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Abstract

The structured singular value (SSV), or ÿ, is used to assess the robust

stability and performance of an uncertain linear time-invariant system. Exist-

ing algorithms compute upper and lower bounds on the SSV for structured

uncertainties that contain repeated (real or complex) scalars and/or nonre-

peated complex full-blocks. This paper presents algorithms to compute bounds

on the SSV for the case of repeated complex full-blocks. This specific class of

uncertainty is relevant for the input-output analysis of many convective sys-

tems, such as fluid flows. Specifically, we present a power iteration to compute

the SSV lower bound for the case of repeated complex full-blocks. This gener-

alizes existing power iterations for repeated complex scalars and nonrepeated

complex full-blocks. The upper bound can be formulated as a semi-definite pro-

gram (SDP), which we solve using a standard interior-point method to compute

optimal scaling matrices associated with the repeated full-blocks. Our imple-

mentation of the method only requires gradient information, which improves

the computational efficiency of the method. Finally, we test our proposed algo-

rithms on an examplemodel of incompressible fluid flow. The proposedmethods

provide less conservative bounds as compared to prior results, which ignore the

repeated full-block structure.
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1 INTRODUCTION

The structured singular value (SSV), or ÿ, is a useful metric for assessing the robust stability and performance of an uncer-

tain linear time-invariant system with a structured uncertainty.1–3 The SSV is inversely related to the smallest structured

uncertainty that destabilizes the uncertain system. Roughly, the SSV is the <gain= of the system with respect to the struc-

tured uncertainty and its inverse provides a stability margin.4,5 It is known that exactly computing the SSV is NP hard.6,7

Thus, it is a common practice to instead compute upper and lower bounds on the SSV. The upper bound provides a suf-

ficient condition for robust stability and the lower bound for instability, respectively.2,4,5,8,9 However, for some specific

uncertainty structures, as noted in prior works,2,10,11 the convex upper bound equals the SSV. Thus, for these cases, the

exact SSV can be computed through the convex upper bound.

Abbreviations: I/O, input-output; PCF, plane Couette flow; SSV, structured singular value.
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Much of the previous work has focused on structured uncertainties with a mixture of repeated (real or complex)

scalars and/or nonrepeated complex full-block uncertainties (see Section 2).2,4,5 For these commonuncertainty structures,

one can use the methods described in prior works to compute the upper and lower bound.8,9,12,13 The current paper

focuses on a new uncertainty structure: repeated complex full-blocks. This particular class of uncertainties consists of a

single complex full-block repeated multiple times. This repeated structure naturally arises in fluid dynamics and other

convective systems. Recently, SSVhas emerged as ameans of performing a structured input-output analysis of transitional

shear flows to study instabilitymechanisms.14–17However, Liu et al.14–16 utilizeMATLAB9sRobustControl Toolbox,which

does not allow for repeated full-blocks. The only cases handled byMATLAB are nonrepeated, complex full-blocks and the

repeated (real or complex) scalars.18 Therefore, the numerical results in these works14–16 replace the repeated complex

full-block structure with a nonrepeated one, which yields conservative SSV bounds. In addition to conservatism in the

bounds, accounting for the repeated uncertainty structure is important for revealing physical instability mechanisms, as

will become clear in the results we present later.

In this paper, we present algorithms to compute upper and lower bounds on the SSV for a repeated complex full-block

uncertainty (see Sections 3 and 4). The upper bound is computed using an interior point algorithm known as the method

of centers.19,20 Our implementation only uses gradient (and not Hessian) information. This improves computational effi-

ciency, which is important for any large dimensioned system, such as the fluid flow example presented in our paper.

The lower bound is computed by generalizing the existing power iteration algorithm described by Packard et al.2,13

We demonstrate the proposed algorithms on the plane Couette flow model14 and a simple academic example. Further-

more, we compare the SSV bounds computed from the proposed algorithms with existing methods that approximate the

repeated structure with a nonrepeating one. We show that the proposed algorithms not only reduce the conservatism

of the bounds but also highlight the importance of incorporating the correct uncertainty structure for interpreting the

underlying physical system/phenomena (see Section 5).

The symbols R,C,Rn, Cn, and Cn×m denote the sets of real numbers, complex numbers, real vectors of dimension

n, complex vectors of dimension n and complex matrices of dimension n ×m, respectively. The n × n identity and zero

matrices are denoted by In and 0n, respectively.MH and ÿ(M) are the Hermitian transpose and maximum singular value

of a matrix M ∈ Cn×m. We use || ⋅ ||2 to denote the 2-norm for vectors and the induced 2-to-2 norm for matrices. Note

that || ⋅ ||2 = ÿ(⋅) for matrices. Also, || ⋅ ||F denotes the Frobenius norm. ForM ∈ Cn×n, Tr(M) and ÿ(M) are the trace and

spectral radius. The notations⊗ and diag(⋅) denote the Kronecker product and block diagonal matrices, respectively. The

imaginary unit is denoted as i =
√
−1. For c ∈ C, Re(c), Im(c) and conj(c) denote the real and imaginary parts of c, and

the complex conjugate of c, respectively.

2 BACKGROUND: STRUCTURED SINGULAR VALUE, ÿ

We briefly review the structured singular value ÿ and its connection to robust stability of dynamical systems.1,2,4,21 First

consider the case for matrices. Specifically, let M ∈ Cn×m be given along with a set of (possibly structured) complex

matrices ÿ ⊆ Cm×n.

Definition 1. The structured singular value, ÿÿ, is defined as

ÿÿ(M) ∶=
1

min(ÿ(Δ) ∶ Δ ∈ ÿ, det(In −MΔ) = 0)
. (1)

If there does not exist Δ ∈ ÿ such that det(In −MΔ) = 0, then define ÿÿ(M) = 0.

Note that ÿÿ(M) depends on both the matrix M and the set of matrices ÿ. We will typically omit the subscript ÿ for

simplicity when the set of matrices is clear.

The SSV is inversely related to the smallest Δ ∈ ÿ that causes In −MΔ to be singular. Singularity means there exists

a nonzero vector y ∈ Cn such that y = MΔy. This is equivalent to the existence of nonzero vectors u ∈ Cm and y ∈ Cn

such that y = Mu and u = Δy, which provides a feedback interpretation of ÿÿ(M) (see Remark 3.4 in Packard andDoyle2).

