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5 Abstract. We present a divergence-free and H (div)-conforming hybridized discontinuous Galerkin]]

6 (HDG) method and a computationally efficient variant called embedded-HDG (E-HDG) for solving

7 stationary incompressible viso-resistive magnetohydrodynamic (MHD) equations. The proposed E-

8 HDG approach uses continuous facet unknowns for the vector-valued solutions (velocity and magnetic

9 fields) while it uses discontinuous facet unknowns for the scalar variable (pressure and magnetic pres-
10 sure). This choice of function spaces makes E-HDG computationally far more advantageous, due to
11 the much smaller number of degrees of freedom, compared to the HDG counterpart. The benefit is
12 even more significant for three-dimensional/high-order/fine mesh scenarios. On simplicial meshes,
13 the proposed methods with a specific choice of approximation spaces are well-posed for linear(ized)
14 MHD equations. For nonlinear MHD problems, we present a simple approach exploiting the proposed
15 linear discretizations by using a Picard iteration. The beauty of this approach is that the divergence-
16 free and H (div)-conforming properties of the velocity and magnetic fields are automatically carried
17 over for nonlinear MHD equations. We study the accuracy and convergence of our E-HDG method
18  for both linear and nonlinear MHD cases through various numerical experiments, including two- and
19  three-dimensional problems with smooth and singular solutions. The numerical examples show that
20  the proposed methods are pressure robust, and the divergence of the resulting velocity and magnetic
21  fields is machine zero for both smooth and singular problems.

22 Key words. hybridized discontinuous Galerkin, embedded-hybridized discontinuous Galerkin,
23 resistive magnetohydrodynamics, Stokes equations, Maxwell equations

24 AMS subject classifications. 65N30, 76 W05

25 1. Introduction. Magnetohydrodynamics (MHD) is a field within continuum
26 mechanics that investigates the behavior of electrically conducting fluids in the pres-
27 ence of magnetic fields [32]. This coupled phenomenon holds significant importance
28 across various fields including astrophysics [48, 49], planetary magnetism [20, 63], nu-
29 clear engineering [76, 42, 90], and metallurgical industry [1, 31]. This paper considers
30 the standard form of the stationary incompressible MHD equations [5, 44, 45, 51].
31 Specifically, ignoring the effects related to high-frequency phenomena and convection
32 current, and focusing on a medium that is non-polarizable, non-magnetizable, and
33  homogeneous, the resulting MHD equations read

34 (1.1a) —éAu +Vp+ (u-V)u+rbx (Vxb) =g,
35 (1.1b) V-u=0,
6 (1.1c) RimVX(be)JrVrfﬁVx(uxb):f,
3z (1.1d) V-b=0,
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2 J. CHEN, T.L. HORVATH, AND T. BUI-THANH

where u is the velocity of the fluid (plasma or liquid metal), b the magnetic field, p
the fluid pressure, and r a Lagrange multiplier' that is associated with the divergence
constraint (1.1d) on b. The system (1.1) is characterized by three dimensionless
parameters: the fluid Reynolds number Re > 0, the magnetic Reynolds number
Rm > 0, and the coupling parameter x = Ha?/(ReRm), with the Hartmann number
Ha > 0. For a more detailed exploration of these parameters, we refer to [5, 45, 32].
The major challenges in the discretization of the MHD equations are the following:
(i) multi-physics with disparate temporal (for the time-dependent MHD equations)
and spatial scales; (ii) nonlinearity; (iii) incompressibility. The satisfaction of exact
mass conservation in (1.1b) is closely tied to the concept of pressure-robustness, which
is the statement about the independence between the magnitude of the pressure error
and the a priori error estimate for the velocity [73, 74, 59]. Without global enforce-
ment of the continuity equation pointwise, large velocity error can be induced by large
pressure error. By global enforcement, we mean that the jump of the normal compo-
nent of velocity has to vanish across the interior boundaries of elements on a given
mesh. In other words, the approximation of velocity uy, is desired to be in the H (div)
space in addition to V - uj, = 0, where the divergence operator is defined in a weak
sense. The definition of the H(div) space and weak derivative will be elaborated in
Section 2; (iv) The solenoidal constraint for the magnetic field. The violation of this
constraint will cause the wrong topologies of magnetic field lines, leading to plasma
transport in an incorrect direction. Furthermore, nonphysical forces proportional to
the divergence error could be created, potentially inducing instability [19, 11, 91]; and
(v) The dual saddle-point structure of the velocity-pressure. The discretized system
is subject to having a notorious large conditional number and is thus difficult to solve.
Many numerical schemes have been proposed to solve linear, nonlinear, time-
dependent, and -independent MHD systems. Regarding spatial discretization, hy-
bridized discontinuous Galerkin (HDG) methods have demonstrated remarkable suc-
cess [69, 23, 83, 64, 47, 77]. The HDG methods were first introduced under the context
of symmetric elliptic problems [25] to overcome the common criticism had by discon-
tinuous Galerkin (DG) methods on the significantly more globally coupled unknowns
than continuous Galerkin methods due to the duplication of degrees of freedoms
(DOFs) on element boundaries [24]. The HDG methods reduce the computational cost
of DG methods by introducing facet variables uniquely defined on the intersections of
element boundaries and removing local (element-wise) DOF's through static conden-
sation, which was initially used in mixed finite element methods (i.e.,[16]). Once the
facet variables are solved, the element DOF's can be recovered element-by-element in
a completely embarrassing parallel fashion. Consequently, HDG methods are more
efficient while retaining the attractive features of DG methods, such as being highly
suitable for solving convection-dominated problems in complex geometries, delivering
high-order accuracy in approximations, and accommodating h/p refinement [54].
The computational cost of HDG methods can be further lowered by using contin-
uous facet variables across the skeleton of the mesh instead of the discontinuous ones
used in HDG methods. This approach led to the embedded discontinuous Galerkin
(EDG) methods and was first proposed for solving elliptic problems in [53]. Later,
the EDG methods were developed for solving both compressible flow problems in
[80, 79, 40] and incompressible flow problems in [65, 66]. All works showed that the
method inherited many of the desirable features of DG methods. At the same time,
the required number of DOF's was less than those of HDG methods and close to those

ISometimes, this variable is also referred to as the magnetic pressure.
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of continuous Galerkin (CG) methods on a given mesh. Further, the stiffness ma-
trix arising from EDG discretization of the flow problems will have a similar sparsity
structure as that of the statically condensed CG method [80, 79]. Unfortunately,
employing the EDG method can compromise the conservative property. As a conse-
quence, the EDG methods may lose the optimal converge property of the flux that
distinguishes other HDG methods. [80, 79]. In particular, for the incompressible flow
model, the velocity field cannot be globally divergence-free, and the mass can only
be conserved in the local sense [66]. To strike a balance between HDG and EDG
methods, an embedded-hybridized discontinuous Galerkin (E-HDG) method was first
developed in [87] for the Stokes equations. The method is proved to be globally
divergence-free and H (div)-conforming. The number of globally coupled DOFs can
be substantially reduced by using a continuous basis for the facet velocity field while
maintaining a discontinuous basis for the facet pressure. The methodology was later
adopted to space-time discretization to solve incompressible flows on moving domains
[55, 56] and is proved to be globally mass conserving, locally momentum conserving,
and energy-stable.

Several approaches have been suggested to address the issue of the divergence-
free constraint on the velocity field within the framework of DG, HDG, or E-HDG
methods. An approach to overcome the issue is to use H(div)-conforming elements
in the approximation of velocity, as discussed in [28, 50, 43] for DG methods. Alter-
natively, the constraint can be satisfied locally using solenoidal approximation space
for DG methods [8, 60, 72, 94, 62] and globally for HDG methods [21]. On the other
hand, H (div)-conformity can be acquired with the help of facet variables and proper
design of numerical flux for HDG [70, 71, 85, 67, 86, 81, 47] and E-HDG [87, 55, 56]
methods. Another technique to obtain globally divergence-free methods is to perform
post-processing using special projection operators [14, 27, 92, 29, 78, 26, 30, 52, 68]. It
is worthy to mention that in HDG methods the new velocity approximation obtained
by the local post-processing is not only exactly divergence-free and H (div)-conforming
but also has superconvergece property [78, 26]. One can also apply pressure-correction
methods that relies on Helmholtz decomposition to maintain the divergence-free con-
straint [18, 61].

We remark that the divergence-free constraint on the magnetic field given in
(1.1d) can be implied by the initial condition in the context of time-dependent MHD
equations on the continuous level, and it is also known as the solenoidal involution
property of the magnetic field. However, temporal and spatial discretization errors
can destroy such a property. Numerous methods have been proposed to satisfy the
V - b = 0 constraint in MHD calculations, and some of the ideas can be linked to the
approaches developed to handle the V - 4 = 0 constraint in the context of solving
incompressible flow problems. These methods include source term methods [82, 58],
projection method [19, 34] (similar to the projection-correction methods [18, 61]),
hyperbolic divergence cleaning methods [33, 62, 17, 23] (similar to artificial compress-
ibility methods [12, 13]), locally divergence-free methods [72, 94] (use locally solenoidal
approximation space and is similar to [8, 60, 62]), globally divergence-free methods
[43] (use globally solenoidal approximation space), and constrained transport (CT)
methods [38, 11, 75, 91]. Another approach to obtain a divergence-free and H (div)-
conforming method was developed in [47], using an HDG method that hybridizes the
facet Lagrange multiplier variable as well.

In this paper, we devise HDG and E-HDG methods, which are both divergence-
free and H (div)-conforming, for solving the stationary incompressible viso-resistive
MHD equations given in (1.1). Though both approaches are constructed in parallel,
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4 J. CHEN, T.L. HORVATH, AND T. BULTHANH

our exposition will focus on E-HDG. We obtain H (div)-conformity by following an
idea similar to [87, 55] and [47] through hybridization via a facet pressure and a
facet Lagrange multiplier field using discontinuous facet functions. For the E-HDG
variant, we use continuous facet functions for the velocity and the magnetic fields.
Moreover, we extended the work in [69] and employed an upwind type numerical
flux that is based on the first-order form of the linearized MHD system. This is in
contrast to the work in [47] where the authors hybridized another popular class of
DG methods called interior penalty discontinuous Galerkin (IPDG) methods [35, 7,
93, 6, 8] to construct the divergence-free and divergence-conforming HDG method for
the time-dependent incompressible viso-resistive MHD equations. To ensure stability,
the penalty parameter in IPDG methods, such as the one in typical Nitsche methods,
must be sufficiently large. However, no analytically proven bound is available for this
penalty parameter. Conversely, our approaches do not suffer from such difficulty, and
the criteria of the stabilization parameters are well-defined. With a few assumptions,
our proposed schemes are well-posed. The resulting E-HDG discretization for the
linearized MHD model can be incorporated into a Picard iteration to construct a fully
nonlinear solver provided it converges. This approach ensures that the divergence-
free and H (div)-conforming properties still hold for the nonlinear case. Moreover,
all results we discussed in the context of our E-HDG method are still applied to the
HDG counterpart, including well-posedness, divergence-free property, and H (div)-
conformity.

