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This paper extends the recently introduced structured input-output analysis method for

incompressible flows to the compressible regime. The proposed method relies upon an exact

quadratic representation of the compressible Navier-Stokes equations that allows for efficient

modeling and analysis within the structured singular value framework. Specifically, the

compressible plane Couette flow is investigated and the structure of the nonlinear forcing is

used to formulate an input-output model suitable for the structured singular value analysis. We

have outlined an efficient method to compute upper bounds on the structured singular value,

which provide insight into flow instability. Numerical results of the proposed framework are

included for subsonic, transonic, and supersonic Mach numbers. These results are compared

with those obtained from resolvent gain and unstructured input-output analysis. Our findings

show that accounting for the structure of the nonlinearity not only reduces the conservatism in

the unstructured gains—thereby increasing the estimated stability margin—but also eliminates

some of the instability mechanisms predicted by these other analysis tools. Moreover, the

structured input-output results reveal instability mechanisms that are not captured by the

resolvent analysis. These contradictory findings between the analysis techniques considered

need to be substantiated through experimental and/or computational studies in the future.

I. Introduction

C
ompressible flows arise in most aerospace applications. These flows are governed by the compressible Navier-Stokes

equations (NSE), which can result in highly complex flow physics with a rich array of nonlinear flow interactions.

Modal analysis techniques have proven to be invaluable for unraveling these complex flow physics to arrive at an improved

understanding of key instability mechanisms and coherent structures that drive the associated fluid dynamics [1–3].

Input-output (I/O) and resolvent-based techniques have established themselves as key tools in the arsenal [4]. These

techniques were primarily adopted and developed in the context of incompressible flows [5, 6], but have since been

adopted and developed for studies of compressible fluid dynamics [7–11]. I/O methods are inherently physics-based and

work by decomposing the governing equations into a feedback interconnection between the linear dynamics and the

nonlinear terms. Traditionally, the outputs of the nonlinear terms are treated as an implicit (unstructured) forcing on the

linear dynamics, which results in an optimization problem that is relatively straightforward to solve using linear systems

analysis techniques. Despite their successes, linear I/O analysis neglects any known structure regarding the nonlinear

terms. Most existing analysis methods that account for these nonlinearities result in computationally expensive—or

even intractable—solution algorithms [12–16].
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Recently, a structured I/O analysis framework was proposed within the context of incompressible flows that provides

a computationally tractable method for imposing structural information about the nonlinear terms within the linear I/O

analysis framework [17]. This approach extends established ideas from the robust controls literature [18, 19] to the

context of incompressible fluid dynamics for which the (convective) nonlinear terms are quadratic. It was further shown

in [20] that additional repeated structure in the convective nonlinearity in the incompressible NSE can be exploited to

further refine the structured I/O analysis. Moreover, the structured I/O framework can be utilized to conduct modal

analysis, as shown in [21].

In this paper, we investigate the utility of structured I/O methods for the analysis of compressible flows. The

nonlinear terms in the compressible NSE are substantially more complicated than in the incompressible NSE. In most

systems-theoretic formulations, the nonlinearity in the compressible NSE is cubic [22], which creates non-trivial

challenges with regards to the necessary uncertainty modeling of the nonlinear terms for subsequent structured I/O

analysis. Here, we will exploit a reformulation of the compressible NSE for which the resulting nonlinearity is quadratic.

The nonlinearity in this reformulation is still substantially more complicated than for incompressible flows, but makes

the application of structured I/O analysis more tractable. For this investigation, we consider a compressible plane

Couette flow over a range of Mach numbers. This flow has been investigated in numerous other works on stability and

I/O analysis due to its simplicity [8, 23, 24]. Results of the structured I/O analysis are compared with those obtained

from resolvent gain and unstructured input-output (using the Ą∞ norm) analysis. Included numerical results illustrate

that accounting for the structure of the nonlinearity not only reduces the conservatism in the unstructured gains (which

translates to a larger margin of stability) but also eliminates some of the possibly redundant instability mechanisms

predicted by these other analysis tools. Moreover, the structured I/O results reveal different instability mechanisms that

are not predicted in the resolvent gain results.

The remainder of the paper proceeds as follows. The exact quadratic representation of compressible NSE and

relevant details are provided in Section II. The compressible plane Couette flow problem is elaborated in Section III

which includes details on the base flow calculations, perturbation dynamics, and structured I/O analysis. Section IV

contains the simulation results and the conclusions of this work are provided in Section V.

We use symbols CĤ, CĤ×ģ and RĤ×ģ to denote the sets of Ĥ-dimensional complex vectors, complex matrices of

dimension Ĥ × ģ, real matrices of dimension Ĥ × ģ, respectively. The symbols ∥ · ∥2 and ∥ · ∥Ă respectively denote the

spectral and Frobenius norms of a matrix. Also, an Ĥ × Ĥ identity matrix is denoted by IĤ and we use i =
√
−1 as the

imaginary unit.

II. Quadratic Representation of Compressible Navier-Stokes Equations

Consider a compressible fluid in the domain ¬ ¢ R3. The state of the fluid at any instant in time can be characterized

solely based on the primitive variables of density Ď(x, Ī), velocity u(x, Ī) = (ī(x, Ī), Ĭ(x, Ī), ĭ(x, Ī)), and pressure Ħ(x, Ī).
Here, x ∈ ¬ is the spatial coordinate and Ī ∈ R is time. The equations of motion governing the dynamics of the flow in

¬ are derived from the conservation laws for mass, momentum, and energy. These equations can be expressed in terms

of the primitive variables q = (ď := 1/Ď, u, Ħ). All variables are non-dimensionalized in the usual way using Ĉ, īĨ , ĐĨ ,

ďĨ = 1/ĀĨ , and ĈĨ as the reference length, velocity, temperature, specific volume (density), and viscosity, respectively.

The reference pressure is chosen to be ĦĨ = ĐĨĎ/ďĨ . Denoting all dimensional quantities with a superscript (·)Ě , we

define the following non-dimensional quantities:

ď =
ďĚ

ďĨ
, u =

uĚ

īĨ
, Ī =

ĪĚ

Ĉ/īĨ
, Ĉ =

ĈĚ

ĈĨ
, Đ =

ĐĚ

ĐĨ
, Ħ =

ĦĚ

ĦĨ
, Ďě =

īĨĈ

ĈĨďĨ
, ĉĨ =

īĨ

ėĨ
=

īĨ√
ĄĎĐĨ

, (1)

where Ĉ is the coefficient of shear viscosity, while Ďě and ĉĨ denote the Reynolds number and Mach number, respectively.

