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Abstract. We present a divergence-free andH (div)-conforming hybridized discontinuous Galerkin5
(HDG) method and a computationally e!cient variant called embedded-HDG (E-HDG) for solving6
stationary incompressible viso-resistive magnetohydrodynamic (MHD) equations. The proposed E-7
HDG approach uses continuous facet unknowns for the vector-valued solutions (velocity and magnetic8
fields) while it uses discontinuous facet unknowns for the scalar variable (pressure and magnetic pres-9
sure). This choice of function spaces makes E-HDG computationally far more advantageous, due to10
the much smaller number of degrees of freedom, compared to the HDG counterpart. The benefit is11
even more significant for three-dimensional/high-order/fine mesh scenarios. On simplicial meshes,12
the proposed methods with a specific choice of approximation spaces are well-posed for linear(ized)13
MHD equations. For nonlinear MHD problems, we present a simple approach exploiting the proposed14
linear discretizations by using a Picard iteration. The beauty of this approach is that the divergence-15
free and H (div)-conforming properties of the velocity and magnetic fields are automatically carried16
over for nonlinear MHD equations. We study the accuracy and convergence of our E-HDG method17
for both linear and nonlinear MHD cases through various numerical experiments, including two- and18
three-dimensional problems with smooth and singular solutions. The numerical examples show that19
the proposed methods are pressure robust, and the divergence of the resulting velocity and magnetic20
fields is machine zero for both smooth and singular problems.21
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1. Introduction. Magnetohydrodynamics (MHD) is a field within continuum25

mechanics that investigates the behavior of electrically conducting fluids in the pres-26

ence of magnetic fields [32]. This coupled phenomenon holds significant importance27

across various fields including astrophysics [48, 49], planetary magnetism [20, 63], nu-28

clear engineering [76, 42, 90], and metallurgical industry [1, 31]. This paper considers29

the standard form of the stationary incompressible MHD equations [5, 44, 45, 51].30

Specifically, ignoring the e!ects related to high-frequency phenomena and convection31

current, and focusing on a medium that is non-polarizable, non-magnetizable, and32

homogeneous, the resulting MHD equations read33

→ 1

Re
”u+↑p+ (u ·↑)u+ ωb↓ (↑↓ b) = g,(1.1a)34

↑ · u = 0,(1.1b)35

ω

Rm
↑↓ (↑↓ b) +↑r → ω↑↓ (u↓ b) = f ,(1.1c)36

↑ · b = 0,(1.1d)3738

→
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2 J. CHEN, T.L. HORVÁTH, AND T. BUI-THANH

where u is the velocity of the fluid (plasma or liquid metal), b the magnetic field, p39

the fluid pressure, and r a Lagrange multiplier1 that is associated with the divergence40

constraint (1.1d) on b. The system (1.1) is characterized by three dimensionless41

parameters: the fluid Reynolds number Re > 0, the magnetic Reynolds number42

Rm > 0, and the coupling parameter ω = Ha2/(ReRm), with the Hartmann number43

Ha > 0. For a more detailed exploration of these parameters, we refer to [5, 45, 32].44

The major challenges in the discretization of the MHD equations are the following:45

(i) multi-physics with disparate temporal (for the time-dependent MHD equations)46

and spatial scales; (ii) nonlinearity; (iii) incompressibility. The satisfaction of exact47

mass conservation in (1.1b) is closely tied to the concept of pressure-robustness, which48

is the statement about the independence between the magnitude of the pressure error49

and the a priori error estimate for the velocity [73, 74, 59]. Without global enforce-50

ment of the continuity equation pointwise, large velocity error can be induced by large51

pressure error. By global enforcement, we mean that the jump of the normal compo-52

nent of velocity has to vanish across the interior boundaries of elements on a given53

mesh. In other words, the approximation of velocity uh is desired to be in the H(div)54

space in addition to ↑ · uh = 0, where the divergence operator is defined in a weak55

sense. The definition of the H(div) space and weak derivative will be elaborated in56

Section 2; (iv) The solenoidal constraint for the magnetic field. The violation of this57

constraint will cause the wrong topologies of magnetic field lines, leading to plasma58

transport in an incorrect direction. Furthermore, nonphysical forces proportional to59

the divergence error could be created, potentially inducing instability [19, 11, 91]; and60

(v) The dual saddle-point structure of the velocity-pressure. The discretized system61

is subject to having a notorious large conditional number and is thus di#cult to solve.62

Many numerical schemes have been proposed to solve linear, nonlinear, time-63

dependent, and -independent MHD systems. Regarding spatial discretization, hy-64

bridized discontinuous Galerkin (HDG) methods have demonstrated remarkable suc-65

cess [69, 23, 83, 64, 47, 77]. The HDG methods were first introduced under the context66

of symmetric elliptic problems [25] to overcome the common criticism had by discon-67

tinuous Galerkin (DG) methods on the significantly more globally coupled unknowns68

than continuous Galerkin methods due to the duplication of degrees of freedoms69

(DOFs) on element boundaries [24]. The HDGmethods reduce the computational cost70

of DG methods by introducing facet variables uniquely defined on the intersections of71

element boundaries and removing local (element-wise) DOFs through static conden-72

sation, which was initially used in mixed finite element methods (i.e.,[16]). Once the73

facet variables are solved, the element DOFs can be recovered element-by-element in74

a completely embarrassing parallel fashion. Consequently, HDG methods are more75

e#cient while retaining the attractive features of DG methods, such as being highly76

suitable for solving convection-dominated problems in complex geometries, delivering77

high-order accuracy in approximations, and accommodating h/p refinement [54].78

The computational cost of HDG methods can be further lowered by using contin-79

uous facet variables across the skeleton of the mesh instead of the discontinuous ones80

used in HDG methods. This approach led to the embedded discontinuous Galerkin81

(EDG) methods and was first proposed for solving elliptic problems in [53]. Later,82

the EDG methods were developed for solving both compressible flow problems in83

[80, 79, 40] and incompressible flow problems in [65, 66]. All works showed that the84

method inherited many of the desirable features of DG methods. At the same time,85

the required number of DOFs was less than those of HDG methods and close to those86

1Sometimes, this variable is also referred to as the magnetic pressure.
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of continuous Galerkin (CG) methods on a given mesh. Further, the sti!ness ma-87

trix arising from EDG discretization of the flow problems will have a similar sparsity88

structure as that of the statically condensed CG method [80, 79]. Unfortunately,89

employing the EDG method can compromise the conservative property. As a conse-90

quence, the EDG methods may lose the optimal converge property of the flux that91

distinguishes other HDG methods. [80, 79]. In particular, for the incompressible flow92

model, the velocity field cannot be globally divergence-free, and the mass can only93

be conserved in the local sense [66]. To strike a balance between HDG and EDG94

methods, an embedded-hybridized discontinuous Galerkin (E-HDG) method was first95

developed in [87] for the Stokes equations. The method is proved to be globally96

divergence-free and H(div)-conforming. The number of globally coupled DOFs can97

be substantially reduced by using a continuous basis for the facet velocity field while98

maintaining a discontinuous basis for the facet pressure. The methodology was later99

adopted to space-time discretization to solve incompressible flows on moving domains100

[55, 56] and is proved to be globally mass conserving, locally momentum conserving,101

and energy-stable.102

Several approaches have been suggested to address the issue of the divergence-103

free constraint on the velocity field within the framework of DG, HDG, or E-HDG104

methods. An approach to overcome the issue is to use H(div)-conforming elements105

in the approximation of velocity, as discussed in [28, 50, 43] for DG methods. Alter-106

natively, the constraint can be satisfied locally using solenoidal approximation space107

for DG methods [8, 60, 72, 94, 62] and globally for HDG methods [21]. On the other108

hand, H(div)-conformity can be acquired with the help of facet variables and proper109

design of numerical flux for HDG [70, 71, 85, 67, 86, 81, 47] and E-HDG [87, 55, 56]110

methods. Another technique to obtain globally divergence-free methods is to perform111

post-processing using special projection operators [14, 27, 92, 29, 78, 26, 30, 52, 68]. It112

is worthy to mention that in HDG methods the new velocity approximation obtained113

by the local post-processing is not only exactly divergence-free andH(div)-conforming114

but also has superconvergece property [78, 26]. One can also apply pressure-correction115

methods that relies on Helmholtz decomposition to maintain the divergence-free con-116

straint [18, 61].117

We remark that the divergence-free constraint on the magnetic field given in118

(1.1d) can be implied by the initial condition in the context of time-dependent MHD119

equations on the continuous level, and it is also known as the solenoidal involution120

property of the magnetic field. However, temporal and spatial discretization errors121

can destroy such a property. Numerous methods have been proposed to satisfy the122

↑ · b = 0 constraint in MHD calculations, and some of the ideas can be linked to the123

approaches developed to handle the ↑ · u = 0 constraint in the context of solving124

incompressible flow problems. These methods include source term methods [82, 58],125

projection method [19, 34] (similar to the projection-correction methods [18, 61]),126

hyperbolic divergence cleaning methods [33, 62, 17, 23] (similar to artificial compress-127

ibility methods [12, 13]), locally divergence-free methods [72, 94] (use locally solenoidal128

approximation space and is similar to [8, 60, 62]), globally divergence-free methods129

[43] (use globally solenoidal approximation space), and constrained transport (CT)130

methods [38, 11, 75, 91]. Another approach to obtain a divergence-free and H (div)-131

conforming method was developed in [47], using an HDG method that hybridizes the132

facet Lagrange multiplier variable as well.133

In this paper, we devise HDG and E-HDG methods, which are both divergence-134

free and H (div)-conforming, for solving the stationary incompressible viso-resistive135

MHD equations given in (1.1). Though both approaches are constructed in parallel,136
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4 J. CHEN, T.L. HORVÁTH, AND T. BUI-THANH

our exposition will focus on E-HDG. We obtain H (div)-conformity by following an137

idea similar to [87, 55] and [47] through hybridization via a facet pressure and a138

facet Lagrange multiplier field using discontinuous facet functions. For the E-HDG139

variant, we use continuous facet functions for the velocity and the magnetic fields.140

Moreover, we extended the work in [69] and employed an upwind type numerical141

flux that is based on the first-order form of the linearized MHD system. This is in142

contrast to the work in [47] where the authors hybridized another popular class of143

DG methods called interior penalty discontinuous Galerkin (IPDG) methods [35, 7,144

93, 6, 8] to construct the divergence-free and divergence-conforming HDG method for145

the time-dependent incompressible viso-resistive MHD equations. To ensure stability,146

the penalty parameter in IPDG methods, such as the one in typical Nitsche methods,147

must be su#ciently large. However, no analytically proven bound is available for this148

penalty parameter. Conversely, our approaches do not su!er from such di#culty, and149

the criteria of the stabilization parameters are well-defined. With a few assumptions,150

our proposed schemes are well-posed. The resulting E-HDG discretization for the151

linearized MHD model can be incorporated into a Picard iteration to construct a fully152

nonlinear solver provided it converges. This approach ensures that the divergence-153

free and H (div)-conforming properties still hold for the nonlinear case. Moreover,154

all results we discussed in the context of our E-HDG method are still applied to the155

HDG counterpart, including well-posedness, divergence-free property, and H (div)-156

conformity.157

The paper is organized as follows. Section 2 outlines the notations. Section 3 pro-158

poses both the HDG and E-HDG discrtizatinos for the linearized incompressible viso-159

resistive MHD equations. In addition, the well-posedness of both methods is proven.160