The paper is organized as follows. Section 2 outlines the notations. Section 3 pro-
poses both the HDG and E-HDG discrtizatinos for the linearized incompressible viso-
resistive MHD equations. In addition, the well-posedness of both methods is proven.
Further, we prove the divergence-free property and H (div)-conformity of both the
velocity (i.e., pointwise mass conservation) and the magnetic (i.e., pointwise absence
of magnetic monopoles) fields for linear and nonlinear cases. The implementation as-
pect is discussed in Section 4, where we also compare the computational costs required
by HDG and E-HDG methods. Several numerical examples for linear and nonlinear
incompressible viso-resistive MHD equations are presented to demonstrate the accu-
racy and convergence of our proposed methods in both two- and three-dimensional
settings. Section 5 concludes the paper with future work.

2. Notations. In this section, we introduce common notations and conventions
to be used in the rest of the paper. Let Q c R%, d = 2,3, be a bounded domain
such that it is simply connected, and its boundary 02 is a Lipschitz manifold with
only one component. Suppose that we have a triangulation of € consisting of a finite
number of nonoverlapping d-dimensional simplices, i.e., triangles for two dimensions
and tetrahedra for three dimensions, respectively. We assume that the triangulation is
shape-regular, i.e., for all d-dimensional simplices in the triangulation, the ratio of the
diameter of the simplex and the radius of an inscribed d-dimensional ball is uniformly
bounded. We will use €, and &), to denote the sets of d- and (d — 1)-dimensional
simplices of the triangulation and call £, the mesh skeleton of the triangulation. The
boundary and interior mesh skeletons are defined by £7 := {e € &, : e C 9Q} and
EP =&\ EP. We also define 02, := {0K : K € Q,}. The mesh size of triangulations
is h := maxgeq, diam(K).

We use (-,-)p (respectively (-,-)p) to denote the L?-inner product on a d- (re-
spectively (d — 1)-) dimensional domain D. The standard notation W#?(D), s > 0,
1 < p < o0, is used for the Sobolev space on D based on LP-norm with differentiability
s (see, e.g., [39]) and [|-||yy..0(p) denotes the associated norm. In particular, if p = 2,
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we use H*(D) := W*2(D) and [lls,p- W*P(€2) denotes the space of functions whose
restrictions on K reside in W*P(K) for each K € €y, and its norm is ||u||%3,p(Qh) =
ZKth H“|KH%/s,p(K) if 1 <p < ooand ||U||Ws,oo(gh) ‘= MAXKeQy ||U|K||WS=°O(K)'
For simplicity, we use (-, "), (-, "), ||||57 ||'H8(2h7 and ||HWS°O for (-, ')97 (- '>8§2h7 ||'||5,Qa
[1lo.00,  and H'wao(ﬂh)’ respectively.

For vector- or matrix-valued functions these notations are naturally extended
with a component-wise inner product. We define similar spaces (respectively inner
products and norms) on a single element and a single skeleton face/edge by replacing
Qp with K and &, with e. We define the gradient of a vector, the divergence of a
matrix, and the outer product symbol ® as:

d
Ou; . OL;; T
(Vu); = gy (V+D) =V L) :; grs (a@b), =ab; = (ab )]
The curl of a vector when d = 3 takes its standard form, (V x b); = >, 5ijkg%’;,
where ¢ is the Levi-Civita symbol. When d = 2, let us explicitly define the curl

of a vector as the scalar quantity V x b = g—g? — g—gé, and the curl of a scalar as
the vector quantity V x a = (8%7 7%)' In this paper, n denotes a unit outward

normal vector field on faces/edges. If 0K~ NOK™T € &, for two distinct simplices
K~ ,K*, then n~ and n™" denote the outward unit normal vector fields on K~ and
OK™, respectively, and n~ = —m™ on K~ N dK*. We simply use n to denote
either n~ or nT in an expression that is valid for both cases, and this convention
is also used for other quantities (restricted) on a face/edge e € &,. We also define
N =n®mn and T := I — N. For a scalar quantity v which is double-valued on
e:= 0K NOKT, the jump term on e is defined by [un]|. = u™n™ +u"n~ where u™
and v~ are the traces of u from K- and K ~-sides, respectively. For double-valued
vector quantity w and matrix quantity L, jump terms are [u - n]|. = u™ nt+u" -n",
[uxn]|. =ut xnt +u~ xn~, and [Ln]|. = LT™n* + L n~ where Ln denotes
the matrix-vector product.

We define Py, (K) as the space of polynomials of degree at most k on K, with
k > 0, and we define

P () = {u e L*(Q) : ul, € Py (K) VK € Q}.

The space of polynomials on the mesh skeleton Py, (£p,) is similarly defined, and their
extensions to vector- or matrix-valued polynomials [Py (4 )]%, [Pr(Q1)]*?, [Pr(En)]%,
etc, are straightforward.

Finally, we use the usual definition of the H(div)- and H (curl)-conforming spaces,
which are typical for mixed methods, and for methods dealing with electromagnetism,
see [37, 16],

H (div, ) = {u € [L2(Q)]" : V-ue LX)},
(2.1) H (curl, ) := {'u, IS [LQ(Q)]d SV xuc I:L2(Q):|CZ}7

where d = 3if d = 3, d = 1 if d = 2. In addition, the divergence V - (1) and
curl V x () operators should be thought of in the weak sense (an extension of weak
derivative defined in Definition 2.3 in [37]). Note that the jump condition [u - n]|e =
0 and [u x n]|e = 0 is necessary for ensuring u € H (div,Q) and uw € H (curl, ),
respectively (Theorem 18.10 in [37]).
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6 J. CHEN, T.L. HORVATH, AND T. BUI-THANH

3. An E-HDG Formulation. First, consider the following incompressible viso-
resistive MHD system linearized from Eq. (1.1)

1
(3.1a) —%Au—FVp—k(w-V)u—&-ndx (Vxb)=g,
(3.1b) Vou=0,
(3.1¢c) %Vx(VXb)+Vr—KVX(uxd):f,
(3.1d) V.b=0.

Here, d is a prescribed magnetic field and w is a prescribed velocity field. From this
point forward, we assume (see, e.g., [22, 57] for similar assumptions) d € [W>° ()] d,
we [Whe (Qh)]d N H(div,Q), V-w=0and g, f € [L? (Q)]d.

To apply the upwind type of numerical flux based on the work [69], we cast (3.1)
into a first-order form by introducing auxiliary variables L and J,

(3.2a) ReL —Vu =0,
(3.2b) —V-L+Vp+ (w-Vu+rd x (Vxb) =g,
(3.2¢) V.-u=0,
(3.2d) RTmJ ~Vxb=0,
(3.2¢) VxJ+Vr—kVx(uxd)=Ff,
(3.2f) V.b=0,

with Dirichlet boundary conditions
(3.3) u=up, b:=bp, r=0 on 0N.

In addition, we require the compatibility condition for wp and the mean-value zero
condition for p:

(3.4) (up -n, 1)y, =0, (p,1)q =0.

To achieve H (div)-conforming property, we introduce constant parameters aq, 81, 82 €[]
R, and define the numerical flux inspired by the work [69] as

ﬁ'l-n_ i —un 1
~2 N 1 > ~
F -n —Ln+mu+pn+§md><(n><(b—|—b))—|—a1(u—u)
.3
F -n u-n
(35) F4 n B 7n><i7 ’
Fon nxJ—&—f“n—%FmX((u+ﬂ)xd)+(ﬂ1T+52N)(b—i))
_FG n | L b-n i
where m := w - n. It should be noted that u, p, B, and 7 are the restrictions (or

traces) of u, p, b, and r on &,. These , p, l;, and 7 will be regarded as unknowns
in discretizations to obtain an E-HDG method. It will be shown that the conditions
oy > % |wl;~, and B1T + B2 N > 0? are sufficient for the well-posedness of our E-

HDG formulation. Note that all 6 components of the E-HDG flux, 1:", for simplicity

2The sign of “greater than” here means that the matrix (or the second order tensor) 1T + B2 N
is positive definite.
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262 are denoted in the same fashion (by a bold italic symbol). It is, however, clear from
~1 ~ ~ 3

263 (3.2) that F' is a third order tensor, F' is a second order tensor, F' is a vector, etc,

261 and that the normal E-HDG flux components, ' -n in (3.5), are tensors of one order

265 lower.

266 For discretization, we introduce the discontinuous piecewise and the continuous

267 polynomial spaces

268 Gh = [Pk(Qh)]dXd, Vh = [Pk(ﬂh)]d7 Qh = PE(Qh)v
269 Hp = [Pe()]",  Chi=[Pu@)]®,  Sh=Pr(), My = [Pr(&)NC(EY,
270 P = [Pu(&)],  Ani=[PuE)NCE)]Y, Thi=[Pr(&)], [

272 where k:=k—1, C(&) is the continuous function space defined on the mesh skeleton,
273 and d is defined in (2.1).

274 REMARK 1. The functions in My, and Ay are used to approximate the traces of
275 the wvelocity and the magnetic field, respectively. By a slight modification of these
276 spaces (i.e., My, = [Pr(E)]" and Ay, = [Pu(E)]?), a divergence-free and H(div)-
277 conforming HDG method can be obtained. All the results presented in Sections 3.1,
278 3.2 and 3.3 can be directly applied to the resulting HDG method. In addition, we will
279 numerically compare the computational time needed by HDG and E-HDG methods in
280 Section /.

281 Let us introduce two identities which are useful throughout the paper:

282 (3.6a) (u,d X (Vxb)=(b,Vx(uxd)),+(dx(nxb),u)y,,

383 (3.6b) [dx (nxb)]-u=—[nx(uxd)-b.