The resulting non-dimensional compressible Navier-Stokes equations can be expressed as

ĉĪď + u · ∇ď − ď∇ · u = 0 (2)

ĉĪu + u · ∇u = − 1

Ąĉ2
Ĩ

ď∇Ħ + 1

Ďě
ď∇ · Π(u, Ĉ) (3)

ĉĪ Ħ + u · ∇Ħ + ĄĦ∇ · u =
Ą(Ą − 1)ĉ2

Ĩ

Ďě
¨(u, Ĉ) + Ą

ĎěČĨ
∇ · (Ĉ∇(Ħď)) (4)
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with the associated non-dimensional equation of state for a perfect polytropic gas Ħď = Đ . Here, Π(u, Ĉ) denotes the

viscous stress tensor, which for a Newtonian fluid takes the form

Π(u, Ĉ) =


ăĮĮ ăĮį ăĮİ

ăįĮ ăįį ăįİ

ăİĮ ăİį ăİİ



= 2ĈĀ + (ĈĘ −
2

3
Ĉ) (∇ · u)ą,

where ĈĘ is the coefficient of bulk viscosity, and Ā is the deformation tensor given by

Ā =



ĉĮī
1
2
(ĉĮĬ + ĉįī) 1

2
(ĉĮĭ + ĉİī)

1
2
(ĉįī + ĉĮĬ) ĉįĬ

1
2
(ĉįĭ + ĉİĬ)

1
2
(ĉİī + ĉĮĭ) 1

2
(ĉİĬ + ĉįĭ) ĉİĭ



.

In this work, we will apply Stokes’ hypothesis, so that ĈĘ = 0. Also, the term ¨(u, Ĉ) in (4) is the viscous dissipation

term given by

¨(u, Ĉ) = Ĉ
(
2
(
(ĉĮī)2 + (ĉįĬ)2 + (ĉİĭ)2

)
+ (ĉįī + ĉĮĬ)2 + (ĉİĬ + ĉįĭ)2 + (ĉİī + ĉĮĭ)2

)
− 2

3
Ĉ(∇ · u)2

=
Ĉ

2

[
∇u + (∇u)T

]2 − 2

3
Ĉ(∇ · u)2.

(5)

Next, we consider the dynamics of perturbations about a steady base flow (ď0, u0, Ħ0, Đ0, Ĉ0) with u0 = (ī0, Ĭ0, ĭ0). We

will assume temperature dependence of the viscosity in the base flow calculation Ĉ0 = Ĉ0 (Đ0); however, the temperature

dependence of viscosity in the perturbation dynamics—and therefore perturbations to the base viscosity Ĉ0—will be

neglected in the ensuing analysis. Isolating the linear dynamics on the left-hand side and the nonlinear terms on the

right-hand side, the dynamics of perturbations can be expressed as

ĉĪď − Ĉ ď (q) = č ď (q) (6)

ĉĪu − Ĉu (q) = ču (q) (7)

ĉĪ Ħ − ĈĦ (q) = čĦ (q) (8)

Đ − ĈĐ (q) = čĐ (q) (9)

where q = (ď, u, Ħ) is the vector of perturbed quantities, and

Ĉ ď (q) = −u0 · ∇ď − u · ∇ď0 + ď∇ · u0 + ď0∇ · u

Ĉu (q) = −u0 · ∇u − u · ∇u0 − ď0∇Ħ − ď∇Ħ0 +
1

Ďě
(ď∇ · Π(u0, Ĉ0) + ď0∇ · Π(u, Ĉ0))

ĈĦ (q) = −u0 · ∇Ħ − u · ∇Ħ0 − Ą (Ħ∇ · u0 + Ħ0∇ · u) + Ą(Ą − 1)ĉ2
Ĩ

Ďě

(

Ĉ0

(
4ĉĮīĉĮī0 + 4ĉįĬĉįĬ0 + 4ĉİĭĉİĭ0

+ 2(ĉįī + ĉĮĬ) (ĉįī0 + ĉĮĬ0) + 2(ĉİĬ + ĉįĭ) (ĉİĬ0 + ĉįĭ0) + 2(ĉİī + ĉĮĭ) (ĉİī0 + ĉĮĭ0)
)

− 4

3
Ĉ0 (∇ · u0) (∇ · u)

)

+ Ą

ĎěČĨ
∇ · Ĉ0 (∇(Ħ0ď + Ħď0))

ĈĐ (q) = Ħ0ď + Ħď0

č ď (q) = ď∇ · u − u · ∇ď

ču (q) = −u · ∇u − ď∇Ħ + 1

Ďě
ď∇ · Π(u)

čĦ (q) = −u · ∇Ħ − ĄĦ∇u + Ą(Ą − 1)ĉ2
Ĩ

Ďě
¨(u, Ĉ0) +

Ą

ĎěČĨ
∇ · (Ĉ0∇(Ħď))

čĐ (q) = Ħď.

The partitioning into linear and nonlinear terms facilitates the formulation of the structured I/O problem. We will

demonstrate this in the context of a compressible plane Couette flow in the next section.
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III. Structured I/O Analysis of Compressible Plane Couette Flow
The compressible plane Couette flow is a convenient canonical setup for investigation that has been considered in

many prior works—see, e.g., [8, 23–25].

A. Steady Base Flow

The base profile can be computed with relative ease: it can be shown that the base temperature profile Đ0 (į) will be

a second-order polynomial function of the streamwise base velocity profile đ0 (į) [23]. Further, this base flow profile

will be independent of the Reynolds number Ďě. Here we will show that the same conclusion can be drawn from the

non-dimensional quadratic representation of the compressible NSE. Assume a base profile with (ī, Ĭ, ĭ) = (đ0 (į), 0, 0),
ď = ď0 (į), and Ħ = Ħ0 (į). The continuity and İ-momentum equations will be satisfied automatically. It follows from

the į-momentum equation that the base pressure profile will actually be a constant, which we will take to be unity:

Ħ0 (į) = Ħ0 = 1. The Į-momentum equation shows that the base shear-stress profile ă0 = Ĉ0 (ĉđ0/ĉį) will be constant:

d

dį

(
Ĉ0

dđ0

dį

)
= 0. (10)

The energy equation reduces to the condition:

d

dį

(
(Ą − 1)ĉ2

Ĩ ă0đ0 +
Ĉ0

ČĨ

dĐ0

dį

)
= 0, (11)

where we have utilized the equation of state ď0 (į) = Đ0 (į) since Ħ0 = 1. The boundary conditions are taken to be

đ0 (0) = 0, đ0 (1) = 1, Đ0 (0) = ĐĈ , Đ (1) = 1, (12)

where ĐĈ is the mean temperature of the lower wall. Now, we can integrate (11) to obtain the baseflow temperature

profile as [23, 24]

Đ0 = ĐĨěę
[
Ĩ + (1 − Ĩ)đ0 − (1 − Đ−1

Ĩěę)đ2
0

]
, (13)

where we have defined the recovery temperature ĐĨěę = 1 + (Ą − 1)ČĨĉ2
Ĩ /2 and recovery factor Ĩ = ĐĈ/ĐĨěę. For

consistency with this prior work, we assume temperature dependence of the base viscosity according to Sutherland’s

law:

Ĉ0 =
Đ

3/2
0

(1 + ÿ)
Đ0 + ÿ

, with ÿ = 0.5. (14)

The base velocity profile can be computed from (10). Since the shear stress ă0 is an unknown constant, this can be

done iteratively together with (13) and (14). Here, we use a shooting method composed of a fourth order Runge-Kutta

integration scheme in conjunction with a secant method for determining the initial condition for the next iterate. The

process is then repeated until convergence. Base profiles for ČĨ = 0.72, Ĩ = 1 (adiabatic lower wall), and ĉĨ = (0.5, 1, 2)
are shown in Fig. 1. As noted in [23], beginning with a monotone initial guess for đ0 (į) facilitates convergence. For

the cases considered in our study, convergence of the shooting method to an absolute error of Ċ f 10−8 between iterates

required ∼ O(10) total iterations.