Further, we prove the divergence-free property and H (div)-conformity of both the161

velocity (i.e., pointwise mass conservation) and the magnetic (i.e., pointwise absence162

of magnetic monopoles) fields for linear and nonlinear cases. The implementation as-163

pect is discussed in Section 4, where we also compare the computational costs required164

by HDG and E-HDG methods. Several numerical examples for linear and nonlinear165

incompressible viso-resistive MHD equations are presented to demonstrate the accu-166

racy and convergence of our proposed methods in both two- and three-dimensional167

settings. Section 5 concludes the paper with future work.168

2. Notations. In this section, we introduce common notations and conventions169

to be used in the rest of the paper. Let $ ↔ Rd, d = 2, 3, be a bounded domain170

such that it is simply connected, and its boundary ε$ is a Lipschitz manifold with171

only one component. Suppose that we have a triangulation of $ consisting of a finite172

number of nonoverlapping d-dimensional simplices, i.e., triangles for two dimensions173

and tetrahedra for three dimensions, respectively. We assume that the triangulation is174

shape-regular, i.e., for all d-dimensional simplices in the triangulation, the ratio of the175

diameter of the simplex and the radius of an inscribed d-dimensional ball is uniformly176

bounded. We will use $h and Eh to denote the sets of d- and (d → 1)-dimensional177

simplices of the triangulation and call Eh the mesh skeleton of the triangulation. The178

boundary and interior mesh skeletons are defined by Eω
h := {e ↗ Eh : e ↔ ε$} and179

Eo
h := Eh \Eω

h . We also define ε$h := {εK : K ↗ $h}. The mesh size of triangulations180

is h := maxK↑!h diam(K).181

We use (·, ·)D (respectively ↘·, ·≃D) to denote the L2-inner product on a d- (re-182

spectively (d → 1)-) dimensional domain D. The standard notation W s,p(D), s ⇐ 0,183

1 ⇒ p ⇒ ⇑, is used for the Sobolev space on D based on Lp-norm with di!erentiability184

s (see, e.g., [39]) and ⇓·⇓W s,p(D) denotes the associated norm. In particular, if p = 2,185
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we use Hs(D) := W s,2(D) and ⇓·⇓s,D. W s,p($h) denotes the space of functions whose186

restrictions on K reside in W s,p(K) for each K ↗ $h and its norm is ⇓u⇓pW s,p(!h)
:=187 ∑

K↑!h
⇓u|K⇓pW s,p(K) if 1 ⇒ p < ⇑ and ⇓u⇓W s,→(!h)

:= maxK↑!h ⇓u|K⇓W s,→(K).188

For simplicity, we use (·, ·), ↘·, ·≃, ⇓·⇓s, ⇓·⇓ω!h
, and ⇓·⇓W s,→ for (·, ·)!, ↘·, ·≃ω!h

, ⇓·⇓s,!,189

⇓·⇓0,ω!h
, and ⇓·⇓W s,→(!h)

, respectively.190

For vector- or matrix-valued functions these notations are naturally extended191

with a component-wise inner product. We define similar spaces (respectively inner192

products and norms) on a single element and a single skeleton face/edge by replacing193

$h with K and Eh with e. We define the gradient of a vector, the divergence of a194

matrix, and the outer product symbol ⇔ as:195

(↑u)ij =
εui

εxj
, (↑ ·L)i = ↑ ·L (i, :) =

d∑

j=1

εLij

εxj
, (a⇔ b)ij = aibj =

(
ab

T
)

ij
.196

The curl of a vector when d = 3 takes its standard form, (↑↓ b)i =
∑

j,k ϑijk
ωbk
ωxj

,197

where ϑ is the Levi-Civita symbol. When d = 2, let us explicitly define the curl198

of a vector as the scalar quantity ↑ ↓ b = ωb2
ωx1

→ ωb1
ωx2

, and the curl of a scalar as199

the vector quantity ↑ ↓ a =
(

ωa
ωx2

,→ ωa
ωx1

)
. In this paper, n denotes a unit outward200

normal vector field on faces/edges. If εK↓ ↖ εK+ ↗ Eh for two distinct simplices201

K↓,K+, then n
↓ and n

+ denote the outward unit normal vector fields on εK↓ and202

εK+, respectively, and n
↓ = →n

+ on εK↓ ↖ εK+. We simply use n to denote203

either n
↓ or n

+ in an expression that is valid for both cases, and this convention204

is also used for other quantities (restricted) on a face/edge e ↗ Eh. We also define205

N := n ⇔ n and T := I → N . For a scalar quantity u which is double-valued on206

e := εK↓↖εK+, the jump term on e is defined by [[un]]|e = u+
n

++u↓
n

↓ where u+207

and u↓ are the traces of u from K+- and K↓-sides, respectively. For double-valued208

vector quantity u and matrix quantity L, jump terms are [[u · n]]|e = u
+ ·n++u

↓ ·n↓,209

[[u↓ n]]|e = u
+ ↓ n

+ + u
↓ ↓ n

↓, and [[Ln]]|e = L
+
n

+ + L
↓
n

↓ where Ln denotes210

the matrix-vector product.211

We define Pk (K) as the space of polynomials of degree at most k on K, with212

k ⇐ 0, and we define213

Pk ($h) :=
{
u ↗ L2($) : u|K ↗ Pk (K) ↙K ↗ $h

}
.214215

The space of polynomials on the mesh skeleton Pk (Eh) is similarly defined, and their216

extensions to vector- or matrix-valued polynomials [Pk($h)]
d, [Pk($h)]

d↔d, [Pk(Eh)]d,217

etc, are straightforward.218

Finally, we use the usual definition of theH(div)- andH(curl)-conforming spaces,219

which are typical for mixed methods, and for methods dealing with electromagnetism,220

see [37, 16],221

H (div,$) :=
{
u ↗

[
L2($)

]d
: ↑ · u ↗ L2($)

}
,222

H (curl,$) :=

{
u ↗

[
L2($)

]d
: ↑↓ u ↗

[
L2($)

]d̃
}
,(2.1)223

224

where d̃ = 3 if d = 3, d̃ = 1 if d = 2. In addition, the divergence ↑ · (·) and225

curl ↑↓ (·) operators should be thought of in the weak sense (an extension of weak226

derivative defined in Definition 2.3 in [37]). Note that the jump condition [[u · n]]| e =227

0 and [[u↓ n]]| e = 0 is necessary for ensuring u ↗ H (div,$) and u ↗ H (curl,$),228

respectively (Theorem 18.10 in [37]).229
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6 J. CHEN, T.L. HORVÁTH, AND T. BUI-THANH

3. An E-HDG Formulation. First, consider the following incompressible viso-230

resistive MHD system linearized from Eq. (1.1)231

→ 1

Re
”u+↑p+ (w ·↑)u+ ωd↓ (↑↓ b) = g,(3.1a)232

↑ · u = 0,(3.1b)233

ω

Rm
↑↓ (↑↓ b) +↑r → ω↑↓ (u↓ d) = f ,(3.1c)234

↑ · b = 0.(3.1d)235236

Here, d is a prescribed magnetic field and w is a prescribed velocity field. From this237

point forward, we assume (see, e.g., [22, 57] for similar assumptions) d ↗
[
W 1,↗ ($)

]d
,238

w ↗
[
W 1,↗ ($h)

]d ↖H(div,$), ↑ ·w = 0 and g,f ↗
[
L2 ($)

]d
.239

To apply the upwind type of numerical flux based on the work [69], we cast (3.1)240

into a first-order form by introducing auxiliary variables L and J ,241

ReL→↑u = 0,(3.2a)242

→↑ ·L+↑p+ (w ·↑)u+ ωd↓ (↑↓ b) = g,(3.2b)243

↑ · u = 0,(3.2c)244

Rm

ω
J →↑↓ b = 0,(3.2d)245

↑↓ J +↑r → ω↑↓ (u↓ d) = f ,(3.2e)246

↑ · b = 0,(3.2f)247248

with Dirichlet boundary conditions249

(3.3) u = uD, b := bD, r = 0 on ε$.250

In addition, we require the compatibility condition for uD and the mean-value zero251

condition for p:252

(3.4) ↘uD · n, 1≃ω! = 0, (p, 1)! = 0.253

To achieveH(div)-conforming property, we introduce constant parameters ϖ1,ϱ1,ϱ2 ↗254

R, and define the numerical flux inspired by the work [69] as255

(3.5)





F̂
1 · n

F̂
2 · n

F̂
3 · n

F̂
4 · n

F̂
5 · n

F̂
6 · n





=





→û↑ n

→Ln+mu+ p̂n+ 1
2ωd↓

(
n↓

(
b+ b̂

))
+ ε1 (u→ û)

u · n
→n↓ b̂

n↓ J + r̂n→ 1
2ωn↓ ((u+ û)↓ d) + (ϑ1T + ϑ2N)

(
b→ b̂

)

b · n





,256

where m := w · n. It should be noted that û, p̂, b̂, and r̂ are the restrictions (or257

traces) of u, p, b, and r on Eh. These û, p̂, b̂, and r̂ will be regarded as unknowns258

in discretizations to obtain an E-HDG method. It will be shown that the conditions259

ϖ1 > 1
2 ⇓w⇓L→ , and ϱ1T + ϱ2N > 02 are su#cient for the well-posedness of our E-260

HDG formulation. Note that all 6 components of the E-HDG flux, F̂ , for simplicity261

2The sign of “greater than” here means that the matrix (or the second order tensor) ω1T +ω2N
is positive definite.
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are denoted in the same fashion (by a bold italic symbol). It is, however, clear from262

(3.2) that F̂
1
is a third order tensor, F̂

2
is a second order tensor, F̂

3
is a vector, etc,263

and that the normal E-HDG flux components, F̂
i
·n in (3.5), are tensors of one order264

lower.265

For discretization, we introduce the discontinuous piecewise and the continuous266

polynomial spaces267

Gh := [Pk($h)]
d↔d , Vh := [Pk($h)]

d , Qh := Pk($h),268

Hh := [Pk($h)]
d̃ , Ch := [Pk($h)]

d , Sh := Pk($h), Mh := [Pk(Eh)↖C(Eh)]d ,269

Ph := [Pk(Eh)] , !h := [Pk(Eh)↖C(Eh)]d , ”h := [Pk(Eh)] ,270271

where k := k→1, C(Eh) is the continuous function space defined on the mesh skeleton,272

and d̃ is defined in (2.1).273

Remark 1. The functions in Mh and !h are used to approximate the traces of274

the velocity and the magnetic field, respectively. By a slight modification of these275

spaces (i.e., Mh := [Pk(Eh)]d and !h := [Pk(Eh)]d), a divergence-free and H(div)-276

conforming HDG method can be obtained. All the results presented in Sections 3.1,277

3.2 and 3.3 can be directly applied to the resulting HDG method. In addition, we will278

numerically compare the computational time needed by HDG and E-HDG methods in279

Section 4.280

Let us introduce two identities which are useful throughout the paper:281

(u,d↓ (↑↓ b))K = (b,↑↓ (u↓ d))K + ↘d↓ (n↓ b) ,u≃ωK ,(3.6a)282

[d↓ (n↓ b)] · u = → [n↓ (u↓ d)] · b.(3.6b)283284

These identities follow from integration by parts and vector product identities.285