285 These identities follow from integration by parts and vector product identities.

286 Next, we multiply (3.2a) through (3.2f) by test functions (G,v,q,J,¢,s), inte-
287 grate by parts all terms, and introduce the numerical flux (3.5) in the boundary terms.
288 This results in a local discrete weak formulation:

250 (3.72) Re (Ly, Q) + (un, V- G + <F}L “n, G>6K —0,

290 (3.7b) (L, V) g — (pn, V- 0) i — (up, @ w, Vo) i
~ 2

291 i (b, V x (v x d)) o + <Fh : n,v>aK = (g,v)
.3

292 (3.7¢) —(un, V@) + <Fh ‘n, q>aK =0,

Rm .4

203 (3.7d) == (T H) = (bn, V % H) o+ <Fh “n, H>aK —0,

294 (3.7e) (Jn, Vxe)g—(rn,V-¢)g —k(up,dx (Vxe)g
.5

295 +<Fh'n7c>aK:(fﬂc)K’
-6

206 (3.71) — (by, Vs) e + <Fh “n, S>8K —0,

298 for all (G,v,q,H,c,s) € G (K) x Vi (K) x Qp (K) x H, (K) x Cp, (K) x Sy (K)
299 and for all K € Qy, where quantities with subscript h are the discrete counterparts
300 of the continuous ones, for example, u;, and Lj, are the discrete approximations of u
301 and L.
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302 Since @, p, b, and 7 are facet unknowns introduced in addition to the original
303 unknowns, we need to equip extra equations to make the system (3.7) well-posed. To
304 that end, we observe that an element K communicates with its neighbors only through
305 the trace unknowns. For the E-HDG method to be conservative, we weakly enforce
306 the continuity of the numerical flux (3.5) across each interior edge. Since @, and by,

.1 .4
307 are single-valued on &, we automatically have that [F), -n] = 0 and [F), - n] = 0.
308 The conservation constraints to be enforced are reduced to

(I -nlw) =0, ([Fr-nlp)

(IF7-mlx) =0, ([Fy-nly) =0,

0,

309 (3.8)

310 for all (¢, p, A,y) € My, (e) x Py, (€) x Ap, (€) x T, (e), and for all e in 2. Furthermore,
311 the following constraint on the domain boundary is required in order to establish the
312 well-posedness of our HDG formulations:

313 (3.9) (-, p), = (up -n,p), ,

314 forall p € Py, (e) for all e in &Y. This constraint means that we weakly enforce i, -n =
315 wp-n on the boundary, and is also used in [66, 84, 86] where hybridized IPDG methods
316 are developed for solving the incompressible Navier-Stokes equations. Finally, we
317 enforce the Dirichlet boundary conditions weakly through the facet unknowns:

a5 (310) (anm), = (o), (BnA) =(bp ) (), =0,

319 for all (u,A,y) € My (e) x Ay (e) x T, (e) for all e in &7, In Eq. (3.7)-(3.10) we
320 seek (Lh,uh,ph,meh,rh) € Gy XV x Qh x Hp x Cp x Sy, and (ﬁh,ﬁ, i)h7f’h) S
321 My x Pp, x Ay x IT'y,. For simplicity, we will not state explicitly that equations hold
for all test functions, for all elements, or for all edges.

)
N
[\

323 We will refer to Ly, wn, pn, Jn, by, and 7, as the local variables, and to equation
324 (3.7) on each element as the local solver. This reflects the fact that we can solve for
325 local variables element-by-element as functions of wp, pp, by, and 7. On the other
326 hand, we will refer to wp,pn,bn, and 7y, as the global variables, which are governed
327 by equations (3.8),(3.10), and (3.9) on the mesh skeleton. For the uniqueness of the
328 discrete pressure pp, we enforce the discrete counterpart of (3.4):

329 (3.11) (pn,1) =0.

331 3.1. Well-posedness of the E-HDG formulation. In this subsection, we

332 discuss the well-posedness of (3.7)-(3.11). We would like to point out that the result
333  presented in this subsection is also valid for the proposed HDG version in Remark 1.

334 THEOREM 3.1. Let Q be simply connected with one component to 2. Let ay, 51,
5 B2 € R such that oy > W]l oy and 1T + B2IN > 0. The system (3.7)~(3.11) is
336 well-posed, in the sense that given f, g, up, and hp, there exists a unique solution

337 (LhauhaphaJh,bhaThyﬂhaﬁhai)h;f'h)'
338 Proof. (3.7)-(3.11) has the same number of equations and unknowns, so it is
339 enough to show that (g, f,up,bp) = 0 implies (Lp, wn, h, Jn, bn, Th, Why Py b, Tr) = O.I

340 To begin, we take (G,v,q,J,¢c,s) = (Lp,wn,pn, Jn,bn, 1), integrate by parts the
341 first four terms of (3.7b) and the first term of (3.7¢), sum the resulting equations in

This manuscript is for review purposes only.



A DIV-FREE AND H(DIV)-CONFORMING EHDG METHOD FOR MHD 9

342 (3.7), and sum over all elements to arrive at

545 Re||La|? + RTm 1Tal5 = Gt & 70, L) + (Franyun ) + (@ (= n) un)

344 (3.12) + (P, up) + <;Iid X (n X I;h) ,uh> — <n X Bh,Jh> + (Fpn, by)

345 + <(51T+ BoN) (by — Bh),bh> — <;fm x (@, X d),bh> =0,

347  where we have used V - w = 0 and the following integration by parts identities:

1 m
3438 — ,w-V =——(w,V : :7<— , >
:348 (up, w - Vup) g 5 (w,V(up - un)) g 5 Uho Wh -
350 Next, setting (u, p, A,v) = (@, Dn, I;h,fh), and summing (3.8) over all interior edges
351 give
. 1 PN
352 —Lyn+mup + ppn+ —kd X (n X b)) + a1 (up, — ayp) , 4y,
2 QK \0Q
353 + (Un - 1, Pn) pa, 00
(3.13)
1 . .
51 A {nx Tyt — =rnx (uy x d) + (BT + B N) (bh - bh) by,
2 QK \0Q
h
338 + (bn - 1, 7h) 90,00 = 0,

357 where we used the continuity of d and the single-valued nature across the element

358 boundaries of global variables to eliminate (d x (n X I;h), Wh) o, \00 and (n x (a, x d), i)h>th\ag.l
359 Since up = 0 and bp = 0 by assumption, we conclude from the boundary

360 conditions (3.10) that @, = 0, b, = 0, and 7, = 0 on 0f). In addition, from the

361 constraint (3.9) we also have (up, - m,pp), = (Un - 7, Pr), on the boundary and hence

362 (up - M, Pp)go = 0. Subtracting (3.13) from (3.12) and using the fact that y,, by, n,

363 and (up, - M, Pp) 5 vanish on the physical boundary 0f2, we arrive at

Rm . R m
w60 (3:14) Re|lTall§ + =2 1wl + o (wn — @n), (un — @) + <§uh,uh>
365 — (muh,'&h> + <(,81T + /BQN) (bh - Bh) ,bp — i)h> =0.

366

367 Finally, using the fact that w € H(div,Q) and w, = 0 on 9%, we can freely add
368 0= (2, @) to rewrite (3.14) as

Rm m . N
w9 (315)  Rel|Lallg+ == | Jull§ + <(a1 + 5) (un — @), (un — uh)>

+ (BT + 521N (b = b0 ) b — b ) =0,

)
=~
[\

Recalling a; > % |w|| and 51T+ 2N > 0, we can conclude that Ly, =0, J;, =0,
that up, = uy, and by, = by, on &p,.

Now, we integrate (3.7a) by parts to obtain Vu;, = 0 in K, which implies that
uy, is element-wise constant. The fact that w;, = @, on &, means u, is continuous
6 across &. Since up = 0 on 02, we conclude that u, = 0 and therefore w;, = 0.

(S BTSNV
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377 Since by, = by, on &, by, is continuous on Q. Integrating both (3.7d) and (3.7f) by
378 parts, we have V x by, =0 and V - b, = 0 on 2. When by, € H(div, Q) N H(curl, )
379 and by, = 0 on 912, and recalling that  is simply connected with one component to
380 the boundary, there is a constant C' > 0 such that ||by||, < C(||V - by, + |V x bi,)
381 [46, Lemma 3.4]. This implies that b;, = 0, and hence b, = 0.

382 Taking account of the vanishing variables we had discussed, integrating by parts
383 reduces (3.7b) and (3.7e) to:

381 (3.16) (Vpn,v)x — ((Ph — Pr) M, v) 55 = 0,

385 and

386 (3.17) (Vrn,e)g = ((rh — Th) m, ) g = 0,

387 respectively. Given that pp|r, mn|x € Pr—1 (K) and a simplicial mesh is used, we can
388 invoke the argument of Nédélec space to conclude that p, = pp and rp = 75 on 0K
380 (Proposition 4.6 in [85]). This implies that (Vpp,v)x =0 and (Vry,¢)x = 0. Thus,
390 pp, and 7}, are elementwise constants. Since 7, = 7, on &7, then 7, is continuous on
391 €, and since r, = 0 on 0f), we can conclude that r;, = 0, and hence 75, = 0. Finally,
392 we use the result p;, = pp, on £ to conclude that pj, is continuous and a constant on
393 . Using the zero-average condition (3.11) yields pp = 0 and hence p;, = 0. 0

394 3.2. Well-posedness of the local solver. A key advantage of HDG or E-HDG
395 methods is the decoupling computation of the local variables (L, wpn, pr, Jn, b, 1)
396 and the global variables (@, pp, by, 7). In our E-HDG scheme, we first solve (3.7) for
307 local unknowns (Ly, up, pp, Jn, by, ) as a function of (up, pp, 5h, 71,) (local solver),
398  then these are substituted into (3.8) on the mesh skeleton to solve for the unknowns
399 (p, Dn, by, 71,) (global solver). Finally, (Lp, wn,pn, Jn, b, ) are computed with the
100 local solver using (@, P, Bh, 1), so well-posedness of the local solver is essential. It
101 should be emphasized again that the result presented in this subsection is also valid
402 for the HDG version in Remark 1.

