

A DIVERGENCE-FREE AND $H(\text{DIV})$ -CONFORMING EMBEDDED-HYBRIDIZED DG METHOD FOR THE INCOMPRESSIBLE RESISTIVE MHD EQUATIONS*

JAU-UEI CHEN[†], TAMÁS L. HORVÁTH[‡], AND TAN BUI-THANH^{†§}

Abstract. We present a divergence-free and $H(\text{div})$ -conforming hybridized discontinuous Galerkin (HDG) method and a computationally efficient variant called embedded-HDG (E-HDG) for solving stationary incompressible viso-resistive magnetohydrodynamic (MHD) equations. The proposed E-HDG approach uses continuous facet unknowns for the vector-valued solutions (velocity and magnetic fields) while it uses discontinuous facet unknowns for the scalar variable (pressure and magnetic pressure). This choice of function spaces makes E-HDG computationally far more advantageous, due to the much smaller number of degrees of freedom, compared to the HDG counterpart. The benefit is even more significant for three-dimensional/high-order/fine mesh scenarios. On simplicial meshes, the proposed methods with a specific choice of approximation spaces are well-posed for linear(ized) MHD equations. For nonlinear MHD problems, we present a simple approach exploiting the proposed linear discretizations by using a Picard iteration. The beauty of this approach is that the divergence-free and $H(\text{div})$ -conforming properties of the velocity and magnetic fields are automatically carried over for nonlinear MHD equations. We study the accuracy and convergence of our E-HDG method for both linear and nonlinear MHD cases through various numerical experiments, including two- and three-dimensional problems with smooth and singular solutions. The numerical examples show that the proposed methods are pressure robust, and the divergence of the resulting velocity and magnetic fields is machine zero for both smooth and singular problems.

Key words. hybridized discontinuous Galerkin, embedded-hybridized discontinuous Galerkin, resistive magnetohydrodynamics, Stokes equations, Maxwell equations

24 AMS subject classifications. 65N30, 76W05

25 **1. Introduction.** Magnetohydrodynamics (MHD) is a field within continuum
 26 mechanics that investigates the behavior of electrically conducting fluids in the pres-
 27 ence of magnetic fields [32]. This coupled phenomenon holds significant importance
 28 across various fields including astrophysics [48, 49], planetary magnetism [20, 63], nu-
 29 clear engineering [76, 42, 90], and metallurgical industry [1, 31]. This paper considers
 30 the standard form of the stationary incompressible MHD equations [5, 44, 45, 51].
 31 Specifically, ignoring the effects related to high-frequency phenomena and convection,
 32 current, and focusing on a medium that is non-polarizable, non-magnetizable, and
 33 homogeneous, the resulting MHD equations read

$$\begin{aligned}
 34 \quad (1.1a) \quad & -\frac{1}{\text{Re}} \Delta \mathbf{u} + \nabla p + (\mathbf{u} \cdot \nabla) \mathbf{u} + \kappa \mathbf{b} \times (\nabla \times \mathbf{b}) = \mathbf{g}, \\
 35 \quad (1.1b) \quad & \nabla \cdot \mathbf{u} = 0, \\
 36 \quad (1.1c) \quad & \frac{\kappa}{\text{Rm}} \nabla \times (\nabla \times \mathbf{b}) + \nabla r - \kappa \nabla \times (\mathbf{u} \times \mathbf{b}) = \mathbf{f}, \\
 37 \quad (1.1d) \quad & \nabla \cdot \mathbf{b} = 0,
 \end{aligned}$$

[†]Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712 USA (chenjiu@utexas.edu)

Austin, Austin, TX 78712, USA (chenju@utexas.edu).
†Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA
(thorvath@oakland.edu)

§ Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712 USA (tanbui@oden.utexas.edu)

39 where \mathbf{u} is the velocity of the fluid (plasma or liquid metal), \mathbf{b} the magnetic field, p
 40 the fluid pressure, and r a Lagrange multiplier¹ that is associated with the divergence
 41 constraint (1.1d) on \mathbf{b} . The system (1.1) is characterized by three dimensionless
 42 parameters: the fluid Reynolds number $\text{Re} > 0$, the magnetic Reynolds number
 43 $\text{Rm} > 0$, and the coupling parameter $\kappa = \text{Ha}^2/(\text{ReRm})$, with the Hartmann number
 44 $\text{Ha} > 0$. For a more detailed exploration of these parameters, we refer to [5, 45, 32].

45 The major challenges in the discretization of the MHD equations are the following:
 46 (i) multi-physics with disparate temporal (for the time-dependent MHD equations)
 47 and spatial scales; (ii) nonlinearity; (iii) incompressibility. The satisfaction of exact
 48 mass conservation in (1.1b) is closely tied to the concept of *pressure-robustness*, which
 49 is the statement about the independence between the magnitude of the pressure error
 50 and the *a priori* error estimate for the velocity [73, 74, 59]. Without global enforcement
 51 of the continuity equation pointwise, large velocity error can be induced by large
 52 pressure error. By global enforcement, we mean that the jump of the normal compo-
 53 nent of velocity has to vanish across the interior boundaries of elements on a given
 54 mesh. In other words, the approximation of velocity \mathbf{u}_h is desired to be in the $H(\text{div})$
 55 space in addition to $\nabla \cdot \mathbf{u}_h = 0$, where the divergence operator is defined in a weak
 56 sense. The definition of the $H(\text{div})$ space and weak derivative will be elaborated in
 57 Section 2; (iv) The solenoidal constraint for the magnetic field. The violation of this
 58 constraint will cause the wrong topologies of magnetic field lines, leading to plasma
 59 transport in an incorrect direction. Furthermore, nonphysical forces proportional to
 60 the divergence error could be created, potentially inducing instability [19, 11, 91]; and
 61 (v) The dual saddle-point structure of the velocity-pressure. The discretized system
 62 is subject to having a notorious large conditional number and is thus difficult to solve.

63 Many numerical schemes have been proposed to solve linear, nonlinear, time-
 64 dependent, and -independent MHD systems. Regarding spatial discretization, hy-
 65 bridized discontinuous Galerkin (HDG) methods have demonstrated remarkable suc-
 66 cess [69, 23, 83, 64, 47, 77]. The HDG methods were first introduced under the context
 67 of symmetric elliptic problems [25] to overcome the common criticism had by discon-
 68 tinuous Galerkin (DG) methods on the significantly more globally coupled unknowns
 69 than continuous Galerkin methods due to the duplication of degrees of freedoms
 70 (DOFs) on element boundaries [24]. The HDG methods reduce the computational cost
 71 of DG methods by introducing facet variables uniquely defined on the intersections of
 72 element boundaries and removing local (element-wise) DOFs through static conden-
 73 sation, which was initially used in mixed finite element methods (i.e., [16]). Once the
 74 facet variables are solved, the element DOFs can be recovered element-by-element in
 75 a completely embarrassing parallel fashion. Consequently, HDG methods are more
 76 efficient while retaining the attractive features of DG methods, such as being highly
 77 suitable for solving convection-dominated problems in complex geometries, delivering
 78 high-order accuracy in approximations, and accommodating h/p refinement [54].

79 The computational cost of HDG methods can be further lowered by using contin-
 80 uous facet variables across the skeleton of the mesh instead of the discontinuous ones
 81 used in HDG methods. This approach led to the embedded discontinuous Galerkin
 82 (EDG) methods and was first proposed for solving elliptic problems in [53]. Later,
 83 the EDG methods were developed for solving both compressible flow problems in
 84 [80, 79, 40] and incompressible flow problems in [65, 66]. All works showed that the
 85 method inherited many of the desirable features of DG methods. At the same time,
 86 the required number of DOFs was less than those of HDG methods and close to those

¹Sometimes, this variable is also referred to as the magnetic pressure.

87 of continuous Galerkin (CG) methods on a given mesh. Further, the stiffness ma-
 88 trix arising from EDG discretization of the flow problems will have a similar sparsity
 89 structure as that of the statically condensed CG method [80, 79]. Unfortunately,
 90 employing the EDG method can compromise the conservative property. As a conse-
 91 quence, the EDG methods may lose the optimal converge property of the flux that
 92 distinguishes other HDG methods. [80, 79]. In particular, for the incompressible flow
 93 model, the velocity field cannot be globally divergence-free, and the mass can only
 94 be conserved in the local sense [66]. To strike a balance between HDG and EDG
 95 methods, an embedded-hybridized discontinuous Galerkin (E-HDG) method was first
 96 developed in [87] for the Stokes equations. The method is proved to be globally
 97 divergence-free and $H(div)$ -conforming. The number of globally coupled DOFs can
 98 be substantially reduced by using a continuous basis for the facet velocity field while
 99 maintaining a discontinuous basis for the facet pressure. The methodology was later
 100 adopted to space-time discretization to solve incompressible flows on moving domains
 101 [55, 56] and is proved to be globally mass conserving, locally momentum conserving,
 102 and energy-stable.

