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Abstract—Mobile apps have embraced user privacy by moving
their data processing to the user’s smartphone. Advanced
machine learning (ML) models, such as vision models, can
now locally analyze user images to extract insights that drive
several functionalities. Capitalizing on this new processing
model of locally analyzing user images, we analyze two popular
social media apps, TikTok and Instagram, to reveal (1) what
insights vision models in both apps infer about users from
their image and video data and (2) whether these models
exhibit performance disparities with respect to demographics.
As vision models provide signals for sensitive technologies like
age verification and facial recognition, understanding potential
biases in these models is crucial for ensuring that users receive
equitable and accurate services.

We develop a novel method for capturing and evaluating
ML tasks in mobile apps, overcoming challenges like code
obfuscation, native code execution, and scalability. Our method
comprises ML task detection, ML pipeline reconstruction,
and ML performance assessment, specifically focusing on
demographic disparities. We apply our methodology to TikTok
and Instagram, revealing significant insights. For TikTok, we
find issues in age and gender prediction accuracy, particularly
for minors and Black individuals. In Instagram, our analysis
uncovers demographic disparities in extracting over 500 visual
concepts from images, with evidence of spurious correlations
between demographic features and certain concepts.

1. Introduction

Most mobile apps we use daily, such as TikTok and
Instagram, are free, yet they provide advanced and unprece-
dented services, including social networking and messaging.
Our data drives the financial model of the mobile ecosystem:
mobile apps access our data, extract insights about us, and
use the data to serve personalized services. This ubiquitous
collection and analysis of user mobile data has led to a
push towards privacy, fueled by user awareness [24], media
revelations [29], and privacy regulations [36]. Mobile app
vendors have reacted by moving their data processing to the
user’s smartphone. Instead of sending raw user data, such
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as images, to their cloud, algorithms running on the user’s
phone analyze the data and extract needed insights [44].
This trend has benefited dramatically from hardware and
software processing advances, mainly in vision-based ma-
chine learning models that consume swaths of user images
and videos on smartphones in real-time. Advanced vision
models can now analyze every image and camera frame to
extract insights that drive several app functionalities.

The local processing of user images offers a unique
opportunity to study how mobile apps process user im-
ages. More importantly, we can investigate whether vision
models in apps exhibit performance disparities with respect
to demographics. This investigation is important because
vision models provide signals for sensitive technologies,
such as age verification [15] and facial recognition systems.
Understanding potential biases in these models is crucial for
ensuring that diverse populations, especially from minority
backgrounds, receive equitable and accurate services. Only
recently, as data analysis happened mainly on the cloud, to
which researchers do not have explicit access, research was
limited in observing how ML models in apps process user
data. For example, researchers have analyzed the distribution
of advertisements on browsing apps [52] or have asked users
to request their data from mobile service providers [69],
such as Twitter. Other works have investigated the biases in
online APIs, such as face recognition [25], [54]. However,
these studies are limited in scope, focusing only on a select
number of APIs, not covering vision models currently in
mobile products, and evaluating bias through datasets with
limited semantic and demographic attribute variability.

Research Questions. We analyze the two most popular
social media apps on Android: TikTok and Instagram. With
over 1.2 billion users [14], TikTok is one of the most popular
social media platforms. Users can upload their short videos
and interact with other users’ content, e.g., by commenting
or liking. Instagram is a social media app with over 2.1
billion users [58]. Like TikTok, Instagram allows users to
post short videos on the platform called Reels [6]. Our
analysis answers two questions: (1) what insights do vision
models in TikTok and Instagram infer about users from their
images and camera frames? And (2) are there demographic
disparities in the quality of the inferred insights?
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Challenges. To answer the first question, we have to analyze
both apps, which is challenging because they are not open-
sourced. While developers package their models within the
apps and run them locally [65], there are three challenges
in analyzing the models: obfuscation, native code execution,
and scalability. First, apps apply code obfuscation techniques
to hide variable and class names, making them less amenable
to static analysis [35]. Besides, apps load several components
dynamically at runtime, further complicating the static
analysis task. Second, apps execute their machine learning
algorithms in native code [65], for which dynamic analysis
has little context about the task at hand. Third, scalability
poses a significant challenge when monitoring applications
due to the complexity of the mobile runtime environment,
such as that of Android. Most applications execute tens of
thousands of functions a second, and capturing each function
call dynamically at runtime is not feasible.

Answering the first question allows us to identify the
vision models in TikTok and Instagram along with their input
data and output results. This, however, does not answer the
question of the associated demographic disparities. Apps
might harm users because of the inherent biases in the under-
lying vision models. These biases could have security and
privacy repercussions, including misidentifying users [71] or
associating them with inaccurate concepts (see Table 3). For
example, an age prediction model that is less accurate for
minority users puts them at a disadvantage when creating
new accounts if such a model exists for age verification [49].
Similarly, children might bypass the age verification system,
allowing them to access the platform [13].

This task of analyzing demographic disparities in apps is
challenging for two reasons. First, we have to feed the model
a large dataset of images in real-time without having offline
access to the model. Second, we need access to a large dataset
of correctly annotated images that cover diverse demographic
and semantic attributes, such as faces with different skin
tones, hairstyles, or accessories. Existing datasets, such as
FairFace [43] and CelebA [75], cover a limited number of
attributes: gender, age, and ethnicity.

Method. We develop a novel methodology to dynamically
capture and evaluate machine learning (ML) tasks in mobile
apps. This methodology has three layers that overcome
the first set of challenges: ML task detection, ML pipeline
reconstruction, and ML performance assessment. The first
layer presents a dynamic instrumentation approach that logs
function invocations without overloading the device. We
utilize these logs to identify entry points for ML-relevant
functionality (Section 4.1). The second layer combines static
and dynamic analysis to rebuild call stacks, trace function
calls, and complete the ML execution pipeline (Section 4.2).
The final layer evaluates the performance of the ML models
by injecting custom datasets that are demographically diverse
into the identified pipeline (Section 4.3).

Findings. We apply our methodology to both Instagram
and TikTok, where we identify their use of different vision
models locally on the device. These vision models consume

Figure 1: Some concept scores that Instagram extracts
from an image about to be posted. The extraction happens
whenever a user chooses an image from their device. These
concept scores are from the Instagram debug layer, which is
not enabled by default.

camera frames and images that the user is about to post
(before actually posting them), and they extract a set of
concepts for each input. In particular, we find that TikTok
continuously analyzes camera frames to detect faces and
predict the corresponding age and gender. We trace the
outputs of these models to an encrypted file on the device.
We then analyze the performance of these models using
the FairFace dataset [43]. Our evaluation reveals that age
prediction fails drastically for individuals below 19 and that
gender prediction is problematic for black individuals. The
detailed results are in Section 5.

As for Instagram, we find a model that extracts more
than 500 concepts from each image the user is about to
post and from camera frames. Fig. 1 shows a sample of the
concepts extracted by Instagram. We then build a custom
dataset that contains synthetic images of faces belonging
to diverse demographics, with different semantic attributes
corresponding to some of the concepts from Instagram.
Our analysis of this model reveals significant demographic
disparities in its performance, particularly for face-related
concepts. Also, we find evidence of spurious correlations
in the model performance, where some non-facial concepts
exhibit correlations (have significantly higher scores for) with
images associated with particular demographic groups. For
example, the “great wall of china” concept is correlated
with Asian women, and “nudity” is correlated with White
men. More detailed results are in Section 6.

Contributions. In summary, our work is the first to investi-
gate and evaluate the performance of models deployed by
Instagram and TikTok. Our contributions are as follows:

• We develop a novel methodology to capture and evaluate
ML tasks in mobile apps dynamically. This methodology
consists of three layers: ML task detection, ML pipeline
reconstruction, and ML performance assessment.1
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Figure 2: The Android Runtime (ART) executes the app’s
Ahead Of Time (AOT) compiled binaries if available. Oth-
erwise, the ART passes the DEX files to the Just-In-Time
(JIT) compiler or the Interpreter. Adapted from [5].

• We build a dataset to assess model performance on different
demographics. Our dataset has two components: (1) public
datasets and (2) synthetic data. The public datasets were
chosen to measure model performance for age and sex.
Our synthetic dataset evaluates targeted facial features
within each demographic.1

• Using our dataset, we evaluate the effectiveness of age
verification. We find that age verification, if done using the
model deployed by TikTok, is less effective for younger
demographics.

• We analyze demographic correlations within Instagram’s
model. Since Instagram assigns over 500 different concepts
to a single image, we went beyond facial features and eval-
uated underlying biases of concepts to racial demographics
(see Table 3). We found that certain demographics exhibit
correlations with specific concepts more than others.

2. Background

Before delving into the details of our work, we provide
background on Android OS and ML development.

2.1. Android Background

Android is a Linux-based operating system designed
for mobile devices. Android executes apps called Android
Packages (APKs), which contain assets, local files, resources,
and executable code. There are two types of executable
environments: Java and native. The operating system treats
both differently at runtime [23].

Developers mainly write code in Kotlin or Java, and
their language-specific compilers compile both languages
into .class files [23]. Once compiled, an obfuscator then
processes the .class files to create DEX files. DEX files treat
Java and Kotlin the same way, essentially representing each
as Java bytecode. On the other hand, native code is directly
compiled into a standard ARM64 ELF binary. Using the
compiled code, developers build the APK and upload it onto
the operating system [23].

