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Abstract—Transformers, although first designed for sequence
processing, can also handle unordered sets like point cloud
data. Additionally, contrastive pretraining has emerged as a
successful technique in image processing but remains unexplored
for point cloud data. We develop and integrate a new point cloud
pretraining technique inspired by the Simple Framework for
Contrastive Learning (SimCLR) into the Set Transformer (ST)
and Point Cloud Transformer (PCT) architectures and explore
model performance using a novel 3D body scan dataset and the
canonical datasets ShapeNet and ModelNet. For the 3D body
scan dataset, this integration boosts initial training performance
and maintains overall higher performance for classification tasks,
and demonstrates better stability/convergence for regression tasks
in comparison to non-pretrained (Naı̈ve) counterparts. Fur-
thermore, experiments examining strong generalization (relative
performance on previously unseen classes) show improvement for
pretrained models compared to Naı̈ve models. Consistent benefits
across tasks and data sets are observed based on additional
experiments performed on the ShapeNet core dataset. Overall,
we show how contrastive pretraining for point cloud data is a
viable strategy for improving the performance of Transformers
on downstream tasks and accelerating the training process.

Index Terms—Point Cloud, Contrastive, Set Transformer, Point
Cloud Transformer (PCT), ShapeNet, ModelNet

I. INTRODUCTION

Set Transformer (ST) [9] and Point Cloud Transformer

(PCT) [5] are transformer [15] variants designed to process

unordered point cloud data, leveraging permutation invari-

ance. Unlike traditional grid-structured objects, such as Vision

Transformer (ViT) [3], PCT enhances input embedding with

farthest point sampling and nearest neighbor search, capturing

the local context, whereas ST processes unordered sets using

the formal attention mechanism. Contrastive pretraining has

also emerged as a technique to improve downstream fine-

tuning on models for processing grid-structured data [2]

thereby helping to speed up the process and improving accu-

racy in classification tasks via extracting better features based

on similarity and dissimilarity in instances. To the best of

our knowledge, the contrastive pretraining technique with a

transformer on point cloud data remains unexplored.

We conduct experiments using 3D point cloud body scan

data, a novel dataset initially collected using KX-16 Body

Scanner [14] for a psychology study under IRB protocol1.

The dataset is used for classification tasks such as self-

identification, gender classification, and age categorization,

1No data was individually identifiable by the researchers.

and regression tasks predicting height, weight, and age.

These tasks are beneficial for applications in the fashion

and design industry, where precise personalization and real-

time adjustments are essential. Additionally, we classify the

ShapeNet [18] and ModelNet [5] datasets comprising 55 and

40 object classes, respectively.

Overall, our experiments aim to explore the suitability of
the Set Transformer and Point Cloud Transformer for the
3D body scan dataset and the synthetic datasets ShapeNet
and ModelNet, analyzing the potential advantages and chal-
lenges of Contrastive Pretrained Set Transformer (CPST) and
Contrastive Point Cloud Transformer (CPCT). Our primary
focus in this work is a comparative study between the Naive
and the corresponding Contrastive pretrained models. We also

assess the generalization capabilities of both models in their

Naive and contrastive forms by comparing weak generalization

(new examples within the trained class distribution) and strong

generalization (examples outside the trained distribution) [16]

across both datasets. Generalization is evaluated using Kull-
back–Leibler (KL) divergence as a distance metric between

weak and strong generalization across tasks.

II. RELATED WORK

Transformer for point clouds: Representing data in the

form of 3D point clouds enables precise and comprehen-

sive analysis across fields. Transformers, with their inher-

ent permutation invariance from the self-attention mecha-

nism, are well-suited for point cloud processing. Variants

like Point Cloud Transformer (PCT) [5] along with a few

other models [4], [7], [10], [19], and [13] (convolutional

based), leverage self-attention mechanism in different forms

while maximizing the task performance. PCT introduces op-

timized offset-attention and neighbor embeddings, while ST

uses permutation-invariant attention with Induced Set Attention
Blocks (ISAB) layers and Pooling by Multihead-Attention
(PMA) block for efficient feature extraction. Despite the

availability of other models, ST’s time and space efficiency

and PCT’s optimized techniques make them the most viable

options for integration with contrastive models.

