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Structured input-output (I/O) analysis has recently been proposed as a useful low-complexity

technique for performing stability analysis of incompressible flows. In this paper, we show how

structured I/O methods can be used for a modal analysis of a given incompressible fluid model.

We exploit the fact that the same convective nonlinearity acts on the evolution of every state

to impose additional structure on the I/O analysis and consequently, uncover the underlying

physical mechanisms from I/O mode shapes, frequency modes and I/O gain computations. This

additional structure results in lower estimates for the I/O gain upper bound compared to the

traditional analysis, thus indicating a larger margin to instability. Additionally, we propose a

power-iteration technique that imposes the repeating structure of the nonlinearity to not only

compute the lower bounds on the I/O gain but also extract the optimal forcing and response

modes that are consistent with the structure of the nonlinear flow physics. The approach is

demonstrated on an incompressible channel flow at Ďě = 690.

I. Introduction

I
nput-output (I/O) and resolvent analysis methods have proven to be valuable tools for elucidating structure and

physics in many complex flows [1]. These methods are physics-based and complement prevailing data-driven

modal analysis methods that have been adopted in a variety of studies [2–4]. I/O methods decompose the governing

Navier-Stokes equations (NSE) into a feedback interconnection between linear dynamics and the relevant nonlinear

terms. Traditional I/O analysis proceeds to treat forcing from the nonlinear terms on the linear dynamics as an implicit

(unstructured) forcing. In so doing, efficient tools from linear systems theory can be applied to identify coherent

structures associated with amplification mechanisms in the flow. Optimal input (forcing) and output (response) modes

associated with the linear dynamics have been shown to highlight known amplification mechanisms in the fluid

dynamics—e.g., lift-up mechanisms in transitional wall-bounded shear flows. Despite the successes of linear analysis

techniques, it is well-established that consideration for nonlinear flow interactions is necessary for addressing questions

associated with the nonlinear flow physics. Unfortunately, currently available nonlinear analysis tools tend to suffer from

substantial challenges with computational complexity, which has limited adoption of these powerful analysis tools [5–9].

Recently, structured I/O methods have been proposed as a computationally tractable approach to account for the

structure of the nonlinear forcing within the linear analysis framework [10]. The structured I/O approach proposed in [10]

applies the structured singular value (SSV) analysis methods of robust control theory [11, 12] to the incompressible

Navier-Stokes equations. The authors showed that imposing physical structure on the nonlinear forcing within the I/O

analysis results in a broader range of amplification mechanisms than linear I/O methods. However, these mechanisms

had to be inferred through a careful analysis of the structured I/O gains themselves, and not from an analysis of associated
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mode shapes; an ability to extract forcing and response mode shapes from the structured I/O analysis would have further

informed understanding and interpretation of the underlying physics.

In this paper, we show that computations of the SSV upper and lower bound can be used to extract optimal I/O

gains, and forcing and response mode shapes within the structured I/O framework. The ability to extract mode shapes in

addition to optimal I/O gains creates opportunities to probe the structure of the underlying physics and extract more

insight about the fluid dynamics. Additionally, we impose additional structure on the nonlinear signals for both upper-

and lower bound calculations, taking advantage of the fact that the convective nonlinearity in the incompressible NSE is

repeated. As shown in [13], accounting for this additional repeated structure of the nonlinearity can reduce conservatism

in the gain computations and refine the structured I/O analysis even further. Additionally, we show that when the gap

between the upper and lower bound is sufficiently tight (say 1%), then appropriate application of the singular value

decomposition (SVD) to the upper-bound calculation can be used to obtain the I/O mode shapes. We use the channel

flow system as an example case to demonstrate the various features of the structured I/O analysis framework, including

gain computations, mode shape extraction, temporal frequency analysis, and SSV bound quality analysis.

The paper is organized as follows. Section II discusses the input-output analysis framework, which is followed by

discussion of the methods for computing the mode shapes and the SSV bounds in Section III. Section IV contains the

results for the channel flow system and a brief discussion about the interpretation of the mode shapes.

II. Navier-Stokes Equations: An Input-Output Model
In this section, we will briefly describe the steps required to establish a structured I/O model of the incompressible

NSE. The structured I/O approach yields a reduced-complexity framework that approximates the convective nonlinearity

in the incompressible NSE as a repeated feedback forcing. Thus, we use the structured I/O method to compute the

worst-case amplifications (I/O gains) and highlight the destabilizing flow mechanisms (mode shapes) that are consistent

with the underlying flow physics. Certainly, the structured I/O analysis is not a replacement for high-fidelity direct

numerical simulations (DNS) but an aid for the user to extract mechanisms from the governing equations themselves

in a simulation-free manner. DNS generates heaps of data, but physical insights and mechanisms are not delivered

directly. Instead, data-driven modal analysis methods are used to provide a way for analyzing that data. Furthermore,

I/O methods help improve the estimates of desirable parameters and initial conditions for DNS runs, which circumvents

the issue of performing a series of numerical simulations to search for these parameters. Next, we will derive the

structured I/O model of the NSE.