Furthermore, the SSV simplifies in two special cases:2

(i) ÿ(M) = ÿ(M) for full-block uncertainties, ÿ = Cm×n,

(ii) ÿ(M) = ÿ(M) for repeated scalar uncertainties ÿ = {ÿIv ∶ ÿ ∈ C}, where n,m = v.
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There are many known results for structured uncertainties ÿ that contain block-diagonal concatenation of any

number of full-blocks and repeated scalars.1,2,4,21 It is worth noting that if ÿ1 ⊂ ÿ2 then

ÿÿ1
(M) ≤ ÿÿ2

(M). (2)

This follows from the definition of the SSV in (1). This yields the following bound for any matrixM and block structure

ÿ ⊆ Cm×n:

ÿÿ(M) ≤ ÿ(M). (3)

Next, consider the case for LTI systems. Specifically, let M(s) be a transfer function matrix of a multiple-input and

multiple-output (MIMO) LTI system and ÿ be a set of structured LTI uncertainties. The SSV can be used to assess robust-

ness of a feedback loop involvingM(s) andΔ(s). In particular, assume the feedback loop is nominally stable, that is, stable

for Δ(s) = 0. Define the set of bounded, structured uncertainties as Bÿ ∶= {Δ(s) ∈ ÿ ∶ ||Δ||∞ ≤ 1}. Then, the feedback

loop is stable for all Δ ∈ Bÿ if and only if maxÿ ÿ(M(iÿ)) < 1, where ÿ is the temporal frequency.1,2,4,21 This is an adap-

tation of the small-gain condition for the set of structured uncertainties Bÿ. The SSV computations for LTI systems are

often reduced to the SSV computations for a complex matrixM(iÿ) on a grid of frequencies.

This paper contributes methods that can be used to compute the SSV for repeated full-block uncertainty

ÿr ∶= {Δ = Iv ⊗ Δ1 ∶ Δ1 ∈ C
m1×m1} ⊂ C

m×m, (4)

wherem = vm1. Thus, v = 2 represents the same full-block uncertaintyΔ1 repeated twice: I2 ⊗ Δ1 =

[
Δ1 0
0 Δ1

]
. The block

Δ1 is restricted to be square, as is common in the SSV literature, to simplify the presentation. The extension to nonsquare

blocks can be made with mainly notational changes. We discuss algorithms in the subsequent sections that compute

upper and lower bounds on the ÿ(M) for the uncertainty structure in (4).

3 UPPER BOUND OF STRUCTURED SINGULAR VALUE

This section describes an algorithm that computes an upper bound on ÿ for the uncertainty structure defined in (4).

We will describe the upper bound algorithm for the matrix case M ∈ Cm×m. We start by first noting that for each set of

uncertainties ÿ, there is a set of nonsingular <commuting= matrices D with the property that DΔ = ΔD for any Δ ∈ ÿ

and D ∈ D. For example, the set of v nonrepeated full-blocks, denoted ÿnr ⊂ Cm×m, and its corresponding commuting

matrices are

ÿnr ∶= {Δ = diag(Δ1, … ,Δv) ∶ Δi ∈ C
mi×mi}, (5)

Dnr ∶= {diag(d1Im1
, … , dvImv

) ∶ di ∈ R, di ≠ 0}. (6)

The commuting matrices are diagonal when the uncertainty set is nonrepeated. For the repeated full-block structure in

(4), the commuting matrices have the following structure:

Dr ∶= {S⊗ Im1
∶ S ∈ C

v×v, det(S) ≠ 0}. (7)

These commuting matrices are important because det(I −MΔ) = det(I − DMD−1Δ). Thus, ÿÿ(M) = ÿÿ(DMD−1). We can

use this to strengthen the upper bound in (3):

ÿÿ(M) ≤ min
D∈D

ÿ(DMD−1). (8)

This is known as the D-scale upper bound. By setting X = DHD, the optimization on the right hand side of (8) can be

converted into a semi-definite program (technically a generalized eigenvalue problem) as follows:2,4

min
X=XH∈Cm×m, ÿ∈R

ÿ

subject to: MHXM < ÿX , X > 0. (9)
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Then, the upper bound is computed as ÿ = (ÿ)1∕2 and the corresponding scale as D = X1∕2. Therefore, there is an implicit

constraint that ÿ ≥ 0,which arises naturally during the derivation of constraints in (9) (see Packard andDoyle2 for details).

The optimization problem (9) can be solved using several existingmethods such asmethod of centers, interior-pointmeth-

ods for linear fractional programming, and primal-dual methods.20,22,23 These methods are efficient for moderate-sized

problems but can be computationally costly for larger dimensioned problems. Specifically, primal-dual methods tend to

be slower because they require second-order schemes to solve (9). Certainly, there are faster algorithms that utilize a

weaker bound, that is, ÿ(DMD−1) ≤ ||DMD−1||F , which is often sufficient for most large-dimensioned problems. In this
case, an upper bound for a given matrixM becomes

ÿÿ(M) ≤ min
D∈D

||DMD−1||F . (10)

See Appendix A for a fast algorithm for computing an upper bound of the form (10) for D ∈ Dr, that is, the repeated

full-blocks case. However, using a weaker bound yields conservative estimates of the upper bounds, which can result in

large gaps between upper and lower bounds. The goal of this paper is to present an efficient algorithm that would yield the

least conservative upper bounds forΔ ∈ ÿr. Thus, wewill implement themethod of centers for upper bound calculations,

since it is a relatively fast first-order method with good convergence properties.19 First, we will briefly summarize an

existing upper boundmethod for the uncertainty structureÿnr, whichwewill use later to compare with the upper bounds

obtained for ÿr.

3.1 Standard Osborne’s method: Nonrepeated complex full-blocks

Osborne9s iteration can be used to efficiently solve the optimization problem in the right-hand side of (10) for specific

block structures.24 For example, a version of Osborne9s iteration can be applied to the structure ÿnr with scalingsDnr. Let

Di ∈ Dnr denote a scalingwith dj = 1 for all j ≠ i. For example, if i = 1 then d1 is a variable and dj = 1 for j ≠ 1. In addition,

partitionM intomi ×mj sub-blocks, denoted M̂ij, consistent with the block dimensions inÿnr. Then, the Frobenius norm

can be written as

||DiMD−1
i ||2F =

v∑
r=1,r≠i

1

d2
i

||M̂ri||2F + d2i ||M̂ir||2F . (11)

The optimal value d⋆
i
that minimizes (11) is given by

d⋆i =

(∑v
r=1,r≠i||M̂ri||2F∑v
r=1,r≠i||M̂ir||2F

)1∕4

. (12)

Each d⋆
i
is computed from (12) using M and the corresponding matrix D⋆ is determined. Then, the cost is obtained as

||M[2]||2
F
, whereM[2] = D⋆MD⋆−1

. The new D-scale is then computed fromM[2] and the corresponding new cost is deter-

mined. Thus, the iteration proceeds by updating the matrix asM[k] = (D⋆)[k]M(D⋆−1
)[k] and computing the corresponding