403 THEOREM 3.2. Let a1, 1, 52 € R such that oy > % ||w||Loo(Q) and 51T + 2N >

404 0. The local solver given by (3.7) is well-posed. In other words, given (Qp, pr, Bh, n, g,

405 f,pn), there exists a unique solution (Lyp,wp,pp, I n,bn,mn) of the system.

6 Proof. We show that (4, pr, bu, 74,9, £, pn) = 0 implies (Ly, wn, pr, J 1, bp,74) = 0]
7 To begin, set (@, pn, bp, 71, g, f,pn) = 0. Take (G, v,q,J,¢,5) = (Ln, wn, pr T, bn. 1)
¢ integrate by parts the first four terms in (3.7b) and the first term in (3.7¢), and sum

9 the resulting equations to get

2 m
410 (318) Re ”LhHO,K + <<041 + 5) uh,uh>8K
Rm
a11 + = [Inll6 s + (BT + B2N) bi bi) o = 0.

113 Recalling oq > 1 ||w|| ;o and 51T + 2N > 0, we can yield
14 L,=0, J,=0, in K; up, =0, b,=0, on 0K.

416 Using an argument similar to that in Section 3.1 we can conclude uw, = by, =0 in K.
417 From (3.7b) and (3.7e), we have:

418 (3.19) —(pn,V-v)k =0, YveV,(K),

This manuscript is for review purposes only.
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and
(320) - (T‘h,V‘C)K =0, Vee(C, (K),

respectively. Since the space {¢: ¢=V v, Vv € V;, (K)} D Qp (K) and
{s:s=V-¢,Vee C,(K)} 2 S, (K), we can pick V-v = pj, and V- ¢ = rj and
conclude that p, =r, =0 in K. 0

3.3. Conservation properties of the E-HDG method. In this section, we
prove that our method is divergence-free and H (div)-conforming for both velocity
(i.e., the exactness of mass conservation) and magnetic (i.e., the absence of magnetic
monopoles) fields. Same conclusions can be drawn for the HDG version in Remark 1.
It is worth mentioning that in this work a simplicial mesh is assumed to be used. In
fact, the proofs of propositions presented in this section are only valid for a straight-
sided mesh.

PROPOSITION 1 (divergence-free property and H (div)-conformity for the veloc-
ity field). Let up, € Vy, and @, € My be the solution to the proposed E-HDG
discretization (3.7)-(3.11), then

(3.21a) V- (un] ) =0, VK € Qp;
(3.21b) [un - n]|, =0, Ve € &.
(3.21¢) up N =u,-n, on e and Ve € &J.

Proof. Apply integration-by-parts to Eq. (3.7¢):
(3.22) (V- (unly) @) =0, Vg € QulK), VK € Q.

Since V- (up| ) € Qu(K), we can take ¢ = V- (up| ), yielding ||V - (uh|K)||(2)7K =0,
which implies that V - (up|,) = 0 for all K € Q. It follows from Eq. (3.8) that:

(3.23) <[[F;°; -n]],p>e = ([u, -n].p), =0, VpePe), Ve € &

Since [uy, - n]|, € Py(e)?, we can take p = [uy, - n], yielding ||[uy, - n]]||(2)e =0 for all
e € &. Thus, [uy - n]|, =0 for all e € £7. The proof of Eq. (3.21c) follows the same
argument with the aid of Eq. (3.9). |

PROPOSITION 2 (divergence-free property and H (div)-conformity for the mag-
netic field). Let b, € Cj, and by, € Ay, be the solution to the proposed E-HDG
discretization (3.7)-(3.11), then

(3.24a) V- (bilg) =0, VK € Qp;
(3.24b) [by -n]|, =0, Ve € &F.

Proof. The result holds by directly following the similar argument as the proof of
Proposition 1. 0

REMARK 2. As can be seen, both Propositions 1 and 2 also hold true for the

nonlinear case. That is, they are still valid if w and d are replaced by up, and by, in
(3.7)-(3.8).

3Note that the statement [uy, - n]|, € P, (e) do not hold for a curve mesh since m is not constant

anymore.
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4. Numerical Results. A nonlinear solver can be constructed through the em-
ployment of the linear E-HDG (or HDG in Remark 1) scheme given by (3.7)-(3.11)
in a Picard iteration. If we consider the linearized MHD equations (3.1) to be a lin-
ear map (w,d) — (u,b), then any fixed point of that mapping is a solution to the
nonlinear incompressible viso-resistive MHD equations (1.1). With this in mind, we
can use the general linearized incompressible MHD E-HDG scheme (3.7)—(3.11) in an
iterative manner to numerically solve the nonlinear incompressible MHD equations.
The convergence of such an interaction is investigated in [77]. Let the superscript
denote an iteration number, we set the initial guess u) = 0 and b) = 0 and the
stopping criterion

(4.1) TOL := max{ [ P L _AbﬁleO} <

Hu;zHo 7 HbZHo

where ¢ is a user-defined tolerance. In particular, we take ¢ = O(1071°) in all numer-
ical experiments for the nonlinear examples.

In this section, a series of numerical experiments is presented to illustrate the
capability of the E-HDG method in both linear and nonlinear scenarios. First, a
comparison is drawn between the proposed HDG and E-HDG methods regarding
the DOF's and the actual computational time (wall-clock time). Then the order of
accuracy for the linear scheme is numerically investigated by applying the E-HDG
method to two- and three-dimensional problems with smooth solutions. The conver-
gence of a two-dimensional singular problem, defined on a nonconvex domain, is also
presented. Moreover, the pressure-robustness of our method is numerically demon-
strated by perturbing smooth manufactured solutions. Finally, the order of accuracy
for the nonlinear solver, where the linear scheme is integrated into a Picard iteration,
is studied through two- and three-dimensional problems featuring smooth solutions,
including a stationary liquid duct flow in plasma physics and manufactured solutions.
It should be emphasized that the divergence-free property and H (div)-conformity
still obviously hold for our nonlinear solver and will be validated through numerical
demonstrations.

Our methods—both HDG and E-HDG)—are implemented based on the Modular
Finite Element Method (MFEM) library [4]. Furthermore, we use the direct solver of
MUMPS [2, 3] through PETSc [10, 9] to solve the systems of linear equations com-
posed by the Schur complement (or static condensation) resulting from the discretiza-
tion (3.7)—(3.11). In addition, we take stabilization parameters a; € {125,1000} and
B1 = B2 € {1,100,1000}. Although it is proved that the well-posedness of both
local and global solvers can be guaranteed by the conditions a; > % ||lw|;«, and
61T + B2 N > 0, we numerically found that small increments in the values of the sta-
bilization parameters can improve the order of accuracy. However, large values (i.e.,
O(10%) or larger) of the parameters can cause serious adverse effects in convergence.
It could be caused by the increased stiffness (condition number).

REMARK 3. In all numerical experiments, the physical parameters are given and
comparisons of different values of the parameters are made in some cases to provide
an insight into how robust our method is. Although our well-posedness analysis shows
the stability of our methods regardless of what values of Re, Rm, and k are, the solver
will still be affected by these parameters which characterize the condition number of
the linear system. It is worth emphasizing that the linear system to be solved is already
near singular owing to the pressure variable (See Remark 5). Thus, it could be expected
that the higher these values are, the harder the problem to be solved.
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S 3R

o v v Ot Ot
3

oo

wt
—

s

—

[SL SN S GL
NN

N

ot ot Ot

NN N
[S1 YO JV)

NN N
0w 3 O

)
)

W W W W W W w W w w
0 O Uk W N = O ©

B

—_

NN

ot Ot Ot Ot Ot Ut Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot ot ot ot Ot
W N

A DIV-FREE AND H(DIV)-CONFORMING EHDG METHOD FOR MHD 13

REMARK 4. In this work, the auziliary variables Ly, and J}, can be locally elim-
inated through local Eq. (3.7a) and (3.7d), respectively. Since the numerical fluz
defined in (3.7a) only associates with a single global variable wy, the local variable
Ly, can be expressed by up and Wy, thanks to the block diagonal structure endowed by
the term Re (Lp, G) . A similar procedure can also be followed to express Jy by by,
and by, with the help of Eq. (3.7d). Through the elimination, the assembly operation
(construct the local Schur complement and allocate it to the global matriz) and recon-
struction operation (solve for the local variables with the given global variables) can
be computationally cheaper.

REMARK 5. Even though the well-posedness of the method is proved in Theorem
3.1, the inclusion of the pressure constraint given in (3.11) is not straightforward to
implement. Note that the discretization is ill-posed without the pressure constraint,
and the local variable py, and global variable pp can only be determined up to a con-
stant. Such a singular system can still be handled by a Krylov type of iterative solver
without encountering breakdowns [15, 36]. However, in order to use a direct solver,
an additional treatment is necessary. In this paper, we restrict one DOF of the global
variable py, to be zero such that both pp and pp can be determined. Once the sys-
tem is solved by the direct solver, we then enforce the pressure constraint (3.11) by
post-processing.

REMARK 6. All L>®-norms are computed as the maximum norm of the function
values evaluated on all elements using a set of quadrature points with the order of
accuracy 2k + 3.

4.1. Computational Performance of the proposed HDG and E-HDG
methods. In this subsection, we discuss the computational costs of the HDG and the
E-HDG methods in which the discretization is based on (3.7)-(3.11) but with different
trace approximation spaces (see Remark 1). Table 4.1 summarizes the DOFs needed
by the HDG and E-HDG methods, and Table 4.2 summarizes the corresponding
computational time. The values presented in each cell of Table 4.2 denote the total
wall-clock time spent by the entire process. This includes the three main tasks: the
assembly (locally constructing the Schur complement and allocating it to the global
matrix), the solution of the system of equations (obtaining the global variables), and
the local reconstruction (recovering the local variables from the given global variables
through the solution of the local equations (3.7)). The measurements are based on
the average of five runs, with each run recording the maximal time among all MPI
processes.

