®

Check for
updates

Scalable Bit-Blasting with Abstractions

Aina Niemetz! ™)@, Mathias Preiner'®, and Yoni Zohar?

CAV ! Stanford University, Stanford, USA CAV
Artifact . Artifact
Evaluation niemetz@cs.stanford.edu Evaluation

2 Bar-Ilan University, Ramat Gan, Israel * * &

Available Reusable

Abstract. The dominant state-of-the-art approach for solving bit-
vector formulas in Satisfiability Modulo Theories (SMT) is bit-blasting,
an eager reduction to propositional logic. Bit-blasting is surprisingly effi-
cient in practice but does not generally scale well with increasing bit-
widths, especially when bit-vector arithmetic is present. In this paper,
we present a novel CEGAR-style abstraction-refinement procedure for
the theory of fixed-size bit-vectors that significantly improves the scala-
bility of bit-blasting. We provide lemma schemes for various arithmetic
bit-vector operators and an abduction-based framework for synthesiz-
ing refinement lemmas. We extended the state-of-the-art SMT solver
Bitwuzla with our abstraction-refinement approach and show that it sig-
nificantly improves solver performance on a variety of benchmark sets,
including industrial benchmarks that arise from smart contract verifica-
tion.

1 Introduction

Bit-precise reasoning as provided by Satisfiability Modulo Theories (SMT) for
the theory of fixed-size bit-vectors is a key requirement for many applications in
computer-aided verification. The dominant, state-of-the-art approach for solv-
ing bit-vector formulas is a technique called bit-blasting [24], an eager reduc-
tion of bit-vector constraints to a propositional satisfiability problem (SAT).
Bit-blasting is usually combined with aggressive simplifications of the input con-
straints prior to the actual reduction step. Even though this eager reduction may
come at the cost of significantly increasing the formula size, it is surprisingly effi-
cient in practice—mainly due to the fact that state-of-the-art SAT solvers are
usually able to efficiently deal with complex formulas over millions of variables.
This size increase, however, is a potential bottleneck and the main reason why
bit-blasting does not generally scale well for large bit-widths. This is especially
true in the presence of arithmetic operators, which translate to large and com-
plex Boolean circuits on the bit-level. In practice, this scaling issue can already

This work was supported in part by the Stanford Center for Automated Reasoning, the
Stanford Center for Blockchain Research, ISF grant number 619/21, and a gift from
Amazon Web Services.

© The Author(s) 2024

A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 178-200, 2024.
https://doi.org/10.1007/978-3-031-65627-9_9

https://doi.org/10.5281/zenodo.10913320
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_9&domain=pdf
http://orcid.org/0000-0003-2600-5283
http://orcid.org/0000-0002-7142-6258
http://orcid.org/0000-0002-2972-6695
https://doi.org/10.1007/978-3-031-65627-9_9

Scalable Bit-Blasting with Abstractions 179

occur with bit-widths as low as 32 bits, and it is especially severe for applica-
tions that reason over considerably larger bit-widths due to the nature of their
domain, e.g., 256 bits in the context of smart contract verification [15].

In this paper, we propose a novel abstraction-refinement framework for the
theory of fixed-size bit-vectors that significantly improves the scalability of bit-
blasting on increasing bit-widths. Rather than providing an alternative to bit-
blasting, our approach is explicitly aimed at improving its performance via an
abstraction-refinement scheme based on the counterexample-guided abstraction
refinement (CEGAR) paradigm [16]. Constructs and operators that are poten-
tially expensive when translated to the bit-level are abstracted with fresh unin-
terpreted functions (UF), which corresponds to over-approximating the original
problem and translates to significantly smaller circuits on the bit-level. When
an abstraction is unsatisfiable, so is the original problem. However, when it is
satisfiable and inconsistent with the true semantics of the abstracted opera-
tors, it must be refined with lemmas to rule out spurious counterexamples. We
iteratively repeat the abstraction-refinement process until all abstractions are
consistent, and only fall back to bit-blasting an abstracted term when it cannot
be further refined, as a last resort. Thus, the main challenge is finding lemmas
for abstraction refinement that, ideally, allow to avoid bit-blasting of abstracted
terms, entirely. To this extent, this paper makes the following contributions:

— We present a modular and configurable CEGAR-style abstraction-refinement
framework for the theory of fixed-size bit-vectors, based on bit-blasting.

— We provide a set of refinement lemmas for a restricted but sufficient set of
arithmetic bit-vector operators (bvmul, bvudiv, bvurem). This set of lemmas
consists of a set of basic, hand-crafted lemmas (encoding core properties of
abstracted operators) and a set of lemmas synthesized via abduction.

— We provide a lemma scoring scheme and an abduction-based framework
for synthesizing lemmas, utilizing the syntax-restricted abduction reasoning
capabilities of the SMT solver cvcb [7].

— We extend the open-source SMT solver Bitwuzla [29] with our approach and
show that it significantly improves performance on a wide range of bench-
marks, including industrial benchmarks from smart contract verification.

Related Work. Developing scalable approaches for solving bit-vector formulas
with large bit-widths is a long-standing challenge. Previous efforts to tackle this
challenge can be mainly divided into two categories: alternative approaches to
bit-blasting that primarily rely on word-level reasoning, and techniques based on
bit-blasting that try to reduce the size of the original problem on the bit-level.

Alternative approaches to bit-blasting include: translations to linear integer
arithmetic [11] and non-linear integer arithmetic (in combination with CEGAR-
style handling of bit-wise operators) [36]; layered CDCL(T')-style approaches
that rely on encoding fragments of the input problem into other theories before
resorting to bit-blasting [13,21]; instances of the model-constructing satisfiability
(mcSAT) calculus [20,35], a generalization of propositional conflict-driven clause
learning (CDCL) to SMT; and incomplete techniques such as local search [19,

180 A. Niemetz et al.

28,30], which are only able to determine satisfiability. All of these approaches
are generally not competitive with bit-blasting.

Techniques based on bit-blasting that aim at mitigating the impact of
increasing bit-widths on the bit-level are mainly based on some form of
under-approximation. Bryant et al. [14] proposed a combination of under-
approximation via restricting the value range of input variables with over-
approximation of the unsat core of the under-approximated problem. This over-
approximation consists of two strategies: eliminating if-then-else (ite) operations,
and abstracting bit-vector multiplication x - y with a partially interpreted func-
tion of the form Az.\y.ite(x =~ 0V y =~ 0,0,ite(z = 1,y,ite(y = 1,z, f(x,y)))
where f(z,y) is a fresh uninterpreted function. An early version of Boolector [12]
implemented a refined version of the above under-approximation strategy in [14].
More recently, in the context of quantified bit-vector reasoning, Jonés et al. pro-
posed an abstraction-based approach that reduces the size of the input problem
via interpreting bits as don’t care bits [22], and an under-approximation-based
framework based on bit-width reduction [23] similar to [14].

2 Preliminaries

We assume and briefly review the usual notions and terminology of many-sorted
first-order logic with equality (see, e.g., [18,25]). Let S be a set of sort symbols,
and let X be a signature containing a set X* C S of sort symbols and a set X7
of function symbols f71?"? with arity n > 0 and o071, ...,0,,0 € X*. We usually
omit the superscript from function symbols and refer to 0-arity function symbols
as constants. We assume that X includes a designated sort Bool, values T (true)
and L (false) of sort Bool, Boolean connectives {A, =} defined as usual, equality
and disequality symbols {~2, %} of sort o x ¢ — Bool for every o € X, and an
if-then-else operator ite of sort Bool X ¢ x 0 — ¢ for every o € X%.

Let 7 be a X -interpretation that maps each 0 € X* to a non-empty set
o (the domain of T), with Bool” = {T,L}; and each for o7 ¢ X/ to a
total function fZ: o x ... x 0 — o% if n > 0, and to an element in o if
n = 0. The interpretation of Boolean connectives, Boolean values, equality sym-
bols and ite symbols is fixed and standard. We use the usual inductive definition
of the satisfiability relation = between X-interpretations and X-formulas. We
write ¢[z1,...,z,] to denote a X-formula ¢ defined over (a subset of) symbols
{z1,...,z,}. We further use p[z1—ay,...,z, — a,] for the formula obtained
from ¢ by simultaneously replacing each occurrence of z; with a;.

A theory is a pair (X, 1) where X is some signature, and I is a class of
XY-interpretations. A Y-formula is T -satisfiable (resp. T -unsatisfiable) if it is
satisfied by some (resp. no) interpretation in I; it is T -walid if it is satisfied
by all interpretations in I. We assume the usual definition of well-sorted terms,
literals, and formulas, and call X-formulas T-formulas and X-literals T-literals.

We focus on the theory of fixed-size bit-vectors Tgy as defined by the SMT-
LIB 2 standard [8]. The theory of fixed-size bit-vectors Ty is defined as the
pair (¥'py, Ipy). Signature X'gy includes a unique sort oy, for each bit-width w,

Scalable Bit-Blasting with Abstractions 181

function symbols overloaded for every oy, and all bit-vector values of sort o7y,
for each w. The non-empty class of Xy -interpretations Igy (the models of
Tsy) interpret sort and function symbols as specified in SMT-LIB 2.

Without loss of generality, we consider Xgy to contain a restricted, arbitrary
set of bit-vector operators as listed in Table 1. This set is complete in the sense
that it suffices to express all bit-vector operators defined in SMT-LIB 2. We fur-
ther use logical connectives {V, =, <} and bit-vector operator — for subtraction
and negation as shorthand when convenient. In the context of this paper it is
important to note that both bit-vector subtraction and negation are expressed
in terms of bit-vector addition.

We denote a Xpy-term (or bit-vector term) x of width w as x[,) when we
want to specify its bit-width explicitly, and will omit w from the notation when
it is clear from the context. The width of a bit-vector term is given by function &,
e.g., k() = w. We refer to the bit at index i of z[,, as x[i] and represent a bit-
vector value vy, as a bit-string of 0s and 1s, with the most significant bit (MSB)
as the left-most bit v[msb] at index msb = w — 1, and the least significant bit
(LSB) as the right-most bit v[lsb] at index lsb = 0. To simplify the notation, we
will sometimes represent a value vy, as a natural number in {0,..., w11,

Table 1. Set of considered bit-vector operators.