1. All resources, code, and datasets can be found here https://github.com/
wi-pi/500-labels-resources.

Android Runtime. The Android Runtime (ART) loads all
APKs on the device. Upon opening the APK, it loads all DEX
files and the natively compiled code. Since 2019, the ART
has used Ahead Of Time (AOT) compilation alongside Just-
in-Time (JIT) compilation [23]. AOT compilation creates .oat
files, which are essentially ELF binaries with additional OAT-
specific sections [1] from the DEX files. The system does not
compile some DEX files directly into an .oat file. [5]. The
JIT or Java interpreter handles the remaining DEX files at
runtime. Figure 2 shows the code execution paths in Android.

On the other hand, native code is directly executed on
the CPU in their compiled format. For an APK to execute
native code, it must use the Java Native Interface (JNI) [74].
Native libraries are typically introduced to an Android app to
increase performance [46] or implement third-party code [18].
This feature is especially useful for computationally expen-
sive tasks. Because of the computational needs, JNI calls
commonly facilitate ML execution [65].

Java Native Interface. A JNI call executes in three phases:
call the JNI linking function, translate function arguments
into native arguments, and execute the native function. In
Java, apps create links to JNI calls through the native
keyword [8]. Android’s Native Development Kit (NDK) links
native functions to the shared library [2]. JNI functions, at the
native level, have two arguments: the JavaVM and the JNIEnv.
The JavaVM variable allows apps to have a JavaVM in native
code. A JavaVM can interact, create, and destroy Java objects.
Whereas the JNIEnv performs thread-local storage. These
low-level objects prepare data for transmission or translate
data for native usage [7]. Then, the native code executes as
it would on any Linux system.

There is, however, another type of JNI function that bears
mentioning: JNI trampolines. JNI trampolines determine their
native address dynamically. The operating system catches
all trampoline calls and prepares the call for its actual
execution point [34]. The artQuickGenericJniTrampoline
retrieves the actual native code and then executes it on the
CPU directly. The return values occur asynchronously [34]
in the GenericJniMethodEnd function.

Quick Codes. At the OS level, all JNI and AOT calls
are quick codes within the Android Runtime (ART). Quick
codes are C++ objects that represent executable code for
a function. Quick codes are directly executed by the CPU
at runtime. When executing the code, the ART passes the
arguments to the CPU as a raw C pointer. A high-level C++
object represents the return value of the executing function.
Executing the function sets the value of the return object.
To access the arguments, the ART uses a shorty; a shorty is
a character array that indicates the return value type and the
types of the arguments. Later in the work, we describe how
we interpret the shorty to retrieve the function arguments
and return value.

Native Callbacks. Native code also communicates with
Java code asynchronously using callbacks [17]. Message
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objects, transmitted using a callback, facilitate the commu-
nication. A handler in the Java layer receives the messages.
All applications implement callbacks uniquely; however,
applications commonly use the Android.os.message object.
Current works trace a callback function by the name of the
callback object [33]. When dealing with obfuscated objects,
determining the callback object becomes complicated [33].

ROMs. Tools like Frida [3] require root access to function
properly. When working with Android, acquiring root differs
depending on the Android OS. There are two distinct
categories for an Android OS: custom ROMs and production
ROMs. A custom ROM is an Android OS derivative that a
user installs. Manufacturers install production ROMs, which
are closed-source.

Root access is normally attainable with a custom ROM
because it is common for production ROMs to disallow it
entirely. However, it is possible to attain root on production
ROMs, [4], which requires the phone to be OEM unlocked.
In such a case, we gain root access by first downloading
the production ROM’s boot image and overwriting it with
Magisk [66]. We then replace and boot into the new boot
image. After initialization, Magisk’s Android app will have
root privileges, install the ‘su’ binary, and deploy Frida on
the device.

Applications detect if they are on a custom ROM by
utilizing Google’s integrity API [12]. The integrity API
allows app developers to gain insights into the device their
app is currently running on. Therefore, evaluating an app
on both a production ROM and our custom ROM is crucial.
In this paper, we perform our experiments and analysis on
both a custom ROM and a production ROM.

2.2. ML Development

There are two main categories of ML development on An-
droid: through third-party libraries or in-house libraries [65],
[56]. Third-party libraries are open source and/or have public
APIs (Pytorch, TensorFlowLite, etc.). Private groups develop
in-house libraries that are inaccessible to the public. Our
work deals with both types of libraries, namely Pytorch [11],
a third-party library, and Pitaya [41], an in-house library.

2.2.1. Pytorch. Pytorch is an open-source library commonly
used on mobile devices [65]. Instagram uses Pytorch’s API
calls to perform their ML calls. Pytorch has a publicly
available Java API that apps utilize to perform ML tasks.

2.2.2. Pitaya. Pitaya is Bytedance’s own ML library [41].
Pitaya is privately deployed to Bytedance’s applications.
Pitaya consists of both native and Java components. Our
work will focus on their native library libbytenn.so, which
controls their ML engine. Native executions control TikTok’s
computer vision ML suite. Java code never directly calls any
ML API while the camera of the application is active. This
implies that prior works [65], [56], that do not trace native
code, cannot detect Bytedance’s apps ML behavior.

3. Related Work

In the following, we review recent work investigating
machine learning and app analysis on Android and discuss
studies on bias measurements for machine learning.

3.1. Android Machine Learning Studies

As on-device ML is becoming popular in Android
apps [72], [19], [65], [32], researchers developed methods
to access models to study model protection and robustness.
One common approach to insert adversarial examples into
on-device models is instrumenting standard Java APIs of
ML frameworks [40], [39], [27], [32]. To extract models
from the apps, Sun et al. [65] additionally dumped the
memory location into which the model is loaded. Ren et
al. [56] developed a framework that reconstructs the Java calls
associated with ML starting from exported JNI functions of
native libraries. While existing approaches can deal with ML
invocations initiated from the Java level, they cannot trace or
reconstruct ML solely executed in the native layer without
explicit triggers from Java functions. Moreover, previous
works rely on the fact that certain Java or native functions
associated with ML are not obfuscated [32], [39] or have
some form of meaningful descriptions in the code [56].
Although this works for a majority of apps [65], [56], it
introduces limitations for apps that are heavily obfuscated,
use closed-source custom-made libraries, or run ML in the
native layer. We investigated the works in [65], [39], [32],
[27], which perform a keywords search or execution flow
tracing within Java code. These works cannot detect TikTok’s
computer vision models for three reasons: (1) no Java code
is executed during the ML task, (2) all ML tasks happen in
native libraries, and (3) the models’ format is closed-source.
Furthermore, we observe that no previous study of ML on
Android analyzes the performance disparity of the deployed
models in production. We aim to close this gap with our
case study of Instagram and TikTok ML models disparities
and spurious correlations.

3.2. Android Application Analysis

Android malware analysis frameworks tackle the problem
of detecting malware at scale. While different from our
work, their frameworks accomplish similar goals. Isohara
et al. [42], instrumented the Android kernel for low-level
malware analysis. They built a logging framework in Logcat
and captured logs within the instrumented device. Their
malware detection looks for root abuse within the kernel
syscalls. Our work builds a similar logging infrastructure but
instruments the ART rather than the Kernel. Martinelli et al.
[50] also designed a framework for malware detection that
has a similar goal to the work above but uses n-gram pattern
matching on kernel syscalls to understand an app’s behavior.
Keyes et al. [45] used Frida to dynamically classify malware.
They showed they were able to classify malicious activity at
98%. Our work uses Frida in a similar manner, but we use a
physical Android device and perform static analysis. Samhi

372

Authorized licensed use limited to: University of Wisconsin. Downloaded on April 24,2025 at 13:04:32 UTC from IEEE Xplore.  Restrictions apply. 



et al. [59] presented Jucify, a tool to statically analyze native
code within an Android application. The tool examines native
call graphs but is limited by the tools used to extract the call
graphs. Our methodology targets specific areas within the
natives, allowing us to rebuild important call graphs fully.

3.3. Machine Learning Model Bias Studies

Machine Learning models of various modalities, such as
vision, speech, text, and other forms of input data, have been
known to exhibit performance disparities that disproportion-
ately impact certain demographic groups [51], [21], [22]. In
the context of face images, Buolamwini and Gebru studied
face recognition datasets and classifiers [26] and found that
these classifiers exhibit demographic disparities. This early
work reported the impact of non-diverse training datasets
on ML fairness. Building on this, Raji and Buolamwini
studied the impact of publicly releasing bias results on
the performance of subsequent face recognition APIs [55].
Grother et al. [37] highlighted national origin and gender
disparities of facial recognition algorithms. More recently,
studies have shifted towards mitigation strategies for fairness.
Selbst et al. [61] discussed the limitations of technical
solutions for AI fairness in complex sociotechnical systems.
Stanovsky et al. [60] focused on gender bias in machine
translation, offering a framework applicable to vision models.
Other works explored synthetic data to diversify the training
and benchmarking datasets [30], [57]. However, generative
models are found to exhibit bias trends similar to the existing
natural datasets [62], [64], [53]. Rosenberg et al. [57] provide
a framework, using diffusion models, to generate synthetic
face images that are demographically balanced with control
over the facial semantic features. In our work, we assess the
performance disparity of vision ML models deployed at the
scale of billions of users on commercial Android devices,
unlike all other works that study open-source models or
closed-box APIs with obscured knowledge of how these
APIs manifest into the end-user experience. For a thorough
assessment, we follow the work of Rosenberg et al. [57] to
curate a demographically diverse dataset of face images with
multiple semantic labels that align with the app’s ML model
labels.

