
Split Gröbner Bases for Satisfiability
Modulo Finite Fields

Alex Ozdemir1,2(B), Shankara Pailoor2, Alp Bassa2, Kostas Ferles2,
Clark Barrett1, and Işil Dillig2

1 Stanford University, Stanford, USA
aozdemir@cs.stanford.edu
2 Veridise, Stanford, USA

Abstract. Satisfiability modulo finite fields enables automated verifica-
tion for cryptosystems. Unfortunately, previous solvers scale poorly for
even some simple systems of field equations, in part because they build a
full Gröbner basis (GB) for the system. We propose a new solver that uses
multiple, simpler GBs instead of one full GB. Our solver, implemented
within the cvc5 SMT solver, admits specialized propagation algorithms,
e.g., for understanding bitsums. Experiments show that it solves impor-
tant bitsum-heavy determinism benchmarks far faster than prior solvers,
without introducing much overhead for other benchmarks.

1 Introduction

Finite fields are critical to many cryptosystems. They underlie the AES-
GCM cipher and ECDH key-exchange, which are used in over 80% of web
requests [2,42]. They also underlie zero-knowledge proof systems (ZKPs) and
multi-party computation protocols that are used in billion-dollar private cryp-
tocurrencies [27,28,40,46], private DNS filters [34], agricultural auctions [8], dis-
crimination studies [5], and US inter-agency data sharing [3].

Since (finite-)field-based cryptosystems are so prevalent, bugs in their imple-
mentations can have serious consequences. Furthermore, such bugs are not hypo-
thetical. They routinely cause CVEs in OpenSSL [18,19,48] and compromise
cryptocurrencies [1,57,62].

Motivated by this problem, recent research has explored automated verifi-
cation for field-based computations [50,53]. However, these techniques inherit
scalability challenges from the field-solving capabilities of current Satisfiability
Modulo Theories (SMT) solvers. The best SMT solver [50] for fields of crypto-
graphic size (≈ 2256) uses Gröbner bases (GBs) [10]. A GB can answer many
questions about a system of equations, but the GB itself must first be computed.

Unfortunately, computing a GB has high theoretical complexity: doubly expo-
nential in the worst case [45]. In practice, computing a GB can be feasible for some
systems [50], but it is intractable for others, even simple ones. For example, con-
sider a prime field—representable as the integers modulo a prime p. Suppose that
p ≥ 2b and consider the following system in variables X1, . . . , Xb, Z:
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 3–25, 2024.
https://doi.org/10.1007/978-3-031-65627-9_1

https://doi.org/10.5281/zenodo.10917330
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-65627-9_1


4 A. Ozdemir et al.

b∧

i=1

Xi(1 − Xi) = 0 ∧ X1 + 2X2 + 4X3 + · · · + 2b−1Xb = 0 ∧ XbZ = 1

In some sense, this system is simple: the first equation forces each Xi to be 0
or 1, and the second equation forces every Xi to be 0, which then contradicts
the final equation. However, computing a GB for this system using current algo-
rithms takes exponential time. We investigate systems like this in Sect. 3, but
essentially there are two conclusions: first, a GB is hard to compute because of
the combination of the bitsum

∑
i 2i−1Xi and the bit constraints Xi(1−Xi) = 0;

second, bitsums and bit constraints are common when verifying systems that use
ZKPs. So, the scalability of GB-based reasoning with bitsums is a real problem
for ZKP verification.

To overcome this problem, we present a new approach for solving or refuting
a system S of finite field equations. The key idea is that of a split Gröbner basis.
If S is split into (possibly overlapping) subsystems S1 ∧ · · · ∧ Sk = S, and Bi is
a GB for Si, then we call the sequence B1, . . . , Bk a split GB for S. A split GB
approximates a full GB for S: it gives detailed information about each subsystem
Si, but more limited information about S. In exchange for this approximation,
if each Si is “small” or “simple,” then the split GB might be easier to compute.

In this paper, we present a decision procedure for finite field arithmetic based
on the idea of iteratively refining a split GB. It starts with some split of S
and then refines it as necessary by sharing equations between the Si’s. We also
add an extensible propagation algorithm for deducing new equations. Sharing
equations increases the cost of computing the split basis but also improves the
approximation that it offers. The key advantage is that the procedure can often
solve or refute S before any Si becomes too hard to compute a basis for.

We implement our approach as a solver for prime fields within the cvc5 SMT
solver [4]. Our solver (a) splits bitsums and their bit constraints across two
subsystems and (b) includes a specialized propagator for bitsum reasoning. This
is particularly effective for important, bitsum-heavy verification problems related
to ZKPs. For these problems, experiments show that our solver exponentially
improves on prior work; for other problems, it has low overhead.

One application we consider is verifying field blaster (F-blaster) rules in a
ZKP compiler: these rules encode Boolean and bit-vector operations as (con-
junctions of) field equations (see Sect. 2). We give a new SMT encoding for
rule correctness, prove our encoding is correct, and show that combining it with
our new solver improves the state of the art for F-blaster verification [52]. To
summarize, our key contributions are:

1. Split: an abstract decision procedure for field solving using a split Gröbner
basis instead of a full Gröbner basis.

2. BitSplit: an instantiation of Split, optimized for bitsums and implemented in
cvc5. It is exponentially faster than prior solvers on important benchmarks.

3. An application: a new encoding for F-blaster verification conditions that
improves the state of the art for F-blaster verification by leveraging BitSplit.



Split Gröbner Bases for SMFF 5

The rest of the paper is organized as follows. First, we review related work
(Sect. 1.1), give background (Sect. 2), and present a motivating example (Sect. 3).
Then, we explain our abstract and concrete decision procedures (Sect. 4) and
present experiments (Sect. 5). Last, we apply our solver to the problem of verified
F-blasting (Sect. 6).

1.1 Related Work

There are two prior finite field solvers for SMT: Hader et al. [36,38,39] use
subresultant regular subchains [58], and Ozdemir et al. [50] use Gröbner bases.
As we will see (Sect. 5), only the latter scales to large fields. Our work builds on
it.

Other prior works propose verification and linting tools for ZKPs. QED2 [53]
checks whether an output variable Y in some system is uniquely determined by
the values of input variables X1, . . . , Xm. Another project [52] verifies that a ZKP
compiler’s F-blaster is correct. These both use satisfiability modulo finite fields
and could benefit from our work. Other tools are purely syntactic [20,59,60].

Further afield, others consider finite fields in interactive theorem provers,
applied to mathematics [9,16,31,41], to program correctness [25,26,54,55], and
even to ZKPs [13,15,29,43]. In contrast, our work is fully automatic.

2 Background

Here we summarize necessary definitions and facts about finite fields
[21, Part IV], computer algebra [17], satisfiability modulo finite fields
(SMFF) [47,50], and applications of SMFF [52,53]. See the references for further
details.
Finite Fields and Polynomials. For naturals a ≥ 1, [a] denotes {1, . . . , a}. In
general, x denotes a list of elements x1, . . . , xm. Let p be a prime. Fp (abbreviated
F when p is clear) denotes the unique finite field of order p, represented as
{0, . . . , p − 1} with addition and multiplication modulo p. A field of prime order
is also called a prime field. Let X be a list of n variables: (X1, . . . , Xn). F[X] is
the set of polynomials in X with coefficients from F. For f ∈ F[X], let deg(f) be
its degree and vars(f) be the set of variables appearing in it.
Ideals and Their Zeros. Let S = {s1, . . . , sm} be a set of polynomials in F[X].
〈S〉 denotes the ideal that is generated by S: the set {∑i fisi : fi ∈ F[X]}. Let
S = (S1, . . . , Sk) be a list of sets of polynomials. Then, we define 〈S〉 � 〈∪iSi〉.

