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Abstract. Stable infiniteness, strong finite witnessability, and smooth-
ness are model-theoretic properties relevant to theory combination in
satisfiability modulo theories. Theories that are strongly finitely witness-
able and smooth are called strongly polite and can be effectively combined
with other theories. Toledo, Zohar, and Barrett conjectured that stably
infinite and strongly finitely witnessable theories are smooth and there-
fore strongly polite. They called counterexamples to this conjecture uni-
corn theories, as their existence seemed unlikely. We prove that, indeed,
unicorns do not exist. We also prove versions of the Löwenheim–Skolem
theorem and the Łoś–Vaught test for many-sorted logic.

1 Introduction

Given decision procedures for theories T1 and T2 with disjoint signatures, is there
a decision procedure for T1∪T2? In general, the answer is “not necessarily”, but a
central question in Satisfiability Modulo Theories (SMT) [3] is: what assumptions
on T1 and T2 suffice for theory combination? This line of research began with
Nelson and Oppen’s theory combination procedure [15], which applies when T1
and T2 are stably infinite, roughly meaning that every Ti-satisfiable quantifier-
free formula is satisfied by an infinite Ti-interpretation for i ∈ {1, 2}.

The Nelson–Oppen procedure is quite useful, but requires both theories to
be stably infinite, which is not always the case (e.g., the theories of bit-vectors
and finite datatypes are not stably infinite). Thus, sufficient properties of only
one of the theories were identified, such as gentleness [7], shininess [20], and
flexibility [9]. The most relevant property for our purposes is strong politeness
[4,8,18,19]. It is essential to the functioning of the SMT solver cvc5 [1], which is
called billions of times per day in industrial production code. A theory is strongly
polite if it is smooth and strongly finitely witnessable, which are model-theoretic
properties we will define later. These properties are more involved than stable
infiniteness, so proving a theory to be strongly polite is more difficult. But the
advantage of strongly polite theories is that they can be combined with any other
decidable theory, including theories that are not stably infinite.
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Given the abundance of model-theoretic properties relevant to theory com-
bination, some of which interact in subtle ways, it behooves us to understand
the logical relations between them. Recent papers [21,22] have sought to under-
stand the relations between seven model-theoretic properties—including stable
infiniteness, smoothness, and strong finite witnessability—by determining which
combinations of properties are possible in various signatures. In most cases, a
theory with the desired combination of properties was constructed, or it was
proved that none exists. The sole exception was theories that are stably infinite
and strongly finitely witnessable but not smooth, dubbed unicorn theories and
conjectured not to exist. Our main result, Theorem 2, confirms this conjecture.

Besides completing the taxonomy of properties from [21,22], our result has
practical consequences. The nonexistence of unicorns implies that strongly polite
theories can be equivalently defined as those that are stably infinite and strongly
finitely witnessable. Since it is easier to prove that a theory is stably infinite than
to prove that it is smooth, this streamlines the process of proving that a theory
is strongly polite. Thus, each time a new theory is introduced, proving that it
can be combined with other theories becomes easier.1 Similarly, our results give
a new characterization of shiny theories, which makes it easier to prove that a
theory is amenable to the shiny combination procedure (see Corollary 2).

We also believe that our result is of theoretical interest. Theorem 3, which
is the main ingredient in the proof of Theorem 2, can be seen as a variant of
the upward Löwenheim–Skolem theorem for many-sorted logic, since proving
that a theory is smooth amounts to proving that cardinalities of sorts can be
increased arbitrarily, including to uncountable cardinals. This result may be of
independent interest to logicians studying the model theory of many-sorted logic,
and we hope the proof techniques are useful to them as well.

Speaking of proof techniques, our proof is curious in that it uses Ramsey’s
theorem from finite combinatorics. This is not the first time Ramsey’s theorem
has been used in logic. Ramsey proved his theorem in the course of solving a
special case of the decision problem for first-order logic [17]. Ramsey’s theorem
also shows up in the Ehrenfeucht–Mostowski construction in model theory [5].
Our proof actually requires a generalization of Ramsey’s theorem, which we
prove using the standard version of Ramsey’s theorem.

A major component of the proof of Theorem 2 amounts to proving a many-
sorted version of the Löwenheim–Skolem theorem. On the course to proving this,
we realized that a proper understanding of this theorem for many-sorted logic
appears to be missing from the literature, despite the fact that the SMT-LIB
standard [2] is based on many-sorted logic. To fill this gap, we prove generaliza-
tions of the Löwenheim–Skolem theorem for many-sorted logic, and use them to
prove a many-sorted Łoś–Vaught test, useful for proving theory completeness.

The remainder of this paper is structured as follows. Section 2 provides back-
ground and definitions on many-sorted logic and SMT. Section 3 proves the main

1 [21] already proved that stably infinite and strongly finitely witnessable theories
can be combined with other theories. Our result gives a new proof (see Corollary 1),
and shows that their procedure is not more general than polite combination.
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result of this paper, namely the nonexistence of unicorn theories. Section 4 proves
new many-sorted variants of the Löwenheim–Skolem theorem. Section 5 con-
cludes and presents directions for future work.2

2 Preliminaries

2.1 Many-Sorted First-Order Logic

We work in many-sorted first-order logic [14]. A signature Σ consists of a non-
empty set SΣ of sorts, a set FΣ of function symbols, and a set PΣ of predicate
symbols containing an equality symbol =σ for every sort σ ∈ SΣ .3 Every func-
tion symbol has an arity (σ1, . . . ,σn,σ) and every predicate symbol an arity
(σ1, . . . ,σn), where σ1, . . . ,σn,σ ∈ SΣ and n ≥ 0. Every equality symbol =σ has
arity (σ,σ). To quantify a variable x of sort σ, we write ∀x : σ. and ∃x : σ. for the
universal and existential quantifiers respectively. Let |Σ| = |SΣ |+ |FΣ |+ |PΣ |. If
a signature contains only sorts and equalities, we say it is empty. Two signatures
are said to be disjoint if they share at most sorts and equality symbols.