A. Structured Input-Output Model

We start with the non-dimensionalized perturbation equations associated with the incompressible NSE:

ĉĪu =
1

Ďě
∇2u − ∇Ħ − u · ∇UĘ − UĘ · ∇u − u · ∇u

∇ · u = 0

(1)

where u =

[
ī Ĭ ĭ

]T

and UĘ =

[
đ Ē ē

]T

are the perturbation and baseflow velocity vectors, Ħ is the perturbation

pressure, Ďě is the Reynolds number, ∇ =

[
ĉĮ ĉį ĉİ

]T

is the gradient operator and ∇2 = ĉ2
Į + ĉ2

į + ĉ2
İ is the

Laplacian. We partition NSE into a linear part denoted as L(u, Ħ) = 1

Ďě
∇2u−∇Ħ−UĘ · ∇u−u · ∇UĘ and the associated

nonlinear convective part f = −u · ∇u. As noted by the authors in [10], the nonlinear forcing term f can be written as a

matrix-vector product:

f =



−uT
0 0

0 −uT
0

0 0 −uT





∇ī
∇Ĭ
∇ĭ



=



−uT
0 0

0 −uT
0

0 0 −uT





∇ 0 0

0 ∇ 0

0 0 ∇





ī

Ĭ

ĭ



= uĄy (2)

where uĄ = diag(−uT,−uT,−uT) is the velocity matrix and y = diag(∇,∇,∇)u are the velocity gradients. Here, diag(·)
represents a block-diagonal matrix. Thus, we have the following dynamical system:

ĉĪu = L(u, Ħ) + f,

∇ · u = 0,

y = diag(∇,∇,∇)u.
(3)
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For the structured I/O analysis, we will approximate u in uĄ as a structured uncertainty and thus, neglect the dependence

of uĄ on the velocities and consequently, the nonlinear coupling between y and u. This is a useful approximation since

prior studies have published results that were in agreement with direct numerical simulations (DNS) using this approach

[10]. We will refer to the approximation of uĄ as �Ĩ , which is defined as

�Ĩ = diag(−uT
ď ,−uT

ď ,−uT
ď ) (4)

where uď is the approximation of u. Then, the system in (3) can be envisioned as a feedback interconnection between

a linear system G and �Ĩ , as shown in fig. 1. Thus, the signal f is characterized as a forcing to the system, which

gets mapped from the outputs y through �Ĩ i.e., f = �Ĩy. Next, using the equations given in (3), we will construct a

frequency-based operator that will allow for I/O analysis.

G

�Ĩ

y

-

f

�

Fig. 1 Feedback representation of the Navier-Stokes system.

B. Numerical Discretization

In this section, we briefly describe the numerical discretization of the system G to construct an I/O frequency-based

operator. We will use the spatially-discretized velocity-vorticity representation of equation (3) for all computations [14].

Thus, G is spatially-discretized using a truncated set of Fourier-Chebyshev-Fourier basis functions of the form:

u = û(į)ěi(ċĮ Į+ċİ İ+ĈĪ) (5)

where ˆ(·) represents the discrete operator, i =
√
−1 is the imaginary unit, û(į) is the Fourier coefficient discretized in

the į-direction using the Chebyshev basis, ċĮ and ċİ are the Fourier wavenumbers in the respective Į and İ directions,

and Ĉ is the frequency. To obtain the velocity-vorticity representation of NSE, we project equations in (3) onto a

divergence-free subspace, where the pressure dependence is removed by taking the Laplacian of the į-momentum and

using the incompressibility condition. Thus, we evaluate the system in a projected space with only wall-normal velocity

(Ĭ) and vorticity (Ĉį) as the evolution states. Additionally, we assume a streamwise baseflow that is į dependent, i.e.,

UĘ = [đ (į), 0, 0]T. The spatially-discretized velocity-vorticity formulation of G results as:

iĈx̂ = Â(ċĮ , ċİ)x̂ + B̂(ċĮ , ċİ) f̂

ŷ = diag(∇̂, ∇̂, ∇̂)Ĉ(ċĮ , ċİ)x̂ =
ˆ̄∇Ĉx̂

(6)

where x̂ =

[
Ĭ̂H, Ĉ̂H

į

]H

∈ Cġ is the evolution state given by the discrete wall-normal velocity (Ĭ̂) and vorticity

(Ĉ̂į), and ∇̂ = [iċĮ , ĉį , iċİ]T is the discrete gradient operator. Moreover, Â(ċĮ , ċİ) ∈ Cġ×ġ , B̂(ċĮ , ċİ) ∈ Cġ×ģ and

Ĉ(ċĮ , ċİ) ∈ CĢ×ġ are the system matrices, defined as:

Â(ċĮ , ċİ) =
[
∇̂2

0

0 I

]−1 [
−iċĮđ∇̂2 + iċĮđ

′′ + ∇̂4/Ďě 0

−iċİđ
′ −iċĮđ + ∇̂2/Ďě

]

,

B̂(ċĮ , ċİ) =
[
∇̂2

0

0 I

]−1 [
−iċĮĉį −(ċ2

Į + ċ2
İ) −iċİĉį

iċİ 0 −iċĮ

]

,

Ĉ(ċĮ , ċİ) =
1

ċ2
Į + ċ2

İ



iċĮĉį −iċİ

ċ2
Į + ċ2

İ 0

iċİĉį iċĮ


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where đ ′′ = ĉįįđ (į), đ ′ = ĉįđ (į), ∇̂2 = −ċ2
Į − ċ2

İ + ĉįį and ∇̂4 = ĉįįįį − 2(ċ2
Į + ċ2

İ)ĉįį + (ċ2
Į + ċ2

İ)2. Thus,

using the equations in (6), we compute an input-output frequency operator M(Ĉ, ċĮ , ċİ) =
ˆ̄∇Ĉ(ċĮ , ċİ) (iĈIġ −

Â(ċĮ , ċİ))−1B̂(ċĮ , ċİ) such that f̂ = Mŷ. Then, the I/O stability is determined using M(Ĉ, ċĮ , ċİ) over a grid of

frequencies and wavenumbers. Note that M(Ĉ, ċĮ , ċİ) is the frequency response of a linear time-invariant (LTI) system.

For a fixed wavenumber-frequency triplet (ċĮ , ċİ , Ĉ), M(Ĉ, ċĮ , ċİ) is simply a fixed complex matrix M ∈ CĤ×ģ.

Consequently, �̂Ĩ ∈ Cģ×Ĥ is also a complex matrix, where ûď ∈ CĤ1×ģ1 is the discretized version of uď , and Ĥ = 3Ĥ1

and ģ = 3ģ1. Consequently, the forcing inputs and system outputs are f̂ ∈ Cģ and ŷ ∈ CĤ, where ģ and Ĥ are the

number of inputs and outputs of (6), respectively. Going forward, we will describe the methods for computing the I/O

stability of a complex matrix M. The extension to the LTI case is based on gridding over Ĉ. We note that the I/O signals

and states in (6) are transformed into a coordinate system, where the inner-product of the I/O signals represents the L2

norm of square-integrable functions and the inner product of the evolution states is the kinetic energy [15]. Thus, we

have the following equations:

ỹ = W
− 1

2

1
ŷ, f̃ = W

− 1

2

2
f̂, x̃ = E− 1

2 x̂ (7)

where W1 ∈ CĤ×Ĥ and W2 ∈ Cģ×ģ are the quadrature weights computed using the definition of an inner product of

a square-integrable function [16], and E ∈ Cġ×ġ is the kinetic energy quadrature obtained from the kinetic energy

definition of a fluid flow [17]. Note that ˜(·) notation defines the non-transformed vectors. The numerical implementation

for computing the quadrature weights uses the Clenshaw-Curtis quadrature method given in algorithm "clencurt.m" of

[16]. For computing the kinetic energy quadrature, see section 4.2.1 of [17].

III. Structured Input-Output Analysis
In this section, we will discuss the methods for computing the I/O gains and mode shapes of a complex matrix

M ∈ CĤ×ģ given a structured �̂ ∈ Cģ×Ĥ. We first note that �̂ for a given system belongs to a set of structured, complex

matrices �̂ ¦ Cģ×Ĥ. In the context of incompressible fluid flows, �̂ ∈ �̂Ĩ , where �̂Ĩ := {�̂ = IĬ ¹ �̂1 : �̂1 ∈ Cģ1×Ĥ1 } ¢
C
ģ×Ĥ is a set of repeated structured uncertainty [13]. Here ¹ denotes a Kronecker product. We will exploit the structure

of �̂ to compute the structured I/O gain values (SSV) and I/O mode shapes to obtain useful insights into the modal

behavior of the system. Additionally, we will show that the computation of the lower bound of č(M) also yields the I/O

mode shapes, i.e., ŷ and f̂. Next, we will describe the methods to compute the SSV and consequently, the mode shapes.

A. Structured Singular Values

Consider the case for the matrix M ∈ CĤ×ģ. The SSV is defined for a given structured �̂ ∈ Cģ×Ĥ as

č
�̂
(M) = 1

min(∥�̂∥2 : �̂ ∈ �̂, det(IĤ − M�̂) = 0)
(8)

where IĤ ∈ RĤ×Ĥ is an identity matrix and ∥ · ∥2 is the 2-norm. If there does not exist �̂ ∈ �̂ such that det(IĤ −M�̂) = 0,

then č
�̂
(M) = 0. We will omit the subscript �̂ in (8) when the structure of �̂ is clear. It follows that the SSV computed

using (8) is obtained for the smallest �̂ such that IĤ − M�̂ is singular. Hence, there exist signals f̂ ∈ Cģ and ŷ ∈ CĤ
such that ŷ = Mf̂ and f̂ = �̂ŷ, which define the feedback interconnection shown in figure 1 (see Remark 3.4 in [18] for

more details). Recall that SSVs represent the worst-case I/O amplification of a system and therefore, inversely relate to

the stability margin [19]. Thus, it follows from the small gain theorem that a large SSV for a system indicates a small

stability margin, or in other words, the system is sensitive to small perturbations that can trigger instabilities and vice

versa [19, 20].