The reduction in DOFs becomes notably more pronounced for three-dimensional
cases, particularly on finer meshes. For example, applying the E-HDG method with
k = 1 on a mesh comprising 24576 elements results in a maximum DOF reduction
of up to 72.58%. This reduction is directly reflected in the computational time, see
Table 4.2, where a 47.74% saving in total computational time is achieved. The ef-
ficiency of the E-HDG method is further illustrated in Figure 4.1 by comparing its
accuracy and computational time with the HDG method for k = 1,2 in the context of
three-dimensional cases. However, on coarser meshes, despite substantial reductions
in DOFs, the corresponding savings in computational time are limited (perhaps due
to the efficiency of MUMPS [2, 3]). This discrepancy can be explained through Table

4The k = 3,4 is not included since both approaches have similar efficiency if the mesh consisting
of 3072 elements is used. In addition, the HDG method is not applicable with the MUMPS solver
when the mesh is refined further owing to insufficient memory.
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4.3 and Table 4.4. The former delineates the wall-clock time spent by the linear solver,
while the latter encapsulates the times allocated to the assembly and the local recon-
struction tasks. Analysis of Table 4.4 reveals that the times devoted to assembly and
local reconstruction remain similar for both methods irrespective of mesh refinement,
approximation degree, or dimension. On the other hand, the reduction trend in total
computational time presented in Table 4.2 aligns closely with the computational time
required by the linear solver detailed in Table 4.3. This alignment suggests that the
advantage of downsizing DOF's may become more substantial when the linear solver
time dominates the overall computational time. In essence, while reducing DOFs
may not significantly impact the assembly and reconstruction times for the HDG and
E-HDG methods, it notably enhances the efficiency of the linear solver in the E-HDG
method for larger problems.

In addition to the reduction on computational time, reducing DOFs also adds
advantages in memory management and this can be seen in Table 4.2. On the three-
dimensional mesh consisting of 24576 elements, the linear solver fails when using the
HDG methods along with & = 3 and k = 4 due to insufficient memory®. In contrast,
such challenges can be overcome by using the E-HDG method, where the linear solver
remains operational under identical circumstances.

Two-dimensions Three-dimensions

DOFs used in the HDG method DOFs used in the HDG method

elem. # k=1 k=2 k=3 k=4 clem. # k=1 k=2 k=3 k=4
2 60 90 120 150 6 432 864 1.44E+03  2.16E+03
8 192 288 384 480 48 2.88E+03  5.76E+03 9.60E+03 1.44E+04
32 672 1.01E+03  1.34E+03 1.68E+03 364 2.07E4+04  4.15E+04 6.91E+04 1.04E+05
128 2.50E+03 3.74E+03 4.99E+03  6.24E+03 3072 1.57TE4+05  3.13E+05 5.22E405 7.83E405
512 9.60E4+03 1.44E+04 1.92E+04 2.40E+04 24576 1.22E+406 243E+06 4.06E+06 6.08E+06

DOFs used in the E-HDG method DOFs used in the E-HDG method

elem. # k=1 k=2 k=3 k=4 elem. # k=1 k=2 k=3 k=4
2 36 66 96 126 6 156 378 744 1.25E4+03
8 100 196 292 388 48 882 2.19E+03 4.46E+03 7.69E+03
32 324 660 996 1.33E4+03 364 5.93E+03 1.47E+04 3.05E+04 5.31E+04
128 1.16E4+03 2.40E+03 3.65E4+03 4.90E+03 3072 4.35E+04 1.08E+05 2.24E4+05 3.93E+05
512 4.36E4+03 9.16E4+03 1.40E+04 1.88E+04 24576 | 3.34E+05 8.24E+05 1.72E+06 3.02E+06

Percentage of reduction in DOFs (%) Percentage of reduction in DOFs (%)

elem. # k=1 k=2 k=3 k=4 elem. # k=1 k=2 k=3 k=4

2 -40.00 -26.67 -20.00 -16.00 6 -63.89 -56.25 -48.33 -41.94

8 _47.92 -31.94 -923.96 -19.17 48 -69.38 -61.98 -53.56 -46.62

32 -51.79 -34.52 -25.89 -20.71 364 -71.38 -64.45 -55.93 -48.79

128 -53.69 _35.79 _26.84 21.47 3072 -72.21 -65.59 -57.05 -49.83

512 _54.62 -36.42 2731 _21.85 24576 -72.58 -66.14 -57.59 -50.33

Table 4.1: The summary of DOFs used in E-HDG and HDG discretizations given
by (3.7)-(3.11). Note that k denotes the degree of approximation and “elem. #”
indicates the number of elements used in a given mesh.

4.2. Linear examples. A series of linear numerical experiments is carried out
to verify our method in this subsection. We first analyze the accuracy and the conver-
gence in two dimensions for the case of a smooth manufactured solution. In addition,
the pressure robustness of our method is also tested. We then analyze the accuracy
and convergence for a singular manufactured solution. Finally, we perform the analy-
sis of the accuracy, convergence, and pressure robustness for a smooth manufactured

5Such breakdown can be avoided by using an iterative solver. However, the design of a precondi-
tioned iterative solver is beyond the scope of this paper, and hence we will pursue this in our future
work (see also our previous work in [77]).
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Two-dimensions

Three-dimensions

Total number of MPI processes

Total number of MPI processes

clem # | k=1 k=2 k=3 k=4 com. # | k=1 k=2 k=3 k=14
2 1 1 1 1

6 1 1 1 2
8 1 1 1 1
32 2 2 2 2 18 ! 2 2 2

364 2 4 4 8
128 2 2 2 2 3072 2 8 8 16
512 4 4 4 4 24576 | 4 16 16 32

Total wall-clock time by the HDG method (sec) Total wall-clock time by the HDG method (sec)
elem. # | k=1 k=2 k=3 k=4 clem. # | k=1 k=2 k=3 k=4
2 0.02 0.03 0.07 0.18 6 0.17 1.81 11.06 25.04
8 0.03 0.09 0.25 0.69 48 1.17 7.04 44.79 197.09
32 0.05 0.18 0.50 1.39 364 4.96 29.47 182.88  412.77
128 0.15 0.67 1.98 5.54 3072 43.90 12743 783.20  1726.52
512 0.31 1.39 4.01 11.29 24576 303.48 879.87 - -
Total wall-clock time by the E-HDG method (sec) Total wall-clock time by the E-HDG method (sec)
elem. # | k=1 k=2 k=3 k=4 elem. # | k=1 k=2 k=3 k=4
2 0.01 0.03 0.07 0.18 6 0.16 177 11.03 25.05
8 0.02 0.09 0.25 0.69 48 1.14 6.93 45.03 198.85
32 0.05 0.18 0.50 1.39 364 4.65 28.49 182.44 404.38
128 0.14 0.66 1.96 551 3072 37.91 117.19  739.76  1650.05
512 0.27 1.36 3.8 11.21 24576 158.59  522.89  3341.03  7473.77
Reduction in total computational time (%) R,educt)wn in total) COIIlputatlf)Ilal time (‘Z)
dem. # [ k=1 k=2 k=3 k=4 Zlem' # "5:881 "2:212 "02273 (’;&4
2 -50.00  0.00 0.00 0.00 o - - :
ag e 48 -2.56 -1.56 0.54 0.89

8 -33.33  0.00 0.00 0.00 . - .

364 -6.25 -3.33 -0.24 -2.03
32 0.00 0.00 0.00 0-00 3072 1364 -804 555 -443
128 -6.67 -1.49 -1.01 -0.54 24576 AT74 A05T - )
512 21290 -2.16 -0.75 -0.71

Table 4.2: The summary of total computational time (the averaged maximum of
wall-clock time over five runs of identical setting, among all MPI processes) taken
by E-HDG and HDG methods to solve two- and three-dimensional problems with the
discretization given in (3.7)-(3.11). The two-dimensional problem is the one presented
in Section 4.2.1 with Re = Rm = 1 and the three-dimensional problem is the one
presented in Section 4.2.3 with Re = Rm = 1. Note that k& denotes the degree of
approximation and “elem. #” indicates the number of elements used in a given mesh.

solution in three dimensions.

4.2.1. Two-dimensional smooth manufactured solution. This example il-
lustrates the convergence of the E-HDG scheme applied to a problem posed on the
square domain 2 = (0,1) x (0,1). In particular, the two-dimensional manufactured
vortex solution considered in [47] is adopted. We take Re = Rm € {1,1000} and
k=1, and set g and f such that the manufactured solution for (3.2)-(3.4) is

o _ (2% (P +y) 2y — 1) (2 — 1)7,

(422 (e e 2o )
(222" (—? +y) 2y - 1) (z - 1)%,

(420) b= (ot sy o )

(4.2¢) p = posin (mx) sin (7y),

(4.2d) r=0,

with the prescribed fields w = uw and d = b, and a constant py. Table 4.5 shows
the convergence rates for each local variable and the L°°-norm of the divergence
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Two-dimensions Three-dimensions

Total number of MPI processes Total number of MPI processes

elem. # k=1 k=2 k=3 k=4 elem. # k=1 k=2 k=3 k=4
2 1 1 1 1 6 1 1 1 2
8 1 1 1 1 48 1 2 2 2
32 2 2 2 2 364 2 4 4 8
128 2 2 2 2 3072 2 8 8 16
512 4 4 4 4 24576 4 16 16 32
Wall-clock time of linear solver Wall-clock time of linear solver
in the HDG method (sec) in the HDG method (sec)
elem. # k=1 k=2 k=3 k=4 elem. # k=1 k=2 k=3 k=4
2 0.01 0.01 0.01 0.01 6 0.01 0.05 0.11 0.42
8 0.01 0.01 0.01 0.01 48 0.04 0.13 0.83 0.98
32 0.01 0.02 0.02 0.02 364 0.41 1.26 3.51 5.93
128 0.03 0.04 0.06 0.09 3072 7.32 14.9 61.91 106.37
512 0.06 0.11 0.17 0.25 24576 156.51 419.73 - -
Wall-clock time of linear solver Wall-clock time of linear solver
in the E-HDG method (sec) in the E-HDG method (sec)

elem. # k=1 k=2 k=3 k=4 elem. # k=1 k=2 k=3 k=4
2 0.01 0.01 0.01 0.01 6 0.01 0.03 0.09 0.17
8 0.01 0.01 0.01 0.01 48 0.02 0.07 1.2 0.55
32 0.01 0.01 0.02 0.02 364 0.09 0.41 1.17 2.75
128 0.02 0.03 0.05 0.07 3072 0.97 3.52 16.48 37.67
512 0.03 0.08 0.13 0.20 24576 13.08 66.88 414.78 940.11