103 Several approaches have been suggested to address the issue of the divergence-
 104 free constraint on the velocity field within the framework of DG, HDG, or E-HDG
 105 methods. An approach to overcome the issue is to use $H(div)$ -conforming elements
 106 in the approximation of velocity, as discussed in [28, 50, 43] for DG methods. Alter-
 107 natively, the constraint can be satisfied locally using solenoidal approximation space
 108 for DG methods [8, 60, 72, 94, 62] and globally for HDG methods [21]. On the other
 109 hand, $H(div)$ -conformity can be acquired with the help of facet variables and proper
 110 design of numerical flux for HDG [70, 71, 85, 67, 86, 81, 47] and E-HDG [87, 55, 56]
 111 methods. Another technique to obtain globally divergence-free methods is to perform
 112 post-processing using special projection operators [14, 27, 92, 29, 78, 26, 30, 52, 68]. It
 113 is worthy to mention that in HDG methods the new velocity approximation obtained
 114 by the local post-processing is not only exactly divergence-free and $H(div)$ -conforming
 115 but also has superconvergece property [78, 26]. One can also apply pressure-correction
 116 methods that relies on Helmholtz decomposition to maintain the divergence-free con-
 117 straint [18, 61].

118 We remark that the divergence-free constraint on the magnetic field given in
 119 (1.1d) can be implied by the initial condition in the context of time-dependent MHD
 120 equations on the continuous level, and it is also known as the solenoidal involution
 121 property of the magnetic field. However, temporal and spatial discretization errors
 122 can destroy such a property. Numerous methods have been proposed to satisfy the
 123 $\nabla \cdot \mathbf{b} = 0$ constraint in MHD calculations, and some of the ideas can be linked to the
 124 approaches developed to handle the $\nabla \cdot \mathbf{u} = 0$ constraint in the context of solving
 125 incompressible flow problems. These methods include source term methods [82, 58],
 126 projection method [19, 34] (similar to the projection-correction methods [18, 61]),
 127 hyperbolic divergence cleaning methods [33, 62, 17, 23] (similar to artificial compress-
 128 ability methods [12, 13]), locally divergence-free methods [72, 94] (use locally solenoidal
 129 approximation space and is similar to [8, 60, 62]), globally divergence-free methods
 130 [43] (use globally solenoidal approximation space), and constrained transport (CT)
 131 methods [38, 11, 75, 91]. Another approach to obtain a divergence-free and $H(div)$ -
 132 conforming method was developed in [47], using an HDG method that hybridizes the
 133 facet Lagrange multiplier variable as well.

134 In this paper, we devise HDG and E-HDG methods, which are both divergence-
 135 free and $H(div)$ -conforming, for solving the stationary incompressible viso-resistive
 136 MHD equations given in (1.1). *Though both approaches are constructed in parallel,*

137 *our exposition will focus on E-HDG.* We obtain $H(\text{div})$ -conformity by following an
 138 idea similar to [87, 55] and [47] through hybridization via a facet pressure and a
 139 facet Lagrange multiplier field using discontinuous facet functions. For the E-HDG
 140 variant, we use continuous facet functions for the velocity and the magnetic fields.
 141 Moreover, we extended the work in [69] and employed an upwind type numerical
 142 flux that is based on the first-order form of the linearized MHD system. This is in
 143 contrast to the work in [47] where the authors hybridized another popular class of
 144 DG methods called interior penalty discontinuous Galerkin (IPDG) methods [35, 7,
 145 93, 6, 8] to construct the divergence-free and divergence-conforming HDG method for
 146 the time-dependent incompressible viso-resistive MHD equations. To ensure stability,
 147 the penalty parameter in IPDG methods, such as the one in typical Nitsche methods,
 148 must be sufficiently large. However, no analytically proven bound is available for this
 149 penalty parameter. Conversely, our approaches do not suffer from such difficulty, and
 150 the criteria of the stabilization parameters are well-defined. With a few assumptions,
 151 our proposed schemes are well-posed. The resulting E-HDG discretization for the
 152 linearized MHD model can be incorporated into a Picard iteration to construct a fully
 153 nonlinear solver provided it converges. This approach ensures that the divergence-
 154 free and $H(\text{div})$ -conforming properties still hold for the nonlinear case. Moreover,
 155 all results we discussed in the context of our E-HDG method are still applied to the
 156 HDG counterpart, including well-posedness, divergence-free property, and $H(\text{div})$ -
 157 conformity.

158 The paper is organized as follows. Section 2 outlines the notations. Section 3 pro-
 159 poses both the HDG and E-HDG discretizations for the linearized incompressible viso-
 160 resistive MHD equations. In addition, the well-posedness of both methods is proven.
 161 Further, we prove the divergence-free property and $H(\text{div})$ -conformity of both the
 162 velocity (i.e., pointwise mass conservation) and the magnetic (i.e., pointwise absence
 163 of magnetic monopoles) fields for linear and nonlinear cases. The implementation as-
 164 pect is discussed in Section 4, where we also compare the computational costs required
 165 by HDG and E-HDG methods. Several numerical examples for linear and nonlinear
 166 incompressible viso-resistive MHD equations are presented to demonstrate the accu-
 167 racy and convergence of our proposed methods in both two- and three-dimensional
 168 settings. Section 5 concludes the paper with future work.

169 **2. Notations.** In this section, we introduce common notations and conventions
 170 to be used in the rest of the paper. Let $\Omega \subset \mathbb{R}^d$, $d = 2, 3$, be a bounded domain
 171 such that it is simply connected, and its boundary $\partial\Omega$ is a Lipschitz manifold with
 172 only one component. Suppose that we have a triangulation of Ω consisting of a finite
 173 number of nonoverlapping d -dimensional simplices, i.e., triangles for two dimensions
 174 and tetrahedra for three dimensions, respectively. We assume that the triangulation is
 175 shape-regular, i.e., for all d -dimensional simplices in the triangulation, the ratio of the
 176 diameter of the simplex and the radius of an inscribed d -dimensional ball is uniformly
 177 bounded. We will use Ω_h and \mathcal{E}_h to denote the sets of d - and $(d-1)$ -dimensional
 178 simplices of the triangulation and call \mathcal{E}_h the mesh skeleton of the triangulation. The
 179 boundary and interior mesh skeletons are defined by $\mathcal{E}_h^\partial := \{e \in \mathcal{E}_h : e \subset \partial\Omega\}$ and
 180 $\mathcal{E}_h^o := \mathcal{E}_h \setminus \mathcal{E}_h^\partial$. We also define $\partial\Omega_h := \{\partial K : K \in \Omega_h\}$. The mesh size of triangulations
 181 is $h := \max_{K \in \Omega_h} \text{diam}(K)$.

182 We use $(\cdot, \cdot)_D$ (respectively $\langle \cdot, \cdot \rangle_D$) to denote the L^2 -inner product on a d - (re-
 183 spectively $(d-1)$ -) dimensional domain D . The standard notation $W^{s,p}(D)$, $s \geq 0$,
 184 $1 \leq p \leq \infty$, is used for the Sobolev space on D based on L^p -norm with differentiability
 185 s (see, e.g., [39]) and $\|\cdot\|_{W^{s,p}(D)}$ denotes the associated norm. In particular, if $p = 2$,

186 we use $H^s(D) := W^{s,2}(D)$ and $\|\cdot\|_{s,D}$. $W^{s,p}(\Omega_h)$ denotes the space of functions whose
 187 restrictions on K reside in $W^{s,p}(K)$ for each $K \in \Omega_h$ and its norm is $\|u\|_{W^{s,p}(\Omega_h)}^p :=$
 188 $\sum_{K \in \Omega_h} \|u|_K\|_{W^{s,p}(K)}^p$ if $1 \leq p < \infty$ and $\|u\|_{W^{s,\infty}(\Omega_h)} := \max_{K \in \Omega_h} \|u|_K\|_{W^{s,\infty}(K)}$.
 189 For simplicity, we use (\cdot, \cdot) , $\langle \cdot, \cdot \rangle$, $\|\cdot\|_s$, $\|\cdot\|_{\partial\Omega_h}$, and $\|\cdot\|_{W^{s,\infty}}$ for $(\cdot, \cdot)_\Omega$, $\langle \cdot, \cdot \rangle_{\partial\Omega_h}$, $\|\cdot\|_{s,\Omega}$,
 190 $\|\cdot\|_{0,\partial\Omega_h}$, and $\|\cdot\|_{W^{s,\infty}(\Omega_h)}$, respectively.

