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1 | INTRODUCTION

| Diganta Bhattacharjee! | Peter Seiler’ | Maziar S. Hemati!

Abstract

The structured singular value (SSV), or u, is used to assess the robust
stability and performance of an uncertain linear time-invariant system. Exist-
ing algorithms compute upper and lower bounds on the SSV for structured
uncertainties that contain repeated (real or complex) scalars and/or nonre-
peated complex full-blocks. This paper presents algorithms to compute bounds
on the SSV for the case of repeated complex full-blocks. This specific class of
uncertainty is relevant for the input-output analysis of many convective sys-
tems, such as fluid flows. Specifically, we present a power iteration to compute
the SSV lower bound for the case of repeated complex full-blocks. This gener-
alizes existing power iterations for repeated complex scalars and nonrepeated
complex full-blocks. The upper bound can be formulated as a semi-definite pro-
gram (SDP), which we solve using a standard interior-point method to compute
optimal scaling matrices associated with the repeated full-blocks. Our imple-
mentation of the method only requires gradient information, which improves
the computational efficiency of the method. Finally, we test our proposed algo-
rithms on an example model of incompressible fluid flow. The proposed methods
provide less conservative bounds as compared to prior results, which ignore the
repeated full-block structure.
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The structured singular value (SSV), or y, is a useful metric for assessing the robust stability and performance of an uncer-
tain linear time-invariant system with a structured uncertainty.!~> The SSV is inversely related to the smallest structured
uncertainty that destabilizes the uncertain system. Roughly, the SSV is the “gain” of the system with respect to the struc-
tured uncertainty and its inverse provides a stability margin.*> It is known that exactly computing the SSV is NP hard.%’
Thus, it is a common practice to instead compute upper and lower bounds on the SSV. The upper bound provides a suf-
ficient condition for robust stability and the lower bound for instability, respectively.?*>%° However, for some specific
uncertainty structures, as noted in prior works,>!%!! the convex upper bound equals the SSV. Thus, for these cases, the
exact SSV can be computed through the convex upper bound.

Abbreviations: I/0, input-output; PCF, plane Couette flow; SSV, structured singular value.
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Much of the previous work has focused on structured uncertainties with a mixture of repeated (real or complex)
scalars and/or nonrepeated complex full-block uncertainties (see Section 2).24> For these common uncertainty structures,
one can use the methods described in prior works to compute the upper and lower bound.®%!213 The current paper
focuses on a new uncertainty structure: repeated complex full-blocks. This particular class of uncertainties consists of a
single complex full-block repeated multiple times. This repeated structure naturally arises in fluid dynamics and other
convective systems. Recently, SSV has emerged as a means of performing a structured input-output analysis of transitional
shear flows to study instability mechanisms.'4-'” However, Liu et al.}#1® utilize MATLAB’s Robust Control Toolbox, which
does not allow for repeated full-blocks. The only cases handled by MATLAB are nonrepeated, complex full-blocks and the
repeated (real or complex) scalars.!® Therefore, the numerical results in these works# ¢ replace the repeated complex
full-block structure with a nonrepeated one, which yields conservative SSV bounds. In addition to conservatism in the
bounds, accounting for the repeated uncertainty structure is important for revealing physical instability mechanisms, as
will become clear in the results we present later.

In this paper, we present algorithms to compute upper and lower bounds on the SSV for a repeated complex full-block
uncertainty (see Sections 3 and 4). The upper bound is computed using an interior point algorithm known as the method
of centers.'>?® Our implementation only uses gradient (and not Hessian) information. This improves computational effi-
ciency, which is important for any large dimensioned system, such as the fluid flow example presented in our paper.
The lower bound is computed by generalizing the existing power iteration algorithm described by Packard et al.>!3
We demonstrate the proposed algorithms on the plane Couette flow model'* and a simple academic example. Further-
more, we compare the SSV bounds computed from the proposed algorithms with existing methods that approximate the
repeated structure with a nonrepeating one. We show that the proposed algorithms not only reduce the conservatism
of the bounds but also highlight the importance of incorporating the correct uncertainty structure for interpreting the
underlying physical system/phenomena (see Section 5).

The symbols R, C,R", C", and C"™™ denote the sets of real numbers, complex numbers, real vectors of dimension
n, complex vectors of dimension n and complex matrices of dimension n X m, respectively. The n X n identity and zero
matrices are denoted by I, and 0,, respectively. M and (M) are the Hermitian transpose and maximum singular value
of a matrix M € C"™™, We use || - ||; to denote the 2-norm for vectors and the induced 2-to-2 norm for matrices. Note
that || - ||, = o(-) for matrices. Also, || - ||r denotes the Frobenius norm. For M € C™", Tr(M) and p(M) are the trace and
spectral radius. The notations ® and diag(-) denote the Kronecker product and block diagonal matrices, respectively. The
imaginary unit is denoted as i = \/—_1 For c € C, Re(c), Im(c) and conj(c) denote the real and imaginary parts of ¢, and
the complex conjugate of c, respectively.

2 | BACKGROUND:STRUCTURED SINGULAR VALUE, u

We briefly review the structured singular value u and its connection to robust stability of dynamical systems.>>*2! First
consider the case for matrices. Specifically, let M € C™™ be given along with a set of (possibly structured) complex
matrices A C C"™",

Definition 1. The structured singular value, ua, is defined as

1

min(o(A) : A € A, det(I, - MA) =0)’ W

uaM) =

If there does not exist A € A such that det(I, — MA) = 0, then define ua(M) = 0.

Note that us (M) depends on both the matrix M and the set of matrices A. We will typically omit the subscript A for
simplicity when the set of matrices is clear.

The SSV is inversely related to the smallest A € A that causes I, — MA to be singular. Singularity means there exists
a nonzero vector y € C" such that y = MAy. This is equivalent to the existence of nonzero vectors u € C" and y € C"
such thaty = Mu and u = Ay, which provides a feedback interpretation of us (M) (see Remark 3.4 in Packard and Doyle?).
Furthermore, the SSV simplifies in two special cases:?