Let M : X → F be a map from variables X to values in F. For f ∈ F[X],
denote the evaluation of f on M by f [M ]; a zero of f is an M with f [M ] = 0.
The common zeros of S are denoted VF(S) (abbreviated V(S)). Note that V(S) =
V(〈S〉). When studying polynomial systems, one generally considers the system
given by the ideal it generates, as it has more structure and has the same set
of zeros. For any f ∈ F[X], if f ∈ 〈S〉, then V({f}) ⊇ V(S). One implication of
this is that 1 ∈ 〈S〉 implies that VF(S) is empty. However, the converse does not
hold: for example, the polynomial X2 + 1 has no zero in F3, but 1 /∈ 〈X2 + 1〉.



6 A. Ozdemir et al.

Gröbner Bases. A Gröbner basis (GB) is a kind of polynomial set that is
often used for solving polynomial systems. Two facts about GBs are relevant
to this paper. First, there is an algorithm, GB, that for any polynomial set S,
computes a GB B such that 〈B〉 = 〈S〉. In this case, we say that B is a GB for
S or for 〈S〉. (But: note that in this paper, B does not always refer to a GB!)
Second, there is an algorithm InIdeal(f,B) that determines whether f ∈ 〈B〉 for
polynomial f and GB B.1 Thus, if InIdeal(1,GB(S)) returns true, this shows that
V(S) is empty. Moreover, InIdeal(1, B) is computable in polytime if B is a GB
since 1 reduces by B iff B contains a non-zero constant [17].
Satisfiability Modulo Finite Fields (SMFF). Previous work [38,50] defines
the theory of finite fields, which we summarize here using the usual terminology
of many-sorted first order logic with equality [24]. For every finite field F, let
the signature Σ include: sort FF, binary function symbols +F and ×F, constants
n ∈ {0, . . . , |F| − 1} ⊂ N, and the inherited equality symbol ≈F. The theory of
finite fields requires that any Σ-interpretation interprets FF as F, n as the nth

element of F, and +, ×, and ≈ as addition, multiplication, and equality in F.
Previous work reduces the satisfiability problem for this theory to the problem
of finding an element of V(S) given S or determining that there is no such
element [50]. In this work, we consider the latter problem.
Applying SMFF to ZKPs. Prior work applies SMFF to verification for zero-
knowledge proof systems (ZKPs) [50,52,53]. Practical ZKPs [11,30,33] allow one
to prove knowledge of a solution to a system of field equations Φ(X,Y), while
keeping all or part of the solution secret. Since Φ is usually meant to encode
a function from X to Y, recent tools attempt to verify determinism: that the
value of X uniquely determines the value of Y [53,56,59,60]. Determinism can
be written as a single satisfiability query solved with SMFF:

Φ(X,Y) ∧ Φ(X′,Y′) ∧ X = X′ ∧ Y �= Y′ (1)

The formula (1) is satisfiable if and only if Φ is nondeterministic. Determinism
is important for two reasons. First, constructing (1) only requires identifying the
inputs and outputs, making the specification task trivial and automatable. Sec-
ond, determinism violations are frequent; one caused the Tornado Cash bug [57],
and they are part of over half of the bugs in the ZK Bug Tracker [1]. Third,
determinism violations cause real vulnerabilities. A recent survey of ZKP vul-
nerabilities concludes that insufficient constraints (which typically manifest as
non-determinism) account for 95% of constraint-system-level vulnerabilities [12].
In Sect. 6, we give another reason why determinism is important: it can imply
stronger properties.

3 Motivating Example

In this section, we explore a class of problems that is both important and
challenging for existing SMFF solvers. First (Sect. 3.1), we explain the source
1 The definition of GB and these algorithms depends on a monomial order. Throughout

the paper, we use grevlex order. We discuss monomial orders in Appendix A.



Split Gröbner Bases for SMFF 7

1 template Num2Bits(b) { // split ‘in’ into ‘b’ bits.
2 signal input in;
3 signal output out[b];
4 var bitSum = 0;
5 for (var i = 1; i <= b; i++) {
6 out[i] * (out[i] -1 ) === 0; // ‘out[i]’ is 0 or 1
7 bitSum += out[i] * 2 ** (i - 1); // add a term to the accumulating bitsum
8 }
9 bitSum === in; // ‘in’ is the bitsum of ‘out’

10 }

Fig. 1. Num2Bits: a widely-used circomlib library function. It converts a prime field
element into an b-bit binary representation (assuming this is possible).

and prevalence of these problems—determinism queries with bit-splitting. Sec-
ond (Sect. 3.2), we explore why they are hard for GB-based reasoning, and we
present evidence that the core challenge is the combination of bitsums and bit-
constraints. Third (Sect. 3.3), we sketch the design of a decision procedure that
can meet this challenge.

3.1 Verifying the Determinism of Num2Bits

The circom language is used to synthesize field equations for ZKPs. Figure 1
shows a slice of the circom program Num2Bits. It relates an input signal in to its
binary representation as an array of signals out. The code generates a set of field
equations that encode this relationship. The === operator generates equations.
Line 6 generates the equation forcing out [i] to be either 1 or 0, line 7 adds
out [i] to the expression that is accumulating terms in the bitsum, and line 9
generates the equation equating the bitsum to in. Thus, the equations are:

Φ(in, out) :=
(
in =

∑b
i=1 2i−1out[i]

)
∧ ∧b

i=1 out[i](out[i] − 1) = 0 (2)

Here, b is constant. For any j ∈ [b], the output out[j] is deterministic if the
following SMFF query is unsatisfiable:

∃ in, in′, out, out′. Φ(in, out) ∧ Φ(in′, out′) ∧ in = in′ ∧ out[j] �= out′[j] (3)

Importance. Nearly every circom project uses Num2Bits or similar templates that
bit-split field elements. This is because bit encodings are a natural way to encode
common operations like range-checks (x ∈ {l, . . . , u}) and comparisons (<, >) as
field equations. In fact, in a crawl of all public circom Github projects, we found
that 98% of projects use Num2Bits or other circuits with bitsums. Furthermore,
bitsums are very common in many programs; for example, in circomlib’s SHA2
implementation, 64% of the variables appear in some bitsum. We describe our
methodology for these measurements in Appendix B.



8 A. Ozdemir et al.

Table 1. Different ideal families with bitsums and bit-constraints.

Ideal Family Generators

I2,det(b) BΣP(Y,X) ∪ BΣP(Y ′,X′) ∪ {Y − Y ′} ∪ {(Xb − X ′
b)Z − 1}

I2(b) BΣP(Y,X) ∪ BΣP(Y ′,X′) ∪ {Y − Y ′}
I1(b) BΣP(Y,X)

I1,val(b) BΣP(Y,X) ∪ {Y }

Fig. 2. GB computation time for different systems at different bitsum lengths.

3.2 The Challenge of Bit-Splitting

Unfortunately, state-of-the-art SMFF solvers struggle with (3). The solver of
Hader et al. [38] scales poorly with field size (Sect. 5), and ZKP security typically
requires |F| ≈ 2255. It fails for (3), even when b = 1. The GB-based solver of
Ozdemir et al. [50] scales better with |F|, but poorly with b. It can handle many
large-field benchmarks, but it cannot solve (3) for b = 32, even in a week.