Reduction in computational time of linear solver (%) Reduction in computational time of linear solver (%)
elem. # k=1 =2 k=3 =14 elem. # k=1 k=2 k=3 k=4
2 0.00 0.00 0.00 0.00 6 0.00 -40.00 -18.18 -59.52
8 0.00 0.00 0.00 0.00 48 -50.00 -46.15 44.58 -43.88
32 0.00 -50.00 0.00 0.00 364 -78.05 -67.46 -66.67 -53.63
128 -33.33 -25.00 -16.67 -22.22 3072 -86.75 -76.38 -73.38 -64.59
512 -50.00 -27.27 -23.53 -20.00 24576 -91.64 -84.07 - -

Table 4.3: The summary of computational time (the averaged maximum of wall-clock
time over five runs of identical setting, among all MPI processes) taken by the linear
solver for solving the two- and three-dimensional problems using E-HDG and HDG
methods with the discretization given in (3.7)-(3.11). The two-dimensional problem
is the one presented in Section 4.2.1 with Re = Rm = 1 and the three-dimensional
problem is the one presented in Section 4.2.3 with Re = Rm = 1. Note that k denotes
the degree of approximation and ”elem. #” indicates the number of elements used in
a given mesh.

errors, with the corresponding convergence plots in Figure 4.2. Examining Table
4.5 suggests that the increment in Re and Rm improves the convergence rates of
some local variables in this problem, notably Ly, wp, and by,. For a more definitive
assessment of convergence rates from the numerical experiment, we focus on the results
corresponding to Re = Rm = 1. In summary, we observe the super convergence rate
of k + 3/2 for ry,, the optimal convergence rates of k + 1 for uy, by, the optimal
convergence rate of k + 1 for py, and sub-optimal convergence rates of k for Ly, Jp,.
To numerically assess the pressure robustness of our method, we intentionally
perturb the pressure solution. The test is carried out on two different meshes, one
with 32 elements and another one with 512 elements, using polynomial degree k = 2
for both and a wide range of py values. The results of this study are presented in Table
4.6. It is observed from the table that the L2-errors of all local variables including
the velocity and magnetic fields are independent of py regardless of which mesh is
used. The observation implies that these errors do not depend on the pressure field
and hence our method could be pressure robust. A particularly noteworthy discovery
is the independence of the magnetic field error from the pressure field, a phenomenon
previously observed in [47] as well. Plausible reasoning for this observation may stem
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Two-dimensions

Three-dimensions
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Total number of MPI processes

Total number of MPI processes

elem. # k=1 k=2 k=3 k=4 elem. # k=1 k=2 k=3 k=4
2 1 1 1 1 6 1 1 1 2
8 1 1 1 1 48 1 2 2 2
32 2 2 2 2 364 2 4 4 8
128 2 2 2 2 3072 2 8 8 16
512 4 4 4 4 24576 4 16 16 32

Wall-clock time of assembly & reconstruction Wall-clock time of assembly & reconstruction

in the HDG method (sec) in the HDG method (sec)

elem. # k=1 k=2 k=3 k=4 elem. # k=1 k=2 k=3 k=4
2 0.01 0.02 0.06 0.17 6 0.15 1.77 10.95 24.62
8 0.02 0.08 0.24 0.68 48 1.13 6.91 43.96 196.12
32 0.03 0.16 0.48 1.37 364 4.54 28.21 179.37 406.84
128 0.12 0.63 1.92 5.45 3072 36.58 112.53 721.29 1620.16
512 0.25 1.28 3.84 11.04 24576 146.97 460.14 - -

Wall-clock time of assembly & reconstruction Wall-clock time of assembly & reconstruction

in the E-HDG method (sec) in the E-HDG method (sec)
elem. # k=1 k=2 k=3 k=4 elem. # k=1 k=2 k=3 k=4
2 0.01 0.03 0.06 0.17 6 0.15 1.74 10.93 24.89
8 0.02 0.08 0.24 0.68 48 1.12 6.86 43.82 198.3
32 0.03 0.16 0.48 1.37 364 4.56 28.08 181.27 401.64
128 0.12 0.63 1.91 5.43 3072 36.94 113.67 723.29 1612.38
512 0.24 1.28 3.85 11.01 24576 145.51 456.01 2926.25 6533.66
Reduction in computational time Reduction in computational time
of assembly & reconstruction (%) of assembly & reconstruction (%)

elem. # k=1 =2 k=3 k= elem. # k=1 e =2 k=3 k=4
2 0.00 50.00 0.00 0.00 6 0.00 -1.69 -0.18 1.10
8 0.00 0.00 0.00 0.00 48 -0.88 -0.72 -0.32 1.11
32 0.00 0.00 0.00 0.00 364 0.44 -0.46 1.06 -1.28
128 0.00 0.00 -0.52 -0.37 3072 0.98 1.01 0.28 -0.48
512 -4.00 0.00 0.26 -0.27 24576 -0.99 -0.90 - -

Table 4.4: The summary of computational time (the averaged maximum of wall-clock
time over five runs of identical setting, among all MPI processes) taken by assembly
execution and local reconstruction for solving the two- and three-dimensional problems
using E-HDG and HDG methods with the discretization given in (3.7)-(3.11). The
two-dimensional problem is the one presented in Section 4.2.1 with Re = Rm = 1 and
the three-dimensional problem is the one presented in Section 4.2.3 with Re = Rm = 1.
Note that k denotes the degree of approximation and “elem. #” indicates the number
of elements used in a given mesh.

from the absence of the pressure field in the magnetic induction equation presented
in (3.1c).

4.2.2. Two-dimensional singular manufactured solution. To assess the
robustness of our E-HDG scheme, we apply it to a problem where a strong singularity
exists on the boundary. This example illustrates the convergence of the E-HDG
scheme using a manufactured solution with a singularity (similar to the example in
Section 5.2 of [57] and Section 5.3 of [69]). In particular, we consider a nonconvex
domain given by @ = (—1,1) x (—=1,1)\[0,1) x (—1,0]. We take Re = Rm =« = 1,
w =0, and d = (—1,1). We pick g and f such that the analytical solution of
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Fig. 4.1: Tllustration of Table 4.2 for k = 1,2 with the inclusion of the accuracy of the
approximation to different variables.

Re=Rm=1,k=1

ReLy  wn  pn 22, by rw [ [[Vounlle V- bully
k=1 1.02 229 112 1.20 240 196 | 3.85E-15  4.06E-15
k=2 | 202 308 221 228 3.06 273 | 3.44E-14 2.71E-14
k=3 | 304 406 317 335 4.03 3.75 | 7.94E-14  8.45E-14
k=4 | 403 508 428 451 491 479 | 290E-13  4.55E-13

Re =Rm =1000,x =1
E=1] 129 134 099 1.36 146 065 | 4.30E-15  2.54BE-15
k=2| 293 405 202 3.01 414 240 | 2.50E-14  2.17E-14
k=3 | 398 528 302 38 518 3.81 | 1.35B-12  1.07E-13
k=4 | 416 521 400 417 520 4.39 | 2.67E-12  2.22E-12

Table 4.5: Convergence rates of all local variables and divergence errors of velocity and
magnetic fields for the E-HDG method applied to solve the two-dimensional problem
with a smooth manufactured solution given in (4.2) with pg = 1. The corresponding
results are also presented in Figure 4.2. In this table, the convergence rates are
evaluated at the last two data sets and the divergence errors are evaluated at the last
data set.

(3.2)-(3.4) has the form

_(r 1+ /\) Sm( )1(9) + cos (9)9' ()],
(432 w= (L et SSacon)
(4.3b) b= V< sin < )>
(1.30) pm LN VO Lv"0)
(4.3d) r =0,
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32 elements in total, h ~ 1.46F — 1

po | RellL = Lally | e —wnlly [ 12— pally | “= 17 — Jally | 16— ballg | I —rally | IV ~unlle [ 1V - ball
1 2.09E-2 1.27E-3 5.57E-2 1.67E-2 9.66E-4 3.97E-2 7.15E-16 7.49E-16
10 2.09E-2 1.27E-3 2.02E-1 1.67E-2 9.66E-4 3.97E-2 1.40E-15 6.11E-16
25 2.09E-2 1.27E-3 4.90E-1 1.67E-2 9.66E-4 3.97E-2 2.78E-15 6.66E-16
100 2.09E-2 1.27E-3 1.95 1.67E-2 9.66E-4 3.97E-2 1.03E-14 6.38E-16
512 elements in total, h = 3.66F — 2

1 1.27E-3 1.09E-5 2.30E-3 7.48E-4 1.07E-5 1.40E-3 4.44E-15 3.77E-15
10 1.27E-3 1.09E-5 1.26E-2 7.48E-4 1.07E-5 1.40E-3 7.41E-15 3.77E-15
25 1.27E-3 1.09E-5 3.11E-2 7.48E-4 1.07E-5 1.40E-3 1.73E-14 4.05E-15
100 1.27E-3 1.09E-5 1.24E-1 7.48E-4 1.07E-5 1.40E-3 7.92E-14 4.11E-15

Table 4.6: The errors in the local variables for the smooth manufactured solution
given in (4.2) for meshes of 32 and 512 elements, a polynomial degree of k = 2, and
a range of pg values. The physical parameters are set to be Re = Rm =1 and x = 1.

where

sin ((1+A)¢)  sin((1—X)g)
1+ A 1—A

P(¢) = cos (Aw) ] —cos ((1 4+ N)g) + cos ((1 — \)o),

w = 3?”, A~ 0.54448373678246, ¢ € [0, 3;} .

For this problem, it is known that u € [HH)‘(Q)]Z, p € H*(Q), and b € [H2/3(Q)]2,
and the solution contains magnetic and hydrodynamic singularities that are among
the strongest singularities [57] right at the origin. The exact solution is illustrated in
the first column of Figure 4.4. It can be observed that singularity is located at the
origin for b and p. While u is relatively smooth, its derivative is singular at the origin.

A sequence of unstructured meshes is used to test the convergence of the numerical
solution. Figure 4.3 demonstrates the coarsest mesh and a couple of refined meshes
that are used in the convergence test. The numerical solution and the absolute error
which are obtained on the finest mesh with approximation order k = 4 are presented
in Figure 4.4 as well.