(D⋆)[k] until ||M[k]||2
F
has converged. The final D-scale is denoted by D⋆

nr after all the iterations. Osborne showed that the

iterative method always converges to the optimal solution of minD∈D ||DMD−1||F for the uncertainty ÿnr withmi = 1.24

3.2 Method of centers: Repeated complex full-blocks

In this section, we discuss the method of centers approach for solving the generalized eigenvalue problem (9) for the case

when Δ ∈ ÿr and, consequently, D ∈ Dr. In this case, we have X = (S⊗ Im1
)H(S⊗ Im1

) = SHS⊗ Im1
= R⊗ Im1

, where

R ∶= SHS. Therefore, the generalized eigenvalue problem (GEVP) in (9) becomes

min
R=RH∈Cv×v, ÿ∈R

ÿ

subject to: MH(R⊗ Im1
)M < ÿ(R⊗ Im1

), R > 0. (13)
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Since a feasible R for (13) is scale-invariant (i.e., for a feasible R, any cR with c > 0 is also feasible), we will replace the

R > 0 constraint in (13) with 1

ÿ
Iv ≤ R ≤ ÿIv to prevent solutions from becoming ill-conditioned, where ÿ > 0 and ÿ2 is the

(specified) condition number of R. Therefore, we numerically implement the following GEVP:

min
R=RH∈Cv×v, ÿ∈R

ÿ

subject to: MH(R⊗ Im1
)M < ÿ(R⊗ Im1

),

1

ÿ
Iv ≤ R ≤ ÿIv. (14)

The method of centers is an interior-point algorithm that solves for the analytic center of linear matrix inequality (LMI)

constraints, given an initial feasible solution.19,20 Specifically in (14), we are minimizing the largest generalized eigen-

value ÿ of thematrix pair
(
MH(R⊗ Im1

)M, (R⊗ Im1
)
)
. The algorithm utilizes a gradient descent approach, which involves

computing the stepping direction towards an optimal R and the smallest ÿ ≥ 0 satisfying the LMI constraints. To this

end, the directional derivative is computed using a barrier-function for symmetric positive semi-definite matrices, that

is, J(R) = −log det(R).

Next, we will compute the derivative of J(R). Let rij ∈ C denote the (i, j) entry of R. Since R is Hermitian, the diagonal

entries are real, that is, rii ∈ R. Note that the derivative of the barrier function is calculated with respect to the real and

imaginary parts of each (i, j) element of R. Therefore, eachmatrix variable in (14) is decomposed as a summation in terms

of its basis as R =
∑

i,j rijRij, where Rij is the standard basis for Rv×v. Then, the barrier function and its derivative with

respect to rij are given by

J(R) = −log det(L1) − log det(L2) − log det(L3), (15)

ÿJ(R)

ÿrij
= − ÿTr

(
(Rij ⊗ Im1

)TL−11
)

+ Tr
(
(Rij ⊗ Im1

)TML−11 MH
)

(16)

+ Tr
(
RTijL

−1
2

)
− Tr

(
RTijL

−1
3

)
,

where L1 = ÿ(R⊗ Im1
) −MH(R⊗ Im1

)M, L2 = ÿIv − R and L3 = R −
1

ÿ
Iv. To further simplify the expression in (16), it will

be useful to block partition a given matrix H ∈ Cm×m, where (H)ij ∈ Cm1×m1 denotes the (i, j) block for all i, j = 1, … , v.*

Thus, Tr((R11 ⊗ Im1
)TL−11 ) = Tr((L−11 )11), which can be generalized to any (i, j), that is, Tr((Rij ⊗ Im1

)TL−11 ) = Tr((L−11 )ij).

The other terms in (16) can be simplified in a similar manner and we eventually obtain the following expression:

ÿJ(R)

ÿrij
= −ÿTr

(
(L−11 )ij

)
+ Tr

(
(ML−11 MH)ij

)

+ (L−12 )ij − (L−13 )ij.

Thus, the derivative ΦR ∶= ÿJ∕ÿR can be expressed as

ΦR = −ÿΓ
(
L−11

)
+ Γ

(
ML−11 MH

)
+ L−12 − L−13 ,

whereΓ ∶ Cm×m
→ Cv×v is a block-trace operator such that the (i, j) entry ofΓ(H) is equal to Tr

(
(H)ij

)
. An overall summary

of the proposed method for upper bound calculation using the method of centers is provided in Algorithm 1.

It is possible to compute the convergence properties of the algorithm using a second-order primal dual method, which

utilizes the Hessian of the LMIs. However, second-order methods are computationally expensive, especially when the

system has a large dimension. For practical purposes, it is computationally efficient to first calculate the lower bounds ÿ

using the power-iteration (see Section 4 for details) and then compute the upper bounds ÿ. Despite the inherent conver-

gence issues of the power-iteration,8,13 it is always possible to obtain a perturbation, which would result in a valid lower

bound of SSV. Then, the gap between the upper and lower bound can be studied to assess the viability of the solution.

Therefore, we terminate our algorithm when the upper bounds ÿ are within a certain desired ratio of the lower bounds

ÿ, that is, ÿ

ÿ
≤ p, where p > 1 is the chosen bound of the ratio. For example, we can choose p = 1.05 as the desired ratio

for our algorithm to get the bounds within 5% of one another. It is important to note that for the cases where the upper
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Algorithm 1. Upper bound: Method of centers

1: (Initialization)Choose any feasible ÿ ≪ 1, ÿ ≪ 1 and rcond > 0. Set R = diag((d⋆1 )
2,… , (d⋆v )

2), ÿ = ÿ((R⊗

Im1
)1∕2M(R⊗ Im1

)−1∕2) and ÿ = ÿ + ÿ. Choose a suitable p > 1 and maximum number of iterations km.

2: while ÿ

ÿ
≥ p & k ≤ km do

3: Set ÿ = (1 − ÿ)ÿ + ÿÿ and l = 1.

4: while l ≤ 2 do

5: L1 = ÿ2(R⊗ Im1
) −MH(R⊗ Im1

)M, L2 = ÿIv − R and L3 = R −
1

ÿ
Iv.

6: ΦR = Γ(ML−11 MH) − ÿ2Γ(L−11 ) + L−1
2

− L−1
3
.

7: Obtain the step-size ÿ through a line search.

8: Set R = R − ÿΦR, l = l + 1.

9: end while

10: Set D = (R⊗ Im1
)1∕2, k = k + 1.

11: Then, ÿ =
√
ÿmax(D−HMH(R⊗ Im1

)MD−1).

