) is computed between every query sequence ¢ and leaf
sequence s, using the multiple sequence alignment (see Section
S2.1in the Supplementary Materials). Each query sequence g
then votes for v leaves with the largest similarity scores to g;
the top-scoring leaf is called closest(q). Stage 2a: Using the
similarity scores and votes from Step 1, we iteratively grow a set
7T of placement subtrees along with initial assignments of each
query sequence to one of the subtrees, until each query sequence
is assigned to a subtree. Stage 2b: We allow reassignments of
each query sequence to a different subtree, based on a sensitive
criterion. Stage 3: We run EPA-ng on the placement subtrees to
add the assigned query sequences into the subtrees, and then use
branch lengths to find appropriate positions in the backbone tree
T'. This three-stage approach is an elaboration on the SCAMPP
technique, except that in SCAMPP, each query sequence picks
a single placement subtree; therefore, in the SCAMPP design,
it is possible that there will be as many placement trees as there
are query sequences.

Implementation details BSCAMPP is written in Python with
certain parts written using OpenMP in C++. Since computing
the similarity score is a computationally intensive portion of the
BSCAMPP framework (requiring O(rgl) for g queries of length
[ compared to r reference leaves), a parallel implementation
using OpenMP allows for easier batch processing of queries.

IV. PERFORMANCE STUDY DESIGN
A. Overview

We evaluate placement methods for use with short sequences,
the application that would be encountered in placing short reads
into phylogenetic trees or taxonomies. Since many reads are

Algorithm 1: BSCAMPP Algorithm.

Algorithmic parameters: B (default 2000), v (default 5),
and phylogenetic placement method M.
Input: backbone tree T" and leafset S, query sequences @,
multiple sequence alignment A on S U Q.
Stage 1 (Initialization):
for every query sequence g € @ do
Compute similarity score S(g, s) between g and
s,Vs e S.
Select v top-scoring leaves as the votes of g.
closest(q) + argmax,S(q, s).
end for
Initialize 7 < (), Seeds + 0.

Stage 2a (Constructing 7, the set of subtrees, and initial
assignment of query sequences):
while there are query sequences not yet assigned to any
subtree do
Choose the most-voted leaf = in the tree as seed.
Build a subtree ¢, with B leaves using breadth-first
search based on branch length.
Seeds + z,T + tz.
for every unassigned query sequence g do
if closest(q) € t; then
assign g to £, and remove the votes from q.
end if
end for
end while

Stage 2b (Allow reassignments of query sequences):

for every query sequence g and for every tree t;, € 7 do
Let t be the tree that g is assigned in Stage 2a.
Compute weighted path distance from closest(q) to x.
Let y € Seeds be the seed sequence that has the

minimum distance to q.

Reassign g to t if ¢, # t.

end for

Stage 3 (Phylogenetic Placement):
for every subtree ¢, € T do
Run method M on ¢, and its assigned query sequences
to produce t},.
Use the technique from SCAMPP to add query sequences
in t, to T (the backbone tree).
end for

Output: a file containing all placements, with their
requisite confidence score, distal length, placement edge
number, etc.

placed in each run, scalability to large numbers of reads is a
relevant question. We use simulated and biological datasets in
this study, dividing the datasets into algorithm design data and
testing data.

We use simulated datasets for both the algorithm design and
testing phases, and we also include a biological dataset in the
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TABLEI
TESTING DATASET STATISTICS.
Dataset # backbone | # queries | mean sequence | alignment type p-distance gaps
sequences length length (bio or sim) mean proportion
165.B.ALL [28] 20,000 5,093 1,366 6,857 biological 210 .801
RNASim 50k [25] 50,000 < 10,000 1,545 1,590 simulated 373 028
RNASim 180k [25] 180,000 < 20,000 1,545 1,590 simulated 373 028
nt78 [22] 68,132 10,000 1,279 1,287 simulated 404 006
5000M2 [32] 4,000 10,000 1,018 52,606 simulated 693 981
5000M3 [32] 4,000 10,000 992 24,062 simulated .660 958
5000M4 [32] 4,000 10,000 966 22,403 simulated 530 957

The first column gives the name of the dataset and the publication describing the dataset. For cach dataset, we show the number of sequences, the
number of queries, the mean (ungapped) sequence length, the length of the reference alignment, its type (biological or simulated), the mean p-distance
(i.e., normalized Hamming distances) between pairs of sequences in the alignment, and the proportion of the alignment that is gapped. Results shown
for the RNASim datasets are based on post-processed results (i.e., after sites with at least 95% gaps are masked).

testing data collection. The simulated datasets have known true
trees and the biological dataset has an estimated maximum
likelihood tree that serves as a reference tree. We report place-
ment error using “delta error”, a standard metric used in prior
studies [10], [13] (see Section IV-G).