Convergence results for this problem are summarized in Table 4.7 and illustrated
in Figure 4.5. For the fluid variables Lj,, uy, and pp, we observe convergence rates
of approximately 2/3. In the case of magnetic variables, namely J}, by, and 7y,
the observed convergence rates are approximately 1/5, 2/3, and 1/3 respectively.
Compared to the result presented in [69], the convergence rates of the fluid variables
are lower, while the ones of the magnetic variables are similar. Remarkably, despite
the accuracy challenges, divergence errors in both velocity and magnetic fields remain
close to machine zero in this singular test case.

4.2.3. Three-dimensional smooth manufactured solution. We now apply
our E-HDG method to a three-dimensional problem on structured tetrahedron meshes.
Note that our well-posedness analysis is still valid for this case. We set 2 = (0,1) x
(0,1) x (0,1) and take Re = Rm € {1,1000} and x = 1. For this test case, we choose
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Fig. 4.2: Convergence histories of all local variables and divergence errors for the
E-HDG method applied to solve the two-dimensional problem with a smooth manu-
factured solution given in (4.2) where we set pp = 1. Only the convergence rates for
Re = Rm =1 are presented here.

Fig. 4.3: The meshes used in Section 4.2.2. The coarsest mesh is presented in the first
column. In the second column, the mesh that undergoes two-times uniform refinement
is presented. The finest mesh is shown in the third column and is obtained by four-
times uniform refinement.
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Fig. 4.4: The contour plots of the exact solution (the first column), the numerical
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solution (the second column), and the error (the third column). The magnitudes of
the quantities are presented and all results are obtained by solving the two-dimensional

problem with a manufactured solution given in (4.3) where a strong singularity exists

in the magnetic field.

Re=Rm=xk=1

ReLh up Ph RTth bh Th ||V . uh||oo ||V . bh”oo
k=1| 068 0.68 070 0.08 0.71 0.29 8.82e-12 4.22e-10
k=21 071 074 076 017 071 031 2.06e-11 4.06e-09
k=3 | 060 065 069 033 058 0.40 6.25e-11 1.46e-08
k=41 051 054 056 042 051 0.44 1.95e-10 3.82e-08

Table 4.7: Convergence rates of all local variables and divergence errors of velocity and
magnetic fields for the E-HDG method applied to solve the two-dimensional problem

with a singular manufactured solution given in (4.3). The corresponding results are

also presented in Figure 4.5. In this table, the convergence rates are evaluated at the
last two data sets and the divergence errors are evaluated at the last data set.

the forcing function such that the exact solution is given by

(4.4a)

(4.4b)
(4.4c)

(4.4d)

u =

b=u

— (ycos (y) +siny) e”,
ysin (y)e® — (z.co(s ()z)y—i— sin (2)) e?, |,

—2

P=Do <26Z sin (y)z2 - <?(e cos(l) —cos(l)—e+1

r=20
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Fig. 4.5: Convergence histories of all local variables and divergence errors for the
E-HDG method applied to solve the two-dimensional problem with a manufactured
solution given in (4.3) where a strong singularity exists in the magnetic field.

with the prescribed fields w = w and d = b, and a constant py. Table 4.8 summarizes
the convergence rates of all local variables and shows the L°°-norm of the divergence
errors. The corresponding convergence histories are shown in Figure 4.6. Similar
to the two-dimensional smooth testing case presented in Section 4.2.1, we observed
that the convergence rates are affected by Re and Rm here as well, but in an adverse
manner. The effect is evident for Ly, up, and by. We present the convergence rates
for the case Re = Rm = 1. As can be seen, p;, and 7} exhibit superconvergence with
a rate of k + 3/2, and the convergence rates of u;, and by, are optimal with k + 1.
For Lj and J}, the convergence rate is, however, suboptimal with k. The conclusion
is consistent with the one made in Section 4.2.1 where the two-dimensional smooth
manufactured solution is applied.

The numerical assessment of the pressure robustness of our method is also carried
out for this manufactured solution. The examination is conducted by perturbing the
solution in pressure on two meshes, one consisting of 48 elements and the other with
24576 elements, with k = 2 and various values of pg. Table 4.9 details the results.
Similar to the two-dimensional case presented in Table 4.6, the L?-errors in velocity
and magnetic field are independent of pressure on different meshes.
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Re=Rm=1,k=1

ReLh up Ph RTth bh Th ||Vuh||oo ”VbhHoo
k=11 072 178 181 1.02 2.04 195 | 6.19E-13 2.11E-13
k=2 | 221 350 285 2.21 3.23 279 | 1.41E-12 1.29E-12
k=3 | 3.08 399 3.66 322 419 3.75 | 9.07E-10 1.96E-11
k=4 | 422 523 473 424 523 4.70 | 3.66E-09 8.06E-11

Re =Rm =1000,x =1
k=1 047 138 189 056 077 1.96 | 5.73E-13 2.13E-13
k=21 128 225 3.01 1.31 2.19 293 | 1.64E-12 1.45E-12
k=3 | 364 469 392 377 472 393 | 1.46E-09 1.93E-11
k=4 394 422 491 4.03 429 549 | 5.55E-09 5.94E-09

Table 4.8: Convergence rates of all local variables and divergence errors of velocity
and magnetic fields for the E-HDG method applied to solve the three-dimensional
problem with a smooth manufactured solution given in (4.4) where we set pg = 1. The
corresponding results are also presented in Figure 4.6. In this table, the convergence
rates are evaluated at the last two data sets and the divergence errors are evaluated
at the last data set.

48 elements in total, h ~ 1.06 E — 1

po | RellL— Lully | Tu—unlly | Ip—pullo | == 17— Tally | 16— bully | 17— rally | 1V -unlg | 1V -bal
1 7.52E-2 2.69E-3 1.59 6.42E-2 2.42E-3 1.29 2.42E-13 2.19E-13
10 7.52E-2 2.69E-3 5.99 6.42E-2 2.42E-3 1.29 2.99E-13 2.48E-13
25 7.52E-2 2.69E-3 15.57 6.42E-2 2.42E-3 1.29 3.09E-13 2.53E-13
100 7.52E-2 2.69E-3 64.09 6.42E-2 2.42E-3 1.29 2.89E-13 2.60E-13
24576 elements in total, h ~ 2.64E — 2

1 3.19E-3 2.10E-5 3.16E-2 2.70E-3 2.53E-5 2.90E-2 1.40E-12 1.43E-12
10 3.19E-3 2.10E-5 5.83 2.70E-3 2.53E-5 2.90E-2 1.40E-12 1.31E-12
25 3.19E-3 2.10E-5 15.55 2.70E-3 2.53E-5 2.90E-2 1.41E-12 1.22E-12
100 3.19E-3 2.10E-5 64.13 2.70E-3 2.53E-5 2.90E-2 1.32E-12 1.44E-12

Table 4.9: The errors in the local variables for the smooth manufactured solution
given in (4.4) for meshes of 48 and 24576 elements, a polynomial degree of k = 2, and
a range of py values. We set Re=Rm =1 and x = 1.

4.3. Nonlinear examples. To verify our nonlinear solver, we conducted several
numerical experiments and studied the accuracy and convergence. The first example
is the two-dimensional smooth manufactured solution, the second one is the so-called
Hartmann flow problem, and the last one is the three-dimensional smooth manufac-
tured solution.

4.3.1. Two-dimensional smooth manufactured solution. Our first numer-
ical experiment for the nonlinear solver is a steady manufactured solution. In particu-
lar, we use the same solution presented in Section 4.2.1 to investigate the convergence.
The results are presented in Table 4.10 and are illustrated in Figure 4.7. The observed
convergence rates are almost the same as the rates observed in the linear problem pre-
sented in Section 4.2.1. Moreover, the divergence errors also exhibit the same order of
magnitude. Finally, the number of iterations needed by the Picard iterative process
is reported in Table 4.11 where the user-defined tolerance ¢ is set to be 1E — 10 for
k=1,2 and 2F — 10 for k = 3,4.
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Fig. 4.6: Convergence histories of all local variables and divergence errors for the
E-HDG method applied to solve the three-dimensional problem with a smooth man-
ufactured solution given in (4.4) where we set pg = 1. Only the convergence rates for
Re = Rm =1 are presented here.

4.3.2. Two-dimensional Hartmann flow. We next consider the Hartmann
channel flow, a generalization of the classic plane Poiseuille problem to the setting of
the incompressible visco-resistive MHD. In this problem, a conducting incompressible
fluid (liquid metal, for example) in a domain (—oo, 00) x (—l, ly) X (—00, 00) (bounded
by infinite parallel plates in the xo direction) is driven by a uniform pressure gradi-
ent G := _aan in the x; direction, and is subject to a uniform external magnetic
field by in the x5 direction. In addition, we enforce no-slip boundary conditions on
the zo boundaries and assume the infinite parallel plates are perfectly insulating.
The resulting flow pattern admits an analytical solution that is one-dimensional in
nature. In this numerical study, we consider the simulation of Hartmann flow in a
two-dimensional domain Q = (0,0.025) x (—1,1). If we define the characteristic veloc-
ity as ugp := \/Glp/p and consider the driving pressure gradient G as a forcing term

(incorporated in g), the nondimensionalized solution with g = (1,0), f = 0 takes the
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Re=Rm=1,k=1

ReLh up Ph RTth bh Th ||Vuh||oo ”VbhHoo
k=1 102 229 1.12 1.20 240 196 | 4.02E-15 3.72E-15
k=2 | 202 308 221 228 3.06 273 | 2.39E-14 2.66E-14
k=3 | 3.04 406 3.17 335 4.03 3.75 | 7.75E-14 7.65E-14
k=4 403 5.08 428 451 491 479 | 281E-13 5.65E-13

Re =Rm =1000,x =1
k=1 127 135 0.99 1.38 1.47 0.65 | 2.69E-15 2.83E-15
k=21 293 404 202 3.01 4.14 240 | 2.61E-14 2.35E-14
k=3 | 398 528 3.02 3.85 5.18 3.81 1.13E-12 1.10E-13
k=4| 416 520 4.00 4.17 520 4.39 | 2.78E-12 1.73E-12

Table 4.10: Convergence rates of all local variables and divergence errors of velocity
and magnetic fields for the nonlinear solver applied to solve the two-dimensional
problem with a smooth manufactured solution given in (4.2) where we set pg = 1. The
corresponding results are also presented in Figure 4.7. In this table, the convergence
rates are evaluated at the last two data sets and the divergence errors are evaluated
at the last data set.