12: end while

13: The upper bound: ÿ

bounds fail to satisfy p, we take the next best upper bound that will result in a ratio closest to p. Certainly, if the gap is

too large, for example, 2p <
ÿ

ÿ
, then either the lower bound has not converged or possibly the upper bound is not exact.

Additionally, a simple initial estimate of R for Algorithm 1 is R = diag((d⋆1 )
2, … , (d⋆v )

2), where d⋆
i
is computed from the

Osborne9s iteration, which we will use in Section 5 for the results.

It should be noted that a variant of Algorithm 1 can be conceived for Δ ∈ ÿnr by restricting R to be diagonal with real

entries.

4 LOWER BOUND OF STRUCTURED SINGULAR VALUE

In this section, we give details on the computation of SSV lower bound for Δ ∈ ÿr using the generalized power iteration

algorithm. The algorithm follows the same steps as the standard power iteration commonly used for complex uncertain-

ties given in Packard and Doyle2 but with slightly modified equations. We will show that the generalized version reduces

to the standard algorithm for the commonly used complex uncertainties as a special case. Thus, the standard power itera-

tion for the repeated scalars and full-block uncertainties is described first so the extension to the generalized version will

be clear.

4.1 Standard power iteration: Repeated scalars and full blocks

This section briefly summarizes the SSV power iterations for complex uncertainties described in Packard and Doyle.2 We

will consider a problem with a givenM ∈ Cm×m and a block structure with one repeated scalar and one full-block:

ÿ ∶=

{
Δ =

[
ÿ1Im1

0

0 Δ2

]
∶ ÿ1 ∈ C, Δ2 ∈ C

m2×m2

}
,

where, for consistency among the dimensions, we havem = m1 +m2. The power iterationwill be described for this partic-

ular block structure. The generalization to other uncertainty block structures with arbitrary numbers of repeated scalars

or full-blocks will be clear.

Note that any particularΔ ∈ ÿ such that det(In −MΔ) = 0 yields a lower bound ÿ(M) ≥
1

ÿ(Δ)
. The exact value of ÿ(M)

is computed by finding the <smallest= Δ ∈ ÿ such that det(In −MΔ) = 0. The determinant condition is equivalent to

finding Δ ∈ ÿ and nonzero vectors y ∈ Cm and u ∈ Cm such that y = Mu and u = Δy. The power iteration is an efficient

method to find uncertainties Δ ∈ ÿ that satisfy the determinant condition. The power iteration does not, in general,

find the smallest uncertainty and hence it only yields a lower bound on ÿ(M). However, these lower bounds are often
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Algorithm 2. Lower bound: power iteration

1: (Initialization) Choose the number of iterations km and set k = 0. Selectsome unit-norm vectors b[0],w[0] ∈ Cm and

a[0] = z[0] = 0 ∈ Cm.

2: while k < km do

3: (17a): ÿ ∶= ‖Mb[k]‖2 and a[k+1] ∶= Mb[k]∕ÿ.

4: (17b): Use (a[k+1],w[k]) to compute z[k+1].

5: (17c): ÿ ∶= ‖MHz[k+1]‖2 and w[k+1] ∶= MHz[k+1]∕ÿ.

6: (17d): Use (a[k+1],w[k+1]) to compute b[k+1].

7: Set k = k + 1.

8: end while

9: Use a[km], b[km] and ÿ to compute u, y and Δ.

accurate in practice.2 Moreover, the particular uncertainty returned by the power iteration can be studied further for

insight.

To describe the power iteration, consider vectors a, z, b,w ∈ Cm. Partition these vectors compatibly with the block

structure, for example, b =

[
b1
b2

]
with b1 ∈ Cm1 and b2 ∈ Cm2 . The power iteration is defined based on the following set

of equations for some ÿ > 0:

ÿa = Mb, (17a)

z1 =
wH
1 a1

|wH
1 a1|

w1, z2 =
||w2||2
||a2||2 a2, (17b)

ÿw = MHz, (17c)

b1 =
aH1 w1

|aH1 w1|a1, b2 =
||a2||2
||w2||2w2. (17d)

These equations arise from the optimality conditions for the SSV and are related to the concept of principle direction

alignment (see details in Packard and Doyle2). Here, we will simply show that any solution of these equations yields a

lower bound on ÿ(M). First note that (17d) implies that b1 = q1a1 with q1 ∶=
aH1 w1

|aH1 w1| ∈ C and |q1| = 1. Equation (17d) also

gives ||b2||2 = ||a2||2. Hence, there is a Q2 ∈ Cm2×m2 with ÿ(Q2) = 1 such that b2 = Q2a2. Finally, define u ∶= b, y ∶= ÿa

and Δ ∶=
1

ÿ
diag(q1Im1

, Q2). It can be verified from (17a) that y = Mu. Moreover, u = Δy and ÿ(Δ) =
1

ÿ
by construction.

Hence, Δ ∈ ÿ satisfies the determinant condition and yields the lower bound ÿ(M) ≥
1

ÿ(Δ)
= ÿ.

The power iteration attempts to solve (17) by iterating through the various relations therein. The procedure is

summarized in Algorithm 2. The algorithm, as stated, runs for a fixed number of km iterations. However, more advanced

stopping conditions can be used, for example, terminating when the various vectors have small updates as measured in

the Euclidean norm. Although b[0],w[0] can be chosen randomly, a more specific choice would be to use the right singular

vector associated with ÿ

(
D⋆
nrM

(
D⋆
nr

)−1)
, where D⋆

nr is obtained using the standard Osborne9s iterations.
13

This power iteration simplifies in two special cases:

(i) ÿ = Cm×m: As noted above, ÿ(M) = ÿ(M) in this case. The power iteration relations in (17) become

ÿa = Mb, z =
||w||2
||a||2 a, ÿw = MHz, b =

||a||2
||w||2w.

If b and w are initialized to be unit norm, then all vectors are unit norm throughout the iteration. Hence z = a and

b = w, so the relations further simplify to

ÿa = Mb, ÿb = MHa.
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We can iterate on these equations starting from an initial unit norm vector b. This corresponds to the standard power

iteration for computing ÿ(M).

(ii) m ∶= v and ÿ = {ÿIv ∶ ÿ ∈ C}: As noted above, ÿ(M) = ÿ(M) in this case. The power iteration relations in (17)

simplify to

ÿa = Mb, z =
wHa

|wHa|w, ÿw = MHz, b =
aHw

|aHw|a.

Iterating these relations yields a power iteration to find the eigenvalue corresponding to the spectral radius. The

iteration also yields the corresponding right b and left zH eigenvectors.