B. Perturbation Dynamics about the Steady Base Flow

The perturbation dynamics about the steady base flow is given by

ĉĪď +đ0ĉĮď + Ĭď′0 − ď0∇ · u = −u · ∇ď + ď∇ · u

ĉĪu +đ0ĉĮu + Ĭđ′
0eĮ +

1

Ąĉ2
Ĩ

ď0∇Ħ − ď0

Ďě
∇ · Π(u, Ĉ0) = − 1

Ąĉ2
Ĩ

ď∇Ħ − u · ∇u + ď

Ďě
∇ · Π(u, Ĉ0)

ĉĪ Ħ +đ0ĉĮ Ħ + ĄĦ0∇ · u − Ą(Ą − 1)ĉ2
Ĩ

Ďě

(
2Ĉ0đ

′
0 (ĉįī + ĉĮĬ)

)

− Ą

ĎěČĨ

(
Ĉ0Ħ0∇2ď + Ĉ0ď0∇2Ħ + 2Ĉ0ď

′
0ĉį Ħ + Ĉ0ď

′′
0 Ħ + Ĉ′0

(
Ħ0ĉįď + Ħď′0 + ď0ĉį Ħ

) )

= −u · ∇Ħ − ĄĦ∇ · u + Ą(Ą − 1)ĉ2
Ĩ

Ďě
¨(u, Ĉ0) +

Ą

ĎěČĨ

(
Ĉ0∇2 (Ħď) + ď∇Ħ · ∇Ĉ0 + Ħ∇ď · ∇Ĉ0

)

(15)
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Fig. 1 Steady base flow profiles for compressible plane Couette flow for different Mach numbers.

where eĮ is the unit vector for the Į direction, (·)′ = d(·)/dį and (·)′′ = d2 (·)/dį2 for the associated base flow quantities.

Therefore, the linear operators for the perturbation dynamics about the steady base flow reduce to

Ĉ ď (q) = −đ0ĉĮď − Ĭď′0 + ď0∇ · u

Ĉī (q) = −đ0ĉĮī −đ′
0Ĭ −

1

Ąĉ2
Ĩ

ď0ĉĮ Ħ + ď0

Ďě

[
Ĉ0

(
∇2ī + 1

3
(ĉĮĮī + ĉĮįĬ + ĉĮİĭ)

)
+ (ĉįī + ĉĮĬ)Ĉ′0

]

ĈĬ (q) = −đ0ĉĮĬ −
1

Ąĉ2
Ĩ

ď0ĉį Ħ + ď0

Ďě

[
Ĉ0

(
∇2Ĭ + 1

3
(ĉĮįī + ĉįįĬ + ĉįİĭ)

)
+

(
4

3
ĉįĬ −

2

3
(ĉİĭ + ĉĮī)

)
Ĉ′0

]

Ĉĭ (q) = −đ0ĉĮĭ − 1

Ąĉ2
Ĩ

ď0ĉİ Ħ + ď0

Ďě

[
Ĉ0

(
∇2ĭ + 1

3
(ĉĮİī + ĉįİĬ + ĉİİĭ)

)
+ (ĉİĬ + ĉįĭ)Ĉ′0

]

ĈĦ (q) = −đ0ĉĮ Ħ − ĄĦ0∇ · u + Ą(Ą − 1)ĉ2
Ĩ

Ďě

(
2Ĉ0đ

′
0 (ĉįī + ĉĮĬ)

)

+ Ą

ĎěČĨ

(
Ĉ0Ħ0∇2ď + Ĉ0ď0∇2Ħ + 2Ĉ0ď

′
0ĉį Ħ + Ĉ0ď

′′
0 Ħ + Ĉ′0

(
Ħ0ĉįď + Ħď′0 + ď0ĉį Ħ

) )
.

(16)

No-slip and impermeability boundary conditions are applied to velocity perturbations at both walls, i.e., ī(0) = ī(1) =
Ĭ(0) = Ĭ(1) = ĭ(0) = ĭ(1) = 0. In this work, we assume an adiabatic lower wall (i.e., ĉįĐ (0) = 0) and an isothermal
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upper wall (i.e., Đ (1) = 0). These translate to the following conditions on specific volume and pressure at the boundaries:

ĉį Ħ(0)ď0 (0) + ĉįď (0) + ĉį (Ħď) (0) = 0, (17)

Ħ(1)ď0 (1) + ď (1) (1 + Ħ(1)) = 0. (18)

These conditions are satisfied by imposing homogeneous Dirichlet and Neumann boundary conditions, i.e., ď (1) =
Ħ(1) = 0 and ĉįď (0) = ĉį Ħ(0) = 0.

With the linear operators as defined above, the perturbation dynamics (15) can now be expressed as

ĉĪď = Ĉ ď (q) + Ĝď (q), ĉĪu = Ĉu (q) + Ĝu (q), ĉĪ Ħ = ĈĦ (q) + ĜĦ (q), (19)

where Ĉu (q) =
[
Ĉī (q) ĈĬ (q) Ĉĭ (q)

]T

and the nonlinear forcings are

Ĝď (q) = −u · ∇ď + ď∇ · u, Ĝu (q) = − 1

Ąĉ2
Ĩ

ď∇Ħ − u · ∇u + ď

Ďě
∇ · Π(u, Ĉ0),

ĜĦ (q) = −u · ∇Ħ − ĄĦ∇ · u + Ą(Ą − 1)ĉ2
Ĩ

Ďě
¨(u, Ĉ0) +

Ą

ĎěČĨ

(
Ĉ0∇2 (Ħď) + ď∇Ħ · ∇Ĉ0 + Ħ∇ď · ∇Ĉ0

)
.