191 For vector- or matrix-valued functions these notations are naturally extended
 192 with a component-wise inner product. We define similar spaces (respectively inner
 193 products and norms) on a single element and a single skeleton face/edge by replacing
 194 Ω_h with K and \mathcal{E}_h with e . We define the gradient of a vector, the divergence of a
 195 matrix, and the outer product symbol \otimes as:

$$196 \quad (\nabla \mathbf{u})_{ij} = \frac{\partial u_i}{\partial x_j}, \quad (\nabla \cdot \mathbf{L})_i = \nabla \cdot \mathbf{L} (i, :) = \sum_{j=1}^d \frac{\partial \mathbf{L}_{ij}}{\partial x_j}, \quad (\mathbf{a} \otimes \mathbf{b})_{ij} = a_i b_j = (\mathbf{a} \mathbf{b}^T)_{ij}.$$

197 The curl of a vector when $d = 3$ takes its standard form, $(\nabla \times \mathbf{b})_i = \sum_{j,k} \varepsilon_{ijk} \frac{\partial \mathbf{b}_k}{\partial x_j}$,
 198 where ε is the Levi-Civita symbol. When $d = 2$, let us explicitly define the curl
 199 of a vector as the scalar quantity $\nabla \times \mathbf{b} = \frac{\partial \mathbf{b}_2}{\partial x_1} - \frac{\partial \mathbf{b}_1}{\partial x_2}$, and the curl of a scalar as
 200 the vector quantity $\nabla \times a = \left(\frac{\partial a}{\partial x_2}, -\frac{\partial a}{\partial x_1} \right)$. In this paper, \mathbf{n} denotes a unit outward
 201 normal vector field on faces/edges. If $\partial K^- \cap \partial K^+ \in \mathcal{E}_h$ for two distinct simplices
 202 K^-, K^+ , then \mathbf{n}^- and \mathbf{n}^+ denote the outward unit normal vector fields on ∂K^- and
 203 ∂K^+ , respectively, and $\mathbf{n}^- = -\mathbf{n}^+$ on $\partial K^- \cap \partial K^+$. We simply use \mathbf{n} to denote
 204 either \mathbf{n}^- or \mathbf{n}^+ in an expression that is valid for both cases, and this convention
 205 is also used for other quantities (restricted) on a face/edge $e \in \mathcal{E}_h$. We also define
 206 $\mathbf{N} := \mathbf{n} \otimes \mathbf{n}$ and $\mathbf{T} := \mathbf{I} - \mathbf{N}$. For a scalar quantity u which is double-valued on
 207 $e := \partial K^- \cap \partial K^+$, the jump term on e is defined by $\llbracket u \mathbf{n} \rrbracket|_e = u^+ \mathbf{n}^+ + u^- \mathbf{n}^-$ where u^+
 208 and u^- are the traces of u from K^+ - and K^- -sides, respectively. For double-valued
 209 vector quantity \mathbf{u} and matrix quantity \mathbf{L} , jump terms are $\llbracket \mathbf{u} \cdot \mathbf{n} \rrbracket|_e = \mathbf{u}^+ \cdot \mathbf{n}^+ + \mathbf{u}^- \cdot \mathbf{n}^-$,
 210 $\llbracket \mathbf{u} \times \mathbf{n} \rrbracket|_e = \mathbf{u}^+ \times \mathbf{n}^+ + \mathbf{u}^- \times \mathbf{n}^-$, and $\llbracket \mathbf{L} \mathbf{n} \rrbracket|_e = \mathbf{L}^+ \mathbf{n}^+ + \mathbf{L}^- \mathbf{n}^-$ where $\mathbf{L} \mathbf{n}$ denotes
 211 the matrix-vector product.

212 We define $\mathcal{P}_k(K)$ as the space of polynomials of degree at most k on K , with
 213 $k \geq 0$, and we define

$$214 \quad \mathcal{P}_k(\Omega_h) := \{u \in L^2(\Omega) : u|_K \in \mathcal{P}_k(K) \ \forall K \in \Omega_h\}.$$

216 The space of polynomials on the mesh skeleton $\mathcal{P}_k(\mathcal{E}_h)$ is similarly defined, and their
 217 extensions to vector- or matrix-valued polynomials $[\mathcal{P}_k(\Omega_h)]^d$, $[\mathcal{P}_k(\Omega_h)]^{d \times d}$, $[\mathcal{P}_k(\mathcal{E}_h)]^d$,
 218 etc, are straightforward.

219 Finally, we use the usual definition of the $H(div)$ - and $H(curl)$ -conforming spaces,
 220 which are typical for mixed methods, and for methods dealing with electromagnetism,
 221 see [37, 16],

$$222 \quad H(div, \Omega) := \left\{ \mathbf{u} \in [L^2(\Omega)]^d : \nabla \cdot \mathbf{u} \in L^2(\Omega) \right\}, \\ 223 \quad (2.1) \quad H(curl, \Omega) := \left\{ \mathbf{u} \in [L^2(\Omega)]^d : \nabla \times \mathbf{u} \in [L^2(\Omega)]^{\tilde{d}} \right\},$$

225 where $\tilde{d} = 3$ if $d = 3$, $\tilde{d} = 1$ if $d = 2$. In addition, the divergence $\nabla \cdot (\cdot)$ and
 226 curl $\nabla \times (\cdot)$ operators should be thought of in the weak sense (an extension of weak
 227 derivative defined in Definition 2.3 in [37]). Note that the jump condition $\llbracket \mathbf{u} \cdot \mathbf{n} \rrbracket|_e =$
 228 0 and $\llbracket \mathbf{u} \times \mathbf{n} \rrbracket|_e = 0$ is necessary for ensuring $\mathbf{u} \in H(div, \Omega)$ and $\mathbf{u} \in H(curl, \Omega)$,
 229 respectively (Theorem 18.10 in [37]).

230 **3. An E-HDG Formulation.** First, consider the following incompressible viso-
 231 resistive MHD system linearized from Eq. (1.1)

232 (3.1a) $-\frac{1}{\text{Re}}\Delta\mathbf{u} + \nabla p + (\mathbf{w} \cdot \nabla)\mathbf{u} + \kappa\mathbf{d} \times (\nabla \times \mathbf{b}) = \mathbf{g},$

233 (3.1b) $\nabla \cdot \mathbf{u} = 0,$

234 (3.1c) $\frac{\kappa}{\text{Rm}}\nabla \times (\nabla \times \mathbf{b}) + \nabla r - \kappa\nabla \times (\mathbf{u} \times \mathbf{d}) = \mathbf{f},$

235 (3.1d) $\nabla \cdot \mathbf{b} = 0.$

237 Here, \mathbf{d} is a prescribed magnetic field and \mathbf{w} is a prescribed velocity field. From this
 238 point forward, we assume (see, e.g., [22, 57] for similar assumptions) $\mathbf{d} \in [W^{1,\infty}(\Omega)]^d$,
 239 $\mathbf{w} \in [W^{1,\infty}(\Omega_h)]^d \cap H(\text{div}, \Omega)$, $\nabla \cdot \mathbf{w} = 0$ and $\mathbf{g}, \mathbf{f} \in [L^2(\Omega)]^d$.

240 To apply the upwind type of numerical flux based on the work [69], we cast (3.1)
 241 into a first-order form by introducing auxiliary variables \mathbf{L} and \mathbf{J} ,

242 (3.2a) $\text{Re}\mathbf{L} - \nabla\mathbf{u} = \mathbf{0},$

243 (3.2b) $-\nabla \cdot \mathbf{L} + \nabla p + (\mathbf{w} \cdot \nabla)\mathbf{u} + \kappa\mathbf{d} \times (\nabla \times \mathbf{b}) = \mathbf{g},$

244 (3.2c) $\nabla \cdot \mathbf{u} = 0,$

245 (3.2d) $\frac{\text{Rm}}{\kappa}\mathbf{J} - \nabla \times \mathbf{b} = \mathbf{0},$

246 (3.2e) $\nabla \times \mathbf{J} + \nabla r - \kappa\nabla \times (\mathbf{u} \times \mathbf{d}) = \mathbf{f},$

247 (3.2f) $\nabla \cdot \mathbf{b} = 0,$

249 with Dirichlet boundary conditions

250 (3.3) $\mathbf{u} = \mathbf{u}_D, \quad \mathbf{b} := \mathbf{b}_D, \quad r = 0 \quad \text{on } \partial\Omega.$

251 In addition, we require the compatibility condition for \mathbf{u}_D and the mean-value zero
 252 condition for p :

253 (3.4) $\langle \mathbf{u}_D \cdot \mathbf{n}, 1 \rangle_{\partial\Omega} = 0, \quad (p, 1)_{\Omega} = 0.$