4. ML Analysis Methodology

Our methodology we develop aims to identify, recon-
struct, and assess the performance of ML tasks in Android
applications. We design our approach to work directly on
physical devices, which creates a realistic test environment
and can directly use hardware features like the camera. We
develop our methodology through the following three layers,
as evident in Figure 3.

ML Detection Layer. The ML detection layer allows us to
search for ML activity during runtime throughout an app’s
execution. We achieve this objective by instrumenting the
ART to log Java/Kotlin and native function calls. We also log
function arguments and return values from the lower layers

Evidence Functions:
nat_fnX, Xb.zt, ...

fn      args     return
Xb.z   Tensor.. abxsmdl
nat_fnX 2,.. [0.12,0.3..] 

OS 
logging

adb pull 
apk JADX

Class ZE {
   fuClass Xb {

 fn z(Tensor x){
 ZE.tt(x);}
}

Frida

nativelib.so
nat_fnX
lax    r4    r3
add    r3    r2

Ghidra

frida-trace –j "Xb!z"
frida –l "script.js"

scores: [0.32, 0.52,…]

Detection Layer Pipeline Layer Assessment Layer

ML Keywords

Reconstructed Pipeline
... Xb.z  ZE.tt  
nat_fnX  ...

Create 
dataset

Frida 
script

Figure 3: Our approach consists of three layers. The goal is
to detect ML tasks in an app, reconstruct the ML pipeline,
and assess the model.

of the ART. Using keywords from prior works [72], [65],
we flag the parts of the logged data where the keywords
appear as evidence. Once we have found the evidence, we
can reconstruct the ML pipeline in the second layer.

Key Challenge: Applications execute thousands of function
calls a second, which quickly slows down the OS if it
logs all of them. To address this challenge, we develop
a targeted logging system that captures function calls in
strategic locations within the ART.

Pipeline Reconstruction Layer. In the second layer, we
reconstruct an app’s ML pipeline using the first layer’s
evidence as a starting point. We then design a novel hybrid
approach combining static and dynamic analysis to rebuild
call stacks, further trace function calls, and complete the ML
execution pipeline. The result is a layout of Java and native
functions starting at the input to a model and ending at the
points where the model results are saved or deleted.

Key Challenge: The core challenge is reconstructing the
ML pipeline, which crosses the Java and Native code.
Further, we observed some apps, such as TikTok, utilize
non-exported functions in their ML tasks, which execute
without explicit JNI calls. Existing frameworks typically
focus on analyzing Java-level calls or executions through
JNI calls, rendering them less effective against apps utilizing
non-exported functions.

ML Performance Assessment Layer. The final layer
evaluates the performance of ML models, focusing on
demographic disparities. In particular, we use the pipeline
identified in the previous layer to build a Frida script,
which automatically injects data inputs into the model. The
script then captures the model’s output, which shows the
confidence scores for the respective output labels. We can
assess the demographic disparities in the model performance
by obtaining the output scores for a diverse set of inputs.
Note that we assess the model by interacting with it directly
during the app execution. We do not steal the model or
reconstruct its weights, which infringes on the intellectual
property of the app vendor.

Key Challenge: Analyzing demographic disparities in app-
based ML models is challenging. First, we have to feed the
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model a large dataset of inputs (images in our case) in real-
time without having offline access. Second, we need access to
a large dataset of inputs that are correctly annotated and cover
diverse demographic and semantic attributes, such as faces
with different skin tones, hairstyles, or accessories. Existing
datasets, such as FairFace [43] and CelebA [75], cover a
limited number of attributes: gender, age, and ethnicity.

4.1. ML Detection Layer

Our key insight for identifying ML is that when ML
tasks are executed, they should leave evidence in natural
language throughout function execution logs. While previous
works follow the same reasoning and use indicative function
names [65] or comments [56] to identify ML, we find that
this alone is not sufficient to capture ML behavior for every
app, in particular, TikTok. Code obfuscation and the use
of non-exported methods make it hard to identify evidence
of ML execution from just function names and comments.
However, we observe that apps serialize ML results, e.g., in
JSON format, before further processing. We also observe
that some apps use meaningful strings in input and output
data structures. We leverage this observation to search for
ML evidence in arguments to functions and return values.

4.1.1. Existing Approaches. Other approaches perform
static analysis on decompiled Java and native libraries to
find ML-related functions [72], [56] and use these to create
scripts for further dynamic analysis. While these approaches
can cover a broad range of apps, they are insufficient to
detect relevant ML execution in every app. The reason is
that performing static analysis to detect ML exhibits two
shortcomings. First, there can be ML functions in native
libraries that are not exported and thus do not have a
searchable name. These ML functions may be called by
other native functions instead of through explicit JNI calls
from the Java layer. Second, we do not know when the app
executes the statically detected functions or if it executes
these functions at all. This means static analysis approaches
may generate false positives if the ML functions are inside
unused code.

4.1.2. Methodology. At a high level, we detect evidence
for ML execution by logging the targeted function calls
within an app. One approach to achieving this objective is to
hook Frida into all functions. This approach, however, is not
feasible because of the large number of functions in an app,
which would overload this kind of monitoring. Therefore,
we build a more scalable method by instrumenting the ART
to log function calls at runtime together with their passed
arguments and return values.

To implement our logging system, we instrument ART
methods responsible for executing function invocations. By
managing function invocations, these ART methods handle
invoked function parameters and return values. We edit the
ART methods to log each invoked function name, parameters,
and return values. Additionally, we log the corresponding

TABLE 1: The shorty characters indicate the types of the
arguments and return values of quick code functions executed
through the ART. To log the quick code execution, we created
the mapping of shorty characters to data types by reading
the ARM64 assembly source code provided by LineageOS.
This may be different for other ROMs.

Character Bytes Description Return Value Function

V 4 Void GetV()
Z 4 Boolean GetZ()
B 4 Byte GetB()
S 4 Short GetS()
C 4 Char GetC()
I 4 Int GetI()
J 8 Long GetJ()
F 4 Float GetF()
D 8 Double GetD()
L 4 Pointer GetL()

process ID, thread ID, and timestamp. The two ART methods
of interest are the one that executes quick codes and the
other one that executes JNI trampolines. Instrumenting
these two methods ensures we can log all targeted function
invocations without having to instrument each function
invocation separately. Now, we discuss how we log quick
code executions and JNI trampolines.

Logging Quick Code Execution. The method for quick
code execution takes an array for the arguments and a string
called shorty, which contains information about the return
values and the type of the arguments. The first character of
the shorty string always corresponds to the return value. The
return values are stored in a results object. As these methods
are not documented, we went through the Android OS code
to reverse engineer them and understand how to instrument
them. We found that each character in a shorty represents a
type and byte size as described in Table 1. For instance, the
shorty IIJ indicates that the function returns an integer and
takes two arguments: an integer and a long.

Therefore, we parse the shorty strings of each invoked
function to determine the type and size of each argument.
This allows us to correctly log the values and iterate over
the array with the appropriate step size. We note that for
non-static functions, the first argument is the object’s this
pointer, which we skip by stepping over the first four bytes
of the argument array. The result of an invoked function is
stored in a special native object. To retrieve its value, we call
a specific function tied to that object, which is determined by
the first character in the shorty string. For example, we call
result->GetI(); to retrieve the value from the result
object if the first character in the shorty string is “I.”

The values we read for arguments and return values are
raw bytes. As we know their type, we can correctly cast
these bytes to log them in a readable format. An exception
is the “L” type which is a pointer to an object or array of
primitives. The ART method does not receive the size of
this object because it assumes the receiving function knows
its size. Thus, instead of casting “L” values to a certain type,
we log a fixed constant of 500 bytes.
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Logging JNI trampoline execution. To log the arguments
of the function that executes JNI trampolines, we instrument
the BuildGenericJniFrameVisitor object, which is called to
prepare the arguments for the JNI call. As this object steps
through the arguments, we log each argument similarly to the
logging quick code execution. The return values are stored in
a results object through the function GenericJniMethodEnd.
We log these values by calling a function on the results
object based on the object’s type.

Detecting ML function candidates. The ART instrumenta-
tion logs function invocations with arguments and return
values. We then perform a keyword search to find the
potential ML-related functions. We use the same keywords
for detecting ML as prior work [65], [72]. Additionally, our
logs allow us to search for serialized results of ML tasks.
For instance, our logging system allows us to search for
evidence of probability values calculated by a model, which
could be displayed as an array of values within [0, 1]. The
only way to obtain these logs is through running the app,
forcing the ML execution, and logging input arguments and
output results. It is difficult to obtain them through static
analysis as they are often not hard coded in the APK files.
The outcome of this layer is a set of candidate functions that
execute ML tasks.