Experiments 1-5 provide an evaluation of BSCAMPP used in
conjunction with pplacer or EPA-ng in comparison to SCAMPP
used with these methods, and we refer to these combinations as
BSCAMPP(e), BSCAMPP(p), SCAMPP(e), and SCAMPP(p).
Some of these experiments also include other phylogenetic
placement methods (App-SpaM, APPLES-2, UShER [20]).

The base experimental condition uses query sequences that
are 10% of the length of the average full-length sequence
(i.e., 1279—1545 nt, depending on the dataset, see Table I)
and estimated backbone trees. In our experiments, we explore
modifications to this default model condition by changing the
query sequence length, adding sequencing error into the query
sequences, and placing into true rather than estimated backbone
trees.

® Experiment 1 is the design of BSCAMPP, and uses the
algorithm design data.

® Experiment 2 compares our divide-and-conquer pipelines
(SCAMPP and BSCAMPP used with EPA-ng or pplacer)
to all other selected phylogenetic placement methods on
the base experimental condition.

® Experiment 3 compares BSCAMPP(e) to UShER [20],
APPLES-2, and App-SpaM, using reads with sequencing
Error.

e Experiment 4 compares BSCAMPP(e) to UShER,
APPLES-2, and App-SpaM, on datasets with changing
rates of evolution.

* Experiment 5 evaluates scalability of phylogenetic place-
ment methods, and includes a comparison between placing
into true and estimated backbone trees.

See Supplementary Materials Section S7 for additional details

about datasets and commands used in our experimental study.

B. Methods

We explore BSCAMPP used with either pplacer (v1.1.
alphal9) or EPA-ng (v0.3.8). We compare these to SCAMPP
(v2.1.1) used with pplacer and EPA-ng, and also to UShER [20],
App-SpaM, RAPPAS, and APPLES-2 (v2.0.11).

Some phylogenetic placement methods require numeric pa-
rameters to be estimated for the backbone trees. All backbone

tree numeric parameters (branch lengths, 4 x 4 substitution rate
matrix, etc.) are re-estimated according to the specifications of
the phylogenetic placement method: RAXML-ng (v1.0.3) [21]
parameters were used for EPA-ng, UShER, App-SpaM,
SCAMPP(e), and BSCAMPP(e); FastTree-2 (v2.1.11) [22] un-
der Minimum Evolution parameters were used for APPLES-
2. When we run pplacer (whether on its own or inside
BSCAMPP(p) and SCAMPP(p)), we use taxtastic [23] with
FastTree-2 [22] numeric parameters, since this improves accu-
racy and scalability according to [12], [17].

C. Computational Resources

For Experiments 1-4, all methods are given four hours to
run with 64 GB of memory and 16 cores. These analyses were
run on the UIUC Campus Cluster, which is heterogeneous (i.e.,
some machines are older and hence slower than others). While
all methods are given 16 cores and 64 GB, different analyses
may have access to very different computational resources.
For these analyses on the Campus Cluster, when placement
time for SCAMPP(e), SCAMPP(p), and UShER, was over four
hours (which occurred in all experiments with 10,000 or more
query sequences), the query sequences were split into subsets
of 250 sequences each. SCAMPP(e), SCAMPP(p), and UShER
were then run for each subset containing 250 query sequences.
Experiment 5 is performed on a dedicated machine with 1 TB
of memory and where analyses of up to 4 weeks are permitted.

D. Datasets

All datasets in this study include a tree and a set of reference
sequences for a single gene that are in a multiple sequence align-
ment. The average ungapped length ranges from 966 to 1545 nt
(Table I). For the simulated datasets, we can place into either the
model tree or an estimated tree, while for the biological dataset,
we can only use an estimated tree. To construct an estimated
tree for the simulated datasets, we used FastTree-2 [22], a fast
maximum likelihood method, under the GTRGAMMA model.
For the 16S.B.ALL dataset, we use a published estimated tree
for this dataset, which is a maximum likelihood tree computed
using RAXML [24] on the reference sequence alignment. All
datasets are from prior studies and are freely available in public
repositories (see Data Availability statement).

1) RNASim: We use samples from the RNASim dataset [25],
which is a simulated dataset of 1,000,000 sequences that evolve
down a model tree under a biophysical model to preserve RNA
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secondary structure. Subsets of the million-sequence simulated
dataset were used in prior studies evaluating phylogenetic place-
ment methods [11], [13], [17], and provide a substantial chal-
lenge due to the dataset size. For this study, we split this dataset
into two subsets by taking the model tree and splitting it into
two clades, with one having approximately 600,000 sequences
and the other having approximately 400,000 sequences. This
defines two sets of sequences, with the smaller one used for
algorithm design (Experiment 1) and the larger one for testing
(Experiments 2, 3, and 5). We place into a maximum likelihood
tree on the true alignment (estimated using FastTree-2), using the
true alignment for our Experiments 1 and 5 and using alignments
estimated with UPP [26] for Experiments 2 and 3. We have
also included an experiment on true trees in the supplementary
materials.