254 To achieve $H(\text{div})$ -conforming property, we introduce constant parameters $\alpha_1, \beta_1, \beta_2 \in \mathbb{R}$,
 255 and define the numerical flux inspired by the work [69] as

256 (3.5)
$$\begin{bmatrix} \hat{\mathbf{F}}^1 \cdot \mathbf{n} \\ \hat{\mathbf{F}}^2 \cdot \mathbf{n} \\ \hat{\mathbf{F}}^3 \cdot \mathbf{n} \\ \hat{\mathbf{F}}^4 \cdot \mathbf{n} \\ \hat{\mathbf{F}}^5 \cdot \mathbf{n} \\ \hat{\mathbf{F}}^6 \cdot \mathbf{n} \end{bmatrix} = \begin{bmatrix} -\hat{\mathbf{u}} \otimes \mathbf{n} \\ -\mathbf{L}\mathbf{n} + m\mathbf{u} + \hat{p}\mathbf{n} + \frac{1}{2}\kappa\mathbf{d} \times (\mathbf{n} \times (\mathbf{b} + \hat{\mathbf{b}})) + \alpha_1(\mathbf{u} - \hat{\mathbf{u}}) \\ \mathbf{u} \cdot \mathbf{n} \\ -\mathbf{n} \times \hat{\mathbf{b}} \\ \mathbf{n} \times \mathbf{J} + \hat{r}\mathbf{n} - \frac{1}{2}\kappa\mathbf{n} \times ((\mathbf{u} + \hat{\mathbf{u}}) \times \mathbf{d}) + (\beta_1\mathbf{T} + \beta_2\mathbf{N})(\mathbf{b} - \hat{\mathbf{b}}) \\ \mathbf{b} \cdot \mathbf{n} \end{bmatrix},$$

257 where $m := \mathbf{w} \cdot \mathbf{n}$. It should be noted that $\hat{\mathbf{u}}$, \hat{p} , $\hat{\mathbf{b}}$, and \hat{r} are the restrictions (or
 258 traces) of \mathbf{u} , p , \mathbf{b} , and r on \mathcal{E}_h . These $\hat{\mathbf{u}}$, \hat{p} , $\hat{\mathbf{b}}$, and \hat{r} will be regarded as unknowns
 259 in discretizations to obtain an E-HDG method. It will be shown that the conditions
 260 $\alpha_1 > \frac{1}{2}\|\mathbf{w}\|_{L^\infty}$, and $\beta_1\mathbf{T} + \beta_2\mathbf{N} > 0^2$ are sufficient for the well-posedness of our E-
 261 HDG formulation. Note that all 6 components of the E-HDG flux, $\hat{\mathbf{F}}$, for simplicity

²The sign of “greater than” here means that the matrix (or the second order tensor) $\beta_1\mathbf{T} + \beta_2\mathbf{N}$ is positive definite.

262 are denoted in the same fashion (by a bold italic symbol). It is, however, clear from
 263 (3.2) that $\hat{\mathbf{F}}^1$ is a third order tensor, $\hat{\mathbf{F}}^2$ is a second order tensor, $\hat{\mathbf{F}}^3$ is a vector, etc,
 264 and that the normal E-HDG flux components, $\hat{\mathbf{F}}^i \cdot \mathbf{n}$ in (3.5), are tensors of one order
 265 lower.

266 For discretization, we introduce the discontinuous piecewise and the continuous
 267 polynomial spaces

$$\begin{aligned} \mathbf{G}_h &:= [\mathcal{P}_k(\Omega_h)]^{d \times d}, & \mathbf{V}_h &:= [\mathcal{P}_k(\Omega_h)]^d, & \mathbf{Q}_h &:= \mathcal{P}_{\bar{k}}(\Omega_h), \\ \mathbf{H}_h &:= [\mathcal{P}_k(\Omega_h)]^{\tilde{d}}, & \mathbf{C}_h &:= [\mathcal{P}_k(\Omega_h)]^d, & \mathbf{S}_h &:= \mathcal{P}_{\bar{k}}(\Omega_h), & \mathbf{M}_h &:= [\mathcal{P}_k(\mathcal{E}_h) \cap \mathcal{C}(\mathcal{E}_h)]^d, \\ \mathbf{P}_h &:= [\mathcal{P}_k(\mathcal{E}_h)], & \mathbf{\Lambda}_h &:= [\mathcal{P}_k(\mathcal{E}_h) \cap \mathcal{C}(\mathcal{E}_h)]^d, & \mathbf{\Gamma}_h &:= [\mathcal{P}_k(\mathcal{E}_h)], \end{aligned}$$

272 where $\bar{k} := k - 1$, $\mathcal{C}(\mathcal{E}_h)$ is the continuous function space defined on the mesh skeleton,
 273 and \tilde{d} is defined in (2.1).

274 **REMARK 1.** *The functions in \mathbf{M}_h and $\mathbf{\Lambda}_h$ are used to approximate the traces of
 275 the velocity and the magnetic field, respectively. By a slight modification of these
 276 spaces (i.e., $\mathbf{M}_h := [\mathcal{P}_k(\mathcal{E}_h)]^d$ and $\mathbf{\Lambda}_h := [\mathcal{P}_k(\mathcal{E}_h)]^d$), a divergence-free and $H(div)$ -
 277 conforming HDG method can be obtained. All the results presented in Sections 3.1,
 278 3.2 and 3.3 can be directly applied to the resulting HDG method. In addition, we will
 279 numerically compare the computational time needed by HDG and E-HDG methods in
 280 Section 4.*

281 Let us introduce two identities which are useful throughout the paper:

$$282 \quad (3.6a) \quad (\mathbf{u}, \mathbf{d} \times (\nabla \times \mathbf{b}))_K = (\mathbf{b}, \nabla \times (\mathbf{u} \times \mathbf{d}))_K + \langle \mathbf{d} \times (\mathbf{n} \times \mathbf{b}), \mathbf{u} \rangle_{\partial K},$$

$$283 \quad (3.6b) \quad [\mathbf{d} \times (\mathbf{n} \times \mathbf{b})] \cdot \mathbf{u} = -[\mathbf{n} \times (\mathbf{u} \times \mathbf{d})] \cdot \mathbf{b}.$$

285 These identities follow from integration by parts and vector product identities.

286 Next, we multiply (3.2a) through (3.2f) by test functions $(\mathbf{G}, \mathbf{v}, q, \mathbf{J}, \mathbf{c}, s)$, integrate
 287 by parts all terms, and introduce the numerical flux (3.5) in the boundary terms.
 288 This results in a local discrete weak formulation:

$$289 \quad (3.7a) \quad \text{Re}(\mathbf{L}_h, \mathbf{G})_K + (\mathbf{u}_h, \nabla \cdot \mathbf{G})_K + \langle \hat{\mathbf{F}}_h^1 \cdot \mathbf{n}, \mathbf{G} \rangle_{\partial K} = 0,$$

$$\begin{aligned} 290 \quad (3.7b) \quad & (\mathbf{L}_h, \nabla \mathbf{v})_K - (p_h, \nabla \cdot \mathbf{v})_K - (\mathbf{u}_h \otimes \mathbf{w}, \nabla \mathbf{v})_K \\ 291 \quad & + \kappa(\mathbf{b}_h, \nabla \times (\mathbf{v} \times \mathbf{d}))_K + \langle \hat{\mathbf{F}}_h^2 \cdot \mathbf{n}, \mathbf{v} \rangle_{\partial K} = (\mathbf{g}, \mathbf{v})_K, \end{aligned}$$

$$292 \quad (3.7c) \quad -(\mathbf{u}_h, \nabla q)_K + \langle \hat{\mathbf{F}}_h^3 \cdot \mathbf{n}, q \rangle_{\partial K} = 0,$$

$$293 \quad (3.7d) \quad \frac{\text{Rm}}{\kappa}(\mathbf{J}_h, \mathbf{H})_K - (\mathbf{b}_h, \nabla \times \mathbf{H})_K + \langle \hat{\mathbf{F}}_h^4 \cdot \mathbf{n}, \mathbf{H} \rangle_{\partial K} = 0,$$

$$\begin{aligned} 294 \quad (3.7e) \quad & (\mathbf{J}_h, \nabla \times \mathbf{c})_K - (r_h, \nabla \cdot \mathbf{c})_K - \kappa(\mathbf{u}_h, \mathbf{d} \times (\nabla \times \mathbf{c}))_K \\ 295 \quad & + \langle \hat{\mathbf{F}}_h^5 \cdot \mathbf{n}, \mathbf{c} \rangle_{\partial K} = (\mathbf{f}, \mathbf{c})_K, \end{aligned}$$

$$296 \quad (3.7f) \quad -(\mathbf{b}_h, \nabla s)_K + \langle \hat{\mathbf{F}}_h^6 \cdot \mathbf{n}, s \rangle_{\partial K} = 0,$$

298 for all $(\mathbf{G}, \mathbf{v}, q, \mathbf{H}, \mathbf{c}, s) \in \mathbf{G}_h(K) \times \mathbf{V}_h(K) \times \mathbf{Q}_h(K) \times \mathbf{H}_h(K) \times \mathbf{C}_h(K) \times \mathbf{S}_h(K)$
 299 and for all $K \in \Omega_h$, where quantities with subscript h are the discrete counterparts
 300 of the continuous ones, for example, \mathbf{u}_h and \mathbf{L}_h are the discrete approximations of \mathbf{u}
 301 and \mathbf{L} .