We define Σ-terms and Σ-formulas as usual. The set of free variables of sort
σ in ϕ is denoted varsσ(ϕ). For S ⊆ SΣ , let varsS(ϕ) =

⋃
σ∈S varsσ(ϕ). We also

let vars(ϕ) = varsSΣ (ϕ). A Σ-sentence is a Σ-formula with no free variables.
A Σ-structure A interprets each sort σ ∈ SΣ as a nonempty set σA, each

function symbol f ∈ FΣ as a function fA with the appropriate domain and
codomain, and each predicate symbol P ∈ PΣ as a relation PA over the appro-
priate set, such that =A

σ is the identity on σA. A Σ-interpretation A is a pair
(A, ν), where A is a Σ-structure and ν is a function, called an assignment, map-
ping each variable x of sort σ to an element ν(x) ∈ σA, denoted xA. We write
tA for the interpretation of the Σ-term t under A, which is defined in the usual
way. The entailment relation, denoted !, is defined as usual.

Two structures are elementarily equivalent if they satisfy the same sentences.
We say that A is an elementary substructure of B if A is a substructure of B
and, for all formulas ϕ and all assignments ν on A, we have (A, ν) ! ϕ if and
only if (B, ν) ! ϕ. Note that if A is an elementary substructure of B, then they
are elementarily equivalent. A is an elementary subinterpretation of B if A is an
elementary substructure of B and A’s assignment is the same as B’s assignment.

Given a Σ-structure A, let SA
≥ℵ0

= {σ ∈ SΣ : |σA| ≥ ℵ0} and SA
<ℵ0

=
SΣ \ SA

≥ℵ0
. We similarly define SA

≥ℵ0
and SA

<ℵ0
for a Σ-interpretation A.

A Σ-theory T is a set of Σ-sentences, called the axioms of T . We write (T ϕ
instead of T ! ϕ. Structures satisfying T are called T -models, and interpretations
satisfying T are called T -interpretations. We say a Σ-formula is T -satisfiable if it
is satisfied by some T -interpretation, and we say two Σ-formulas are T -equivalent
if every T -interpretation satisfies one if and only if it satisfies the other. T is

2 Due to lack of space, some proofs are omitted. They can be found in the arXiv
version of this paper [16].

3 When specifying a signature, we often omit the equality symbols, and include them
implicitly. We also omit σ from =σ when it does not cause confusion.
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complete if for every sentence ϕ, we have (T ϕ or (T ¬ϕ. T is consistent if there
is no formula ϕ such that (T ϕ and (T ¬ϕ. If Σ1 and Σ2 are disjoint, let Σ1∪Σ2

be the signature with the union of their sorts, function symbols, and predicate
symbols. Given a Σ1-theory T1 and a Σ2-theory T2, the (Σ1 ∪Σ2)-theory T1 ∪T2
is the theory whose axioms are the union of the axioms of T1 and T2.

The following theorem, proved in [14], is a many-sorted variant of the first-
order compactness theorem.

Theorem 1 (Compactness Theorem [14]). A set of Σ-formulas Γ is satis-
fiable if and only if every finite subset of Γ is satisfiable.

We say that a Σ-theory T has built-in Skolem functions if for all formulas
ψ(−→x , y), there is f ∈ FΣ such that (T ∀−→x . (∃ y. (ψ(−→x , y)) → ψ(−→x , f(−→x ))).4
The following is a many-sorted variant of Lemma 2.3.6 of [12]. The proof is
almost identical to that of the single-sorted case from [12].

Lemma 1. If T is a Σ-theory for a countable Σ, then there is a countable
signature Σ∗ ⊇ Σ and Σ∗-theory T ∗ ⊇ T with built-in Skolem functions.

We state a many-sorted generalization of the Tarski–Vaught test, whose proof
is also similar to the single-sorted case [12, Proposition 2.3.5].

Lemma 2 (The Tarski–Vaught Test). Suppose A is a substructure of B.
Then, A is an elementary substructure of B if and only if (B, ν) ! ∃ v. ϕ(−→x , v)
implies (A, ν) ! ∃ v. ϕ(−→x , v) for every formula ϕ(−→x , v) and assignment ν over
A.

2.2 Model-Theoretic Properties

Definition 1. Let Σ be a many-sorted signature, S ⊆ SΣ, and T a Σ-theory.

– T is stably infinite with respect to S if for every T -satisfiable quantifier-free
formula ϕ, there is a T -interpretation A satisfying ϕ with |σA| ≥ ℵ0 for every
σ ∈ S.

– T is stably finite with respect to S if for every quantifier-free Σ-formula ϕ
and T -interpretation A satisfying ϕ, there is a T -interpretation B satisfying
ϕ such that |σB| ≤ |σA| and |σB| < ℵ0 for every σ ∈ S.

– T is smooth with respect to S if for every quantifier-free formula ϕ, T -
interpretation A satisfying ϕ, and function κ from S to the class of cardinals
such that κ(σ) ≥ |σA| for every σ ∈ S, there is a T -interpretation B satisfying
ϕ with |σB| = κ(σ) for every σ ∈ S.

Next, we define arrangements. Given a set of sorts S ⊆ SΣ , finite sets of
variables Vσ of sort σ for each σ ∈ S, and equivalence relations Eσ on Vσ, the
arrangement δV on V =

⋃
σ∈S Vσ induced by E =

⋃
σ∈S Eσ is

∧

σ∈S




∧

xEσy

(x = y) ∧
∧

xEσy

¬(x = y)



 ,

4 Intuitively: T has enough function symbols to witness all existential formulas.
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where Eσ is the complement of Eσ.