(i) uM) = o(M) for full-block uncertainties, A = C™",
(i) u(M) = p(M) for repeated scalar uncertainties A = {6I, : 6 € C}, where n,m = v.
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There are many known results for structured uncertainties A that contain block-diagonal concatenation of any
number of full-blocks and repeated scalars.!»>*2! It is worth noting that if A; C A, then

Ha, (M) < pa,(M). ()

This follows from the definition of the SSV in (1). This yields the following bound for any matrix M and block structure
A C (men:

Ha(M) < o(M). (3)

Next, consider the case for LTI systems. Specifically, let M(s) be a transfer function matrix of a multiple-input and
multiple-output (MIMO) LTI system and A be a set of structured LTI uncertainties. The SSV can be used to assess robust-
ness of a feedback loop involving M(s) and A(s). In particular, assume the feedback loop is nominally stable, that is, stable
for A(s) = 0. Define the set of bounded, structured uncertainties as Bx := {A(s) € A : ||A||o < 1}. Then, the feedback
loop is stable for all A € By if and only if max,, u(M(iw)) < 1, where w is the temporal frequency.>>** This is an adap-
tation of the small-gain condition for the set of structured uncertainties Ba. The SSV computations for LTI systems are
often reduced to the SSV computations for a complex matrix M(iw) on a grid of frequencies.
This paper contributes methods that can be used to compute the SSV for repeated full-block uncertainty

A ={A=L,Q®A, : A € C™*™} c C™™, (@)
where m = vm;. Thus, v = 2 represents the same full-block uncertainty A; repeated twice: I, ® A; = [Aol Aol] . The block

A, is restricted to be square, as is common in the SSV literature, to simplify the presentation. The extension to nonsquare
blocks can be made with mainly notational changes. We discuss algorithms in the subsequent sections that compute
upper and lower bounds on the x(M) for the uncertainty structure in (4).

3 | UPPER BOUND OF STRUCTURED SINGULAR VALUE

This section describes an algorithm that computes an upper bound on p for the uncertainty structure defined in (4).
We will describe the upper bound algorithm for the matrix case M € C"™™. We start by first noting that for each set of
uncertainties A, there is a set of nonsingular “commuting” matrices D with the property that DA = AD for any A € A
and D € D. For example, the set of v nonrepeated full-blocks, denoted A, ¢ C™*™, and its corresponding commuting
matrices are

A 1= {A =diag(Aq, ... ,A) @ A; € C7miY, (5)
Dy, := {diag(dil,, ... ,doIn) : di € R, d; # 0}. (6)

The commuting matrices are diagonal when the uncertainty set is nonrepeated. For the repeated full-block structure in
(4), the commuting matrices have the following structure:

D, :={S®Iy : SeC"™, det(S) #0}. (7)

These commuting matrices are important because det(I — MA) = det(I — DMD™!A). Thus, pa(M) = ua(DMD™!). We can
use this to strengthen the upper bound in (3):

Ha(M) < %EBE(DMD*). ®)

This is known as the D-scale upper bound. By setting X = DUD, the optimization on the right hand side of (8) can be
converted into a semi-definite program (technically a generalized eigenvalue problem) as follows:>*

min
X=XHeCmxm ¢eR

subject to: MHUXM < ¢X, X > 0. 9)
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Then, the upper bound is computed as « = ({)'/? and the corresponding scale as D = X'/, Therefore, there is an implicit
constraint that ¢ > 0, which arises naturally during the derivation of constraints in (9) (see Packard and Doyle? for details).
The optimization problem (9) can be solved using several existing methods such as method of centers, interior-point meth-
ods for linear fractional programming, and primal-dual methods.?>?223 These methods are efficient for moderate-sized
problems but can be computationally costly for larger dimensioned problems. Specifically, primal-dual methods tend to
be slower because they require second-order schemes to solve (9). Certainly, there are faster algorithms that utilize a
weaker bound, that is, s(DMD™!) < || DMD™!||r, which is often sufficient for most large-dimensioned problems. In this
case, an upper bound for a given matrix M becomes

pa(M) < min||DMD™! || (10)
DeD

See Appendix A for a fast algorithm for computing an upper bound of the form (10) for D € Dy, that is, the repeated
full-blocks case. However, using a weaker bound yields conservative estimates of the upper bounds, which can result in
large gaps between upper and lower bounds. The goal of this paper is to present an efficient algorithm that would yield the
least conservative upper bounds for A € A,. Thus, we will implement the method of centers for upper bound calculations,
since it is a relatively fast first-order method with good convergence properties.'® First, we will briefly summarize an
existing upper bound method for the uncertainty structure A, which we will use later to compare with the upper bounds
obtained for A,.

3.1 | Standard Osborne’s method: Nonrepeated complex full-blocks

Osborne’s iteration can be used to efficiently solve the optimization problem in the right-hand side of (10) for specific
block structures.?* For example, a version of Osborne’s iteration can be applied to the structure Ay, with scalings Dy,,. Let
D; € Dy, denote a scaling with d; = 1for allj # i. For example, ifi = 1 then d, is a variable and d; = 1forj # 1. In addition,
partition M into m; X m; sub-blocks, denoted M ij» consistent with the block dimensions in A,,. Then, the Frobenius norm
can be written as

v
_ | N N
IDMDM[E = ), — M7 + a2 |V )13 an

r=Lr#i "

The optimal value d* that minimizes (11) is given by

~ 1/4
Z‘;zl r;&i“Mri”%r
Zrzl,r# ”Mir”F

Each d* is computed from (12) using M and the corresponding matrix D* is determined. Then, the cost is obtained as
[|M!21)|2, where M12l = D*MD*"'. The new D-scale is then computed from M2 and the corresponding new cost is deter-
mined. Thus, the iteration proceeds by updating the matrix as M'¥! = (D*)*IM(D*")¥1 and computing the corresponding
(D)™ until || M™¥||2 has converged. The final D-scale is denoted by D}, after all the iterations. Osborne showed that the
iterative method always converges to the optimal solution of minpep ||[DMD}||r for the uncertainty A, with m; = 1.2

3.2 | Method of centers: Repeated complex full-blocks

In this section, we discuss the method of centers approach for solving the generalized eigenvalue problem (9) for the case
when A € A, and, consequently, D € D,. In this case, we have X = (S® I;s )" (S Q® Iin,) = S'S ® I;n, = R ® I,n,, Where
R := SHS. Therefore, the generalized eigenvalue problem (GEVP) in (9) becomes
min ¢
R=RHe(CY™, ¢eR
subject to: MP(R® Iy )M < ((R®In,), R> 0. (13)
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Since a feasible R for (13) is scale-invariant (i.e., for a feasible R, any cR with ¢ > 0 is also feasible), we will replace the
R > 0 constraint in (13) with J%Iv < R < ylI, to prevent solutions from becoming ill-conditioned, where y > 0 and y? is the
(specified) condition number of R. Therefore, we numerically implement the following GEVP:

min ¢
R=RHeC™, ¢eR

subject to: MP(R @ Iy )M < {(R® L)),

11v <R <7l (14)
Y

The method of centers is an interior-point algorithm that solves for the analytic center of linear matrix inequality (LMI)
constraints, given an initial feasible solution.'*?° Specifically in (14), we are minimizing the largest generalized eigen-
value ¢ of the matrix pair (M HR®In )M, (R® Iy, )). The algorithm utilizes a gradient descent approach, which involves
computing the stepping direction towards an optimal R and the smallest { > 0 satisfying the LMI constraints. To this
end, the directional derivative is computed using a barrier-function for symmetric positive semi-definite matrices, that
is, J(R) = —log det(R).