Symbol SMT-LIB Syntax Sort
<u, <u, >u, >u | bvult, bvule, bvugt, bvuge Olw] X Ofw] — Bool
~ bvnot Ofw O'w]

[w]
[w] —
&, |, ®, <<, >> | bvand, bvor, bvxor, bvshl, bvlshr | 0ju) X O[] — Ofu)
[w]
[w]
[w]

+, -, mod, + bvadd, bvmul, bvurem, bvudiv Olw] X Olw] = Ofw]
o concat Olw] X Olm] = Olw+m]
[u:1] extract ([<u<w) Olw] = Olu—1+1]

3 Abstraction-Refinement Framework

Our abstraction-refinement framework is integrated into an SMT solver as a
CEGAR procedure that combines an abstraction module with the theory solver
that is responsible for reasoning about Ty -formulas (the bit-vector solver).
Since our main goal is to improve the scalability of bit-blasting, we assume that
the bit-vector solver implements bit-blasting as its main strategy. For simplic-
ity, we further assume that bit-blasting is its only strategy. However, this is
not a requirement. Our abstraction-refinement technique can be combined with
any complete technique for determining the satisfiability of Tz -formulas that
produces models for satisfiable formulas.

Algorithm 1 shows the main abstraction-refinement procedure of our app-
roach. Given a set of bit-vector constraints A, the abstraction module (AM)

182 A. Niemetz et al.

Algorithm 1. Abstraction-refinement loop around the Ty -solver.

1 function ABSTRACTSOLVEBV (A)

2 result « unknown, £ < 0

3 A’ — AM::ABSTRACT(A) > generate abstraction
4 repeat

5 A — A UL > refine abstraction
6 result, M «— Tpy::SOLVE(A’) > query bit-vector solver
if result = unsat then break

8 L «— AM::CHECK(M) > check consistency
9 until £ = (

10 return result

11 end function

first generates an abstraction A’ of A (AM::ABSTRACT) by replacing abstracted
terms with fresh constants. This abstraction is then iteratively refined with lem-
mas L, starting from an empty set. First, the bit-vector solver is queried for
a satisfiability result of the current abstraction A’ and a model M of A’ if it
is satisfiable (Tpv::SOLVE). If A’ is unsatisfiable, the procedure concludes with
unsat. If A’ is satisfiable, the abstraction module checks the consistency of M
for all abstracted terms with respect to their true semantics (AM::CHECK) as
follows. Starting from an empty set of refinement lemmas £, for each abstracted
term, function AM::CHECK determines if the model value of its abstraction is
consistent. If it is inconsistent, we add a refinement lemma to £ that rules out
the inconsistency. When the model values of all abstracted terms have been
checked for consistency, AM::CHECK returns the set of refinement lemmas L,
which extends abstraction A’ in the next iteration. If model M is consistent for
all abstracted terms (i.e., £ = (), the procedure concludes with sat.

Note that conceptually, our term abstractions are uninterpreted functions
that map bit-vector arguments to a term of bit-vector sort, e.g., mulsa(x, s) of
sort oj3g) X 0[32] — O[32] as abstraction of a bit-vector multiplication x(3g) - s[32]-
When combining bit-vector theory reasoning with UF theory reasoning, from
the point of view of the bit-vector solver, these UF are seen as fresh bit-vector
constants. However, by construction, our procedure ensures that term abstrac-
tions are refined until consistency. Thus, when the UF theory solver is invoked
after the bit-vector theory solver, additional UF theory reasoning is not required.
Hence, introducing uninterpreted functions is redundant—it is sufficient to intro-
duce a fresh constant of the same bit-vector sort as the abstracted term, e.g.,
mul[mg’;] for x[39) - s[39). This allows the integration of our approach into any SMT
solver that supports bit-vector reasoning, even when UF reasoning is not sup-
ported. Preliminary experiments showed that in the context of integrating our
techniques in the SMT solver Bitwuzla, using UF as abstractions and scheduling
the UF theory solver prior to our abstraction-refinement loop introduced redun-
dant overhead and negatively impacted performance. Our approach, however,
allows to freely choose between introducing UF vs. fresh bit-vector constants,
depending on what is more beneficial for a specific solver architecture.

Scalable Bit-Blasting with Abstractions 183

One of the main tasks of the abstraction module is consistency checking of
satisfying assignments of the current abstraction, and refining the abstraction
in case of inconsistency. This refinement is driven by a pre-defined refinement
scheme for each abstracted operator. A refinement scheme is a four-tiered set of
lemmas that is checked tier-wise, in ascending order, during consistency checking.
We describe the refinement scheme for each operator and their tiers in more
detail in Sect. 4.

4 Refinement Schemes

We define four-tiered refinement schemes for bit-vector operators
o€ {:, =, mod}, with tiers 1-2 as the main and predefined sets of refinement
lemmas that describe properties of the abstracted operators in the usual bit-
vector semantics (notably, with respect to overflow semantics). The first tier
consists of hand-crafted lemmas that mostly encode basic properties (described
in more detail in Sect. 4.1), while the second tier is entirely comprised of lemmas
that were synthesized via our abduction-based lemma synthesis framework (see
Sect. 4.3).

The third tier is not pre-defined but encodes so-called wvalue instantiation
lemmas to rule out the current inconsistent model value as a limited fallback
strategy before we have to, as the fourth and final tier, resort to bit-blasting.
For example, for (3] - s39) with M = {z = 3,5 = 6,mu E;] = 1}, we add
(r=3ANs=6) = mulf;’;] = 18 as value instantiation lemma. Value instantia-
tion lemmas are only added if none of the lemmas in previous tiers were violated.
We further limit the number of value instantiation lemmas that are added for an
abstracted term since they each only rule out a single spurious model value of
the term abstraction (see Sect.5). Lemmas in tiers 1-2 do not necessarily fully
capture all properties of an abstracted operator, and thus, inconsistent assign-
ments may remain uncovered. When this is the case and the number of value
instantiation lemmas to add is exhausted, we add a so-called bit-blasting lemma,
e.g., mulE,)’;] ~ z - 5, which enforces bit-blasting of the abstracted term.

Note that of the considered arithmetic operators, addition is the only one
we do not abstract. Even though addition is more expensive when bit-blasting
compared to bit-wise operators, it is considerably cheaper than the operators we
abstract. Preliminary experiments showed that the trade-off between abstract-
ing the addition operator (which also occurs in our lemmas) versus bit-blasting
addition terms suggests that it is more beneficial to not abstract addition.

Table 2 lists all lemmas of tiers 1-2 for all three operators, with hand-crafted
lemmas marked with an asterisk. We use x for the left-hand operand, s for the
right-hand operand, and ¢ for the constant introduced to abstract = ¢ s. We
further indicate with a subscript on the lemma ID if there is a restriction on
the bit-widths for which the lemma is correct (see Sect.4.4). Note that while
our abstraction approach does not generally restrict the bit-width of operators
to abstract, lemmas that are incorrect for certain bit-widths must be removed
from the lemma sets when terms of that size are abstracted. In practice, we only

184 A. Niemetz et al.

abstract terms of bit-width 32 and above (see Sect. 5) and thus these restrictions
are not applicable. Further, note that in practice we consider both commutative
cases (when applicable) while Table 2 only gives one. In the following, we describe
our set of hand-crafted lemmas, our lemma scoring scheme and how we derive
lemmas via abduction reasoning in more detail.

4.1 Hand-Crafted Lemmas

For each refinement scheme, our set of hand-crafted lemmas mostly contains
lemmas that cover basic properties of the abstracted operators (e.g., when one
of its operands is a special value). We also include lemmas that describe more
elaborate properties based on invertibility conditions [31], i.e., conditions that
exactly describe when operand x of operator ¢ has a solution in literal x¢s ~ y.
More formally, an invertibility condition IC' for a literal @[z, s,y] is a formula
defined over s and y such that 3z. ¢ < IC. In the following, we summarize the
properties encoded by each hand-crafted lemma.

Multiplication. Lemmas 1-2 capture the fact that multiplication by a power
of 2 (and its arithmetic negation) can be described as a left shift operation.
Lemma 3 states that the result of the multiplication must have at least as
many trailing zeros in its binary representation as one of its arguments and
is derived from the invertibility condition (—s | s) & y ~ y for x-s ~ y. The left-
to-right direction of 3x.p < IC gives us (after Skolemization) the implication
x-s~y=(—s|s)&y=y, of which lemma 3 is the right-hand side. Lemma 4
is a parity lemma that states that the result of a multiplication x - s must be
odd if both x and s are odd, and even otherwise. Note that properties related
to multiplication by special values 1, —1 and 0 are subsumed by lemmas 1, 2
and 3, respectively. Further note that [31] also provides invertibility conditions
for literals defined over disequality and inequalities. We only consider invert-
ibility conditions for literals = ¢ s &~ y as this allows to instantiate y in the
corresponding lemma with term abstraction t¢. For literals over predicates other
than equality, e.g., xos <, ¥, a good strategy for instantiating y in the resulting
lemma is not obvious and left to future work.

Division. Lemma, 1 states that unsigned division by a power of 2 can be described
as a logical right shift operation. Lemmas 2-3 cover special cases: division by
itself and division by 0 (the latter is a defined case in SMT-LIB). Lemma 4
states that zero divided by a non-zero value is zero. Lemma 5 captures a natural
property of division by a non-zero value: its result is always less than its left-hand
argument. Lemma 6 describes the property that division by ~0 (the maximum
unsigned value) yields zero if the dividend is less than ~0. Note that for division,
we do not utilize the corresponding invertibility conditions from [31] since they
introduce new division terms that may not yet appear in the input constraints,
which may lead to non-termination of the abstraction procedure.