4.2. ML Pipeline Layer

Our objective in the ML pipeline layer is to rebuild the
program slice that executes the ML task, starting from the
input to the model until the output of the model’s inference
values. We call this program slice the ML pipeline. We need
this ML pipeline to execute the model with custom inputs
and capture its output as we describe in the ML assessment
layer. It is important to ensure the reconstructed pipeline is
complete such that we know that the inference values are
calculated solely on the given input. For instance, an app that
determines a user’s age through an ML model might not only
use the user’s image data but also in-app behavior, like their
interaction with content. We can determine the values and
data types passed to the model with the fully reconstructed
pipeline. To reconstruct the ML execution on the Java/Kotlin
layer, we decompile the APK and use static analysis starting
at the detected functions from the ML detection layer to
trace the execution flow. If the functions of interest run in the
native layer or there is cross-language communication [38],
[68] (between Java and native), we additionally perform
static analysis on the native libraries. We amend our analysis
with dynamic analysis, using Frida, to trace and confirm the
data flow and generate call stacks.

4.2.1. Existing Approaches. As explained in section 4.1,
other approaches commonly use static keyword analysis
to detect ML functions within Java and native libraries.
However, the reconstructed ML pipelines are only in the Java
layer or use JNI functions exported from native libraries. This
strategy fails to rebuild an ML pipeline if the ML execution
happens solely inside the native functions. The first reason

is that the ML function might not be discovered in the first
place as it is not labeled with a name when it is not exported
(we address this issue in section 4.1). Second, the function
calls in a native library can depend on addresses that are
dynamically calculated at runtime and cannot be determined
statically.

4.2.2. Methodology. The ML-related functions we identify
in the first layer can be at an arbitrary point in the execution
chain. Therefore, we inspect functions both before and after
the call. First, to assist in recovering previous functions, we
use Frida to hook into the given functions and display the
call stacks in both Java and native code. We note that the
functions in the reconstructed pipeline may have obfuscated
names. Since these obfuscations can vary between devices
and app versions, we adapt the Frida scripts per APK instance.
Then, we reconstruct the complete ML pipeline by exploring
decompiled Java functions and native libraries.

We use JADX to decompile the APK and statically
analyze the Java code by following previous approaches [56],
[65], [72], [47], [73], [20]. One caveat here is that prior
approaches decompile APKs downloaded directly from an
app store, instead of retrieving it from the device. Such
approaches would miss important functionality contained
in the split APKs. So, we make sure to analyze the split
APKs as well. To rebuild ML pipelines on the native layer,
we perform static analysis using Ghidra to disassemble and
decompile the native libraries.

Since ML execution may also be performed in non-
exported functions, we trace ML execution throughout the
native libraries using a hybrid static-dynamic approach.
Tracing execution flows within non-exported functions is
challenging to perform through static analysis because of
jump instructions to addresses, which are determined at run-
time and are nondeterministic. To determine at which address
such an instruction continues, we use dynamic analysis to
monitor the execution and find the jump destination.

Toward that end, we first take the address inside the
native library of this jump instruction. Then, we use Frida
to hook into this address dynamically. This approach allows
us, once the instruction is executed, to obtain the address
where the execution continues. While this address is not
constant due to memory randomization, it still shows us the
byte offset within the native library, which is static. Using
this byte offset, we can continue statically tracing the native
function execution. If we find multiple destination addresses
for the jump, we follow each execution flow. We disregard
those flows that do not contain ML as these are not important
for reconstructing the ML pipeline.

4.3. ML Assessment Layer

The final layer of our methodology assesses the ML
models through the reconstructed pipelines. In particular, we
load datasets into ML models and capture the outputs while
the application is running. This task requires generating
realistic and correctly labeled images that cover a range
of demographic and semantic attributes. Further, we must
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execute the reconstructed pipeline based on how the model
is invoked in the app. If the model invocation requires a user
to interact with the application, e.g., a user uploads some
data, we directly execute the pipeline and call this internal
injection. On the other hand, an app might continuously or
periodically execute a model. For instance, an app might
constantly compute inference scores on frames in a camera
video stream. In this case, we do not need to trigger the
inference calls since it is sufficient to place the input and
intercept the outputs, which we call external injection.

4.3.1. Existing Approaches. Various datasets exist which
other approaches use to assess the performance of vision
models. These datasets often show the general accuracy of
models concerning the label. Such datasets are not designed
to evaluate the bias of a model with respect to a certain
feature. Even if the datasets contain diverse images, they do
not contain the features that the model in an app considers.
For instance, the model in a given app may calculate the
probability that a person wears a necklace. Existing datasets
would not contain enough sample images of individuals
wearing a necklace, with diverse demographic attributes, to
sufficiently assess the model’s performance.

4.3.2. Methodology. From the ML pipeline we reconstructed
in the previous layer, we know the ML model and its output
labels. To create a meaningful assessment of the model, we
create a dataset tailored to the features that the model extracts.
As will be evident later, we assess vision models for faces.
As such, we utilize and extend the framework by Rosenberg
et al. [57] to synthesize images of faces belonging to diverse
demographics. We apply different semantic attributes to the
generated faces using concepts of interest from Instagram.
We then manually annotate the generated dataset to ensure
the images are not distorted and their ground truth labels
are correct.

We design both internal and external data injection such
that we can efficiently evaluate the model on datasets. Note
that in both cases, we utilize the app’s default behavior as
a vehicle to execute the ML pipeline. Our approach has
the benefit of ensuring the ecological validity of the model
analysis. Also, it does not require accessing or reconstructing
the model weights, which has ethical and legal implications.

Internal Injection. We execute the complete pipeline which
we recovered in the previous layer. Specifically, we use the
recovered sequence of functions to build a Frida script that
injects custom data into the model, initiates the inference
calls, and then captures the output. From the ML pipeline,
we know into which data type to cast the input images and
how to parse the model outputs.

External Injection. For external injection, we also use
a Frida script to capture the output. However, since the
application triggers the inference call itself, we inject the
dataset outside of the device. For example, if the app directly
feeds the model camera frames, then we display images on
a screen in front of the device.

Libeffect.so Libbytenn.so Java Layer

8: Save Data to 
Encrypted Log File

Libeffect.so

1: Get Input Image

2: Pre-Process Image 4: Save Outputs
to Register

5: Read Outputs from 
Register 

3: Call ML Inference

6: Execute Callback 

7: Translate Callback 
Data

Figure 4: In TikTok’s ML pipeline, the native library libef-
fect.so handles image data and directly calls the native ML
functions in libbytenn.so. Through a Java layer callback, the
data is then saved in a log file. Note that this ML pipeline
differs from the common case where apps execute native
(ML) functions through JNI calls from the Java layer.

5. TikTok

TikTok offers video filters that users can use to change
their appearance or add features to their videos. Implementing
such filters is commonly performed through ML models
which operate on a user’s live camera feed. We find that
there is one computer vision model that TikTok employs on
the user’s camera feed which, among others, predicts the
sex and age of the user. In the following, we show how we
extract this model, and we report its performance.

5.1. Analysis

First, we discuss how we applied our methodology from
Section 4 to TikTok by providing the implementation details
for the three layers.

5.1.1. ML Detection. We focus our analysis on the computer
vision model deployed by TikTok. By searching for probabil-
ity values in [0, 1], we detect logging messages (MessageCen-
ter.postMessage) which display a face count, bounding box,
age, and value named “boy prob”. We hypothesize that the
last value describes the probability that the image contains
the face of a male person. We thus refer to this variable
as sex. These logging messages show up always when the
camera is active, even when no filter is selected.

5.1.2. Pipeline Reconstruction. We use these logging mes-
sages as a starting point to reconstruct the complete ML
pipeline, as shown in Figure 4. Through a string search of
“boy prob”, we find that the logging function comes from
the libeffect.so library which is responsible for applying face
filters. This library has a native hook into the camera feed (1),
applies pre-processing on each frame (2) and passes them
to a computer vision model in libbytenn.so, which performs
an inference call on the image data (3) and saves the output
to a thread-safe register (4). Note that it is a native library
that directly calls the native ML functions. This differs from
most Android apps, which perform ML calls through a JNI
call from Java [65], [56]. Back in the face filter library,
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the logging function reads the inference values from the
register (5) to build the message and execute the callback (6),
which we catch in the OS logs. We highlight that the logging
function is a native callback that acts as an asynchronous
message handler. TikTok uses its native callbacks to send the
information from the native to the Java layer. The logging
function is not an exported function, meaning it has no
external entry point and no comments describing this function.
This means that automated frameworks likely overlook its
existence [56], [65]. The native callback is received by a
Java function (7) which saves the data to an encrypted log
file on the device (8). In summary, we discovered the ML
pipeline inside the native libraries through a logging function
which is not directly related to ML. Through our pipeline
reconstruction we can confidently connect it to the ML
process.

5.1.3. Performance Assessment. In the pipeline reconstruc-
tion, we found that the inference call on images happens
continuously on the camera feed without a user’s explicit
action. Therefore, we do not need to rebuild and execute
the whole ML pipeline. Instead, we utilize the existing ML
execution and inject the images externally by displaying them
to the phone’s camera through a display. We capture the
model outputs by hooking into the native callback function
containing the “boy prob” message with Frida. For each
image we intercept the message function, which displays the
inference values for sex and age.