Computing č(M) for a generic is an NP-Hard problem [21–23]. As such, the exact value of č(M) is not guaranteed

for every structured �̂. However, approximate solutions to (8) are possible and have been studied in [24] for various �̂.

Solution approaches for the specific structure of interest for incompressible flows was addressed in [13]. The general

solution involves exploiting the structure of �̂ to obtain upper and lower bounds on č(M), which requires the use of

numerical algorithms. The gap between the upper and lower bound determines the quality of the solution to č(M).
However, for some structures of �̂, as noted in the works of [18, 25, 26], exact value of SSV can be computed. Next, we

briefly describe frameworks for obtaining these upper and lower bounds on č(M).
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1. Upper Bounds

In this section, we briefly describe the framework for computing the upper bound on č(M). We first note that for

each set of structured uncertainty �̂, there are sets of commuting "non-singular" matrices D1 and D2. The solution

to the approximate upper bound problem involves computing a set of commuting matrices such that D2�̂ = �̂D1,

where D1 ∈ D1 and D2 ∈ D2. The commuting matrices are transformations on M such that they do not change the

value of č(M), but serve to refine the upper bound estimate [18]. Thus, we get an upper bound č(M) f Ă such that

Ă := min ∥D1MD−1

2
∥2. This is known as the D-scale upper bound problem, which can be formulated into a convex

optimization problem to solve for D1 and D2 [24]. Thus, the structure of the commuting matrices is used to impose

the structure of �̂. An equivalent generalized eigenvalue problem (GEVP) for Ă can be formulated for minimizing the

maximum singular value of D1MD−1

2
as

minĂ2

subject to: MHX1M < Ă2X2,

X1 > 0, X2 > 0

(9)

where X1 = DH
1

D1 and X2 = DH
2

D2, and D1 ∈ CĤ×Ĥ and D2 ∈ Cģ×ģ. For incompressible flows, we have �̂ ∈ �̂Ĩ and

thus, �̂ has the structure given in (4). Then, D1 ∈ DĨ1
and D2 ∈ DĨ2

, where DĨ1
:= {S ¹ IĤ1

: S ∈ C3×3, det(S) ≠ 0}
and DĨ2

:= {S ¹ Iģ1
: S ∈ C3×3, det(S) ≠ 0} are the sets of commuting matrices. Hence, X1 = SHS ¹ IĤ1

= R ¹ IĤ1

and X2 = SHS ¹ Iģ1
= R ¹ Iģ1

, where R ∈ C3×3 is Hermitian, and IĤ1
∈ RĤ1×Ĥ1 and Iģ1

∈ Rģ1×ģ1 are the identity

matrices. Finally, the upper bound problem for �̂ ∈ �̂Ĩ will be the following:

min
R=RH∈C3×3

Ă2

subject to: MHX1M < Ă2X2,

R > 0.

(10)

Since R is scale invariant for any scalar ę > 0, we can replace R > 0 in (10) with I3 f R f ĨęĥĤĚI3 to improve the

numerical conditioning, where ĨęĥĤĚ is the condition number. We will use the method of centers algorithm as described

in Algorithm 1 of [13] to compute Ă from (10) for the incompressible flow discussed in the later sections.

Note that the formulation of the upper bound problem in (9) is not restricted to the structured �̂ presented in this

paper. We can solve (9) for any complex structured matrix �̂, given the appropriate structure of the associated scaling

matrices. For example, the original formulation of structured I/O for incompressible flows in [10] approximates uĄ with

non-repeated entries, i.e., �̂ĤĨ = diag(−ûT
ď ,1

,−ûT
ď ,2

,−ûT
ď ,3

), where ûď ,ğ ∈ CĤğ×ģğ for ğ = 1 . . . 3, and Ĥ =
∑

3

ğ=1
Ĥğ and

ģ =
∑

3

ğ=1
ģğ . Then, D1 = diag(Ě1IĤ, Ě2Iģ, Ě3IĤ3

) and D2 = diag(Ě1Iģ1
, Ě2Iģ2

, Ě3Iģ3
), where Ěğ ∈ R>0 are scalars,

and IĤğ ∈ RĤğ×Ĥğ and Iģğ
∈ Rģğ×ģğ are the identity matrices. We note that for �̂ĤĨ , there is an already existing fast

algorithm for upper bound computations known as the Osborne’s iteration [27]. However, Osborne’s iteration uses a

conservative Frobenius norm bound to solve for the upper bound i.e., č(M) f min ∥D1MD−1

2
∥2 f min ∥D1MD−1

2
∥F.