302 Since $\hat{\mathbf{u}}$, \hat{p} , $\hat{\mathbf{b}}$, and \hat{r} are facet unknowns introduced in addition to the original
 303 unknowns, we need to equip extra equations to make the system (3.7) well-posed. To
 304 that end, we observe that an element K communicates with its neighbors only through
 305 the trace unknowns. For the E-HDG method to be conservative, we weakly enforce
 306 the continuity of the numerical flux (3.5) across each interior edge. Since $\hat{\mathbf{u}}_h$ and $\hat{\mathbf{b}}_h$
 307 are single-valued on \mathcal{E}_h , we automatically have that $\llbracket \hat{\mathbf{F}}_h^1 \cdot \mathbf{n} \rrbracket = \mathbf{0}$ and $\llbracket \hat{\mathbf{F}}_h^4 \cdot \mathbf{n} \rrbracket = \mathbf{0}$.
 308 The conservation constraints to be enforced are reduced to

$$(3.8) \quad \begin{aligned} \left\langle \llbracket \hat{\mathbf{F}}_h^2 \cdot \mathbf{n} \rrbracket, \boldsymbol{\mu} \right\rangle_e &= 0, & \left\langle \llbracket \hat{\mathbf{F}}_h^3 \cdot \mathbf{n} \rrbracket, \rho \right\rangle_e &= 0, \\ \left\langle \llbracket \hat{\mathbf{F}}_h^5 \cdot \mathbf{n} \rrbracket, \boldsymbol{\lambda} \right\rangle_e &= 0, & \left\langle \llbracket \hat{\mathbf{F}}_h^6 \cdot \mathbf{n} \rrbracket, \gamma \right\rangle_e &= 0, \end{aligned}$$

310 for all $(\boldsymbol{\mu}, \rho, \boldsymbol{\lambda}, \gamma) \in \mathbf{M}_h(e) \times \mathbf{P}_h(e) \times \boldsymbol{\Lambda}_h(e) \times \boldsymbol{\Gamma}_h(e)$, and for all e in \mathcal{E}_h^∂ . Furthermore,
 311 the following constraint on the domain boundary is required in order to establish the
 312 well-posedness of our HDG formulations:

$$(3.9) \quad \langle \hat{\mathbf{u}}_h \cdot \mathbf{n}, \rho \rangle_e = \langle \mathbf{u}_h \cdot \mathbf{n}, \rho \rangle_e,$$

314 for all $\rho \in \mathbf{P}_h(e)$ for all e in \mathcal{E}_h^∂ . This constraint means that we weakly enforce $\hat{\mathbf{u}}_h \cdot \mathbf{n} =$
 315 $\mathbf{u}_h \cdot \mathbf{n}$ on the boundary, and is also used in [66, 84, 86] where hybridized IPDG methods
 316 are developed for solving the incompressible Navier-Stokes equations. Finally, we
 317 enforce the Dirichlet boundary conditions weakly through the facet unknowns:

$$(3.10) \quad \langle \hat{\mathbf{u}}_h, \boldsymbol{\mu} \rangle_e = \langle \mathbf{u}_D, \boldsymbol{\mu} \rangle_e, \quad \langle \hat{\mathbf{b}}_h, \boldsymbol{\lambda} \rangle_e = \langle \mathbf{b}_D, \boldsymbol{\lambda} \rangle_e, \quad \langle \hat{r}_h, \gamma \rangle_e = 0,$$

319 for all $(\boldsymbol{\mu}, \boldsymbol{\lambda}, \gamma) \in \mathbf{M}_h(e) \times \boldsymbol{\Lambda}_h(e) \times \boldsymbol{\Gamma}_h(e)$ for all e in \mathcal{E}_h^∂ . In Eq. (3.7)-(3.10) we
 320 seek $(\mathbf{L}_h, \mathbf{u}_h, p_h, \mathbf{J}_h, \mathbf{b}_h, r_h) \in \mathbf{G}_h \times \mathbf{V}_h \times \mathbf{Q}_h \times \mathbf{H}_h \times \mathbf{C}_h \times \mathbf{S}_h$ and $(\hat{\mathbf{u}}_h, \hat{p}_h, \hat{\mathbf{b}}_h, \hat{r}_h) \in$
 321 $\mathbf{M}_h \times \mathbf{P}_h \times \boldsymbol{\Lambda}_h \times \boldsymbol{\Gamma}_h$. For simplicity, we will not state explicitly that equations hold
 322 for all test functions, for all elements, or for all edges.

323 We will refer to $\mathbf{L}_h, \mathbf{u}_h, p_h, \mathbf{J}_h, \mathbf{b}_h$, and r_h as the *local variables*, and to equation
 324 (3.7) on each element as the *local solver*. This reflects the fact that we can solve for
 325 local variables element-by-element as functions of $\hat{\mathbf{u}}_h, \hat{p}_h, \hat{\mathbf{b}}_h$, and \hat{r}_h . On the other
 326 hand, we will refer to $\hat{\mathbf{u}}_h, \hat{p}_h, \hat{\mathbf{b}}_h$, and \hat{r}_h as the *global variables*, which are governed
 327 by equations (3.8), (3.10), and (3.9) on the mesh skeleton. For the uniqueness of the
 328 discrete pressure p_h , we enforce the discrete counterpart of (3.4):

$$(3.11) \quad (p_h, 1) = 0.$$

331 **3.1. Well-posedness of the E-HDG formulation.** In this subsection, we
 332 discuss the well-posedness of (3.7)–(3.11). We would like to point out that the result
 333 presented in this subsection is also valid for the proposed HDG version in [Remark 1](#).

334 **THEOREM 3.1.** *Let Ω be simply connected with one component to $\partial\Omega$. Let $\alpha_1, \beta_1,$
 335 $\beta_2 \in \mathbb{R}$ such that $\alpha_1 > \frac{1}{2} \|\mathbf{w}\|_{L^\infty(\Omega)}$ and $\beta_1 \mathbf{T} + \beta_2 \mathbf{N} > 0$. The system (3.7)–(3.11) is
 336 well-posed, in the sense that given $\mathbf{f}, \mathbf{g}, \mathbf{u}_D$, and \mathbf{h}_D , there exists a unique solution
 337 $(\mathbf{L}_h, \mathbf{u}_h, p_h, \mathbf{J}_h, \mathbf{b}_h, r_h, \hat{\mathbf{u}}_h, \hat{p}_h, \hat{\mathbf{b}}_h, \hat{r}_h)$.*

338 *Proof.* (3.7)–(3.11) has the same number of equations and unknowns, so it is
 339 enough to show that $(\mathbf{g}, \mathbf{f}, \mathbf{u}_D, \mathbf{b}_D) = \mathbf{0}$ implies $(\mathbf{L}_h, \mathbf{u}_h, p_h, \mathbf{J}_h, \mathbf{b}_h, r_h, \hat{\mathbf{u}}_h, \hat{p}_h, \hat{\mathbf{b}}_h, \hat{r}_h) = \mathbf{0}$.
 340 To begin, we take $(\mathbf{G}, \mathbf{v}, q, \mathbf{J}, \mathbf{c}, s) = (\mathbf{L}_h, \mathbf{u}_h, p_h, \mathbf{J}_h, \mathbf{b}_h, r_h)$, integrate by parts the
 341 first four terms of (3.7b) and the first term of (3.7e), sum the resulting equations in