5.2. Evaluation

Our focus in the ML assessment layer is on the sex and
age values that TikTok’s model predicts. The dataset in our
performance measurement is the FairFace dataset [43]. The
FairFace dataset includes over 108,501 images representing a
diverse range of ages, genders, and racial groups. We sample
44,903 images from the dataset where TikTok only detected
a single face in the image. Each image in the dataset is
labeled with an age range, an ethnicity, and a sex.

Our evaluation environment is a Pixel 4 on a production
build on which we installed TikTok version 32.1.5 through the
Google PlayStore. We externally inject images by displaying
them on a 1080p screen within a dark, isolated room using
a Python script. That same Python script hooks into the
postMessage function and captures the output using Frida’s
Python API. TikTok also estimates the “face count” within
the image. If the number of faces within an image exceeds
one or TikTok detects no face, we discard that data point.
We ran the experiment for two weeks and we collected over
40,000 different data points. To evaluate the performance
disparities, we define four null hypothesis groups:

Null Hypothesis 1. The per-age distributions of sex scores
from TikTok are identical.

Null Hypothesis 2. The per-ethnicity distributions of sex
accuracy from TikTok are identical.

Null Hypothesis 3. The per-age distributions of age scores
from TikTok fall within the corresponding age bin.
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Figure 5: TikTok’s ML model assigns a score to a user’s
image which is close to 0 if the predicted sex is female and
1 if it is male. Analyzing the predicted sex (y-axis) grouped
by age bin and labeled sex (x-axis), we observe that the
model performs poorly for younger individuals. In older age
bins, the model is more confident in predicting the sex of
male individuals.2
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Figure 6: On the x-axis, we abbreviated Middle Eastern to
ME, Southeast Asian to SA, Latino Hispanic to LH, and
East Asian to EA. Evaluating the distribution of TikTok’s
predicted sex scores (y-axis) grouped by ethnicity (x-axis),
we find that the model is most confident in predictions for
Southeast and East Asian individuals and least confident for
Black individuals.2

Null Hypothesis 4. The per-ethnicity distributions of age
scores from TikTok are identical.

In this study, we employed the Kruskal-Wallis test to
evaluate our hypotheses across each age bin, ethnicity, or sex.
Since our data is non-parametric and from a non-normal
distribution, we use the Kruskal-Wallis test to assess all
of our null hypotheses. This test was conducted using the
stats.kruskal function from the SciPy library in Python.
Due to the large size of the dataset, we estimate the effect
size to ensure the results are meaningful. We implemented
the power estimation algorithm from Mahoney et al. [48]
and varied effect sizes to estimate the power. We chose
effect sizes of 100, 500, and 1000 per group per test and
ran 1000 simulations. We considered a power estimation
above 0.8 for a valid effect size. We accounted for alpha
error accumulation using the Bonferroni corrector [70].

5.2.1. Null Hypothesis 1. For the first null hypothesis group,
we evaluate the disparities of age across sexes. TikTok assigns
a score close to one if the model is confident a person is
a male and close to zero if it is confident the person is a
female. For each null hypothesis to be true all, age bins
should have the same sex prediction distribution. All of

2. The colors of this figure deliberately match TikTok’s logo colors.
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Figure 7: The distributions of TikTok’s predicted age (y-axis)
grouped by age bins (x-axis) are inaccurate for younger
individuals as the median prediction is too high and falls
outside the actual age bins.
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Figure 8: Lastly, we analyze the correlations between
TikTok’s predicted age (y-axis) and ethnicity grouped by
age (x-axis). For younger age groups, the distribution of
age predictions differs notably between ethnicities and we
observe that TikTok performs better for Asian demographics.
For older age groups, the predictions become more similar.

the p-values were below the threshold. However, we cannot
confidently reject the hypothesis for the group 20-29 as its
power was estimated 0.17. All other groups are confidently
rejected.

Figure 5 shows that the sex distributions vary between
the age bins. At younger ages, the sex of a person is difficult
to differentiate, whereas the gap between males and females
widens as people become older. However, as the individual
becomes older, the model becomes more confident when
discerning males but not with females. In the oldest age bin,
the model seems to revert back to the first age bin, where it
is unsure of a person’s sex

5.2.2. Null Hypothesis 2. The second null hypothesis group
states that each ethnicity should have the same sex distri-
bution for each ethnicity. For this to be true, each ethnicity
should show the same predicted distributions. For each sex,

we compared each ethnicity’s distributions for male and
female scores. For each sex group, we were able to reject
their null hypothesis. Figure 6 depicts the distributions of
sex scores grouped by ethnicity. The figure shows that black
individuals have the most variance, where the model appears
to be unsure with both black males and black females. On
the other hand, east Asian females and Middle Eastern males
are confidently identified.

5.2.3. Null Hypothesis 3. Our third hypothesis states that
the predicted age scores fall within the corresponding age
bin. Figure 7 shows how the model fails to correctly predict
ages, especially for younger individuals. Younger age bins
all have medians outside of their age bin. For example, the
0− 2 age bin has a median of 13. However, as individuals
get older the median age falls within the age of 40. There
is a special significance to these results. If TikTok were to
rely on this model to perform age verification, as they have
alluded to in public statements in front of Congress [28],
then their platform fails to properly classify children.

5.2.4. Null Hypothesis 4. Our fourth and final null hypoth-
esis group states that each ethnicity must have the same
distribution for age scores. Each age bin should show a
similar distribution across the ethnic demographics. Similar
to the previous cases, the statistical tests reject the null
hypothesis all except for the ethnicities aged 60-69 with a
p-value of 0.103 and ethnicities aged 70-100 with a p-value
of 0.038. Figure 8 shows that for younger ages, the demo-
graphics exhibit different age prediction performances. The
TikTok model predicts accurate age for younger individuals
from Asian demographics more than all other demographics.
However, when looking at older individuals, the distributions
become more similar.

6. Instagram

Like TikTok, Instagram allows users to post short videos
on their Reels platform. Reels is a recent feature added in
August of 2020 [6]. To make a Reel, a user has two options:
record a video using the phone’s camera or upload photos or
videos directly from phone storage. We find that Instagram
performs ML on these Reels before they are uploaded to
infer the probability of certain objects in the frames.

6.1. Analysis

In this section, we discuss how we apply our methodology
to Instagram. We perform our analysis on our rooted custom
ROM running on a Pixel 4XL. We first locate the ML using
the OS logs with our custom ROM. Then, we rebuild the
pipeline which we locate within the Java code because
Instagram uses the Pytorch ML framework. Finally, we
design a script that feeds images to the ML model through
internal injection.
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6.1.1. ML Detection. Our analysis begins on our custom
ROM, where ML is triggered whenever the user selects a
photo to upload as a Reel or records a Reel using the camera.
At this time, we notice that the app calls the forward function
from the Pytorch interface, which is an inference call of an
ML model. We observe that Instagram, similar to other
Android applications [65], [56], implements these ML calls
through the Pytorch ML framework, which executes ML
operations as JNI calls from the Java layer.

6.1.2. Pipeline Reconstruction. Starting at the forward call,
we perform static analysis on the decompiled Java code to
reconstruct Instagram’s ML pipeline, which we depict in
Figure 9. We find that when a user selects an image (1), this
image is converted (2) into the corresponding input format
for the model, which is a tensor of a Bitmap of size 224x224.
The app then creates an ML thread and passes the model
input to the thread (3) which calls the forward function of
the ML model (4). The output of the model is a list of
512 tensors that are cast to Java objects (5), each holds
two key pieces of information: an output class label, which
describes a concept, and its corresponding inference score,
which ranges from 0 to 1. The tensor elements are then
sorted by value and the top 10 concept scores are selected
for further processing (6). We present the full list of concept
scores calculated for each Reel in Appendix A.

6.1.3. Assessing ML. In the Instagram Reels, the ML model
invocation is triggered by a specific user action. Therefore, we
create a script from the reconstructed ML pipeline functions
to execute the ML task and inject the data internally. First,
we load all of our images into the phone’s storage. Then,
we overwrite the implementation of the threading function,
which initiates the original ML calls. To ensure that the app
functions normally,we intercept the original thread call and
create our own threads based on the pipeline we observed. In
the new thread function’s body, we inject a script that iterates
over all the images uploaded to the phone. For each image,
we cast it to the appropriate Bitmap format, instantiate the
ML model object, trigger the inference call, and capture the
inference scores. Once completed, the script gives control
back to the application to run the original threaded task.

6.2. Evaluation

Instagram’s vision model computes 512 concept scores
for each image including facial features, landmarks, animals,
objects, and activities as listed in Appendix A. For the scope
of this work, we mainly investigate ML vision inferences
related to identities, facial features, and demographic infor-
mation. Thus, we focus on studying Instagram inference of
facial features including {‘eyewear’, ‘eyeglasses’, ‘sunglass’,
‘beard’, ‘braiding’, ‘blond’, ‘blonde’, ‘hair’, ‘hair long’,
‘jewelry’}, along with age (minors) related concepts such as
{‘baby’, ‘child’}. This section, explains the design details
and results of Instagram’s model evaluation.

Figure 9: Instagram’s ML pipeline transforms the image
and passes the input to an ML model to calculate over 500
concept scores. The ten highest scores are selected for further
processing.