Thus, Osborne’s iteration may not yield the best upper bound estimates. [13, 27] for more details). It is important to

realize that the least conservative bound for �̂ĤĨ is obtained by solving (9).

Furthermore, we would like to note that when the gap between the upper and lower bounds is tight—e.g., less than

1%—then, the mode shapes can be computed using the SVD of the scaled operator D1MD−1

2
. In that case, the mode

shapes from the upper-bound calculation will be converged and have physical meaning. Thus, we can compute those

mode shapes as

ŷ = D−1

1
U1

f̂ = D−1

2
V1

(11)

where U1 and V1 are the left and right unitary vectors associated with the largest singular value of D1MD−1

2
.

2. Lower Bounds and Input-Output Signals

In this section, we describe a generalized power-iteration that optimizes over the I/O signals ŷ and f̂ to compute the

mode shapes and a lower bound on č(M) for a given �̂ ∈ Cģ×Ĥ. Recall that the exact value of č(M) is obtained for the

smallest possible �̂ that satisfies det(IĤ − M�̂) = 0. Hence, the power-iteration attempts to find the smallest �̂ so that
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IĤ − M�̂ is singular, which is equivalent to finding the signals ŷ ∈ CĤ and f̂ ∈ Cģ such that ŷ = Mf̂ and f̂ = �̂ŷ. In

general, the iteration does not compute the smallest �̂ and thus, only yields a lower bound on č(M). Therefore, the

power-iteration implicitly solves for the lower bound ă given by the maximization problem, ă := max Ā(�̂M), where

Ā is the spectral radius of a matrix [28]. Thus, the lower bound provides a sufficient condition for instability of the

system [12, 18, 28–30]. The work in [18] provides a comprehensive review of power-iteration methods for several �̂

block structures to compute the lower bounds and the associated I/O signals. Interestingly, the specific case of interest
ˆĀěĢĪė ∈ �Ĩ was never considered until recently in [13]. The power-iteration presented in [13] generalizes the method in

[18], as described next.

To describe the power-iteration, we first define the following reshaping function ĈĤ1
: C

3Ĥ1 → CĤ1×3:

y =



y1

y2

y3



∈ C3Ĥ1 maps to ĈĤ1
(y) =

[
y1, y2, y3

]
. (12)

This operation restacks the partitioned vector ŷ ∈ C3Ĥ1 into a matrix. The inverse Ĉ−1
Ĥ1

will convert the matrix back to a

column vector. The operation Ĉģ1
: C

3ģ1 → Cģ1×3 is defined similarly on vectors f̂ ∈ C3ģ1 . The relation f̂ = �̂ŷ is

equivalent to Ĉģ1
(f̂) = −ûď ĈĤ1

(ŷ). Additionally, we define a function Q(G) such that for any given matrix G = U�VH,

Q(G) = UVH, where U ∉ ker(GH) and V ∉ ker(G) are unitary left and right matrices, respectively, and � is a matrix of

non-zero singular values. Note that ĂģėĮ (Q(G)) = 1. Finally, the power-iteration for some ă > 0 is defined as:

ăâ = Mb̂, (13a)

LĤ1
(ẑ) = Q

(
LĤ1

(â)Lģ1
(ŵ)H

)
Lģ1

(ŵ), (13b)

ăŵ = MHẑ, (13c)

Lģ1
(b̂) = Q

(
Lģ1

(ŵ)LĤ1
(â)H

)
LĤ1

(â). (13d)

Simply iterating over the equations (13a) - (13d) starting from any initial unit norm vector b̂ and ŵ corresponds to the

standard power-iteration to compute ĂģėĮ (M). For incompressible flows, we have �̂ ∈ �̂Ĩ , so we define f̂ = b̂, ŷ = ăâ

and �̂ := I3 ¹ 1

ă
Q

(
Lģ1

(ŵ)LĤ1
(â)H

)
as the forcing modes, response modes and structured uncertainty, respectively.

Then, (13a) and (13d) are equivalent to ŷ = Mf̂ and f̂ = �̂ŷ given in fig. 1. The resulting ă from the power-iteration is

the lower bound on č(M) for �̂ ∈ �̂Ĩ . We will use the parameters defined for the power-iteration in Algorithm 3 of [13]

to compute the lower bounds and mode shapes. Recall from (6) that f̂ is simply the nonlinear forcing signal and the

outputs ŷ are the gradients of velocities. Thus, to compute the velocities, we must take the inverse of gradients, i.e.,

û = diag(∇̂, ∇̂, ∇̂)−1W
− 1

2

1
ŷ. Similar to the case of upper bounds, different �̂ structures can be used for the power-iteration

given by (13a) - (13d), such as �̂ĤĨ = diag(−ûT
ď ,1

,−ûT
ď ,2

,−ûT
ď ,3

) from [10]. Then, we would get the following equations:

ăâ = Mb̂ (14a)

ẑ1 =
∥ŵ1∥2

∥â1∥2

â1, ẑ2 =
∥ŵ2∥2

∥â2∥2

â2, ẑ3 =
∥ŵ3∥2

∥â3∥2

â3 (14b)

ăŵ = MHẑ (14c)

b̂1 =
∥â1∥2

∥ŵ1∥2

ŵ1, b̂2 =
∥â2∥2

∥ŵ2∥2

ŵ2, b̂3 =
∥â3∥2

∥ŵ3∥2

ŵ3 (14d)

.

where âğ , ẑğ , b̂ğ , ŵğ ∈ Cģğ are compatibly partitioned signals for ğ = 1 . . . 3. Iterating through equations (14a) - (14d)

would yield a power-iteration for the lower bound on č(M) given �̂ĤĨ . Note that (14d) gives ∥b̂ğ ∥2 = ∥âğ ∥2 for

ğ = 1 . . . 3. Thus, there exists Qğ ∈ Cģğ×Ĥğ such that ∥Qğ ∥2 = 1 and b̂ğ = Qğ âğ . Then, define f̂ = b̂, ŷ = ăâ and

�̂ĤĨ =
1

ă
diag(Q1,Q2,Q3) as the forcing modes, response modes and structured uncertainty of the system, respectively.

It can be verified from (14a) that ŷ = Mf̂.
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IV. Results
In this section, we compute the SSV bounds and I/O signals using the methods described in the previous sections for

a channel flow system (see fig. 2). Thus, we will use �̂Ĩ as the structured uncertainty of the system for all computations

related to the SSV upper and lower bounds. We use Ďě = 690 and a parabolic baseflow đ (į) = 1 − į2 for the analysis

problem, where į ∈ (−1, 1). Furthermore, we choose a 50× 90× 200 grid of ĤċĮ × Ĥċİ × ĤĈ to compute the bounds on

Fig. 2 Channel Flow

č(M), where ĤċĮ , Ĥċİ and ĤĈ are the total grid points for ċĮ , ċİ and Ĉ, respectively. The values are logrithmically

spaced ċĮ = [10
−4, 10

0.48], ċİ = [10
−2, 10

1.2] and Ĉ = [−10
1.5, 10

1.5]. The points in į-direction are computed as

įğ = ęĥĩ(ğÿ/Ċį) for ğ = 1, . . . , Ċį , where Ċį are the total Chebyshev collocation points excluding the channel walls

[14]. We choose Ċį = 30 for the SSV analysis and plotting the mode shapes. Computations per wavenumber-frequency

triplet (ċĮ , ċİ , Ĉ) take 1.1 and 0.09 seconds for upper and lower bounds on an ASUS ROG M15 laptop with a 6 core

Intel 2.6 GHz i7-10750H CPU, 16 GB RAM and an RTX 2070 Max-Q GPU, respectively. We use the MATLAB

ĦėĨ Ĝ ĥĨ command for calculating the SSV bounds with parallel computing. The ĦėĨ Ĝ ĥĨ is used on the frequency grid

so that the computations on the wavenumber grid run in parallel.

The bounds on the SSV are compared against the Ą∞ values of M(Ĉ, ċĮ , ċİ) to showcase the difference in

I/O gain values when there is a structured �Ĩ associated with the fluid system. The Ą∞ analysis assumes an

unstructured uncertainty on the system, i.e., �̂īĩ ∈ Cģ×Ĥ, where �̂īĩ is a full complex matrix. Consequently, the

forcing signal f̂ is also unstructured, which is different than the one used in the SSV analysis [15]. However,

the outputs between the Ą∞ and SSV analysis are the same. For the LTI system M(Ĉ, ċĮ , ċİ), the SSV upper

and lower bound for a given wavenumber pair (ċĮ , ċİ) and the associated range of frequencies Ĉ is computed as

Ă := maxĈ{minD1∈DĨ1
,D2∈DĨ2

∥D1M(Ĉ, ċĮ , ċİ)D−1

2
∥2} and ă := maxĈ{max

�̂Ĩ ∈Cģ×Ĥ Ā(�̂ĨM(Ĉ, ċĮ , ċİ))}. Similarly,

the Ą∞ values are computed as ∥M(Ĉ, ċĮ , ċİ)∥∞ = maxĈ ∥M(Ĉ, ċĮ , ċİ)∥2. The computed upper and lower bound of

SSV are shown in fig. 3 along with the Ą∞ values for M(Ĉ, ċx, ċz).
The overall magnitude of the SSV bounds is small as compared to the Ą∞ gain values. The key difference between

the two I/O gain methods is that the SSV computations use the structure of �̂Ĩ as opposed to the Ą∞ method, which

approximates �̂Ĩ with an unstructured full complex matrix �̂īĩ. Additionally, the regions with the largest gain values

occur at different wavenumbers for the SSV upper bound and Ą∞ analyses. The maximum value for ∥M(Ĉ, ċĮ , ċİ)∥∞
occurs at ċĮ = 1.5236 × 10

−4 and ċİ = 1.8415—which represents a spanwise disturbance—as opposed to ċĮ = 0.0055

and ċİ = 0.0569 for Ă—which is an oblique disturbance. Thus, in contrast to the Ą∞ analysis, the structured I/O method

suggests that the fluid system requires the least amount of energy for transition to turbulence from oblique disturbances.