Scalable Bit-Blasting with Abstractions

185

Table 2. Lemmas for terms () ¢ S with ¢ € {-, +, mod }. We use ¢ for the constant
introduced to abstract ¢ s, hand-crafted lemmas are marked with *, and ¢ € [0, w —1].
Lemma ID subscripts indicate bit-width restrictions for correctness.

bvmul

1" sm2 > trr<<i 1oy t# (1|~ ®s))

2" sm -2 > tr—z<<i 1200 t#(~1] (z@s))

3 ((—s]s)&t)~t 13 z® (r<<(s+1t) —1)
4 t[0] = (x[0] & s[0]) 14 zZ (11— (zr<<(s—1t)))
Sor s~ (L& (2] 5)) 15 s (14 (s<<(t —x)))
6.1 (x&t)#(s]|~t) 16 s#E(1—(s<<(t —x)))
7ot ((s]l)<(t<Ka)) 17 s (14 (s<<(x—1t)))
8 sx (s <<(x & (1>>1))) 1821 t (1| (x+5s))

9so t24 (1& ((z & s)>>1)) 19 z @ ~(r<<(s+t))

10 216 (z<L(sdt)))

bvudiv

1" se2' =>trr>>1 19 (x>t) % (s]|t)

2% (smax Asz0) =>tx1 20 s & ~(s>(t>>1))

3" sm0=>tx~0 21o1 z & ~(z & (t<< 1))
4* (x~0As%0)=tx0 22 t >y ((2<<1)>>5)
5% s%0 =>t<,=x 23 x>, (s<<K~(z | t))
6" (s~~0 A zZ%A~0) = tx0 24 x>, (t<<~(z] s))

7 x>y —(—s & —t) 25 x>y (D (E>>(s>>1)))
8 —(s|1) >t 26 x>y (@ (s>>(t>>1)))
9 t % —(s & ~x) 27 T >y (s<K~(zDt))
10 (s]t) & (z & ~1) 28 T2y (<LK ~(zDs))
1 (s 1) % (v & ~t) 20 wE(t+(s|(@+59)
12 (x & —t) >, (s & t) 300 R+ A+ (1<xz)))
13 s>, (z>>1) 31 s>y ((x+1)>>1)

14 2y, ((s>(s<xt)) K1) 3200 xR+ (t+(z]9)))
15 o2, (t<<K1l)>(t<s)) 33 (s®(z]|t) >u (tB1)
16 t2>4 ((z>s5)<K1) 34 t >y (2>>(s — 1))

17 22, (z]t) & (s 1)) 35 (s—1) >y (z>1)

18 >y ((z]s) & (1< 1)) 3620 % (1—(z<<(xz—1t)))
bvurem

1 s 2 = t = (Opx(z)—q © x[i — 1:0]) 9 x>y (t] (z & s))

2" sEO =>t<ys 10 1% (t& ~(z|s))

3" r~0=>1t~0 11 t% (~x | —s)

4 sc0=>trz 12 (t& (x| s)) >u (t&1)
5% sxx = t~0 1320 z & (—x| —~t)

6" r<ys > tRT 14 (x+—s)>u t

- ~—s>,t 15 (—s®(xz|s)>ut

8w (@& (s|(t]—s)

186 A. Niemetz et al.

Remainder. Lemma 1 exploits the fact that unsigned division by a power of 2
can be described as a logical right shift operation: the resulting remainder cor-
responds to the value of the bits that are shifted out. Lemma 2 states that a
division by a non-zero divisor yields a remainder that cannot be greater than the
divisor. Lemmas 3-5 cover special cases: when one of the operands is zero, and
division by itself. Lemma 6 captures the fact that a division with a dividend that
is less than the divisor yields the dividend as the remainder. Lemma 7 is derived
from invertibility condition ~ — s >, y for x mod s &~ y from [31] in a similar
manner as the lemma derived from the invertibility condition for multiplication.

Powers of Two Lemmas. The powers of two lemmas for multiplication (lem-
mas 1-2), division (lemma 1), and remainder (lemma 1) use 2 to denote a
specific power of two. They do not symbolically encode whether a term s rep-
resents a power of two since this would require counting the number of trailing
zero bits 4. Instead, if the current model value of s is a power of two, we instan-
tiate the corresponding lemma with this value. In the worst case, this will add
k(s) instantiations of the lemma if all powers of two for bit-width (s) are enu-
merated. However, this is rarely the case and the lemmas are cheap in terms of
bit-blasting.

4.2 Lemma Scoring Scheme

Compiling a set of lemmas to describe properties of an abstracted operator ¢
requires careful consideration of several key aspects: (¢) lemmas for ¢ should not
introduce new terms that will be abstracted (introducing new terms with ¢ may
lead to non-termination of the abstraction procedure and introducing terms with
abstracted operators other than ¢ may yield potentially expensive abstractions
in case they have to be bit-blasted); (i¢) lemmas should minimize introducing
new terms with potentially expensive operators that are not abstracted (e.g., bit-
vector addition); and (ii4) possible candidate lemmas should be filtered based
on their quality to avoid adding redundant (subsumed) lemmas and to ensure
that included lemmas maximize the number of spurious models to rule out.

The former two impose syntax restrictions (see Sect. 4.3), and for the purpose
of addressing (ii7), we define a scoring scheme that measures the quality of a
candidate lemma for operator ¢ as follows.

Definition 1 (Lemma Score). Let x ¢ s be the term to abstract, and let t be
the constant abstracting x o s such that xos = t. Given a lemma £[z, s,t] defined
over {x, s,t} such that xos ~t = £. We define SCORE({,w), the score of { for
a given bit-width w, as the number of triplets (v¥,v%,v) of bit-vector values of
bit-width w where l[x+— v, s—v* t—vt] evaluates to T.

For a term z(4) ¢ s[4}, the worst possible lemma score is the number of all possible
combinations of triplets (2 x 2 x 2% = 4096), and the best possible score is
the number of possible combinations of z and s (2% x 2* = 256). Thus, the
difference between the worst and best possible lemma score for any z ¢ s is the

Scalable Bit-Blasting with Abstractions 187

number of incorrect triplets, i.e., triplets for which v® ¢ v® % v*. Since lemmas
over-approximate literals x ¢ s & ¢, their score is a measure for the degree of
over-approximation: a lower score indicates higher quality of a lemma as a higher
number of incorrect triplets is ruled out.

For our hand-crafted lemmas for multiplication from Sect. 4.1, for bit-width
4 we compute as scores: {1: 2416, 2: 2791, 3: 1961, 4: 2048}. This indicates that
they, individually, rule out 34-55% of incorrect triplets. Further, lemma 3, the
lemma derived via the invertibility condition for multiplication over equality, is
the strongest lemma of the four. Similarly, our hand-crafted lemmas for division
and remainder rule out 6-50% of incorrect triplets for bit-width 4, with lemma
5 the strongest lemma for division, and lemma 7, the lemma derived from an
invertibility condition, the strongest for remainder.

Individual lemma scores are a valuable measure of quality for a single lemma.
However, triplet coverage for individual lemmas may intersect. Thus, when con-
sidered as a set, in a refinement scheme, it is necessary to define a measure for
the quality of sets of lemmas to determine if extending the set with additional
lemmas improves the number of incorrect triplets that are ruled out.

Definition 2 (Score of Lemma Set). Given a set of lemmas L such that for
each L[z,s,t] € L, xos ~t = (. We define the score of L for a given bit-
width w SCORE(L, w) as the number of triplets (v®,v¢,vt) of bit-vector values of
bit-width w where N {[z—v* s—vs t—vt] =T.

lel

For example, for x(y) - s, the score of the set of hand-crafted lemmas is 704,
which indicates that it already rules out 88% of the incorrect triplets. Similarly,
for division and remainder, for bit-width 4 the sets of hand-crafted lemmas rule
out 71% and 91% of incorrect triplets. Note that extending a set of lemmas £
with a lemma ¢ ¢ £ can improve but not worsen its score. If ¢ is subsumed by L,
SCORE(L, w) remains unchanged. While our sets of hand-crafted lemmas from
Sect. 4.1 already rule out a large number of incorrect triplets, their score also
indicates that a considerable number of incorrect triplets is still not covered. We
thus, in the following, propose an automated framework for synthesizing lemmas
with respect to our sets of hand-crafted lemmas via abductive reasoning.

4.3 Synthesizing Lemmas via Abduction

The lemmas from Sect. 4.1 describe basic properties of the abstracted operators
and are hand-crafted but strong, as indicated by their score. However, a consider-
able number of incorrect triplets is still uncovered for each set. Further, manually
crafting lemmas that are effective with respect to an already existing set is chal-
lenging for arithmetic bit-vector operators, mainly due to overflow semantics. In
this section, we propose an automated way to synthesize lemmas with respect
to our sets of hand-crafted lemmas via syntaz-restricted abductive reasoning [34]
and focus on synthesizing lemmas for bit-vector operators {-, =, mod }. Our app-
roach, however, can easily be generalized to other operators and theories.

188 A. Niemetz et al.

Since we are over-approximating literals z ¢ s = t, we are trying to find lem-
mas £[z, s,t] such that (z ¢ s)~t = {. Further, as mentioned in Sect.4.2, we
require that ¢ does not contain specific operators (the set of abstracted oper-
ators, including ¢ itself) and that the number of occurrences of more expen-
sive operators (such as bit-vector addition) is limited. The best possible over-
approximation of operator ¢ would exactly describe the semantics of ¢ without
including ¢, which seems unattainable under the given constraints. The worst
possible over-approximation, on the other hand, is the formula T. We are thus
looking for simple but non-trivial lemmas that improve the scores of our ini-
tial, hand-crafted lemma sets. We formulate this problem as an instance of the
general abduction problem, which is defined as follows.

Definition 3 (Tsy-Abduct). Given two quantifier-free Ty -formulas A and
B, a Tgy-abduct is a quantifier-free formula C such that A N C = B is Tgy-
valid, and A N C is Ty -satisfiable.

Definition 4 (Non-trivial Lemma). Given a Tpy-literal ¢ asxos~t, a ¢
-lemma £[x,s,t] is a quantifier-free T-formula defined over {z,s,t} such that
@ = L is Ty -valid. Lemma £ is non-trivial if it is not Tgy -valid.

Finding a non-trivial lemma ¢ for a given literal ¢ amounts to finding an
abduct —¢ of the formulas T and —p.

Lemma 1. Let ¢ be a Ty -literal as above. Ty -formula £ is a non-trivial -
lemma if and only if =€ is a Tgy -abduct of the formulas T and —p.

Proof. Suppose =/ is a Ty-abduct of T and —. In particular, T A =f = —¢,
and therefore ¢ = £, and thus £ is a p-lemma. And since, by Definition 3, T A —¢
is T'gy-satisfiable, we get that £ is not Tgy-valid. For the converse, suppose /£ is
a non-trivial p-lemma. Then, ¢ = /¢ is Tgy-valid. In particular, T A =0 = -
is Ty -valid. Further, since £ is not Tgy-valid, T A —f is Ty -satisfiable. a

Since we require certain syntactic restrictions for p-lemmas, we base our
lemma synthesis framework on the syntax-restricted abductive reasoning frame-
work of [34] as implemented in the SMT solver cvch [7]. This abduction frame-
work is based on Syntax-Guided Synthesis (SyGuS) [6] and thus guided by a
user-defined grammar. Note that, alternatively, our lemma synthesis problem
could be directly expressed as a SyGuS problem. However, non-triviality of lem-
mas requires the introduction of quantifiers in the specification of the formula to
synthesize, whereas this quantification is implicit in the abduction formulation.