(20)

This description of the perturbation dynamics in (19) provides a systems-theoretic (or feedback) interpretation of the

equations, which is shown in Fig. 2a where the perturbed quantities (ď, u, Ħ) denote the state of a linear system (i.e., the

linear perturbation dynamics). The states are also the outputs of the linear system and the inputs forcing the linear

system are nonlinear feedback of the outputs (see Fig. 2a). Furthermore, the term ¨(u, Ĉ0) can be expressed as

¨(u, Ĉ0) =
Ĉ0

2

[
∇u + (∇u)T

]2 − 2

3
Ĉ0 (∇ · u)2

=
Ĉ0

2
«1 (u) −

2

3
Ĉ0«2 (u) (21)

where

«1 (u) =
[
(∇ī)T (∇Ĭ)T (∇ĭ)T (ĉĮu)T (ĉįu)T (ĉİu)T

]



∇ī
∇Ĭ
∇ĭ

(2∇ī + ĉĮu)
(2∇Ĭ + ĉįu)
(2∇ĭ + ĉİu)



, «2 (u) = (∇ · u)2. (22)

Also, we have the following identity

∇2 (Ħď) = ď∇2Ħ + Ħ∇2ď + 2∇Ħ · ∇ď. (23)

After substituting the above expressions in (20), we derive

Ĝď (q) = −u · ∇ď + ď∇ · u, Ĝu (q) = − 1

Ąĉ2
Ĩ

ď∇Ħ − u · ∇u + ď

Ďě
∇ · Π(u, Ĉ0),

ĜĦ (q) = −u · ∇Ħ − ĄĦ∇ · u + Ą(Ą − 1)ĉ2
Ĩ

Ďě

Ĉ0

2

[

(∇ī)T∇ī + (∇Ĭ)T∇Ĭ + (∇ĭ)T∇ĭ

+ (ĉĮu)T (2∇ī + ĉĮu) + (ĉįu)T (2∇Ĭ + ĉįu) + (ĉİu)T (2∇ĭ + ĉİu)
]

− Ą(Ą − 1)ĉ2
Ĩ

Ďě

2

3
Ĉ0 (∇ · u)2

+ Ą

ĎěČĨ

(
Ĉ0ď∇2Ħ + Ĉ0Ħ∇2ď + 2Ĉ0∇Ħ · ∇ď + ∇Ĉ0 · ď∇Ħ + ∇Ĉ0 · Ħ∇ď

)
.

(24)

C. Modeling the Nonlinear Terms: Structured Uncertainty

We now describe a modeling of the quadratic nonlinearities in (24), collectively denoted by a vector f, that enables the

structured I/O analysis using the structured singular value formalism. This involves separating each quadratic nonlinearity
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into its constituent linear parts and approximating one of the linear parts as an uncertain gain. Following the terminology

used in the robust controls literature, we refer to the resulting gain matrix as a structured uncertainty which typically

has a block-diagonal structure. In fact, the modeling actually requires a couple of linear transformations/operators

to make the structured uncertainty block-diagonal—one each for the inputs and outputs of the structured uncertainty.

The system modeling and resulting approximated system are schematically shown in Fig. 2b where the subscript (·)Ć
denotes approximated quantities. Therefore, the I/O modeling approximates the nonlinearity by a quasi-nonlinearity

that neglects the dependence of the mapping on the states that make up both y and f, i.e., the uncertainty is treated as

independent of these signals. Despite this approximation, structured I/O framework provides a systematic approach to

treat the nonlinearities compared to the traditional unstructured I/O techniques. This is evidenced by the structured I/O

analysis of incompressible flows in [17], which led to results that were in agreement with both experimental observations

and direct numerical simulation results. This indicates the usefulness of structured I/O analysis, even with the above

mentioned inexactness of the modeling, and serves as a motivation for the I/O model in our research. The details of our

model are provided next.

Linear

dynamics

Nonlinear

mapping

Ĝď

Ĝu

ĜĦ


-



ď

u

Ħ



�

(a) Original system

Linear

dynamics

Structured

uncertainty

Linear

mapping

Linear

mapping

[
Ĝď Ĝ T

u ĜĦ

]T

Ć

?

- [
ď uT Ħ

]T

yfĆ

6

�

(b) Approximated system

Fig. 2 The perturbation dynamics expressed in feedback forms - both the original system and the system

obtained through the modeling approximation, with subscript (·)Ć denoting approximated quantities.

First, we separate out the nonlinear terms in (24) into three different vectors as

f1 =



ď∇2Ħ

ď∇Ħ
ď (∇ · u)

ď∇ · Π(u, Ĉ0)
Ħ∇2ď

Ħ∇ď
Ħ∇ · u



, f2 =



u · ∇ď
u · ∇ī
u · ∇Ĭ
u · ∇ĭ
u · ∇Ħ



, f3 =



∇ī · ∇ī
∇Ĭ · ∇Ĭ
∇ĭ · ∇ĭ

ĉĮu · (2∇ī + ĉĮu)
ĉįu · (2∇Ĭ + ĉįu)
ĉİu · (2∇ĭ + ĉİu)

∇Ħ · ∇ď
(∇ · u)2



. (25)

These are related to the nonlinear forcings in (24) as



Ĝď

Ĝu

ĜĦ



= B1f1 + B2f2 + B3f3 =

[
B1 B2 B3

]


f1

f2

f3



= Bf (26)

where B2 = −I5 and

B1 =



0 0 1 0 0 0 0

0 − 1

Ąĉ2
Ĩ
I3 0 1

Ďě
I3 0 0 0

ę3Ĉ0 ę3 (∇Ĉ0)T 0 0 ę3Ĉ0 ę3 (∇Ĉ0)T −Ą



, B3 =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ę1 ę1 ę1 ę1 ę1 ę1 2Ĉ0ę3 ę2



(27)
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with ę1 =
Ą (Ą−1)ĉ2

Ĩ

Ďě

Ĉ0

2
, ę2 = − 2

3
Ĉ0

Ą (Ą−1)ĉ2
Ĩ

Ďě
, and ę3 =

Ą

ĎěČĨ
. Next, we describe the approximation for the nonlinear

terms in the vectors fğ:

f1Ć
=



ďĆ∇2Ħ

ďĆ∇Ħ
ďĆ (∇ · u)

ďĆ∇ · Π(u, Ĉ0)
ĦĆ∇2ď

ĦĆ∇ď
ĦĆ∇ · u



=



ďĆ 0 0 0 0 0 0

0 ďĆI3 0 0 0 0 0

0 0 ďĆ 0 0 0 0

0 0 0 ďĆI3 0 0 0

0 0 0 0 ĦĆ 0 0

0 0 0 0 0 ĦĆI3 0

0 0 0 0 0 0 ĦĆ





∇2Ħ

∇Ħ
∇ · u

∇ · Π(u, Ĉ0)
∇2ď

∇ď
∇ · u



= �̄1y1, (28)

f2Ć
=



uĆ · ∇ď
uĆ · ∇ī
uĆ · ∇Ĭ
uĆ · ∇ĭ
uĆ · ∇Ħ



=



uT
Ć 0 0 0 0

0 uT
Ć 0 0 0

0 0 uT
Ć 0 0

0 0 0 uT
Ć 0

0 0 0 0 uT
Ć





∇ď
∇ī
∇Ĭ
∇ĭ
∇Ħ



= �̄2y2, (29)

f3Ć
=



(∇ī)Ć · ∇ī
(∇Ĭ)Ć · ∇Ĭ
(∇ĭ)Ć · ∇ĭ

(ĉĮu)Ć · (2∇ī + ĉĮu)
(ĉįu)Ć · (2∇Ĭ + ĉįu)
(ĉİu)Ć · (2∇ĭ + ĉİu)