Definition 2. Let Σ be a many-sorted signature, S ⊆ SΣ a finite set, and T a
Σ-theory. Then T is strongly finitely witnessable with respect to S if there is a
computable function wit from the quantifier-free formulas into themselves such
that for every quantifier-free formula ϕ:

(i) ϕ and ∃−→w .wit(ϕ) are T -equivalent, where −→w = vars(wit(ϕ)) \ vars(ϕ); and
(ii) given a finite set of variables V and an arrangement δV on V , if wit(ϕ)∧δV

is T -satisfiable, then there is a T -interpretation A satisfying wit(ϕ) ∧ δV
such that σA = varsσ(wit(ϕ) ∧ δV )A for every σ ∈ S.

2.3 Notation

N denotes the set of non-negative integers. Given m,n ∈ N, let [m,n] := {) ∈ N :
m ≤ ) ≤ n} and [n] := [1, n]. Given a set X, let Pn(X) := {Y ⊆ X : |Y | = n},
Xn := {(x1, . . . , xn) : xi ∈ X for all i ∈ [n]}, and X∗ :=

⋃
n∈N Xn. For any x, we

denote (x, . . . , x) by (x)⊕n. Given a tuple of tuples (−→x1, . . . ,
−→xn), where −→xi ∈ X∗

for all i, we will often treat it as an element of X∗ by flattening the tuple.

3 The Nonexistence of Unicorns

We now state our main theorem, which implies that unicorn theories do not
exist. Note that since we are motivated by applications to SMT, we hereafter
assume all signatures are countable.5

Theorem 2. Assume that T is a Σ-theory, where Σ is countable. If T is stably
infinite and strongly finitely witnessable, both with respect to S ⊆ SΣ, then T is
smooth with respect to S.

For our proof, we define a weaker variant of smoothness, that focuses the
requirements only for finite cardinals.

Definition 3. A Σ-theory T is finitely smooth with respect to S ⊆ SΣ if for
every quantifier-free formula ϕ, T -interpretation A with A ! ϕ, and function
κ from SA

<ℵ0
∩ S to the class of cardinals with |σA| ≤ κ(σ) < ℵ0 for every

σ ∈ SA
<ℵ0

∩ S, there is a T -interpretation B with B ! ϕ with |σB| = κ(σ) for
every σ ∈ SA

<ℵ0
∩ S.

We make use of the following two lemmas.

Lemma 3. If T is stably infinite and strongly finitely witnessable, both with
respect to some set of sorts S ⊆ SΣ, then T is finitely smooth with respect to S.

Lemma 4 ([22, Theorem 3]). If T is strongly finitely witnessable with respect
to some set of sorts S ⊆ SΣ, then T is stably finite with respect to S.
5 The paper that introduced unicorn theories [21] also made this assumption.
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In light of the above two lemmas, the following theorem implies Theorem 2.

Theorem 3. Assume that T is a Σ-theory, where Σ is countable. If T is stably
finite and finitely smooth, both with respect to some set of sorts S ⊆ SΣ, then T
is smooth with respect to S.

The remainder of this section is thus dedicated to the proof of Theorem 3.

3.1 Motivating the Proof

In this section, we illustrate the proof technique with a simple example. The goal
is to motivate the proof of Theorem 3 before delving into the details.

Suppose T is a Σ-theory, where SΣ = {σ1,σ2}, FΣ = {f}, f has arity
(σ2,σ1), and the only predicate symbols are equalities. Suppose that T is also
stably finite and finitely smooth, both with respect to S = SΣ . Let ϕ be a T -
satisfiable quantifier-free formula and A a T -interpretation satisfying ϕ. Let κ be
a function from S to the class of cardinals such that κ(σ) ≥ |σA| for both σ ∈ S.
For concreteness, suppose |σA

1 | = |σA
2 | = 10, κ(σ1) = ℵ0, and κ(σ2) = ℵ1. Our

goal is to show that there is a T -interpretation B− satisfying ϕ with |σB−

1 | = ℵ0

and |σB−

2 | = ℵ1.6
A natural thought is to apply some variant of the upward Löwenheim–Skolem

theorem, but this doesn’t quite work. As will be seen in Sect. 4, generalizations
of the Löwenheim–Skolem theorem to many-sorted logic do not let us control
the cardinalities of σ1 and σ2 independently. Nevertheless, let us emulate the
standard proof technique for the upward Löwenheim–Skolem theorem.

Here is the most natural way of generalizing the proof of the upward
Löwenheim–Skolem theorem to our setting. For simplicity, assume that T
already has built-in Skolem functions. We introduce ℵ0 new constants {c1,α}α<ω

and ℵ1 new constants {c2,α}α<ω1 . We define a set of formulas Γ = {ϕ}∪Γ1, where

Γ1 = {¬(ci,α = ci,β) : i ∈ {1, 2}; α,β < κ(σi); α /= β}.

By Theorem 1 and finite smoothness, there is a T -interpretation B satisfying Γ :
indeed, were that not true, Theorem 1 would guarantee that some finite subset
of Γ is unsatisfiable; yet such a set would only demand the existence of finitely
many new elements, which can be achieved by making use of finite smoothness.
Since B ! Γ1, we have |σB

1 | ≥ ℵ0 and |σB
2 | ≥ ℵ1.

Since B may be too large, we construct a subinterpretation B− with

σB−

1 = {cB1,α}α<ω ∪ {fB(cB2,α)}α<ω1

σB−

2 = {cB2,α}α<ω1 .

And using the assumption that T has built-in Skolem functions, we can prove
that B− is an elementary subinterpretation of B, so B− ! Γ ; we can then prove

6 The reason for the − superscript in B− will be clear presently.
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that |σB−

2 | = ℵ1, but we unfortunately cannot guarantee that |σB−

1 | = ℵ0. This
is because B− has not only the ℵ1 elements {cB2,α}α<ω1 of sort σ2, but also
the elements {fB(cB2,α)}α<ω1 of sort σ1. The function symbol f has created a
“spillover” of elements from σ2 to σ1.