Next, we multiply (3.2a) through (3.2f) by test functions (G,v, q,J , c, s), inte-286

grate by parts all terms, and introduce the numerical flux (3.5) in the boundary terms.287

This results in a local discrete weak formulation:288

Re (Lh,G)K + (uh,↑ ·G)K +
〈
F̂

1

h · n,G
〉

ωK
= 0,(3.7a)289

(Lh,↑v)K → (ph,↑ · v)K → (uh ⇔w,↑v)K(3.7b)290

+ω (bh,↑↓ (v ↓ d))K +
〈
F̂

2

h · n,v
〉

ωK
= (g,v)K ,291

→ (uh,↑q)K +
〈
F̂

3

h · n, q
〉

ωK
= 0,(3.7c)292

Rm

ω
(Jh,H)K → (bh,↑↓H)K +

〈
F̂

4

h · n,H
〉

ωK
= 0,(3.7d)293

(Jh,↑↓ c)K → (rh,↑ · c)K → ω (uh,d↓ (↑↓ c))K(3.7e)294

+
〈
F̂

5

h · n, c
〉

ωK
= (f , c)K ,295

→ (bh,↑s)K +
〈
F̂

6

h · n, s
〉

ωK
= 0,(3.7f)296

297

for all (G,v, q,H, c, s) ↗ Gh (K) ↓Vh (K) ↓Qh (K) ↓Hh (K) ↓Ch (K) ↓ Sh (K)298

and for all K ↗ $h, where quantities with subscript h are the discrete counterparts299

of the continuous ones, for example, uh and Lh are the discrete approximations of u300

and L.301
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Since û, p̂, b̂, and r̂ are facet unknowns introduced in addition to the original302

unknowns, we need to equip extra equations to make the system (3.7) well-posed. To303

that end, we observe that an elementK communicates with its neighbors only through304

the trace unknowns. For the E-HDG method to be conservative, we weakly enforce305

the continuity of the numerical flux (3.5) across each interior edge. Since ûh and b̂h306

are single-valued on Eh, we automatically have that [[F̂
1

h · n]] = 0 and [[F̂
4

h · n]] = 0.307

The conservation constraints to be enforced are reduced to308

(3.8)

〈
[[F̂

2
h · n]],µ

〉

e
= 0,

〈
[[F̂

3
h · n]], ϖ

〉

e
= 0,

〈
[[F̂

5
h · n]],ω

〉

e
= 0,

〈
[[F̂

6
h · n]], ϱ

〉

e
= 0,

309

for all (µ, ς,ω, φ) ↗ Mh (e)↓Ph (e)↓!h (e)↓”h (e), and for all e in Eo
h. Furthermore,310

the following constraint on the domain boundary is required in order to establish the311

well-posedness of our HDG formulations:312

(3.9) ↘ûh · n, ς≃e = ↘uh · n, ς≃e ,313

for all ς ↗ Ph (e) for all e in Eω
h . This constraint means that we weakly enforce ûh ·n =314

uh ·n on the boundary, and is also used in [66, 84, 86] where hybridized IPDG methods315

are developed for solving the incompressible Navier-Stokes equations. Finally, we316

enforce the Dirichlet boundary conditions weakly through the facet unknowns:317

(3.10) ↘ûh,µ≃e = ↘uD,µ≃e ,
〈
b̂h,ω

〉

e
= ↘bD,ω≃e , ↘r̂h, φ≃e = 0,318

for all (µ,ω, φ) ↗ Mh (e) ↓ !h (e) ↓ %h (e) for all e in Eω
h . In Eq. (3.7)-(3.10) we319

seek (Lh,uh, ph,Jh, bh, rh) ↗ Gh ↓ Vh ↓ Qh ↓ Hh ↓ Ch ↓ Sh and (ûh, p̂, b̂h, r̂h) ↗320

Mh ↓Ph ↓!h ↓ ”h. For simplicity, we will not state explicitly that equations hold321

for all test functions, for all elements, or for all edges.322

We will refer to Lh,uh, ph,Jh, bh, and rh as the local variables, and to equation323

(3.7) on each element as the local solver. This reflects the fact that we can solve for324

local variables element-by-element as functions of ûh, p̂h, b̂h, and r̂h. On the other325

hand, we will refer to ûh, p̂h, b̂h, and r̂h as the global variables, which are governed326

by equations (3.8),(3.10), and (3.9) on the mesh skeleton. For the uniqueness of the327

discrete pressure ph, we enforce the discrete counterpart of (3.4):328

(ph, 1) = 0.(3.11)329330

3.1. Well-posedness of the E-HDG formulation. In this subsection, we331

discuss the well-posedness of (3.7)–(3.11). We would like to point out that the result332

presented in this subsection is also valid for the proposed HDG version in Remark 1.333

Theorem 3.1. Let $ be simply connected with one component to ε$. Let ϖ1, ϱ1,334

ϱ2 ↗ R such that ϖ1 > 1
2 ⇓w⇓L→(!) and ϱ1T + ϱ2N > 0. The system (3.7)–(3.11) is335

well-posed, in the sense that given f , g, uD, and hD, there exists a unique solution336 (
Lh,uh, ph,Jh, bh, rh, ûh, p̂h, b̂h, r̂h

)
.337

Proof. (3.7)–(3.11) has the same number of equations and unknowns, so it is338

enough to show that (g,f ,uD, bD) = 0 implies (Lh,uh, ph,Jh, bh, rh, ûh, p̂h, b̂h, r̂h) = 0.339

To begin, we take (G,v, q,J , c, s) = (Lh,uh, ph,Jh, bh, rh), integrate by parts the340

first four terms of (3.7b) and the first term of (3.7e), sum the resulting equations in341
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(3.7), and sum over all elements to arrive at342

Re ⇓Lh⇓20 +
Rm

ω
⇓Jh⇓20 → ↘ûh ⇔ n,Lh≃+

〈m
2
uh,uh

〉
+ ↘ϖ1(uh → ûh),uh≃343

+ ↘p̂hn,uh≃+
〈
1

2
ωd↓

(
n↓ b̂h

)
,uh


→
〈
n↓ b̂h,Jh

〉
+ ↘r̂hn, bh≃(3.12)344

+
〈
(ϱ1T + ϱ2N) (bh → b̂h), bh

〉
→
〈
1

2
ωn↓ (ûh ↓ d) , bh


= 0,345

346

where we have used ↑ ·w = 0 and the following integration by parts identities:347

→ (uh,w ·↑uh)K = →1

2
(w,↑(uh · uh))K = →

〈m
2
uh,uh

〉

ωK
.348

349

Next, setting (µ, ς,ω, φ) = (ûh, p̂h, b̂h, r̂h), and summing (3.8) over all interior edges350

give351

〈
→Lhn+muh + p̂hn+

1

2
ωd↓ (n↓ bh) + ϖ1 (uh → ûh) , ûh



ω!h\ω!
352

+ ↘uh · n, p̂h≃ω!h\ω!353

+

〈
n↓ Jh + r̂hn→ 1

2
ωn↓ (uh ↓ d) + (ϱ1T + ϱ2N)

(
bh → b̂h

)
, b̂h



ω!h\ω!

(3.13)

354

+ ↘bh · n, r̂h≃ω!h\ω! = 0,355
356

where we used the continuity of d and the single-valued nature across the element357

boundaries of global variables to eliminate ↘d↓ (n↓ b̂h), ûh≃ω!h\ω! and ↘n↓ (ûh ↓ d) , b̂h≃ω!h\ω!.358

Since uD = 0 and bD = 0 by assumption, we conclude from the boundary359

conditions (3.10) that ûh = 0, b̂h = 0, and r̂h = 0 on ε$. In addition, from the360

constraint (3.9) we also have ↘uh · n, p̂h≃e = ↘ûh · n, p̂h≃e on the boundary and hence361

↘uh · n, p̂h≃ω! = 0. Subtracting (3.13) from (3.12) and using the fact that ûh, b̂h, r̂h,362

and ↘uh · n, p̂h≃ω! vanish on the physical boundary ε$, we arrive at363

Re ⇓Lh⇓20 +
Rm

ω
⇓Jh⇓20 + ↘ϖ1(uh → ûh), (uh → ûh)≃+

〈m
2
uh,uh

〉
(3.14)364

→↘muh, ûh≃+
〈
(ϱ1T + ϱ2N)

(
bh → b̂h

)
, bh → b̂h

〉
= 0.365

366

Finally, using the fact that w ↗ H(div,$) and ûh = 0 on ε$, we can freely add367

0 =

m
2 ûh, ûh


to rewrite (3.14) as368

Re ⇓Lh⇓20 +
Rm

ω
⇓Jh⇓20 +

〈(
ϖ1 +

m

2

)
(uh → ûh), (uh → ûh)

〉
(3.15)369

+
〈
(ϱ1T + ϱ2N)

(
bh → b̂h

)
, bh → b̂h

〉
= 0.370

371

Recalling ϖ1 > 1
2 ⇓w⇓L→ and ϱ1T +ϱ2N > 0, we can conclude that Lh = 0, Jh = 0,372

that uh = ûh, and bh = b̂h on Eh.373

Now, we integrate (3.7a) by parts to obtain ↑uh = 0 in K, which implies that374

uh is element-wise constant. The fact that uh = ûh on Eh means uh is continuous375

across Eh. Since uh = 0 on ε$, we conclude that uh = 0 and therefore ûh = 0.376
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10 J. CHEN, T.L. HORVÁTH, AND T. BUI-THANH

Since bh = b̂h on Eh, bh is continuous on $. Integrating both (3.7d) and (3.7f) by377

parts, we have ↑↓ bh = 0 and ↑ · bh = 0 on $. When bh ↗ H(div,$) ↖H(curl,$)378

and bh = 0 on ε$, and recalling that $ is simply connected with one component to379

the boundary, there is a constant C > 0 such that ⇓bh⇓0 ⇒ C(⇓↑ · bh⇓0 + ⇓↑ ↓ bh⇓0)380

[46, Lemma 3.4]. This implies that bh = 0, and hence b̂h = 0.381

Taking account of the vanishing variables we had discussed, integrating by parts382

reduces (3.7b) and (3.7e) to:383

(3.16) (↑ph,v)K → ↘(ph → p̂h)n,v≃ωK = 0,384

and385

(3.17) (↑rh, c)K → ↘(rh → r̂h)n, c≃ωK = 0,386

respectively. Given that ph|K , rh|K ↗ Pk↓1 (K) and a simplicial mesh is used, we can387

invoke the argument of Nédélec space to conclude that ph = p̂h and rh = r̂h on εK388

(Proposition 4.6 in [85]). This implies that (↑ph,v)K = 0 and (↑rh, c)K = 0. Thus,389

ph and rh are elementwise constants. Since rh = r̂h on Eo
h, then rh is continuous on390

$, and since rh = 0 on ε$, we can conclude that rh = 0, and hence r̂h = 0. Finally,391

we use the result ph = p̂h on Eo
h to conclude that ph is continuous and a constant on392