4.2 Generalized power iteration: Repeated complex full-blocks

This subsection describes a generalization of the SSV power iteration to handle repeated complex full-blocks. Again, we

consider the problem with M ∈ Cm×m and a structured uncertainty with one m1 ×m1 full-block repeated v times as in

(4). A lower bound on ÿ(M) is obtained by finding Δ ∈ ÿ and nonzero vectors y ∈ Cm and u ∈ Cm such that y = Mu and

u = Δy.

It will be useful to define the following reshaping operation Lm1
∶ Cvm1 → Cm1×v such that y =

[
yH1 … yHv

]H
∈

Cvm1 maps to Lm1
(y) =

[
y1, … , yv

]
. This operation restacks the partitioned vector y ∈ Cvm1 into a matrix. The inverse L−1m1

will convert the matrix back to a column vector. This notation is useful to handle matrix-vector products for Δ ∈ ÿ.

Specifically, let Δ = Iv ⊗ Δ1 with Δ1 ∈ Cm1×m1 . The relation u = Δy is equivalent to Lm1
(u) = Δ1Lm1

(y).

We need one additional operation to define the generalized power iteration. Consider vectors a, z, b,w ∈ Cvm1 . Let G

be a matrix of any dimension with the following SVD:

G = UΣVH =
[
U1 U2

][Σ̂ 0

0 0

][
V1 V2

]H
. (18)

Define Q(G) ∶= U1V
H
1 and note that ÿ(Q(G)) = 1. The power iteration is defined based on the following set of equations

for some ÿ > 0:

ÿa = Mb, (19a)

Lm1
(z) = Q

(
Lm1

(a)Lm1
(w)H

)
Lm1

(w), (19b)

ÿw = MHz, (19c)

Lm1
(b) = Q

(
Lm1

(w)Lm1
(a)H

)
Lm1

(a). (19d)

Any solution of these equations yields a lower bound on ÿ(M). To show this, define u ∶= b, y ∶= ÿa and Δ ∶= Iv ⊗
1

ÿ
Q
(
Lm1

(w)Lm1
(a)H

)
. Then (19a) and (19d) are equivalent to y = Mu and u = Δy. Moreover, ÿ(Δ) = 1

ÿ
by construction.

Hence Δ ∈ ÿ satisfies the determinant condition and yields the lower bound ÿ(M) ≥ ÿ. A power iteration can be used to

find a solution by iterating through equations (19a)–(19d) as outlined in Algorithm 3. Note that the comments on initial-

ization and stopping criterion for Algorithm 2 applies for Algorithm 3 as well. In cases where the power iteration does not

converge, the perturbations Δ1 = Iv ⊗Q
(
Lm1

(a)Lm1
(w)H

)
and Δ2 = Iv ⊗Q

(
Lm1

(w)Lm1
(a)H

)
can be used to obtain a valid

lower bound as ÿ = max
(
ÿ(ΔH

1M), ÿ(Δ2M)
)
.

Equations (19b) and (19c) generalize the cases in the previous subsection:

(i) v = 1: In this case, the block structure (4) is just a single full-block uncertainty. The stacking operations are just

Lm1
(z) = z, Lm1

(a) = a, Lm1
(w) = w, and Lm1

(b) = b. Thus, an SVD of Lm1
(a)Lm1

(w)H = awH is given by U1 =
a

||a||2 ,

V1 =
w

||w||2 , and Σ̂ = ||a||2||w||2. Equation (19b) is thus equivalent to z = ||w||2
||a||2 a, which corresponds to the full-block

update in (17b).

(ii) m1 = 1: In this case, the block structure (4) is a scalar uncertainty repeated v times. The stacking operations

are just Lm1
(z) = zT , Lm1

(a) = aT , Lm1
(w) = wT , and Lm1

(b) = bT . Thus, the stacking operation is a transpose
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Algorithm 3. Lower bound: generalized power iteration

1: (Initialization) Choose the number of iterations km and set k = 0. Select some unit-norm vectors b[0],w[0] ∈ Cm and

a[0] = z[0] = 0 ∈ Cm.

2: while k < km do

3: (19a): ÿ ∶= ‖Mb[k]‖2 and a[k+1] ∶= Mb[k]∕ÿ.

4: (19b): zL ∶= Q
(
Lm1

(a[k+1])Lm1
(w[k])H

)
Lm1

(w[k]) and z[k+1] = L−1m1
(zL)

5: (19c): ÿ ∶= ‖MHz[k+1]‖2 and w[k+1] ∶= MHz[k+1]∕ÿ.

6: (19d): bL ∶= Q
(
Lm1

(w[k+1])Lm1
(a[k+1])H

)
Lm1

(a[k+1]) and b[k+1] = L−1m1
(bL).

7: Set k = k + 1.

8: end while

9: Use a[km], b[km], w[km] and ÿ to compute u, y and Δ.

TABLE 1 Different algorithms used for the results.

Uncertainty structure ÿ ∈ ÿnr ÿ ∈ ÿr

Upper bound algorithm Osborne9s iteration (Section 3.1) Method of centers (Algorithm 1)

Lower bound algorithm Power iteration (Algorithm 2) Generalized power iteration (Algorithm 3)

(but not conjugation) of the column vector to a row vector. This yields:

Lm1
(a)Lm1

(w)H = aT(wT)H = wHa. (20)

This is a scalar and an SVD of this product is given byU1 =
wHa

|wHa| , V1 = 1, and Σ̂ = |wHa|. Step (19b) is thus equivalent
to z = |wHa|

|wHa|w. This corresponds to the repeated scalar block update in (17b).

5 RESULTS

Weconsider a fluid-flow problemwherein the uncertainty has a repeated full-block structure as in (4). The SSV bounds are

computed for the true uncertainty structure (i.e.,Δ ∈ ÿr) using the proposedmethods.We compare those boundswith the

ones obtained by treating the uncertainty to be nonrepeating (i.e.,Δ ∈ ÿnr), which is an approximation of the true uncer-

tainty. The motivation behind this comparison is to highlight the differences that arise due to this approximation, and

how those differences can alter the subsequent interpretation of the physical system/phenomena. The algorithms used

for different cases are summarized in Table 1. Furthermore, we showcase the gap between the upper and lower bounds for

the two sets of results. In addition, all of the above mentioned aspects have been repeated for a simple academic example.