To fix this, we need to ensure that |{fB(cB2,α)}α<ω1 | ≤ ℵ0. To that end, define
Γ to instead be {ϕ} ∪ Γ1 ∪ Γ2, where

Γ2 = {f(b) = f(d) : b, d ∈ {c2,α}α<ω1}.

Then, if there is a model B satisfying Γ , we have |{fB(cB2,α)}α<ω1 | = 1 ≤ ℵ0. To
show Γ is T -satisfiable, it suffices by the compactness theorem to show that T ∪Γ ′

is satisfiable for every finite subset Γ ′ ⊆ Γ . So let Γ ′
1 ⊆ Γ1 and Γ ′

2 ⊆ Γ2 be finite
subsets. We will construct a T -interpretation B′ such that B′ ! {ϕ} ∪ Γ ′

1 ∪ Γ ′
2.

For concreteness, suppose that {c1,0, c1,1, . . . , c1,99} and {c2,0, c2,1, . . . , c2,9} are
the new constants that appear in Γ ′

1 ∪ Γ ′
2. By finite smoothness, there is a T -

interpretation B′ satisfying ϕ such that |σB′

1 | = 100 and |σB′

2 | = 901. By the
pigeonhole principle, there is a subset Y ⊆ σB′

2 with |Y | ≥ 10 such that fB′
is

constant on Y ; if 901 pigeons are put in 100 holes, then some hole has at least
10 pigeons (although this is not true for 900 pigeons). Then, B′ can interpret
the constants {c1,0, c1,1, . . . , c1,99} as distinct elements of σB′

1 and the constants
{c2,0, c2,1, . . . , c2,9} as distinct elements of Y . This proves that Γ is T -satisfiable.

Fig. 1. How we move from inter-
pretation to interpretation

We illustrate the top level structure of the
proof idea in Fig. 1, applied to the working
example. The x axis represents cardinalities
of interpretations of σ1, and the y axis does
the same for σ2. Starting from the interpre-
tation A with |σA

1 | = |σA
2 | = 10, we con-

struct some interpretation B, represented by
the array of red dots as there is some degree
of uncertainty regarding the precise cardinal-
ities of its domains, with |σB

1 | ≥ ℵ0 and
|σB

2 | ≥ ℵ1. From B we hope to construct B−,
which has |σB−

1 | = ℵ0 and |σB−

2 | = ℵ1: the lat-
ter can be achieved using techniques similar to
the many-sorted Löwenheim-Skolem theorems
(see Sect. 4 below), while the former requires
the aforementioned pigeonhole principle argu-
ments.

The above proof sketch illustrates the main ideas behind the proof of Theo-
rem 3. The generalization to more sorts and function symbols requires some extra
bookkeeping. More interestingly, the generalization to functions of arity greater
than one requires a version of Ramsey’s theorem, which is a generalization of
the pigeonhole principle.

3.2 Ramsey’s Theorem and Generalizations

In this section, we state Ramsey’s theorem and a generalization of it.
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Ramsey’s theorem is sometimes stated in terms of coloring the edges of hyper-
graphs, but for our purposes it is more convenient to state it as follows. In the
following lemma, the notations Pn(X) and [k] are defined as in Sect. 2.3.

Lemma 5 (Ramsey’s theorem [17, Theorem B]). For any k, n,m ∈ N,
there is an R(k, n,m) ∈ N such that for any set X with |X| ≥ R(k, n,m) and
function f : Pn(X) → [k], there is a subset Y ⊆ X with |Y | ≥ m such that f is
constant on Pn(Y ).

Note that in Ramsey’s theorem, the set [k] can be replaced by any set of
cardinality k.

We want to generalize Ramsey’s theorem to functions f : Xn → [k]. The
most natural generalization would state that there is a large subset Y ⊆ X
such that f is constant on Y n. But this generalization is false, as the following
example shows.

Example 1. Let X = Z, and let f : X2 → [2] be given by

f(m,n) =

{
1 if m < n

2 otherwise.

Then, f(m,n) /= f(n,m) for all m,n ∈ X with m /= n. Thus, there is no subset
Y ⊆ X with |Y | ≥ 2 such that f is constant on Y 2.

To avoid counterexamples like this, our generalization needs to consider the
order of the arguments of f . This motivates the following definition.

Definition 4. Let (X,<) be a totally ordered set, and let −→x = (x1, . . . , xn) and−→y = (y1, . . . , yn) be elements of Xn. We write −→x ∼ −→y if for every 1 ≤ i < j ≤ n
we have

xi < xj ⇐⇒ yi < yj and
xi = xj ⇐⇒ yi = yj .

Observe that ∼ is an equivalence relation on Xn with finitely many equiva-
lence classes.7

Now we can state our first generalization of Ramsey’s theorem.

Lemma 6. For any k, n,m ∈ N, there is an R∗(k, n,m) ∈ N such that for any
totally ordered set (X,<) with |X| ≥ R∗(k, n,m) and function f : Xn → [k],
there is a subset Y ⊆ X with |Y | ≥ m such that f is constant on each ∼-
equivalence class of Y n.

Next, we further generalize Ramsey’s theorem to multiple functions
f1, . . . , fr.
7 The number of equivalence classes is given by the ordered Bell numbers (https://
oeis.org/A000670).

https://oeis.org/A000670
https://oeis.org/A000670
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Lemma 7. For any k,m ∈ N and −→n = (n1, . . . , nr) ∈ Nr, there is a num-
ber R∗∗(k,−→n ,m) ∈ N, such that for any totally ordered set (X,<) with |X| ≥
R∗∗(k,−→n ,m) and functions fi : Xni → [k] for i ∈ [r], there is a subset Y ⊆ X
with |Y | ≥ m, such that fi is constant on each ∼-equivalence class of Y ni for all
i ∈ [r].