6.2.1. Concept Validation. To validate that Instagram con-
cepts accurately represent their semantic meaning, we man-
ually cross-matched Instagram concepts to ImageNet [31]
labels (see Appendix B). We identified 87 concepts that
have matching labels in ImageNet. We evaluated Instagram’s
model using samples from these 87 ImageNet classes.
Figure 12 shows higher scores for Object in Image
compared to Object not in Image samples. This con-
firms that Instagram scores accurately reflect the semantic
meaning of their concepts.

6.2.2. Dataset. While there exist many open-source face
datasets, they lack accurately annotated semantic and
demographic features that map to Instagram concepts.
Therefore, we compile a comprehensive dataset from multiple
sources to examine all relevant concepts. First, similar to
TikTok, we utilize 42,130 images from FairFace [43] with
two gender labels, seven ethnicity labels, and nine age
ranges. We use FairFace to assess Instagram’s age-related
concepts across different demographic subgroups (gender
and ethnicity). Second, to examine the more challenging
concepts of facial features, we construct a synthetic dataset
with explicit semantic features following Rosenberg et
al.’s [57] method. Similar to that work [57], we use an
open-source Text-to-Image (TTI) diffusion model3 that is
fine-tuned to generate images of human faces. We guide the
model to generate face images with diverse demographic
and semantic features that reflect Instagram’s concepts such
as facial hair, glasses, and hairstyles. We generate 28,919
image-concept pairs belonging to eight demographic groups
spanning four ethnicities {Asian, Black, Indian, White} and
two sexes {Male, Female} with an average of 2,892 images
per concept, and 3,615 images per demographic group.

Dataset Validation. For a faithful evaluation, we manually
annotate about 89% of the generated images to eliminate
distorted images and confirm the correctness of the facial
concepts in the images, resulting in positive (when the
concept exists in the image) and negative (when the concept
does not exist in image) samples per concept. Table 5 shows

3. https://huggingface.co/SG161222/Realistic Vision V4.0 noVAE

379

Authorized licensed use limited to: University of Wisconsin. Downloaded on April 24,2025 at 13:04:32 UTC from IEEE Xplore.  Restrictions apply. 



the total number of images per demographic group per
concept and the percentage of manually annotated images.

6.2.3. Experiment Pipeline. With the pipeline, we design
an experiment where the images are passed to Instagram
internally and we collect the 512 concept scores for each
image. We use a Pixel 4 phone on a production Android
build version TP1A.221005.002.B2, last updated in February
2023, and Instagram version 309.1.0.41.113. We upload
all images to the phone using ADB. The dynamic analysis
script uses Frida version 16.14. We aim to use the described
datasets to characterize Instagram’s vision ML potential
demographic disparities and spurious correlations.

Synthetic Data. For the scope of this experiment, we only
consider the manually annotated images to avoid dataset
noise. We formalize our evaluation through the following
three null hypotheses:

Null Hypothesis 5. The per-sex distributions of 〈concept
scores〉 from Instagram are identical.

Null Hypothesis 6. The per-ethnicity distributions of 〈con-
cept scores〉 from Instagram are identical.

Null Hypothesis 7. The per-demographic distributions of
〈concept scores〉 from Instagram are identical.

Null hypotheses 5, 6, 7 capture whether or not per-
formance disparities associated with facial concepts scores
appear among images of different demographic groups. Each
null hypothesis is evaluated with a Kruskal-Wallis H-test (the
non-parametric version of one-way ANOVA, preferred when
groups distributions are not normal or skewed). The statistical
significance of the three null hypotheses, using a significance
threshold of 0.05 divided by the number of groups (correcting
for multiple hypothesis testing), for Instagram facial concepts
scores are indicated in Table 2. The three hypotheses indicate
significant performance (scores) disparity across the groups.

Moreover, since the dataset has positive and negative
samples per concept, we compute the Area under the ROC
curve (ROC-AUC). Table 2 shows the AUC values per
concept and demographic group. An extension of this
analysis on the overall dataset is shown in table 4.

FairFace Dataset. Figure 10 shows the distribution of Insta-
gram ‘child’ and ‘baby’ scores on the FairFace dataset across
the nine age groups. Our findings suggest that Instagram’s
distribution of ‘child’ scores is accurately higher in younger
age groups (0-19) compared to older ones. However, the
‘baby’ scores distribution exhibits significant variance for the
0-3 age group. Should Instagram utilize these classifiers to
aid in detecting minors on the platform [67], such detection
could present demographic disparities and inaccuracies.

Figure 11 presents the distribution of ‘child’ scores
across ethnicity and age groups. We conducted a Kruskal-
Wallis H-test to assess null hypothesis 6 across ethnicity
groups within every age group. The test rejected the null
hypothesis for all age groups except the 70-100 group. It is
worth noting that both TikTok and Instagram fail to reject

the null hypothesis for younger age groups.

6.2.4. Spurious Correlations. Aside from the facial con-
cepts, Instagram infers about 502 other concepts about each
image (Appendix A). While these concepts are unrelated
to the face, they can shed light on the model’s spurious
correlations. Using our generated data we analyze potential
correlations between these concepts and the demographic
groups. For a fair assessment, we convert the image’s
background to a plain grey color, eliminating any possible
leakage of these concepts into the images from the generative
model. We feed the grey background images to Instagram
and collect the scores again. We identify concepts with an
average score above 0.15 within any demographic group to
filter out low-score concepts. Next, for each concept, we
determine the demographic group with the highest average
score and assess whether it significantly differs from all other
groups using Null hypothesis 7. Table 3 shows the potential
spuriously correlated concepts with each demographic group.
For example, the ‘great wall of china’ concept is correlated
with Asian women, ‘nudity’ is correlated with White men,
and ‘art painting’ is correlated with White women.

7. Discussion

Ethical and Legal Considerations. As we perform our
analysis on social media platforms where other users are
active, we must address some ethical considerations. For our
evaluation, we create new accounts (using the initials of the
authors) and do not interact with other users. We only use
the camera in the apps into which we inject images from
public datasets. We thus do not store any personal images
or collect any user data. In particular, while we analyze the
age estimation of computer vision models, we do not collect
any data on children. We were careful not to break the terms
of services of the TikTok or Instagram apps. We consulted
with the legal counsel at our institution while conducting
our investigation.

Presence of Root Detection. Implementing root and Frida
detection is a common practice to prevent apps from running
in an unsafe environment. App developers can choose to shut
down an app or disable certain features to preserve an app’s
integrity. In fact, during our analysis, we observed that both
TikTok and Instagram seemed to execute fewer functions
when Frida was attached. While this detection is important to
protect users by preventing their data from being tampered
with, it also complicates comprehensive privacy analyses
of apps. This means that approaches that depend on rooted
devices, like ours, might not detect certain app features.

Other Observations. Here, we report some of the observa-
tions we made during our investigation.

Our work aims to identify, reconstruct, and finally assess
ML tasks in TikTok and Instagram. We did not find out
how the computed ML values are further processed and
what purpose they serve for the apps. This is an interesting

380

Authorized licensed use limited to: University of Wisconsin. Downloaded on April 24,2025 at 13:04:32 UTC from IEEE Xplore.  Restrictions apply. 



TABLE 2: For the manually labeled dataset, we calculated the Instagram facial concepts ROC-AUC, ranging from 0 to 100,
along with null hypotheses 5, 6, 7. The abbreviations stand for Asian, Black, Indian, or White; and Male or Female.
� indicates statistical significance, and � indicates no statistical significance. NaN means no samples are present in the
dataset for this concept-demographic group pair. The results indicate that the model exhibits performance disparities in
predicting facial concepts among demographic groups.

concept AM AF BM BF IM IF WM WF NH 5 NH 6 NH 7

beard 67.6 82.97 73.82 68.47 78.68 80.63 81.51 82.92 � � �
blond 92.02 NaN 96.02 98.3 NaN NaN 72.49 90.14 � � �
blonde 88.04 NaN 82.57 99.32 NaN NaN 71.4 89.57 � � �
braiding 80.46 83.8 72.72 81.78 56.2 15.17 84.28 67.05 � � �
eyeglasses 80.09 78.02 85.76 89.44 86.13 91.32 94.23 91.98 � � �
eyewear 66.67 64.72 70.14 77.49 72.91 66.67 76.31 69.43 � � �
hair 41.33 41.14 57.24 37.05 44.2 34.63 51.25 50.74 � � �
hair long 66.94 78.38 73.39 82.97 70.41 79.86 71.42 64.9 � � �
jewelry 68.42 59.01 69.79 70.03 61.53 66.37 70.49 55.62 � � �
sunglass 95.31 91.99 87.2 92.08 91.23 81.92 96.41 93.91 � � �

TABLE 3: We analyze the correlation of all predicted concepts of Instagram’s model regarding demographic groups by
running inference on our synthetic face dataset. For fair assessment, we greyed out the background in each image. We found
the following spurious correlations.