5.1 Example Model-1: Incompressible plane Couette flow

Wewill demonstrate our proposed algorithms on the same spatially discretized incompressible plane Couette flow (PCF)

model initially used to investigate SSV—with nonrepeated full-blocks—in Liu andGayme.14 PCF is a simple shear-driven

flow between two parallel plates, wherein the lower plate is held stationary and the upper plate moves with a fixed

speed U∞. The PCF example is chosen as a demonstration in this study, but the proposed methods are equally applicable

to other systems where repeated full-block uncertainties arise.14,15,25,26

The input–output (I/O) map of the forced perturbation dynamics about a steady baseflow is a frequency response

matrix defined as

M = C∇(ÿx, ÿz)(iÿI2s − A(ÿx, ÿz))
−1B(ÿx, ÿz), (21)
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where ÿ is the temporal frequency, ÿx and ÿz are the wavenumbers from discretization in x and z directions using Fourier

modes, and A(ÿx, ÿz,Re) ∈ C2s×2s, B(ÿx, ÿz) ∈ C2s×m and C∇(ÿx, ÿz) ∈ Cn×2s are the system operators, respectively. Addi-

tionally, A is a function of the Reynolds number Re = U∞h∕ÿ, where h is the distance between the two plates and ÿ is

the kinematic viscosity of the fluid. Then, forM ∈ Cn×m, we simply have the relation ÿ = Mf between the system inputs

(f (y, t) ∈ Cm) and outputs (ÿ(y, t) ∈ Cn) defined as

f =

£
¤¤¤¥

fx(y, t)

fy(y, t)

fz(y, t)

¦
§§§̈
, ÿ(y, t) =

£
¤¤¤¥

∇ux(y, t)

∇uy(y, t)

∇uz(y, t)

¦
§§§̈
,

where ∇ is the discrete gradient operator, ux, uy and uz represent flow perturbation velocities and fx, fy and fz represent

input forcing, in x, y and z directions, respectively. The forcing signal f is a pseudo-linear approximation of the quadratic

convective nonlinear term in the incompressible PCF model. This is given by f = Δÿ with Δ = I3 ⊗ Δ1, where Δ1 is con-

sidered an unknown matrix approximation of the velocity vectors (see Liu and Gayme14 for more details). Therefore, the

uncertainty for this system is of the form shown in (4) with a rectangular block Δ1 ∈ Cm1×n1 repeated three times (v = 3).

Thus, the SSV bounds for the PCFmodel indicate the sensitivity of flow at each ÿx and ÿz to this forcing, which is an indi-

cation of flow9s potential for transition to turbulence.27 Large bound values indicate that the system in (21) has a higher

tendency to transition, and vice versa, which is a consequence of a variation of the small-gain condition for structured

uncertainties (see Section 2). For additional details on the model formulation and discretization, we refer the reader to

prior works.14,28

We will use a 50 × 90 × 50 grid of nÿx × nÿz × nÿ to compute the SSV bounds, where nÿx , nÿz and nÿ are total grid

points for ÿx, ÿz and ÿ, respectively. We use logarithmically spaced values ÿx ∈ [10−4, 100.48], ÿz ∈ [10−2, 101.2] and

ÿ ∈ [−100.5, 100.5] for all the results in this section. Note that we consider negative temporal frequencies as the system

matrices are complex-valued and the corresponding frequency response is not symmetric about the ÿ = 0 line. The state

dimension of the system is s = 30, and the input and output dimensions arem = 3s = 90 and n = 9s = 270, respectively.

Then, m1 = s = 30 and n1 = 3s = 90 for Δ1. The operating Reynolds number for the system is set to Re = 358. The sys-

tem is nominally stable, that is, the eigenvalues of A(ÿx, ÿz,Re) are in the open left-half plane for the parameter values

chosen here. Algorithm 1 is initialized with R = diag((d⋆1 )
2, … , (d⋆v )

2) using the Osborne9s iteration, p = 1.05, km = 500,

ÿ = 10−3, ÿ = 106 and ÿ = 2 × 10−4. Algorithms 2 and 3 are initialized by settingw[0] and b[0] to be the right singular vector

associated with ÿ

(
D⋆
nrM(iÿ)

(
D⋆
nr

)−1)
, where D⋆

nr is obtained using the standard Osborne9s iterations onM(iÿ). Addition-

ally, the total number of iterations given by km are set to 60 for both the power iterations. SinceM in (21) is a frequency

response operator, we will compute the <best= upper (ÿmax) and lower (ÿmax) bounds at each (ÿx, ÿz) pair by choosing the

maximum ÿ and ÿ over a spectrum of frequencies ÿ.

MATLAB9s parfor command is used to compute ÿmax and ÿmax values using parallel computing for nÿx × nÿz grid at

eachnÿ. The computationswere performed on a desktop computerwith 3.61GHz 12-thGen Intel(R) Core(TM) i7-12700K

processor with 12 cores and 16 GB RAM. The computation times for Algorithms 1 and 3 were approximately 4 h and

22 min, respectively. On the other hand, Osborne9s iteration and Algorithm 1 took about 2 min and 4 min, respectively,

to compute all the ÿmax and ÿmax values.

The results are depicted in Figure 1. Comparing the results shown in Figure 1A,B, we deduce that ÿmax values com-

putedusingAlgorithm1 are smaller overall than the ÿmax values computedusing theOsborne9s iteration. The distributions

of the ÿmax values over the wavenumber pair grid are also markedly different. There is a prominent peak in Figure 1A

for the largest ÿmax value at ÿx = 0.1956 and ÿz = 0.5778. This peak is not present in Figure 1B. Instead, there are two

areas with similar ÿmax values, which are separated by a narrow 8valley9 in between. Therefore, approximating a repeat-

ing full-block uncertainty with a nonrepeating one in this case not only leads to conservative upper bound estimates, but

also results in a local maximum that does not necessarily represent actual system behavior. A similar argument follows

for the lower bounds computed using the two power iteration variants, as shown in Figure 1C,D. Additionally, the largest

ÿmax value in Figure 1B corresponds to the negative spectrum of temporal frequency grid, which provides further insight

into the most sensitive direction for instability of the PCF model in (21).