To understand the problem, consider how a GB-based solver handles (3).
First, it computes a polynomial set S such that V(S) encodes solutions to (3):

S = {Y − Y ′, Y − ∑b
i=1 2i−1Xi, Y ′ − ∑b

i=1 2i−1X ′
i,

X2
1 − X1, . . . , X

2
b − Xb, X ′2

1 − X ′
1, . . . , X

′2
b − X ′

b,

(X ′
j − Xj)Z − 1}

(4)

In this system, in, in′, out, and out′ are represented by variables Y , Y ′, X, and
X′ respectively. The inequality Xj �= X ′

j becomes the polynomial (X ′
j −Xj)Z−1

(for fresh Z) which can be zero only if Xj �= X ′
j . Next, the solver attempts to

compute a GB for (4). But this takes time exponential in b, as we will see.
To empirically investigate the cause of the slowdown, we consider other fam-

ilies of ideals generated by sets similar to (4). Table 1 shows four ideal families
of increasing simplicity that all include bit-splitting. The polynomials are in
variables (X1, . . . , Xb,X

′
1, . . . , X

′
b, Y, Y ′, Z), and we define the set BΣP(Y,X) as:

BΣP(Y, (X1, . . . , Xb)) � {Y − ∑b
i=1 2i−1Xi,X

2
1 − X1, . . . X

2
b − Xb}.

The first family, I2,det(b), is exactly (4), for j = b. The second, I2, removes the
polynomial that enforces disequality. The third, I1, removes one of the bitsum



Split Gröbner Bases for SMFF 9

Fig. 3. High-level information flow in BitSplit: our concrete decision procedure.

and bit-constraint sets. The fourth, I1,val, fixes the lone bitsum to a specific value
(Y = 0). Computing a GB for any of these families takes time exponential in
b.2

Figure 2 shows the times (using Singular [32]; others are similar). I1,val is
easiest to compute a GB for, and I2 is the hardest, but all take exponential
time.

Interestingly, the singleton set of just the bitsum {Y −∑b
i=1 2i−1Xi} and the

set of bit-constraints without the bitsum {X2
1 −X1, . . . X

2
b −Xb} are both already

GBs. It appears that the combination of the bitsum and the bit-constraints is
what makes computing a GB hard.
Translation to Bit-Vectors: a Dead End. Since ZKPs process finite-field
equations, the system (2) has coefficients in a finite field. Yet, the appearance
of the bitsum pattern makes it tempting to attempt some kind of translation
into the bit-vector domain. After all, in that domain, bit-decomposition is easy
to reason about! However, this intuitive appeal is misleading. In practice, the
approach is not trivial, since (in the general case) the system Φ includes other
(non-bitsum) equations too. In fact, previous attempts to solve finite-field equa-
tions by translation to bit-vectors have been shown to be very ineffective [50].
Thus, performing some finite-field reasoning seems crucial.

3.3 Cooperative Reasoning: A Path Forward

We have seen that verifying Num2Bits is hard with only GBs. Yet, Num2Bits is
easy to verify when we combine GBs with other kinds of reasoning. Consider
the following inferences about 〈S〉 (Eq. 4): Since X,X′ are bit representations of
Y, Y ′ respectively and Y − Y ′ is in 〈S〉, every X ′

i − Xi must be too. This is the
congruence rule for the function from a number to its bit representation. Then,
since f = X ′

j − Xj and g = (X ′
j − Xj)Z − 1 are both in 〈S〉 a GB shows that

1 = fZ − g is also in 〈S〉. But, if 1 ∈ 〈S〉, then S can have no common zeros. So,
(3) is UNSAT, and Num2Bits is deterministic. The key here is to use GB-based
reasoning and non-GB-based reasoning (congruence for bit representations).
2 For Fig. 2, we work in Fp, where p is the smallest prime greater than 2b−1. However,

the results are similar for other values of p as well.



10 A. Ozdemir et al.

Our decision procedure BitSplit mixes GB-based and non-GB-based reasoning
to understand the contents of an ideal 〈S〉. Figure 3 illustrates its architecture.
There are three modules: each learns new polynomials in 〈S〉 and potentially
shares them with other modules. The sparse module computes a GB for all poly-
nomials except bitsum polynomials (or bitsums): those of form Y − ∑

i 2i−1Xi.
Its name refers to the fact that bitsums are dense: they have many terms. The
linear module computes a GB for all linear polynomials (including all bitsums).
The unique bit representation module infers bit equalities using congruence.

This architecture has three key features. First, it includes non-GB-based rea-
soning. Second, every polynomial is handled by some GB-based module (either
the sparse or linear module); this will play a role in correctness. Third, by split-
ting bitsums (which go into the linear module) and bit-constraints (which go
into the sparse module), it avoids computing a GB for both simultaneously.

4 Approach

In this section, we present our decision procedure. Given a set of polynomials G,
our procedure either finds a common zero M ∈ V(G) or determines that none
exists. Recall from Sect. 2 that satisfiability modulo F reduces to this problem.

To explain our decision procedure, we first introduce a split Gröbner basis
(Sect. 4.1), which can be easier to compute than a full GB, but can also be less
useful when deciding satisfiability. Next, we present our abstract decision pro-
cedure Split, which manipulates split Gröbner bases (Sect. 4.2). Split is parame-
terized by the number of bases k and also by some subroutines. We show that
if the subroutines meet suitable conditions, then Split is sound and terminating
(Theorem 3). Finally, we instantiate Split with k = 2 by defining the necessary
subroutines (Sect. 4.3). The result is a concrete decision procedure BitSplit which
is optimized for reasoning about bitsums.3 We evaluate BitSplit experimentally
in Sect. 5.

4.1 Split Gröbner bases

Definition 1 (Split Gröbner basis). A split Gröbner basis for ideal I is
a sequence (B1, . . . , Bk) of Gröbner bases such that I = 〈B〉.
We make a few relevant observations about this definition.

1. A split GB generalizes a GB: that is, (GB(S)) is always a split GB for 〈S〉.
2. Split GBs for an ideal I are not unique.
3. The split GB definition relaxes the GB definition: while GBs can be hard to

compute, split GBs need not be. For example, the ideal 〈f1, . . . , fn〉 has split
GB ({f1}, . . . , {fn}).

3 We use the name “BitSplit” because the procedure is optimized for bitsums (used
in bit-splitting) and because the name suggests an instantiation of the “Split”
procedure.



Split Gröbner Bases for SMFF 11

Fig. 4. The prior decision procedure (Monolithic) [50] and our framework (Split).

Informally, a split GB allows one to navigate a trade-off between the com-
putational expense of computing GBs and the power of their ideal member-
ship tests. Generally, a smaller split GB where each individual GB represents
more of I makes InIdeal(·, Bi) more informative. On the other hand, a bigger
split GB where each GB represents less of I makes the split basis easier to
compute. Section 3 gave an example of this: it is hard to compute a GB for
〈∑b

i=1 2i−1Xi,X
2
1 − X1, . . . , X

2
b − Xb〉, but ({∑b

i=1 2i−1Xi}, {X2
1−X1, . . . , X

2
b −

Xb}) is already a split GB.

1 Function SplitGB:
In: G = (Gi)

k
i=1: a list of generator sets

Out: B = (Bi)
k
i=1: a split GB; initially each Bi is empty.

2 while ∪iGi is not empty do
3 for i ∈ [k] do Bi ← GB(Gi ∪ Bi);Gi ← ∅;
4 for p ∈ (∪jBj) ∪ extraProp(B), i ∈ [k] do
5 if admit(i, p) ∧ p /∈ 〈Bi〉 then Gi ← Gi ∪ {p};

6 return B

Algorithm 1: SplitGB computes a split Gröbner basis, with propagation.

4.2 Abstract Procedure: Split

Our starting point is a prior solver based on Gröbner bases [50]. Figure 4a shows
the prior procedure, which we call Monolithic, and Fig. 4b shows our new proce-
dure, which is named Split. Monolithic begins by computing a GB B and return-
ing ⊥ if 1 ∈ 〈B〉. Recall that 1 ∈ 〈B〉 implies V(G) is empty, but the converse
does not hold; thus, this is a sound but incomplete test for unsatisfiability. If
the problem remains unsolved, then Monolithic proceeds to FindZero, which is a
(complete) backtracking search over elements of F.