Our goal is to automatically extend a set of ¢-lemmas £ (may be empty)
for a given literal ¢ (as defined above) with a set of lemmas ' such that each
lemma ¢ € I improves the score of £. Algorithm 2 shows the main procedure
of our abduction-based lemma synthesis approach. Function SYNTHLEM takes
as input a literal ¢, the bit-width w for which ¢ is defined, a set of initial
lemmas Z, a set G of grammars that define syntax restrictions for lemma con-
struction, and a limit n of number of lemmas to synthesize for each grammar.
The procedure constructs and returns a set of p-lemmas £ such that Z C £ and

Scalable Bit-Blasting with Abstractions 189

Algorithm 2. Synthesizing lemmas. Function SYNTHLEM assumes the avail-
ability of an abduction reasoner GETABDUCT. Function SCORE computes the
score of a set of lemmas w.r.t. a given bit-width w as in Definition 2.

| function SYNTHLEM(p, w, Z, G, n)
2 L—T > Populate with initial lemmas

3 for v in G do
4 r—o
5 for 7 in [1,n] do > Synthesize lemmas via abduction

6 a <— GETABDUCT(T, —¢p, 7)
7 if a = L then break

8 Mf—ru {—‘a}

9 end for

10 repeat > Merge synthesized lemma with £
11 Lmin < some £ € [that minimizes SCORE(L U {¢}, w)

12 L— LU {émin}, [T \ {émin}

13 until £in =T VI =0

14 end for

15 return £

16 end function

7 C L = SCORE(L,w) < SCORE(Z, w) as follows. The resulting set of lemmas £
is initialized with the given set of initial lemmas Z (in our case our hand-crafted
lemmas). Then, for each grammar v € G, in lines 5-9, first a set of at most n
lemmas I is generated via abductive reasoning (GETABDUCT). From this set, in
lines 1013, L is extended only with those lemmas ¢ that improve the score of L.
Lemmas are synthesized via an incremental abduction engine GETABDUCT (in
our case cvceh) by iteratively asking for n new T'zy-abducts of formulas T and —¢,
constructed from the operators in grammar . Function GETABDUCT returns L
if no more abducts are found (line 7), either because the search terminated or a
resource limit was reached. Note that we used n = 100 and a time limit of 100s
per call to GETABDUCT. Both limits were found to be a good middle ground
between generating sufficiently many lemmas while not overwhelming the solver
with too many abduction queries.

In the context of synthesizing lemmas for Ty operators, the search for lem-
mas via abduction is limited to formulas where the bit-width of Tgy -terms is
explicitly given. Consequently, the Ty -abducts determined via GETABDUCT
(and thus the resulting lemmas) are only guaranteed to be correct for this spe-
cific bit-width. Further, abductive reasoning for theory Tsy as in [34] is based
on a Tgy-solver with the same limitations our abstraction-based approach aims
to address: it relies on bit-blasting and thus does not scale well for increasing
bit-widths. We thus chose a bit-width of 4 for z, s and t as a reasonable com-
promise to not overwhelm the abduction engine while avoiding the generation
of lemmas that are specific to very small bit-widths. To minimize the risk of
including bit-width specific lemmas in the set of synthesized lemmas £, in func-
tion SYNTHLEM, before adding lemma ¢ to £, we introduce an additional step

190 A. Niemetz et al.

where we verify the correctness of ¢ for bit-widths 4-10. And finally, before incor-
porating synthesized lemmas in our refinement schemes, we verify each lemma
up to a certain, large bit-width (see Sect.4.4). Note that while the additional
verification step during synthesis encountered lemmas that were only valid for
bit-width 4, no lemmas that passed this verification step failed verification for
larger bit-widths. Further note that bit-vector multiplication is commutative. As
an optimization we thus add the corresponding symmetric cases of hand-crafted
lemmas to the set of initial lemmas Z when applicable.

Our abduction-based lemma synthesis procedure requires the definition of
a set of grammars G to describe syntax restrictions for constructing lemmas.
Since the search space for SyGuS-based abduction heavily depends on such an
input grammar, we opted for diversification via a set of grammars rather than
a single, larger grammar. Set G consists of the of grammars g to v¢ defined via
a common grammar ¥, = {x, s, t, &, %, <,, <,,0, 1} as follows:

Y0 =Y U{~, &, |, @} 1 =3 U{d}
1= U{-~, &} vs = Y2 U {+}
y2 = U{®} Y6 =Y U{—+, —1, <<, >}

Y3 =" U {<<, >>}

Note that in grammars g to g above, we use symbol ‘—’ for negation and
—4 for subtraction to ensure that they are distinguishable. Further note that
we include bit-vector addition (and operators such as subtraction and negation
that can be rewritten as addition) even though it is an arithmetic operation
and thus one of the more expensive operators when bit-blasting. Preliminary
experiments showed that including addition, negation and subtraction in some
of the grammars is beneficial for finding useful lemmas.

Extending our set of hand-crafted lemmas from Sect.4.1 with the lemmas
synthesized via abduction as given in Table 2 improves the score for multiplica-
tion from 704 to 490, which corresponds to ruling out 94% of incorrect triplets
for our final set of tier 1 and tier 2 lemmas. Similarly, the score for division
improves from 1366 to 394 (96% coverage of incorrect triplets), and the score for
remainder improves from 616 to 400 (96% coverage of incorrect triplets).

Finally, it is important to note that we synthesized lemmas via abduction
in an offline manner, as opposed to during the solving process. That is, after
automatically generating the lemmas, they were incorporated into the solver
together with the hand-crafted lemmas. Thus, the set of incorporated tier 1 and
tier 2 lemmas is fixed and independent from the input problem.

3

4.4 Lemma Verification

We verified the correctness of lemmas ¢ from Table 2 for bit-widths from 1-256
by checking for literal x ¢ s ~ t if formula x ¢ s =~ t A =/ is T-unsatisfiable.
Given that the lemmas based on powers of two are well-known and universally
valid properties of the corresponding bit-vector operators, we omit the additional

Scalable Bit-Blasting with Abstractions 191

131,584 benchmarks required to check each instance of these lemmas up to bit-
width 256. For the remaining lemmas, we generated 16,896 benchmarks and used
the SMT solvers Bitwuzla [29], cveb [7], Yices [17], and Z3 [27] for verification.
We ran these verification tasks on a cluster of 22 machines with Intel(R) Xeon(R)
Gold 6348 CPUs. For each solver and benchmark pair, we used a CPU time limit
of 8h and a memory limit of 8GB. For a given bit-width, we consider a lemma
to be correct if at least one solver determined unsat, and as incorrect if at least
one solver determined sat. Overall, all solver-benchmark pairs required 1,112d
of CPU time. We did not encounter any disagreements between solvers and were
able to complete all verification tasks, with Yices individually solving 96.49%,
Bitwuzla 96.47%, cveh 96.29%, and Z3 95.05% of all tasks.

We were able to verify the correctness of all hand-crafted lemmas for bit-
widths 1-256, and of all synthesized lemmas for bit-widths 3-256. Synthesized
lemmas are correct by construction for bit-width 4, which is confirmed by this
experiment. However, some of the synthesized lemmas do not hold for very small
bit-widths, as indicated by the bit-width restrictions given in Table2. As men-
tioned above, if terms of such a restricted size are abstracted, these lemmas
must not be considered for refinement. However, in the context of integrating
our abstraction approach into Bitwuzla, all lemmas are applicable since we only
abstract terms of size 32 and above (see Sect. 5).

Verification of the correctness of our lemmas up to bit-width 256 establishes
sufficient confidence of their correctness for bit-widths larger than 256. We leave
the task of formally proving their correctness for all bit-widths to future work. A
recent technique for reasoning over bit-vectors with parametric bit-width based
on a reduction to the quantified combination of the theories of uninterpreted
functions and non-linear arithmetic was proposed in [32]. However, preliminary
experiments showed that except for a small number of lemmas, verification of
our lemmas using this technique is not feasible.

5 Integration

We extended the state-of-the-art SMT solver Bitwuzla [29] with our proposed
framework. Bitwuzla supports quantified and quantifier-free bit-vector reasoning
in combination with arrays, floating-point arithmetic and uninterpreted func-
tions and was the best performing solver across supported logics in the SMT
competition in 2023 [5]. Further, Bitwuzla reduces floating-point arithmetic to
the theory of bit-vectors, which allows us to also apply our approach to floating-
point arithmetic problems that do not involve bit-vector constraints.

Bitwuzla implements a lazy, CEGAR-based SMT paradigm called lemmas
on demand [10,26], but with a bit-vector abstraction (and thus a Tpy-solver)
instead of a propositional abstraction at its core. In this bit-vector abstraction,
non-7Tgy-atoms are abstracted as Boolean constants and non-Tgy-terms are
abstracted as bit-vector constants. These abstracted terms are then handled by
the corresponding theory solvers. This architecture allows an easy and seamless
integration of our abstraction module. The interaction between the Tzy -solver of

192 A. Niemetz et al.

Algorithm 3. The lemmas on demand loop of Bitwuzla with multiple theory
solvers, extended with our abstraction module AM (highlighted in blue).

1 function SOLVE(A)
r «— UNKNOWN, £ «— ()
repeat

A — AM::ABSTRACT(A U L)

r, M « Tpy::SOLVE(A) > Solve Bit-Vector Abstraction of A
6 if r = UNSAT then break end if
7 if (£« Trp::CHECK(M)) # 0 then continue end if > FP Solver
8 if (£ <~ AM::CHECK(M)) # () then continue end if
9 if (£ « Ta::cHECK(M)) # 0 then continue end if > Arrays Solver
10 if (£ «— Tyr::CHECK(M)) # (0 then continue end if > UF Solver
11 L + Tg::CHECK(M) > Quantifiers Solver
12 until £ =0
13 return r
14 end function

T W N

Bitwuzla and our abstraction module AM is implemented as shown in Algorithm
3. Prior to sending assertions to the Ty -solver, the abstraction module processes
each assertion and introduces abstractions for all relevant bit-vector terms. After
the T'gy-solver determines that the set of abstracted assertions is satisfiable, the
abstraction module checks if all abstracted bit-vector terms are consistent and
adds refinement lemmas when needed.