2) nt78: We also use the nt78 datasets, which were simulated
for FastTree-2 [22]; these contain 10 replicates, simulated with
Rose [27], each with 78,132 sequences in a multiple sequence
alignment and the simulated backbone tree. We picked one
replicate randomly, using 68,132 sequences for the backbone
and 10,000 sequences for the query sequences. We placed the
query sequences into a maximum likelihood tree, estimated
using FastTree-2 [22] on the true alignment. This dataset is used
in the testing experiments.

3) 16S.B.ALL: For biological dataset analysis, we use
165.B.ALL, a large biological dataset with 27,643 sequences
and a reference alignment based on structure from The Com-
parative Ribosomal Website (CRW) [28]. 16S.B.ALL contains
some duplicate sequences; these were removed before analysis,
producing a dataset with 25,093 sequences. Of these, 5,093
sequences were randomly selected as query sequences and the
remaining were made backbone sequences. A maximum like-
lihood tree for this dataset was computed for the SATE-II [29]
study on this reference alignment using RAxML [30] and serves
as the backbone tree into which we place the query sequences.
When computing delta error, we used the 75% bootstrap tree
(i.e., the result of collapsing all edges with bootstrap support
below 75% ) as the reference topology. The maximum likelihood
tree and the 75% bootstrap tree are available at [31].

4) 5000M(2-4): This dataset, originally from [32] was gen-
erated using INDEL.ible [33] with a heterogeneous indel model.
Each set contains 5000 simulated sequences. The 5000M2 con-
dition reflects the highest rate of evolution in the dataset, and the
5000M4 condition reflects the lowest rate of evolution. For our
experiments, 1000 sequences are randomly selected as queries
and used to generate 10,000 query sequences under the Illumina
or PacBio models. We place these queries into a maximum
likelihood tree, estimated using FastTree-2 [22] on the true
alignment of the remaining 4000 sequences.

E. Query Sequence Generation

For Experiments 1, 2, and 5 we generated fragments from the
full-length sequences for the nt78, 16S.B.ALL, and RNASim
datasets, starting at a randomly selected location. The fragmen-
tary sequence lengths are a mean of 10% of the original ungapped
sequence length with a standard deviation of 10 nucleotides.

Since the average full-length sequences for these datasets are
in the 1279-1545 range (Table I), these fragmentary sequences
have average lengths in the range 128-155.

For Experiments 3 and 4 we simulated reads with sequencing
error. [llumina reads (length 150) were generated using the ART
sequence simulator [34], and PacBio reads (length 450) with
higher sequencing error were simulated using PBSIM [35].

F. Additional Details About Experiments

For the RNASim datasets with at least 50,000 sequences,
we performed alignment site masking as follows. Those sites
containing more than 95% gaps were masked, i.e., removed; this
reduced the alignment length from 21,947 to 1,590. Masking was
not performed for any other dataset. For the nt78 datasets, we
used the third replicate for the experiment. We picked 10,000
sequences at random for the query sequences and used the
remaining 68,132 sequences as backbone sequences.

G. Evaluation Criteria

We report placement error using average delta error [10], [11],
[17], where the delta error for a single query sequence is the
increase in the number of missing branches (FN) produced by
adding the query sequence into the backbone tree, and hence is
always non-negative; this is the same as the node distance when
the backbone tree is the true tree. This requires the definition of
the “true tree”, which is the model tree for the simulated data
and the published reference tree for the biological data. See
Section S8 in the Supplementary Materials for additional details.
The methods are also evaluated with respect to runtime and peak
memory usage.

V. RESULTS

A. Experiment 1: BSCAMPP Design

To design BSCAMPP, we used EPA-ng as the base method
and the algorithm design data. We considered four differ-
ent strategies, described in Supplementary Materials Section
S2.1. We found that variant 4 (see Section III) provided
accuracy that was comparable with the next most accurate
method, but had better computational performance (Fig. S3
in the Supplementary Materials). Based on this, we selected
variant 4.

Having selected variant 4, we then performed additional ex-
periments on the two algorithm design datasets to set the values
for two parameters: the size of the subtrees and the number
of votes per query sequence. We varied the subtree parameter
setting from 1000, 2000, 3000, 5000 and 10,000 leaves. For each
subtree size, we ran BSCAMPP(e) with 5 and 25 votes per query
sequence. Results for this experiment are shown in Fig. 1 (see
also the Supplementary Materials Table S1).

When the subtree size exceeds 2,000 leaves, BSCAMPP(e)
had over twice the delta error than it did for 1,000- and 2,000-leaf
subtrees; therefore, we set the default subtree size to 2,000. We
also see a very small reduction in delta error as the number
of votes increases, but the reduction is extremely small and
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increases the runtime; therefore, we set the default number of
votes to 5.