The key difference in Split is that it works with a split GB B for 〈G〉. First
(line 2), we split G into subsets G1∪· · ·∪Gk = G; these may overlap. Second (line
3), we compute a Gröbner basis Bi for each subset Gi (and perform additional
propagations, discussed later). If some 〈Bi〉 contains 1, we return ⊥. Third (line



12 A. Ozdemir et al.

5), we fall back to a (complete) backtracking search based on B. We will now
discuss each phase in more detail.
Splitting. Splitting is done with a function init(i, p) that decides whether poly-
nomial p should initially be included in basis i. The function init is a parameter
of Split. The only requirement of init is that no polynomial can be ignored:

Definition 2 (Covering init). The function init is covering when for all p ∈
F[X], there exists an i ∈ [k] such that init(i, p) = �.

Computing a Split GB and Propagating. In the second stage, we compute
a split GB B using SplitGB (Algorithm 1). To start, SplitGB sets each Bi to be
a GB for 〈Gi〉. However, SplitGB also adds to each Bi additional polynomials
called propagations. Propagations can be inter-basis (from a different Bj) or extra
(from a subroutine extraProp). Through extraProp, one can extend SplitGB with
specialized reasoning (e.g., for bitsums). Whether a propagation p is admitted
into Bi is controlled by a subroutine admit(i, p). Through admit, a basis can
reject a polynomial p that would slow down future GB computations.

Now, we explain SplitGB in detail. In each iteration of the outer loop, Bi is
a current basis and Gi is a set of polynomials that will be added in the next
round. First, Bi is computed from the previous Gi and Bi. Then, polynomials
from each Bj are added to each Gi if admit(i, ·) accepts them and 〈Bi〉 doesn’t
contain them already. Any propagations from extraProp(B) are added in the
same way. The loop iterates until there are no new additions.

The correctness of SplitGB depends on extraProp, but not admit. As cap-
tured by Definition 3, extraProp(B) must only return polynomials in 〈B〉. If
extraProp obeys this requirement, then SplitGB terminates and preserves the gen-
erated ideal, as stated in Theorem 1. The proof is in Appendix C; correctness is
straightforward, and termination follows from the same theory that guarantees
termination for Buchberger’s algorithm [10]. We discuss efficiency later.

Definition 3 (Sound extraProp). The function extraProp is sound when for
all B ∈ (2F[X])k, extraProp(B) ⊆ 〈B〉.
Theorem 1. If extraProp is sound, then SplitGB(G) terminates and returns a
split Gröbner basis B such that 〈B〉 = 〈G〉 and 〈Bi〉 ⊇ 〈Gi〉 for all i.

Backtracking Search. SplitFindZero (Algorithm 2) is our conflict-driven search.
Given a split basis B, it returns M ∈ V(〈B〉) if possible, and ⊥ if V(〈B〉) is empty.
It uses a subroutine SplitZeroExtend(B) which searches for an M ∈ V(〈B〉)
by focusing on B1, as we explain below. SplitZeroExtend returns one of three
possibilities: an M ∈ V(〈B〉); ⊥, indicating that V(〈B〉) is empty; or a conflict
polynomial p ∈ (∪iBi)\〈B1〉 that it failed to account for in its B1-focused search.
In the last case, SplitFindZero adds p to B1 and tries SplitZeroExtend again. Each
conflict is new information that is added to B1 from some other Bi.

SplitZeroExtend is based on the FindZero algorithm of prior work [50].
FindZero is a backtracking search based on a GB B. In each recursive step, it
assigns a single variable to a single value. Rather than doing an exhaustive case



Split Gröbner Bases for SMFF 13

1 Function SplitFindZero:
In: B = (Bi)

k
i=1: a split GB

Out: A zero M ∈ V(〈B〉) or ⊥
2 while conflict p ← SplitZeroExtend(B) do
3 B ← SplitGB(B1 ∪ {p}, B2, . . . , Bk);
4 return SplitZeroExtend(B)

5 Function SplitZeroExtend:
In: B = (Bi)

k
i=1: the current split GB

In: G ⊂ F[X]: the original generators; if omitted, equal to ∪iBi

In: A partial map M : X → F; if omitted, empty
Out: A total map M or a conflict polynomial p or ⊥

6 if ∃ i. 1 ∈ 〈Bi〉 then
7 if ∃ p ∈ G \ 〈B1〉, vars(p) ⊆ vars(M) ∧ p[M ] �= 0 then return p;
8 else return ⊥;

9 if |M | = n then return M ;
10 for (Xji �→ zi) ∈ ApplyRule(B1,M) do

11 r ← SplitZeroExtend(SplitGB((Bj ∪ {Xji − zi})kj=1), G,M ∪ {Xji �→ zi});
12 if r �= ⊥ then return r;

13 return ⊥
Algorithm 2: SplitFindZero finds zeros using split Gröbner bases.

split for each variable, a subroutine ApplyRule analyzes B and constructs a list
(an implicit disjunction) of single-variable assignments Xj1 �→ z1, . . . , Xj�

�→ z�

that cover V(B). That is, for each M ∈ V(B), there exists i such that
M [Xji

] = zi. Thus, we know that if a solution exists, it must agree with at
least one of these assignments. For example, with B = {X2

1 − X2,X1(X2 − 1)},
every solution must assign X1 to 0 or X2 to 1, so any set of assignments including
these would do. ApplyRule might, for instance, return exactly {X1 → 0,X2 → 1}.
For each i, FindZero recurses on B ← GB(B∪{Xji

−zi}). It backtracks if 1 ∈ 〈B〉
and succeeds if every variable has been assigned.

SplitZeroExtend adapts FindZero to a split GB, essentially by running
FindZero on B1 and using SplitGB instead of GB. It also uses a limited notion of
conflicts to prune the search space. It is given a split basis B (that changes in
each recursion), a generator set G (that is fixed across recursions and is initially
equal to ∪iBi), and a partial map M from variables to values. First (lines 6–8),
it checks whether 1 is in any 〈Bi〉. There are two cases here. If some polynomial
p ∈ G \ 〈B1〉 fully evaluates to a non-zero value, p is returned as a conflict.
Otherwise, ⊥ is returned. Second (line 9), if M is total, then it is returned as
a common zero. Third (lines 10–12), SplitZeroExtend uses ApplyRule (from [50])
to obtain a list of single-variable assignments that cover V(B1). For each assign-
ment in the list, it attempts to construct a solution by adding that assignment
to M and to each Bi and recursing. If no branch succeeds, it returns ⊥.

For each conflict that SplitZeroExtend returns, SplitFindZero will call it again
with a new starting split basis. Theorem 2 states the correctness of SplitFindZero.
The correctness of Split (Theorem 3) is a corollary. The proofs are in Appendix D
(Table 2).



14 A. Ozdemir et al.

Table 2. The functions that parameterize Split.

Function signature Semantics

init(i ∈ [k], p ∈ F[X]) → {�,⊥} whether to initialize basis Bi with p

admit(i ∈ [k], p ∈ F[X]) → {�,⊥} whether to accept p into Bi during propagation

extraProp(B ∈ (2F[X])k) → 2F[X] additional polynomials to propagate

Table 3. Which polynomials our bases accept. The linear basis accepts linear polyno-
mials. The sparse basis accepts non-bitsums initially, and then equalities.

Basis # (i) Name init(i, p) definition admit(i, p) definition

1 Sparse ¬isBitsum(p) isEq(p)

2 Linear deg(p) ≤ 1 deg(p) ≤ 1

Theorem 2. Let B be a split GB. If extraProp is sound then SplitFindZero(B)
terminates and returns an element of VF(〈B〉) iff one exists.

Theorem 3. Let G be a polynomial set. If extraProp is sound and init is cov-
ering, then Split(G) terminates and returns an element of VF(G) iff one exists.