Although a maximal oblique disturbance gain is identified, a continuum of high-gain oblique disturbance scenarios are

identified by the structured I/O analysis for ċĮ f 0.055 and ċİ f 2 (see fig. 3).. Similar findings were made in direct

numerical simulations, where oblique perturbations, i.e., ċĮ ≈ 1 and ċİ ≈ 1, require the least amount of energy for flow

transition [14, 31]

Recall that the SSV upper bound is inversely related to the stability margin of a system [19]. Thus, the upper

bound plot in fig. 3(a) also indicates that the stability margin of the channel flow is greater than anticipated by the Ą∞
analysis. More precisely, the Ą∞ analysis provides insights similar to the linear stability analysis, where only spanwise

perturbations require the least amount of energy i.e., ċĮ = 0 and ċİ ≠ 0 [32]. Furthermore, the lower bound plot has

similar values to the upper bound and we can see that the bounds are overall tight, i.e., 98% of the bounds are within

less than 5% of each other.
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In addition to oblique disturbances, the SSV analysis highlights the Tollmien Schlichting (TS) band as seen in

the plot of fig. 3(a) for the wavenumber range ċĮ = 10
0 and ċİ = [10

−2, 10
0], which is not identified as a dominant

instability mechanism in the Ą∞ analysis. We can plot the modes using power-iteration for the streamwise perturbations

as shown in fig. 6 on the Tollmien-Schlichting band, i.e., (ċĮ , ċİ) = (1, 0). We can see that the mode shapes highlight

the underlying physics of the TS waves. The velocity and forcing modes in İ direction are zero, as TS waves have no

direct contribution in that direction. Consequently, the components of vorticity in Į and į directions are also zero, which

we compute as Ĉ̂ = ∇̂ × û. Note that the Ĭ-velocity mode is parabolic with ī-velocity shifting from positive to negative

across the centerline of the flow. The Ĭ-velocity mode shown here occurs in various studies of TS instability, where it is

noted to be the unstable eigenmode obtained from the linear analysis [17, 33].

(a) log10 (Ă)

10
-2

10
0

10
-4

10
-2

10
0

1

1.5

2

2.5

3

(b) log10 (ă) (c) log10 ( ∥M(Ĉ, ċx, ċz) ∥∞)

Fig. 3 The plots show the distribution of I/O gain values across the wavenumbers. The symbol (◦) on the plot

indicates the largest value across the wavenumbers.

0 100 200
-1

-0.5

0

0.5

1

(a) Velocity Mode-Shapes

0 0.2 0.4 0.6 0.8
-1

-0.5

0

0.5

1

(b) Forcing Mode-Shapes

-400 -200 0 200 400
-1

-0.5

0

0.5

1

(c) Vorticity Mode-Shapes

Fig. 4 The plots show the most dominant modes at ċĮ = 0.0055, ċİ = 0.0569 and Ĉ = −0.0046 computed by

power-iteration.

In fig. 4, we plot the mode shapes associated with the peak SSV upper bound value, corresponding to the

wavenumber-frequency triplet ċĮ = 0.0055, ċİ = 0.0569 and Ĉ = −0.0046. The modal plots represent the real parts of

forcing, velocity and vorticity. We can see in fig. 4(a) and fig. 4(b) that the velocity and forcing modes have identical

shapes i.e., both are parabolic, and ī-velocity and ĜĮ-forcing modes are the most dominant. On the contrary, the vorticity

varies approximately linearly across the flow domain. In this case, İ vorticity is the most dominant mode across the flow

domain and has the largest magnitude close to the channel walls. We use the velocity information from these mode

shapes to obtain a flow profile at Į = 0 and Ī = 0. Since the solutions are periodic in Į, İ and Ī, the flow profile at any

point in Į, İ and Ī will only differ by a phase shift. We plot the real data as shown in fig. 9. We can see that there is a

large region of high streamwise momentum that is centered between the channel walls with a cross-flow in the spanwise

direction as indicated by the arrows. Thus, the destabilizing perturbations for a channel flow are a combination of

parabolic streamwise and spanwise perturbations. Additionally, we can infer from the velocity modes that the total

streamwise velocity ī = đ (į) + ī̂(Į, į, İ, Ī) is also parabolic at the given wavenumbers. Hence, the parabolic base flow

itself is the most destabilizing mode when combined with a spanwise perturbation. In fact, the real part of the ĜĮ-forcing

mode is exactly the base flow đ (į), which is an interesting result.
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(a) Velocity Mode-Shapes
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(b) Forcing Mode-Shapes
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(c) Vorticity Mode-Shapes