$. Using the zero-average condition (3.11) yields ph = 0 and hence p̂h = 0.393

3.2. Well-posedness of the local solver. A key advantage of HDG or E-HDG394

methods is the decoupling computation of the local variables (Lh,uh, ph,Jh, bh, rh)395

and the global variables (ûh, p̂h, b̂h, r̂h). In our E-HDG scheme, we first solve (3.7) for396

local unknowns (Lh,uh, ph,Jh, bh, rh) as a function of (ûh, p̂h, b̂h, r̂h) (local solver),397

then these are substituted into (3.8) on the mesh skeleton to solve for the unknowns398

(ûh, p̂h, b̂h, r̂h) (global solver). Finally, (Lh,uh, ph,Jh, bh, rh) are computed with the399

local solver using (ûh, p̂h, b̂h, r̂h), so well-posedness of the local solver is essential. It400

should be emphasized again that the result presented in this subsection is also valid401

for the HDG version in Remark 1.402

Theorem 3.2. Let ϖ1,ϱ1,ϱ2 ↗ R such that ϖ1 > 1
2 ⇓w⇓L→(!) and ϱ1T + ϱ2N >403

0. The local solver given by (3.7) is well-posed. In other words, given (ûh, p̂h, b̂h, r̂h, g,404

f , ςh), there exists a unique solution (Lh,uh, ph,Jh, bh, rh) of the system.405

Proof. We show that (ûh, p̂h, b̂h, r̂h, g,f , ςh) = 0 implies (Lh,uh, ph,Jh, bh, rh) = 0.406

To begin, set (ûh, p̂h, b̂h, r̂h, g,f , ςh) = 0. Take (G,v, q,J , c, s) = (Lh,uh, ph,Jh, bh, rh),407

integrate by parts the first four terms in (3.7b) and the first term in (3.7e), and sum408

the resulting equations to get409

Re ⇓Lh⇓20,K +
〈(

ϖ1 +
m

2

)
uh,uh

〉

ωK
(3.18)410

+
Rm

ω
⇓Jh⇓20,K + ↘(ϱ1T + ϱ2N) bh, bh≃ωK = 0.411

412

Recalling ϖ1 > 1
2 ⇓w⇓L→ and ϱ1T + ϱ2N > 0, we can yield413

Lh = 0, Jh = 0, in K; uh = 0, bh = 0, on εK.414415

Using an argument similar to that in Section 3.1 we can conclude uh = bh = 0 in K.416

From (3.7b) and (3.7e), we have:417

(3.19) → (ph,↑ · v)K = 0, ↙v ↗ Vh (K) ,418
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and419

(3.20) → (rh,↑ · c)K = 0, ↙c ↗ Ch (K) ,420

respectively. Since the space {q : q = ↑ · v, ↙v ↗ Vh (K)} ∝ Qh (K) and421

{s : s = ↑ · c, ↙c ↗ Ch (K)} ∝ Sh (K), we can pick ↑ · v = ph and ↑ · c = rh and422

conclude that ph = rh = 0 in K.423

3.3. Conservation properties of the E-HDG method. In this section, we424

prove that our method is divergence-free and H (div)-conforming for both velocity425

(i.e., the exactness of mass conservation) and magnetic (i.e., the absence of magnetic426

monopoles) fields. Same conclusions can be drawn for the HDG version in Remark 1.427

It is worth mentioning that in this work a simplicial mesh is assumed to be used. In428

fact, the proofs of propositions presented in this section are only valid for a straight-429

sided mesh.430

Proposition 1 (divergence-free property and H (div)-conformity for the veloc-431

ity field). Let uh ↗ Vh and ûh ↗ Mh be the solution to the proposed E-HDG432

discretization (3.7)-(3.11), then433

↑ · (uh|K) = 0, ↙K ↗ $h;(3.21a)434

[[uh · n]]|e = 0, ↙e ↗ Eo
h.(3.21b)435

uh · n = ûh · n, on e and ↙e ↗ Eω
h .(3.21c)436437

Proof. Apply integration-by-parts to Eq. (3.7c):438

(3.22) (↑ · (uh|K) , q)K = 0, ↙q ↗ Qh(K), ↙K ↗ $h.439

Since ↑ · (uh|K) ↗ Qh(K), we can take q = ↑ · (uh|K), yielding ⇓↑ · (uh|K)⇓20,K = 0,440

which implies that ↑ · (uh|K) = 0 for all K ↗ $h. It follows from Eq. (3.8) that:441

(3.23)
〈
[[F̂

3

h · n]], ς
〉

e
= ↘[[uh · n]], ς≃e = 0, ↙ς ↗ Ph(e), ↙e ↗ Eo

h.442

Since [[uh · n]]|e ↗ Ph(e)3, we can take ς = [[uh · n]], yielding ⇓[[uh · n]]⇓20,e = 0 for all443

e ↗ Eo
h. Thus, [[uh · n]]|e = 0 for all e ↗ Eo

h. The proof of Eq. (3.21c) follows the same444

argument with the aid of Eq. (3.9).445

Proposition 2 (divergence-free property and H (div)-conformity for the mag-446

netic field). Let bh ↗ Ch and b̂h ↗ !h be the solution to the proposed E-HDG447

discretization (3.7)-(3.11), then448

↑ · (bh|K) = 0, ↙K ↗ $h;(3.24a)449

[[bh · n]]|e = 0, ↙e ↗ Eo
h.(3.24b)450451

Proof. The result holds by directly following the similar argument as the proof of452

Proposition 1.453

Remark 2. As can be seen, both Propositions 1 and 2 also hold true for the454

nonlinear case. That is, they are still valid if w and d are replaced by uh and bh in455

(3.7)-(3.8).456

3Note that the statement [[uh · n]]|e → Ph(e) do not hold for a curve mesh since n is not constant
anymore.
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4. Numerical Results. A nonlinear solver can be constructed through the em-457

ployment of the linear E-HDG (or HDG in Remark 1) scheme given by (3.7)-(3.11)458

in a Picard iteration. If we consider the linearized MHD equations (3.1) to be a lin-459

ear map (w,d) ′∞ (u, b), then any fixed point of that mapping is a solution to the460

nonlinear incompressible viso-resistive MHD equations (1.1). With this in mind, we461

can use the general linearized incompressible MHD E-HDG scheme (3.7)–(3.11) in an462

iterative manner to numerically solve the nonlinear incompressible MHD equations.463

The convergence of such an interaction is investigated in [77]. Let the superscript464

denote an iteration number, we set the initial guess u
0
h = 0 and b

0
h = 0 and the465

stopping criterion466

(4.1) TOL := max

ui
h → u

i↓1
h


0ui

h


0

,

bih → b
i↓1
h


0bih


0


< ϑ,467

where ϑ is a user-defined tolerance. In particular, we take ϑ = O(10↓10) in all numer-468

ical experiments for the nonlinear examples.469

In this section, a series of numerical experiments is presented to illustrate the470

capability of the E-HDG method in both linear and nonlinear scenarios. First, a471

comparison is drawn between the proposed HDG and E-HDG methods regarding472

the DOFs and the actual computational time (wall-clock time). Then the order of473

accuracy for the linear scheme is numerically investigated by applying the E-HDG474

method to two- and three-dimensional problems with smooth solutions. The conver-475

gence of a two-dimensional singular problem, defined on a nonconvex domain, is also476

presented. Moreover, the pressure-robustness of our method is numerically demon-477

strated by perturbing smooth manufactured solutions. Finally, the order of accuracy478

for the nonlinear solver, where the linear scheme is integrated into a Picard iteration,479

is studied through two- and three-dimensional problems featuring smooth solutions,480

including a stationary liquid duct flow in plasma physics and manufactured solutions.481

It should be emphasized that the divergence-free property and H(div)-conformity482

still obviously hold for our nonlinear solver and will be validated through numerical483

demonstrations.484

Our methods—both HDG and E-HDG)—are implemented based on the Modular485

Finite Element Method (MFEM) library [4]. Furthermore, we use the direct solver of486

MUMPS [2, 3] through PETSc [10, 9] to solve the systems of linear equations com-487

posed by the Schur complement (or static condensation) resulting from the discretiza-488

tion (3.7)–(3.11). In addition, we take stabilization parameters ϖ1 ↗ {125, 1000} and489

ϱ1 = ϱ2 ↗ {1, 100, 1000}. Although it is proved that the well-posedness of both490

local and global solvers can be guaranteed by the conditions ϖ1 > 1
2 ⇓w⇓L→ , and491

ϱ1T + ϱ2N > 0, we numerically found that small increments in the values of the sta-492

bilization parameters can improve the order of accuracy. However, large values (i.e.,493

O(104) or larger) of the parameters can cause serious adverse e!ects in convergence.494

It could be caused by the increased sti!ness (condition number).495

Remark 3. In all numerical experiments, the physical parameters are given and496

comparisons of di!erent values of the parameters are made in some cases to provide497

an insight into how robust our method is. Although our well-posedness analysis shows498

the stability of our methods regardless of what values of Re, Rm, and ω are, the solver499

will still be a!ected by these parameters which characterize the condition number of500

the linear system. It is worth emphasizing that the linear system to be solved is already501

near singular owing to the pressure variable (See Remark 5). Thus, it could be expected502

that the higher these values are, the harder the problem to be solved.503
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Remark 4. In this work, the auxiliary variables Lh and Jh can be locally elim-504

inated through local Eq. (3.7a) and (3.7d), respectively. Since the numerical flux505

defined in (3.7a) only associates with a single global variable ûh, the local variable506

Lh can be expressed by uh and ûh, thanks to the block diagonal structure endowed by507

the term Re (Lh,G)K . A similar procedure can also be followed to express Jh by bh508

and b̂h with the help of Eq. (3.7d). Through the elimination, the assembly operation509

(construct the local Schur complement and allocate it to the global matrix) and recon-510

struction operation (solve for the local variables with the given global variables) can511

be computationally cheaper.512

Remark 5. Even though the well-posedness of the method is proved in Theorem513

3.1, the inclusion of the pressure constraint given in (3.11) is not straightforward to514

implement. Note that the discretization is ill-posed without the pressure constraint,515

and the local variable ph and global variable p̂h can only be determined up to a con-516

stant. Such a singular system can still be handled by a Krylov type of iterative solver517

without encountering breakdowns [15, 36]. However, in order to use a direct solver,518

an additional treatment is necessary. In this paper, we restrict one DOF of the global519

variable p̂h to be zero such that both ph and p̂h can be determined. Once the sys-520

tem is solved by the direct solver, we then enforce the pressure constraint (3.11) by521

post-processing.522

Remark 6. All L↗-norms are computed as the maximum norm of the function523

values evaluated on all elements using a set of quadrature points with the order of524

accuracy 2k + 3.525

4.1. Computational Performance of the proposed HDG and E-HDG526

methods. In this subsection, we discuss the computational costs of the HDG and the527

E-HDG methods in which the discretization is based on (3.7)-(3.11) but with di!erent528

trace approximation spaces (see Remark 1). Table 4.1 summarizes the DOFs needed529

by the HDG and E-HDG methods, and Table 4.2 summarizes the corresponding530

computational time. The values presented in each cell of Table 4.2 denote the total531

wall-clock time spent by the entire process. This includes the three main tasks: the532

assembly (locally constructing the Schur complement and allocating it to the global533

matrix), the solution of the system of equations (obtaining the global variables), and534

the local reconstruction (recovering the local variables from the given global variables535

through the solution of the local equations (3.7)). The measurements are based on536

the average of five runs, with each run recording the maximal time among all MPI537

processes.538

The reduction in DOFs becomes notably more pronounced for three-dimensional539

cases, particularly on finer meshes. For example, applying the E-HDG method with540

k = 1 on a mesh comprising 24576 elements results in a maximum DOF reduction541

of up to 72.58%. This reduction is directly reflected in the computational time, see542

