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This paper investigates the non-uniqueness of resolvent analysis in the context of compressible

fluid flows. Specifically, we compare two mathematically equivalent formulations of the

compressible Navier-Stokes equations (NSEs) in two sets of flow variables related via a nonlinear

transformation, which we refer to as the ‘Cubic+’ and ‘Quadratic+’ formulations. The Cubic+

formulation is based on the conventional representation of compressible NSEs using the primitive

variables of density, velocity components and temperature, whereas the Quadratic+ formulation

utilizes a representation where density and temperature are replaced by specific volume and

pressure, respectively. These formulations are implemented on a compressible plane Couette

flow for a broad range of Mach numbers. Although the Quadratic+ formulation generally

predicts higher amplifications than the Cubic+ formulation when the Chu energy is utilized

for the compressible inner product, this trend reverses if kinetic energy is instead used to

define the inner product. Furthermore, for some combinations of the streamwise and spanwise

wavenumber pairs, the two formulations predict substantially different temporal behaviors.

These range from differences in estimating the temporal frequencies for the largest gains to

instances wherein one formulation predicts a single global peak when the other predicts multiple

local peaks. In addition, the Quadratic+ results feature localized regions of wavenumber space

associated with high resolvent gains that are absent in the Cubic+ results, but are qualitatively

comparable to one another otherwise. The inconsistencies observed in resolvent analysis based

on the two formulations considered here suggest that any insights drawn from resolvent analysis

should be accompanied by computational and/or experimental studies to corroborate findings

and interpretations of the underlying physics.

I. Introduction
Developing a comprehensive understanding of the flow physics of high-speed fluid flows, which are governed by the

compressible Navier-Stokes equations (NSEs), is a key component for aerospace applications going forward. In this

regard, conducting high-fidelity numerical experiments using computational fluid mechanics tools are now a viable

option due to the advances in super-computing technology in the last few decades. Especially in the context of turbulent

flows, direct numerical simulations has proven to be a powerful numerical tool, but its applicability for a broad range of

parameters–primarily, Reynolds number and Mach number–remains somewhat limited despite recent progress [1, 2].

Alternative to the numerical experiments, model-based frameworks like input-output (I/O) methods have been successful

in providing important insight into the flow physics and have been useful in uncovering key mechanisms of instability in

the incompressible regime [3, 4] and are getting increasingly popular for analyzing high-speed compressible flows as

well [1, 2, 5–8].

In the context of flow instability and transition to turbulence, the equations governing the fluid flow can be expressed

as a feedback interconnection between a linear system and a nonlinear mapping (see, for example, the schematic in

Fig. 1a). Now, resolvent analysis [10, 11], like all other linear I/O methods, removes the aforementioned feedback

interconnection and replaces the nonlinear terms by some implicit forcing on the linear dynamics (compare the Figs. 1c

and 1a), which greatly simplifies the subsequent analysis. We recently extended an I/O method–called the structured

I/O analysis [12]–to the compressible flows in Ref. [9]. Instead of removing the feedback nonlinearity altogether, the

structured I/O modeling introduces pseudo-linear approximations for the nonlinear (quadratic) terms [9, 12] (compare

the schematics shown in Figs. 1b and 1a). The structured I/O analysis is based upon the concept of structured singular

value [13] from robust control theory. In Ref. [9], we implemented the structured I/O framework for compressible

flows on a compressible plane Couette flow and compared the results with those obtained from an equivalent resolvent
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Fig. 1 Stability of transitional fluid flows and the governing equations of perturbations (q) about a steady base

flow. These equations are shown in three different forms: (a) the original system with the linear dynamics in

feedback with the nonlinearity f (q); (b) the structured I/O modeling with fĆ (q) representing the approximated

nonlinearity (see Ref. [9] for details); (c) the linearized system obtained by removing the aforementioned feedback

connection.

analysis. The comparison revealed several contradictory aspects about the instability mechanisms associated with the

flow [9]. Although the structured I/O modeling is an obvious source of the discrepancies reported in Ref. [9], another

possibility is the choice of variables used to describe the flow, as pointed out in Ref. [14]. The theoretical developments

and case studies in Ref. [14] established that resolvent analysis–or indeed any I/O analysis based on the linearization of

nonlinear NSEs about a base or mean flow–might lead to substantially different results for different choices of the flow

variables describing the same flow. This ambiguity, coupled with the discrepancies noticed in our prior work (Ref. [9]),

serves as a motivation for the study reported in this paper.

We start by linearizing the compressible NSEs described in terms of two sets of primitive variables. When working

with the primitive variables of density, velocity components and temperature, the resulting linearized equations are

termed ‘Cubic+’. The other representation–which replaces density and temperature with specific volume and pressure,

respectively–leads to the ‘Quadratic+’ formulation of linearized equations. The corresponding resolvent operators are

then implemented on a compressible Couette flow for a wide range of Mach numbers. Despite qualitative similarities

between the two sets of results, we have identified several combinations of the streamwise and spanwise wavenumber

pairs where the results differ substantially, predicting significantly different temporal behaviors of the linearized flow

dynamics.

The remainder of the paper proceeds as follows: the linearized formulations of compressible NSEs are discussed in

Section II. Details of the resolvent analysis and simulation results for a compressible plane Couette flow are given in

Section III. Section IV provides the concluding remarks and future directions of research.

II. Linearization of Compressible Navier-Stokes Equations
In this section, we describe two sets of linearized equations of flow perturbations about a steady base flow based on

two mathematically equivalent representations of the compressible NSEs. These representations include the conventional

one typically used for I/O methods in the literature [1, 5, 6] and the specific one we outlined for structured I/O analysis

in [9]. Let us consider a compressible fluid in the domain ¬ ¢ R3, and use x ∈ ¬ and Ī ∈ Rg0 to denote the spatial

coordinates and time, respectively. The state of the fluid at any instant in time can be characterized solely based

on one of the following sets of primitive variables: (i) density Ā(x, Ī), velocity u(x, Ī) = (ī(x, Ī), Ĭ(x, Ī), ĭ(x, Ī)),
and temperature Đ (x, Ī); (ii) specific volume ď (x, Ī) = 1/Ā(x, Ī), velocity u(x, Ī) = (ī(x, Ī), Ĭ(x, Ī), ĭ(x, Ī)), and

pressure Ħ(x, Ī). Then, the fundamental principles of mass, momentum and energy conservation are applied to derive

the equations governing the dynamics of the flow in ¬.
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A. Cubic+ Formulation

Let us first consider the non-dimensionalized compressible NSE in the variables qę = (Ā, u, Đ) = (Ā, ī, Ĭ, ĭ, Đ),
i.e., the conventional description widely used in the literature [1, 5, 6]. These are given by