342 (3.7), and sum over all elements to arrive at

$$\begin{aligned}
 343 \quad & \text{Re} \|\mathbf{L}_h\|_0^2 + \frac{\text{Rm}}{\kappa} \|\mathbf{J}_h\|_0^2 - \langle \hat{\mathbf{u}}_h \otimes \mathbf{n}, \mathbf{L}_h \rangle + \left\langle \frac{m}{2} \mathbf{u}_h, \mathbf{u}_h \right\rangle + \langle \alpha_1 (\mathbf{u}_h - \hat{\mathbf{u}}_h), \mathbf{u}_h \rangle \\
 344 \quad (3.12) \quad & + \langle \hat{p}_h \mathbf{n}, \mathbf{u}_h \rangle + \left\langle \frac{1}{2} \kappa \mathbf{d} \times (\mathbf{n} \times \hat{\mathbf{b}}_h), \mathbf{u}_h \right\rangle - \left\langle \mathbf{n} \times \hat{\mathbf{b}}_h, \mathbf{J}_h \right\rangle + \langle \hat{r}_h \mathbf{n}, \mathbf{b}_h \rangle \\
 345 \quad & + \left\langle (\beta_1 \mathbf{T} + \beta_2 \mathbf{N}) (\mathbf{b}_h - \hat{\mathbf{b}}_h), \mathbf{b}_h \right\rangle - \left\langle \frac{1}{2} \kappa \mathbf{n} \times (\hat{\mathbf{u}}_h \times \mathbf{d}), \mathbf{b}_h \right\rangle = 0,
 346
 \end{aligned}$$

347 where we have used $\nabla \cdot \mathbf{w} = 0$ and the following integration by parts identities:

$$348 \quad -(\mathbf{u}_h, \mathbf{w} \cdot \nabla \mathbf{u}_h)_K = -\frac{1}{2} (\mathbf{w}, \nabla(\mathbf{u}_h \cdot \mathbf{u}_h))_K = -\left\langle \frac{m}{2} \mathbf{u}_h, \mathbf{u}_h \right\rangle_{\partial K}.
 349$$

350 Next, setting $(\boldsymbol{\mu}, \rho, \boldsymbol{\lambda}, \gamma) = (\hat{\mathbf{u}}_h, \hat{p}_h, \hat{\mathbf{b}}_h, \hat{r}_h)$, and summing (3.8) over all interior edges
351 give

$$\begin{aligned}
 352 \quad & \left\langle -\mathbf{L}_h \mathbf{n} + m \mathbf{u}_h + \hat{p}_h \mathbf{n} + \frac{1}{2} \kappa \mathbf{d} \times (\mathbf{n} \times \mathbf{b}_h) + \alpha_1 (\mathbf{u}_h - \hat{\mathbf{u}}_h), \hat{\mathbf{u}}_h \right\rangle_{\partial \Omega_h \setminus \partial \Omega} \\
 353 \quad & + \langle \mathbf{u}_h \cdot \mathbf{n}, \hat{p}_h \rangle_{\partial \Omega_h \setminus \partial \Omega} \\
 354 \quad (3.13) \quad & + \left\langle \mathbf{n} \times \mathbf{J}_h + \hat{r}_h \mathbf{n} - \frac{1}{2} \kappa \mathbf{n} \times (\mathbf{u}_h \times \mathbf{d}) + (\beta_1 \mathbf{T} + \beta_2 \mathbf{N}) (\mathbf{b}_h - \hat{\mathbf{b}}_h), \hat{\mathbf{b}}_h \right\rangle_{\partial \Omega_h \setminus \partial \Omega} \\
 355 \quad & + \langle \mathbf{b}_h \cdot \mathbf{n}, \hat{r}_h \rangle_{\partial \Omega_h \setminus \partial \Omega} = 0,
 356
 \end{aligned}$$

357 where we used the continuity of \mathbf{d} and the single-valued nature across the element
358 boundaries of global variables to eliminate $\langle \mathbf{d} \times (\mathbf{n} \times \hat{\mathbf{b}}_h), \hat{\mathbf{u}}_h \rangle_{\partial \Omega_h \setminus \partial \Omega}$ and $\langle \mathbf{n} \times (\hat{\mathbf{u}}_h \times \mathbf{d}), \hat{\mathbf{b}}_h \rangle_{\partial \Omega_h \setminus \partial \Omega}$. \blacksquare

359 Since $\mathbf{u}_D = \mathbf{0}$ and $\mathbf{b}_D = \mathbf{0}$ by assumption, we conclude from the boundary
360 conditions (3.10) that $\hat{\mathbf{u}}_h = \mathbf{0}$, $\hat{\mathbf{b}}_h = \mathbf{0}$, and $\hat{r}_h = 0$ on $\partial \Omega$. In addition, from the
361 constraint (3.9) we also have $\langle \mathbf{u}_h \cdot \mathbf{n}, \hat{p}_h \rangle_e = \langle \hat{\mathbf{u}}_h \cdot \mathbf{n}, \hat{p}_h \rangle_e$ on the boundary and hence
362 $\langle \mathbf{u}_h \cdot \mathbf{n}, \hat{p}_h \rangle_{\partial \Omega} = 0$. Subtracting (3.13) from (3.12) and using the fact that $\hat{\mathbf{u}}_h, \hat{\mathbf{b}}_h, \hat{r}_h$,
363 and $\langle \mathbf{u}_h \cdot \mathbf{n}, \hat{p}_h \rangle_{\partial \Omega}$ vanish on the physical boundary $\partial \Omega$, we arrive at

$$\begin{aligned}
 364 \quad (3.14) \quad & \text{Re} \|\mathbf{L}_h\|_0^2 + \frac{\text{Rm}}{\kappa} \|\mathbf{J}_h\|_0^2 + \langle \alpha_1 (\mathbf{u}_h - \hat{\mathbf{u}}_h), (\mathbf{u}_h - \hat{\mathbf{u}}_h) \rangle + \left\langle \frac{m}{2} \mathbf{u}_h, \mathbf{u}_h \right\rangle \\
 365 \quad & - \langle m \mathbf{u}_h, \hat{\mathbf{u}}_h \rangle + \left\langle (\beta_1 \mathbf{T} + \beta_2 \mathbf{N}) (\mathbf{b}_h - \hat{\mathbf{b}}_h), \mathbf{b}_h - \hat{\mathbf{b}}_h \right\rangle = 0.
 366
 \end{aligned}$$

367 Finally, using the fact that $\mathbf{w} \in H(\text{div}, \Omega)$ and $\hat{\mathbf{u}}_h = \mathbf{0}$ on $\partial \Omega$, we can freely add
368 $0 = \langle \frac{m}{2} \hat{\mathbf{u}}_h, \hat{\mathbf{u}}_h \rangle$ to rewrite (3.14) as

$$\begin{aligned}
 369 \quad (3.15) \quad & \text{Re} \|\mathbf{L}_h\|_0^2 + \frac{\text{Rm}}{\kappa} \|\mathbf{J}_h\|_0^2 + \left\langle \left(\alpha_1 + \frac{m}{2} \right) (\mathbf{u}_h - \hat{\mathbf{u}}_h), (\mathbf{u}_h - \hat{\mathbf{u}}_h) \right\rangle \\
 370 \quad & + \left\langle (\beta_1 \mathbf{T} + \beta_2 \mathbf{N}) (\mathbf{b}_h - \hat{\mathbf{b}}_h), \mathbf{b}_h - \hat{\mathbf{b}}_h \right\rangle = 0.
 371
 \end{aligned}$$

372 Recalling $\alpha_1 > \frac{1}{2} \|\mathbf{w}\|_{L^\infty}$ and $\beta_1 \mathbf{T} + \beta_2 \mathbf{N} > 0$, we can conclude that $\mathbf{L}_h = \mathbf{0}$, $\mathbf{J}_h = \mathbf{0}$,
373 that $\mathbf{u}_h = \hat{\mathbf{u}}_h$, and $\mathbf{b}_h = \hat{\mathbf{b}}_h$ on \mathcal{E}_h .

374 Now, we integrate (3.7a) by parts to obtain $\nabla \mathbf{u}_h = \mathbf{0}$ in K , which implies that
375 \mathbf{u}_h is element-wise constant. The fact that $\mathbf{u}_h = \hat{\mathbf{u}}_h$ on \mathcal{E}_h means \mathbf{u}_h is continuous
376 across \mathcal{E}_h . Since $\mathbf{u}_h = \mathbf{0}$ on $\partial \Omega$, we conclude that $\mathbf{u}_h = \mathbf{0}$ and therefore $\hat{\mathbf{u}}_h = \mathbf{0}$.

377 Since $\mathbf{b}_h = \hat{\mathbf{b}}_h$ on \mathcal{E}_h , \mathbf{b}_h is continuous on Ω . Integrating both (3.7d) and (3.7f) by
 378 parts, we have $\nabla \times \mathbf{b}_h = \mathbf{0}$ and $\nabla \cdot \mathbf{b}_h = 0$ on Ω . When $\mathbf{b}_h \in H(\text{div}, \Omega) \cap H(\text{curl}, \Omega)$
 379 and $\mathbf{b}_h = \mathbf{0}$ on $\partial\Omega$, and recalling that Ω is simply connected with one component to
 380 the boundary, there is a constant $C > 0$ such that $\|\mathbf{b}_h\|_0 \leq C(\|\nabla \cdot \mathbf{b}_h\|_0 + \|\nabla \times \mathbf{b}_h\|_0)$
 381 [46, Lemma 3.4]. This implies that $\mathbf{b}_h = \mathbf{0}$, and hence $\hat{\mathbf{b}}_h = \mathbf{0}$.