Contrastive method: Contrastive learning, introduced by

[6], allows a model to cluster positive (neighboring) pairs

while separating negative (non-neighboring) pairs in latent

space without an external distance metric. The Simple frame-

work for Contrastive Learning (SimCLR) [2] extended this to
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the image domain by creating batches of positive (a sample

and its augmented version) and negative pairs, facilitating

unsupervised contrastive learning. Inspired by the contrastive

benefits, several works explore unsupervised learning [17],

self-supervised learning [1], [12], or improvised contrastive

loss function as in [8]. However, no models have explored

transformers for contrastive learning on point clouds.

III. METHODS

This section outlines the model implementation and ex-

perimental setup for ShapeNet and ModelNet classification,

as well as self-identification, gender classification, binned-age

classification, and regression tasks (weight, height, and age

prediction). The Naive Set Transformer, designed using ISAB

and PMA layers, is employed both as a stand-alone model and

as a base for the contrastive pre-trained approach. We design

the Set Transformer for both classification and regression tasks

using ISAB and PMA layers, as discussed in Section II. For

the PCT implementation, we adopt the neighbor embedding

technique from [5], utilizing Linear, BatchNorm, and ReLU

(LBR) layers, followed by Sampling and Grouping (SG) layers

to extract local features.
Extending the Naive Set Transformer and Naive PCT, we

introduce a contrastive pretraining technique inspired by the

SimCLR approach to both models to utilize the potential

advantages offered in improving the performance. As a result,

we expect a high performance by the contrastive models

with consistent success across the tasks and the capability

to identify an unseen object more precisely due to improved

organization of the latent space.
The 3D point cloud body scan has 96 individual samples,

each consisting of at least 40,000 points. We normalize these

point clouds by scaling to ensure consistency across samples,

facilitating numerical stability during learning. Of the available

metadata (age, height, weight, ethnicity, and gender), missing

values are handled by calculating the Chamfer distance from

the missing data to other samples and assigning the value

from the closest match. The dataset is split into training and

validation sets in an 80:20 ratio, and training batches are

created through random subsampling of points.
The ShapeNet dataset [18] has approximately 35,000 train-

ing and 5,100 validation samples, each consisting of 15,000

points, and normalized using standard scalar. The ModelNet

dataset [5] has 9,800 training and 2,400 test samples (based

on the official splits), each consisting of 2,000 points. Since

the datasets are imbalanced, we form balanced batches at each

epoch by randomly subsampling from all classes to match the

count of the least-represented class (undersampling).
We implement the contrastive learning technique in a similar

technique as in [2], leveraging positive and negative pairings

to pretrain the model. This establishes an unsupervised ob-

jective for pretraining the model. Random subsamples of data

points are paired with non-overlapping subsamples from the

corresponding scans. The pretrained model is then fine-tuned

for downstream classification and regression tasks2.

2No class balancing strategy is applied during contrastive pretraining.

As part of tracking the overall efficiency of the Naive and

contrastive pretrained models (CPST and CPCT) in classify-

ing seen (weak generalization or WG) and unseen (strong

generalization or SG) category data, we use KL divergence

on normalized probabilities to measure the distance for self-

identification and multi-class classification tasks. For binary

gender classification, the accuracy metric directly compares

strong generalization in the Naive vs Contrastive approaches.

Similarly, for regression, we calculate the Mean-Squared Error

(MSE) for each left-out instance and then average the results

to compare model performance.

We train and validate both Naive and Contrastive pretrained

models (ST & PCT) on 3D body scans using a batch size

of 4, with 8K points per sample for both models and 2K

for validation. For ShapeNet, we use a batch size of 32 for

PCT and 16 for ST, with 2K points per subsample to train

and validate. For ModelNet, we maintain a batch size of 32

for both models. During contrastive pretraining on ModelNet

data, we subsample 256 to train and 128 points to validate

(unlike the 1024 points used in [5]), as the smaller point clouds

could lead to overfitting, and smaller subsamples facilitate bet-

ter augmentation. These parameters were fine-tuned through

extensive experimentation for optimal performance.