The gaps between ÿmax and ÿmax are shown in Figure 2A,B which indicate that ÿmax values are within 5% of ÿmax
values for approximately 99.8% and 98.9% of wavenumber pairs in Figure 2A,B, respectively. Thismeans that the true SSV

values lie within a small interval for a large subset of the wavenumber pairs considered for both repeated and nonrepeated

full-blocks. A summary of the gaps in both sets of bounds is provided in Table 2. Although the stopping ratio between
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(A) (B)

(C) (D)

F IGURE 1 The ÿmax and ÿmax results over the wavenumber pair (ÿx , ÿz) grid. The top row plots represent the upper bounds ÿmax and the

bottom row plots represent the lower bounds ÿmax. (A) log10(ÿmax) for Δ ∈ ÿnr: Osborne9s iteration (upper bounds), (B) log10(ÿmax) for Δ ∈ ÿr:

Algorithm 1 (upper bounds), (C) log10(ÿmax) forΔ ∈ ÿnr: Algorithm 2 (lower bounds), (D) log10(ÿmax) forΔ ∈ ÿr: Algorithm 3 (lower bounds).

upper and lower bounds for Algorithm 1 is set to 1.05, we still end up with a percentage difference greater than 5%

at some wavenumber pairs (see Figure 2B). However, the maximum gap is 9.33% for only one wavenumber pair and

the rest of the wavenumber pairs have an average gap of 6.5% at the hotspots in Figure 2B. The relatively large gap

can be attributed to one of the three reasons: (i) The D-scale upper bound is not necessarily equal to ÿ, (ii) the upper

bound algorithm fails to converge to the optimal D-scale, and/or (iii) the power iteration fails to converge to the true

value of ÿ. It is possible that the repeated complex full-blocks are a special case, where ÿ is equal to its corresponding

D-scale upper bound. In this case, issue (i) would not be the source of the gap. We will explore this conjecture in future

work.

To further investigate the bounds, we plot ÿ and ÿ over the temporal frequency at chosen wavenumber pairs (ÿx, ÿz).

These results for the nonrepeated and repeated full-blocks are shown in Figures 3 and 4, respectively. The wavenumber

pairs chosen are the ones corresponding to the largest and smallest gap between ÿmax and ÿmax over the wavenumber

pair grid. The result in Figure 3A showcases the bounds for the nonrepeated full blocks at (ÿx, ÿz) = (0.055, 0.032), where

the gap between ÿmax and ÿmax is the largest at 7.09%. The zoomed-in plot in Figure 3A highlights a single global peak
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(A) (B)

F IGURE 2 The percentage difference between ÿmax and ÿmax values over the wavenumber pair (ÿx , ÿz) grid. The stopping ratio

between upper and lower bounds for Algorithm 1 was set to 1.05, which means that all the computed upper bounds must be within 5% of the

lower bounds. Therefore, the majority of percentage differences in (B) are ≤ 5%. The only upper bounds that failed to achieve the stopping

criterion are given by the red hotspots.

TABLE 2 Summary of the gaps between ÿmax and ÿmax for the Couette flow model.

Uncertainty structure ÿ ∈ ÿnr ÿ ∈ ÿr

Maximum gap, (ÿx , ÿz) 7.09%, (0.055, 0.032) 9.33%, (0.692, 4.578)

Minimum gap, (ÿx , ÿz) 3.2 × 10−5%, (0.005, 0.011) 1.14%, (10−4, 101.2)

Average gap 0.46% 3.8%

(A) (B)

F IGURE 3 The ÿ and ÿ results over the temporal frequency (ÿ) grid for Δ ∈ ÿnr. The (A) and (B) correspond to wavenumber pairs

where the gap between ÿmax and ÿmax are the largest and smallest, respectively.

in ÿ at ÿ ≈ 0, while there are two local peaks in ÿ, located almost symmetrically about the ÿ = 0 line at ÿ = ±0.005. In

the case of smallest gap between ÿmax and ÿmax for the nonrepeated full-blocks, which occurs at (ÿx, ÿz) = (0.005, 0.011),

the bounds are virtually identical (see Figure 3A). On the other hand, both the bounds are qualitatively similar for the

repeated full-blocks case, as shown in Figure 4. The largest gap between ÿmax and ÿmax in this case occurs at (ÿx, ÿz) =

(0.692, 4.578), and both ÿ and ÿ have two local peaks that occur at ÿ = ±0.365 (see Figure 4A). Although these peaks

are symmetric about the ÿ = 0 line, the peak ÿ values in Figure 4A at ÿ = −0.365 and ÿ = 0.365 are 56.799 and 56.651,

respectively.
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(A) (B)

F IGURE 4 The ÿ and ÿ results over the temporal frequency (ÿ) grid for Δ ∈ ÿr. The (A) and (B) correspond to wavenumber pairs

where the gap between ÿmax and ÿmax are the largest and smallest, respectively. (A) (ÿx , ÿz) = (0.692, 4.578), (B) (ÿx , ÿz) = (10−4, 101.2).

5.2 Simple academic example

We now demonstrate the proposed algorithms on a MIMO LTI system with the frequency response matrix given by

M = C(iÿI4 − A)−1B, where ÿ is the temporal frequency and the randomly generated state-space matrices A,B,C ∈ C4×4

are as follows:

A =

£
¤¤¤¤¤¥

0.720 − i0.663 −0.602 − i0.684 −1.937 − i0.792 −1.021 − i0.153

0.059 − i1.875 −1.103 + i0.350 −0.728 + i0.164 −0.135 + i2.021

0.071 + i0.114 0.948 + i0.237 −1.493 + i0.491 1.486 − i0.025

−0.647 − i0.260 −0.272 + i0.829 −0.709 + i0.908 −0.506 + i0.276

¦
§§§§§̈
,

B =

£
¤¤¤¤¤¥

0.738 − i0.773 1.271 + i0.118 1.152 + i0.494 −0.764 − i0.400

−0.166 + i0.896 0.504 + i1.761 0.291 − i0.516 0.425 − i0.028

−1.103 + i0.449 −1.408 − i0.195 0.067 − i1.287 −0.595 + i0.316

1.308 − i0.744 0.358 + i0.728 −0.174 + i0.665 −1.489 − i0.094

¦
§§§§§̈
,

C =

£
¤¤¤¤¤¥

0.255 + i0.101 1.681 + i0.048 −0.386 − i0.051 0.633 − i0.874

−1.827 + i1.132 −0.267 − i0.846 −0.863 + i0.840 0.244 + i1.447

1.877 + i0.179 −1.124 + i0.752 1.014 + i0.731 −1.502 + i0.431

−0.803 + i1.056 0.002 − i0.284 1.029 − i0.801 −0.444 + i0.543

¦
§§§§§̈
.

The nominal system is stable as all the eigenvalues of A are in the open left-half plane. The uncertainty for this model is

chosen as Δ = I2 ⊗ Δ1 with Δ1 ∈ C2×2. Numerical implementation of the algorithms are as described in Section 5.1. We

take 200 logarithmically spaced points forÿ ∈ [−101.5, 101.5]. The results for ÿ and ÿ for both the nonrepeated and repeated

cases are shown in Figure 5. In terms of qualitative similarities, there are two peaks–one for ÿ < 0 and the other for

ÿ > 0– in each bound in both the cases, and the bounds are not symmetric about the ÿ = 0 line. However, approximating

the repeated full-block structure with a nonrepeated one leads to very conservative bounds at some temporal frequencies.