4.3 Concrete Procedure: BitSplit

Bases. To construct BitSplit, we instantiate Split with k = 2. We call B1 the
sparse basis and B2 the linear basis, and we define init and admit as shown in
Table 3. We explain extraProp later.

We carefully avoid allowing a bitsum X − ∑k
i=0 2iXi and its bit constraints

(X2
i − Xi)k

i=1 in the same basis. Initially, the sparse basis rejects only bitsums
(isBitsum(p) is defined as ∃ � > 1, ∃Y,X1, . . . X� ∈ X, p = Y − ∑�

i=0 2iXi).
During propagation, the sparse basis accepts polynomials that encode equalities
(isEq(p) is defined as ∃X,Y ∈ X, z ∈ F, p = X −Y ∨p = X −z). The linear basis
accepts (in initialization and propagation) any linear polynomial. Our definition
of admit is quite narrow (to accelerate calls to GB), but we ensure that both
ideals accept equalities, since extraProp generates these. In our experiments, we
consider some other definitions of admit, but they do not improve performance.
Extra Propagation. Our extraProp subroutine simply implements congruence
for bitsums. That is, consider the following polynomials, with m < log2 |F|:

Y − ∑m
i=1 2i−1Xi Y ′ − ∑m

i=1 2i−1X ′
i

If all Xi and X ′
i′ are known to have value zero or one (because X2

i − Xi is in
some 〈Bj〉) and Y and Y ′ are known to be equal (Y − Y ′ is in some 〈Bj〉), then
it propagates Xi −X ′

i for all i. Similarly, if Y is known to be a constant c (Y − c
is in some 〈Bj〉), then each Xi must be equal to the jth bit of c as an unsigned
integer. Soundness for extraProp follows from bit representation uniqueness.



Split Gröbner Bases for SMFF 15

Inter-basis Interactions. SplitGB treats each Bi as a source of polynomials
that might be added to other Bj . It does not use 〈Bi〉 as the source; this would be
sound, but enumerating the infinite set 〈Bi〉 is impossible. The natural question
is whether inter-basis propagation within SplitGB is nevertheless complete, that
is, whether all polynomials p ∈ 〈Bi〉 that are admissible to Bj are in the ideal
generated by the polynomials actually added to Bj .

We have both positive and negative results for BitSplit: Lemma 1 shows that
propagation from the sparse basis to the linear basis is complete. The proof is
in Appendix E. Example 1 shows that propagation from the linear basis to the
sparse basis is not complete. There is a natural way to fix this: enumerate each
variable pair X,Y , and propagate X − Y to the sparse basis if X − Y is in the
ideal generated by the linear basis. However, our experiments (Sect. 5) show that
this doesn’t empirically improve solver performance for our benchmarks.

Lemma 1. Let B be a Gröbner basis under a graded order (a degree compatible
order, i.e., for all monomials p, q, deg(p) < deg(q) =⇒ p < q); then, every
linear p ∈ 〈B〉 is in the ideal generated by the linear elements of B.

Example 1. Consider F5[W,X, Y, Z] in grevlex order. Then B1 = {W −X −Y +
Z, Y − Z} is a GB. The only polynomial in B1 that is admissible to the sparse
basis is Y −Z. Now consider W −X. It is in 〈B1〉 (it is the sum of B1’s elements)
and it is admissible to the sparse basis. However, it is not in 〈Y − Z〉; i.e., it is
not generated by the subset of B1 that is admissible to the sparse basis.

Connections. In some respects, our F-solver resembles two prior SMT ideas:
theory combination and portfolio solving with clause sharing. As in theory com-
bination [6], we reduce a problem (a system of field equations) to sub-problems
(subsets of the original system) that are handled by loosely-coupled sub-solvers
(bases and propagators), each using different reasoning. As in portfolio solving
with clause sharing [44,61], each sub-solver derives lemmas in a common lan-
guage (not clauses, but polynomials) that they share with one another. Our work
also resembles a prior combination of algebraic and propositional reasoning for
preprocessing Boolean formulas by sharing F2 equations between algebraic and
propositional modules [14]. However, our focus is on solving equations in a very
large finite field with constraints of different structure.
Efficiency. In the worst case, BitSplit builds a GB for the full system (similar to
Monolithic). A GB for degree-d polynomials in n variables can have size d2

n

[45],
so the worst-case complexity of BitSplit (and Monolithic) is doubly exponential.

However, in the next section we will see that BitSplit is efficient on a number
of problems of practical interest. For these problems it improves exponentially
on Monolithic. Here, we give intuition for the source of the advantage. Consider
a bitsum-heavy determinism problem. As discussed in Sect. 3, computing a full
GB is hard, so Monolithic performs poorly. However, BitSplit can use extraProp
to reason about the uniqueness of the bit-splitting and use its split GB to reason
about other parts of the system. This might allow it to refute the system of
equations without ever directly computing a GB for the full system.



16 A. Ozdemir et al.

5 Experiments

Now we present our experiments, which answer three empirical questions:

1. How does BitSplit perform when solving bitsum-heavy determinism queries?
(Exponentially better than the prior state of the art.)

2. How does BitSplit perform when solving other queries?
(Similar to the prior state of the art.)

3. How do BitSplit’s components impact its performance? (Propagation is key.)

We implement BitSplit in cvc5 [4] as a solver for the theory of finite fields. This
includes preprocessing that identifies bitsums in larger polynomials and isolates
them for use in BitSplit. Our test bed is a cluster with Intel Xeon E5-2637 v4
CPUs. Each run gets one CPU, 8GB memory, and a time limit of 300 s. After
presenting the benchmarks, we compare BitSplit to prior SMT F-solvers ffsat [38]4

and Monolithic [50], and we compare BitSplit to variants of itself.

5.1 Benchmarks

Table 4 shows our benchmarks, most of which concern the correctness of ZK
libraries (circomlib [7]) and compilers (ZoKrates [23] and CirC [49]). There are
six families. The CirC-D benchmarks verify the determinism of operator encod-
ing rules in CirC, at bitwidths up to 32. As we discuss in the next section
(Sect. 6), these benchmarks are important to CirC’s correctness, but are hard
to solve. The Seq benchmarks verify the determinism of constraint systems with

Table 4. Our benchmark families. QED2 [53], Small [38], TV [50], and CirC-S [52]
are from prior work. CirC-D is a set of large determinism benchmarks based on prior
work [52]; see Sect. 6. Seq is a set of determinism benchmarks for computations that
perform a sequence of bit-splits; see Appendix F.

Family # Description

CirC-D 640 Determinism for CirC F-blaster rules of bitwidth ≤ 32 (Sect. 6)

Seq 100 Determinism for sequenced bit-splits (Appendix F)

QED2 100 Determinism for circomlib, generated by QED2 [53]

CirC-S 100 Soundness for CirC F-blaster rules of bitwidth ≤ 4 [52]

TV 100 Translation validation for ZKP compilers on boolean programs [50]

Small 100 Randomly generated with a small field: |F| ≤ 211 [38]

4 At the time of our experiments, ffsat was a Sage-based Python tool for solving
conjunctions of equations [35]. We wrapped it with a simple SMT-LIB parser
that invokes ffsat if the query is sufficiently simple. Since then, ffsat has been re-
implemented in Yices [22,37]; future work should compare against that implemen-
tation.



Split Gröbner Bases for SMFF 17

sequences of bit-splits. We discuss them further in Appendix F. The QED2 bench-
marks are determinism queries for circomlib generated by QED2 [53]. The CirC-
S benchmarks are soundness tests for CirC’s operator rules, at bitwidths up to
4 [52]. The TV benchmarks are translation validation queries for ZoKrates and
CirC, as applied to boolean functions [50]. Finally, the Small benchmarks are
random, small-field (i.e., |F| < 28) benchmarks from the evaluation of ffsat [38].
To keep the benchmark set from being too big, all families from prior work are
sampled at random from that work’s benchmarks.