ĉĪ Ā + ∇ · (Āu) = 0

Ā (ĉĪu + u · ∇u) = − 1

Ąĉ2
Ĩ

∇Ħ + 1

Ďě
∇ · Π(u, Ĉ, Č) (1)

Ā (ĉĪĐ + u · ∇Đ) = (1 − Ą)Ħ(∇ · u) + Ą

ĎěČĨ
∇ · (Ĉ∇Đ) + Ą(Ą − 1)ĉ2

Ĩ

Ďě
¨(u, Ĉ, Č)

with the non-dimensional equation of state for a perfect polytropic gas Ħ = ĀĐ . Here, Ďě, ČĨ and ĉĨ denote the

Reynolds number, Prandtl number, and Mach number, respectively. Also, Π(u, Ĉ, Č) is the viscous stress tensor and can

be expressed as

Π(u, Ĉ, Č) = Ĉ(∇u + (∇u)T) + Č(∇ · u)I
where Ĉ and Č are the first and second coefficient of viscosity, respectively. The term ¨(u, Ĉ, Č) in (1) is the viscous

dissipation term given by

¨(u, Ĉ, Č) = Ĉ
(
2
(
(ĉĮī)2 + (ĉįĬ)2 + (ĉİĭ)2

)
+ (ĉįī + ĉĮĬ)2 + (ĉİĬ + ĉįĭ)2 + (ĉİī + ĉĮĭ)2

)
+ Č(∇ · u)2

=
Ĉ

2

[
∇u + (∇u)T

]2 + Č(∇ · u)2.

Also, each row of the vector ∇ · Π(u, Ĉ, Č) can be expressed as [5, 15]

(∇ · Π(u, Ĉ, Č))Įğ = Ĉ∇2īğ + ĉĮğ (Č(∇ · u)) + ĈĉĮğ (∇ · u) + (∇Ĉ) · (∇īğ) + (∇Ĉ) · ĉĮğu
= Ĉ∇2īğ + (Ĉ + Č)ĉĮğ (∇ · u) + ĉĮğČ (∇ · u) + (∇Ĉ) · (∇īğ) + (∇Ĉ) · ĉĮğu

where Įğ represents the three coordinates of x. Throughout the remainder of the paper, we assume Č = −2/3Ĉ using

Stokes’ hypothesis. The temperature dependence of viscosity is modeled through the Sutherland’s law, given by [15]

Ĉ(Đ) = Đ3/2 (1 + ÿ)
Đ + ÿ

(2)

where the constant ÿ = 0.5. Note that all the non-viscous nonlinear terms in (1) are either quadratic or cubic in the

variables, with the viscosity-dependent nonlinear terms taking non-integer orders due to the Sutherland’s law in (2). It is

for this reason we refer to the linearized dynamics obtained from (1) as the ‘Cubic+’ formulation in this paper.

Next, we consider the dynamics of perturbations about a steady base flow (Ā0, u0, Ħ0, Đ0, Ĉ0) with u0 = (đ0 (į), 0, 0).
The steady base flow equations are given by

Ě

Ěį

(
Ĉ0

Ěđ0

Ěį

)
= 0

ĚĦ0

Ěį
= 0 ⇒ Ħ0 = 1 (3)

ČĨ−1 Ě

Ěį

(
Ĉ0

ĚĐ0

Ěį

)
+ (Ą − 1)ĉ2

Ĩ Ĉ0

(
Ěđ0

Ěį

)2

= 0

along with the equation of state Ā0Đ0 = 1 (since we have scaled the constant pressure as Ħ0 = 1). The linearized

dynamics of the perturbed flow states about this base flow are summarized in the following:

ĉĪ Ā = −đ0ĉĮĀ − ĬĀ′0 − Ā0∇ · u + ĜęĀ

ĉĪī = −đ0ĉĮī − Ĭđ′
0 −

1

Ąĉ2
Ĩ

(
Đ2

0 ĉĮĀ + ĉĮĐ
)
+ Đ0

Ďě

(
ĈĐĐ0

Đ ′
0đ

′
0Đ + ĈĐ0

đ′
0ĉįĐ + ĈĐ0

đ′′
0 Đ

+ Ĉ0∇2ī + (Ĉ0 + Č0)ĉĮ (∇ · u) + Ĉ′0
(
ĉĮĬ + ĉįī

) )
+ Ĝęī

ĉĪĬ = −đ0ĉĮĬ −
1

Ąĉ2
Ĩ

(
Đ2

0 ĉįĀ + Đ0ĀĐ
′
0 + Đ0ĐĀ

′
0 + ĉįĐ

)
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+ Đ0

Ďě

(
ĈĐ0

đ′
0ĉĮĐ + Ĉ0∇2Ĭ + (Ĉ0 + Č0)ĉį (∇ · u) + Č′0 (∇ · u) + 2Ĉ′0ĉįĬ

)
+ ĜęĬ (4)

ĉĪĭ = −đ0ĉĮĭ − 1

Ąĉ2
Ĩ

(
Đ2

0 ĉİĀ + ĉİĐ
)
+ Đ0

Ďě

(
Ĉ0∇2ĭ + (Ĉ0 + Č0)ĉİ (∇ · u) + Ĉ′0

(
ĉİĬ + ĉįĭ

) )
+ Ĝęĭ

ĉĪĐ = −đ0ĉĮĐ − ĬĐ ′
0 + Đ0 (1 − Ą) (∇ · u) + Đ0Ą

ĎěČĨ

(
ĈĐ0

Đ ′′
0 + ĈĐĐ0

(Đ ′
0)2 + 2Ĉ′0ĉį + Ĉ0∇2

)
Đ

+ Đ0Ą(Ą − 1)ĉ2
Ĩ

Ďě

(
2Ĉ0đ

′
0 (ĉĮĬ + ĉįī) + ĈĐ0

(đ′
0)2Đ

)
+ ĜęĐ

where all the nonlinear terms are collected in Ĝ( ·)s and ĈĐ0
, ĈĐĐ0

are the first and second derivatives, respectively, of

Ĉ(Đ) with respect to Đ and evaluated at Đ = Đ0. Also, (·)′ and (·)′′ respectively mean Ě (·)/Ěį and Ě2 (·)/Ěį2 for the

associated base flow quantities. The linearized perturbation dynamics (4) can be expressed in a more compact form as