For example, the ÿ value in Figure 5A is approximately 1.7 times that of the ÿ value in Figure 5B at ÿ = 1.896. A similar

set of comments applies to the lower bounds ÿ at ÿ = 1.896. This means that the true value of ÿ at this frequency in

the nonrepeated case is roughly 1.7 times that of the repeated case. It is also noteworthy that the global peaks of the

bounds in Figure 5A are at ÿ > 0, whereas the global peaks in Figure 5B are at ÿ < 0. Therefore, similar to the fluid-flow

example, neglecting the repeated structure of the uncertainty cannot only lead to conservative bounds, which translates

into conservative stability-margin estimates, but also might lead to inaccurate conclusions about the temporal behavior

of the system.
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(A) (B)

F IGURE 5 The ÿ and ÿ results over the temporal frequency (ÿ) grid. Although we consider ÿ ∈ [−101.5, 101.5], the results are shown

for ÿ ∈ [−10, 10] to better highlight the local behavior of the bounds.

6 CONCLUSIONS

We proposed two algorithms for computing upper and lower bounds of structured singular value for repeated complex

full-block uncertainty. Such uncertainty structures naturally arise in models of fluid flows and other convective systems.

The proposed algorithms yield bounds that are less conservative as compared to the algorithms that ignore the repeated

full-block structure, for example, Osborne9s iteration for nonrepeated full-blocks. Thus, properly accounting for the

repeated block structure can improve stability-margin estimates and also enable one to draw more representative

conclusions regarding the temporal behavior of the system. These points were demonstrated on an example of incom-

pressible plane Couette flow and an academic example. Furthermore, our future work will involve investigating the

gap between the ÿ and the convex (or D-scale) upper bound for a single repeated full-block. This particular case is of

interest due to the fact that ÿ is equal to its upper bound for a single full block and also for a single repeated complex

scalar.
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APPENDIX . GENERALIZED OSBORNE

In this section, we will describe a fast algorithm for Δ ∈ ÿr and M ∈ Cm×m. The standard Osborne iteration cannot

be used for ÿr as D ∈ Dr contains off-diagonal entries. This section describes our generalization of Osborne9s method
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(GenOsborne) to handle the matrix scales in (7). The proposed GenOsborne algorithm is an iteration that solves the

following minimization problem:

min
D∈Dr

||DMD−1||2F , (A1)

where Dr is defined in (7). To simplify the calculations, we use the square of Frobenius norm in (A1). Let sij
denote the (i, j) entry of S in (7). The Frobenius norm in (A1) yields a cumbersome expression that has vari-

ous sij ∈ C entries multiplying each other. Thus, it is difficult to minimize the function for each sij, since each

of the scalings are coupled together. To avoid this issue, we iteratively optimize over a single off-diagonal entry

and then couple it, similar to the Osborne9s iteration. Thus, we first use the standard Osborne9s iterations to cal-

culate the optimal diagonal scalings s⋆
i
and then use an iterative approach to optimize a single off-diagonal term

sij ∈ C at each iteration and iterate over all possible pairs of (i, j), where i ≠ j. We denote the matrices with a sin-

gle off-diagonal entry sij ∈ C as Dij = Sij ⊗ Im1
, where Sij has ones along the diagonal, sij in the (i, j) entry and zero

everywhere else.

Let M[k] be the scaled matrix at step k of the generalized iteration and sij ∈ C be the off-diagonal scaling to be

optimized. Then, the objective function is:

f1(sij) = ||DijM
[k]D−1

ij ||2F
= c0 + conj(c1sij) + c1sij + c2||sij||2 + c3s

2
ij

+ conj(c3)(conj(sij))
2 + c4s

2
ij(conj(sij))

+ conj(c4)sij(conj(sij))
2 + c5||s2ij||2, (A2)

where {c0, … , c5} ⊆ C are coefficients that can be computed from the definition of the Frobenius norm. Note that the

coefficients depend on the pair (i, j) andM[k]. By expressing sij = sRij + isIij , the objective function f1(sij) can be written in

the following equivalent form:

f2(sij) = c0 + 2Re(c1)sRij − 2Im(c1)sIij

+ (c2 + 2Re(c3))s
2
Rij

+ (c2 − 2Re(c3))s
2
Iij

− 4Im(c3)sRijsIij + 2Re(c4)sRij(s
2
Rij

+ s2Iij)

− 2Im(c4)sIij(s
2
Rij

+ s2Iij) + c5(s
2
Rij

+ s2Iij)
2, (A3)

where sij = [sRij , sIij]
T. We use the damped newton method (see Algorithm 9.5 in Boyd and Vandenberghe29) to solve the

minimization problem. Therefore, we obtain the local optimum s
⋆
ij = argminsij∈R2 f2(sij) †. Hence, each s

⋆
ij
= s⋆

Rij
+ is⋆

Iij
has

the corresponding scaling matrix D⋆
ij
. We perform the following update for k ≥ 1:

M[k+1] = D⋆
ijM

[k](D⋆
ij )

−1. (A4)

The iterative algorithm results in the total effective scaling as:

D′′ =

( ∏
∀i,j,i≠j

D⋆
ij

)
D⋆
nr, (A5)

where D⋆
nr is the optimal diagonal scaling after applying the standard Osborne9s iteration. For example, if we choose

to optimize the s12 entry then we compute s12 by minimizing (A3). We scale the matrix M[2] = D⋆
12
M[1](D⋆

12
)−1, where

M[1] = D⋆
nrM(D⋆

nr)
−1. We useM[2] and repeat the steps for other sij until all sij are computed and effectivelyD′′ is obtained.

The above approach allows for computing optimal value of each sij and then coupling them. Finally, the upper bound
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is computed as ÿ = ÿ(D′′M(D′′)−1). We refer to the entire process of computing D′′ described above as the Generalized

Osborne algorithm or GenOsborne for short, which is summarized in Algorithm 4.

Algorithm 4. Upper bound: GenOsborne algorithm

1: (Initialization) Use the standard Osbornes method on M to obtain the diagonal scaling matrix D⋆
nr. Define M

[1] =

D⋆
nrM(D⋆

nr)
−1.Set k = 1.

2: for k = 1 to v(v − 1) do

3: Set (i, j)

4: Compute coefficients {ce}
5
e=0for (i, j) andM

[k].

5: Find s̄⋆
ij
= argmins̄ij∈R2 f2(s̄ij) using the damped newton method and form s⋆

ij
= s⋆

Rij
+ is⋆

Iij
from s̄⋆

ij
.

6: Compute the corresponding D⋆
ij
and setM[k+1] = D⋆

ij
M[k]

(
D⋆
ij

)−1

,

7: end for

8: Compute the upper bound ÿ = ÿ̄(M[k])
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