Next, we will compute the derivative of J(R). Let r; € C denote the (i, j) entry of R. Since R is Hermitian, the diagonal
entries are real, that is, r; € R. Note that the derivative of the barrier function is calculated with respect to the real and
imaginary parts of each (i, j) element of R. Therefore, each matrix variable in (14) is decomposed as a summation in terms
of its basis as R = Y, ryRy, where Ry is the standard basis for R™”. Then, the barrier function and its derivative with
respect to r; are given by

J(R) = —log det(L;) — log det(L,) — log det(L3), (15)
%ﬁ? =—{Tr((Ry ® Im))"'LT")
+ Tr((Ry ® I, )" ML ' M™) (16)
+Te(RL;" ) - Tr(RILS),

where L1 = {(R® Iy,) — MAR® In)M,L, =yl,—Rand L3 =R — —I To further simplify the expression in (16), it will
be useful to block partition a given matrix H € C™", where (H); € (lex’”l denotes the (i,j) block for alli,j =1, ... ,v.*
Thus, Tr((R11 ® Im,)"L]") = Tr((L7")11), which can be generalized to any (i, ), that is, Tr((Ryj ® In)"L7") = Tr((L1 D).
The other terms in (16) can be simplified in a similar manner and we eventually obtain the following expression:

dJ(R
a(r~-) —¢Tr((LYy) + Tr(MLT MM)y)
ij
+ (L Yy — @Yy
Thus, the derivative ® := dJ/dR can be expressed as
=—¢0(LY) +T(MLT'MY) + L' — L3,

whereI" : C™™ — C"isablock-trace operator such that the (i, j) entry of '(H) is equal to Tr((H )l-j) . An overall summary
of the proposed method for upper bound calculation using the method of centers is provided in Algorithm 1.

It is possible to compute the convergence properties of the algorithm using a second-order primal dual method, which
utilizes the Hessian of the LMIs. However, second-order methods are computationally expensive, especially when the
system has a large dimension. For practical purposes, it is computationally efficient to first calculate the lower bounds f
using the power-iteration (see Section 4 for details) and then compute the upper bounds «. Despite the inherent conver-
gence issues of the power-iteration,®!? it is always possible to obtain a perturbation, which would result in a valid lower
bound of SSV. Then, the gap between the upper and lower bound can be studied to assess the viability of the solution.
Therefore, we terminate our algorithm when the upper bounds « are within a certain desired ratio of the lower bounds
f, that is, % < p, where p > 1 is the chosen bound of the ratio. For example, we can choose p = 1.05 as the desired ratio
for our algorithm to get the bounds within 5% of one another. It is important to note that for the cases where the upper
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Algorithm 1. Upper bound: Method of centers

1: (Initialization)Choose any feasible 6 <1, € <1 and renq>0. Set R=diag((d})% ....(d))?), a=06(R®
In)Y?M[R ® I, )"/%) and 4 = a + €. Choose a suitable p > 1 and maximum number of iterations k.

2. while % >p&k<k,do

3: Set A=(1—-60)a+0iandl=1.

4: while [ <2 do

Ly = PR ®In) ~ MR ® In)M, Ly = yI, - Rand Ly = R - 11,.

wu

6 @ = T(ML'M™) — °T(LTY) + Ly - L7
7 Obtain the step-size 6 through a line search.
8 SetR=R—6Dg, l=1+1.

9 end while

100 SetD=R®I,)/* k=k+1.

11: Then, a = \/Anax(D"PMY(R ® I, )MD1).
12: end while

13: The upper bound: «

bounds fail to satisfy p, we take the next best upper bound that will result in a ratio closest to p. Certainly, if the gap is
too large, for example, 2p < %, then either the lower bound has not converged or possibly the upper bound is not exact.

Additionally, a simple initial estimate of R for Algorithm 1 is R = diag((d})?, ... , (d})*), where d* is computed from the
Osborne’s iteration, which we will use in Section 5 for the results.

It should be noted that a variant of Algorithm 1 can be conceived for A € Ay by restricting R to be diagonal with real
entries.

4 | LOWER BOUND OF STRUCTURED SINGULAR VALUE

In this section, we give details on the computation of SSV lower bound for A € A, using the generalized power iteration
algorithm. The algorithm follows the same steps as the standard power iteration commonly used for complex uncertain-
ties given in Packard and Doyle? but with slightly modified equations. We will show that the generalized version reduces
to the standard algorithm for the commonly used complex uncertainties as a special case. Thus, the standard power itera-
tion for the repeated scalars and full-block uncertainties is described first so the extension to the generalized version will
be clear.

4.1 | Standard power iteration: Repeated scalars and full blocks

This section briefly summarizes the SSV power iterations for complex uncertainties described in Packard and Doyle.> We
will consider a problem with a given M € C"™ and a block structure with one repeated scalar and one full-block:

o11 0
A= A= 1 . 51&@, AZEC’”ZX’”Z ,
0 A,

where, for consistency among the dimensions, we have m = m; + m,. The power iteration will be described for this partic-
ular block structure. The generalization to other uncertainty block structures with arbitrary numbers of repeated scalars
or full-blocks will be clear.

Note that any particular A € A such that det(l;, — MA) = 0yields a lower bound p(M) > ﬁ. The exact value of u(M)
is computed by finding the “smallest” A € A such that det(I, — MA) = 0. The determinant condition is equivalent to
finding A € A and nonzero vectors y € C™ and u € C™ such that y = Mu and u = Ay. The power iteration is an efficient
method to find uncertainties A € A that satisfy the determinant condition. The power iteration does not, in general,

find the smallest uncertainty and hence it only yields a lower bound on u(M). However, these lower bounds are often
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Algorithm 2. Lower bound: power iteration

1: (Initialization) Choose the number of iterations k,,, and set k = 0. Selectsome unit-norm vectors b, wl® € C™ and
a=z%=0eCm

2: while k <k, do

3: (17a): p := ||MbM||, and a**!! := MBIkl /.

4 (17b): Use (a**1, w*l) to compute z*+11,

s (170): f 1= |MHz*+ ]|, and wikt!) = pMHZII /g,
6: (17d): Use (a**1, wik*+11) to compute bk+11,

7: Setk=k+1.