3.3 The Proof of Theorem 3

Fix a Σ-theory T and a set of sorts S ⊆ SΣ . Assume that Σ is countable.
Suppose that T is stably finite and finitely smooth, both with respect to S. Let
ϕ be a T -satisfiable quantifier-free formula and A a T -interpretation satisfying
ϕ. Let κ be a function from S to the class of cardinals such that κ(σ) ≥ |σA| for
every σ ∈ S.

Write S = {σ1,σ2, . . . } and, without loss of generality, assume κ(σ1) ≤
κ(σ2) ≤ · · · . For notational convenience, we write all Σ-terms in the form
t(−→x1,

−→x2, . . . ),8 where −→xi is a tuple of variables of sort σi. If κ(σi) < ℵ0 for
all i, then we are done by the fact T is finitely smooth. Otherwise, let ) be the
largest natural number such that κ(σ&) < ℵ0 if there is such a number, and let
) = 0 otherwise.

The proof of Theorem 3 proceeds in two steps. First, we construct a set
of formulas Γ such that ϕ ∈ Γ and prove that there is a T -interpretation B
satisfying Γ . Second, we prove that B has an elementary subinterpretation B−

such that |σB−

i | = κ(σi) for all i. Since ϕ ∈ Γ , it will follow that T is smooth.
The assumption that T is stably finite and finitely smooth is used to construct

T -interpretations of the following form, which will be useful for a compactness
argument.

Lemma 8. There is a T -interpretation B satisfying ϕ such that |σB
i | = κ(σi)

for all i ≤ ), and |σB
i | is arbitrarily large but finite for all i > ).

Proof. First, apply stable finiteness to get a T -interpretation A′ satisfying ϕ
such that |σA′

i | ≤ |σA
i | and |σA′

i | < ℵ0 for all i. Then, apply finite smoothness to
A′ with κ′ given by κ′(σi) = κ(σi) for all i ≤ ) and κ′(σi) arbitrarily large but
finite for all i > ). 34

It will be convenient to work with a theory with built-in Skolem functions,
so we use Lemma 1 to get a Σ∗-theory T ∗ ⊇ T , where Σ∗ ⊇ Σ and Σ∗ is
countable. To construct our set of formulas Γ , we introduce κ(σi) new constants
{ci,α}α<κ(σi) of sort σi for each i. We consider these constants to be part of
an even larger signature Σ′ ⊇ Σ∗. In what follows, we construct sentences and
interpretations over Σ′. Impose an arbitrary total order on each {ci,α}α<κ(σi) to
be used for the ∼ relation. For the definition below, recall that given a set X,
we define X∗ =

⋃
n∈N Xn.

8 Even if S is infinite, the denoted term is still finite since each term only has a finite
number of variables occurring in it.
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Definition 5. We define a set of formulas Γ = {ϕ} ∪ Γ1 ∪ Γ2 ∪ Γ3, where

Γ1 ={¬(ci,α = ci,β) : 1 ≤ i ≤ |S|; α,β < κ(σi); α /= β}

Γ2 =
{
t
(−→c1 , . . . ,−→ci ,

−−→
bi+1,

−−→
bi+2, . . .

)
= t

(−→c1 , . . . ,−→ci ,
−−→
di+1,

−−→
di+2, . . .

)
:

t is a Σ∗ − term of sort σi; i > ); −→ck ,
−→
bk ,

−→
dk ∈ ({ck,α}α<κ(σk))

∗

for all k;
−→
bj ∼

−→
dj for all j > i

}

Γ3 =




∀x : σi.
∨

α<κ(σi)

x = ci,α : i ≤ )




 .

Note that the disjunctions in Γ3 are finite given the condition i ≤ ).

Lemma 9. There is a T ∗-interpretation B such that B ! Γ .

This lemma forms the core of the argument. By the compactness theorem, it
suffices to prove that for any finite subset Γ ′ ⊆ Γ , there is a T ∗-interpretation
B′ such that B′ ! Γ ′. The tricky part is making B′ satisfy Γ ′∩Γ2. The strategy is
to use Lemma 8 to construct a model B′ in which |σB′

i+1| is very large in terms of
|σB′

i | for each i > ). Lemma 7 will ensure that there is some way of interpreting
the constants {ci,α}α<κ(σi) so that B′ ! Γ ′ ∩ Γ2.

We are now ready to prove Theorem 3.

Proof (Theorem 3). By Lemma 9, there is a T ∗-interpretation B such that B ! Γ .
Let

B =
{
tB

(
(−→c1)B, (−→c2)B, . . .

)
: t is a Σ∗-term; −→ci ∈ ({ci,α}α<κ(σi))

∗ for all i
}
.

For every f ∈ FΣ , the set B is closed under fB. Thus, we can define B− to
be the subinterpretation of B obtained by restricting the sorts, functions, and
predicates to B.9 Since the Σ∗-theory T ∗ has built-in Skolem functions, B− is
an elementary subinterpretation of B by Lemma 2. We claim |σB−

i | = κ(σi) for
all i.

First, {cB−

i,α}α<κ(σi) is a set of κ(σi) distinct elements in σB−

i , because B− !
Γ1. Thus, |σB−

i | ≥ κ(σi) for all i.
Second, |σB−

i | ≤ |{ci,α}α<κ(σi)| = κ(σi) for all i ∈ [)], as B− ! Γ3.
Finally, it remains to show that |σB−

i | ≤ κ(σi) for all i > ). Inductively
suppose that |σB−

j | ≤ κ(σj) for all j < i. Now, every element of σB−

i is of the
form

tB
(
(−→c1)B, . . . , (−→ci )B, (−−→ci+1)B, (−−→ci+2)B, . . .