Using these parameter settings for BSCAMPP(e) and
BSCAMPP(p), we show a comparison to SCAMPP(e),
SCAMPP(p), and EPA-ng in Fig. 2. EPA-ng was unable to place
into the 50,000-leaf backbone tree given the memory limitations.
SCAMPP(p) was the most accurate method, with a delta error
of 0.39, followed by BSCAMPP(p) at 0.41, SCAMPP(e) at
0.43, and BSCAMPP(e) at 0.45. These four methods differed
substantially in runtime, with SCAMPP(p) the slowest, using
over 27 hours to place the query sequences, and BSCAMPP(e)
the fastest, using just 6 minutes. We also note that SCAMPP pro-
duced 8778 subtrees for this dataset while BSCAMPP only pro-
duced 101 subtrees; this is the driving factor for why BSCAMPP
is so much faster than SCAMPP.

In Experiments 24, we will not examine BSCAMPP(p),
SCAMPP(p), or SCAMPP(e), and will focus our attention just
on BSCAMPP(e).

B. Experiment 2: Comparison of BSCAMPP(e) to Other
Phylogenetic Placement Methods on the Base Experimental
Condition

In this experiment, we compare BSCAMPP(e) to App-SpaM,
RAPPAS, UShER, APPLES-2, and EPA-ng on the testing
datasets: nt78, RNASim 50 K, and 165.B.ALL. All query se-
quences are fragmentary with lengths 10% of their full lengths.
As with all our experiments, the methods were given 64 GB of
memory and were run on the UIUC Campus Cluster, a hetero-
geneous computational infrastructure, which limits all analyses
to four hours.

To avoid biasing in favor of the alignment-based methods,
we used estimated rather than true query alignments for this
experiment. The results when query sequences are placed with
an alignment using UPP [26] are shown in Fig. 3.

RAPPAS and EPA-ng failed to complete on these datasets
(except for EPA-ng on 16S.B.ALL) due to needing more than
the available memory (64 GB); the other methods succeeded in
running on all the datasets and placed all the query sequences
into the backbone trees.

APPLES-2 was consistently much less accurate than
BSCAMPP(e) and UShER. App-SpaM was slightly more ac-
curate than BSCAMPP(e) and UShER on the 16S.B.ALL
dataset and then much less accurate on the other two datasets.
UShER was slightly more accurate than BSCAMPP(e) on
the 16S.B.ALL dataset but less accurate (by a slightly
larger amount) on the other two datasets. Overall, therefore,
BSCAMPP(e) and UShER are the two most accurate methods
on these three datasets, with perhaps a small advantage to
BSCAMPP(e).

App-SpaM was by far the fastest method and UShER was the
slowest method. BSCAMPP(e) and APPLES-2 were very close
in runtime, each with an advantage over the other on one dataset.
EPA-ng only completed on one of the three datasets, and on this
dataset its runtime was similar to BSCAMPP(e) and APPLES-2.
As seen in Table S2 in the Supplementary materials, the speed
advantage of App-SpaM over all other methods is due to the

time used to perform the query alignment (approx. 29 minutes
for 16S.B.ALL, 115 minutes for RNASim, and 55 minutes for
nt78). Thus, App-SpaM, which is alignment-free, is much faster
than the other methods, which all require query alignments. The
methods also differed with respect to peak memory usage, with
EPA-ng having the highest memory requirement and App-SpaM
the second highest; the other methods have very low memory
usage on these datasets.

C. Experiment 3: Performance Using Reads With Sequencing
Error

In Experiment 3, we compare BSCAMPP(e) to APPLES-2,
UShER, and App-SpaM on simulated reads under Illumina and
PacBio error models for the testing datasets 16S.B.ALL, nt78,
and RNASim 50 k. All simulated reads were aligned to the refer-
ence sequences with UPP, and the alignment runtime is included
along with the placement time for alignment-based methods
(BSCAMPP(e), UShER, and APPLES-2) in this experiment.

On the Illumina read condition (Fig. 4), we see the fol-
lowing trends. On the simulated datasets (RNASim and nt78),
BSCAMPP(e) was the most accurate method, followed by
UShER, APPLES-2, and then App-SpaM. On the biological
dataset (16S.B.ALL), App-SpaM was the most accurate method,
and BSCAMPP(e) and UShER closely follow. APPLES-2 shows
over twice the placement error of BSCAMPP(e) and UShER.

Runtime for all alignment-based methods includes the read
alignment process. As in Experiment 2, this accounts for the
majority of the runtime for both BSCAMPP(e) and APPLES-
2 (see Table S3 in the Supplementary Materials). UShER was
the slowest method and App-SpaM was the fastest, with near
instantaneous placement. App-SpaM used more memory than
the alignment-based methods, requiring at least 30 GB for the
simulated datasets and 15 GB for the biological dataset, while
the alignment-based methods used at most 3 GB on each dataset.