ĉĪqę = Lęqę + fę (5)

where fę =

(
ĜęĀ , Ĝęī , ĜęĬ , Ĝęĭ , ĜęĐ

)
denotes the forcing and the linear operator Lę is

Lę =



ĈęĀĀ ĈęĀī ĈęĀĬ ĈęĀĭ ĈęĀĐ

ĈęīĀ Ĉęīī ĈęīĬ Ĉęīĭ ĈęīĐ

ĈęĬĀ ĈęĬī ĈęĬĬ ĈęĬĭ ĈęĬĐ

ĈęĭĀ
Ĉęĭī

ĈęĭĬ
Ĉęĭĭ

ĈęĭĐ

ĈęĐĀ
ĈęĐī

ĈęĐĬ
ĈęĐĭ

ĈęĐĐ



with each sub-operator given by

ĈęĀĀ = −đ0ĉĮ , ĈęĀī = −Ā0ĉĮ , ĈęĀĬ = −Ā′0 − Ā0ĉį , ĈęĀĭ = −Ā0ĉİ , ĈęĀĐ = 0, ĈęīĀ = − 1

Ąĉ2
Ĩ

Đ2
0 ĉĮ ,

Ĉęīī = −đ0ĉĮ +
Đ0

Ďě

(
Ĉ0∇2 + (Ĉ0 + Č0)ĉĮĮ + Ĉ′0ĉį

)
, ĈęīĬ = −đ′

0 +
Đ0

Ďě

(
(Ĉ0 + Č0)ĉĮį + Ĉ′0ĉĮ

)
,

Ĉęīĭ =
Đ0

Ďě
((Ĉ0 + Č0)ĉĮİ) , ĈęīĐ = − 1

Ąĉ2
Ĩ

ĉĮ +
Đ0

Ďě

(
ĈĐĐ0

Đ ′
0đ

′
0 + ĈĐ0

đ′
0ĉį + ĈĐ0

đ′′
0

)
,

ĈęĬĀ = − 1

Ąĉ2
Ĩ

(
Đ2

0 ĉį + Đ0Đ
′
0

)
, ĈęĬī =

Đ0

Ďě

(
(Ĉ0 + Č0)ĉĮį + Č′0ĉĮ

)
,

ĈęĬĬ = −đ0ĉĮ +
Đ0

Ďě

(
Ĉ0∇2 + (Ĉ0 + Č0)ĉįį + Č′0ĉį + 2Ĉ′0ĉį

)
, ĈęĬĭ =

Đ0

Ďě

(
(Ĉ0 + Č0)ĉįİ + Č′0ĉİ

)
,

ĈęĬĐ = − 1

Ąĉ2
Ĩ

(
Đ0Ā

′
0 + ĉį

)
+ Đ0

Ďě

(
ĈĐ0

đ′
0ĉĮ

)
, ĈęĭĀ

= − 1

Ąĉ2
Ĩ

(
Đ2

0 ĉİ

)
, Ĉęĭī

=
Đ0

Ďě
(Ĉ0 + Č0)ĉĮİ , (6)

ĈęĭĬ
=

Đ0

Ďě

(
(Ĉ0 + Č0)ĉįİ + Ĉ′0ĉİ

)
, Ĉęĭĭ

= −đ0ĉĮ +
Đ0

Ďě

(
Ĉ0∇2 + (Ĉ0 + Č0)ĉİİ + Ĉ′0ĉį

)
,

ĈęĭĐ
= − 1

Ąĉ2
Ĩ

ĉİ , ĈęĐĀ
= 0, ĈęĐī

= Đ0 (1 − Ą)ĉĮ +
Đ0Ą(Ą − 1)ĉ2

Ĩ

Ďě

(
2Ĉ0đ

′
0ĉį

)
,

ĈęĐĬ
= Đ0 (1 − Ą)ĉį +

Đ0Ą(Ą − 1)ĉ2
Ĩ

Ďě

(
2Ĉ0đ

′
0ĉĮ

)
− Đ ′

0 , ĈęĐĭ
= Đ0 (1 − Ą)ĉİ ,

ĈęĐĐ
=

Đ0Ą

ĎěČĨ

(
ĈĐ0

Đ ′′
0 + ĈĐĐ0

(Đ ′
0)2 + 2Ĉ′0ĉį + Ĉ0∇2

)
+ Ą(Ą − 1)ĉ2

ĨĐ0

Ďě
ĈĐ0

(đ′
0)2 −đ0ĉĮ .

It should be noted here that (Ĉ0 + Č0) = 1/3Ĉ0 due to Stokes’ hypothesis.

B. Quadratic+ Formulation

The compressible NSEs can alternatively be described in terms of the set of primitive variables qħ = (ď := 1/Ď, u, Ħ)
(see Ref. [9] for details). The resulting non-dimensional equations can be expressed as [9]

ĉĪď + u · ∇ď − ď∇ · u = 0
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ĉĪu + u · ∇u = − 1

Ąĉ2
Ĩ

ď∇Ħ + 1

Ďě
ď∇ · Π(u, Ĉ, Č) (7)

ĉĪ Ħ + u · ∇Ħ + ĄĦ∇ · u =
Ą(Ą − 1)ĉ2

Ĩ

Ďě
¨(u, Ĉ, Č) + Ą

ĎěČĨ
∇ · (Ĉ∇(Ħď))

with the associated non-dimensional equation of state for a perfect polytropic gas Ħď = Đ . Similar to our earlier remarks

on the governing equations for the Cubic+ formulation, all the non-viscous nonlinear terms in (7) are quadratic, while

the viscous nonlinearities are of fractional order due to the viscosity modeling through the Sutherland’s law in (2).

Therefore, we refer to the linearized dynamics obtained from (7) as the ‘Quadratic+’ formulation here.

Now, for a steady base flow with (ď0,đ0 (į), 0, 0, Ħ0, Đ0, Ĉ0), the base flow equations are given by

Ě

Ěį

(
Ĉ0

Ěđ0

Ěį

)
= 0

ĚĦ0

Ěį
= 0 ⇒ Ħ0 = 1

(Ą − 1)ĉ2
Ĩ Ĉ0

(
Ěđ0

Ěį

)2

+ ČĨ−1 Ě

Ěį

(
Ĉ0

Ěď0

Ěį

)
= 0

along with the equation of state ď0 = Đ0 since the constant pressure is again scaled as Ħ0 = 1. Thus, the above base

flow equations are the same as in (3). In Ref. [9], we only allowed the viscosity associated with the base flow to be

a function of the base flow temperature (i.e., Ĉ0 = Ĉ0 (Đ0)) and perturbations to the base viscosity Ĉ0 were neglected.

This simplification was made so that the nonlinearity in the perturbation equations were quadratic in the perturbed

flow variables. This was crucial in the pseudo-linear structured I/O modeling and the subsequent analysis in Ref. [9].