)
,

where t is a Σ∗-term of sort σi. Since Σ∗ is countable, there are at most ℵ0

choices for t. We have at most κ(σi) choices for (−→c1)B, . . . , (−→ci )B. Finally, we
have finitely many choices for (−−→ci+1)B, (−−→ci+2)B, . . . up to ∼-equivalence. Since
9 In other words, B− is the Skolem hull of

⋃
i{c

B
i,α}α<κ(σi) in B [12, p. 180].
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B− ! Γ2, it follows that there are at most κ(σi) elements of σB−

i . Therefore,
B− is a T ∗-interpretation satisfying ϕ with |σB−

i | = κ(σi) for all i. Taking the
reduct of B− to Σ gives the desired T -interpretation. 34

3.4 Applications to Theory Combination

Since Theorem 2 implies that stably infinite and strongly finitely witnessable
theories are strongly polite, we can restate the theorem on strongly polite the-
ory combination with weaker hypotheses. This was already proved in [21] via a
different method, but is now obtained as an immediate corollary of Theorem 2.

Corollary 1. Let Σ1 and Σ2 be disjoint countable signatures. Let T1 and T2
be Σ1- and Σ2-theories respectively, and let ϕ1 and ϕ2 be quantifier-free Σ1-
and Σ2-formulas respectively. Suppose T1 is stably infinite and strongly finitely
witnessable, both with respect to SΣ1 ∩ SΣ2 , and let V = varsSΣ1∩SΣ2

(wit(ϕ1)).
Then, ϕ1 ∧ ϕ2 is (T1 ∪ T2)-satisfiable if and only if there is an arrangement δV
on V such that wit(ϕ1) ∧ δV is T1-satisfiable and ϕ2 ∧ δV is T2-satisfiable.

We can also use our results to give a new characterization of shiny theories,
which allows us to restate shiny combination theorem with weaker hypotheses.

To define shininess, we first need a few other notions. Let Σ be a signature
with SΣ finite, and let S ⊆ SΣ . Write S = {σ1, . . . ,σn}. Then, the S-size of
a Σ-interpretation A is given by the tuple (|σA

1 |, . . . , |σA
n |). Such n-tuples are

partially ordered by the product order: (x1, . . . , xn) 5 (y1, . . . , yn) if and only
if xi ≤ yi for all i ∈ [n]. Given a quantifier-free formula ϕ, let minmodsT ,S(ϕ)
be the set of minimal S-sizes of T -interpretations satisfying ϕ. It follows from
results in [10] that minmodsT ,S(ϕ) is a finite set of tuples.10

Then, we say a Σ-theory T is shiny with respect to some subset of sorts
S ⊆ SΣ if SΣ is finite, T is stably finite and smooth, both with respect to S, and
minmodsT ,S is computable. Theorem 3 implies that we can replace smoothness
by finite smoothness, which may make it easier to prove that some theories are
shiny. We can therefore improve the shiny theory combination theorem from [4,
Theorem 2] as an immediate corollary of Theorem 3.

Corollary 2. Let Σ1 and Σ2 be disjoint countable signatures, where SΣ1 and
SΣ2 are finite. Let T1 and T2 be Σ1- and Σ2-theories respectively, and assume the
satisfiability problems for quantifier-free formulas of both T1 and T2 are decidable.
Suppose T1 is stably finite and finitely smooth, both with respect to SΣ1 ∩SΣ2 , and
minmodsT1,SΣ1∩SΣ2

is computable. Then, the satisfiability problem for quantifier-
free formulas of T1 ∪ T2 is decidable.

10 [4] proves this assuming that T is stably finite, using Hilbert’s basis theorem. This
assumption can be dropped by using the fact that if (X,≤) is a well-quasi-order,
then so is (Xn,≺), where ≺ is the product order. Here X is the class of cardinals.
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4 Many-Sorted Löwenheim–Skolem Theorems

In this section, we state many-sorted generalizations of the Löwenheim–Skolem
theorem. Our first results, in Sect. 4.2, hold with no assumptions on the signature.
Later, in Sect. 4.3, we state stronger results for restricted signatures, which we
then use for a many-sorted variant of the Łoś–Vaught test in Sect. 4.4. But first,
in Sect. 4.1, we explain the limitations of relying solely on translations to single-
sorted first-order logic.

4.1 Lost in Translation

We may transform a many-sorted signature into a single-sorted signature by
adding unary predicates signifying the sorts; of course, some restrictions are
necessary, distinctness of sorts, etc. This procedure [6,13,24] is often used to
lift results from single-sorted to many-sorted logic. As one example, standard
versions of the downward Löwenheim–Skolem theorem for many-sorted logic,
found in [14], are proven using this translation; we can, however, strengthen
these results while still using only translations:

Theorem 4 (Downward). Let Σ be a many-sorted signature with |SΣ | < ℵ0.
Suppose we have a Σ-structure A with max{|σA| : σ ∈ SΣ} ≥ ℵ0, a cardinal κ
satisfying max{|Σ|,ℵ0} ≤ κ ≤ min{|σA| : σ ∈ SA

≥ℵ0
}, and sets Aσ ⊆ σA with

|Aσ| ≤ κ for each σ ∈ SΣ. Then, there is an elementary substructure B of A
such that σB = σA for every σ ∈ SA

<ℵ0
, ℵ0 ≤ |σB| ≤ κ for all σ ∈ SA

≥ℵ0
, |σB| = κ

for some σ ∈ SΣ, and Aσ ⊆ σB for all σ ∈ SΣ.