(∇Ħ)Ć · ∇ď
(∇ · u)Ć (∇ · u)



=



(∇ī)T
Ć 0 0 0 0 0 0 0

0 (∇Ĭ)T
Ć 0 0 0 0 0 0

0 0 (∇ĭ)T
Ć 0 0 0 0 0

0 0 0 (ĉĮu)T
Ć 0 0 0 0

0 0 0 0
(
ĉįu

)T

Ć
0 0 0

0 0 0 0 0 (ĉİu)T
Ć 0 0

0 0 0 0 0 0 (∇Ħ)T
Ć 0

0 0 0 0 0 0 0 (∇ · u)Ć





∇ī
∇Ĭ
∇ĭ

(2∇ī + ĉĮu)
(2∇Ĭ + ĉįu)
(2∇ĭ + ĉİu)

∇ď
(∇ · u)


= �̄3y3.

(30)

Therefore, the entire vector f is approximated as

fĆ =



f1Ć

f2Ć

f3Ć



= diag
(
�̄1, �̄2, �̄3

)


y1

y2

y3



= diag (�1,�2, . . . ,�11) y = �y (31)

where

�1 = ďĆI8, �2 = ĦĆI5, �3 = I5 ¹ uT
Ć, �4 = (∇ī)T

Ć, �5 = (∇Ĭ)T
Ć, �6 = (∇ĭ)T

Ć,

�7 = (ĉĮu)T
Ć, �8 = (ĉįu)T

Ć, �9 = (ĉİu)T
Ć, �10 = (∇Ħ)T

Ć, �11 = (∇ · u)Ć .
(32)

8

D
o
w

n
lo

ad
ed

 b
y
 U

N
IV

E
R

S
IT

Y
 O

F
 M

IN
N

E
S

O
T

A
 o

n
 J

an
u
ar

y
 1

9
, 
2
0
2
3
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/6

.2
0
2
3
-1

9
8
4
 



The vectors yğ can be expressed in terms of the perturbed quantities (ď, u, Ħ) as follows:

y1 =



∇2Ħ

∇Ħ
∇ · u

∇ · Π(u, Ĉ0)
∇2ď

∇ď
∇ · u



= C1



ď

ī

Ĭ

ĭ

Ħ



, y2 =



∇ď
∇ī
∇Ĭ
∇ĭ
∇Ħ



= C2



ď

ī

Ĭ

ĭ

Ħ



, (33)

where

C1 =



0 0 0 0 ∇2

0 0 0 0 ∇
0 ĉĮ ĉį ĉİ 0

0 ÿΠ11
ÿΠ12

ÿΠ13
0

0 ÿΠ21
ÿΠ22

ÿΠ23
0

0 ÿΠ31
ÿΠ32

ÿΠ33
0

∇2 0 0 0 0

∇ 0 0 0 0

0 ĉĮ ĉį ĉİ 0



, C2 =



∇ 0 0 0 0

0 ∇ 0 0 0

0 0 ∇ 0 0

0 0 0 ∇ 0

0 0 0 0 ∇



, (34)

with

ÿΠ11
= Ĉ0∇2 + 1

3
Ĉ0ĉĮĮ + Ĉ′0ĉį , ÿΠ12

=
1

3
Ĉ0ĉĮį + Ĉ′0ĉĮ , ÿΠ13

=
1

3
Ĉ0ĉĮİ ,

ÿΠ21
=

1

3
Ĉ0ĉĮį −

2

3
Ĉ′0ĉĮ , ÿΠ22

= Ĉ0∇2 + 1

3
Ĉ0ĉįį +

4

3
Ĉ′0ĉį , ÿΠ23

=
1

3
Ĉ0ĉįİ −

2

3
Ĉ′0ĉİ ,

ÿΠ31
=

1

3
Ĉ0ĉĮİ , ÿΠ32

=
1

3
Ĉ0ĉįİ + Ĉ′0ĉİ , ÿΠ33

= Ĉ0∇2 + 1

3
Ĉ0ĉİİ + Ĉ′0ĉį .

(35)

Also, we have

y3 =



∇ī
∇Ĭ
∇ĭ

(2∇ī + ĉĮu)
(2∇Ĭ + ĉįu)
(2∇ĭ + ĉİu)

∇ď
(∇ · u)



= C31



∇ī
∇Ĭ
∇ĭ
ĉĮu

ĉįu

ĉİu

∇ď



= C31
C32



ď

ī

Ĭ

ĭ

Ħ



(36)
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where

C31
=



I3 0 0 0 0 0 0

0 I3 0 0 0 0 0

0 0 I3 0 0 0 0

2I3 0 0 I3 0 0 0

0 2I3 0 0 I3 0 0

0 0 2I3 0 0 I3 0

0 0 0 0 0 0 I3[
1 0 0

] [
0 1 0

] [
0 0 1

]
0 0 0 0



, C32
=



0 ∇ 0 0 0

0 0 ∇ 0 0

0 0 0 ∇ 0

0 ĉĮ 0 0 0

0 0 ĉĮ 0 0

0 0 0 ĉĮ 0

0 ĉį 0 0 0

0 0 ĉį 0 0

0 0 0 ĉį 0

0 ĉİ 0 0 0

0 0 ĉİ 0 0

0 0 0 ĉİ 0

∇ 0 0 0 0



. (37)

Hence, we finally have

y =



y1

y2

y3



=



C1

C2

C31
C32





ď

ī

Ĭ

ĭ

Ħ



= Cį



ď

ī

Ĭ

ĭ

Ħ



. (38)

Therefore, the overall perturbation dynamics obtained through the modeling is given by



ĉĪď

ĉĪu

ĉĪ Ħ



=



Ĉ ď (q)
Ĉu (q)
ĈĦ (q)



+ BfĆ, y = Cį

[
ď uT Ħ

]T

, fĆ = �y (39)

which is discretized using the Fourier-Chebyshev-Fourier spectral discretization. The discretized equations (with ˆ(·)
denoting the discretized quantities) can be expressed in the following form:

iĈq̂ = L̂(ġĮ , ġİ)q̂ + B̂f̂Ć

ŷ = Ĉį (ġĮ , ġİ)q̂

f̂Ć = diag
(
�̂1, �̂2, . . . , �̂11

)
ŷ = �̂ŷ

(40)

where ġĮ and ġİ are the wavenumbers along the streamwise (Į) and spanwise (İ) directions, respectively, Ĉ is the

temporal frequency, L̂(ġĮ , ġİ) ∈ CĤħ×Ĥħ , Ĉį (ġĮ , ġİ) ∈ CĤį×Ĥħ are the discretized operators (see Appendix A for

details on the discretized operators), and B̂ ∈ RĤħ×Ĥ Ĝ is the dimensionally consistent form of B for the discretized

variables. Thus, we have Ĥħ = 5Ċį where Ċį denotes the number of Chebyshev collocation points in the wall-normal

(į) direction. Also in the above, each �̂ğ is a complex block matrix, with �̂3 containing a repeated full-block structure

(i.e., a single full block repeated 5 times, see (32)). Note that we do not exploit this repeated full-block structure in the

current study, but plan to do so in our future work.