Results on the PacBio-style reads show similar trends (Fig. 5).
In all cases, BSCAMPP(e) was the most accurate method,
closely followed by UShER. APPLES-2 had more than twice
the error of BSCAMPP(e) and UShER, and App-SpaM had the
highest error. Runtime trends are similar to the IIlumina-style
reads. For each condition, App-SpaM placed all query sequences
in at most 7 minutes, while the other methods used at least
two hours (with UShER using the most time). Furthermore, the
query alignment step dominates the runtime for BSCAMPP(e)
and APPLES-2 (see Table 5S4 in the Supplementary Materials).
BSCAMPP(e) had slightly higher memory usage than UShER
and APPLES-2, using up to 4 GB for the biological dataset, and
App-SpaM used the most memory of all methods shown.

D. Experiment 4: Performance on Datasets With Variable
Rates of Evolution

The purpose of Experiment 4 is to evaluate placement meth-
ods as the rate of evolution changes. We used the 5000M2—
5000M4 datasets (see Table I). These datasets have 5000 se-
quences and different rates of evolution (moderate for 5000M4 to
high for 5000M2). We selected 4000 sequences for the backbone
tree and used the remaining 1000 sequences to generate query
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Fig. 3. Experiment 2: Performance using estimated query sequence alignments on testing data. We show from left to right - Mean delta error, total runtime, and

peak memory usage in GB for three datasets placing large sets of queries into large estimated reference trees. The query sequences are a mean of 10% of the original
ungapped sequence length (i.e., ~ 137 nt for 165.B.ALL, 155 nt for RNASim, and 128 nt for nt78) with a standard deviation of 10 nucleotides. Query sequence
alignments are estimated using UPP, and the alignment time is included in the runtime for the alignment-based methods (all except RAPPAS and App-SpaM). We
show placement time for BSCAMPP(e) for 5 votes with a subtree size of 2000 (default settings). The results from UShER, APPLES-2, App-SpaM, RAPPAS, and
EPA-ng are also included (an X indicates that RAPPAS and EPA-ng were unable to run due to out-of-memory issues).

sequences. These query sequences were generated under two
models of sequencing error: Illumina and PacBio.

APPLES-2 did not return placements for some queries for
many of these datasets (see Supplementary Materials Table S5).
We show delta error on placements for those query sequences
that returned placements for all methods in Fig. 6; for results
on all 10,000 queries (without APPLES-2), see Supplementary
Fig. S4.

On Illumina reads (Fig. 6(a)), BSCAMPP(e) was the most
accurate method for all conditions. On the 5000M2 data, the
condition with the highest rate of evolution, BSCAMPP(e)
had less than half the error of UShER, the second most
accurate method. The other two methods, APPLES-2 and
App-SpaM, had much higher error. As the rate of evolu-
tion lowers, the relative accuracy remains the same, but all
methods improved in accuracy and the gap between methods
decreased.

Results on PacBio reads (Fig. 6(b)) show a less clear de-
lineation between the accuracy of BSCAMPP(e) and UShER,
but BSCAMPP(e) was still more accurate, closely followed by
UShER and APPLES-2. App-SpaM had a higher error than all
other methods.

The runtime for the alignment-based methods have the align-
ment phase included. Of these methods, BSCAMPP(e) was the
fastest, followed by APPLES-2 and then UShER. App-SpaM,
which is alignment-free, was so fast that its runtime is not
even visible in Fig. 6, and required the least memory usage.
BSCAMPP(e) used more memory than all other methods, up to
15 GB.

E. Experiment 5: Scalability Experiment

In this experiment, we explore BSCAMPP(e) scalability. The
previous experiments were all run on the Campus Cluster, a
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Fig. 4. Experiment 3: Results on Illumina reads (query length 150 nt). For each of the three testing datasets (given in subfigures (a)- (c)), we show mean delta
error (left), total runtime (middle), and peak memory usage (right) for phylogenetic placement methods (BSCAMPP(e), APPLES-2, UShER, and App-SpaM). The
runtime shown includes the time to add sequences into the reference alignment using UPP for BSCAMPP(e), APPLES-2, and UShER.

heterogeneous infrastructure. Although all analyses were guar-
anteed 64 GB of memory, the heterogeneity of the Campus
Cluster means that the runtime comparisons are noisy. Hence, in
this section, we provide a limited evaluation using a dedicated
machine with 1 TB of memory. This machine also allows runtime
of up to 4 weeks and so allows us to explore all the best methods,
even when placing a large number of sequences into very large
trees.

We examine computational performance for BSCAMPP(e)
under three conditions:

® as a function of the number of query sequences

® as a function of the query sequence length

® as a function of the backbone tree size

For the first three evaluations (see Supplementary Materials
Figs. 85 to S7), BSCAMPP(e) runtime increased as the query
sequence length, number of query sequences, or backbone tree
size increased, with at most a linear impact. However, the tree
size had the largest impact on the runtime, in that doubling the

tree size almost doubled the runtime, and the impact was less for
the others. In addition, changes to these numbers did not impact
the peak memory usage.