Table 4.2, where a 47.74% saving in total computational time is achieved. The ef-543

ficiency of the E-HDG method is further illustrated in Figure 4.1 by comparing its544

accuracy and computational time with the HDG method for k = 1, 24 in the context of545

three-dimensional cases. However, on coarser meshes, despite substantial reductions546

in DOFs, the corresponding savings in computational time are limited (perhaps due547

to the e#ciency of MUMPS [2, 3]). This discrepancy can be explained through Table548

4The k = 3, 4 is not included since both approaches have similar e!ciency if the mesh consisting
of 3072 elements is used. In addition, the HDG method is not applicable with the MUMPS solver
when the mesh is refined further owing to insu!cient memory.
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4.3 and Table 4.4. The former delineates the wall-clock time spent by the linear solver,549

while the latter encapsulates the times allocated to the assembly and the local recon-550

struction tasks. Analysis of Table 4.4 reveals that the times devoted to assembly and551

local reconstruction remain similar for both methods irrespective of mesh refinement,552

approximation degree, or dimension. On the other hand, the reduction trend in total553

computational time presented in Table 4.2 aligns closely with the computational time554

required by the linear solver detailed in Table 4.3. This alignment suggests that the555

advantage of downsizing DOFs may become more substantial when the linear solver556

time dominates the overall computational time. In essence, while reducing DOFs557

may not significantly impact the assembly and reconstruction times for the HDG and558

E-HDG methods, it notably enhances the e#ciency of the linear solver in the E-HDG559

method for larger problems.560

In addition to the reduction on computational time, reducing DOFs also adds561

advantages in memory management and this can be seen in Table 4.2. On the three-562

dimensional mesh consisting of 24576 elements, the linear solver fails when using the563

HDG methods along with k = 3 and k = 4 due to insu#cient memory5. In contrast,564

such challenges can be overcome by using the E-HDG method, where the linear solver565

remains operational under identical circumstances.566

Two-dimensions

DOFs used in the HDG method
elem. # k = 1 k = 2 k = 3 k = 4

2 60 90 120 150
8 192 288 384 480
32 672 1.01E+03 1.34E+03 1.68E+03
128 2.50E+03 3.74E+03 4.99E+03 6.24E+03
512 9.60E+03 1.44E+04 1.92E+04 2.40E+04

DOFs used in the E-HDG method
elem. # k = 1 k = 2 k = 3 k = 4

2 36 66 96 126
8 100 196 292 388
32 324 660 996 1.33E+03
128 1.16E+03 2.40E+03 3.65E+03 4.90E+03
512 4.36E+03 9.16E+03 1.40E+04 1.88E+04

Percentage of reduction in DOFs (%)
elem. # k = 1 k = 2 k = 3 k = 4

2 -40.00 -26.67 -20.00 -16.00
8 -47.92 -31.94 -23.96 -19.17
32 -51.79 -34.52 -25.89 -20.71
128 -53.69 -35.79 -26.84 -21.47
512 - 54.62 -36.42 -27.31 -21.85

Three-dimensions

DOFs used in the HDG method
elem. # k = 1 k = 2 k = 3 k = 4

6 432 864 1.44E+03 2.16E+03
48 2.88E+03 5.76E+03 9.60E+03 1.44E+04
364 2.07E+04 4.15E+04 6.91E+04 1.04E+05
3072 1.57E+05 3.13E+05 5.22E+05 7.83E+05
24576 1.22E+06 2.43E+06 4.06E+06 6.08E+06

DOFs used in the E-HDG method
elem. # k = 1 k = 2 k = 3 k = 4

6 156 378 744 1.25E+03
48 882 2.19E+03 4.46E+03 7.69E+03
364 5.93E+03 1.47E+04 3.05E+04 5.31E+04
3072 4.35E+04 1.08E+05 2.24E+05 3.93E+05
24576 3.34E+05 8.24E+05 1.72E+06 3.02E+06

Percentage of reduction in DOFs (%)
elem. # k = 1 k = 2 k = 3 k = 4

6 -63.89 -56.25 -48.33 -41.94
48 -69.38 -61.98 -53.56 -46.62
364 -71.38 -64.45 -55.93 -48.79
3072 -72.21 -65.59 -57.05 -49.83
24576 -72.58 -66.14 -57.59 -50.33

Table 4.1: The summary of DOFs used in E-HDG and HDG discretizations given
by (3.7)-(3.11). Note that k denotes the degree of approximation and “elem. #”
indicates the number of elements used in a given mesh.

4.2. Linear examples. A series of linear numerical experiments is carried out567

to verify our method in this subsection. We first analyze the accuracy and the conver-568

gence in two dimensions for the case of a smooth manufactured solution. In addition,569

the pressure robustness of our method is also tested. We then analyze the accuracy570

and convergence for a singular manufactured solution. Finally, we perform the analy-571

sis of the accuracy, convergence, and pressure robustness for a smooth manufactured572

5Such breakdown can be avoided by using an iterative solver. However, the design of a precondi-
tioned iterative solver is beyond the scope of this paper, and hence we will pursue this in our future
work (see also our previous work in [77]).
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Two-dimensions

Total number of MPI processes
elem. # k = 1 k = 2 k = 3 k = 4
2 1 1 1 1
8 1 1 1 1
32 2 2 2 2
128 2 2 2 2
512 4 4 4 4
Total wall-clock time by the HDG method (sec)

elem. # k = 1 k = 2 k = 3 k = 4
2 0.02 0.03 0.07 0.18
8 0.03 0.09 0.25 0.69
32 0.05 0.18 0.50 1.39
128 0.15 0.67 1.98 5.54
512 0.31 1.39 4.01 11.29
Total wall-clock time by the E-HDG method (sec)
elem. # k = 1 k = 2 k = 3 k = 4
2 0.01 0.03 0.07 0.18
8 0.02 0.09 0.25 0.69
32 0.05 0.18 0.50 1.39
128 0.14 0.66 1.96 5.51
512 0.27 1.36 3.98 11.21

Reduction in total computational time (%)
elem. # k = 1 k = 2 k = 3 k = 4
2 -50.00 0.00 0.00 0.00
8 -33.33 0.00 0.00 0.00
32 0.00 0.00 0.00 0.00
128 -6.67 -1.49 -1.01 -0.54
512 -12.90 -2.16 -0.75 -0.71

Three-dimensions

Total number of MPI processes
elem. # k = 1 k = 2 k = 3 k = 4
6 1 1 1 2
48 1 2 2 2
364 2 4 4 8
3072 2 8 8 16
24576 4 16 16 32

Total wall-clock time by the HDG method (sec)
elem. # k = 1 k = 2 k = 3 k = 4
6 0.17 1.81 11.06 25.04
48 1.17 7.04 44.79 197.09
364 4.96 29.47 182.88 412.77
3072 43.90 127.43 783.20 1726.52
24576 303.48 879.87 - -
Total wall-clock time by the E-HDG method (sec)

elem. # k = 1 k = 2 k = 3 k = 4
6 0.16 1.77 11.03 25.05
48 1.14 6.93 45.03 198.85
364 4.65 28.49 182.44 404.38
3072 37.91 117.19 739.76 1650.05
24576 158.59 522.89 3341.03 7473.77

Reduction in total computational time (%)
elem. # k = 1 k = 2 k = 3 k = 4
6 -5.88 -2.21 -0.27 0.04
48 -2.56 -1.56 0.54 0.89
364 -6.25 -3.33 -0.24 -2.03
3072 -13.64 -8.04 -5.55 -4.43
24576 -47.74 -40.57 - -

Table 4.2: The summary of total computational time (the averaged maximum of
wall-clock time over five runs of identical setting, among all MPI processes) taken
by E-HDG and HDG methods to solve two- and three-dimensional problems with the
discretization given in (3.7)-(3.11). The two-dimensional problem is the one presented
in Section 4.2.1 with Re = Rm = 1 and the three-dimensional problem is the one
presented in Section 4.2.3 with Re = Rm = 1. Note that k denotes the degree of
approximation and “elem. #” indicates the number of elements used in a given mesh.

solution in three dimensions.573

4.2.1. Two-dimensional smooth manufactured solution. This example il-574

lustrates the convergence of the E-HDG scheme applied to a problem posed on the575

square domain $ = (0, 1) ↓ (0, 1). In particular, the two-dimensional manufactured576

vortex solution considered in [47] is adopted. We take Re = Rm ↗ {1, 1000} and577

ω = 1, and set g and f such that the manufactured solution for (3.2)-(3.4) is578

u =


→2x2ex


→y2 + y


(2y → 1) (x→ 1)2 ,

→xy2ex (x (x+ 3)→ 2) (x→ 1) (y → 1)2


,(4.2a)579

b =


→2x2ex


→y2 + y


(2y → 1) (x→ 1)2 ,

→xy2ex (x (x+ 3)→ 2) (x→ 1) (y → 1)2


,(4.2b)580

p = p0 sin (↼x) sin (↼y),(4.2c)581

r = 0,(4.2d)582583

with the prescribed fields w = u and d = b, and a constant p0. Table 4.5 shows584

the convergence rates for each local variable and the L↗-norm of the divergence585
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Two-dimensions

Total number of MPI processes
elem. # k = 1 k = 2 k = 3 k = 4
2 1 1 1 1
8 1 1 1 1
32 2 2 2 2
128 2 2 2 2
512 4 4 4 4

Wall-clock time of linear solver
in the HDG method (sec)

elem. # k = 1 k = 2 k = 3 k = 4
2 0.01 0.01 0.01 0.01
8 0.01 0.01 0.01 0.01
32 0.01 0.02 0.02 0.02
128 0.03 0.04 0.06 0.09
512 0.06 0.11 0.17 0.25

Wall-clock time of linear solver
in the E-HDG method (sec)

elem. # k = 1 k = 2 k = 3 k = 4
2 0.01 0.01 0.01 0.01
8 0.01 0.01 0.01 0.01
32 0.01 0.01 0.02 0.02
128 0.02 0.03 0.05 0.07
512 0.03 0.08 0.13 0.20

Reduction in computational time of linear solver (%)
elem. # k = 1 k = 2 k = 3 k = 4
2 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00
32 0.00 -50.00 0.00 0.00
128 -33.33 -25.00 -16.67 -22.22
512 -50.00 -27.27 -23.53 -20.00

Three-dimensions

Total number of MPI processes
elem. # k = 1 k = 2 k = 3 k = 4
6 1 1 1 2
48 1 2 2 2
364 2 4 4 8
3072 2 8 8 16
24576 4 16 16 32

Wall-clock time of linear solver
in the HDG method (sec)

elem. # k = 1 k = 2 k = 3 k = 4
6 0.01 0.05 0.11 0.42
48 0.04 0.13 0.83 0.98
364 0.41 1.26 3.51 5.93
3072 7.32 14.9 61.91 106.37
24576 156.51 419.73 - -