However, it should be noted that no such assumption is made here and we allow viscosity perturbations as dictated by the

Sutherland’s law in (2). After carrying out a similar set of calculation as we previously did for the Cubic+ formulation,

we can express the linearized perturbation dynamics about the base flow as

ĉĪqħ = Lħqħ + fħ (8)

where fħ is the forcing (see fę in (5) for comparison) and the linear operator Lħ takes the following form:

Lħ =



Ĉħď ď
Ĉħďī

ĈħďĬ
Ĉħďĭ

Ĉħď Ħ

Ĉħīď
Ĉħīī ĈħīĬ Ĉħīĭ ĈħīĦ

ĈħĬď ĈħĬī ĈħĬĬ ĈħĬĭ ĈħĬĦ

Ĉħĭď
Ĉħĭī

ĈħĭĬ
Ĉ2ĭĭ

Ĉ2ĭĦ

ĈħĦď
ĈħĦī

ĈħĦĬ
ĈħĦĭ

ĈħĦĦ



with the sub-operators given by

Ĉħď ď
= −đ0ĉĮ , Ĉħďī

= ď0ĉĮ , ĈħďĬ
= ď0ĉį − ď′0, Ĉħďĭ

= ď0ĉİ , Ĉħď Ħ
= 0,

Ĉħīď
=

ď0

Ďě
(Ĉ1 + Ĉ2ĉį), Ĉħīī = −đ0ĉĮ +

ď0

Ďě

(
Ĉ0

(
∇2 + 1

3
ĉĮĮ

)
+ Ĉ′0ĉį

)
, ĈħīĬ = −đ′

0 +
ď0

Ďě

(
1

3
Ĉ0ĉĮį + Ĉ′0ĉĮ

)
,

Ĉħīĭ =
ď0Ĉ0

3Ďě
ĉĮİ , ĈħīĦ

= − 1

Ąĉ2
Ĩ

ď0ĉĮ +
ď0

Ďě

(
Ĉ1ď0 + Ĉ2ď

′
0 + Ĉ2ď0ĉį

)
, ĈħĬď =

ď0

Ďě
ĈĐ0

đ′
0ĉĮ ,

ĈħĬī =
ď0

Ďě

(
1

3
Ĉ0ĉĮį −

2

3
Ĉ′0ĉĮ

)
, ĈħĬĬ = −đ0ĉĮ +

ď0

Ďě

(
Ĉ0

(
∇2 + 1

3
ĉįį

)
+ 4

3
Ĉ′0ĉį

)
, ĈħĬĭ =

ď0

Ďě

(
1

3
Ĉ0ĉįİ −

2

3
Ĉ′0ĉİ

)
,

ĈħĬĦ = − 1

Ąĉ2
Ĩ

ď0ĉį +
ď0

Ďě
ĈĐ0

đ′
0ď0ĉĮ , Ĉħĭď

= 0, Ĉħĭī
=
ď0Ĉ0

3Ďě
ĉĮİ , ĈħĭĬ

=
ď0

Ďě

(
1

3
Ĉ0ĉįİ + Ĉ′0ĉİ

)
, (9)

Ĉħĭĭ
= −đ0ĉĮ +

ď0

Ďě

(
Ĉ0

(
∇2 + 1

3
ĉİİ

)
+ Ĉ′0ĉį

)
, ĈħĭĦ

= − 1

Ąĉ2
Ĩ

ď0ĉİ ,

ĈħĦď
=

Ą(Ą − 1)ĉ2
Ĩ

Ďě
ĈĐ0

(đ′
0)2 + Ą

ĎěČĨ

(
Ĉ0∇2 + Ĉ′0ĉį + Ĉ3 + ĈĐ0

ď′0ĉį
)
, ĈħĦī

= −ĄĉĮ +
Ą(Ą − 1)ĉ2

Ĩ

Ďě

(
2Ĉ0đ

′
0ĉį

)
,
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ĈħĦĬ
= −Ąĉį +

Ą(Ą − 1)ĉ2
Ĩ

Ďě

(
2Ĉ0đ

′
0ĉĮ

)
, ĈħĦĭ

= −Ąĉİ ,

ĈħĦĦ
= −đ0ĉĮ +

Ą(Ą − 1)ĉ2
Ĩ

Ďě
ĈĐ0

(đ′
0)2ď0

+ Ą

ĎěČĨ

(
Ĉ0ď0∇2 + 2Ĉ0ď

′
0ĉį + Ĉ0ď

′′
0 + Ĉ′0

(
ď′0 + ď0ĉį

)
+ Ĉ3ď0 + ĈĐ0

ď0ď
′
0ĉį + ĈĐ0

(ď′0)2
)

where

Ĉ1 = ĈĐĐ0
Đ ′

0đ
′
0 + ĈĐ0

đ′′
0

Ĉ2 = ĈĐ0
đ′

0

Ĉ3 = ĈĐ0
Đ ′′

0 + ĈĐĐ0
(Đ ′

0)2.

C. Chu Energy Expression for the Quadratic+ Formulation

Chu energy [16] has been extensively utilized for the inner product in resolvent analysis of compressible flows

[1, 5, 6]. The expression of Chu energy in terms of the Cubic+ variables (qę) is well known [17]. Here, we derive an

expression for the Chu energy in terms of the variables used in Quadratic+ formulation (qħ) based on the principles

outlined in Ref. [14]. We start by defining the nonlinear transformation between qę and qħ as

qę = (Ā, ī, Ĭ, ĭ, Đ) = ( 1

ď
, ī, Ĭ, ĭ, Ħď) = ĝ(ď, ī, Ĭ, ĭ, Ħ) = ĝ(qħ)

We need the expression of the Jacobian of ĝ(·) with respect to qħ , which is given by

ĉqħ
ĝ =



− 1
ď 2 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

Ħ 0 0 0 ď



.

Let the Chu energy expressions in terms of qę and qħ be denoted by Eę and Eħ , respectively, with Eę given by [17]

Eę = diag

(
Đ0

Ā0Ąĉ
2
Ĩ

, Ā0, Ā0, Ā0,
Ā0

Ą(Ą − 1)ĉ2
ĨĐ0

)
.

The equivalent expression for Eħ is then given by

Eħ =

(
ĉqħ

ĝ
��
qħ=qħ0

)∗
Eę

(
ĉqħ

ĝ
��
qħ=qħ0

)

where (·)∗ stands for Hermitian transpose, while qħ0
denotes the base flow described in terms of qħ . Carrying out these

calculations leads to the following expression:

Eħ =



Đ0

ď 3
0
Ąĉ2

Ĩ

+ Ħ2
0
Ā0

Ą (Ą−1)ĉ2
ĨĐ0

0 0 0
Ħ0

Ą (Ą−1)ĉ2
ĨĐ0

0 Ā0 0 0 0

0 0 Ā0 0 0

0 0 0 Ā0 0
Ħ0

Ą (Ą−1)ĉ2
ĨĐ0

0 0 0
ď0

Ą (Ą−1)ĉ2
ĨĐ0



.