8: end while

o:

: Use alk»!, plkn] and g to compute u, y and A.

accurate in practice.? Moreover, the particular uncertainty returned by the power iteration can be studied further for
insight.
To describe the power iteration, consider vectors a, z, b, w € C™. Partition these vectors compatibly with the block

structure, for example, b = [22] with b; € C™ and b, € C™. The power iteration is defined based on the following set

of equations for some f > 0:

pa = Mb, (17a)
wHa, w

= ; Wi, 2= waz, (17b)
lwha | llazll2

pw = Mtz (17¢)

H

a,; wp a

bl = ! ai, b2 = ” 2”2 ws. (17d)
latw, | lwz |2

These equations arise from the optimality conditions for the SSV and are related to the concept of principle direction
alignment (see details in Packard and Doyle?). Here, we will simply show that any solution of these equations yields a

€ Cand |q;| = 1. Equation (17d) also

al wy
|‘111{W1|
gives ||b2||2 = ||az||2- Hence, there is a Q, € C"™*™ with 6(Q,) = 1 such that b, = Q,a,. Finally, define u :=b,y := fa
and A := %diag(qllml, Q>). It can be verified from (17a) that y = Mu. Moreover, u = Ay and ¢(A) = %} by construction.

lower bound on u(M). First note that (17d) implies that by = gya; withq; :=

Hence, A € A satisfies the determinant condition and yields the lower bound u(M) > ﬁ =p.

The power iteration attempts to solve (17) by iterating through the various relations therein. The procedure is
summarized in Algorithm 2. The algorithm, as stated, runs for a fixed number of k,, iterations. However, more advanced
stopping conditions can be used, for example, terminating when the various vectors have small updates as measured in
the Euclidean norm. Although b'%, w!% can be chosen randomly, a more specific choice would be to use the right singular
vector associated with E(Drer (D;;r)_1 ), where D}, is obtained using the standard Osborne’s iterations.!?

This power iteration simplifies in two special cases:

(i) A =C™™: Asnoted above, u(M) = 6(M) in this case. The power iteration relations in (17) become

w a
pa=Mb, z I ”2a pw = Mtz b—ww

lall ™ wll, ™

If b and w are initialized to be unit norm, then all vectors are unit norm throughout the iteration. Hence z = a and
b = w, so the relations further simplify to

pa =Mb, pb=M"a.
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We can iterate on these equations starting from an initial unit norm vector b. This corresponds to the standard power
iteration for computing c(M).
(i) m :=vand A = {6, : 6 € C}: As noted above, u(M) = p(M) in this case. The power iteration relations in (17)
simplify to
wha

- afw
pa=Mb, z=——w, pw=M"z, b= .
[wHq| [aHw|

Iterating these relations yields a power iteration to find the eigenvalue corresponding to the spectral radius. The
iteration also yields the corresponding right b and left z¥ eigenvectors.

4.2 | Generalized power iteration: Repeated complex full-blocks

This subsection describes a generalization of the SSV power iteration to handle repeated complex full-blocks. Again, we
consider the problem with M € C™™ and a structured uncertainty with one m; x m; full-block repeated v times as in
(4). A lower bound on u(M) is obtained by finding A € A and nonzero vectorsy € C™ and u € C™ such thaty = Mu and
u = Ay.

It will be useful to define the following reshaping operation Ly, : C"™ — C™>*” such that y = [ylf yll,{]H €
C"™ maps to Ly, (y) = [yl, ey yv] . This operation restacks the partitioned vector y € C"™ into a matrix. The inverse L,‘,&
will convert the matrix back to a column vector. This notation is useful to handle matrix-vector products for A € A.
Specifically, let A = I, ® A, with A; € C™>™_ The relation u = Ay is equivalent to Ly, (u) = A;Lp, (¥).

We need one additional operation to define the generalized power iteration. Consider vectors a, z, b,w € C"™. Let G
be a matrix of any dimension with the following SVD:

G=UsvH = [U1 Uz] E g] [Vl VZ]H. a1s)

Define Q(G) :=U; VF and note that 6(Q(G)) = 1. The power iteration is defined based on the following set of equations
for some g > 0:

pa = Mb, (192)
Lin,(2) = Q(Lin, (@)L, W)™) Lyn, (W), (19b)
pw = MUz, (19¢)
L, (b) = Q(Lim, W)Ly, (@)") Ly, (a). (19d)

Any solution of these equations yields a lower bound on u(M). To show this, define u :=b,y :=pfaand A :=1,®
%Q(Lm1 W)Ly, (a)H). Then (192a) and (19d) are equivalent to y = Mu and u = Ay. Moreover, ¢(A) = % by construction.
Hence A € A satisfies the determinant condition and yields the lower bound u(M) > f. A power iteration can be used to
find a solution by iterating through equations (19a)—-(19d) as outlined in Algorithm 3. Note that the comments on initial-
ization and stopping criterion for Algorithm 2 applies for Algorithm 3 as well. In cases where the power iteration does not
converge, the perturbations A; = I, ® Q(Ly, (@)L, w)") and A; = I, ® Q(Lm, (W)L, (@)"') can be used to obtain a valid
lower bound as # = max(p(A]'M), p(A;M)).
Equations (19b) and (19c) generalize the cases in the previous subsection:

(i) v=1: In this case, the block structure (4) is just a single full-block uncertainty. The stacking operations are just
L, (2) =2, Ly, (@) = a, Ly, (W) =w, and Ly, (b) = b. Thus, an SVD of L, (@)L, W) = aw" is given by Uy = ——

b
llall,

| = ﬁ and £ = ||a|,||w]|,. Equation (19b) is thus equivalent to z = %a, which corresponds to the full-block
2 2
update in (17b).

(ii) m; =1: In this case, the block structure (4) is a scalar uncertainty repeated v times. The stacking operations
are just Ly (2) =z', Ly, (@) =a’, L, (w)=w’, and Ly, (b) =b”. Thus, the stacking operation is a transpose
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Algorithm 3. Lower bound: generalized power iteration

1: (Initialization) Choose the number of iterations k,, and set k = 0. Select some unit-norm vectors b°, wl®l € C™ and
a =z =0eCm
2: while k < k,,, do
3: (192): g := ||[MbM||, and a**!! := MbK1 /.
4 (19b): 2, 1= Q (L, (@*)L,, (wikI)H)
Ly, W) and 21 = L1 (z;)
s (190): f = [MHZ||, and wik+!) = pMHZIEH /g,
6: (19d): by, := Q (L, WH*)L,, (al+1HH)
Ly, @1y and b+ = L1 (by).
7 Setk=k+1.
s: end while
9: Use aknl, plkml wikn! and g to compute u, y and A.

TABLE 1 Different algorithms used for the results.

Uncertainty structure AeA,, A €A,
Upper bound algorithm Osborne’s iteration (Section 3.1) Method of centers (Algorithm 1)
Lower bound algorithm Power iteration (Algorithm 2) Generalized power iteration (Algorithm 3)

(but not conjugation) of the column vector to a row vector. This yields:
Ly, (@)L, W = a"(whHH = wa. (20)

This is a scalar and an SVD of this product is given by U; = W—H“, Vi =1,and £ = [wa]. Step (19b) is thus equivalent

[wHa|

toz = %w. This corresponds to the repeated scalar block update in (17b).