382 Taking account of the vanishing variables we had discussed, integrating by parts
 383 reduces (3.7b) and (3.7e) to:

384 (3.16)
$$(\nabla p_h, \mathbf{v})_K - \langle (p_h - \hat{p}_h) \mathbf{n}, \mathbf{v} \rangle_{\partial K} = 0,$$

385 and

386 (3.17)
$$(\nabla r_h, \mathbf{c})_K - \langle (r_h - \hat{r}_h) \mathbf{n}, \mathbf{c} \rangle_{\partial K} = 0,$$

387 respectively. Given that $p_h|_K, r_h|_K \in \mathcal{P}_{k-1}(K)$ and a simplicial mesh is used, we can
 388 invoke the argument of Nédélec space to conclude that $p_h = \hat{p}_h$ and $r_h = \hat{r}_h$ on ∂K
 389 (Proposition 4.6 in [85]). This implies that $(\nabla p_h, \mathbf{v})_K = 0$ and $(\nabla r_h, \mathbf{c})_K = 0$. Thus,
 390 p_h and r_h are elementwise constants. Since $r_h = \hat{r}_h$ on \mathcal{E}_h^o , then r_h is continuous on
 391 Ω , and since $r_h = 0$ on $\partial\Omega$, we can conclude that $r_h = 0$, and hence $\hat{r}_h = 0$. Finally,
 392 we use the result $p_h = \hat{p}_h$ on \mathcal{E}_h^o to conclude that p_h is continuous and a constant on
 393 Ω . Using the zero-average condition (3.11) yields $p_h = 0$ and hence $\hat{p}_h = 0$. \square

394 **3.2. Well-posedness of the local solver.** A key advantage of HDG or E-HDG
 395 methods is the decoupling computation of the local variables $(\mathbf{L}_h, \mathbf{u}_h, p_h, \mathbf{J}_h, \mathbf{b}_h, r_h)$
 396 and the global variables $(\hat{\mathbf{u}}_h, \hat{p}_h, \hat{\mathbf{b}}_h, \hat{r}_h)$. In our E-HDG scheme, we first solve (3.7) for
 397 local unknowns $(\mathbf{L}_h, \mathbf{u}_h, p_h, \mathbf{J}_h, \mathbf{b}_h, r_h)$ as a function of $(\hat{\mathbf{u}}_h, \hat{p}_h, \hat{\mathbf{b}}_h, \hat{r}_h)$ (local solver),
 398 then these are substituted into (3.8) on the mesh skeleton to solve for the unknowns
 399 $(\hat{\mathbf{u}}_h, \hat{p}_h, \hat{\mathbf{b}}_h, \hat{r}_h)$ (global solver). Finally, $(\mathbf{L}_h, \mathbf{u}_h, p_h, \mathbf{J}_h, \mathbf{b}_h, r_h)$ are computed with the
 400 local solver using $(\hat{\mathbf{u}}_h, \hat{p}_h, \hat{\mathbf{b}}_h, \hat{r}_h)$, so well-posedness of the local solver is essential. It
 401 should be emphasized again that the result presented in this subsection is also valid
 402 for the HDG version in Remark 1.

403 **THEOREM 3.2.** *Let $\alpha_1, \beta_1, \beta_2 \in \mathbb{R}$ such that $\alpha_1 > \frac{1}{2} \|\mathbf{w}\|_{L^\infty(\Omega)}$ and $\beta_1 \mathbf{T} + \beta_2 \mathbf{N} >$
 404 0. The local solver given by (3.7) is well-posed. In other words, given $(\hat{\mathbf{u}}_h, \hat{p}_h, \hat{\mathbf{b}}_h, \hat{r}_h, \mathbf{g},$
 405 $\mathbf{f}, \rho_h)$, there exists a unique solution $(\mathbf{L}_h, \mathbf{u}_h, p_h, \mathbf{J}_h, \mathbf{b}_h, r_h)$ of the system.*

406 *Proof.* We show that $(\hat{\mathbf{u}}_h, \hat{p}_h, \hat{\mathbf{b}}_h, \hat{r}_h, \mathbf{g}, \mathbf{f}, \rho_h) = \mathbf{0}$ implies $(\mathbf{L}_h, \mathbf{u}_h, p_h, \mathbf{J}_h, \mathbf{b}_h, r_h) = \mathbf{0}$. \blacksquare
 407 To begin, set $(\hat{\mathbf{u}}_h, \hat{p}_h, \hat{\mathbf{b}}_h, \hat{r}_h, \mathbf{g}, \mathbf{f}, \rho_h) = \mathbf{0}$. Take $(\mathbf{G}, \mathbf{v}, q, \mathbf{J}, \mathbf{c}, s) = (\mathbf{L}_h, \mathbf{u}_h, p_h, \mathbf{J}_h, \mathbf{b}_h, r_h)$,
 408 integrate by parts the first four terms in (3.7b) and the first term in (3.7e), and sum
 409 the resulting equations to get

410 (3.18)
$$\begin{aligned} \text{Re} \|\mathbf{L}_h\|_{0,K}^2 + \left\langle \left(\alpha_1 + \frac{m}{2} \right) \mathbf{u}_h, \mathbf{u}_h \right\rangle_{\partial K} \\ + \frac{\text{Rm}}{\kappa} \|\mathbf{J}_h\|_{0,K}^2 + \langle (\beta_1 \mathbf{T} + \beta_2 \mathbf{N}) \mathbf{b}_h, \mathbf{b}_h \rangle_{\partial K} = 0. \end{aligned}$$

413 Recalling $\alpha_1 > \frac{1}{2} \|\mathbf{w}\|_{L^\infty}$ and $\beta_1 \mathbf{T} + \beta_2 \mathbf{N} > 0$, we can yield

414
$$\mathbf{L}_h = \mathbf{0}, \quad \mathbf{J}_h = \mathbf{0}, \quad \text{in } K; \quad \mathbf{u}_h = \mathbf{0}, \quad \mathbf{b}_h = \mathbf{0}, \quad \text{on } \partial K.$$

416 Using an argument similar to that in Section 3.1 we can conclude $\mathbf{u}_h = \mathbf{b}_h = \mathbf{0}$ in K .
 417 From (3.7b) and (3.7e), we have:

418 (3.19)
$$-(p_h, \nabla \cdot \mathbf{v})_K = 0, \quad \forall \mathbf{v} \in \mathbf{V}_h(K),$$

419 and

420 (3.20) $-(r_h, \nabla \cdot \mathbf{c})_K = 0, \quad \forall \mathbf{c} \in \mathbf{C}_h(K),$

421 respectively. Since the space $\{q : q = \nabla \cdot \mathbf{v}, \forall \mathbf{v} \in \mathbf{V}_h(K)\} \supseteq \mathbf{Q}_h(K)$ and
422 $\{s : s = \nabla \cdot \mathbf{c}, \forall \mathbf{c} \in \mathbf{C}_h(K)\} \supseteq \mathbf{S}_h(K)$, we can pick $\nabla \cdot \mathbf{v} = p_h$ and $\nabla \cdot \mathbf{c} = r_h$ and
423 conclude that $p_h = r_h = 0$ in K . \square

424 **3.3. Conservation properties of the E-HDG method.** In this section, we
425 prove that our method is divergence-free and $H(div)$ -conforming for both velocity
426 (i.e., the exactness of mass conservation) and magnetic (i.e., the absence of magnetic
427 monopoles) fields. Same conclusions can be drawn for the HDG version in [Remark 1](#).
428 It is worth mentioning that in this work a simplicial mesh is assumed to be used. In
429 fact, the proofs of propositions presented in this section are only valid for a straight-
430 sided mesh.