For a given tuple (ġĮ , ġİ , Ĉ), the system of equations in (40) can be interpreted as a feedback interconnection

between a linear time invariant (LTI) system and a structured uncertainty �̂. In this interpretation, the inputs and outputs

of the LTI system are f̂Ć ∈ CĤ Ĝ and ŷ ∈ CĤį , respectively. Furthermore, the I/O relationship can be written as

ŷ = H(ġĮ , ġİ , Ĉ) f̂Ć (41)

where H(ġĮ , ġİ , Ĉ) = Ĉį (ġĮ , ġİ) (iĈIĤħ − L̂(ġĮ , ġİ))−1B̂ is the frequency response operator. Figure 3 schematically

outlines how the continuous-time modeling of the perturbation dynamics leads to the equivalent discretized system.
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H(ġĮ , ġİ , Ĉ)

�̂

f̂Ć
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-

ŷ

Fig. 3 The models of perturbation dynamics - continuous-time form (left) and discretized form (right).

D. Code validation: Eigenvalue spectra

For the purposes of code validation, we compare eigenvalues of the discretized linear operator L̂(ġĮ , ġİ) with

eigenvalues of the equivalent operator for the standard (cubic) description of compressible NSE. Following the common

practice in the literature [8, 23, 24], the eigenvalues (Č) are plotted in terms of the complex wavespeed ę = Č/ġĮ = ęĨ + ięğ .

The comparison results are shown in Fig. 4 where we have utilized ġĮ = ġİ = 0.1, Ďě = 2 × 105, ĉĨ = 2, ČĨ = 0.72,

Ċį = 200. As shown in Fig. 4, both sets of eigenvalues match, and these results are also consistent with results in the

literature (see, for example, [8]).

-0.5 0 0.5 1 1.5

c
r

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

c
i Quadratic

Cubic

Fig. 4 Eigenvalue spectra of the linear operators for ġĮ = ġİ = 0.1, Ďě = 2 × 105, ĉĨ = 2, ČĨ = 0.72, Ċį = 200.

E. Structured I/O Analysis: Structured Singular Value

As stated before, the structured I/O analysis utilizes the concept of structured singular value (SSV or č). We will

start the discussion with the matrix case by recalling the definition of č for a given matrix H ∈ CĤ×ģ and a set of

structured matrices Ā ¢ Cģ×Ĥ.

Definition 1 ([18, 26]) For a given matrix H ∈ CĤ×ģ and a set of structured matrices Ā ¢ Cģ×Ĥ, the structured

singular value is defined as

čĀ (H) = 1

min(∥�̂∥2 : �̂ ∈ Ā, det(IĤ − H�̂) = 0)
. (42)
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If there does not exist �̂ ∈ Ā such that det(IĤ − H�̂) = 0, then čĀ (H) = 0.

Note that čĀ (H) depends both on the matrix H and the set Ā. Also, SSV is inversely related to the smallest structured

uncertainty �̂ (in the sense of ∥ · ∥2) that can make the feedback interconnection of the form shown in Fig. 3 (right)

unstable (see Remark 3.4 in [18] for more details). Thus, SSV is closely related to flow stability, i.e., a large value

indicates that the system is sensitive to small perturbations that can cause instability and vice versa [26]. For the

frequency response operator H(ġĮ , ġİ , Ĉ) at a given wavenumber pair (ġĮ , ġİ), computing SSV reduces to computing

the čĀ (H (ġĮ , ġİ , Ĉ)) on a grid of temporal frequencies Ĉ. This approach essentially provides information about

wavenumber pairs (ġĮ , ġİ) where the SSV is higher, thereby indicating an instability mechanism. However, exactly

computing the SSV is NP-hard for a general uncertainty structure [27–29]. As a result, it is a common practice to

compute upper and lower bounds on the SSV instead. Specifically in this paper, we are interested in calculating an

upper bound, which provides a sufficient condition for robust stability [18, 19, 30–32]. Details on the upper bound

calculation are provided next.

By definition, we have č(H) f ∥H∥2 [18]. Furthermore, for each set of uncertainties Ā ¢ Cģ×Ĥ, there are sets of

non-singular matrices D1 ¢ CĤ×Ĥ, D2 ¢ Cģ×ģ such that �̂D1 = D2�̂ for any D1 ∈ D1,D2 ∈ D2, �̂ ∈ Ā. Therefore,

det(IĤ−H�̂) = det(IĤ−HD−1
2
�̂D1) = det(Iģ−�̂D1HD−1

2
) = det(IĤ−D1HD−1

2
�̂) which means čĀ (H) = čĀ (D1HD−1

2
).

This can be used to tighten the upper bound as

čĀ (H) f min
D1∈D1 , D2∈D2

∥D1HD−1
2 ∥2. (43)

The upper bound is called the Ā-scale upper bound. In this paper, we consider the uncertainty to consist of non-repeating

full blocks, i.e., we take ĀĤĨ = {diag(�̂1, �̂2, . . . , �̂15) : �̂ğ ∈ Cģğ×Ĥğ } with
∑15

ğ=1 ģğ = Ĥ Ĝ and
∑15

ğ=1 Ĥğ = Ĥį for

consistent dimensions. Note that the 5 repeated full blocks in �̂3 are approximated with non-repeating ones in this

setting. Due to this structure of ĀĤĨ , the corresponding sets of the scaling matrices take the following diagonal form:

D1ĤĨ = {diag(Ě1IĤ1
, Ě2IĤ2

, . . . , Ě15IĤ15
) : Ěğ > 0, ğ = 1, 2, . . . , 15},

D2ĤĨ = {diag(Ě1Iģ1
, Ě2Iģ2

, . . . , Ě15Iģ15
) : Ěğ > 0, ğ = 1, 2, . . . , 15}.

(44)

Thus, the optimization problem for the Ā-scale upper bounds in (43) reduces to solving for the optimal scalars Ěğ .

This can be posed as a generalized eigenvalue problem [18, 19]. However, this approach is computationally expensive

for large-dimensional problems. Instead, utilizing a weaker bound ∥D1HD−1
2
∥2 f ∥D1HD−1

2
∥Ă is often sufficient for

practical purposes [33]. In this case, an upper bound for a given matrix H becomes

čĀ (H) f min
D1∈D1ĤĨ , D2∈D2ĤĨ

∥D1HD−1
2 ∥Ă . (45)

The optimization problem on the right-hand side of (45) can be efficiently solved using a variation of the standard

Osborne’s iterations [34]. Details on the particular variation used in this paper can be found in [20].