We also evaluated phylogenetic placement scalability to very
large query sets and ultra-large backbone tree sizes. We limited
this study to the alignment-based methods, which provided the
highest accuracy in previous experiments, and so use the true
alignment for this experiment. We used RNASim 180K for this
study, with an estimated backbone tree (computed using Fast-
Tree) of 180,000 leaves and placing 20,000 query sequences of
10% of the full-length. We included all four of our pipelines, i.e.,
BSCAMPP(e), BSCAMPP(p), SCAMPP(e), and SCAMPP(p).
We also included EPA-ng and APPLES-2. We did not attempt
to run pplacer, as our prior studies [11] shown it fails on smaller
subtrees of the RNASim simulation due to numerics issues.

The methods ranged substantially in placement accuracy. All
four of our pipelines (BSCAMPP or SCAMPP used with EPA-ng
or pplacer) had lower error than EPA-ng (which had more than
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Fig. 5. Experiment 3: Results on PacBio reads (average query length 450 nt). For each of the three testing datasets (given in subfigures (a)— (c)), we show mean

delta error (left), total runtime (middle), and peak memory usage (right) for phylogenetic placement methods (BSCAMPP(e), APPLES-2, UShER, and App-SpaM).
The runtime shown includes the time to add sequences into the reference alignment using UPP for BSCAMPP(e), APPLES-2, and UShER.

twice the error of the least accurate of these pipelines) and
APPLES-2 had much higher error. Between the four pipelines,
from most accurate to least accurate, we have SCAMPP(p),
BSCAMPP(p), SCAMPP(e), and BSCAMPP(e), but the differ-
ence in error was extremely small (and all four pipelines had
average delta error between 0.35 and 0.40).

The pipelines also differed for running time and memory us-
age. The three fastest methods were APPLES-2, BSCAMPP(e),
and EPA-ng (and in that order), and all finished in under
20 minutes. BSCAMPP(p) was also reasonably fast, finish-
ing in under an hour. The other two methods were much
slower, with SCAMPP(e) finishing in almost 8 hours and
SCAMPP(p) needing more than 13 hours to complete. Peak
memory usage also varied between methods. From least to
most peak memory usage we have APPLES-2 at 0.9 GB,
BSCAMPP(p) at 0.9 GB, BSCAMPP(e) at 2.8 GB, SCAMPP(e)
at 18.8 GB, SCAMPP(p) at 18.8 GB, and EPA-ng at 270.5 GB,
Thus, BSCAMPP(e) and BSCAMPP(p) used a small amount
of memory, SCAMPP(e) and SCAMPP(p) used a moderate

amount of memory, and only EPA-ng used a large amount of
memory.

We also compared results for placing 2000 sequences into
the RNASim 180 k tree using BSCAMPP(e), BSCAMPP(p),
SCAMPP(e), SCAMPP(p), and APPLES-2 on true and esti-
mated backbone trees; see Supplementary Materials Fig. S8.
Using the true tree rather than estimated backbone tree had no
impact on runtime or peak memory usage, as expected. Using
true rather than estimated backbone trees had no impact on
delta error for BSCAMPP(p) and SCAMPP(p), very slightly
increased error for BSCAPP(e) and SCAMPP(e), and then
reduced error for APPLES-2. However, even on true trees as
well as estimated backbone trees, the four SCAMPP/BSCAMPP
pipelines were still much more accurate than APPLES-2.

VI. DISCUSSION

The methods we explored differed in runtime, memory usage,
and placement accuracy. RAPPAS, App-SpaM, and EPA-ng had
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Fig. 6.

Experiment 4: Impact of the rate of evolution and sequencing error model. Results are shown for three rates of evolution: 5000M2 (highest) to 5000M4

(lowest). (a) Illumina reads (query length 150 nt) and (b) PacBio reads (average query length 450 nt). Each row shows delta error (left), runtime (middle), and
memory usage (right) for BSCAMPP(e), UShER, APPLES-2, and App-SpaM. Each method places 10,000 queries into 4,000-leaf estimated trees on two replicates
for each dataset. Delta error is shown only for sequences that all methods successfully placed. APPLES-2 failed to place some query sequences (up to 208 out
of 10,000) in some model condition; see Supplementary Material Table S5. The runtime shown includes the time to align the query sequences to the reference

alignment (needed for all methods other than App-SpaM).

high memory requirements, making all of these methods unable
to scale to the largest dataset we examined (RNASim 180K,
with 180K sequences in the backbone tree and 20,000 query
sequences) on the UIUC Campus Cluster, with the limit to
64 GB of memory. Indeed, EPA-ng and RAPPAS were unable
to run on the RNASim 50 K dataset under these conditions,
due to their memory requirements. Thus, these three methods
had higher memory requirements than the remaining methods,
which included APPLES-2, UShER, and the four SCAMPP and
BSCAMPP pipelines. This finding is perhaps as expected, as
APPLES-2 and the four SCAMPP/BSCAMPP pipelines use
divide-and-conquer, limiting the phylogenetic placement effort
to small placement subtrees, and UShER’s mutation-annotated
tree reduces the memory requirements. However, we also con-
firmed that EPA-ng can complete on the RNASim 180K tree,
placing 20,000 sequences into the tree, when given adequate
memory (Experiment 5).