5.2 Comparison to Prior Solvers

First, we compare BitSplit against prior solvers Monolithic [50] and ffsat [38].
Table 5 shows the number of solved benchmarks by family and result. ffsat is
successful only when the field is small. BitSplit improves on Monolithic on families
that test determinism (QED2 and CirC-D) but suffers slightly on other bench-
marks. BitSplit is slightly worse on SAT instances but better at UNSAT ones.
Figure 5 presents the same results as cactus plots for the determinism families
and the other families.

To better understand BitSplit’s advantage, we focus on the CirC-D family.
Each CirC-D benchmark tests the determinism of an operator rule at a specific
bitwidth. We consider how the solve time scales with bitwidth. Figure 6 shows the
results for arithmetic, shift, and comparison operators. Monolithic’s solve time
grows exponentially for all of these, while BitSplit’s time is generally insignificant.

Table 5. Solved benchmarks, by family and result. BitSplit’s gains are on determinism
queries (the QED2 and CirC-D families) and unsatisfiable benchmarks.

Solver Solved By Family By Result

CirC-D Seq QED2 CirC-S TV Small SAT UNSAT

BitSplit 969 582 100 59 92 70 66 88 881

Monolithic 475 191 13 38 94 72 67 90 385

ffsat 67 0 0 0 0 0 67 54 13

Fig. 5. On determinism benchmarks, BitSplit dominates Monolithic; on other bench-
marks, they perform similarly.



18 A. Ozdemir et al.

BitSplit struggles only with division and remainder; verifying their determinism
would require understanding that integer division is deterministic, as encoded in
field constraints. We omit bitwise operators (e.g., bvor) from this experiment.
Their operator rules assume that the input bit-vectors are already represented
as bits, so their benchmarks do not include any bitsums. To summarize, BitSplit
can verify many operators exponentially faster than Monolithic.

5.3 Comparison to Variants

To better understand BitSplit, we compare it against six variants of itself:

– BS-LinFirst: make the linear basis (not the sparse basis) B1

– BS-NoIntProp disable inter-basis propagation
– BS-NoExtProp disable extraProp
– BS-FullIntProp: complete linear-to-sparse propagation (Sect. 4.3, fixes Exam-

ple 1)
– BS-DenseProp for the sparse basis, use admit(p) = deg(p) ≤ 1∧|vars(p)| ≤ 16.
– BS-QuadProp for the linear basis, use admit(p) = deg(p) ≤ 2.

Fig. 6. Solve time for CirC-D benchmarks for different operators. Monolithic’s solve
time grows exponentially, while BitSplit’s solve time usually does not.

Table 6. BitSplit v. variants of itself. Weaker propagation (BS-NoExtProp, BS-
NoIntProp) gives worse results, but other changes have less impact.

Solver Solved By Family By Result

CirC-D Seq QED2 CirC-S TV Small SAT UNSAT

BitSplit 969 582 100 59 92 70 66 88 881

BS-LinFirst 959 576 100 58 92 69 64 84 875

BS-NoIntProp 877 576 24 58 86 70 63 84 793

BS-NoExtProp 344 131 0 34 45 69 65 85 259

BS-FullIntProp 953 576 97 56 92 69 63 83 870

BS-DenseProp 898 580 33 58 92 70 65 85 813

BS-QuadProp 898 580 32 59 92 71 64 86 812

Monolithic 475 191 13 38 94 72 67 90 385



Split Gröbner Bases for SMFF 19

Table 6 shows how many benchmarks each variant solves, with both BitSplit
and Monolithic for comparison. First, changing the basis order (BS-LinFirst) has
little effect. Second, disabling propagation (BS-NoIntProp and BS-NoExtProp)
significantly hurts performance. Third, making inter-basis propagation complete
(BS-FullIntProp) actually hurts performance slightly, perhaps because it takes
quadratic time. Finally, defining admit more admissibly (BS-DenseProp and BS-
QuadProp) makes little difference for many families, but significantly hurts per-
formance on sequential bit-splits.

These results justify the key role that propagation plays in BitSplit. They
also suggest that BitSplit would be a good choice for cvc5’s default field solver.

6 Application

Prior work uses Monolithic to do bounded verification for a zero-knowledge
proof (ZKP) compiler pass [52]. In this section, we improve their results using
BitSplit. Thus, this section is a case study that shows the utility of BitSplit for a
downstream verification task. Our improvement relies not just on a new solver
(BitSplit), but also on a new verification strategy. First (Sect. 6.1), we give back-
ground on the verification task. Second (Sect. 6.2), we state our new strategy,
prove it is correct, and show that it is more efficient—when using BitSplit.

6.1 Background on Verifiable Field-Blasting

We consider the finite field blaster in a ZKP compiler: its responsibilities include
encoding bit-vector operations as field equations [52]. At a high level, the field
blaster is a collection of encoding rules. Each rule is a small algorithm that is
specific to some operator (e.g., bvadd). It is given field variables that encode
the operator’s inputs according to some encoding scheme. A rule defines new
variables, creates equations, and ultimately returns a field variable that encodes
the output of the rule’s operator.

As an example, we describe an encoding scheme for bit-vectors and a rule
for bit-vector addition. The scheme encodes a length-b bit-vector x as a field
variable x′ with value in {0, . . . , 2b − 1} ⊆ F (assuming |F| � 2b). If x′ and x
have the same (unsigned) integer value, we say that valid(x′, x) holds. Suppose
our rule applies to the addition of x and y, encoded as x′ and y′. Our rule defines
the following field variables. First, for each i ∈ {1, . . . , b + 1}, it defines z′

i to 1 if
the ith bit of the integer sum of the unsigned values of x′ and y′ is one, and zero
otherwise. Second, it defines z′ =

∑b
i=1 2i−1z′

i. Then, it enforces these equations:

x′ + y′ =
∑b+1

i=1 2i−1z′
i ∧ z′ =

∑b
i=1 2i−1z′

i ∧ ∧b+1
i=1 z′

b(z
′
b − 1) = 0

Finally, it returns z′. Informally, the idea of this rule is to bit-decompose the
sum x′ + y′ and then use the bit-decomposition to reduce that sum modulo 2b.
For example, if b = 2, x′ = 3, and y′ = 1, then the unique solution for the z′

i is
z′
1 = 0, z′

2 = 0, z′
3 = 1, and then z′ must be 0.



20 A. Ozdemir et al.

In general, an encoding rule for operator o maps a sequence of input encodings
(field variables) e to three outputs: F , A, and e.5 Each field variable ei encodes
some bit-vector variable ti. The first output, F = {z1 �→ s1, . . . z� �→ s�}, is a
mapping that defines � fresh field variables: z1, . . . , z�. Variable zi is mapped to
a term si (in variables e) that defines what value zi is intended to take. The
second output, A, is conjunction of field equations in variables e and z. The
final output is e: a distinguished variable that encodes the rule’s output o(t).

Prior work defines correctness for encoding rules as the conjunction of two
properties: completeness and soundness. If all rules are correct, then they con-
stitute a correct F-blaster [52]. Completeness says that if each ei validly encodes
ti and the zi take the values prescribed by F , then e validly encodes o(t) and A
holds. That is, completeness requires the following formula to be valid:

((
∧

i valid(ei, ti)) =⇒ (A ∧ valid(e, o(t)))) [F ]

Soundness says that if each ei validly encodes ti and A holds, then e validly
encodes o(t). That is, the following must be valid:

(A ∧ ∧
i valid(ei, ti)) =⇒ valid(e, o(t))

Verifier Performance. After fixing the sorts of the ti (e.g., to bit-vectors of size
4), one can encode soundness and completeness as SMT queries. This enables
automatic, bounded verification: one checks these properties up to some input
bitwidth bound b using an SMT solver. However, the soundness query is espe-
cially challenging for the SMT solver. In prior work, some soundness queries for
b = 4 could not be solved in 5 min with Monolithic. More generally, solving time
grew exponentially with bit-width for most operators [52].