In terms of the frequency response operator H(ġĮ , ġİ , Ĉ) at a given wavenumber pair (ġĮ , ġİ) and the uncertainty

set ĀĤĨ , we choose the ‘best’ upper bound, denoted by Ăč (ġĮ , ġİ), as the maximum of the upper bounds computed on a

temporal frequency (Ĉ) grid. This is given by

Ăč (ġĮ , ġİ) = max
Ĉ∈¬

[
min

D1∈D1ĤĨ , D2∈D2ĤĨ

∥D1H(ġĮ , ġİ , Ĉ)D−1
2 ∥Ă

]
(46)

where ¬ ¢ R is the Ĉ grid.

For comparison with the SSV upper bounds, we compute the Ą∞ norm and resolvent gain at each wavenumber pair

(ġĮ , ġİ), respectively denoted by ∥H ∥∞ (ġĮ , ġİ) and ĂĎ (ġĮ , ġİ), as

∥H ∥∞ (ġĮ , ġİ) = max
Ĉ∈¬

∥H (ġĮ , ġİ , Ĉ)∥2,

ĂĎ (ġĮ , ġİ) = max
Ĉ∈¬

∥(iĈIĤħ − L̂(ġĮ , ġİ))−1∥2.
(47)

It should be noted that both the Ą∞ norm and resolvent gain calculations are carried out using the quadratic representation

of compressible NSE presented here and not the standard cubic formulation in the literature. Also, the input-output

model used for the Ą∞ norm is as shown in Fig. 3 (right) with the structured uncertainty �̂ replaced by the set CĤ Ĝ ×Ĥį .
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Fig. 5 Distributions of the SSV upper bound, Ą∞ norm and resolvent gain over the wavenumer pair (ġĮ , ġİ)
grid for ĉĨ = 0.5.

IV. Simulation Results
In this section, we will present numerical results for the compressible plane Couette flow by considering a

ĤġĮ × Ĥġį × ĤĈ grid where ĤġĮ , Ĥġİ , ĤĈ are the total number of grid points for ġĮ , ġİ , and Ĉ, respectively. We

choose (ĤġĮ , Ĥġİ ) = (60, 80) logarithmically spaced points for the wavenumbers in the range ġĮ ∈ [10−3, 102] and

ġİ ∈ [10−4, 103], and take ĤĈ = 50 logarithmically spaced points for the temporal frequency in the range Ĉ ∈ [−10, 10].
Also, we choose other parameter values as Ďě = 2 × 105, ČĨ = 0.72, Ċį = 100. We will illustrate the results for

subsonic (ĉĨ = 0.5), transonic (ĉĨ = 1), and supersonic (ĉĨ = 2) Mach number regimes. All the results in this section

are generated using MATLAB R2022a. To provide an estimate of the computation times associated with the SSV upper

bounds, we have utilized the ‘tic-toc’ functionality within MATLAB. These calculations are carried out on a desktop

computer with a 12-th Gen Intel(R) Core(TM) i7-12700K processor and 16 GB RAM. Also, computation times for

our current implementation of the Osborne’s iteration are compared with an inbuilt MATLAB function/command,

‘osborne’, which implements another variation of the Osborne’s iteration. In this setting, the average times required for

computing the SSV upper bounds at each (ġĮ , ġİ , Ĉ) tuple on the grid are as shown in Table 1. Our implementation is

clearly much faster compared to the inbuilt command and it is mainly achieved by avoiding overheads associated with

the inbuilt command.
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Table 1 Average computation times for the SSV upper bounds (50 runs)

Implementation Time (seconds)

Current 2.16

MATLAB’s ‘osborne’ function/command 8.69

The results for a subsonic Mach number (ĉĨ = 0.5) are shown in Fig. 5. The consistent feature among all three

results is the existence of the horizontal bands of higher values/gains approximately for (a) ġĮ ∈ [10−2, 10−1] and

ġİ ∈ [10−4, 10] in Figs. 5a, 5b; (b) ġĮ ∈ [10−2.5, 10−1.5] and ġİ ∈ [10−4, 10−1] in Fig. 5c. This means that all these

methods are predicting some instability mechanisms at the corresponding wavenumber pairs. There is another feature

that is common between the SSV upper bound and Ą∞ norm results for ġĮ values approximately higher than 1. These

are the narrow ridges followed by narrow valleys as we move up or down the ġĮ axis (see Figs. 5a, 5b), which seem

to indicate other mechanisms of instability. Notably, this feature is not produced in the resolvent gain result and this

might be due to the fact that the input-outputs used for resolvent analysis are different than the ones used for the other
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Fig. 6 Distributions of the SSV upper bound, Ą∞ norm and resolvent gain over the wavenumer pair (ġĮ , ġİ)
grid for ĉĨ = 1.
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two methods. Note that the Ą∞ norm values overall are larger compared to the SSV upper bounds, highlighting the

conservatism in the unstructured I/O analysis using the Ą∞ norm for this problem. This also means that structured I/O

analysis predicts a larger stability margin overall compared to the unstructured I/O analysis. Both the Ą∞ norm and

resolvent gain results include hotspots with local maxima, although the distribution of these features as a function of

the wavenumber pairs is different across the two results (see Figs. 5b, 5c). This particular feature is not present in the

SSV upper bound result. Thus, accounting for the structure of the nonlinearity eliminates these instability mechanisms

otherwise predicted through the other analysis tools, which might not even represent actual system behavior. Therefore,

structured I/O analysis can prove helpful in eliminating potentially redundant instability mechanisms. Furthermore, both

the SSV upper bound and Ą∞ norm values are much higher compared to the resolvent gain. This is likely due to the

outputs utilized in the SSV upper bound and Ą∞ analyses containing gradients and higher-order derivatives, whereas

the outputs for the resolvent analysis not containing any derivatives (see Sections III.C, III.E).
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Fig. 7 Distributions of the SSV upper bound, Ą∞ norm and resolvent gain over the wavenumer pair (ġĮ , ġİ)
grid for ĉĨ = 2.

The results for transonic and supersonic Mach numbers are shown in Fig. 6 and Fig. 7, respectively. The overall

trends discussed for the subsonic results hold true for these cases as well. On the other hand, the higher-valued horizontal

bands in the SSV upper bound and Ą∞ norm results, which are present for both the subsonic (see Figs. 5a, 5b) and

transonic cases (see Figs. 6a, 6b), disappear in the supersonic results (see Figs. 7a, 7b). Thus, these mechanisms of
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instability appear to be a function of the Mach number, with a dominant behavior at lower Mach numbers. Notably, the

resolvent gains still continue to predict these mechanisms (albeit in a much diminished manner) for the supersonic case

(see Fig. 7c). However, this might be an artifact of the method itself, especially given the consistent predictions by the

other two methods here.