APPLES-2, BSCAMPP(e), and App-SpaM were the fastest
methods, with a definite advantage to App-SpaM that is due
to its not needing to perform a query alignment. However, as
noted above, App-SpaM did not complete on the largest back-
bone trees, due to the limitation to 64 GB, while SCAMPP(p),
SCAMPP(e), and UShER were the slowest of the methods we
tested.

The large speed advantage of BSCAMPP over SCAMPP is
due to its producing a much smaller number of subtrees (at most
300 for any condition, whereas SCAMPP produced 39-86 times

as many subtrees as BSCAMPP (Table S6 in the Supplementary
Materials); for example, SCAMPP produced 18,590 subtrees
for placing 20,000 query sequences into the RNASim 50 K tree,
while BSCAMPP produced only 300. This is the driving reason
that BSCAMPP is so much faster than SCAMPP.

Our experiments showed that the four pipelines we present
usually had the lowest delta error of the tested methods, with
relatively minor differences between them, making computa-
tional performance the main distinguishing feature. Therefore,
the finding that BSCAMPP(e) is much faster than the other
likelihood-based methods on these datasets makes it perhaps the
method of choice for most applications where speed is important.

The accuracy achieved by BSCAMPP(e) on the condi-
tions explored in this study was very high, surpassed only
by BSCAMPP(p), SCAMPP(e), and SCAMPP(p). Moreover,
BSCAMPP(e) had high accuracy even when placing into very
large trees (e.g., the RNASim 180K tree studied in Experiment 5,
see Fig. 7). It also had high accuracy, better than the methods it
was compared to, when placing Illumina reads into trees with
high evolutionary diameters and where the reference alignment
was very gappy (the 5000M2 condition studied in Experiment 4,
see Fig. 6).

Indeed, in this study, the only substantially challenging con-
dition for our pipelines was placing PacBio reads into trees with
very high rates of evolution, i.e., the 5000M2 condition. Even
here, BSCAMPP(e) was more accurate than the other tested
methods, although the accuracy gap between BSCAMPP(e),
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Experiment 5: Evaluation of methods for placing 20,000 query sequences into the estimated RNA 180 K tree, using a dedicated machine. We show results

for APPLES-2, BSCAMPP(e), BSCAMPP(p), SCAMPP(e), SCAMPP(p), and EPA-ng. Each method was given 16 cores and 512 GB of memory, and allowed to
run to completion. We show delta error (left), runtime in minutes (middle, logarithmic scale) and peak memory usage in GBs (right) when placing 20,000 query
sequences (average length 155 nt) into an RNASim tree with 180,000 leaves. All methods use the true alignment of query sequences to the reference alignment.
SCAMPP produced 18,590 subtrees for this dataset but BSCAMPP produced only 300 subtrees.

UShER, and APPLES-2 was small. However, we also see that
when the rate of evolution dropped (the 5000M3 and 5000M4
conditions), placement accuracy improved substantially. Thus,
placement of reads with high sequencing error is in itself not a
major challenge, nor is placing into trees with high evolutionary
diameters; rather, it is the combination of the two that presents
a large challenge to phylogenetic placement accuracy.

Also of interest is the comparison between EPA-ng and our
four pipelines (BSCAMPP and SCAMPP used with either EPA-
ng or pplacer) when placing into the largest tree we examine,
RNASim 180K (see Fig. 7). In this experiment, each of our
pipelines was much more accurate than EPA-ng. We also see that
the pipelines based on pplacer were slightly more accurate than
the pipelines based on EPA-ng, and pipelines based on SCAMPP
were slightly more accurate than pipelines based on BSCAMPP.
Even so, on this dataset, these differences were small compared
to the gap between EPA-ng and BSCAMPP(e) (the least accurate
of the four pipelines).

To understand why EPA-ng has high error in this experiment,
we consider what we learned about EPA-ng scalability on large
backbone trees, both in terms of computational performance but
also accuracy. Prior studies have suggested limits for EPA-ng
to relatively small backbone trees due to computational rea-
sons [11], [13], [17], but our preliminary study showed that
EPA-ng had a jump in placement delta error as we increased the
subtree size for the RNASim dataset. Thus, our study potentially
suggests that EPA-ng may have some numeric issues when plac-
ing into very large trees that resultin increased placement error, a
trend that has been previously observed for pplacer [11]. Further
research is needed to understand whether this explanation is
correct.