We use the Adam optimizer for both models, subjected to

250 epochs of 10 independent runs for ShapeNet and Mod-

elNet and 10 independent Monte Carlo samples for 3D body

scans. We calculate standard errors using 1.96 standard errors

above and below the mean to estimate 95% confidence inter-

vals. Then we compare Contrastive pretrained (CPST/CPCT)

to Naive models based on observed stability, learning speed,

accuracy, and loss across classification and regression tasks.

A. Naive models

In this section, we define the experimental setup of the

Set Transformer and Point Cloud Transformer. Some of the

shared hyperparameters like learning rate and dropout, are

tuned based on the task at hand with both models but are

maintained constant with their Contrastive counterparts.

1) Set Transformer (ST): The ST model architecture fol-

lows the design by [11], with hyperparameters such as em-
bedding dimension, inducing dimension, number of attention
heads, and stacks of ISAB layers tuned for optimal perfor-

mance. The Gelu activation function and cross-entropy loss

function are used across the board. The number of ISAB layers

varied between 2 to 6, with 3 layers proving optimal for most

tasks while maintaining other hyperparameters depending on

resource availability. Embedding dimension (32, 64), attention

heads (4, 16, 32), and inducing dimension (32, 64, 128, 256)

are the major factors influencing stability and accuracy. The

best results were achieved with an embedding dimension of

64, 16 attention heads, and inducing dimensions of 128/256.

2) Point Cloud Transformer (PCT): The architectural de-

sign of the PCT model is utilized as designed by [5]. Point

Cloud Transformer with Neighbor embedding is constructed

with 2 LBR layers and 2 SG layers, applying the zoom

augment effect from SG layers to output reduced point cloud
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to half of the original subsample. Reducing these further

results in degraded performance. For ShapeNet and ModelNet

classification we use the loss crafted with the regularization

technique to smooth out the labels, as this performs better

than regular cross-entropy, while 3D body scan does well with

standard cross entropy.

B. Contrastive learning

Contrastive Pretrained Set transformer(CPST) and Con-
trastive Point Cloud Transformer (CPCT) represent novel

approaches presented in this work experimented on the point

cloud datasets. Contrastive pretrained models come in two

phases: contrastive pretraining of the base models and the fine-

tuning process for the downstream tasks. An overview of the

contrastive learning, with an ST/PCT used as a base model

extracting the feature embeddings and learning contrastively,

is demonstrated in pseudocode 1. The contrastively pretrained

model learns in an unsupervised fashion and is then fine-tuned

for both classification and regression tasks using the same ex-

perimental setup as the Naive models for both generalizations.

Set Transformer or PCT as the base model is similar to the

Naive models defined in section III-A with most of the hyper-

parameter maintained as-described. We use a temperature of

2.0 that yields better results in terms of faster convergence and

stabilizes the pretraining and fine-tuning phases. Both models

are trained up to 200 epochs, making sure the model stabilizes

with no further active learning.

We develop independent CPST and CPCT models for 3D

body scans, ShapeNet, and ModelNet point cloud datasets.

Data is augmented by randomly choosing subsets of points,

and batches are constructed with replacement to achieve sizes

of 64 & 32 (ST & PCT), 80 & 112 (ST & PCT), and

160 (ST & PCT) for the 3D body scans, ShapeNet, and

ModelNet datasets, respectively. Larger batch sizes are crucial

for pretrained models to learn underlying patterns, aligning

with with similar observations stated in [2]. We set the number

of batches per epoch to 150 for the 3D body scans and

ModelNet and 200 for ShapeNet.

We conducted experiments starting with smaller batch sizes,

incrementing in multiples of 8 until a sufficiently large enough

batch size was attained. At this point, we observed enhanced

learning in the contrastive models with increasing batch sizes;

however, smaller batch sizes had slower learning rates, and

the model tended to get stuck in local minima during the fine-

tuning process. Additionally, the model benefits even more

from larger batch sizes with increased sample sizes.

To train and validate, data is augmented by subsampling

point clouds at each training step. For the body scan dataset,

we use 1K points; ShapeNet, with its medium-sized point

clouds, requires a minimum of 2K points for ST and 1K for

PCT; and ModelNet, with the smallest point cloud availabil-

ity, benefits from 512 points, indicating that higher-density

point clouds enable more effective augmentation, leading to

improved learning outcomes.