V. Conclusion
We have presented a structured input-output analysis tool for compressible flows in this paper. We have derived an

exact quadratic representation of the compressible Navier-Stokes equations, which facilitates the subsequent modeling

of the nonlinear terms and analysis using the structured singular value formalism. The compressible plane Couette flow

is considered as a representative problem. An efficient method for computing the SSV upper bounds is outlined. The

numerical results illustrated that the SSV bounds are smaller overall compared to the Ą∞ norm results, thereby reducing

the conservatism in the unstructured analysis and extending the estimated stability margin of the flow. In addition, SSV

analysis identifies qualitatively different instability mechanisms than either Ą∞ or resolvent analyses. This indicates that

accounting for the structure of the nonlinearity can have profound influence on the eventual interpretation of underlying

flow physics. Still, these contradictory observations between the analysis methods considered point towards the need for

computational and/or experimental data, which can provide crucial insight into the methods and results discussed in the

paper. Our future efforts will involve designing efficient algorithms to exploit the repeated structure of the uncertainty

and refine the structured input-output analysis for compressible flows further.
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A. Discretization of Linear Operators for Perturbation about Base Flow
The discretization is carried out using Chebyshev polynomials in the wall-normal direction and Fourier modes in the

streamwise and spanwise directions. The sub-operators of L̂ are given by

Ĉ ď , ď = −iġĮđ0

Ĉ ď ,ī = iġĮď0

Ĉ ď ,Ĭ = −ď′0 + ď0Āį

Ĉ ď ,ĭ = iġİď0

Ĉ ď ,Ħ = 0

Ĉī, ď = 0

Ĉī,ī = −iġĮđ0 −
ď0

Ďě

[
Ĉ0

(
4

3
ġ2
Į − Āįį + ġ2

İ

)
− Ĉ′0Āį

]

Ĉī,Ĭ = −đ′
0 + iġĮ

ď0

3Ďě

[
Ĉ0Āį + 3Ĉ′0

]

Ĉī,ĭ = −ġĮġİ
ď0Ĉ0

3Ďě

Ĉī,Ħ = −iġĮ
ď0

Ąĉ2
Ĩ

ĈĬ, ď = 0

ĈĬ,ī = iġĮ
ď0

3Ďě

[
Ĉ0Āį − 2Ĉ′0

]

ĈĬ,Ĭ = −iġĮđ0 −
ď0

Ďě

[
Ĉ0

(
ġ2
Į −

4

3
Āįį + ġ2

İ

)
− 4

3
Ĉ′0Āį

]

ĈĬ,ĭ = iġİ
ď0

3Ďě

[
Ĉ0Āį − 2Ĉ′0

]

ĈĬ,Ħ = − ď0

Ąĉ2
Ĩ

Āį

Ĉĭ,ď = 0

Ĉĭ,ī = −ġĮġİ
ď0Ĉ0

3Ďě

Ĉĭ,Ĭ = iġİ
ď0

3Ďě

[
Ĉ0Āį + 3Ĉ′0

]

Ĉĭ,ĭ = −iġĮđ0 −
ď0

Ďě

[
Ĉ0

(
ġ2
Į − Āįį +

4

3
ġ2
İ

)
− Ĉ′0Āį

]

Ĉĭ,Ħ = −iġİ
ď0

Ąĉ2
Ĩ

ĈĦ, ď = −
( Ą

ĎěČĨ

) [
Ĉ0

(
ġ2
Į − Āįį + ġ2

İ

)
− Ĉ′0Āį

]

ĈĦ,ī = −iġĮĄ + Ą(Ą − 1)ĉ2
Ĩ

Ďě

(
2đ′

0Ĉ0

)
Āį

ĈĦ,Ĭ = −ĄĀį + iġĮ
Ą(Ą − 1)ĉ2

Ĩ

Ďě

(
2đ′

0Ĉ0

)

ĈĦ,ĭ = −iġİĄ

ĈĦ,Ħ = −iġĮđ0 +
Ą

ĎěČĨ

{
Ĉ0

[
ď′′0 + 2ď′0Āį − ď0

(
ġ2
Į − Āįį + ġ2

İ

)]
+ Ĉ′0 (ď′0 + ď0Āį)

}
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The operators related to Ĉį are given by

Ĉ1 =



0 0 0 0 −ġ2
Į + Āįį − ġ2

İ

0 0 0 0 iġĮ

0 0 0 0 Āį

0 0 0 0 iġİ

0 iġĮ Āį iġİ 0

0 ÿ̂Π11
ÿ̂Π12

ÿ̂Π13
0

0 ÿ̂Π21
ÿ̂Π22

ÿ̂Π23
0

0 ÿ̂Π31
ÿ̂Π32

ÿ̂Π33
0

−ġ2
Į + Āįį − ġ2

İ 0 0 0 0

iġĮ 0 0 0 0

Āį 0 0 0 0

iġİ 0 0 0 0

0 iġĮ Āį iġİ 0



,

Ĉ2 =



iġĮ 0 0 0 0

Āį 0 0 0 0

iġİ 0 0 0 0

0 iġĮ 0 0 0

0 Āį 0 0 0

0 iġİ 0 0 0

0 0 iġĮ 0 0

0 0 Āį 0 0

0 0 iġİ 0 0

0 0 0 iġĮ 0

0 0 0 Āį 0

0 0 0 iġİ 0

0 0 0 0 iġĮ

0 0 0 0 Āį

0 0 0 0 iġİ



, Ĉ32
=



0 iġĮ 0 0 0

0 Āį 0 0 0

0 iġİ 0 0 0

0 0 iġĮ 0 0

0 0 Āį 0 0

0 0 iġİ 0 0

0 0 0 iġĮ 0

0 0 0 Āį 0

0 0 0 iġİ 0

0 iġĮ 0 0 0

0 0 iġĮ 0 0

0 0 0 iġĮ 0

0 Āį 0 0 0

0 0 Āį 0 0

0 0 0 Āį 0

0 iġİ 0 0 0

0 0 iġİ 0 0

0 0 0 iġİ 0

iġĮ 0 0 0 0

Āį 0 0 0 0

iġİ 0 0 0 0



,

where

ÿ̂Π11
= Ĉ0

(
−4

3
ġ2
Į + Āįį − ġ2

İ

)
+ Ĉ′0Āį , ÿ̂Π12

= iġĮ

(
1

3
Ĉ0Āį + Ĉ′0

)
, ÿ̂Π13

= −ġĮġİ
1

3
Ĉ0,

ÿ̂Π21
= iġĮ

(
1

3
Ĉ0Āį −

2

3
Ĉ′0

)
, ÿ̂Π22

= Ĉ0

(
−ġ2

Į +
4

3
Āįį − ġ2

İ

)
+ 4

3
Ĉ′0Āį , ÿ̂Π23

= iġİ

(
1

3
Ĉ0Āį −

2

3
Ĉ′0

)
,

ÿ̂Π31
= −ġĮġİ

1

3
Ĉ0, ÿ̂Π32

= iġİ

(
1

3
Ĉ0Āį + Ĉ′0

)
, ÿ̂Π33

= Ĉ0

(
−ġ2

Į + Āįį −
4

3
ġ2
İ

)
+ Ĉ′0Āį .
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