Re=Rm=1,k=1

Re = Rm = 1000, k =1

The Picard iteration number

The Picard iteration number

elem. # k=1 k=2 k=3 k=4 elem. # k=1 k=2 k=3 k=4
2 3 3 4 4 2 2 2 2 3

8 3 4 4 4 8 2 2 23 38

32 3 4 3 3 32 2 24 35 25
128 4 3 3 2 128 3 33 30 16
512 3 3 2 2 512 4 37 26 10
2048 3 3 2 1 2048 8 36 18 5
8192 3 2 2 2 8192 24 32 11 [§

Table 4.11: The summary of iteration number required by the Picard iterative process
of solving the two-dimensional problem with a smooth manufactured solution given
in (4.2) where we set pgp = 1. The user-defined tolerance ¢ is set to be 1E — 10 for

k=1,2and 2F — 10 for k = 3,4.

form (see, i.e., [88, 89])

(4:52) v = (o |~ o ita) ) )
s b (Ll ) ),

(4.5¢) pz—i [W—yr—po,

(4.5d) r=20

where Ha := v kReRm, and py is a constant that enables p to satisfy the zero average
pressure condition.

At refinement level I, the domain is divided into ! x 80! squares, each of which is
divided into two triangles from top right to bottom left. Figure 4.8 shows the conver-
gence plots with Re = Rm = 7.07 and ¥ = 200 and the corresponding convergence
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Fig. 4.7: Convergence histories of all local variables and divergence errors for the
nonlinear solver applied to solve the two-dimensional problem with a smooth manu-
factured solution given in (4.2) where we set pp = 1. Only the convergence rates for
Re = Rm =1 are presented here.

rates are summarized in Table 4.12. In this example, user-defined tolerance ¢ is set to
be 1E—10 and the Picard iteration numbers for all cases presented in Figure 4.8 reach
50, which is the maximum allowable number of iterations. However, the computed
tolerance TOL is acceptable since it is hovering around O(1E — 9) — O(1E — 10) for
k=1, O(1E-8)—0O(1E—9) for k = 2, and O(1E —8) for both k =3 and k = 4. On
the other hand, the convergence rates for Ly, up, pn, Jn, bn, and r, are observed to
be approximately k, k—1/2, k+1,k, k+ 1/2, and k+1. The observation is consistent
with the rates observed in Section 4.2.1 and 4.2.3 except for the ones of the velocity
and magnetic fields, which are sub-optimal here.

4.3.3. Three-dimensional smooth manufactured solution. We now turn
our attention to a three-dimensional nonlinear problem, demonstrating the conver-
gence of the nonlinear solver utilizing a smooth manufactured solution as outlined
in Section 4.2.3. The numerical results are presented in Table 4.13 and visually pre-
sented in Figure 4.9. The observed convergence rates are consistent with the rates
presented in Section 4.3.3 where a linear problem with the same smooth manufactured
solution is solved. Particularly, Table 4.13 closely mirrors the content of Table 4.8. In
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Re =Rm = 7.07,k = 200
ReLh up Ph RTth bh Th ”vuh”oo ”VbhHoo
k=1] 101 3.68 1.01 1.03 1.87 1.26 | 3.52E-09 5.50E-12
k=2 | 208 181 2.03 1.96 258 1.74 | 2.95E-08 1.28E-10
k=3 | 320 259 3.16 3.55 3.64 3.18 | 1.30E-07 2.90E-10
k=4 | 417 3.72 413 421 4.20 3.96 | 3.16E-07 7.02E-10

Table 4.12: Convergence rates of all local variables and divergence errors of velocity
and magnetic fields for the nonlinear solver applied to solve the two-dimensional
Hartmann flow problem that admits the solution given in (4.5). The corresponding
results are also presented in Figure 4.8. In this table, the convergence rates are
evaluated at the last two data sets and the divergence errors are evaluated at the last
data set.

addition, the same order of magnitude is observed for the divergence errors as well.

Table 4.14 concludes the number of iterations needed by the Picard iterative
process. In this example, the user-defined tolerance ¢ is set to be 2F — 10. It is
widely known that the Picard solver may not converge consistently, and the success
of the iteration is contingent upon the initial guess and the contractive property.
Our findings underscore that the convergence of the Picard solver is substantially
influenced by the physical parameters Re, Rm, the degree of approximation k, and
the mesh refinement. This implies that the contractive property of the linear map
(w,d) — (u,b) can be largely affected by these factors. This is not surprising as
our analysis in [77] showed the contraction factor is proportional to the initial guess,
f,9,Re, Rm/k and depends on w and d in a nontrivial nonlinear manner. Specifically,
in the testing cases with Re = Rm = 1000 and k£ > 1, the Picard iteration does not
converge when using the initial guess u) = b?L = 0. Taking Re = Rm = 1000, the
Picard iteration stalls when k¥ = 2 is used on the mesh with 364 elements (TOL
stagnates around O(1E — 4)), k = 3 on the mesh with 48 elements (TOL stagnates
around O(1E —4)), and k = 4 on the mesh with 6 elements (I'OL stagnates around
O(1E — 5)). Only the case with k& = 1 exhibits convergence across a sequence of
meshes with 6, 48, 364, 3072, and 24576 elements, and the results of this case are
presented in both Table 4.13 and Figure 4.9.
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Fig. 4.8: Convergence histories of all local variables and divergence errors for the
nonlinear solver applied to solve the two-dimensional Hartmann flow problem that

admits the solution given in (4.5).

Re=Rm=1,k=1

ReLh up Ph RTth bh Th ||Vuh||oo ||Vbh”oo
k=11 072 178 181 102 204 1.95| 6.89E-13  2.97E-13
k=2| 221 350 28 221 323 278 | 137E-12  1.37E-12
k=3 | 308 399 366 322 419 3.75| 9.32E-10  2.07E-11
k=4| 422 523 473 424 523 470 | 347E-09  8.38E-11

Re = Rm = 1000,k =1
[k=1] 047 136 189 057 080 1.96 [ 6.08E-13  2.47E-13 |

Table 4.13: Convergence rates of all local variables and divergence errors of velocity
and magnetic fields for the Picard iterations applied to solve the three-dimensional
problem with a smooth manufactured solution given in (4.4) where we set pg = 1. The
corresponding results are also presented in Figure 4.9. In this table, the convergence
rates are evaluated at the last two data sets and the divergence errors are evaluated

at the last data set.
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Fig. 4.9: Convergence histories of all local variables and divergence errors for the
Picard iterations applied to solve the three-dimensional problem with a smooth man-
ufactured solution given in (4.4) where we set po = 1. Only the convergence rates for
Re = Rm = 1 are presented here.

Re=Rm=1,r=1 Re = Rm = 1000, k =1
The Picard iteration number The Picard iteration number
elem. # k=1 k=2 k=3 k=4 elem. # k=1 k=2 k=3 k=4
6 3 3 4 5 6 3 3 - -
48 3 5 6 5 48 3 5 - -
364 5 7 5 2 364 5 - - -
3072 7 6 3 1 3072 10 - - -
24576 8 5 2 1 24576 47 - - -

Table 4.14: The summary of iteration number required by the Picard iterative process
of solving the two-dimensional problem with a smooth manufactured solution given
in (4.4) where we set pg = 1. In all cases, the user-defined tolerance ¢ is set to be
2F — 10. The symbol ”-” in the table indicates the failure of the Picard solver, in
which not only is the maximum allowable number of iterations reached but also is the
computed tolerance TOL generally too large to be acceptable.
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740 5. Conclusion and future work. This paper presents two new divergence-free
741 and H (div)-conforming HDG methods for the linearized incompressible viso-resistive
742 MHD equations with well-posedness analysis. Particularly, we have showed that on
743 simplicial meshes, the well-posedness of the proposed approaches can be established
744 by the use of a one-order lower approximation in local variables for the pressure p; and
745 the Lagrange multiplier r;,, and by appropriately chosen stabilization parameters. One
746  of the motivations for adopting E-HDG in lieu of HDG methods lies in computational
747 gain. Indeed, our experiments have revealed a significant acceleration in the runtime,
748  manifested through the utilization of fewer DOFs in E-HDG, particularly in cases
749  where the linear solver dominates the overall computational time, such as in three
dimensions with high-order approximations on fine meshes. Linear problems with
both smooth and singular solutions were presented to examine the convergence of
the proposed E-HDG method. For problems with smooth solutions, both two- and
three-dimensional settings were tested. The numerical convergence rates are shown
to be optimal for both velocity and magnetic fields in the regime of low Reynolds
number and magnetic Reynolds number. Moreover, the pressure robustness of our
method was numerically verified. For the singular solution, the convergence rate is
limited by the regularity of the solution. However, the divergence-free property is still
guaranteed.

By incorporating the E-HDG discretization into the fixed point Picard iteration,

we can solve the nonlinear incompressible viso-resistive MHD equations iteratively.
The globally divergence-free property still holds for both the velocity and the magnetic
762 fields. The convergence of the nonlinear solver is investigated through nonlinear prob-
763 lems with smooth solutions. The convergence rates in the tests are almost identical
764 to the ones observed in the linear tests in both two- and three-dimensional settings.
765 Further, divergence errors in both velocity and magnetic fields are indeed observed to
766 be machine zero.
767 While various aspects of our proposed E-HDG method have been discussed in this
768 paper, there remain several noteworthy issues. Firstly, a rigorous convergence analysis
769 is required, albeit consistent convergence rates for each local variable are observed in
numerous numerical experiments in this paper. Secondly, the analysis presented in
Section 4.1 may offer an incomplete depiction of the correlation between DOFs and
computational time. This limitation arises from the potential inapplicability of the
discussed insights to iterative solvers, which are heavily relied upon to address large-
scale problems (i.e., see [41, 87, 77| for the discussion about the design of scalable solver
in the context of DG, HDG and EDG with application to flow and MHD problems.).
Therefore, the development of a scalable iterative approach that demonstrates efficacy
7 across a wide spectrum of Reynolds and magnetic Reynolds numbers is necessary.
Finally, it is found that the Picard solver does not converge in some cases on three-
dimensional meshes in the regime of high Reynolds number and magnetic Reynolds
number. The observation implies that the linear map (w, d) — (u, b) can be largely
affected by various factors. Investigating the contraction of this map could provide
insights for devising a more robust algorithm. These topics are non-trivial and could
783 each be expanded into individual papers. Thus, we aim to address them in our future
784 research agenda.
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