For our models, fine-tuning involves additional layers, in-

cluding a linear projection of embeddings onto higher dimen-

Algorithm 1 Contrastive Learning architecture

1: (y1 embed) = base model(batch1)
2: (y2 embed) = base model(batch2)
3: y1 embed = Linear(e dim, p dim)(y1 embed)
4: y2 embed = Linear(e dim, p dim)(y2 embed)
5: y1 embed = Norm(y1 embed)
6: y2 embed = Norm(y2 embed)
7: y = Mul(y1 embed, y2 embed.T ) ∗ temp

sional space, followed by a non-linear Leaky-RELU activation

and a dropout layer. For a thorough investigation of the linear

projection, we tune it to dimensions of [2048, 1024, 256, 128]

during the fine-tuning process. For CPST, a 128-dimensional

projection with a dropout of 0.1 (0.05 for ModelNet) was opti-

mal across all tasks. In contrast, CPCT does better with 2048

dimensions (dropout of 0.4) for the ShapeNet classification

and 1024 with a dropout of 0.1 (0.2 for ModelNet) for the

rest of the tasks. The same set of hyperparameters (optimizer,

learning rate, and epochs) are used as Navie models for the

finetuning process.

C. Tasks

1) Classification: As part of the classification task, we con-

ducted experiments on self-identification, gender classification,

and binned-age classification on 3D body scans and object

classification on the ShapeNet and ModelNet datasets using

the architectural setup discussed earlier.

• Self-identification : In this task, each sample is its own

class, meaning the number of samples equals the number

of targets. A model is asked to identify a sample by

learning from 80% of the point cloud data, and then the

remaining 20% of the unseen data is used for validation.

• Gender classification : Gender metadata serves as the

target (male or female) for binary classification. As the

female population exceeds the male population, it neces-

sitates the class balancing strategy, for which we used an

undersampling technique. Here, the minority(male) class

is completely considered, while the majority(female)

class population is randomly sampled to match the size

of the minority class at each epoch.

• Binned-age Classification: As age can be both discrete

and continuous, we perform both classification and re-

gression tasks using the Naive and Contrastive models.

For classification, the age data is divided into four evenly

distributed bins using quantile binning. The experimental

setup is identical to the above-mentioned design with an

exception to PCT, which showed a tendency to overfit.

To address this, a step learning rate with a gamma of 0.1

was applied at the 60th epoch.

• ShapeNet classification: This is a highly imbalanced

multi-class classification task. We balance it using an

undersampling strategy by considering the least count

class and sampling the rest of the class samples at

random, constructing a fresh batch at every training step.

Architectural design needs a little bit of tweaking with

346

Authorized licensed use limited to: Middle Tennessee State University. Downloaded on April 18,2025 at 04:51:52 UTC from IEEE Xplore.  Restrictions apply. 



PCT to include L2 normalization which avoids overfitting

at the very early stage.

• ModelNet classification: This is also a multi-class clas-

sification with imbalanced classes and the least available

point clouds. Similar to ShapeNet classification we use

the undersampling technique, constructing a fresh batch

at every train step.

2) Regression: For regression tasks, experiments were con-

ducted to predict the height, weight, and age of a person using

the 3D body scan point cloud data with Mean Squared Error

(MSE) used as the evaluation metric.

D. Generalization

1) Weak Generalization is a technique of model evaluation

where the model has seen a part of the data features

(subsampled point cloud data) corresponding to a target

value, and during the validation, a model encounters

the unseen data features and is asked to assign to its

corresponding value. In our case, we do 80:20 mutually

exclusive point cloud data for the 3D body scans and

utilize the already separated train and validation data

for ShapeNet dataset. To train the model, point cloud

data is randomly subsampled on each epoch for both

the training and validation process.

2) Strong Generalization is a technique where a model’s

ability to handle unseen samples or classes during vali-

dation, even though it has encountered similar samples

or target values during training. We implement the

leave-one-out strategy training on all but one sample,

resulting in as many models as there are classes. For

example, consider the self-identification task to identify

96 individuals; 96 independent models will be trained.

For classification or regression tasks, we design the model

similar to its corresponding weak generalization, as discussed

in sections III-A and III-B, and repeat the experiment using

both Naive and Contrastive models. In each run, the model

is trained as in the weak generalization process, and at

the end of training, we validate on left-out data sample.