Wall-clock time of linear solver
in the E-HDG method (sec)

elem. # k = 1 k = 2 k = 3 k = 4
6 0.01 0.03 0.09 0.17
48 0.02 0.07 1.2 0.55
364 0.09 0.41 1.17 2.75
3072 0.97 3.52 16.48 37.67
24576 13.08 66.88 414.78 940.11

Reduction in computational time of linear solver (%)
elem. # k = 1 k = 2 k = 3 k = 4
6 0.00 -40.00 -18.18 -59.52
48 -50.00 -46.15 44.58 -43.88
364 -78.05 -67.46 -66.67 -53.63
3072 -86.75 -76.38 -73.38 -64.59
24576 -91.64 -84.07 - -

Table 4.3: The summary of computational time (the averaged maximum of wall-clock
time over five runs of identical setting, among all MPI processes) taken by the linear
solver for solving the two- and three-dimensional problems using E-HDG and HDG
methods with the discretization given in (3.7)-(3.11). The two-dimensional problem
is the one presented in Section 4.2.1 with Re = Rm = 1 and the three-dimensional
problem is the one presented in Section 4.2.3 with Re = Rm = 1. Note that k denotes
the degree of approximation and ”elem. #” indicates the number of elements used in
a given mesh.

errors, with the corresponding convergence plots in Figure 4.2. Examining Table586

4.5 suggests that the increment in Re and Rm improves the convergence rates of587

some local variables in this problem, notably Lh, uh, and bh. For a more definitive588

assessment of convergence rates from the numerical experiment, we focus on the results589

corresponding to Re = Rm = 1. In summary, we observe the super convergence rate590

of k + 3/2 for rh, the optimal convergence rates of k + 1 for uh, bh, the optimal591

convergence rate of k + 1 for ph, and sub-optimal convergence rates of k for Lh,Jh.592

To numerically assess the pressure robustness of our method, we intentionally593

perturb the pressure solution. The test is carried out on two di!erent meshes, one594

with 32 elements and another one with 512 elements, using polynomial degree k = 2595

for both and a wide range of p0 values. The results of this study are presented in Table596

4.6. It is observed from the table that the L2-errors of all local variables including597

the velocity and magnetic fields are independent of p0 regardless of which mesh is598

used. The observation implies that these errors do not depend on the pressure field599

and hence our method could be pressure robust. A particularly noteworthy discovery600

is the independence of the magnetic field error from the pressure field, a phenomenon601

previously observed in [47] as well. Plausible reasoning for this observation may stem602
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Two-dimensions

Total number of MPI processes
elem. # k = 1 k = 2 k = 3 k = 4
2 1 1 1 1
8 1 1 1 1
32 2 2 2 2
128 2 2 2 2
512 4 4 4 4

Wall-clock time of assembly & reconstruction
in the HDG method (sec)

elem. # k = 1 k = 2 k = 3 k = 4
2 0.01 0.02 0.06 0.17
8 0.02 0.08 0.24 0.68
32 0.03 0.16 0.48 1.37
128 0.12 0.63 1.92 5.45
512 0.25 1.28 3.84 11.04

Wall-clock time of assembly & reconstruction
in the E-HDG method (sec)

elem. # k = 1 k = 2 k = 3 k = 4
2 0.01 0.03 0.06 0.17
8 0.02 0.08 0.24 0.68
32 0.03 0.16 0.48 1.37
128 0.12 0.63 1.91 5.43
512 0.24 1.28 3.85 11.01

Reduction in computational time
of assembly & reconstruction (%)

elem. # k = 1 k = 2 k = 3 k = 4
2 0.00 50.00 0.00 0.00
8 0.00 0.00 0.00 0.00
32 0.00 0.00 0.00 0.00
128 0.00 0.00 -0.52 -0.37
512 -4.00 0.00 0.26 -0.27

Three-dimensions

Total number of MPI processes
elem. # k = 1 k = 2 k = 3 k = 4
6 1 1 1 2
48 1 2 2 2
364 2 4 4 8
3072 2 8 8 16
24576 4 16 16 32

Wall-clock time of assembly & reconstruction
in the HDG method (sec)

elem. # k = 1 k = 2 k = 3 k = 4
6 0.15 1.77 10.95 24.62
48 1.13 6.91 43.96 196.12
364 4.54 28.21 179.37 406.84
3072 36.58 112.53 721.29 1620.16
24576 146.97 460.14 - -

Wall-clock time of assembly & reconstruction
in the E-HDG method (sec)

elem. # k = 1 k = 2 k = 3 k = 4
6 0.15 1.74 10.93 24.89
48 1.12 6.86 43.82 198.3
364 4.56 28.08 181.27 401.64
3072 36.94 113.67 723.29 1612.38
24576 145.51 456.01 2926.25 6533.66

Reduction in computational time
of assembly & reconstruction (%)

elem. # k = 1 k = 2 k = 3 k = 4
6 0.00 -1.69 -0.18 1.10
48 -0.88 -0.72 -0.32 1.11
364 0.44 -0.46 1.06 -1.28
3072 0.98 1.01 0.28 -0.48
24576 -0.99 -0.90 - -

Table 4.4: The summary of computational time (the averaged maximum of wall-clock
time over five runs of identical setting, among all MPI processes) taken by assembly
execution and local reconstruction for solving the two- and three-dimensional problems
using E-HDG and HDG methods with the discretization given in (3.7)-(3.11). The
two-dimensional problem is the one presented in Section 4.2.1 with Re = Rm = 1 and
the three-dimensional problem is the one presented in Section 4.2.3 with Re = Rm = 1.
Note that k denotes the degree of approximation and “elem. #” indicates the number
of elements used in a given mesh.

from the absence of the pressure field in the magnetic induction equation presented603

in (3.1c).604

4.2.2. Two-dimensional singular manufactured solution. To assess the605

robustness of our E-HDG scheme, we apply it to a problem where a strong singularity606

exists on the boundary. This example illustrates the convergence of the E-HDG607

scheme using a manufactured solution with a singularity (similar to the example in608

Section 5.2 of [57] and Section 5.3 of [69]). In particular, we consider a nonconvex609

domain given by $ = (→1, 1) ↓ (→1, 1)\[0, 1) ↓ (→1, 0]. We take Re = Rm = ω = 1,610

w = 0, and d = (→1, 1). We pick g and f such that the analytical solution of611
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Fig. 4.1: Illustration of Table 4.2 for k = 1, 2 with the inclusion of the accuracy of the
approximation to di!erent variables.

Re = Rm = 1,ω = 1
ReLh uh ph Rm

ε Jh bh rh ⇓↑ · uh⇓↗ ⇓↑ · bh⇓↗
k = 1 1.02 2.29 1.12 1.20 2.40 1.96 3.85E-15 4.06E-15
k = 2 2.02 3.08 2.21 2.28 3.06 2.73 3.44E-14 2.71E-14
k = 3 3.04 4.06 3.17 3.35 4.03 3.75 7.94E-14 8.45E-14
k = 4 4.03 5.08 4.28 4.51 4.91 4.79 2.90E-13 4.55E-13

Re = Rm = 1000,ω = 1
k = 1 1.29 1.34 0.99 1.36 1.46 0.65 4.30E-15 2.54E-15
k = 2 2.93 4.05 2.02 3.01 4.14 2.40 2.50E-14 2.17E-14
k = 3 3.98 5.28 3.02 3.85 5.18 3.81 1.35E-12 1.07E-13
k = 4 4.16 5.21 4.00 4.17 5.20 4.39 2.67E-12 2.22E-12

Table 4.5: Convergence rates of all local variables and divergence errors of velocity and
magnetic fields for the E-HDG method applied to solve the two-dimensional problem
with a smooth manufactured solution given in (4.2) with p0 = 1. The corresponding
results are also presented in Figure 4.2. In this table, the convergence rates are
evaluated at the last two data sets and the divergence errors are evaluated at the last
data set.

(3.2)-(3.4) has the form612

u =


ςϑ [(1 + ↽) sin (⇀)⇁(⇀) + cos (⇀)⇁↘(⇀)] ,
ςϑ [→(1 + ↽) cos (⇀)⇁(⇀) + sin (⇀)⇁↘(⇀)]


,(4.3a)613

b = ↑

ς2/3 sin


2⇀

3


,(4.3b)614

p = →ςϑ↓1 (1 + ↽)2 ⇁↘(⇀) + ⇁↘↘↘(⇀)

1→ ↽
,(4.3c)615

r = 0,(4.3d)616617
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32 elements in total, h ∈ 1.46E → 1
p0 Re ⇓L→Lh⇓0 ⇓u→ uh⇓0 ⇓p→ ph⇓0

Rm
ε ⇓J → Jh⇓0 ⇓b→ bh⇓0 ⇓r → rh⇓0 ⇓↑ · uh⇓↗ ⇓↑ · bh⇓↗

1 2.09E-2 1.27E-3 5.57E-2 1.67E-2 9.66E-4 3.97E-2 7.15E-16 7.49E-16
10 2.09E-2 1.27E-3 2.02E-1 1.67E-2 9.66E-4 3.97E-2 1.40E-15 6.11E-16
25 2.09E-2 1.27E-3 4.90E-1 1.67E-2 9.66E-4 3.97E-2 2.78E-15 6.66E-16
100 2.09E-2 1.27E-3 1.95 1.67E-2 9.66E-4 3.97E-2 1.03E-14 6.38E-16

512 elements in total, h ∈ 3.66E → 2
1 1.27E-3 1.09E-5 2.30E-3 7.48E-4 1.07E-5 1.40E-3 4.44E-15 3.77E-15
10 1.27E-3 1.09E-5 1.26E-2 7.48E-4 1.07E-5 1.40E-3 7.41E-15 3.77E-15
25 1.27E-3 1.09E-5 3.11E-2 7.48E-4 1.07E-5 1.40E-3 1.73E-14 4.05E-15
100 1.27E-3 1.09E-5 1.24E-1 7.48E-4 1.07E-5 1.40E-3 7.92E-14 4.11E-15

Table 4.6: The errors in the local variables for the smooth manufactured solution
given in (4.2) for meshes of 32 and 512 elements, a polynomial degree of k = 2, and
a range of p0 values. The physical parameters are set to be Re = Rm = 1 and ω = 1.

where618

⇁(⇀) = cos (↽ω)


sin ((1 + ↽)⇀)

1 + ↽
→ sin ((1→ ↽)⇀)

1→ ↽


→ cos ((1 + ↽)⇀) + cos ((1→ ↽)⇀),619

ω =
3↼

2
, ↽ ∈ 0.54448373678246, ⇀ ↗


0,

3↼

2


.620

621

For this problem, it is known that u ↗
[
H1+ϑ($)

]2
, p ↗ Hϑ($), and b ↗

[
H2/3($)

]2
,622

and the solution contains magnetic and hydrodynamic singularities that are among623

the strongest singularities [57] right at the origin. The exact solution is illustrated in624

the first column of Figure 4.4. It can be observed that singularity is located at the625

origin for b and p. While u is relatively smooth, its derivative is singular at the origin.626

A sequence of unstructured meshes is used to test the convergence of the numerical627

solution. Figure 4.3 demonstrates the coarsest mesh and a couple of refined meshes628

that are used in the convergence test. The numerical solution and the absolute error629

which are obtained on the finest mesh with approximation order k = 4 are presented630

in Figure 4.4 as well.631

Convergence results for this problem are summarized in Table 4.7 and illustrated632

in Figure 4.5. For the fluid variables Lh, uh, and ph, we observe convergence rates633

of approximately 2/3. In the case of magnetic variables, namely Jh, bh, and rh,634

the observed convergence rates are approximately 1/5, 2/3, and 1/3 respectively.635

Compared to the result presented in [69], the convergence rates of the fluid variables636

are lower, while the ones of the magnetic variables are similar. Remarkably, despite637

the accuracy challenges, divergence errors in both velocity and magnetic fields remain638

close to machine zero in this singular test case.639

4.2.3. Three-dimensional smooth manufactured solution. We now apply640

our E-HDGmethod to a three-dimensional problem on structured tetrahedron meshes.641

Note that our well-posedness analysis is still valid for this case. We set $ = (0, 1) ↓642

(0, 1)↓ (0, 1) and take Re = Rm ↗ {1, 1000} and ω = 1. For this test case, we choose643
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Fig. 4.2: Convergence histories of all local variables and divergence errors for the
E-HDG method applied to solve the two-dimensional problem with a smooth manu-
factured solution given in (4.2) where we set p0 = 1. Only the convergence rates for
Re = Rm = 1 are presented here.