6.2 A New Strategy for Verifying Operator Rules

We propose a different strategy for automatically verifying operator rules. We
define determinism for operator rules. It says that an operator rule applied to
equal inputs should yield equal outputs. That is, if (A, e) and (A′, e′) are rule
outputs for inputs e and e′ respectively, then the following must be valid:

(A ∧ A′ ∧ e = e′) =⇒ e = e′

We prove the following theorem in Appendix G:

Theorem 4. An operator rule that is deterministic and complete is also sound.

5 Actually, in prior work [52] and in our implementation, encodings are type-tagged
sequences of field terms. In this paper we treat them as single variables to simplify
the exposition. Generalization is straightforward, but notationally tedious.



Split Gröbner Bases for SMFF 21

Fig. 7. The best way to verify that CirC rules are fully correct is to prove completeness
using exhaust and prove determinism (D) using BitSplit.

Thus, to verify rule correctness, it suffices to verify completeness and deter-
minism. This approach is promising because BitSplit is very effective on deter-
minism queries (they were the CirC-D benchmarks in Sect. 5). So, a verification
strategy comprises two choices: whether to prove soundness (S) or determinism
(D) and whether to use BitSplit or Monolithic. In all cases, we prove completeness
using exhaust (a specialized approach from prior work) [52]. For each strategy,
we try to verify every bit-vector rule up to width 32. We limit SMT queries to
5 min each, using the same test bench as before.

Figure 7 shows verification time using different strategies. The best strategy
is our new one. This approach verifies 66% more rule-bitwidth pairs than the
next best strategy: proving soundness with Monolithic. More importantly, in
our new strategy, verifying determinism (using BitSplit) is not the bottleneck:
the bottleneck is proving completeness (using exhaust). Whereas, when proving
soundness with Monolithic, Monolithic is the bottleneck. Further improvements
will require new ideas for proving completeness.

7 Conclusion

We have presented a new approach for F-solving in SMT. Our contributions are
three-fold. First, we proposed an abstract decision procedure Split that avoids
computing a full Gröbner basis. Second, we described an instantiation of it
(BitSplit) that is highly effective for bitsum-heavy determinism queries. Third,
we applied BitSplit to a problem in ZKP compiler verification.

There are many directions for future work. First, we believe other instantia-
tions of Split (beyond BitSplit) might be useful, for example, by considering other
kinds of propagations (extraProp) and other conditions under which propagation
is allowed (admit). Second, Split makes very limited use of CDCL(T) features
that are known to improve performance: it acts only once a full propositional
assignment is available; it constructs no theory lemmas; and it propagates no
literals. Third, in this paper, we focus on applications of the theory of finite fields
to ZKPs. Finite fields should also be relevant to many other kinds of cryptosys-
tems, including algebraic multi-party computation and those based on elliptic
curves. We leave these opportunities to future work.



22 A. Ozdemir et al.

Acknowledgements. We appreciate the help, support, and advice of Cesare Tinelli,
Daniela Kaufmann, Haniel Barbosa, Mathias Preiner, Matthew Sotoudeh, Thomas
Hader, the CAV reviewers, and all of the cvc5 developers.

This work was funded in part by NSF grant number 2110397, the Stanford Center
for Automated Reasoning, and the Simons Foundation.

A Additional Background

This appendix is available in the full version of the paper [51].

B Computing Bitsum Usage in Real World Projects

This appendix is available in the full version of the paper [51].

C Proof of Theorem 1

This appendix is available in the full version of the paper [51].

D Proof of Theorems 2 and 3

This appendix is available in the full version of the paper [51].

E Proof of Lemma 1

This appendix is available in the full version of the paper [51].

F The Seq Benchmark Family

This appendix is available in the full version of the paper [51].

G Proof of Theorem 4

This appendix is available in the full version of the paper [51].



Split Gröbner Bases for SMFF 23

References

1. 0xPARC. ZK bug tracker. https://github.com/0xPARC/zk-bug-tracker. Accessed
5 Sept 2023, via archive.org

2. Anderson, B., McGrew, D.: TLS beyond the browser: Combining end host and
network data to understand application behavior. In: IMC (2019)

3. Archer, D., O’Hara, A., Issa, R., Strauss, S.: Sharing sensitive department of edu-
cation data across organizational boundaries using secure multiparty computation
(2021)

4. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
(2022)

5. Barlow, R.: Computational thinking breaks a logjam (2015). https://www.bu.edu/
cise/computational-thinking-breaks-a-logjam/

6. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model
Checking, pp. 305–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-10575-8 11

7. Bellés-Muñoz, M., Isabel, M., Muñoz-Tapia, J.L., Rubio, A., Baylina, J.: Circom: a
circuit description language for building zero-knowledge applications. IEEE Trans.
Dependable Secure Comput. (2022)

8. Bogetoft, P., et al.: Secure multiparty computation goes live. In: FC (2009)
9. Braun, D., Magaud, N., Schreck, P.: Formalizing some “small” finite models of

projective geometry in coq. In: International Conference on Artificial Intelligence
and Symbolic Computation (2018)

10. Buchberger, B.: A theoretical basis for the reduction of polynomials to canonical
forms. SIGSAM Bulletin (1976)

11. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: IEEE S&P (2018)

12. Chaliasos, S., Ernstberger, J., Theodore, D., Wong, D., Jahanara, M., Livshits, B.:
Sok: what don’t we know? understanding security vulnerabilities in snarks (2024).
https://arxiv.org/abs/2402.15293

13. Chin, C., Wu, H., Chu, R., Coglio, A., McCarthy, E., Smith, E.: Leo: a program-
ming language for formally verified, zero-knowledge applications (2021). Preprint
at https://ia.cr/2021/651

14. Choo, D., Soos, M., Chai, K.M.A., Meel, K.S.: Bosphorus: Bridging anf and cnf
solvers. IEEE, In DATE (2019)

15. Coglio, A., McCarthy, E., Smith, E., Chin, C., Gaddamadugu, P., Dellepere, M.:
Compositional formal verification of zero-knowledge circuits (2023). https://ia.cr/
2023/1278

16. Cohen, C.: Pragmatic quotient types in coq. In: ITP (2013)
17. Cox, D., Little, J., OShea, D.: Ideals, varieties, and algorithms: an introduction to

computational algebraic geometry and commutative algebra. Springer Science &
Business Media (2013)

18. CVE-2014-3570. https://nvd.nist.gov/vuln/detail/CVE-2014-3570
19. CVE-2017-3732. https://nvd.nist.gov/vuln/detail/CVE-2017-3732
20. Dahlgren, F.: It pays to be Circomspect (2022). https://blog.trailofbits.com/2022/

09/15/it-pays-to-be-circomspect/. Accessed 15 Oct 2023
21. Dummit, D.S., Foote, R.M.: Abstract algebra, vol. 3. Wiley Hoboken (2004)
22. Dutertre, B.: Yices 2.2. In: CAV (2014)
23. Eberhardt, J., Tai, S.: ZoKrates—scalable privacy-preserving off-chain computa-

tions. In: IEEE Blockchain (2018)

https://github.com/0xPARC/zk-bug-tracker
https://www.bu.edu/cise/computational-thinking-breaks-a-logjam/
https://www.bu.edu/cise/computational-thinking-breaks-a-logjam/
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://arxiv.org/abs/2402.15293
https://ia.cr/2021/651
https://ia.cr/2023/1278
https://ia.cr/2023/1278
https://nvd.nist.gov/vuln/detail/CVE-2014-3570
https://nvd.nist.gov/vuln/detail/CVE-2017-3732
https://blog.trailofbits.com/2022/09/15/it-pays-to-be-circomspect/
https://blog.trailofbits.com/2022/09/15/it-pays-to-be-circomspect/