5 | RESULTS

We consider a fluid-flow problem wherein the uncertainty has a repeated full-block structure as in (4). The SSV bounds are
computed for the true uncertainty structure (i.e., A € A;) using the proposed methods. We compare those bounds with the
ones obtained by treating the uncertainty to be nonrepeating (i.e., A € Ay;), which is an approximation of the true uncer-
tainty. The motivation behind this comparison is to highlight the differences that arise due to this approximation, and
how those differences can alter the subsequent interpretation of the physical system/phenomena. The algorithms used
for different cases are summarized in Table 1. Furthermore, we showcase the gap between the upper and lower bounds for
the two sets of results. In addition, all of the above mentioned aspects have been repeated for a simple academic example.

5.1 | Example Model-1: Incompressible plane Couette flow

We will demonstrate our proposed algorithms on the same spatially discretized incompressible plane Couette flow (PCF)
model initially used to investigate SSV—with nonrepeated full-blocks—in Liu and Gayme.'* PCF is a simple shear-driven
flow between two parallel plates, wherein the lower plate is held stationary and the upper plate moves with a fixed
speed U,,. The PCF example is chosen as a demonstration in this study, but the proposed methods are equally applicable
to other systems where repeated full-block uncertainties arise,#15-2%26

The input-output (I/O) map of the forced perturbation dynamics about a steady baseflow is a frequency response
matrix defined as

M = Cy(kx, Kz)(iwbs — A(ky, Kz))_lB(Kx’ Kz), (21)
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where w is the temporal frequency, «, and k; are the wavenumbers from discretization in x and z directions using Fourier
modes, and A(ky, k7, Re) € C¥*%, B(ky, k;) € C¥™ and Cy(ky, kz) € C™ are the system operators, respectively. Addi-
tionally, A is a function of the Reynolds number Re = U, h/v, where h is the distance between the two plates and v is
the kinematic viscosity of the fluid. Then, for M € C™™, we simply have the relation n = Mf between the system inputs
(f(y,t) € C™) and outputs (5(y, t) € C") defined as

S, 1) Vuy(y, t)
F=Ho0| n0.0=|vuwol
JAON)) Vg (y, 1)

where V is the discrete gradient operator, u,, u, and u, represent flow perturbation velocities and f,, f, and f; represent
input forcing, in x, y and z directions, respectively. The forcing signal f is a pseudo-linear approximation of the quadratic
convective nonlinear term in the incompressible PCF model. This is given by f = An with A = I; ® A;, where A; is con-
sidered an unknown matrix approximation of the velocity vectors (see Liu and Gayme!* for more details). Therefore, the
uncertainty for this system is of the form shown in (4) with a rectangular block A; € C™>™ repeated three times (v = 3).
Thus, the SSV bounds for the PCF model indicate the sensitivity of flow at each «, and « to this forcing, which is an indi-
cation of flow’s potential for transition to turbulence.?” Large bound values indicate that the system in (21) has a higher
tendency to transition, and vice versa, which is a consequence of a variation of the small-gain condition for structured
uncertainties (see Section 2). For additional details on the model formulation and discretization, we refer the reader to
prior works.!428

We will use a 50 X 90 x 50 grid of Ny, X Ny, X N, to compute the SSV bounds, where n,, Ny, and n,, are total grid
points for «y, k; and o, respectively. We use logarithmically spaced values x, € [107%, 10%4], x, € [1072, 10'2] and
o € [-10%3, 10°] for all the results in this section. Note that we consider negative temporal frequencies as the system
matrices are complex-valued and the corresponding frequency response is not symmetric about the w = 0 line. The state
dimension of the system is s = 30, and the input and output dimensions are m = 3s = 90 and n = 9s = 270, respectively.
Then, m; = s = 30 and n; = 3s = 90 for A;. The operating Reynolds number for the system is set to Re = 358. The sys-
tem is nominally stable, that is, the eigenvalues of A(ky, kz, Re) are in the open left-half plane for the parameter values
chosen here. Algorithm 1 is initialized with R = diag((d})?, ... ,(d))?) using the Osborne’s iteration, p = 1.05, k,, = 500,
6 =1073%,y = 10°and e = 2 x 10~*. Algorithms 2 and 3 are initialized by setting w!° and b!®! to be the right singular vector

associated with E(D;rM (iw)(D};) - ) where D}, is obtained using the standard Osborne’s iterations on M(iw). Addition-
ally, the total number of iterations given by k,, are set to 60 for both the power iterations. Since M in (21) is a frequency
response operator, we will compute the “best” upper (amax) and lower (fmax) bounds at each (xy, ;) pair by choosing the
maximum « and f over a spectrum of frequencies w.

MATLAB’s parfor command is used to compute amax and fmax values using parallel computing for Ny, X Ny, grid at
each n,. The computations were performed on a desktop computer with 3.61 GHz 12-th Gen Intel(R) Core(TM)7-12700K
processor with 12 cores and 16 GB RAM. The computation times for Algorithms 1 and 3 were approximately 4 h and
22 min, respectively. On the other hand, Osborne’s iteration and Algorithm 1 took about 2 min and 4 min, respectively,
to compute all the ayax and fnax values.

The results are depicted in Figure 1. Comparing the results shown in Figure 1A,B, we deduce that oy, values com-
puted using Algorithm 1 are smaller overall than the am,y values computed using the Osborne’s iteration. The distributions
of the amax values over the wavenumber pair grid are also markedly different. There is a prominent peak in Figure 1A
for the largest am,x value at k, = 0.1956 and «k, = 0.5778. This peak is not present in Figure 1B. Instead, there are two
areas with similar amay values, which are separated by a narrow ‘valley’ in between. Therefore, approximating a repeat-
ing full-block uncertainty with a nonrepeating one in this case not only leads to conservative upper bound estimates, but
also results in a local maximum that does not necessarily represent actual system behavior. A similar argument follows
for the lower bounds computed using the two power iteration variants, as shown in Figure 1C,D. Additionally, the largest
amax value in Figure 1B corresponds to the negative spectrum of temporal frequency grid, which provides further insight
into the most sensitive direction for instability of the PCF model in (21).