Fig. 4.3: The meshes used in Section 4.2.2. The coarsest mesh is presented in the first
column. In the second column, the mesh that undergoes two-times uniform refinement
is presented. The finest mesh is shown in the third column and is obtained by four-
times uniform refinement.
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Fig. 4.4: The contour plots of the exact solution (the first column), the numerical
solution (the second column), and the error (the third column). The magnitudes of
the quantities are presented and all results are obtained by solving the two-dimensional
problem with a manufactured solution given in (4.3) where a strong singularity exists
in the magnetic field.

Re = Rm = ω = 1
ReLh uh ph Rm

ε Jh bh rh ⇓↑ · uh⇓↗ ⇓↑ · bh⇓↗
k = 1 0.68 0.68 0.70 0.08 0.71 0.29 8.82e-12 4.22e-10
k = 2 0.71 0.74 0.76 0.17 0.71 0.31 2.06e-11 4.06e-09
k = 3 0.60 0.65 0.69 0.33 0.58 0.40 6.25e-11 1.46e-08
k = 4 0.51 0.54 0.56 0.42 0.51 0.44 1.95e-10 3.82e-08

Table 4.7: Convergence rates of all local variables and divergence errors of velocity and
magnetic fields for the E-HDG method applied to solve the two-dimensional problem
with a singular manufactured solution given in (4.3). The corresponding results are
also presented in Figure 4.5. In this table, the convergence rates are evaluated at the
last two data sets and the divergence errors are evaluated at the last data set.

the forcing function such that the exact solution is given by644

u =




→ (y cos (y) + sin y) ex,

y sin (y)ex → (z cos (z) + sin (z)) ey,
z sin (z)ey



 ,(4.4a)645

b = u(4.4b)646

p = p0


2ex sin (y)z2 →


→2

3
(e cos (1)→ cos (1)→ e+ 1


(4.4c)647

r = 0(4.4d)648649
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Fig. 4.5: Convergence histories of all local variables and divergence errors for the
E-HDG method applied to solve the two-dimensional problem with a manufactured
solution given in (4.3) where a strong singularity exists in the magnetic field.

with the prescribed fields w = u and d = b, and a constant p0. Table 4.8 summarizes650

the convergence rates of all local variables and shows the L↗-norm of the divergence651

errors. The corresponding convergence histories are shown in Figure 4.6. Similar652

to the two-dimensional smooth testing case presented in Section 4.2.1, we observed653

that the convergence rates are a!ected by Re and Rm here as well, but in an adverse654

manner. The e!ect is evident for Lh, uh and bh. We present the convergence rates655

for the case Re = Rm = 1. As can be seen, ph and rh exhibit superconvergence with656

a rate of k + 3/2, and the convergence rates of uh and bh are optimal with k + 1.657

For Lh and Jh, the convergence rate is, however, suboptimal with k. The conclusion658

is consistent with the one made in Section 4.2.1 where the two-dimensional smooth659

manufactured solution is applied.660

The numerical assessment of the pressure robustness of our method is also carried661

out for this manufactured solution. The examination is conducted by perturbing the662

solution in pressure on two meshes, one consisting of 48 elements and the other with663

24576 elements, with k = 2 and various values of p0. Table 4.9 details the results.664

Similar to the two-dimensional case presented in Table 4.6, the L2-errors in velocity665

and magnetic field are independent of pressure on di!erent meshes.666
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Re = Rm = 1,ω = 1
ReLh uh ph Rm

ε Jh bh rh ⇓↑ · uh⇓↗ ⇓↑ · bh⇓↗
k = 1 0.72 1.78 1.81 1.02 2.04 1.95 6.19E-13 2.11E-13
k = 2 2.21 3.50 2.85 2.21 3.23 2.79 1.41E-12 1.29E-12
k = 3 3.08 3.99 3.66 3.22 4.19 3.75 9.07E-10 1.96E-11
k = 4 4.22 5.23 4.73 4.24 5.23 4.70 3.66E-09 8.06E-11

Re = Rm = 1000,ω = 1
k = 1 0.47 1.38 1.89 0.56 0.77 1.96 5.73E-13 2.13E-13
k = 2 1.28 2.25 3.01 1.31 2.19 2.93 1.64E-12 1.45E-12
k = 3 3.64 4.69 3.92 3.77 4.72 3.93 1.46E-09 1.93E-11
k = 4 3.94 4.22 4.91 4.03 4.29 5.49 5.55E-09 5.94E-09

Table 4.8: Convergence rates of all local variables and divergence errors of velocity
and magnetic fields for the E-HDG method applied to solve the three-dimensional
problem with a smooth manufactured solution given in (4.4) where we set p0 = 1. The
corresponding results are also presented in Figure 4.6. In this table, the convergence
rates are evaluated at the last two data sets and the divergence errors are evaluated
at the last data set.

48 elements in total, h ∈ 1.06E → 1
p0 Re ⇓L→Lh⇓0 ⇓u→ uh⇓0 ⇓p→ ph⇓0

Rm
ε ⇓J → Jh⇓0 ⇓b→ bh⇓0 ⇓r → rh⇓0 ⇓↑ · uh⇓↗ ⇓↑ · bh⇓↗

1 7.52E-2 2.69E-3 1.59 6.42E-2 2.42E-3 1.29 2.42E-13 2.19E-13
10 7.52E-2 2.69E-3 5.99 6.42E-2 2.42E-3 1.29 2.99E-13 2.48E-13
25 7.52E-2 2.69E-3 15.57 6.42E-2 2.42E-3 1.29 3.09E-13 2.53E-13
100 7.52E-2 2.69E-3 64.09 6.42E-2 2.42E-3 1.29 2.89E-13 2.60E-13

24576 elements in total, h ∈ 2.64E → 2
1 3.19E-3 2.10E-5 3.16E-2 2.70E-3 2.53E-5 2.90E-2 1.40E-12 1.43E-12
10 3.19E-3 2.10E-5 5.83 2.70E-3 2.53E-5 2.90E-2 1.40E-12 1.31E-12
25 3.19E-3 2.10E-5 15.55 2.70E-3 2.53E-5 2.90E-2 1.41E-12 1.22E-12
100 3.19E-3 2.10E-5 64.13 2.70E-3 2.53E-5 2.90E-2 1.32E-12 1.44E-12

Table 4.9: The errors in the local variables for the smooth manufactured solution
given in (4.4) for meshes of 48 and 24576 elements, a polynomial degree of k = 2, and
a range of p0 values. We set Re = Rm = 1 and ω = 1.

4.3. Nonlinear examples. To verify our nonlinear solver, we conducted several667

numerical experiments and studied the accuracy and convergence. The first example668

is the two-dimensional smooth manufactured solution, the second one is the so-called669

Hartmann flow problem, and the last one is the three-dimensional smooth manufac-670

tured solution.671

4.3.1. Two-dimensional smooth manufactured solution. Our first numer-672

ical experiment for the nonlinear solver is a steady manufactured solution. In particu-673

lar, we use the same solution presented in Section 4.2.1 to investigate the convergence.674

The results are presented in Table 4.10 and are illustrated in Figure 4.7. The observed675

convergence rates are almost the same as the rates observed in the linear problem pre-676

sented in Section 4.2.1. Moreover, the divergence errors also exhibit the same order of677

magnitude. Finally, the number of iterations needed by the Picard iterative process678

is reported in Table 4.11 where the user-defined tolerance ϑ is set to be 1E → 10 for679

k = 1, 2 and 2E → 10 for k = 3, 4.680
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Fig. 4.6: Convergence histories of all local variables and divergence errors for the
E-HDG method applied to solve the three-dimensional problem with a smooth man-
ufactured solution given in (4.4) where we set p0 = 1. Only the convergence rates for
Re = Rm = 1 are presented here.

4.3.2. Two-dimensional Hartmann flow. We next consider the Hartmann681

channel flow, a generalization of the classic plane Poiseuille problem to the setting of682

the incompressible visco-resistive MHD. In this problem, a conducting incompressible683

fluid (liquid metal, for example) in a domain (→⇑,⇑)↓(→l0, l0)↓(→⇑,⇑) (bounded684

by infinite parallel plates in the x2 direction) is driven by a uniform pressure gradi-685

ent G := → ωp
ωx1

in the x1 direction, and is subject to a uniform external magnetic686

field b0 in the x2 direction. In addition, we enforce no-slip boundary conditions on687

the x2 boundaries and assume the infinite parallel plates are perfectly insulating.688

The resulting flow pattern admits an analytical solution that is one-dimensional in689

nature. In this numerical study, we consider the simulation of Hartmann flow in a690

two-dimensional domain $ = (0, 0.025)↓(→1, 1). If we define the characteristic veloc-691

ity as u0 :=

Gl0/ς and consider the driving pressure gradient G as a forcing term692

(incorporated in g), the nondimensionalized solution with g = (1, 0), f = 0 takes the693
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Re = Rm = 1,ω = 1
ReLh uh ph Rm

ε Jh bh rh ⇓↑ · uh⇓↗ ⇓↑ · bh⇓↗
k = 1 1.02 2.29 1.12 1.20 2.40 1.96 4.02E-15 3.72E-15
k = 2 2.02 3.08 2.21 2.28 3.06 2.73 2.39E-14 2.66E-14
k = 3 3.04 4.06 3.17 3.35 4.03 3.75 7.75E-14 7.65E-14
k = 4 4.03 5.08 4.28 4.51 4.91 4.79 2.81E-13 5.65E-13

Re = Rm = 1000,ω = 1
k = 1 1.27 1.35 0.99 1.38 1.47 0.65 2.69E-15 2.83E-15
k = 2 2.93 4.04 2.02 3.01 4.14 2.40 2.61E-14 2.35E-14
k = 3 3.98 5.28 3.02 3.85 5.18 3.81 1.13E-12 1.10E-13
k = 4 4.16 5.20 4.00 4.17 5.20 4.39 2.78E-12 1.73E-12

Table 4.10: Convergence rates of all local variables and divergence errors of velocity
and magnetic fields for the nonlinear solver applied to solve the two-dimensional
problem with a smooth manufactured solution given in (4.2) where we set p0 = 1. The
corresponding results are also presented in Figure 4.7. In this table, the convergence
rates are evaluated at the last two data sets and the divergence errors are evaluated
at the last data set.