VII. CONCLUSION

Phylogenetic placement of sequences into large backbone
trees is fundamental to several bioinformatics problems, in-
cluding microbiome analysis (e.g., taxonomic characteriza-
tion of shotgun sequencing reads) and updating large phy-
logenetic trees. Our prior work has shown that EPA-ng and
pplacer, the two leading maximum likelihood based methods for

phylogenetic placement, failed to run on large backbone trees
(EPA-ng due to memory requirements and pplacer due to numer-
ical issues). SCAMPP [11] was designed to improve scalability
of likelihood-based phylogenetic placement methods to large
backbone trees: each query sequence extract a small subtree,
into which it is then placed using the likelihood-based method.
This approach provides high accuracy and scalability to large
trees, but is nevertheless computationally intensive for placing
large numbers of sequences, because of the number of subtrees
that are extracted.

We designed BSCAMPP in order to achieve comparable
scalability but much reduced speed compared to SCAMPP. To
reduce the number of subtrees that are extracted, BSCAMPP
uses a voting technique to select a small number of subtrees
that suffices for all the query sequences. Our study shows that
BSCAMPP, used with either pplacer or EPA-ng, is very close
to the accuracy of SCAMPP and provides the same scalability
improvement for both EPA-ng and pplacer, while dramatically
reducing the runtime. Moreover, BSCAMPP used with EPA-ng,
i.e., BSCAMPP(e), is extremely fast, and in many cases as fast
as APPLES-2. Furthermore, BSCAMPP(e) scales well with the
number of query sequences and query sequence length, making
it suitable for phylogenetic placement whenever the backbone
tree or number of sequences is large. Our study also shows
that BSCAMPP used with pplacer, i.e., BSCAMPP(p), provides
slightly better accuracy than BSCAMPP(e) but is somewhat
slower. Whether this improvement in accuracy is worth the extra
time depends on the application and dataset.

This study leaves several directions for future research. A
more extensive study should explore phylogenetic placement of
full-length sequences, and possibly also consider the problem
of placing genome-length sequences. This particular direction
raises issues of heterogeneity across the genome [36], a problem
that is addressed by the DEPP [4] method for phylogenetic
placement. In addition, while BSCAMPP(e) is fast, a possible
improvement for the runtime could be explored by implementing
parallel processing of subtrees (i.e., running instances of EPA-ng
in parallel for different query/subtree sets). This might be partic-
ularly helpful in cases with few queries per subtree. Future work
should include an analysis of the runtime and memory usage
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impacts of running EPA-ng concurrently on multiple compute
nodes, in addition to running multiple instances of EPA-ng using
fewer threads on a single compute node. Furthermore, given the
cost of computing the query alignments, research into speeding
up these alignments while maintaining high accuracy is also
merited.

There are applications of phylogenetic placement methods
that could be improved through the use of larger backbone
tree sizes and many query sequences, now enabled with better
accuracy through BSCAMPP. One such application is maximum
likelihood tree estimation when there is substantial sequence
length heterogeneity. Our prior work has shown that FastTree2,
a very fast maximum likelihood method, has reduced accuracy
on datasets with many short sequences [14], [37]. Alternative
approaches that first construct a tree on the full-length se-
quences and then add the short sequences into the tree using
phylogenetic placement methods have the potential to provide
improved accuracy and scalability on large trees. Exploring
BSCAMPP in this context is therefore a good direction for future
research.

This study also suggests a potential benefit for BSCAMPP(p),
compared to BSCAMPP(e), for applications where high accu-
racy is important. TIPP3 [3] is a method for taxonomic abun-
dance profiling of metagenomic reads that uses pplacer to locate
reads within gene-based taxonomies, and provides improved ac-
curacy over TIPP [1] and TIPP2 [2], mainly because it performs
phylogenetic placement into larger trees. A fast variant of TIPP3,
called TIPP3-fast, uses BSCAMPP(e) instead of pplacer [3], and
provides a great improvement in speed over TIPP3, but increases
the abundance profiling error slightly. The results in this paper
suggest the possibility that using BSCAMPP(p) within TIPP3
might be a fruitful compromise between pplacer (which had the
highest accuracy) and BSCAMPP(e) (which was the fastest),
suggesting another direction for future work.

Overall, this study shows the potential for phylogenetic place-
ment methods based on maximum likelihood to provide very
high accuracy, even under very challenging conditions, such
as placing into very large trees, placing into trees with high
evolutionary diameters, or placing reads with high sequencing
error. While the relative accuracy between methods depends on
the conditions (properties of the query sequences and backbone
tree), very often maximum likelihood-based methods provide
better accuracy than other approaches, and especially better than
methods that are alignment-free. These observations support the
continued development of methods that methods like EPA-ng
and pplacer, as well as methods like BSCAMPP that aim to
improve the scalability of these methods to large trees.

VII. DATA AVAILABILITY

All datasets used in this study are from prior publica-
tions. The RNASim dataset is available at https://databank.
illinois.edu/datasets/IDB-1048258. The 16S.B.ALL and nt78
datasets are available at https://databank.illinois.edu/datasets/
IDB-9257957. The 5000M2-5000M4 datasets are available at
https://databank.illinois.edu/datasets/IDB-2567453.
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