Fig. 5 The plots show the most dominant modes at ċĮ = 0.0055, ċİ = 0.0569 and Ĉ = −0.0046 computed using

(11)

-0.05 0 0.05 0.1
-1

-0.5

0

0.5

1

(a) Velocity Mode-Shapes

-0.5 0 0.5
-1

-0.5
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(b) Forcing Mode-Shapes

-0.2 0 0.2 0.4 0.6
-1

-0.5

0

0.5

1

(c) Vorticity Mode-Shapes

Fig. 6 The plots show the most dominant modes at ċĮ = 1, ċİ = 0 and Ĉ = −0.3594 computed using power

iteration

(a) (ċĮ , ċİ) = (1, 0) (b) (ċĮ , ċİ) = (0.01, 2) (c) (ċĮ , ċİ) = (1, 1)

Fig. 7 The figure shows an upper bound Ă vs frequency plot at each of the wavenumbers.
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It is important to note that we can compute the same mode shapes as shown in fig. 4 using equations in (11) on the

scaled operator D1M(Ĉ, ċĮ , ċİ)D−1

2
at ċĮ = 0.0055, ċİ = 0.0569 and Ĉ = −0.0046. We see in fig. 5 that all the mode

shapes match the ones in fig. 4 and they only differ by the values. It is important to realize that these values are arbitrary

and therefore, less significant since the relative importance of each mode is similar between the two methods.

Notice that the system at Ĉ = −0.0046 has a steady-state DC behavior. We can see this by looking at the values

of the forcing and velocity modes. Given an input forcing as shown in fig. 4(b), all the velocity modes are scaled

approximately by a constant gain of 285.2980 at the output. This makes sense since the peak frequency Ĉ = −0.0046 is

ċ (10
−3) and thus, is close to being zero. We know that a nominally stable system has a steady-state I/O behavior as

Ĉ → 0, which explains the constant offset between the velocity and forcing mode shapes. Overall, the channel flow

system has dominant frequencies closer to zero as shown fig. 8. Additionally, most of the frequencies of the channel

flow are biased towards the negative spectrum, which provides insight into the most sensitive direction for perturbations.

Finally, we plot the frequency modes for the wavenumbers (1, 0), (0.01, 2) and (1, 1) in fig. 7, which are most

commonly used in literature. We can see that at each of those wavenumbers the most dominant frequencies are close

to zero and negative. Thus, it shows that the frequency spectrum of the channel flow for a given wavenumber pair is

asymmetric in most cases. Moreover, we also get some secondary frequencies as seen in fig. 7(a) and fig. 7(c) that give

us local maximums of the upper bound, which indicate that at certain wavenumbers, there can be multiple frequencies

that can excite the channel flow system. Thus, the channel flow system has multiple flow structures that are resonant at

multiple frequencies for different combinations of wavenumbers. Although the dominant structures occur at frequencies

closest to zero, there are secondary structures at lesser frequencies that can potentially get excited by the nonlinear

forcing. This mechanism is most evident when there are streamwise disturbances in the flow as compared to spanwise

disturbances.

Fig. 8 The figure shows a plot of the associated frequency values for each of the upper bounds Ă. The symbol

(◦) on the plot indicates the wavenumbers for the largest bound Ă

V. Conclusions
We showed that computing SSV and I/O signals is a useful way of understanding the underlying physics of the flow

features and mechanisms that are important in flow transition. Additionally, we demonstrated the methods that can be

used to analyze I/O stability of a fluid flow system given a structured uncertainty. We emphasize that the I/O methods

explained in this paper can be extended to any LTI system with a complex matrix uncertainty. Furthermore, we found

that the SSV upper bound calculations yield the same mechanisms as the power iteration method for the lower bound,
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Fig. 9 Flow profile at Į = 0 and Ī = 0 for ċĮ = 0.0055 and ċİ = 0.0569. The contours highlight amplitude of

real component of streamwise velocity in the į − İ plane and the arrows represent vectors for real Ĭ − ĭ velocity

components.

given the gaps are tight between the bounds. This is a particularly useful result for the case when a given upper bound

is known to be tight. Then, computing an SVD of the I/O frequency operator is sufficient for studying the I/O mode

shapes. Moreover, the frequency analysis of the I/O operator highlights the resonant behavior present within the channel

flow system, which indicates the presence of secondary structures that can be excited by various disturbances. Thus,

structured I/O analysis is a useful tool for modal analysis that can be utilized for various types of flows such as Couette

flow or flows with passive control devices such as riblets [34]. Furthermore, turbulent flows can also be studied using

the I/O analysis, where the base flow is modelled as a turbulent mean flow. The extension of the structured I/O analysis

to various other flows is a subject of future studies.
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