Re = Rm = 1, ω = 1

The Picard iteration number
elem. # k = 1 k = 2 k = 3 k = 4
2 3 3 4 4
8 3 4 4 4
32 3 4 3 3
128 4 3 3 2
512 3 3 2 2
2048 3 3 2 1
8192 3 2 2 2

Re = Rm = 1000, ω = 1

The Picard iteration number
elem. # k = 1 k = 2 k = 3 k = 4
2 2 2 2 3
8 2 2 23 38
32 2 24 35 25
128 3 33 30 16
512 4 37 26 10
2048 8 36 18 5
8192 24 32 11 6

Table 4.11: The summary of iteration number required by the Picard iterative process
of solving the two-dimensional problem with a smooth manufactured solution given
in (4.2) where we set p0 = 1. The user-defined tolerance ϑ is set to be 1E → 10 for
k = 1, 2 and 2E → 10 for k = 3, 4.

form (see, i.e., [88, 89])694

u =


Re

Ha tanh (Ha)


1→ cosh (Ha · y)

cosh (Ha)


, 0


,(4.5a)695

b =


1

ω


sinh (Ha · y)
sinh (Ha)

→ y


, 1


,(4.5b)696

p = → 1

2ω


sinh (Ha · y)
sinh (Ha)

→ y

2
→ p0,(4.5c)697

r = 0(4.5d)698699

where Ha :=
∋
ωReRm, and p0 is a constant that enables p to satisfy the zero average700

pressure condition.701

At refinement level l, the domain is divided into l↓ 80l squares, each of which is702

divided into two triangles from top right to bottom left. Figure 4.8 shows the conver-703

gence plots with Re = Rm = 7.07 and ω = 200 and the corresponding convergence704

This manuscript is for review purposes only.



26 J. CHEN, T.L. HORVÁTH, AND T. BUI-THANH

Fig. 4.7: Convergence histories of all local variables and divergence errors for the
nonlinear solver applied to solve the two-dimensional problem with a smooth manu-
factured solution given in (4.2) where we set p0 = 1. Only the convergence rates for
Re = Rm = 1 are presented here.

rates are summarized in Table 4.12. In this example, user-defined tolerance ϑ is set to705

be 1E→10 and the Picard iteration numbers for all cases presented in Figure 4.8 reach706

50, which is the maximum allowable number of iterations. However, the computed707

tolerance TOL is acceptable since it is hovering around O(1E → 9)→O(1E → 10) for708

k = 1, O(1E→8)→O(1E→9) for k = 2, and O(1E→8) for both k = 3 and k = 4. On709

the other hand, the convergence rates for Lh, uh, ph, Jh, bh, and rh are observed to710

be approximately k, k→1/2, k+1, k, k+1/2, and k+1. The observation is consistent711

with the rates observed in Section 4.2.1 and 4.2.3 except for the ones of the velocity712

and magnetic fields, which are sub-optimal here.713

4.3.3. Three-dimensional smooth manufactured solution. We now turn714

our attention to a three-dimensional nonlinear problem, demonstrating the conver-715

gence of the nonlinear solver utilizing a smooth manufactured solution as outlined716

in Section 4.2.3. The numerical results are presented in Table 4.13 and visually pre-717

sented in Figure 4.9. The observed convergence rates are consistent with the rates718

presented in Section 4.3.3 where a linear problem with the same smooth manufactured719

solution is solved. Particularly, Table 4.13 closely mirrors the content of Table 4.8. In720
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Re = Rm = 7.07,ω = 200
ReLh uh ph Rm

ε Jh bh rh ⇓↑ · uh⇓↗ ⇓↑ · bh⇓↗
k = 1 1.01 3.68 1.01 1.03 1.87 1.26 3.52E-09 5.50E-12
k = 2 2.08 1.81 2.03 1.96 2.58 1.74 2.95E-08 1.28E-10
k = 3 3.20 2.59 3.16 3.55 3.64 3.18 1.30E-07 2.90E-10
k = 4 4.17 3.72 4.13 4.21 4.20 3.96 3.16E-07 7.02E-10

Table 4.12: Convergence rates of all local variables and divergence errors of velocity
and magnetic fields for the nonlinear solver applied to solve the two-dimensional
Hartmann flow problem that admits the solution given in (4.5). The corresponding
results are also presented in Figure 4.8. In this table, the convergence rates are
evaluated at the last two data sets and the divergence errors are evaluated at the last
data set.

addition, the same order of magnitude is observed for the divergence errors as well.721

Table 4.14 concludes the number of iterations needed by the Picard iterative722

process. In this example, the user-defined tolerance ϑ is set to be 2E → 10. It is723

widely known that the Picard solver may not converge consistently, and the success724

of the iteration is contingent upon the initial guess and the contractive property.725

Our findings underscore that the convergence of the Picard solver is substantially726

influenced by the physical parameters Re,Rm, the degree of approximation k, and727

the mesh refinement. This implies that the contractive property of the linear map728

(w,d) ′∞ (u, b) can be largely a!ected by these factors. This is not surprising as729

our analysis in [77] showed the contraction factor is proportional to the initial guess,730

f , g,Re,Rm/ω and depends onw and d in a nontrivial nonlinear manner. Specifically,731

in the testing cases with Re = Rm = 1000 and k > 1, the Picard iteration does not732

converge when using the initial guess u
0
h = b

0
h = 0. Taking Re = Rm = 1000, the733

Picard iteration stalls when k = 2 is used on the mesh with 364 elements (TOL734

stagnates around O(1E → 4)), k = 3 on the mesh with 48 elements (TOL stagnates735

around O(1E → 4)), and k = 4 on the mesh with 6 elements (TOL stagnates around736

O(1E → 5)). Only the case with k = 1 exhibits convergence across a sequence of737

meshes with 6, 48, 364, 3072, and 24576 elements, and the results of this case are738

presented in both Table 4.13 and Figure 4.9.739
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Fig. 4.8: Convergence histories of all local variables and divergence errors for the
nonlinear solver applied to solve the two-dimensional Hartmann flow problem that
admits the solution given in (4.5).

Re = Rm = 1,ω = 1
ReLh uh ph Rm

ε Jh bh rh ⇓↑ · uh⇓↗ ⇓↑ · bh⇓↗
k = 1 0.72 1.78 1.81 1.02 2.04 1.95 6.89E-13 2.97E-13
k = 2 2.21 3.50 2.85 2.21 3.23 2.78 1.37E-12 1.37E-12
k = 3 3.08 3.99 3.66 3.22 4.19 3.75 9.32E-10 2.07E-11
k = 4 4.22 5.23 4.73 4.24 5.23 4.70 3.47E-09 8.38E-11

Re = Rm = 1000,ω = 1
k = 1 0.47 1.36 1.89 0.57 0.80 1.96 6.08E-13 2.47E-13

Table 4.13: Convergence rates of all local variables and divergence errors of velocity
and magnetic fields for the Picard iterations applied to solve the three-dimensional
problem with a smooth manufactured solution given in (4.4) where we set p0 = 1. The
corresponding results are also presented in Figure 4.9. In this table, the convergence
rates are evaluated at the last two data sets and the divergence errors are evaluated
at the last data set.
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Fig. 4.9: Convergence histories of all local variables and divergence errors for the
Picard iterations applied to solve the three-dimensional problem with a smooth man-
ufactured solution given in (4.4) where we set p0 = 1. Only the convergence rates for
Re = Rm = 1 are presented here.

Re = Rm = 1, ω = 1

The Picard iteration number
elem. # k = 1 k = 2 k = 3 k = 4
6 3 3 4 5
48 3 5 6 5
364 5 7 5 2
3072 7 6 3 1
24576 8 5 2 1

Re = Rm = 1000, ω = 1

The Picard iteration number
elem. # k = 1 k = 2 k = 3 k = 4
6 3 3 - -
48 3 5 - -
364 5 - - -
3072 10 - - -
24576 47 - - -

Table 4.14: The summary of iteration number required by the Picard iterative process
of solving the two-dimensional problem with a smooth manufactured solution given
in (4.4) where we set p0 = 1. In all cases, the user-defined tolerance ϑ is set to be
2E → 10. The symbol ”-” in the table indicates the failure of the Picard solver, in
which not only is the maximum allowable number of iterations reached but also is the
computed tolerance TOL generally too large to be acceptable.
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5. Conclusion and future work. This paper presents two new divergence-free740

and H(div)-conforming HDG methods for the linearized incompressible viso-resistive741

MHD equations with well-posedness analysis. Particularly, we have showed that on742

simplicial meshes, the well-posedness of the proposed approaches can be established743

by the use of a one-order lower approximation in local variables for the pressure ph and744

the Lagrange multiplier rh, and by appropriately chosen stabilization parameters. One745

of the motivations for adopting E-HDG in lieu of HDG methods lies in computational746

gain. Indeed, our experiments have revealed a significant acceleration in the runtime,747

manifested through the utilization of fewer DOFs in E-HDG, particularly in cases748

where the linear solver dominates the overall computational time, such as in three749

dimensions with high-order approximations on fine meshes. Linear problems with750

both smooth and singular solutions were presented to examine the convergence of751

the proposed E-HDG method. For problems with smooth solutions, both two- and752

three-dimensional settings were tested. The numerical convergence rates are shown753

to be optimal for both velocity and magnetic fields in the regime of low Reynolds754

number and magnetic Reynolds number. Moreover, the pressure robustness of our755

method was numerically verified. For the singular solution, the convergence rate is756

limited by the regularity of the solution. However, the divergence-free property is still757

guaranteed.758

By incorporating the E-HDG discretization into the fixed point Picard iteration,759

we can solve the nonlinear incompressible viso-resistive MHD equations iteratively.760

The globally divergence-free property still holds for both the velocity and the magnetic761

fields. The convergence of the nonlinear solver is investigated through nonlinear prob-762

lems with smooth solutions. The convergence rates in the tests are almost identical763

to the ones observed in the linear tests in both two- and three-dimensional settings.764

Further, divergence errors in both velocity and magnetic fields are indeed observed to765

be machine zero.766

While various aspects of our proposed E-HDG method have been discussed in this767

paper, there remain several noteworthy issues. Firstly, a rigorous convergence analysis768

is required, albeit consistent convergence rates for each local variable are observed in769

numerous numerical experiments in this paper. Secondly, the analysis presented in770

Section 4.1 may o!er an incomplete depiction of the correlation between DOFs and771

computational time. This limitation arises from the potential inapplicability of the772

discussed insights to iterative solvers, which are heavily relied upon to address large-773

scale problems (i.e., see [41, 87, 77] for the discussion about the design of scalable solver774

in the context of DG, HDG and EDG with application to flow and MHD problems.).775

Therefore, the development of a scalable iterative approach that demonstrates e#cacy776

across a wide spectrum of Reynolds and magnetic Reynolds numbers is necessary.777

Finally, it is found that the Picard solver does not converge in some cases on three-778

dimensional meshes in the regime of high Reynolds number and magnetic Reynolds779

number. The observation implies that the linear map (w,d) ′∞ (u, b) can be largely780

a!ected by various factors. Investigating the contraction of this map could provide781

insights for devising a more robust algorithm. These topics are non-trivial and could782

each be expanded into individual papers. Thus, we aim to address them in our future783

research agenda.784
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