Demographic Group Associated Concepts

Asian Man ‘eyeglasses’, ‘bbq barbecue’, ‘sansevieria’, ‘dais’
Asian Woman ‘great wall of china’, ‘reading’, ‘sports field’, ‘wine’, ‘colHarmony’
Black Man ‘rabbit’, ‘teamaker’, ‘carving’, ‘nighttime’, ‘outdoor’, ‘suiting’, ‘fish’, ‘chair’, ‘brass’, ‘cloud’, ‘balanceElements’, ’RoT’
Black Woman ‘video game’, ‘bakken’, ‘drag’, ‘light’, ‘aesthetics rating’
Indian Man ‘grass’, ‘beard’, ‘skydiving’, ‘people’, ‘face’, ‘driving’
Indian Woman ‘opening champagne’, ‘confectionery’, ‘gamefowl’, ‘lepidoptera’, ‘jewelry’, ‘watchstrap’, ‘hair long’, ‘dress’, ‘coffee’, ‘cloche’,

‘colVivid’
White Man ‘sunglass’, ‘giraffe’, ‘businesssuit’, ‘water’, ‘indoor’, ‘activewear’, ‘sky’, ‘aviation’, ‘eyewear’, ‘red’, ‘zoo’, ‘nudity’
White Woman ‘diningroom’, ‘huron’, ‘playing’, ‘sleepwear’, ‘lacrosse’, ‘blond’, ‘interior design’, ‘fineart’, ‘art painting’, ‘hair’, ‘equestrian’,

‘blue’, ‘blonde’

question that we consider out of scope for this paper and
leave open for future work. We note, however, that the
discussed root detection might make such an investigation
difficult.

Uur analysis, found that other ML models exist in both
apps. For TikTok, we discovered three different models
are active while users scroll through their feed. As these
are not computer vision models, we disregard them in this
work. Furthermore, we discovered that TikTok has code
for detecting beauty, facial expressions, and animals within
libeffect.so. During our studies, this code was never executed.
We also noticed that other ML models may be loaded instead
of the model we observed; however, during analysis, we
found that the other models do not exist on the device.

In Instagram, we also found evidence for multiple other
models. One was used to crop a selected image by computing
the saliency region. Notably, the result of the cropping
appeared to always be the center of the image. Moreover,
we discovered a database accessed whenever the user opens
a picture from their gallery inside the app. This database
contains columns designated to storing scores called, among
others, smiling, food, aesthetic, and concept scores. We
observed that the app writes into this database whenever
there a new image is in the gallery. However, the stored
values were always zero, and we did not observe any model
performing the respective inference computations.

Privacy Policies of TikTok and Instagram. Instagram states
in their privacy policy [9] that they may use the camera
feature for various purposes. These include performing
analytics, personalizing recommendations, and providing
information to advertisers and partners. The app may also
use the camera feature to test new developments and features.
TikTok’s privacy policy [10] states that they may collect user
information, such as content the user generates in the app.
This includes photographs and videos which a user creates
or uploads through TikTok. Furthermore, TikTok uses such
information to “infer additional information about [the user],
such as [the user’s] age [and] gender” [10], and improve
machine learning models. Information a user provides may
be shared with advertising and analytics vendors.

Age Verification in Tiktok and Instagram. In a recent
court case, Meta received a lawsuit because they violated
the Children’s Online Privacy Protection Act by knowingly
not disabling accounts of children under 13 on Instagram
and Facebook [63]. Meta claims that verifying a user’s age
is a difficult task [63]. Our evaluation shows that Instagram
employs a computer vision model that can detect whether
there is a child in the image. On the other hand, TikTok’s
CEO testified recently in front of Congress about using age
verification technology [28], [16]. He stated that TikTok will
“try and match what the age that you said with the video
that you just posted.” Our findings suggest that their age
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prediction models exhibit performance problems.

8. Conclusion

In conclusion, we propose a novel methodology to
detect, reconstruct, and evaluate on-device ML models. We
instrument the Android OS to allow for the dynamic search
of ML tasks in apps. Our pipeline reconstruction method goes
beyond the Java layer and exported JNI function to targeted
regions of the shared library. This improvement allows us to
extrapolate functionality out of entirely native activities. Our
on-device assessment allows us to inject crafted datasets onto
on-device models. We create datasets specifically tailored
to assess the respective models. With our methodology,
we evaluate Instagram and TikTok on mobile devices and
show that their models’ performance exhibit demographic
disparities. Our approach serves the purpose of increasing
the coverage of ML task detection and reconstruction, and
it is independent of the specifics of any given app. These
features enable the design of a system for analyzing apps at
scale in future work.
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Appendix A.
Instagram Concept Scores

The following is the list of concepts that Instagram’s ML
vision model scores:
{fire, grass, sunglass, cueball, germanshepherd, spaghetti, redhorse, blow-

ing candle, triumphal arch, firearm, rabbit, sink, firework, chessboard,

glove, church, lavabo, violin, chute, pyramid, ferocactus, rock, columbalivia,

trampolining, diningroom, huron, skating, video game, racing vehicles,

manicotti, beard, horseradish, dessert, wall painting, flan, oystershells,

park, belladonnalily, great wall of china, drink, overpass, road, elephant,

phone, pier, anthurium, frenchfries, fireengine, teamaker, parade, workout,

woodwind, camel, washing dishes, camping, bib, karate, wedding, khimar,

carving, basketball jersey, daylily, sheath, baseball, bong, skydiving, banana,

falls, people, watermelon, wheelhorse, sewing, opening champagne, bus,

cablecar, chimborazo, confectionery, weddingcake, steak, face, painted-

turtle, meat, onion, giraffe, trumpet, winter, cymbal, businesssuit, coast,

bathroom, reading, food, helicopter, bagel, laundromat, chocolate, tiramisu,

samoyede, playing, has text, shuffleboard, llama, ball, gamefowl, footwear,

bubble, fog, living room, dieffenbachia, suntea, taj mahal, nib, flatware,

bowling, otterhound, custardapple, newsroom, drum, tenderloin, coconut-

water, trail, audi, lepidoptera, denim, watertable, sleepwear, skislope,

anvil, digitalwatch, garage, car, railroad, statue, washington monument,

accordion, hiking, eiffel tower, vanda, gimbal, poundcake, nighttime,

playroom, crustacean, siamesecats, wheel chair, icelolly, outdoor, lacrosse,

dinner, rift, legoset, monkeybread, corn, pagoda, doll, tree, guitar, boat-

ing, snackfood, conservatory, shackle, illustration, instrument, police car,

eyeglasses, bbq barbecue, sports field, staircase, tapiocapudding, knife,

cornerpocket, scallop, brick wall, chihuahua, cornusmas, lake, broom-

stick, sydney opera house, snaredrum, blond, sansevieria, laptop, abacus,

pinesnake, platerack, entrecote, balloon, tarotcards, potato, mountararat,

crablegs, christmas, adenium, candy, ropebridge, curtain, eating, pinball,

granite, goose, manholecover, crochet, acrylic, climbing wall, cup, fireplug,

picnic, obverse, mezcal, reticulatedpythons, soundboard, darts, horse, bridge,

leather, water, bellagio fountains, soccer, water skiing, pokerchips, anchovy,

rearviewmirror, farmland, pennant, bicycle, snow mountain, hollyhock,

autumn fall, driving, grill, crucifix, river, cockatoo, chocolatebar, windmill,

lagomorph, dalmatian, bellis, copperplate, diving, scrambler, clothesline,

backpack, puzzle, birthday cake, swimming, cheeseburger, cirrocumulus,

skyscraper, wadingbirds, pool, stub, study, clockface, weight lifting, swine,

giantpanda, egyptiancat, shorts, freight, suitcase, mowing, bananatree, suck-

lingpig, ananas, dog, cat, brunswickstew, jewelry, amanita, softball, cavia,

grandfatherclock, hot air balloon, apple, mt rushmore, interior design,

pinballmachine, watchstrap, ovis, train, tamp, crotalus, weimaraner, sprinkler,

paeonia, passeriformes, funeral, rainbowlorikeet, cornsnake, hallway, fishing,

tillandsia, fungi, silvia, poodledogs, fineart, sofa, concert, indoor, smoking,

snake, bakken, art painting, table, tomato, hair, ocean, hair long, castle,

barber, activewear, nymphalidae, stew, rugelach, pallette, money, dress,

golden gate bridge, sky, tabbouleh, watch, stadium, arctic, snowing, casino,

tram, rollingstock, statue of liberty, aviation, galleria, glass, spearpoint,

parrot, begoniarex, beefburger, chicken, whale, peachorchard, paragliding,

brownie, christmas tree, bird, plant, animation, menorah, ferris wheel,

tempura, swan, ursus, skiing, rabbithutch, wildsheep, fishpond, slot, drawing,

etamin, dumpling, crowd, cheerleading, gym, hockey, floorplan, boxing,

book, tortilla, flange, graduation, bottle, sundae, bonsai, shrimp, football,

pythonidae, biking, mountain, pull ups, eyewear, animal, tatting, badminton,

windbell, standardschnauzer, toy, boa, nopal, christmascake, sextant, ta-

ble tennis, subwaytrains, floodlight, tv, beach, bed, rooibos, monkey, suiting,

street, keyring, surfing, combine, jigsawpuzzle, cuttingboard, computer,

cupcake, coffee, steeple, tent, stingingnettles, scope, ambulance, squirrel,

shoes, bedroom, bottleneck, fruit, mountainbike, cloche, pool, fish, pet,

wildfowl, beanie, pizza, popart, horizon, americanfoxhound, peacock,

ice hockey, child, baby, chair, hardcandy, torte, iceskate, birdnests, bole-

tusedulis, echinocereus, gymnastics, basketball, motherboard, longan, flower,

playingcard, glaze, bubblegum, hookah, perfume, towelrack, tamale, belljar,

beefsteak, painting, linocut, saxophone, wallclocks, dais, aeonium, hearth,

equestrian, volleyball, kitchen, poker, orangepeel, braiding, wrecking, lace,

motorcycle, wave, silverfish, condiment, brass, turtle, cockerel, amphibian,

blue, redcurrant, roti, piano, broccoli, flute, cake, playing music, red, rhino,

riding scooter, pie, bactriancamel, popcorn, wine, churchhats, blonde, bay,
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TABLE 4: Instagram facial concepts ROC-AUC on the overall synthetic dataset. Range is from 0 to 100. The abbreviations
stand for Asian, Black, Indian, or White; and Male or Female. � indicates statistical significance, and � indicates no
statistical significance. NaN means no samples are present in the dataset for this concept-demographic group pair.