III. Resolvent Analysis: Compressible Plane Couette Flow
In this section, we provide an overview of the resolvent analysis and discuss results pertaining to compressible

plane Couette flow. This flow provides a convenient canonical setup for investigating compressible flows and has been
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Fig. 2 Steady base flow profiles of compressible plane Couette flow for different Mach numbers.

utilized quite extensively in the literature [5, 15, 18–20]. The base flow profiles for this flow can be computed relatively

easily (see, for example, Refs. [5, 9] for details). Sample base flow profiles for different Mach numbers are shown in

7
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Fig. 2. We utilize a Fourier-Chebyshev-Fourier spectral discretization for the perturbation equations, i.e., we assume

solutions of the form qğ (Į, į, İ, Ī) = q̂ğ (į) exp(i(ġĮĮ + ġİİ − ĈĪ)) where i =
√
−1 is the imaginary unit, ğ = ę, ħ is used

to designate the formulations (ğ = ę for Cubic+ and ğ = ħ for Quadratic+), and Ĉ, ġĮ and ġİ are the temporal frequency,

streamwise wavenumber and spanwise wavenumber, respectively. The discretized versions of the perturbation dynamics

(5) and (8) can be expressed as

q̂ğ =

(
−iĈI − L̂ğ (ġĮ , ġİ)

)−1

f̂ğ

where Rğ (ġĮ , ġİ , Ĉ) =
(
−iĈI − L̂ğ (ġĮ , ġİ)

)−1

∈ CĤ×Ĥ are the associated resolvent operators. Here, we have Ĥ = 5Ċį

where Ċį denotes the number of Chebyshev collocation points in the wall-normal direction. Expressions for the

discretized linear operators L̂ğ are provided in Appendix A. Resolvent analysis focuses on the maximum singular value

and the associated singular vectors of this operator [5, 10, 11]. In the subsequent discussions, we utilize the following

two notions of the resolvent gain:

ĂRğ
(ġĮ , ġİ , Ĉ) = Ă̄ (Rğ (ġĮ , ġİ , Ĉ)) ,
ĂRğ

(ġĮ , ġİ) = sup
Ĉ∈R

Ă̄ (Rğ (ġĮ , ġİ , Ĉ)) (10)

where Ă̄(M) denotes the largest singular value of a matrix M. A system-theoretic interpretation of ĂĎğ
(ġĮ , ġİ)–which

are the Ą∞ norm of the associated linear perturbation dynamics–is that these provide the worst-case (i.e., largest) gain

induced by the nonlinear forcing terms f̂ğ on the perturbed flow variables q̂ğ . Note that computation of ĂĎğ
(ġĮ , ġİ)

essentially boils down to computing the maximum of ĂRğ
(ġĮ , ġİ , Ĉ) over an appropriate grid of Ĉ ∈ R.

A. Code Validation

According to the discussion in Section 2.1 in Ref. [14], the discretized linear operators L̂ğ associated with the

two formulations discussed here are guaranteed to share the same eigenvalues because of the steady base flow. The

eigenvalue spectra obtained through our numerical implementation are shown in Fig. 3. These results demonstrate that

the eigenvalues for two formulations match closely, as theoretically expected. The ‘Y’ shape of the eigenvalues in Fig.

3b are consistent with the existing literature [5, 18, 19]. Note that these eigenvalues are associated with the viscous

eigenmodes, i.e., modes that arise due to the viscous terms in the momentum and energy equations [18]. In addition, the

shape/pattern of the eigenvalues depicted in Fig. 3a away from the imaginary axis is also expected (see, for example,

similar trends reported in Ref. [19]). These eigenvalues belong to the inviscid or acoustic eigenmodes [5, 18, 19].

-1 -0.5 0 0.5 1
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(a)
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i Quadratic+

Cubic+

(b)

Fig. 3 Eigenvalue spectra of the linear operators for ġĮ = ġİ = 0.1, Ďě = 2 × 105, ĉĨ = 2, ČĨ = 0.72,

Ċį = 200. The eigenvalues are plotted in terms of complex wavespeeds ęĭ = ęĨ + ięğ = Ĉğ/ġĮ where Ĉğ satisfies

L̂ğ (ġĮ , ġİ)qğ = −ğĈğqğ for ğ = ħ, ę. The two sets of eigenvalues match up, which is expected due to the steadiness

of the base flow, as discussed in Ref. [14].
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(f) ĉĨ = 0.5

Fig. 4 The log-scaled values of resolvent gains ĂRğ
(ġĮ , ġİ) over the wavenumber pair grid for Ďě = 2 × 105,

ČĨ = 0.72, Ċį = 200. Note that the Chu energy is utilized for the compressible inner product. Despite the

qualitative similarities overall, the Quadratic+ formulation predicts larger hotspots and features localized oblique

regions of high gain.
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B. Resolvent Gain Variation in the Wavenumber Space

To study the variation of the resolvent gains ĂRğ
(ġĮ , ġİ) over the wavenumber pairs, we choose a 60 × 80 grid of

ġĮ × ġİ with logarithmically spaced values of ġĮ ∈ [10−3, 102] and ġİ ∈ [10−4, 103]. The temporal frequency grid

comprises of 50 logarithmically spaced points between -10 and 10, i.e., Ĉ ∈ [−10, 10]. The results for three different

Mach numbers are shown in Fig. 4. A closer inspection of the results reveals that the Cubic+ formulation predicts

lower amplifications than the Quadratic+ formulation at more than 99.5% of all (ġĮ , ġİ) grid points for each of the

three Mach numbers considered here. The hotspots in the Quadratic+ results are also much larger compared to the

hotspots in the other set of results. There are oblique waves/structures of relatively larger gains approximately for

ġĮ ∈ (10−1, 10), ġİ ∈ (10−2, 10) in the Quadratic+ results for all three Mach numbers. These, however, are absent in

the Cubic+ results. While it is possible that these oblique structures signify some mechanisms of instability, it is also

possible that these do not represent the actual flow physics and that the Cubic+ results indeed capture the true system

behavior. In terms of similarities, both formulations predict several horizontal bands of high gains for wavenumbers

in the region ġĮ ∈ (10−2.5, 10−1), ġİ ∈ (10−4, 10−1). These potential mechanisms of instability are dependent on the