Note that the order in which the theory solvers and the abstraction module
are called is not arbitrary. The Trp-solver word-blasts floating-point constraints
to Tgy and, thus, introduces new bit-vector terms. Hence, the abstraction mod-
ule is called after the Trp-solver to ensure that for pure Trp-formulas, the Trp-
solver first generates word-blasting lemmas so that the abstraction module has
bit-vector terms to abstract. For the arrays (T4) and UF (Tyr) theory solvers
and the quantifiers module (Tg), on the other hand, we have to ensure that
the bit-vector abstraction is consistent before checking the theory axioms based
on the current bit-vector abstraction model M. In preliminary experiments, the
abstraction module was called after the Ts- and Tyg-solvers, which resulted in
a degraded performance for problems involving these theories. This was a conse-
quence of the T4- and Typ-solvers generating substantially more lemmas due to
an inconsistent bit-vector abstraction. Similarly, when quantifiers are involved,
the quantifiers module is called last to ensure that the bit-vector abstraction of
all ground terms and formulas is consistent.

As an additional extension, we also implemented a more coarse-grained
abstraction approach that abstracts assertions as fresh Boolean constants. This
is not a novel technique and has been proposed in earlier literature [24]. How-
ever, it can be easily implemented in our proposed abstraction framework with a
simple refinement scheme for assertions. The goal of this refinement scheme is to
incrementally add assertions as refinements that evaluate to L under the current

Scalable Bit-Blasting with Abstractions 193

model of the bit-vector abstraction. This is combined with our main approach of
term abstraction in an interleaved manner by limiting the number of assertion
refinements added per refinement iteration. When adding assertions as refine-
ment, the abstraction module abstracts all relevant bit-vector terms occurring
in these assertions, and before new assertions are added, it ensures that the cur-
rent set of term abstractions is consistent. Only when all currently abstracted
terms are consistent, more assertions may be added as refinement. The termina-
tion criteria are the same as with term abstraction only. If all of the remaining
assertions evaluate to T under the current model, we conclude with sat. If a
subset of the added assertions is already unsatisfiable, we found an unsat core
and conclude with unsat.

Configuration. The number of assertion refinements per iteration is configurable
and set to 100 refinements per iteration. Similarly, the minimum bit-width of
terms defined over {-, =, mod } that we abstract is configurable and limited
to terms of size 32 and above. Further, since value instantiation lemmas only
rule out one spurious model, our implementation limits the number of value
instantiations per abstraction ¢ based on its bit-width to x(t)/8 instantiations.
For example, for an abstracted term ¢ of bit-width 32, we add at most four value
instantiations before we add a bit-blasting lemma as final refinement for ¢.

6 Evaluation

We evaluate the performance of our bit-vector abstraction approach as inte-
grated in Bitwuzla on five different benchmark sets: certora (1,988 benchmarks),
ethereum (3,173 benchmarks), syrew (15,000 benchmarks), ff (1,224 bench-
marks), and smtlib (155,269 benchmarks). Benchmark sets certora and ethereum
are industrial benchmarks that arise from smart contract verification applica-
tions [15], provided by Certora [1] and the Ethereum Foundation [3]. The certora
set consists of SMT queries generated by the Certora Prover [2] and is split into
sets certora; and certoras. The ethereum set contains benchmarks generated
by hevm [4], a symbolic execution engine for the Ethereum virtual machine.
Benchmarks in these sets are specifically encoded over bit-vectors of size 256, in
combination with arrays, uninterpreted functions, and quantifiers.

Benchmark set syrew serves as a more controlled and balanced set to specif-
ically evaluate the effectiveness of our abstraction approach for each abstracted
operator. We generated three sets of equivalence checks, each only involving one
of the abstracted operators. For that purpose, we enumerated Ty -terms and
Tpy-formulas that are equivalent for bit-width 4 with the SyGuS-solver of cvc5.
For each set, we enumerated 500 equivalence checks using as SyGuS grammar
{0,1, 2,8, t, /2, %, <u, <u,~, &, <<, >>}, extended with only one of {-, +, mod}.
The resulting 1,500 benchmarks were then instantiated for bit-widths 2 with
i € [4,13] yielding 15,000 benchmarks in total, the majority unsatisfiable.

The ff benchmark set originates from [33] and consists of translation vali-
dation problems of zero-knowledge proof compilers in two sets: an encoding in

194 A. Niemetz et al.

the theory of finite fields Trr and a translation to Ty that exclusively uses
arithmetic bit-vector operators {+, -, mod} over bit-vectors of size 510.

Benchmark set smtlib contains all non-incremental benchmarks of all logics
in the SMT-LIB [9] benchmark library supported by Bitwuzla. This includes all
quantified and quantifier-free logics involving the theories of bit-vectors, arrays,
floating-point arithmetic and uninterpreted functions (24 in total). Note that
this also includes floating-point arithmetic logics that do not involve the theory
of bit-vectors since Bitwuzla word-blasts floating-point terms to bit-vector terms.

We implemented our novel term abstraction technique in our main configura-
tion ABSTR-T. We additionally distinguish two configurations that enable asser-
tion abstraction as described in Sect.5: configuration ABSTR-A, which enables
assertion abstraction only, and configuration ABSTR-TA, which enables both term
and assertion abstraction. We evaluate these configurations against Bitwuzla
version 0.3.2, cveb version 1.1.0, and Z3 version 4.12.4 (in their default config-
uration, using bit-blasting for Tgy). Both cveb and Z3 are industrial-strength
SMT solvers that support a wide range of theories, including the theories sup-
ported by Bitwuzla. We further compare against cvcb-ib, a configuration of cveb
that reduces bit-vector problems to non-linear integer arithmetic problems via
int-blasting [36]. Note that on the ff benchmark set, we evaluate these configu-
rations only on the Ty subset, and additionally compare against a dedicated
Trp-solver implementation of cve5 (cveb-ff) on the Trp subset.

We ran all experiments on a cluster of 25 machines with Intel(R) Xeon E5-
2620 v4 CPUs. For each solver and benchmark pair, we allocated one CPU core
and 8GB of memory with a time limit of 1200s. In case that a solver terminated
with an error or ran into the memory limit on a specific benchmark, we counted
its runtime on that benchmark as 1200s as a penalty.

Table 3 summarizes the results for each solver grouped by benchmark set
and ordered by number of solved benchmarks. Overall, ABSTR-T significantly
outperforms all other bit-blasting solvers and the int-blasting solver cvch-ib on
all benchmark sets. Our abstraction approach considerably reduces the memory
usage across all sets, solving more benchmarks with a lower number of memory
outs. Only on the certora sets, cveh-ib has a smaller memory footprint, which is
due to the more memory-efficient translation of bit-vector to integer arithmetic.

The certora set is divided into the certora; and certoras subsets, which
correspond to the use of two different encodings arising from the same appli-
cation. Both sets rely on 256-bit bit-vectors and uninterpreted functions and
make heavy use of arithmetic operators. Set certora; is a proprietary and more
diverse set of benchmarks and is sampled from a different (and more diverse)
set of smart contracts than certorag. It uses an older, less optimized encoding
that involves quantifiers and overflow predicates, while certoras does not rely
on quantifiers and was successfully optimized for existing bit-blasting solvers,
which struggled on the older encoding. This can be seen in Table 3, where the
best non-abstraction-based bit-blasting configuration (Bitwuzla) solves only 13%
of certora; but 74% of certoras. Benchmarks in the certora; set usually con-
tain a large number of assertions (15k on average, up to 100k) and are thus

Scalable Bit-Blasting with Abstractions 195

Table 3. Number of solved benchmarks (Solved), timeouts (TO), memory outs (MO),
penalized runtime (T'), memory usage of all benchmarks (M), and runtime T on com-
monly solved benchmarks, grouped by benchmark set and solvers. Note that the num-
ber (z/y) for each benchmark set indicates the number of commonly solved instances
z and the total number of benchmarks y in the set.

Benchmarks Solver Solved | TO MO T [s] |M [GB] | T [s]
ABSTR-TA 573 231 46 448k | 2,492 234
certora ABSTR-A 386 140 324 681k | 5,201 963
(10/850) ABSTR-T 258 155 437 760k | 4,807 83
cveh-ib 147 674 0 879k 667 52
Bitwuzla 111 86 653 915k | 6,182 192
cveh 90 113 610 923k | 6,064 341
73 30 447 373 989k | 4,944 484
ABSTR-TA 866 264 8 370k | 1,024 11k
certoras ABSTR-T 866 263 9 384k 1,402 17k
(227/1,138) ABSTR-A 844 269 25 433k | 2,661 19k
Bitwuzla 843 266 29 439k | 2,944 23k
cveh 705 223 210 603k 4,027 22k
cveh-ib 666 472 0 643k 106 15k
73 612 492 34 679k | 1,866 24k
ABSTR-T 3,173 0 0 407 11 102
ethereum Bitwuzla 3,173 0 0 720 29 228
(3,138/3,173) 73 3,169 4 0 6k 107 679
cved 3,158 0 1 18k 36 377
cveb-ib 3,141 20 0 39k 21 128
ABSTR-T | 14,142 583 | 276 | 1,225k | 4,409 2%
syrew Bitwuzla 11,961 744 | 2,296 | 3,955k | 23,483 24k
(5,528/15,000) z3 9,992 833 | 4,175 | 6,198k | 39,506 78k
eveb 9,003 797 | 5,200 | 7,498k | 48,421 109k
cveh-ib 7,974 5,137 | 1,632 | 8,836k | 19,850 180k
cveh-ff 973 129 122 313k | 1,364 0
ABSTR-T 480 729 15 913k | 2,762 0
](9;2/17224) cveb-ib 304 822 98 | 1,104k 1,074 0
Bitwuzla 223 71 930 | 1,211k | 8,360 277
73 145 56 1,023 | 1,299k | 8,893 3
cved 40 0| 1,184 | 1,422k | 9,523 589
ABSTR-T | 148,554 | 1,944 152 | 8,770k | 8,566 64k
smtlib Bitwuzla | 148,492 1,966 193 | 8,748k | 8,953 64k
(125,037/155,269) 73 145,121 4,846 565 | 13,528k | 18,278 693k
cveh 144,829 3,775 285 13,513k | 11,029 213k
cvebh-ib 127,144 | 24,479 194 | 39,647k | 15,233 | 5,666k

good candidates for evaluating assertion abstraction in combination with term
abstraction. Benchmarks in the certoras set, on the other hand, usually contain
a significantly smaller number of assertions (less than 1k per benchmark). Hence,

196 A. Niemetz et al.

on the certora benchmark sets, in addition to configuration ABSTR-T, we also
evaluate the two configurations ABSTR-A and ABSTR-TA that enable assertion
abstraction. On both sets, ABSTR-T considerably improves over bit-blasting. On
the certora; set, ABSTR-A outperforms ABSTR-T, and combining assertion and
term abstraction (ABSTR-TA) significantly outperforms either, both in terms of
solved benchmarks and memory usage. We observed that in the majority of cases
where ABSTR-TA improves over ABSTR-T, the benchmark is unsatisfiable and
the size of the unsatisfiable core is only a small fraction of the overall number
of assertions. On the certoray set, however, ABSTR-A is less effective since these
benchmarks contain a significantly smaller number of assertions. Configuration
ABSTR-TA still improves over ABSTR-T in terms of overall memory usage.