For self-identification, ShapeNet, and ModelNet classification

tasks, we build a confusion matrix of size number class ∗
number class constructed to analyze how confused the

model is in recognizing the unseen sample. We then compare

the confusion probability distribution with the weak general-

ization probability distribution (ignoring the darker diagonal

in the weak generalization matrix).

Similarly, experiments are repeated using the CPST and

CPCT models for both weak and strong generalizations, con-

structing confusion matrices for the classification tasks (Note

that the Contrastively Pretrained model is aware of all samples

during pretraining). To analyze model generalization, we use

the weak generalization as a standard matrix to calculate the

KL divergence distance to the corresponding strong gener-

alization matrix. For each run, we take the final probability

matrices from both generalizations, average them across the

simulations, and then normalize. Resultant normalized matri-

ces are then used to compute the KL divergence. To compare

probability distributions, we nullify the diagonal elements of

the weak generalization matrices (by assigning a small value

of 1e−12), allowing a fair comparison with the leave-one-out

strategy and expecting to observe similar distributions between

both generalizations.

Gender classification is a binary classification problem

where leaving out an entire class will not suffice for a model to

learn underlying distinguishing patterns. Instead, we leave out

individual samples, as each can be gender-identified based on

its point cloud data. Accuracy is used to evaluate generaliza-

tion to unseen samples in both Naive and Contrastive models,

with higher accuracy indicating better generalization.

Similarly, for regression tasks, the average Mean Squared

Error (MSE) is used as an evaluation metric for the gener-

alization. The lower the average loss becomes, the better the

model is generalizing for the regression task.

All implementation details are on our GitHub repository3.

IV. RESULTS

All experiments are subjected to weak and strong gen-

eralizations using both Naive and Contrastively pretrained

models of ST and PCT. Fig. 1, 2 and 3 depict the weak

generalization results on the validation set, exhibiting the

model’s performance across Naive ST, Naive PCT, CPST, and

CPCT models. All plots illustrate the mean accuracy/loss over

250 epochs averaged across 10 Monte Carlo samples with a

95% confidence interval. Generalization results are represented

in Tables I, and II.

A. Classification tasks

From the Fig. 1a, 1b and 1c the accuracy plot for self-

identification, gender classification, and binned-age classifi-

cation, CPST and CPCT both have clear wins over Naive

counterparts across the tasks. However, for self-identification,

CPCT is more stable than the CPST, but with binned-age clas-

sification, CPST starts off slow but overtakes CPCT. Whereas

with gender classification both models exhibit similar learning

behavior. Overall both versions of contrastive models achieve

over 90% of accuracy in a short time (facilitated by the initial

long step jumps indicating the model’s prior knowledge) and

maintain stability over longer epochs, unlike Naive models.

Fig. 2a and 2b, shows plots of an F1 score4 and accuracy

for ShapeNet and ModelNet datasets, depicting the boosted

early learning performance with both CPCT and CPST models.

While with the ShapeNet dataset, CPCT is observed to main-

tain high performance throughout the learning phase, CPST

eventually merges with its Naive counterpart. Note that though

the scores do not look as high as our body scan dataset, note

that this is a highly imbalanced set with a large number of

samples and suffers due to data quality and low count on point

cloud. On the other hand, the ModelNet dataset is observed to

have a boosted start with CPST but ends up with just about

the same performance on all 4 versions.

3GitHub: CPCP Repository
4To provide balanced evaluation across all classes.
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(a) Self-Identification (b) Gender Classification (c) Binned-Age Classification

Fig. 1: Classification accuracy plot for weak generalization obtained using Naive ST, Naive PCT, CPST, and CPCT models.

A model is trained and validated using a mutually exclusive point cloud dataset.

(a) Shapenet (b) ModelNet

Fig. 2: Accuracy and F1 result plot for classification using canonical datasets.

(a) Age Prediction (b) Height Prediction (c) Weight Prediction

Fig. 3: Average regression loss for weak generalization plotted using Naive ST, Naive PCT, CPST, and CPCT models across

10 independent Monte Carlo runs. The model is trained solely on point cloud data input as features and corresponding task

metadata is used as a target for supervised learning. Plots are zoomed in for better visualization.