Mach number as these high-gain bands start to disappear as the Mach number increases. At a large fraction of the

wavenumber pairs on the grid in Fig. 4, the resolvent gains decrease with an an increase in the Mach number for both

the formulations-more so in the Quadratic+ results. This is consistent with the results reported in Ref. [5]. Also, as

remarked by the authors in [5], this variation with Mach number is also consistent with the results reported on transient

energy growth for the compressible Couette flow [15, 19].
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Fig. 5 The resolvent gains ĂRğ
(ġĮ , ġİ , Ĉ) as functions of ęĨ for Ďě = 2 × 105, ĉĨ = 2, ČĨ = 0.72, Ċį = 200. Note

that the variation in ęĨ for a fixed ġĮ means variation in Ĉ since Ĉ = ġĮęĨ . The Chu energy is used for the

compressible inner products. The results are qualitatively similar in (a), (b) but start to differ more in (c), (d).
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C. Temporal Behavior of Resolvent Gains at Fixed Wavenumber Pairs

The variations of the resolvent gains with the temporal frequency are depicted in Fig. 5 at four different wavenumber

pairs. As mentioned earlier, the peak values in the Quadratic+ results are higher overall compared to the ones in the

Cubic+ results. The patterns of variations are qualitatively similar for wavenumber pairs with similar values of ġĮ and

ġİ (i.e., potentially representing oblique structures, see Figs. 5a, 5b). However, as shown in Figs. 5d, 5c, the variations

in the gains start to differ if either ġĮ or ġİ is significantly different from the other. Upon a closer inspection of the result

in Fig. 5b, the largest value in ĂRę
(ġĮ , ġİ , Ĉ) occurs approximately at ęĨ = 0.82, whereas the largest in ĂRħ

(ġĮ , ġİ , Ĉ)
corresponds to the peak approximately at ęĨ = 1.41. Therefore, not only are the magnitudes of amplification predicted

by the two formulations different, but also the estimated temporal frequencies for largest amplification are different

across these two formulations. Moreover, the results shown in Figs. 5c, 5d indicate drastically different predictions by

the two formulations. In Fig. 5c, although both the formulations feature two distinct peaks at ęĨ ≈ 0 and ęĨ ≈ 1, the

local behavior of the gains are quite different for ęĨ ∈ (0, 1). Finally in Fig. 5d, while ĂRę
(ġĮ , ġİ , Ĉ) showcases a

single global peak, ĂRħ
(ġĮ , ġİ , Ĉ) features two distinct peaks with a local minimum (at ęĨ ≈ 0.55) that approximately

coincides with the global peak in ĂRę
(ġĮ , ġİ , Ĉ). Sample results for the resolvent response mode shapes–obtained from
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Fig. 6 The response mode shapes (absolute values) corresponding to both the formulations for ġĮ = ġİ = 0.1

and ęĨ = 0.5. The Chu energy is used for the compressible inner product.

11

D
o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

ty
 o

f 
M

in
n
es

o
ta

 o
n
 J

an
u
ar

y
 5

, 
2
0
2
4
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
4
-0

2
8
6
 



the left singular vectors associated with ĂRğ
(ġĮ , ġİ , Ĉ) (see Eq. (10))–for both the formulations are shown in Fig. 6.

The velocity mode shapes appear to be similar across the two sets of results. Our future work will focus on studying the

resolvent modes in more detail.
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Fig. 7 The resolvent gains ĂRğ
(ġĮ , ġİ , Ĉ) as functions of ġİ for ġĮ = 0.001, Ĉ = 0. Results are shown for four

different Mach numbers and two different Reynolds numbers. While there are qualitative similarities between

the two sets of results for Ďě = 2 × 105, the implications are quite different for Ďě = 103.

D. Effects of Mach Number and Reynolds Number

Next, we study the effects of varying the Mach number and Reynolds number on the resolvent gain ĂRğ
(ġĮ , ġİ , Ĉ)

in a manner similar to the analysis done in Ref. [5]. Therefore, we fix the values of ġĮ and Ĉ, and focus on the variation

of the resolvent gain over a grid of ġİ values for different Mach numbers and Reynolds numbers. The results of this

analysis are shown in Fig. 7, where we have utilized a 100-point grid of ġİ with logarithmically spaced points between

10−4 and 102. Similar to the observations made in [5], the Cubic+ results feature localized peaks for ġİ ≈ (3, 5) across

the different Mach numbers considered for Ďě = 2 × 105 (see Fig. 7a). As shown in Fig. 7b, the Quadratic+ results

indicate a similar trend as well. Overall, the two sets of results for Ďě = 2 × 105 are qualitatively similar but that is not

the case for Ďě = 103, as depicted in Figs. 7c, 7d. While the Cubic+ results suggest a significant overall reduction in the

gains as ġİ increases, the Quadratic+ results show a slight increase in the gains as ġİ increases, which is true for all

Mach numbers except ĉĨ = 5. For ĉĨ = 5, there is a sharp spike in the gain at ġİ ≈ 43.
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E. Choice of Energy Norm for Compressible Inner Product

Finally, we study the effects of the energy norm/expression utilized in the compressible inner product. To highlight

the differences brought about solely by the energy norm used, we recompute the results provided in Fig. 5 with the

Chu energy replaced by the kinetic energy for the inner product. The results we obtained are shown in Fig. 8. It is

noteworthy that the Cubic+ formulation now predicts higher resolvent gains at almost all temporal frequencies (i.e., ęĨ
values) depicted in Fig. 8. It is also interesting that the qualitative behavior of the gains do not alter significantly when

ġĮ and ġİ are equal (compare Figs. 5a, 5b with 8a, 8b). Furthermore, the discrepancies highlighted in Fig. 5d persists

even when kinetic energy (a semi-norm) is utilized in the inner product definition (compare Figs. 5d and 8d).

-1 -0.5 0 0.5 1 1.5 2
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4

10
5

10
6
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Quadratic+

Cubic+

(a) ġĮ = 1, ġİ = 1

-1 -0.5 0 0.5 1 1.5 2

10
5

10
6

10
5

10
6

Quadratic+

Cubic+

(b) ġĮ = ġİ = 0.1

-1 -0.5 0 0.5 1 1.5 2
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5

10
6Quadratic+

Cubic+

(c) ġĮ = 5, ġİ = 0.001

-1 -0.5 0 0.5 1 1.5 2

10
7

10
7

Quadratic+

Cubic+

(d) ġĮ = 0.001, ġİ = 3

Fig. 8 The resolvent gains ĂRğ
(ġĮ , ġİ , Ĉ) as functions of ęĨ for Ďě = 2× 105, ĉĨ = 2, ČĨ = 0.72, Ċį = 200. These

results are a re-computation of the results showcased in Fig. 5 with kinetic energy replacing the Chu energy for

the compressible inner products. Therefore, any differences with the equivalent plots in Fig. 5 are solely due to

the choice of energy norm.