concept AM AF BM BF IM IF WM WF NH 5 NH 6 NH 7

beard 70.04 77.45 73.33 75.41 81.22 78.82 79.99 76.24 � � �
blond 92.02 NaN 96.02 98.3 NaN NaN 72.49 90.14 � � �
blonde 88.04 NaN 82.57 99.32 NaN NaN 71.4 89.57 � � �
braiding 80.46 83.8 72.72 81.78 56.2 15.17 84.28 67.05 � � �
eyeglasses 86.45 79.95 83.98 89.96 89.86 86.16 93.61 93.25 � � �
eyewear 70.1 68.96 75.56 84.36 76.8 66.73 71.58 74.41 � � �
hair 41.33 41.14 57.24 37.05 44.2 34.63 51.25 50.74 � � �
hair long 67.74 78.07 69.45 83.17 74.97 82.03 75.47 62.86 � � �
jewelry 68.42 59.01 69.79 70.03 61.53 66.37 70.49 55.62 � � �
sunglass 96.21 91.01 82.73 91.01 93.93 91.4 97.89 90.47 � � �

TABLE 5: To evaluate how Instagram’s ML model calculates concept scores with respect to different demographic groups,
we generated images of faces from different demographic groups containing concepts predicted by the ML model. This table
shows the number of generated images per concept and demographic group. The abbreviations stand for Asian, Black, Indian,
or White; and Male or Female. We manually checked and annotated about 89% of all images, the individual percentages are
presented in parentheses (%).

concept AM AF BM BF IM IF WM WF Sum

beard 557 (71.8) 504 (72.8) 510 (78.8) 446 (78.3) 561 (71.8) 469 (71.4) 522 (70.7) 388 (78.4) 3957 (74)
blond 327 (100) 324 (100) 328 (100) 303 (100) 331 (100) 291 (100) 301 (100) 262 (100) 2467 (100)
blonde 327 (100) 324 (100) 328 (100) 303 (100) 331 (100) 291 (100) 301 (100) 262 (100) 2467 (100)
braiding 327 (100) 324 (100) 328 (100) 303 (100) 331 (100) 291 (100) 301 (100) 262 (100) 2467 (100)
eyeglasses 388 (85.6) 386 (84.7) 381 (87.9) 365 (84.4) 393 (86.3) 357 (83.5) 356 (86.5) 318 (84) 2944 (85.4)
eyewear 453 (75.9) 453 (74) 428 (78.5) 432 (72.9) 450 (76.4) 419 (71.8) 415 (75.7) 377 (71.9) 3427 (74.7)
hair 347 (100) 363 (100) 348 (100) 338 (100) 349 (100) 324 (100) 318 (100) 299 (100) 2686 (100)
hair long 401 (87.8) 409 (85.3) 396 (89.4) 384 (84.4) 412 (86.4) 370 (83.8) 379 (85.5) 336 (84.8) 3087 (86)
jewelry 327 (100) 324 (100) 328 (100) 303 (100) 331 (100) 291 (100) 301 (100) 262 (100) 2467 (100)
sunglass 392 (86.5) 391 (84.9) 375 (87.7) 370 (83.8) 388 (86.6) 353 (83.3) 360 (85.3) 321 (82.9) 2950 (85.2)

Total 3846 (89) 3802 (88.6) 3750 (91.1) 3547 (89) 3877 (89) 3456 (87.6) 3554 (88.5) 3087 (88.8) 28,919 (89)

dartboard, drag, spotteddick, zoo, colocasia, dancing, cloud, DoF, blurry,

motionBlur, light, colVivid, balanceElements, colHarmony, aesthetics rating,

RoT, violence, nudity}.

Appendix B.
Instagram Concept Score Validation

We manually cross-matched Instagram concepts to Im-
ageNet dataset labels. These are the 87 concepts that have
matching labels in ImageNet:
{sunglass, candle, triumphal arch, rifle, revolver, assault rifle, church,

violin, race car, sports car, oystercatcher, pier, bib, basketball, baseball,

baseball player, banana, sewing machine, school bus, trolleybus, bagel,

laptop computer, notebook computer, desktop computer, computer keyboard,

abacus, balloon, mashed potato, Dungeness crab, Christmas stocking, front

curtain, shower curtain, pinwheel, goose, cup, measuring cup, suspension

bridge, through arch bridge, soccer ball, ski, tandem bicycle, mountain

bike, scuba diver, backpack, jigsaw puzzle, cheeseburger, freight car, lawn

mower, tiger cat, necklace, balloon, couch, water snake, sea snake, worm

snake, night snake, garter snake, vine snake, dining table, castle, barbershop,

barber chair, gown, digital watch, airliner, military aircraft, beer glass,

cheeseburger, killer whale, grey whale, crane (bird), birdhouse, black swan,

ski, slot machine, water bottle, wine bottle, bottle cap, beer bottle, soda

bottle, football helmet, mountain bike, toy store, feather boa, television,

common squirrel monkey, howler monkey, patas monkey, suit, jigsaw puzzle,

laptop computer, desktop computer, computer keyboard, computer mouse,

notebook computer, coffeemaker, coffee mug, tent, ambulance, fox squirrel,

running shoe, mountain bike, pizza, peacock, folding chair, rocking chair,

basketball, perfume, volleyball, stove, orange, mountain bike, brass, box

turtle, mud turtle, grand piano, upright piano, broccoli, flute, red wine,

rhinoceros beetle, scooter, wine bottle, red wine}.
We evaluated Instagram’s model using images from these

87 ImageNet classes. The results are shown in Figure 12,
where the blue bars represent Instagram’s average scores on
ImageNet images whose label matches Instagram’s concept,
and the orange bars represent the average scores of images
from the other labels. The higher scores of Object in
Image compared to Object not in Image confirm
that Instagram concepts accurately reflect their semantic
meaning.
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(a) Distribution of ‘baby’ scores across FairFace age groups.
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(b) Distribution of ‘child’ scores across FairFace age groups.

Figure 10: Distributions of Instagram ML model’s ‘baby’ and
‘child’ concept scores across the age groups from FairFace
dataset.
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Figure 11: Distribution of child scores from Instagram’s
ML model over each ethnicity. Each point on the X-axis
corresponds to an age bin and the Y-Axis is the model’s
score. A higher child score implies that there is a child in
the image.
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Figure 12: Average scores for our validation objects selected
from ImageNet. The blue bar represents the mean score
when the labeled object is within the image. The orange bar
indicates when the labeled object is not in the image.
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C. Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

The paper describes a methodology for identifying and
evaluating vision-based machine learning models in Android
applications. Their methodology does not rely on model
invocations in Java code via known entry points. Instead,
it uses a combination of static and dynamic code analysis
to identify the ML pipelines. Based on the detected and
reconstructed ML pipelines, the authors then assess the
ML models using internal/external injection of test images
to collect the respective ML models’ labels. Based on
the collected data, the authors assess whether the models
show demographic disparities. The authors applied their
methodology to the TikTok and Instagram Android apps and
found that both apps’ models exhibit issues.

C.2. Scientific Contributions

• Independent Confirmation of Important Results with
Limited Prior Research

• Creates a New Tool to Enable Future Science
• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field
• Other

C.3. Reasons for Acceptance

1) The paper’s main contribution is a new methodology
for analyzing ML models within apps, which provides a
valuable step forward in analyzing ML usage in Android
apps. The proposed methodology could potentially be
used to evaluate machine learning models deployed in
other applications and platforms.

2) The final results and discussions demonstrate the poten-
tial societal impact of such research studies and confirm
disparities in real-world machine learning models for
images in the special case of client-side models for
social media apps.

C.4. Noteworthy Concerns

1) The paper claims as one of its contributions the analysis
of the ML models used by the Instagram and TikTok
apps. However, the results of this analysis are roughly
consistent with analyses of other vision models. Al-
though there could be a practical impact, there is no
scientific contribution to understanding the biases of
the models in specific versions of these specific apps.

2) Further, the manuscript is unclear if the analyzed models
are actually used or how within the apps (or if the apps

under test behaved faithfully in the test setting). Without
further information or testing, this raises doubts about
the relevance of the results, e.g., if the age prediction
is used for age verification.

3) The approach is more of a guide for reverse engineering
(i.e., a lot of manual work and analysis) than a recipe
for automated, scalable testing of apps’ ML models.
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