Note that for the benchmark sets ethereum, ff and syrew, enabling assertion
abstraction was not applicable for a majority of the benchmarks due to the
low number of assertions (less than 100 per benchmark). On benchmark set
smitlib, the effects of assertion abstraction were overall inconclusive. Thus, due
to space constraints, for the remaining sets, we exclude configurations ABSTR-A
and ABSTR-TA from the evaluation.

On the ethereum set, both ABSTR-T and Bitwuzla solve all benchmarks.
However, ABSTR-T is more than 40% faster and requires 60% less memory. On
the commonly 3,138 solved benchmarks, ABSTR-T is the fastest solver, closely
followed by cvch-ib. Both outperform the other bit-blasting solvers. Note that on
this benchmark set, cved and cveb-ib returned with errors due to unsupported
cases of equality over constant arrays on 14 and 12 benchmarks, respectively.

On the syrew set, ABSTR-T significantly outperforms all other solvers and is
more than 3x faster with a 5x lower memory usage compared to the second best
solver Bitwuzla. On the commonly solved 5,528 benchmarks, ABSTR-T is 12-90x
faster than the competition. The int-blasting configuration cvcb-ib comes in last,
mainly due to the occurrence of bit-wise operations. Bit-wise operators do not
have a direct translation to integers and require cvcb-ib to resort to abstraction
schemes, which is more expensive than the direct translation via bit-blasting.

On the ff benchmark set, as expected, the native finite field solver cveb-ff
solves the most benchmarks overall. However, ABSTR-T significantly improves
over bit-blasting (Bitwuzla) and int-blasting (cveb-ib) with the least number of
memory outs overall. Surprisingly, ABSTR-T is able to solve 36 benchmarks that
cveh-ff cannot. None of the other solvers solves benchmarks that cve5-ff cannot.

On the smtlib set, ABSTR-T improves over Bitwuzla in 10 out of the 24 logics
in terms of number of solved benchmarks, with 6 of them being floating-point
arithmetic logics. Most notably, ABSTR-T was able to improve the number of
solved instances X and runtime in percent Y on commonly solved instances
(X, Y%) over Bitwuzla in logics FP (+5, —16%), BVFP (0, —45%), QF_ABVFP (+1,
—33%), QF_ABVFPLRA (0, —23%), QF_BVFP (+1, —45%), QF_-BVFPLRA (+9, —46%),
QF_FP (+23, —13%), and QF_FPLRA (+1, -7%).

Scalable Bit-Blasting with Abstractions 197

The only significant loss of -13 benchmarks is in the QF_BV logic, which is also
the only logic where ABSTR-T is significantly slower (33%) on commonly solved
instances compared to Bitwuzla. This slowdown can be primarily attributed
to the two benchmark families Sage2 and wuclid. On these two families, on the
commonly solved instances, ABSTR-T is slower by 40% and 4,100%, respectively.
This slowdown is unexpected and needs further investigation. Nevertheless, in
logic QF_BV, ABSTR-T is able to solve more unsatisfiable benchmarks with less
memory outs compared to Bitwuzla and outperforms cveh, cveb-ib and Z3 by a
significant margin (more than 1,400 solved benchmarks).

Table 4. Number of overall abstracted terms and abstraction refinements on solved
benchmarks grouped by abstracted operator and refinement tier (1: hand-crafted,
2: abduction, 3: value instantiation, 4: bit-blasting).

Terms Refinement Tier

Operator | Abstracted | 1 2 3 4 Total
367,101 579,369 | 67,221 | 650,086 | 134,525 | 1,431,201
= 55,461 126,223 1 109,137 | 73,019 |7,024 | 315,403
mod 62,328 161,270 | 5,614 |30,350 | 1,326 | 198,560

We further performed an analysis of term abstractions and abstraction refine-
ments for all benchmarks solved by ABSTR-T in all benchmark sets. Table 4 sum-
marizes our findings, grouped by refinement tier and abstracted operator. Over-
all, ABSTR-T abstracted 367,101 multiplication terms, 55,461 unsigned division
terms, and 62,328 unsigned remainder terms. Out of these, only 134,525 (37%)
multiplications, 7,024 (13%) divisions, and 1,326 (2%) remainders were bit-
blasted as last resort via adding tier-4 lemmas. For the remaining 63%/87%,/98%
of multiplication/division/remainder terms, refinement with tier 1-3 lemmas
only was sufficient to solve the benchmarks. Out of the solved benchmarks where
ABSTR-T abstracted any bit-vector terms, 80% were solved without bit-blasting
any of the abstracted terms. For the remaining 20% of solved benchmarks, 78%
of abstracted terms were bit-blasted.

For the benchmarks solved with abstraction, ABSTR-T required on average 37
refinement iterations (median 4). Further, all lemmas except bvudiv lemma 21
and bvurem lemma 11 from Table 2 were used for solving these instances. Tier-
1/2/3/4 lemmas were used in 76%/27%/30%/20% of solved instances.

We further evaluated the usefulness of the abduction-based lemmas (tier 2)
by disabling these lemmas on the syrew benchmark set. Without these lem-
mas, ABSTR-T solves 336 less benchmarks, has 2x more memory outs, and is
23% slower on commonly solved instances while consuming 61% more mem-
ory. Without tier-3 lemmas the number of solved instances for benchmark sets
certora/ certoras/syrew/ff /smtlib change by —12%/—1%/—1%/—6%/+0.01%.
The artifact of this paper is archived and available in the Zenodo open-access
repository at https://zenodo.org/record/10913320.

https://zenodo.org/record/10913320

198 A. Niemetz et al.

7 Conclusion

We have presented a novel abstraction-refinement approach to improve the scala-
bility of bit-blasting arithmetic terms with large bit-widths. We have introduced
a lemma scoring scheme and an abduction-based framework for synthesizing
refinement lemmas, which we include in our four-tiered refinement schemes. We
have extended the state-of-the-art SMT solver Bitwuzla with our techniques and
showed that this significantly improves solver performance on a diverse set of
benchmarks coming from a variety of applications, including smart contract ver-
ification and zero-knowledge proofs. Incorporating existing under-approximation
techniques with our approach is an interesting direction for future work.

References

1. Certora (2024). https://www.certora.com/

2. Certora prover white paper (2024). https://docs.certora.com/en/latest/docs/
whitepaper/index.html

3. Ethereum foundation (2024). https://ethereum.foundation/

4. hevin symbolic execution engine smt queries (2024). https://github.com/
msooseth /eth-bench-smt-queries

5. SMT competition 2023 (2024). https://github.com/smt-comp/2023

6. Alur, R., et al.: Syntax-guided synthesis. In: Formal Methods in Computer-Aided
Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013, pp. 1-8. IEEE
(2013). https://ieeexplore.ieee.org/document/6679385/

7. Barbosa, H., et al.: cvch: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415-442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9_24

8. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017). http://smt-
lib.org

9. Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2023)

10. Barrett, C.W., Dill, D.L., Stump, A.: Checking satisfiability of first-order formulas
by incremental translation to SAT. In: Brinksma, E., Larsen, K.G. (eds.) Computer
Aided Verification, pp. 236-249. Springer Berlin Heidelberg, Berlin, Heidelberg
(2002). https://doi.org/10.1007/3-540-45657-0_18

11. Bozzano, M., et al.: Encoding RTL constructs for MathSAT: a preliminary report.
Electron. Notes Theor. Comput. Sci. 144(2), 3-14 (2006)

12. Brummayer, R.: Efficient SMT Solving for Bit-Vectors and the Extensional Theory
of Arrays. Ph.D. thesis, Informatik, Johannes Kepler University Linz (2009)

13. Bruttomesso, R., et al.: A lazy and layered SMT(BV) solver for hard indus-
trial verification problems. In: Damm, W., Hermanns, H. (eds.) Computer Aided
Verification, pp. 547-560. Springer Berlin Heidelberg, Berlin, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73368-3_54

14. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.A.:
An abstraction-based decision procedure for bit-vector arithmetic. Int. J. Softw.
Tools Technol. Transf. 11(2), 95-104 (2009). https://doi.org/10.1007,/S10009-009-
0101-X

https://www.certora.com/
https://docs.certora.com/en/latest/docs/whitepaper/index.html
https://docs.certora.com/en/latest/docs/whitepaper/index.html
https://ethereum.foundation/
https://github.com/msooseth/eth-bench-smt-queries
https://github.com/msooseth/eth-bench-smt-queries
https://github.com/smt-comp/2023
https://ieeexplore.ieee.org/document/6679385/
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
http://smt-lib.org
http://smt-lib.org
www.SMT-LIB.org
https://doi.org/10.1007/3-540-45657-0_18
https://doi.org/10.1007/978-3-540-73368-3_54
https://doi.org/10.1007/S10009-009-0101-X
https://doi.org/10.1007/S10009-009-0101-X

15.
16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Scalable Bit-Blasting with Abstractions 199

Buterin, V.: Ethereum whitepaper (2023). https://ethereum.org/en/whitepaper/
Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) Computer Aided
Verification, pp. 154-169. Springer Berlin Heidelberg, Berlin, Heidelberg (2000).
https://doi.org/10.1007/10722167-15

Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification,
pp. 737-744. Springer International Publishing, Cham (2014). https://doi.org/10.
1007/978-3-319-08867-9_49