The gaps between amax and fmax are shown in Figure 2A,B which indicate that fnax values are within 5% of amax
values for approximately 99.8% and 98.9% of wavenumber pairs in Figure 2A,B, respectively. This means that the true SSV
values lie within a small interval for a large subset of the wavenumber pairs considered for both repeated and nonrepeated
full-blocks. A summary of the gaps in both sets of bounds is provided in Table 2. Although the stopping ratio between
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Non-Repeated Complex Full-Blocks 3 Repeated Complex Full-Blocks 3
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FIGURE 1 The ay.y and fp. results over the wavenumber pair (ky, k) grid. The top row plots represent the upper bounds ap,, and the
bottom row plots represent the lower bounds fax. (A) 10g,,(@max) for A € A,;: Osborne’s iteration (upper bounds), (B) log,,(amax) for A € A;:
Algorithm 1 (upper bounds), (C) log,,(fmax) for A € Ay,;: Algorithm 2 (lower bounds), (D) 10g;,(fmax) for A € A;: Algorithm 3 (lower bounds).

upper and lower bounds for Algorithm 1 is set to 1.05, we still end up with a percentage difference greater than 5%
at some wavenumber pairs (see Figure 2B). However, the maximum gap is 9.33% for only one wavenumber pair and
the rest of the wavenumber pairs have an average gap of 6.5% at the hotspots in Figure 2B. The relatively large gap
can be attributed to one of the three reasons: (i) The D-scale upper bound is not necessarily equal to u, (ii) the upper
bound algorithm fails to converge to the optimal D-scale, and/or (iii) the power iteration fails to converge to the true
value of u. It is possible that the repeated complex full-blocks are a special case, where y is equal to its corresponding
D-scale upper bound. In this case, issue (i) would not be the source of the gap. We will explore this conjecture in future
work.

To further investigate the bounds, we plot @ and g over the temporal frequency at chosen wavenumber pairs (ky, k7).
These results for the nonrepeated and repeated full-blocks are shown in Figures 3 and 4, respectively. The wavenumber
pairs chosen are the ones corresponding to the largest and smallest gap between amax and fnax over the wavenumber
pair grid. The result in Figure 3A showcases the bounds for the nonrepeated full blocks at (xy, k;) = (0.055, 0.032), where
the gap between amax and fmax is the largest at 7.09%. The zoomed-in plot in Figure 3A highlights a single global peak
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Non-Repeated Complex Full-Blocks Repeated Complex Full-Blocks
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FIGURE 2 The percentage difference between ap,, and fy.x values over the wavenumber pair (x,, ;) grid. The stopping ratio
between upper and lower bounds for Algorithm 1 was set to 1.05, which means that all the computed upper bounds must be within 5% of the
lower bounds. Therefore, the majority of percentage differences in (B) are < 5%. The only upper bounds that failed to achieve the stopping
criterion are given by the red hotspots.

TABLE 2 Summary of the gaps between a,,x and f.x for the Couette flow model.

Uncertainty structure A €A, A €A,
Maximum gap, (ky, kz) 7.09%, (0.055,0.032) 9.33%, (0.692,4.578)
Minimum gap, (ky, kz) 3.2 X 107°%, (0.005,0.011) 1.14%, (1074, 10'2)
Average gap 0.46% 3.8%
250 i i i i i i 350 :
@ 210 @
---8 300 | ---5]
200 | 200 |
Lomms 250
| 190 |
. 150 -0.01 0 o0.01 o 200
< <] |
100 150
100
50
50
0" : : : : : ‘ 0F ‘ ‘ : ‘ ‘ ‘
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
w w
(A) (x,,x.) =(0.055,0.032) (B) (x,,x,) =(0.005,0.011)

FIGURE 3 The aand g results over the temporal frequency (w) grid for A € Ay;. The (A) and (B) correspond to wavenumber pairs
where the gap between ap,, and fn.x are the largest and smallest, respectively.

in @ at w = 0, while there are two local peaks in f, located almost symmetrically about the @ = 0 line at w = +0.005. In
the case of smallest gap between an,x and fnax for the nonrepeated full-blocks, which occurs at (ky, k) = (0.005,0.011),
the bounds are virtually identical (see Figure 3A). On the other hand, both the bounds are qualitatively similar for the
repeated full-blocks case, as shown in Figure 4. The largest gap between amax and fmax in this case occurs at (ky, kz) =
(0.692,4.578), and both a and g have two local peaks that occur at @ = +0.365 (see Figure 4A). Although these peaks
are symmetric about the w = 0 line, the peak a values in Figure 4A at w = —0.365 and w = 0.365 are 56.799 and 56.651,
respectively.

AsuRdI'] suownoy) aanear) a[qesridde ayy £q pauIoA0S are SA[ONIE Y {asn JO SA[NI 10§ AIRIGI] AUI[UQ AJ[IAY UO (SUONIPUOI-PUB-SULIA)/WOD A1M" AIRIqI[aur[uoy/:sdy) SUONIPUO)) PUE SWIA T, 3y 33§ “[STOT/H0/+T] U0 Areiqr aurjuQ £3[1p ‘qU BIosauuIy JO ANSIATUR Aq 8¢ dU1/Z00 01 /10p/wod Ka[im Kreiquiautjuoy/:sdiy woiy papeojumod ‘L ‘4707 ‘6£216601



MUSHTAQ ET AL. 4893
WILEY— 22

a, B

(A) (kpk2) = (0.692,4.578) (B) (kq k) = (107", 10'2)

FIGURE 4 The a and g results over the temporal frequency (@) grid for A € A,. The (A) and (B) correspond to wavenumber pairs
where the gap between ayay and .y are the largest and smallest, respectively. (A) (ky, k) = (0.692,4.578), (B) (ky, k;) = (1074, 1012).

5.2 | Simple academic example

We now demonstrate the proposed algorithms on a MIMO LTI system with the frequency response matrix given by
M = C(iwl; — A)~'B, where w is the temporal frequency and the randomly generated state-space matrices A, B, C € C*4
are as follows:

[ 0.720 - 10.663 —0.602 —10.684 —1.937—i0.792 —1.021 —i0.153 ]
| 0059-iL875  -1103+10350 —0.728+i0.164 —0.135+i2.021
0.071 +i0.114 0948 +i0.237 —1.493+i0.491 1.486 — i0.025
_0.647 —i0.260 —0.272+i0.829 —0.709 +i0.908 —0.506 + i0.276
[ 0738 —10.773 1271 +i0.118  1.152+i0.494 —0.764 — i0.400 |
| 0166 +i08% 0504+il761 029110516 042510028 |
_1.103 +i0.449 —1.408—i0.195 0.067 —i1.287 —0.595 +i0.316
1308 —i0.744  0.358 +10.728 —0.174 +10.665 —1.489 — i0.094
[ 0.255+i0.101  1.681+i0.048 —0.386—i0.051  0.633 — i0.874 |
o_|-L827+i1132 026710846 —0.863+i0.840 0.244+ 1447 |
187740179 —1.124+i0.752 1.014+i0.731 —1.502 + i0.431
_0.803+i1.056 0.002—i0.284  1.029 —i0.801 —0.444 +i0.543