Theorem 5 (Upward). Let Σ be a many-sorted signature with |SΣ | < ℵ0.
Suppose we have a Σ-structure A with max{|σA| : σ ∈ SΣ} ≥ ℵ0 and a cardinal
κ ≥ max{|Σ|,max{|σA| : σ ∈ SΣ}}. Then, there is a Σ-structure B containing A
as an elementary substructure such that σB = σA for all σ ∈ SA

<ℵ0
, ℵ0 ≤ |σB| ≤ κ

for all σ ∈ SA
≥ℵ0

, and |σB| = κ for some sort σ ∈ SΣ.

As convenient as translation arguments are, the above Löwenheim–Skolem
theorems seem unsatisfactory, as they only allow us to choose a single cardinal,
rather than one for each sort.

4.2 Downward, Upward, and Combined Versions

The following are generalizations of the downward and upward Löwenheim–
Skolem theorems to many-sorted logic, which are proved by adapting the proofs
of the single-sorted case. Notice that we set all infinite domains to the same
cardinality, while finite domains preserve their cardinalities.

Theorem 6 (Downward). Fix a first-order many-sorted signature Σ. Suppose
we have a Σ-structure A, a cardinal κ such that max{ℵ0, |Σ|} ≤ κ ≤ min{|σA| :
σ ∈ SA

≥ℵ0
}, and sets Aσ ⊆ σA with |Aσ| ≤ κ for each σ ∈ SA

≥ℵ0
. Then, there is

an elementary substructure B of A that satisfies |σB| = κ and σB ⊇ Aσ for every
σ ∈ SA

≥ℵ0
, and also σB = σA for every σ ∈ SA

<ℵ0
.
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Theorem 7 (Upward). Fix a first-order many-sorted signature Σ. Given a
Σ-structure A, pick a cardinal κ ≥ max{|Σ|,ℵ0, sup{|σA| : σ ∈ SA

≥ℵ0
}}. Then,

there is a Σ-structure B containing A as an elementary substructure that satisfies
|σB| = κ for every σ ∈ SA

≥ℵ0
, and also σB = σA for every σ ∈ SA

<ℵ0
.

Theorems 6 and 7 can be combined to yield yet another variant of the
Löwenheim–Skolem theorem, which may be called the combined version.

Corollary 3 (Combined). Fix a many-sorted signature Σ. Given a Σ-
structure A, pick a cardinal κ ≥ max{|Σ|,ℵ0}. Then, there is a Σ-structure
B elementarily equivalent to A with |σB| = κ for every σ ∈ SA

≥ℵ0
, and σB = σA

for σ ∈ SA
<ℵ0

.

Fig. 2. Illustration of Corollary 3.

We illustrate Corollary 3 in Fig. 2.
In black, we represent the cardinali-
ties of the resulting structure, and in
red, those of the original one. When
they coincide, we use marks split
between the two colors. This repre-
sentation shows a set of sorts in the
horizontal axis, and the heights of
the marks represent the cardinalities
of the respective domains. We clearly
separate cardinals larger and smaller
than ℵ0 with a rule. Assume, without
loss of generality, that initially σ1 . . .σn have finite cardinalities and σ′

1 has the
least and σ′

m the greatest infinite cardinality.11 Corollary 3 allows us to pick an
infinite cardinal κ in between the least and greatest infinite cardinalities, and
set all infinite cardinlaities in the interpretation to κ.

The above theorems require that the desired cardinalities of the infinite sorts
are all equal. The following example shows that this limitation is necessary.

Example 2. Take the signature Σ with sorts S = {σ1,σ2}, no predicates, and
only one function f of arity (σ1,σ2). Take the Σ-structure A with: σA

1 and σA
2

of cardinality ℵ1, and fA a bijection. It is then true that A ! ϕinj ∧ ϕsur ,
where ϕinj = ∀x : σ1. ∀ y : σ1.

[
[f(x) = f(y)] → [x = y]

]
and ϕsur = ∀u :

σ2. ∃x : σ1. [f(x) = u], codifying that f is injective and surjective respectively.
Notice then that, although max{|Σ|,ℵ0} = ℵ0, there cannot be an elementary
substructure B of A with |σB

1 | = ℵ0 and |σB
2 | = ℵ1: for if B ! ϕinj ∧ ϕsur , fB

must be a bijection between σB
1 and σB

2 . A similar argument shows that the
corresponding generalization of the upwards theorem fails as well.

11 For greater clarity, the diagram only depicts the cases where there are finitely many
sorts and the signature is countable.
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4.3 A Stronger Result for Split Signatures

Example 2 relies on “mixing sorts” by using a function symbol with arities
spanning different sorts. We can state stronger versions of the many-sorted
Löwenheim–Skolem theorems when such mixing of sorts is restricted.

Definition 6. A signature Σ is said to be split by Λinto a family of signatures
{Σλ : , ∈ Λ} if Λ is a partition of SΣ, SΣλ = , for each , ∈ Λ, FΣ =

⋃
λ∈Λ FΣλ ,

and PΣ =
⋃

λ∈Λ PΣλ . If Σ is split by Λ and each , ∈ Λ is a singleton, then we
say that Σ is completely split by Λ.

If Σ is split by Λ, then the function/predicate symbols of Σλ must be disjoint
from Σλ′ for , /= ,′. Given a partition Λ of SΣ and , ∈ Λ, let SA

≥ℵ0
(,) = SA

≥ℵ0
∩,.

We state the downward, upward, and combined theorems for split signatures.

Theorem 8 (Downward). Fix a first-order many-sorted signature Σ split by
Λ. Suppose we have a Σ-structure A, a cardinal κλ such that max{ℵ0, |Σλ|} ≤
κλ ≤ min{|σA| : σ ∈ SA

≥ℵ0
(,)} for each , ∈ Λ, and sets Aσ ⊆ σA with |Aσ| ≤ κλ

for each σ ∈ SA
≥ℵ0

(,). Then, there is an elementary substructure B of A that
satisfies |σB| = κλ and σB ⊇ Aσ for σ ∈ SA

≥ℵ0
(,), and σB = σA for σ ∈ SA

<ℵ0
.