24 A. Ozdemir et al.

24. Enderton, H.B.: A mathematical introduction to logic. Elsevier (2001)
25. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Systematic generation

of fast elliptic curve cryptography implementations. Technical report, MIT (2018)
26. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code

for cryptographic arithmetic: With proofs, without compromises. ACM SIGOPS
Operating Syst. Rev. 54(1) (2020)

27. Y. Finance. Monero quote (2023). https://finance.yahoo.com/quote/XMR-USD/.
Accessed 13 Oct 2023

28. Y. Finance. Zcash quote (2023). https://finance.yahoo.com/quote/ZEC-USD/.
Accessed 13 Oct 2023

29. Fournet, C., Keller, C., Laporte, V.: A certified compiler for verifiable computing.
In: CSF (2016)

30. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge (2019). https://ia.
cr/2019/953

31. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: ITP,
pp. 163–179 (2013)

32. Greuel, G.-M., Pfister, G., Schönemann, H.: Singular-a computer algebra system for
polynomial computations. In: Symbolic Computation and Automated Reasoning,
pp. 227–233. AK Peters/CRC Press (2001)

33. Groth, J.: On the size of pairing-based non-interactive arguments. In: EURO-
CRYPT (2016)

34. Grubbs, P., Arun, A., Zhang, Y., Bonneau, J., Walfish, M.: Zero-knowledge mid-
dleboxes. In: USENIX Security (2022)

35. Hader, T.: Ffsat. https://github.com/Ovascos/ffsat, commit 67fecde
36. Hader, T.: Non-linear SMT-reasoning over finite fields (2022). MS Thesis (TU

Wein)
37. Hader, T., Kaufmann, D., Irfan, A., Graham-Lengrand, S., Kovács, L.: Mcsat-

based finite field reasoning in the yices2 smt solver (2024)
38. Hader, T., Kaufmann, D., Kovács, L.: SMT solving over finite field arithmetic. In:

LPAR (2023)
39. Hader, T., Kovács, L.: Non-linear SMT-reasoning over finite fields. In: SMT (2022).

Extended Abstract
40. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification (2013).

https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf
41. Komendantsky, V., Konovalov, A., Linton, S.: View of computer algebra data from

coq. In: International Conference on Intelligent Computer Mathematics (2011)
42. Kotzias, P., Razaghpanah, A., Amann, J., Paterson, K.G., Vallina-Rodriguez, N.,

Caballero, J.: Coming of age: a longitudinal study of TLS deployment. In: IMC
(2018)

43. Liu, J., et al.: Certifying zero-knowledge circuits with refinement types (2023).
https://ia.cr/2023/547

44. Marescotti, M., Hyvärinen, A.E.J., Sharygina, N.: Clause sharing and partitioning
for cloud-based SMT solving. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA
2016. LNCS, vol. 9938, pp. 428–443. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46520-3 27

45. Mayr, E.W., Meyer, A.R.: The complexity of the word problems for commutative
semigroups and polynomial ideals. Adv. Math. 46(3), 305–329 (1982)

46. Monero technical specs (2022). https://monerodocs.org/technical-specs/

https://finance.yahoo.com/quote/XMR-USD/
https://finance.yahoo.com/quote/ZEC-USD/
https://ia.cr/2019/953
https://ia.cr/2019/953
https://github.com/Ovascos/ffsat
https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf
https://ia.cr/2023/547
https://doi.org/10.1007/978-3-319-46520-3_27
https://doi.org/10.1007/978-3-319-46520-3_27
https://monerodocs.org/technical-specs/


Split Gröbner Bases for SMFF 25

47. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories:
From an abstract davis–putnam–logemann–loveland procedure to DPLL(T). J.
ACM (2006)

48. OpenSSL bug 1953. https://www.mail-archive.com/openssl-dev@openssl.org/
msg23869.html

49. Ozdemir, A., Brown, F., Wahby, R.S.: CirC: compiler infrastructure for proof sys-
tems, software verification, and more. In: IEEE S&P (2022)

50. Ozdemir, A., Kremer, G., Tinelli, C., Barrett, C.: Satisfiability modulo finite fields.
In: CAV (2023)

51. Ozdemir, S., Pailoor, A., Bassa, A., Ferles, K., Barrett, C., Dillig, I.: Split Gröbner
bases for satisfiability modulo finite fields (2024). https://ia.cr/2024/572. Full ver-
sion

52. Ozdemir, A., Wahby, R.S., Brown, F., Barrett, C.: Bounded verification for finite-
field-blasting. In: CAV (2023)

53. Pailoor, S., et al.: Automated detection of under-constrained circuits in zero-
knowledge proofs. In: PLDI (2023)

54. Philipoom, J.: Correct-by-construction finite field arithmetic in Coq. Ph.D. thesis,
Massachusetts Institute of Technology (2018)

55. Schwabe, P., Viguier, B., Weerwag, T., Wiedijk, F.: A coq proof of the correctness
of x25519 in tweetnacl. In: CSF (2021)

56. Soureshjani, F.H., Hall-Andersen, M., Jahanara, M., Kam, J., Gorzny, J., Ahmad-
vand, M.: Automated analysis of halo2 circuits (2023). https://ia.cr/2023/1051

57. Tornado.cash got hacked. by us (2019). https://tornado-cash.medium.com/
tornado-cash-got-hacked-by-us-b1e012a3c9a8. Accessed 13 Oct 2023

58. Wang, D.: Elimination methods. Springer Science & Business Media (2001)
59. Wang, F.: Ecne: automated verification of zk circuits (2022). https://0xparc.org/

blog/ecne
60. Wen, H., et al.: Practical security analysis of zero-knowledge proof circuits (2023)
61. Wintersteiger, C.M., Hamadi, Y., de Moura, L.: A concurrent portfolio approach to

SMT solving. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
715–720. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-
4 60

62. Zcash counterfeiting vulnerability successfully remediated (2019). https://
electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/.
Accessed 13 Oct 2023

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://www.mail-archive.com/openssl-dev@openssl.org/msg23869.html
https://www.mail-archive.com/openssl-dev@openssl.org/msg23869.html
https://ia.cr/2024/572
https://ia.cr/2023/1051
https://tornado-cash.medium.com/tornado-cash-got-hacked-by-us-b1e012a3c9a8
https://tornado-cash.medium.com/tornado-cash-got-hacked-by-us-b1e012a3c9a8
https://0xparc.org/blog/ecne
https://0xparc.org/blog/ecne
https://doi.org/10.1007/978-3-642-02658-4_60
https://doi.org/10.1007/978-3-642-02658-4_60
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
http://creativecommons.org/licenses/by/4.0/

	Split Gröbner Bases for Satisfiability Modulo Finite Fields
	1 Introduction
	1.1 Related Work

	2 Background
	3 Motivating Example
	3.1 Verifying the Determinism of Num2Bits
	3.2 The Challenge of Bit-Splitting
	3.3 Cooperative Reasoning: A Path Forward

	4 Approach
	4.1 Split Gröbner bases
	4.2 Abstract Procedure: Split
	4.3 Concrete Procedure: BitSplit

	5 Experiments
	5.1 Benchmarks
	5.2 Comparison to Prior Solvers
	5.3 Comparison to Variants

	6 Application
	6.1 Background on Verifiable Field-Blasting
	6.2 A New Strategy for Verifying Operator Rules

	7 Conclusion
	A  Additional Background
	B  Computing Bitsum Usage in Real World Projects
	C  Proof of Theorem 1
	D  Proof of Theorems 2 and 3
	E  Proof of Lemma 1
	F  The Seq Benchmark Family
	G  Proof of Theorem 4
	References