IV. Conclusions
In this paper, we exploited the non-unique nature of resolvent analysis–that arises if different sets of variables,

even when related via some nonlinear transformations, are used to describe a given flow [14]–to reveal conflicting

predictions and discrepancies regarding instability mechanisms associated with a compressible plane Couette flow. Two

resolvent formulations are implemented and the results are compared over a broad range of Mach numbers, which

indicate substantially different temporal behaviors of the linearized flow dynamics at some values of the streamwise and
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spanwise wavenumbers. It is, therefore, crucial to substantiate these contradictory observations through high-fidelity

numerical simulations and/or experimental studies in the future. While the study here focused on the resolvent gain

(with two variations studied), our future work will involve investigating the resolvent mode shapes provided by the two

formulations. Furthermore, we will implement these formulations to study turbulent wall-bounded flows going forward.

Acknowledgments
This material is based upon work supported by the Air Force Office of Scientific Research under award number

FA9550-21-1-0106, the Army Research Office under award number W911NF-20-1-0156, the National Science

Foundation under award number CBET-1943988, and the Office of Naval Research under award number N00014-22-

1-2029. The authors acknowledge the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for

providing the computational resources utilized to generate some of the numerical results. The authors thank Prof. Scott

Dawson for sharing his code for the Cubic+ formulation.

References
[1] Bae, H. J., Dawson, S. T. M., and McKeon, B. J., “Resolvent-based study of compressibility effects on supersonic turbulent

boundary layers,” Journal of Fluid Mechanics, 2019.

[2] Chen, X., Cheng, C., Fu, L., and Gan, J., “Linear response analysis of supersonic turbulent channel flows with a large parameter

space,” Journal of Fluid Mechanics, Vol. 962, 2023, p. A7.

[3] Jovanović, M. R., and Bamieh, B., “Componentwise energy amplification in channel flows,” Journal of Fluid Mechanics, Vol.

534, 2005, pp. 145–183.

[4] McKeon, B. J., and Sharma, A. S., “A critical-layer framework for turbulent pipe flow,” Journal of Fluid Mechanics, 2010.

[5] Dawson, S. T. M., and McKeon, B. J., “Studying the effects of compressibility in planar Couette flow using resolvent analysis,”

AIAA Paper 2019-2139, 2019.

[6] Bae, H. J., Dawson, S. T., and McKeon, B. J., “Studying the effect of wall cooling in supersonic boundary layer flow using

resolvent analysis,” AIAA Paper 2020-0575, 2020.

[7] Dwivedi, A., Sidharth, G., Nichols, J. W., Candler, G. V., and Jovanović, M. R., “Reattachment streaks in hypersonic compression

ramp flow: an input–output analysis,” Journal of Fluid Mechanics, Vol. 880, 2019, pp. 113–135.

[8] Nichols, J. W., and Candler, G. V., “Input-output analysis of complex hypersonic boundary layers,” AIAA Scitech 2019 Forum,

2019, p. 1383.

[9] Bhattacharjee, D., Mushtaq, T., Seiler, P. J., and Hemati, M., “Structured Input-Output Analysis of Compressible Plane Couette

Flow,” AIAA SCITECH 2023 Forum, 2023, p. 1984.

[10] McKeon, B. J., and Sharma, A. S., “A critical-layer framework for turbulent pipe flow,” Journal of Fluid Mechanics, Vol. 658,

2010, pp. 336–382.

[11] McKeon, B., “The engine behind (wall) turbulence: perspectives on scale interactions,” Journal of Fluid Mechanics, Vol. 817,

2017, p. P1.

[12] Liu, C., and Gayme, D. F., “Structured input–output analysis of transitional wall-bounded flows,” Journal of Fluid Mechanics,

Vol. 927, 2021.

[13] Packard, A., and Doyle, J., “The complex structured singular value,” Automatica, Vol. 29, No. 1, 1993, pp. 71–109.

[14] Karban, U., Bugeat, B., Martini, E., Towne, A., Cavalieri, A., Lesshafft, L., Agarwal, A., Jordan, P., and Colonius, T., “Ambiguity

in mean-flow-based linear analysis,” Journal of Fluid Mechanics, Vol. 900, 2020, p. R5.

[15] Malik, M., Dey, J., and Alam, M., “Linear stability, transient energy growth, and the role of viscosity stratification in

compressible plane Couette flow,” Physical Review E, Vol. 77, No. 3, 2008, p. 036322.

[16] Chu, B.-T., “On the energy transfer to small disturbances in fluid flow (Part I),” Acta Mechanica, Vol. 1, No. 3, 1965, pp.

215–234.

14

D
o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

ty
 o

f 
M

in
n
es

o
ta

 o
n
 J

an
u
ar

y
 5

, 
2
0
2
4
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
4
-0

2
8
6
 



[17] Hanifi, A., Schmid, P. J., and Henningson, D. S., “Transient growth in compressible boundary layer flow,” Physics of Fluids,

Vol. 8, No. 3, 1996, pp. 826–837.

[18] Duck, P. W., Erlebacher, G., and Hussaini, M. Y., “On the linear stability of compressible plane Couette flow,” Journal of Fluid

Mechanics, Vol. 258, 1994.

[19] Malik, M., Alam, M., and Dey, J., “Nonmodal energy growth and optimal perturbations in compressible plane Couette flow,”

Physics of Fluids, Vol. 18, No. 3, 2006.

[20] Hu, S., and Zhong, Z., “Linear stability of viscous supersonic plane Couette flow,” Physics of Fluids, Vol. 10, No. 709, 1998.

A. Details of the Discretized Linear Operators
Discretization of the linear operators require an expansion using Chebyshev polynomials in the wall-normal direction

and Fourier modes in the streamwise and spanwise directions. The resulting discretized sub-operators (see (6) and (9)

for the continuous forms) for both the formulations are summarized in the following where Āį and Āįį denote the first

and second derivatives in the wall-normal direction.