The nominal system is stable as all the eigenvalues of A are in the open left-half plane. The uncertainty for this model is
chosen as A =1, ® A; with A; € C>2, Numerical implementation of the algorithms are as described in Section 5.1. We
take 200 logarithmically spaced points for @ € [—103,10']. The results for « and § for both the nonrepeated and repeated
cases are shown in Figure 5. In terms of qualitative similarities, there are two peaks—one for w < 0 and the other for
® > 0-in each bound in both the cases, and the bounds are not symmetric about the w = 0 line. However, approximating
the repeated full-block structure with a nonrepeated one leads to very conservative bounds at some temporal frequencies.
For example, the @ value in Figure 5A is approximately 1.7 times that of the « value in Figure 5B at @ = 1.896. A similar
set of comments applies to the lower bounds f at @ = 1.896. This means that the true value of u at this frequency in
the nonrepeated case is roughly 1.7 times that of the repeated case. It is also noteworthy that the global peaks of the
bounds in Figure 5A are at w > 0, whereas the global peaks in Figure 5B are at w < 0. Therefore, similar to the fluid-flow
example, neglecting the repeated structure of the uncertainty cannot only lead to conservative bounds, which translates
into conservative stability-margin estimates, but also might lead to inaccurate conclusions about the temporal behavior
of the system.
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Non-Repeated Complex Full-Blocks Repeated Complex Full-Blocks
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FIGURE 5 The aand § results over the temporal frequency () grid. Although we consider w € [-10'°,10%°], the results are shown
for w € [-10, 10] to better highlight the local behavior of the bounds.

6 | CONCLUSIONS

We proposed two algorithms for computing upper and lower bounds of structured singular value for repeated complex
full-block uncertainty. Such uncertainty structures naturally arise in models of fluid flows and other convective systems.
The proposed algorithms yield bounds that are less conservative as compared to the algorithms that ignore the repeated
full-block structure, for example, Osborne’s iteration for nonrepeated full-blocks. Thus, properly accounting for the
repeated block structure can improve stability-margin estimates and also enable one to draw more representative
conclusions regarding the temporal behavior of the system. These points were demonstrated on an example of incom-
pressible plane Couette flow and an academic example. Furthermore, our future work will involve investigating the
gap between the y and the convex (or D-scale) upper bound for a single repeated full-block. This particular case is of
interest due to the fact that u is equal to its upper bound for a single full block and also for a single repeated complex
scalar.
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ENDNOTES

*Form =v, (H); € C is the (i, ) scalar element of H.
sz(Eij) is nonconvex for some combinations of the coefficients {cy, ... ,cs}. Therefore, the solution is only guaranteed to converge to a local
optimum.

ORCID
Talha Mushtaq ‘© https://orcid.org/0000-0001-8411-0490

REFERENCES

1. Doyle J. Analysis of feedback systems with structured uncertainties. IEE Proceedings D (Control Theory and Applications). Institution of
Electrical Engineers (IEE);1982:242-250.

ASUAIT suowwo)) aanear) a[qearidde ay) Aq pausaa0d aIe sa[ONIER Y SN JO SA[NI 10 AIRIQIT AUIUQ AJ[IA\ UO (SUONIPUOI-PUR-SULI) /W0 K31 ATRIqI[aul[uoy/:sdny) suonipuo) pue swa, oY) 3§ *[Sz0g/H0/¢] uo Areiqry autjuQ Ad[ipy ‘qr] BIosauuly JO ANs1oatun Aq §€g.L dul/z001 0 1/10p/wod Kafim Kreiqrpaut[uoy/:sdiy woiy papeojumod ‘L ‘4702 ‘6£216601



MUSHTAQ ET AL. 4895
WILEY— 2%

2. Packard A, Doyle J. The complex structured singular value. Automatica. 1993;29(1):71-109. doi:10.1016/0005-1098(93)90175-S

v ok

Safonov MG. Stability margins of diagonally perturbed multivariable feedback systems. 1981 20th IEEE Conference on Decision and Con-
trol including the Symposium on Adaptive Processes 20th IEEE Conference on Decision and Control including the Symposium on Adaptive
Processes. Institute of Electrical and Electronics Engineers (IEEE); 1981:1472-1478.

Zhou K, Doyle J, Glover K. Robust and Optimal Control. Feher/Prentice Hall Digital andPrentice Hall; 1996.

Dullerud GE, Paganini F. A Course in Robust Control Theory: A Convex Approach. Vol 36. Springer Science & Business Media; 2013.

6. Braatz RP, Young PM, Doyle JC, Morari M. Computational complexity of y calculation. IEEE Trans Autom Control. 1994;39(5):1000-1002.

doi:10.1109/9.284879

7. Demmel J. The componentwise distance to the nearest singular matrix. SIAM J Matrix Anal Appl. 1992;13(1):10-19. doi:10.1137/0613003

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.
22.

23.
24.
25.

26.
27.

28.

29.

Young P, Doyle J. Computation of mu with real and complex uncertainties. 29th IEEE Conference on Decision and Control. Vol 3. Institute
of Electrical and Electronics Engineers (IEEE); 1990:1230-1235.

Young PM, Newlin MP, Doyle JC. Practical computation of the mixed u problem. American Control Conference. Institute of Electrical and
Electronics Engineers (IEEE);1992:2190-2194.

Troeng O. Five-full-block structured singular values of real matrices equal their upper bounds. IEEE Control Syst Lett. 2021;5(2):583-586.
doi:10.1109/LCSYS.2020.3004297

Colombino M, Smith RS. A convex characterization of robust stability for positive and positively dominated linear systems. IEEE Trans
Autom Control. 2016;61(7):1965-1971. doi:10.1109/TAC.2015.2480549

Fan M, Tits A, Doyle J. Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics. IEEE Trans Autom Control.
1991;36(1):25-38. doi:10.1109/9.62265

Packard A, Fan M, Doyle J. A power method for the structured singular value. 27th IEEE Conference on Decision and Control. Vol 3.
Institute of Electrical and Electronics Engineers (IEEE); 1988:2132-2137.

Liu C, Gayme DF. Structured input-output analysis of transitional wall-bounded flows. J Fluid Mech. 2021;927:A25.
doi:10.1017/jfm.2021.762

Liu C, Colm-cille PC, Gayme DF. Structured input-output analysis of stably stratified plane Couette flow. J Fluid Mech. 2022;948:A10.
doi:10.1017/jfm.2022.648

Liu C, Shuai Y, Rath A, Gayme DF. A structured input-output approach to characterizing optimal perturbations in wall-bounded shear
flows. American Control Conference. Institute of Electrical and Electronics Engineers (IEEE); 2023:2319-2325.

Bhattacharjee D, Mushtaq T, Seiler PJ, Hemati M. Structured Input-Output Analysis of Compressible Plane Couette Flow. Vol 1984. ATAA
SCITECH FORUM,; 2023.

Balas G, Chiang R, Packard A, Safonov M. Robust control toolbox user’s guide. The Math Works, Inc, Tech. Rep; 2007.