Enderton, H.B.: A mathematical introduction to logic. Academic Press (1972)
Frohlich, A., Biere, A., Wintersteiger, C., Hamadi, Y.: Stochastic local search for
satisfiability modulo theories. Proc. AAAT Conf. Artif. Intell. 29(1) (2015). https://
doi.org/10.1609/aaai.v29i1.9372

Graham-Lengrand, S., Jovanovi¢, D., Dutertre, B.: Solving Bitvectors with
MCSAT: explanations from bits and pieces. In: Peltier, N., Sofronie-Stokkermans,
V. (eds.) Automated Reasoning: 10th International Joint Conference, IJCAR 2020,
Paris, France, July 1-4, 2020, Proceedings, Part I, pp. 103-121. Springer Interna-
tional Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-51074-9_7
Hadarean, L., Bansal, K., Jovanovi¢, D., Barrett, C., Tinelli, C.: A tale of two
solvers: eager and lazy approaches to bit-vectors. In: Biere, A., Bloem, R. (eds.)
Computer Aided Verification, pp. 680-695. Springer International Publishing,
Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_45

Jonds, M., Strejcek, J.: Abstraction of bit-vector operations for BDD-based SMT
solvers. In: Fischer, B., Uustalu, T. (eds.) Theoretical Aspects of Computing —
ICTAC 2018: 15th International Colloquium, Stellenbosch, South Africa, October
16-19, 2018, Proceedings, pp. 273-291. Springer International Publishing, Cham
(2018). https://doi.org/10.1007/978-3-030-02508-3_15

Jonds, M., Strejcek, J.: Speeding up quantified bit-vector SMT Solvers by Bit-
Width Reductions and Extensions. In: Pulina, L., Seidl, M. (eds.) Theory and
Applications of Satisfiability Testing — SAT 2020: 23rd International Conference,
Alghero, Italy, July 3-10, 2020, Proceedings, pp. 378-393. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-51825-7_27
Kroening, D., Strichman, O.: Decision Procedures. Springer Berlin Heidelberg,
Berlin, Heidelberg (2016)

Manzano, M.: Introduction to many-sorted logic. In: Many-sorted logic and its
applications, pp. 3-86. John Wiley & Sons, Inc., New York, NY, USA (1993)
Moura, L.D., Ruef3; H.: Lemmas on demand for satisfiability solvers. In: The 5th
International Symposium on the Theory and Applications of Satisfiability Testing,
SAT 2002, Cincinnati, USA, May 15, 2002 (2002)

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, pp. 337-340. Springer Berlin Heidelberg, Berlin, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3_24

Niemetz, A., Preiner, M.: Ternary propagation-based local search for more
bit-precise reasoning. In: 2020 Formal Methods in Computer Aided Design,
FMCAD 2020, Haifa, Israel, September 21-24, 2020, pp. 214-224. IEEE
(2020). https://doi.org/10.34727/2020/ISBN.978-3-85448-042-6_29, https://doi.
org/10.34727/2020/isbn.978-3-85448-042-6_29

Niemetz, A., Preiner, M.: Bitwuzla. In: Enea, C., Lal, A. (eds.) Computer Aided
Verification: 35th International Conference, CAV 2023, Paris, France, July 17-22,
2023, Proceedings, Part II, pp. 3-17. Springer Nature Switzerland, Cham (2023).
https://doi.org/10.1007/978-3-031-37703-7_1

https://ethereum.org/en/whitepaper/
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1609/aaai.v29i1.9372
https://doi.org/10.1609/aaai.v29i1.9372
https://doi.org/10.1007/978-3-030-51074-9_7
https://doi.org/10.1007/978-3-319-08867-9_45
https://doi.org/10.1007/978-3-030-02508-3_15
https://doi.org/10.1007/978-3-030-51825-7_27
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.34727/2020/ISBN.978-3-85448-042-6_29
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_29
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_29
https://doi.org/10.1007/978-3-031-37703-7_1

200 A. Niemetz et al.

30. Niemetz, A., Preiner, M., Biere, A.: Propagation based local search for bit-precise
reasoning. Formal Methods Syst. Des. 51(3), 608-636 (2017). https://doi.org/10.
1007/S10703-017-0295-6, https://doi.org/10.1007 /s10703-017-0295-6

31. Niemetz, A., Preiner, M., Reynolds, A., Barrett, C.W., Tinelli, C.: On solving
quantified bit-vector constraints using invertibility conditions. Formal Methods
Syst. Des. 57(1), 87-115 (2021)

32. Niemetz, A., Preiner, M., Reynolds, A., Zohar, Y., Barrett, C.W., Tinelli, C.:
Towards satisfiability modulo parametric bit-vectors. J. Autom. Reason. 65(7),
1001-1025 (2021). https://doi.org/10.1007/S10817-021-09598-9

33. Ozdemir, A., Kremer, G., Tinelli, C., Barrett, C.: Satisfiability modulo finite fields.
In: Enea, C., Lal, A. (eds.) Computer Aided Verification: 35th International Con-
ference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part II, pp. 163—
186. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-
031-37703-7_8

34. Reynolds, A., Barbosa, H., Larraz, D., Tinelli, C.: Scalable algorithms for
abduction via enumerative syntax-guided synthesis. In: Peltier, N., Sofronie-
Stokkermans, V. (eds.) Automated Reasoning: 10th International Joint Confer-
ence, [IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part I, pp. 141-160.
Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-
030-51074-9-9

35. Zelji¢, A., Wintersteiger, C.M., Riimmer, P.: Deciding bit-vector formulas with
mcSAT. In: Creignou, N., Le Berre, D. (eds.) Theory and Applications of Satisfia-
bility Testing — SAT 2016, pp. 249-266. Springer International Publishing, Cham
(2016). https://doi.org/10.1007/978-3-319-40970-2_16

36. Zohar, Y.: Bit-precise reasoning via int-blasting. In: Finkbeiner, B., Wies, T. (eds.)
Verification, Model Checking, and Abstract Interpretation: 23rd International Con-
ference, VMCAI 2022, Philadelphia, PA, USA, January 16-18, 2022, Proceedings,
pp. 496-518. Springer International Publishing, Cham (2022). https://doi.org/10.
1007/978-3-030-94583-1_24

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/S10703-017-0295-6
https://doi.org/10.1007/S10703-017-0295-6
https://doi.org/10.1007/s10703-017-0295-6
https://doi.org/10.1007/S10817-021-09598-9
https://doi.org/10.1007/978-3-031-37703-7_8
https://doi.org/10.1007/978-3-031-37703-7_8
https://doi.org/10.1007/978-3-030-51074-9_9
https://doi.org/10.1007/978-3-030-51074-9_9
https://doi.org/10.1007/978-3-319-40970-2_16
https://doi.org/10.1007/978-3-030-94583-1_24
https://doi.org/10.1007/978-3-030-94583-1_24
http://creativecommons.org/licenses/by/4.0/

	 Preface
	 Organization
	Invited Talks
	 How to Solve Math Problems Without Talent
	 Bridging Formal Mathematics and Software Verification
	 The Art of SMT Solving
	 Contents – Part I
	 Contents – Part II
	 Contents – Part III

	Decision Procedures
	Split Gröbner Bases for Satisfiability Modulo Finite Fields
	1 Introduction
	1.1 Related Work

	2 Background
	3 Motivating Example
	3.1 Verifying the Determinism of Num2Bits
	3.2 The Challenge of Bit-Splitting
	3.3 Cooperative Reasoning: A Path Forward

	4 Approach
	4.1 Split Gröbner bases
	4.2 Abstract Procedure: Split
	4.3 Concrete Procedure: BitSplit

	5 Experiments
	5.1 Benchmarks
	5.2 Comparison to Prior Solvers
	5.3 Comparison to Variants

	6 Application
	6.1 Background on Verifiable Field-Blasting
	6.2 A New Strategy for Verifying Operator Rules

	7 Conclusion
	A Additional Background
	B Computing Bitsum Usage in Real World Projects
	C Proof of Theorem 1
	D Proof of Theorems 2 and 3
	E Proof of Lemma 1
	F The Seq Benchmark Family
	G Proof of Theorem 4
	References

	Arithmetic Solving in Z3
	1 Introduction
	2 Design Goals and Implementation Choices
	3 Linear Real Arithmetic
	3.1 Linear Solving
	3.2 Finding Equal Variables - Cheaply
	3.3 Bounds Propagation

	4 Integer Linear Arithmetic
	4.1 Patching
	4.2 Cubes
	4.3 GCD Consistency
	4.4 Branching
	4.5 Cuts

	5 Non-linear Arithmetic
	5.1 Patch Monomials
	5.2 Bounds Propagation
	5.3 Adding Bounds
	5.4 Gröbner reduction
	5.5 Incremental Linearization
	5.6 NLSat

	6 Shared Equalities
	7 Evaluation
	8 Summary and Discussion
	References

	Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic
	1 Introduction
	2 Preliminaries
	3 Classical Automata-Based Decision Procedure for LIA
	4 Derivative-Based Construction for Nested Formulae
	5 Simple Rewriting Rules
	6 Disjunction Pruning
	7 Quantifier Instantiation
	7.1 Quantifier Instantiation Based on Formula Monotonicity
	7.2 Range-Based Quantifier Instantiation
	7.3 Modulo Linearization

	8 A Comprehensive Example of Our Optimizations
	9 Experimental Evaluation
	10 Related Work
	References

	Distributed SMT Solving Based on Dynamic Variable-Level Partitioning
	1 Introduction
	2 Preliminaries
	2.1 Definitions and Notations
	2.2 Parallel SMT Solving with Partitioning
	2.3 Interval Constraint Propagation

	3 Dynamic Parallel Framework Based on Arithmetic Partitioning
	3.1 The Framework
	3.2 Partition Tree Maintenance and UNSAT Propagation
	3.3 Terminate on Demand
	3.4 A Running Example

	4 Variable-Level Partitioning for Arithmetic Theories
	4.1 Preprocessing
	4.2 The Partitioning Algorithm
	4.3 BICP in Arithmetic Partitioning

	5 Evaluation
	5.1 Evaluation Preliminaries
	5.2 Comparison to Sequential Solving
	5.3 Comparison to State-of-the-art Partitioning Strategies
	5.4 Improvement on Pure-Conjunction Formulas