B. Regression tasks

Fig. 3a, 3b & 3c depicts the convergence of loss functions

in predicting individuals age, height, and weight, respectively.

Among the four models across the three tasks, Naive PCT is

unstable and struggles to converge. Whereas, its counterpart

CPCT is considerably stable and tends to converge at a

faster phase, although slight overfitting can be observed with

height predictions. Both Naive ST and CPST are pretty stable

and have better convergence in all scenarios, however, CPST

comparatively surpasses the CPCT and Naive ST models.

C. Generalization

Table I shows the KL divergence results of generalization

for classification tasks. Though the results across tasks are

not consistent, the CPST model produces promising results

for the self-identification and ShapeNet classification tasks,

indicating a fair chance for the CPST model to recognize

unseen class data. In contrast, for ModelNet, CPCT does better

in recognizing unseen data using the Contrastive model, while

CPST shows no clear advantage over the Naive approach. This

draws a subtle pattern: CPST excels with larger point cloud

samples, whereas CPCT does better with smaller point cloud

data. Further, for Gender classification with a leave-one-out

sample scenario the average accuracy is recorded as Naive ST:
44%, CPST: 54.6%, Naive PCT: 58.4% & CPCT: 74.99%,

demonstrating that CPST and CPCT significantly outperform

random chance.

Table II represents the average loss for the generalization of

models over the regression tasks of the unseen data sample.

The results indicate that CPCT performs better in predicting

unseen continuous values, specifically with height and weight

tasks. We believe this to be the case because PCT’s inherent

augmentation facilitated by the SG layers helps to capture the

features better, which directs us to further consider adapting

the augmentation technique with ST, which could yield better

results.

V. DISCUSSION

A. Conclusion

In this work, we presented a new dataset of 3D point

cloud body scans, along with the ShapeNet and ModelNet

datasets, to conduct classification and regression experiments.

The existing Naive Set Transformer and Naive Point Cloud

Transformer are used as base models for the initial set of ex-
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TABLE I: KL Divergence Results for Generalization

Model Set Transformer Point Cloud Transformer
Task Naive Contrastive Naive Contrastive

Binned-Age 0.33 2.16 0.84 37.86
Self-Identification 9.98 9.18 1.67 5.64

ShapeNet 1.02 0.84 3.22 3.45
ModelNet 0.801 0.809 1.48 1.28

TABLE II: Regression Loss Results for Generalization

Model Set Transformer Point Cloud Transformer
Task Naive Contrastive Naive Contrastive

Age prediction 0.068 0.087 0.074 0.08
Height prediction 0.033 0.066 0.067 0.047
Weight prediction 0.043 0.053 0.057 0.037

periments. Then, we introduced our novel approach, the CPST

and CPCT models, to repeat the experiments for classification

and regression tasks. Both models were evaluated for their

generalization capability in handling unseen data samples for

the tasks.

From the results of both the Naive Transformer and Con-

trastively pretrained models in classification and regression

tasks, our contrastive pretraining boost the learning process

by giving a head start. Among the pretrained models, CPST

demonstrated superior performance with the 3D body scan

dataset, while CPCT performed better with Shapenet data

in weak generalization, with both contrastive models quickly

reaching high performance on 3D body scans. However, with

strong generalization, CPST showed better results in multi-

class classification tasks, such as self-identification, ShapeNet,

and ModelNet, while CPCT excellgied in regression tasks.

Both models do well in gender classification tasks though both

models struggled with binned-age generalization.

Overall, we observe a huge benefit with the contrastive

pretrained model on 3D body scans compared to the ShapeNet

and ModelNet datasets. The large point clouds in 3D body

scans aid in effective augmentation, leading to better perfor-

mance. This decreases with the mid-size point cloud data in

ShapeNet and the lowest performance with ModelNet data.

Thus, large batch sizes with sufficient space for subsampled

data augmentation play a critical role in enhancing the perfor-

mance with contrastive pretrained models.

B. Furture work

Based on our analysis of where the contrastively pre-

trained model struggles, we propose applying more complex

augmentations to the point cloud data. Since PCT’s simple

zoom augmentation has shown promising results, adapting this

approach for CPST could potentially improve performance.