Boyd S, El Ghaoui L. Method of centers for minimizing generalized eigenvalues. Linear Algebra Appl. 1993;188-189:63-111.
doi:10.1016/0024-3795(93)90465-Z

Boyd S, El Ghaoui L, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied
Mathematics; 1994.

Safonov MG. Stability and Robustness of Multivariable Feedback Systems. MIT press; 1980.

Nesterov YE, Nemirovskii A. An interior-point method for generalized linear-fractional programming. Math Program. 1995;69(1):177-204.
doi:10.1007/BF01585557

Mehrotra S. On the Implementation of a primal-dual interior point method. SIAM J Optim. 1992;2(4):575-601. doi:10.1137/0802028
Osborne EE. On pre-conditioning of matrices. J ACM. 1960;7(4):338-345. d0i:10.1145/321043.321048

McKeob BJ, Sharma AS. A critical-layer framework for turbulent pipe flow. J Fluid Mech. 2010;658:336-382.
doi:10.1017/S002211201000176X

Chavarin A, Luhar M. Resolvent analysis for turbulent channel flow with riblets. AIAA J. 2020;58(2):589-599. doi:10.2514/1.J058205

Liu C, Gayme DF. Input-output inspired method for permissible perturbation amplitude of transitional wall-bounded shear flows. Phys
Rev E. 2020;102:063108. d0i:10.1103/PhysRevE.102.063108

Jovanovi¢ MR, Bamieh B. Componentwise energy amplification in channel flows. J Fluid Mech. 2005;534:145-183.
doi:10.1017/S0022112005004295

Boyd S, Vandenberghe L. Convex Optimization. Cambridge University Press; 2004.

How to cite this article: Mushtaq T, Bhattacharjee D, Seiler P, Hemati MS. Structured singular value of a
repeated complex full-block uncertainty. Int J Robust Nonlinear Control. 2024;34(7):4881-4897. doi:
10.1002/rnc.7238

APPENDIX . GENERALIZED OSBORNE

In this section, we will describe a fast algorithm for A € A, and M € C™™. The standard Osborne iteration cannot
be used for A; as D € D, contains off-diagonal entries. This section describes our generalization of Osborne’s method
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(GenOsborne) to handle the matrix scales in (7). The proposed GenOsborne algorithm is an iteration that solves the
following minimization problem:

in||DMD™||? Al
gég{ll II%. (A1)

where D, is defined in (7). To simplify the calculations, we use the square of Frobenius norm in (Al). Let s;
denote the (i,j) entry of S in (7). The Frobenius norm in (Al) yields a cumbersome expression that has vari-
ous s; € C entries multiplying each other. Thus, it is difficult to minimize the function for each s;, since each
of the scalings are coupled together. To avoid this issue, we iteratively optimize over a single off-diagonal entry
and then couple it, similar to the Osborne’s iteration. Thus, we first use the standard Osborne’s iterations to cal-
culate the optimal diagonal scalings s and then use an iterative approach to optimize a single off-diagonal term
sij € C at each iteration and iterate over all possible pairs of (i,j), where i #j. We denote the matrices with a sin-
gle off-diagonal entry s; € C as D; = S; ® I,,,, where Sj; has ones along the diagonal, s; in the (i,j) entry and zero
everywhere else.

Let M¥ be the scaled matrix at step k of the generalized iteration and s; € C be the off-diagonal scaling to be
optimized. Then, the objective function is:

filsy) = IDyM™DE I

. 2
= ¢p + conj(cysy) + c18y + C2|sjll

2
+ C3Sij
+ conj(cs)(conj(sy))* + c4si2j(conj(sij))
+ conj(cy)s;(conj(sy))? + cslIsg 1%, (A2)

where {cg, ... ,c5} C C are coefficients that can be computed from the definition of the Frobenius norm. Note that the
coefficients depend on the pair (i,j) and M'¥. By expressing s; = Sr, + sy, the objective function fi(sy) can be written in
the following equivalent form:

f2(8y) = co + 2Re(cr)sg, — 2Im(cr)sy,
+ (e + 2Re(03))s122I/ +(c; — 2Re(c3))sij
— 4Im(c3)sg, 51, + 2Re(cq)sk, (51231.]. + sflj)
— 2Im(cy)sy, (3123,,- + sfy) + cS(Szzeij + sfij)z, (A3)

where Eij = [SRI-]-’ S[U]T. We use the damped newton method (see Algorithm 9.5 in Boyd and Vandenberghe?®) to solve the
minimization problem. Therefore, we obtain the local optimum E; = argming_jeRz f>(sj) . Hence, each Si’; = sy +is; has
[ i i

i)

the corresponding scaling matrix D; ‘We perform the following update for k > 1:
k+1] _ k -1
MU = DU*.MI J(D;) ) (A4)

The iterative algorithm results in the total effective scaling as:

D’ = < I D;>D§r, (A5)

Vij,i#f

where D}, is the optimal diagonal scaling after applying the standard Osborne’s iteration. For example, if we choose
to optimize the s1, entry then we compute s, by minimizing (A3). We scale the matrix M'?! = DX MIY(D},)~!, where
MW = D} M(Dy,)~'. We use M'?! and repeat the steps for other s; until all s;; are computed and effectively D" is obtained.

The above approach allows for computing optimal value of each s; and then coupling them. Finally, the upper bound

ASUAIT suowwo)) aanear) a[qearidde ay) Aq pausaa0d aIe sa[ONIER Y SN JO SA[NI 10 AIRIQIT AUIUQ AJ[IA\ UO (SUONIPUOI-PUR-SULI) /W0 K31 ATRIqI[aul[uoy/:sdny) suonipuo) pue swa, oY) 3§ *[Sz0g/H0/¢] uo Areiqry autjuQ Ad[ipy ‘qr] BIosauuly JO ANs1oatun Aq §€g.L dul/z001 0 1/10p/wod Kafim Kreiqrpaut[uoy/:sdiy woiy papeojumod ‘L ‘4702 ‘6£216601



MUSHTAQ ET AL. 4897
WILEY—*7

is computed as @ = ¢(D"M(D")™1). We refer to the entire process of computing D" described above as the Generalized
Osborne algorithm or GenOsborne for short, which is summarized in Algorithm 4.

Algorithm 4. Upper bound: GenOsborne algorithm

1

2

3:
4:
5:

6:
7:

8

. (Initialization) Use the standard Osbornes method on M to obtain the diagonal scaling matrix D.. Define Ml =
DX M(D}y)'.Setk = 1.

: fork=1tov(v—1)do

Set (i, )

Compute coefficients {c,}’_,for (i, j) and M™.

Find §i’; = argmingveRz f>(s;j) using the damped newton method and form s;f = s;ij

ok ok
+ isj, from 55
-1
Compute the corresponding D* and set M+l = p* Ml (D??) ,
i ij ij
end for
: Compute the upper bound a = 6(M1)
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