A. Cubic+ formulation

Ĉ̂ęĀĀ = −iġĮđ0

Ĉ̂ęĀī = −iġĮĀ0

Ĉ̂ęĀĬ = −Ā′0 − Ā0Āį

Ĉ̂ęĀĭ = −iġİĀ0

Ĉ̂ęĀĐ = 0

Ĉ̂ęīĀ = −iġĮ
1

Ąĉ2
Ĩ

Đ2
0

Ĉ̂ęīī = −iġĮđ0 −
Đ0

Ďě

[

Ĉ0

(

4

3
ġ2
Į − Āįį + ġ2

İ

)

− Ĉ′0Āį

]

Ĉ̂ęīĬ = −đ′
0 + iġĮ

Đ0

3Ďě

[

Ĉ0Āį + 3Ĉ′0
]

Ĉ̂ęīĭ = −ġĮġİ
Đ0Ĉ0

3Ďě

Ĉ̂ęīĐ = −iġĮ
1

Ąĉ2
Ĩ

+ Đ0

Ďě

(

ĈĐĐ0
Đ ′

0đ
′
0 + ĈĐ0

đ′
0Āį + ĈĐ0

đ′′
0

)

Ĉ̂ęĬĀ = − Đ0

Ąĉ2
Ĩ

(

Đ0Āį + Đ ′
0

)

Ĉ̂ęĬī = iġĮ
Đ0

3Ďě

[

Ĉ0Āį − 2Ĉ′0
]

Ĉ̂ęĬĬ = −iġĮđ0 −
Đ0

Ďě

[

Ĉ0

(

ġ2
Į −

4

3
Āįį + ġ2

İ

)

− 4

3
Ĉ′0Āį

]

Ĉ̂ęĬĭ = iġİ
Đ0

3Ďě

[

Ĉ0Āį − 2Ĉ′0
]

Ĉ̂ęĬĐ = − 1

Ąĉ2
Ĩ

(

Đ0Ā
′
0 + Āį

)

+ iġĮ
Đ0

Ďě

(

ĈĐ0
đ′

0

)

Ĉ̂ęĭĀ
= −iġİ

Đ2
0

Ąĉ2
Ĩ

Ĉ̂ęĭī
= −ġĮġİ

Đ0Ĉ0

3Ďě

Ĉ̂ęĭĬ
= iġİ

Đ0

3Ďě

[

Ĉ0Āį + 3Ĉ′0
]
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Ĉ̂ęĭĭ
= −iġĮđ0 −

Đ0

Ďě

[

Ĉ0

(

ġ2
Į − Āįį +

4

3
ġ2
İ

)

− Ĉ′0Āį

]

Ĉ̂ęĭĐ
= −iġİ

1

Ąĉ2
Ĩ

Ĉ̂ęĐĀ
= 0

Ĉ̂ęĐī
= iġĮĐ0 (1 − Ą) + Đ0Ą(Ą − 1)ĉ2

Ĩ

Ďě

(

2Ĉ0đ
′
0

)

Āį

Ĉ̂ęĐĬ
= −Đ ′

0 + Đ0 (1 − Ą)Āį + iġĮ
Đ0Ą(Ą − 1)ĉ2

Ĩ

Ďě

(

2Ĉ0đ
′
0

)

Ĉ̂ęĐĭ
= iġİĐ0 (1 − Ą)

Ĉ̂ęĐĐ
= −iġĮđ0 +

Đ0Ą(Ą − 1)ĉ2
Ĩ

Ďě
ĈĐ0

(đ′
0)2 + Đ0Ą

ĎěČĨ

(

ĈĐ0
Đ ′′

0 + ĈĐĐ0
(Đ ′

0)2 + 2Ĉ′0Āį + Ĉ0 (−ġ2
Į + Āįį − ġ2

İ)
)

B. Quadratic+ formulation

Ĉ̂ħď ď
= −iġĮđ0

Ĉ̂ħďī
= iġĮď0

Ĉ̂ħďĬ
= −ď′0 + ď0Āį

Ĉ̂ħďĭ
= iġİď0

Ĉ̂ħď Ħ
= 0

Ĉ̂ħīď
=

ď0

Ďě

(

Ĉ1 + Ĉ2Āį

)

Ĉ̂ħīī = −iġĮđ0 −
ď0

Ďě

[

Ĉ0

(

4

3
ġ2
Į − Āįį + ġ2

İ

)

− Ĉ′0Āį

]

Ĉ̂ħīĬ = −đ′
0 + iġĮ

ď0

3Ďě

[

Ĉ0Āį + 3Ĉ′0
]

Ĉ̂ħīĭ = −ġĮġİ
ď0Ĉ0

3Ďě

Ĉ̂ħīĦ
= −iġĮ

ď0

Ąĉ2
Ĩ

+ ď0

Ďě

(

Ĉ1ď0 + Ĉ2ď
′
0 + Ĉ2ď0Āį

)

Ĉ̂ħĬď = iġĮ
ď0

Ďě
ĈĐ0

đ′
0

Ĉ̂ħĬī = iġĮ
ď0

3Ďě

[

Ĉ0Āį − 2Ĉ′0
]

Ĉ̂ħĬĬ = −iġĮđ0 −
ď0

Ďě

[

Ĉ0

(

ġ2
Į −

4

3
Āįį + ġ2

İ

)

− 4

3
Ĉ′0Āį

]

Ĉ̂ħĬĭ = iġİ
ď0

3Ďě

[

Ĉ0Āį − 2Ĉ′0
]

Ĉ̂ħĬĦ = − ď0

Ąĉ2
Ĩ

Āį + iġĮ
ď0

Ďě
ĈĐ0

đ′
0ď0

Ĉ̂ħĭď
= 0

Ĉ̂ħĭī
= −ġĮġİ

ď0Ĉ0

3Ďě

Ĉ̂ħĭĬ
= iġİ

ď0

3Ďě

[

Ĉ0Āį + 3Ĉ′0
]

Ĉ̂ħĭĭ
= −iġĮđ0 −

ď0

Ďě

[

Ĉ0

(

ġ2
Į − Āįį +

4

3
ġ2
İ

)

− Ĉ′0Āį

]
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Ĉ̂ħĭĦ
= −iġİ

ď0

Ąĉ2
Ĩ

Ĉ̂ħĦď
=

Ą(Ą − 1)ĉ2
Ĩ

Ďě
ĈĐ0

(đ′
0)2 +

( Ą

ĎěČĨ

) [

Ĉ0

(

−ġ2
Į + Āįį − ġ2

İ

)

+ Ĉ′0Āį + Ĉ3 + ĈĐ0
ď′0Āį

]

Ĉ̂ħĦī
= −iġĮĄ + Ą(Ą − 1)ĉ2

Ĩ

Ďě

(

2đ′
0Ĉ0

)

Āį

Ĉ̂ħĦĬ
= −ĄĀį + iġĮ

Ą(Ą − 1)ĉ2
Ĩ

Ďě

(

2đ′
0Ĉ0

)

Ĉ̂ħĦĭ
= −iġİĄ

Ĉ̂ħĦĦ
= −iġĮđ0 +

Ą(Ą − 1)ĉ2
Ĩ

Ďě
ĈĐ0

(đ′
0)2ď0 +

Ą

ĎěČĨ

{

Ĉ0

[

ď′′0 + 2ď′0Āį − ď0

(

ġ2
Į − Āįį + ġ2

İ

)]

+ Ĉ′0 (ď′0 + ď0Āį)
}

+ Ą

ĎěČĨ

(

Ĉ3ď0 + ĈĐ0
ď0ď

′
0Āį + ĈĐ0

(ď′0)2
)
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