We also putforth idea of randomly choosing varying subset

lengths of data and use a distance metric to extract portions

of an object, creating a varying density zooming potentially

enhancing performance.

Moving forward, contrastive-based models could serve as

a foundation for generative models, utilizing the performance

improvements shown by the approach to generate the point

cloud data to form a 3D body scan or to create a matching

missing part of an object. This engineered approach is to aid

with the precision of forming the missing parts or to include

more point clouds in case of insufficient data. This approach

can also aid in increasing point clouds for the ShapeNet and

ModelNet datasets and observe the resulting behavior.

REFERENCES

[1] Mohamed Afham, Isuru Dissanayake, Dinithi Dissanayake, Amaya
Dharmasiri, Kanchana Thilakarathna, and Ranga Rodrigo. Crosspoint:
Self-supervised cross-modal contrastive learning for 3d point cloud un-
derstanding. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9902–9912, 2022.

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.
A simple framework for contrastive learning of visual representations.
arXiv preprint arXiv:2002.05709, 2020.

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

[4] Nico Engel, Vasileios Belagiannis, and Klaus Dietmayer. Point trans-
former. IEEE Access, 9:134826–134840, 2021.

[5] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu,
Ralph R. Martin, and Shi-Min Hu. Pct: Point cloud transformer, 2020.

[6] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction
by learning an invariant mapping. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06),
volume 2, pages 1735–1742, 2006.

[7] Xian-Feng Han, Yi-Fei Jin, Hui-Xian Cheng, and Guo-Qiang Xiao. Dual
transformer for point cloud analysis. IEEE Transactions on Multimedia,
25, 2023.

[8] Li Jiang, Shaoshuai Shi, Zhuotao Tian, Xin Lai, Shu Liu, Chi-Wing Fu,
and Jiaya Jia. Guided point contrastive learning for semi-supervised
point cloud semantic segmentation. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 6423–6432, 2021.

[9] J. Lee, Y. Lee, J. Kim, A. R. Kosiorek, S. Choi, and Y. W. Teh.
Set transformer: A framework for attention-based permutation-invariant
neural networks. arXiv preprint arXiv:1810.00825, 2018.

[10] Dening Lu, Qian Xie, Kyle Gao, Linlin Xu, and Jonathan Li. 3dctn:
3d convolution-transformer network for point cloud classification.
IEEE Transactions on Intelligent Transportation Systems, 23(12):24854–
24865, 2022.

[11] David Ludwig. Set transformer mnist. GitHub, 2022. https://github.
com/DLii-Research/tf-settransformer/.

[12] Lucas Nunes, Rodrigo Marcuzzi, Xieyuanli Chen, Jens Behley, and
Cyrill Stachniss. Segcontrast: 3d point cloud feature representation
learning through self-supervised segment discrimination. IEEE Robotics
and Automation Letters, 7(2):2116–2123, 2022.

[13] Jinyoung Park, Sanghyeok Lee, Sihyeon Kim, Yunyang Xiong, and
Hyunwoo J Kim. Self-positioning point-based transformer for point
cloud understanding. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 21814–21823, 2023.

[14] [TC]2 Introduces KX-16 Body Scanner. [TC]2 Introduces KX-16 Body
Scanner, 3 2012.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[16] Taylor W. Webb, Ishan Sinha, and Jonathan D. Cohen. Emergent
symbols through binding in external memory, 2021.

[17] Saining Xie, Jiatao Gu, Demi Guo, Charles R. Qi, Leonidas Guibas,
and Or Litany. Pointcontrast: Unsupervised pre-training for 3d point
cloud understanding. In Andrea Vedaldi, Horst Bischof, Thomas Brox,
and Jan-Michael Frahm, editors, Computer Vision – ECCV 2020, pages
574–591, Cham, 2020. Springer International Publishing.

[18] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie,
and Bharath Hariharan. Pointflow: 3d point cloud generation with
continuous normalizing flows. arXiv, 2019.

[19] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen
Koltun. Point transformer. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 16259–16268, 2021.

349

Authorized licensed use limited to: Middle Tennessee State University. Downloaded on April 18,2025 at 04:51:52 UTC from IEEE Xplore.  Restrictions apply. 