Theorem 9 (Upward). Suppose Σ is split by Λ. Given a Σ-structure A, pick
a cardinal κλ ≥ max{|Σλ|,ℵ0, sup{|σA| : σ ∈ SA

≥ℵ0
(,)}} for each , ∈ Λ. Then,

there is a Σ-structure B containing A as an elementary substructure that satisfies
|σB| = κλ for σ ∈ SA

≥ℵ0
(,), and σB = σA for σ ∈ SA

<ℵ0
.

Corollary 4 (Combined). Suppose Σ is split by Λ. Given a Σ-structure A,
pick a cardinal κλ ≥ max{|Σλ|,ℵ0} for each , ∈ Λ. Then, there is a Σ-structure
B elementarily equivalent to A with |σB| = κλ for every σ ∈ SA

≥ℵ0
(,), and also

σB = σA for every σ ∈ SA
<ℵ0

.

Fig. 3. Illustration of Corollary 4.

Corollary 4 is illustrated in Fig. 3.
We add sorts S′′ = {σ′′

1 , . . . ,σ
′′
m},

and assume our signature is split into
Σλ1 and Σλ2 , where SA

≥ℵ0
(,1) =

{σ′
1, . . . ,σ

′
m} and SA

≥ℵ0
(,2) = S′′

(the sorts with finite cardinalities can
belong to either). Then, κ′ is the car-
dinal associated with Σλ1 , and κ′′

with Σλ2 . Thus, we are able to choose
a cardinality for each class of sorts.

4.4 An Application: The Łoś–Vaught Test

We describe an application of our Löwenheim–Skolem theorems for theory-
completeness: the Łoś–Vaught test. This is particularly relevant to SMT, as if a
complete theory T has a decidable set of axioms, then it is decidable whether
(T ϕ [12, Lemma 2.2.8]. The single-sorted Łoś–Vaught is the following.
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Definition 7. Let Σ be a signature and κ a function from SΣ to the class of
cardinals. A Σ-theory T is κ-categorical if it has exactly one model A (up to
isomorphism) with the property that |σA| = κ(σ) for every σ ∈ SΣ. If there is
only one sort σ ∈ SΣ, we abuse notation by using κ to denote the cardinal κ(σ).

Theorem 10 ([11,23]). Suppose Σ is single-sorted and T is a Σ-theory with
only infinite models. If T is κ-categorical for some κ ≥ |Σ|, then T is complete.

The Łoś–Vaught test is quite useful, e.g., for the completeness of dense linear
orders without endpoints and algebraically closed fields. We generalize it to many
sorts. Translating to one-sorted logic and using Theorem 10 gives us:

Corollary 5. Let Σ be a signature with |SΣ | < ℵ0. Suppose T is a Σ-theory,
all of whose models A satisfy max{|σA| : σ ∈ SΣ} ≥ ℵ0. Suppose further that for
some cardinal κ ≥ |Σ|, T has exactly one model A (up to isomorphism) such
that max{|σA| : σ ∈ SΣ} = κ. Then, T is complete.

This is not the result one would hope for, because it excludes some many-
sorted κ-categorical theories, as the following example demonstrates.

Example 3. Suppose Σ has S = {σ1,σ2}, no predicate symbols, and function
symbols 0, 1, +, and ×, of the expected arities. Let T = ACF0 ∪

{
ψσ2

≥n : n ∈ N
}
,

where ACF0 is the theory of algebraically closed fields of characteristic zero
(with respect to σ1) and ψσ

≥n = ∃x1 : σ. · · ·∃xn : σ.
∧

1≤i<j≤n ¬(xi = xj),
which asserts that there are at least n elements of sort σ. T is κ-categorical,
where κ(σ1) = ℵ1 and κ(σ2) = ℵ0. But T is also κ′-categorical, where κ′(σ1) =
κ′(σ2) = ℵ1. Thus, T has multiple models A satisfyingmax{|σA| : σ ∈ SΣ} = ℵ1.
Similar reasoning holds for other infinite cardinals, so Corollary 5 does not apply.

For completely split signatures, we prove a more natural Łoś–Vaught test:

Definition 8. A Σ-structure A is strongly infinite if |σA| ≥ ℵ0 for all σ ∈ SΣ.

Theorem 11. Suppose Σ is completely split into {Σσ : σ ∈ SΣ}, T is a Σ-
theory all of whose models are strongly infinite, and T is κ-categorical for some
function κ such that κ(σ) ≥ |Σσ| for every σ ∈ SΣ. Then, T is complete.

The assumption that Σ is completely split is necessary for Theorem 11:

Example 4. Let Σ have sorts σ1,σ2, and function symbol f of arity (σ1,σ2). Let
T =

{
ψσ1

≥n : n ∈ N
}

∪
{
ψσ2

≥n : n ∈ N
}

∪
{
ϕinj ∨ ∀x : σ1. ∀ y : σ1. [f(x) = f(y)]

}
.

In T , σ1,σ2 are infinite, and f is injective or constant. T is κ-categorical for
κ(σ1) = ℵ1,κ(σ2) = ℵ0, but not complete, due to the sentence ∀x, y : σ1.f(x) =
f(y). This does not contradict Theorem 11, as Σ is not completely split.
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5 Conclusion

We closed the problem of the existence of unicorn theories and discussed applica-
tions to SMT. This included a result similar to the Löwenheim–Skolem theorem,
which inspired us to investigate the adaptation of this theorem to many-sorted
logic. We also obtained a many-sorted version of the Łoś–Vaught test.

In future work, we plan to investigate whether Theorem 3 can be extended
to uncountable signatures. More broadly, we intend to continue studying the
relationships among many-sorted model-theoretic properties related to SMT.
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