	6 Conclusion and Future Work
	References

	Quantified Linear Arithmetic Satisfiability via Fine-Grained Strategy Improvement
	1 Introduction
	2 Fine-Grained Game Semantics for LRA Satisfiability
	2.1 Linear Rational Arithmetic
	2.2 Fine-Grained Game Semantics

	3 Fine-Grained Strategy Skeletons
	4 Fine-Grained Strategy Improvement
	5 Computing Counter-Strategies
	5.1 Term Selection

	6 Synthesizing Fine-Grained Strategies
	7 Experimental Evaluation
	8 Discussion and Related Works
	References

	From Clauses to Klauses*
	1 Introduction
	2 Background
	2.1 Cardinality Constraints
	2.2 Conflict-Driven Clause Learning and Proofs of Unsatisfiability

	3 At-Least-K Conjunctive Normal Form (KNF)
	4 Cardinality Constraint Extraction and Analysis
	4.1 Extraction
	4.2 Analysis with BDDs
	4.3 PySAT Encodings Experimental Evaluation

	5 Cardinality Conflict-Driven Clause Learning
	5.1 Implementation Details
	5.2 Inprocessing Techniques

	6 Proof Checking
	6.1 Satisfying Assignments
	6.2 Clausal Proofs
	6.3 Starting with KNF Input

	7 Experimental Evaluation
	7.1 SAT Competition Benchmarks
	7.2 Magic Squares and Max Squares

	8 Conclusion and Future Work
	References

	CaDiCaL 2.0
	1 Introduction
	2 Architecture
	3 External Propagator
	4 Proofs
	5 Tracer Interface
	6 Constraints and Flipping
	7 Interpolation
	8 Testing and Debugging
	9 Experiments
	10 Conclusion
	References

	Formally Certified Approximate Model Counting
	1 Introduction
	2 Related Work
	3 Background
	3.1 Approximate Model Counting
	3.2 Formalization in Isabelle/HOL

	4 Approximate Model Counting in Isabelle/HOL
	4.1 Abstract Specification and Probabilistic Analysis
	4.2 Concretization to a Certificate Checker
	4.3 Extending ApproxMC to ApproxMCCert
	4.4 CNF-XOR Unsatisfiability Checking

	5 Experimental Evaluation
	6 Conclusion and Future Work
	References

	Scalable Bit-Blasting with Abstractions
	1 Introduction
	2 Preliminaries
	3 Abstraction-Refinement Framework
	4 Refinement Schemes
	4.1 Hand-Crafted Lemmas
	4.2 Lemma Scoring Scheme
	4.3 Synthesizing Lemmas via Abduction
	4.4 Lemma Verification

	5 Integration
	6 Evaluation
	7 Conclusion
	References

	Hardware Model Checking
	The MoXI Model Exchange Tool Suite
	1 Overview
	2 Intermediate Language
	3 Tool Suite
	3.1 Translators
	3.2 Utilities

	4 Tool Suite Validation
	5 Benchmarks
	6 Conclusion and Future Work
	References

	SMLP: Symbolic Machine Learning Prover
	1 Introduction
	2 SMLP Architecture
	3 Symbolic Representation of Models and Constraints
	4 Symbolic Representation of the ML Model Exploration
	5 Problem Specification in SMLP
	6 SMLP Exploration Modes of ML Models
	6.1 Stable Parameter Synthesis
	6.2 Verifying Assertions on a Model
	6.3 Querying Conditions on the Model
	6.4 Stable Optimized Synthesis
	6.5 Design of Experiments
	6.6 Root Cause Analysis
	6.7 Model Refinement Loop

	7 Implementation
	8 Industrial Case Studies
	9 Future Work
	References

	Avoiding the Shoals - A New Approach to Liveness Checking
	1 Introduction
	2 Preliminaries
	2.1 Boolean Satisfiability
	2.2 Boolean Transition Systems
	2.3 Invariant Checking
	2.4 Liveness Checking

	3 Liveness Checking with rlive
	3.1 Overview
	3.2 Algorithm
	3.3 Optimizations
	3.4 Correctness Proof

	4 Related Work
	5 Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Conclusions
	References

	Toward Liveness Proofs at Scale
	1 Introduction
	2 Background and Related Work
	2.1 Liveness-to-Safety with Rankings
	2.2 Dynamic Liveness-to-Safety Construction

	3 Relational Rankings
	3.1 The Relational Reactivity Rule
	3.2 Chaining Liveness Lemmas
	3.3 Stable Schedulers
	3.4 Lexicographic Rankings

	4 Case Study: The Apple Generic Memory Subsystem Model
	4.1 Liveness Proof with Lemmas
	4.2 Lemma-Free Proof of Liveness

	5 Conclusions and Future Work
	A Soundness proofs
	References

	Software Verification
	Strided Difference Bound Matrices
	1 Introduction and Motivation
	2 DBMs, SDBMs, and HSDBMs
	3 Satisfiability
	3.1 GCD-Tightening Constraints
	3.2 Satisfiability for HSDBMs in O(n4) Time
	3.3 Satisfiability for SDBMs in O(n m Dlcm) Time

	4 HSDBM Normalization
	5 Operations for Abstract Interpretation
	6 Empirical Study
	6.1 Methodology
	6.2 Prevalence of SDBMs
	6.3 Applications to Translation Validation

	7 Related Work
	8 Conclusion
	References

	The Top-Down Solver Verified: Building Confidence in Static Analyzers
	1 Introduction
	2 Preliminaries
	3 The Plain Top-Down Solver
	4 The Top-Down Solver
	5 Related Work
	6 Conclusion
	References

	End-to-End Mechanized Proof of a JIT-Accelerated eBPF Virtual Machine for IoT
	1 Introduction
	1.1 Challenges
	1.2 Contributions

	2 Preliminaries
	3 A Workflow for End-to-End Refinement
	3.1 Methodology
	3.2 Application to a rBPF Virtual Machine

	4 Symbolic CompCert ARM Interpreter
	5 A Verified Just-In-Time Compiler for rBPF
	5.1 JIT Design
	5.2 JIT Correctness
	5.3 JIT Vertical Refinement

	6 HAVM: A Hybrid Interpreter for rBPF
	7 Evaluation: Case Study of RIOT's Femto-Containers
	8 Lessons Learned
	9 Related Works
	10 Conclusion
	References

	A Framework for Debugging Automated Program Verification Proofs via Proof Actions
	1 Introduction
	2 Proof Debugging Considered Painful
	2.1 Background on Automated Program Verification in Verus
	2.2 Examples of Proof Debugging
	2.3 Automated Proof Debugging with Proof Actions
	2.4 Challenges with Automatic Code Transformation

	3 ProofPlumber: An Extensible Proof Action Framework
	3.1 ProofPlumber's API Design
	3.2 ProofPlumber's Implementation

	4 Evaluation
	4.1 RQ1: Are proof actions expressive enough?
	4.2 RQ2: Does ProofPlumber make it easy to write proof actions?
	4.3 RQ3: Can proof actions reduce the verifier's TCB?

	5 Limitations
	6 Related Work and Conclusion
	References

	Verification Algorithms for Automated Separation Logic Verifiers
	1 Introduction
	2 Verification Algorithms
	2.1 Viper Verification Language
	2.2 Design Dimensions
	2.3 Algorithms

	3 Evaluation
	3.1 Implementations
	3.2 Benchmark Selection
	3.3 Experimental Setup
	3.4 Completeness Results
	3.5 Performance Results
	3.6 Recommendation
	3.7 Threats to Validity

	4 Portfolios
	5 Related Work
	6 Conclusions and Future Work
	References

	SMT-Based Symbolic Model-Checking for Operator Precedence Languages
	1 Introduction
	2 Preliminaries
	2.1 Operator Precedence Languages
	2.2 Precedence Oriented Temporal Logic

	3 A Tree-Shaped Tableau for POTLf
	4 SMT Encoding of the Tableau
	5 Experimental Evaluation
	5.1 Description of the Benchmarks
	5.2 Description of the Plots

	6 Conclusions
	References

	On Polynomial Expressions with C-Finite Recurrences in Loops with Nested Nondeterministic Branches
	1 Introduction
	2 Preliminaries
	2.1 Polynomials
	2.2 Eigenvalues and Matrix Polynomials
	2.3 C-Finite Recurrences
	2.4 Program Model and Problem Statement

	3 Reduction to Solving a System of Quadratic Equations
	4 Finding Finite Representative Solutions
	5 Special Cases Where the Computations Are Easier
	5.1 Polynomials Satisfying First Order Inhomogeneous C-Finite Recurrences
	5.2 Linear Transitions

	6 Experimental Evaluation
	6.1 Implementation
	6.2 Benchmarks and Environment
	6.3 Comparison Tools
	6.4 Experimental Results

	7 Related Works
	8 Conclusion
	A Proof of Theorem 5
	References

	Breaking the Mold: Nonlinear Ranking Function Synthesis Without Templates
	1 Introduction
	2 Background
	3 Polynomial Ranking for LIRR Transition Formulas
	3.1 Zero-Stable Transition Formulas
	3.2 Complete Polynomial Ranking Function Synthesis
	3.3 Proving Termination Through Polynomial Ranking Functions

	4 Lexicographic Polynomial Ranking for Integer Transitions
	4.1 Synthesizing Polynomial Quasi-Ranking Functions
	4.2 Lexicographic Polynomial Ranking Functions

	5 Evaluation
	6 Related Work
	References

	Hevm, a Fast Symbolic Execution Framework for EVM Bytecode
	1 Overview
	2 Related Work
	3 Symbolic Interpreter for the EVM
	4 Expr, hevm's Internal Representation
	4.1 Expr Simplification
	4.2 Example Program in Expr

	5 SMT Encoding
	6 Evaluation
	References

	SolTG: A CHC-Based Solidity Test Case Generator
	1 Introduction
	2 Tool Overview
	3 Test Case Generation from CHC Encoding
	3.1 CHC Preliminaries
	3.2 Solidity Smart Contracts to CHCs
	3.3 Algorithmic Enumeration of Contract Behaviors

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Interactive Theorem Proving Modulo Fuzzing
	1 Introduction
	2 Overview
	2.1 Introduction to F
	2.2 F with Closed-Box Functions

	3 Tool Architecture and Operation
	3.1 Invoking StarFuzz
	3.2 Architecture
	3.3 Constructing Verification Conditions
	3.4 Solving Verification Conditions

	4 Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References

	Author Index