431 **PROPOSITION 1** (divergence-free property and $H(div)$ -conformity for the veloc-
432 ity field). *Let $\mathbf{u}_h \in \mathbf{V}_h$ and $\hat{\mathbf{u}}_h \in \mathbf{M}_h$ be the solution to the proposed E-HDG
433 discretization (3.7)-(3.11), then*

434 (3.21a) $\nabla \cdot (\mathbf{u}_h|_K) = 0, \quad \forall K \in \Omega_h;$
435 (3.21b) $[\![\mathbf{u}_h \cdot \mathbf{n}]\!]_e = 0, \quad \forall e \in \mathcal{E}_h^o.$
436 (3.21c) $\mathbf{u}_h \cdot \mathbf{n} = \hat{\mathbf{u}}_h \cdot \mathbf{n}, \quad \text{on } e \text{ and } \forall e \in \mathcal{E}_h^\partial.$

438 *Proof.* Apply integration-by-parts to Eq. (3.7c):

439 (3.22) $(\nabla \cdot (\mathbf{u}_h|_K), q)_K = 0, \quad \forall q \in \mathbf{Q}_h(K), \forall K \in \Omega_h.$

440 Since $\nabla \cdot (\mathbf{u}_h|_K) \in \mathbf{Q}_h(K)$, we can take $q = \nabla \cdot (\mathbf{u}_h|_K)$, yielding $\|\nabla \cdot (\mathbf{u}_h|_K)\|_{0,K}^2 = 0$,
441 which implies that $\nabla \cdot (\mathbf{u}_h|_K) = 0$ for all $K \in \Omega_h$. It follows from Eq. (3.8) that:

442 (3.23) $\langle [\![\hat{\mathbf{F}}_h^3 \cdot \mathbf{n}]\!], \rho \rangle_e = \langle [\![\mathbf{u}_h \cdot \mathbf{n}]\!], \rho \rangle_e = 0, \quad \forall \rho \in \mathbf{P}_h(e), \forall e \in \mathcal{E}_h^o.$

443 Since $[\![\mathbf{u}_h \cdot \mathbf{n}]\!]_e \in \mathbf{P}_h(e)$ ³, we can take $\rho = [\![\mathbf{u}_h \cdot \mathbf{n}]\!]$, yielding $\|[\![\mathbf{u}_h \cdot \mathbf{n}]\!]\|_{0,e}^2 = 0$ for all
444 $e \in \mathcal{E}_h^o$. Thus, $[\![\mathbf{u}_h \cdot \mathbf{n}]\!]_e = 0$ for all $e \in \mathcal{E}_h^o$. The proof of Eq. (3.21c) follows the same
445 argument with the aid of Eq. (3.9). \square

446 **PROPOSITION 2** (divergence-free property and $H(div)$ -conformity for the mag-
447 netic field). *Let $\mathbf{b}_h \in \mathbf{C}_h$ and $\hat{\mathbf{b}}_h \in \mathbf{\Lambda}_h$ be the solution to the proposed E-HDG
448 discretization (3.7)-(3.11), then*

449 (3.24a) $\nabla \cdot (\mathbf{b}_h|_K) = 0, \quad \forall K \in \Omega_h;$
450 (3.24b) $[\![\mathbf{b}_h \cdot \mathbf{n}]\!]_e = 0, \quad \forall e \in \mathcal{E}_h^o.$

452 *Proof.* The result holds by directly following the similar argument as the proof of
453 [Proposition 1](#). \square

454 **REMARK 2.** *As can be seen, both [Propositions 1](#) and [2](#) also hold true for the
455 nonlinear case. That is, they are still valid if \mathbf{w} and \mathbf{d} are replaced by \mathbf{u}_h and \mathbf{b}_h in
456 (3.7)-(3.8).*

³Note that the statement $[\![\mathbf{u}_h \cdot \mathbf{n}]\!]_e \in \mathbf{P}_h(e)$ do not hold for a curve mesh since \mathbf{n} is not constant anymore.

457 **4. Numerical Results.** A nonlinear solver can be constructed through the em-
 458 ployment of the linear E-HDG (or HDG in [Remark 1](#)) scheme given by [\(3.7\)](#)–[\(3.11\)](#)
 459 in a Picard iteration. If we consider the linearized MHD equations [\(3.1\)](#) to be a lin-
 460 ear map $(\mathbf{w}, \mathbf{d}) \mapsto (\mathbf{u}, \mathbf{b})$, then any fixed point of that mapping is a solution to the
 461 nonlinear incompressible viso-resistive MHD equations [\(1.1\)](#). With this in mind, we
 462 can use the general linearized incompressible MHD E-HDG scheme [\(3.7\)](#)–[\(3.11\)](#) in an
 463 iterative manner to numerically solve the nonlinear incompressible MHD equations.
 464 The convergence of such an interaction is investigated in [\[77\]](#). Let the superscript
 465 denote an iteration number, we set the initial guess $\mathbf{u}_h^0 = \mathbf{0}$ and $\mathbf{b}_h^0 = \mathbf{0}$ and the
 466 stopping criterion

$$467 \quad (4.1) \quad TOL := \max \left\{ \frac{\|\mathbf{u}_h^i - \mathbf{u}_h^{i-1}\|_0}{\|\mathbf{u}_h^i\|_0}, \frac{\|\mathbf{b}_h^i - \mathbf{b}_h^{i-1}\|_0}{\|\mathbf{b}_h^i\|_0} \right\} < \varepsilon,$$

468 where ε is a user-defined tolerance. In particular, we take $\varepsilon = O(10^{-10})$ in all numer-
 469 ical experiments for the nonlinear examples.

470 In this section, a series of numerical experiments is presented to illustrate the
 471 capability of the E-HDG method in both linear and nonlinear scenarios. First, a
 472 comparison is drawn between the proposed HDG and E-HDG methods regarding
 473 the DOFs and the actual computational time (wall-clock time). Then the order of
 474 accuracy for the linear scheme is numerically investigated by applying the E-HDG
 475 method to two- and three-dimensional problems with smooth solutions. The conver-
 476 gence of a two-dimensional singular problem, defined on a nonconvex domain, is also
 477 presented. Moreover, the pressure-robustness of our method is numerically demon-
 478 strated by perturbing smooth manufactured solutions. Finally, the order of accuracy
 479 for the nonlinear solver, where the linear scheme is integrated into a Picard iteration,
 480 is studied through two- and three-dimensional problems featuring smooth solutions,
 481 including a stationary liquid duct flow in plasma physics and manufactured solutions.
 482 It should be emphasized that the divergence-free property and $H(\text{div})$ -conformity
 483 still obviously hold for our nonlinear solver and will be validated through numerical
 484 demonstrations.

485 Our methods—both HDG and E-HDG)—are implemented based on the Modular
 486 Finite Element Method (MFEM) library [\[4\]](#). Furthermore, we use the direct solver of
 487 MUMPS [\[2, 3\]](#) through PETSc [\[10, 9\]](#) to solve the systems of linear equations com-
 488 posed by the Schur complement (or static condensation) resulting from the discretiza-
 489 tion [\(3.7\)](#)–[\(3.11\)](#). In addition, we take stabilization parameters $\alpha_1 \in \{125, 1000\}$ and
 490 $\beta_1 = \beta_2 \in \{1, 100, 1000\}$. Although it is proved that the well-posedness of both
 491 local and global solvers can be guaranteed by the conditions $\alpha_1 > \frac{1}{2} \|\mathbf{w}\|_{L^\infty}$, and
 492 $\beta_1 \mathbf{T} + \beta_2 \mathbf{N} > 0$, we numerically found that small increments in the values of the sta-
 493 bilization parameters can improve the order of accuracy. However, large values (i.e.,
 494 $O(10^4)$ or larger) of the parameters can cause serious adverse effects in convergence.
 495 It could be caused by the increased stiffness (condition number).

496 REMARK 3. *In all numerical experiments, the physical parameters are given and*
 497 *comparisons of different values of the parameters are made in some cases to provide*
 498 *an insight into how robust our method is. Although our well-posedness analysis shows*
 499 *the stability of our methods regardless of what values of Re , Rm , and κ are, the solver*
 500 *will still be affected by these parameters which characterize the condition number of*
 501 *the linear system. It is worth emphasizing that the linear system to be solved is already*
 502 *near singular owing to the pressure variable (See Remark 5). Thus, it could be expected*
 503 *that the higher these values are, the harder the problem to be solved.*

504 REMARK 4. In this work, the auxiliary variables \mathbf{L}_h and \mathbf{J}_h can be locally eliminated through local Eq. (3.7a) and (3.7d), respectively. Since the numerical flux defined in (3.7a) only associates with a single global variable $\hat{\mathbf{u}}_h$, the local variable \mathbf{L}_h can be expressed by \mathbf{u}_h and $\hat{\mathbf{u}}_h$, thanks to the block diagonal structure endowed by the term $\text{Re}(\mathbf{L}_h, \mathbf{G})_K$. A similar procedure can also be followed to express \mathbf{J}_h by \mathbf{b}_h and $\hat{\mathbf{b}}_h$ with the help of Eq. (3.7d). Through the elimination, the assembly operation (construct the local Schur complement and allocate it to the global matrix) and reconstruction operation (solve for the local variables with the given global variables) can be computationally cheaper.

513 REMARK 5. Even though the well-posedness of the method is proved in Theorem
 514 3.1, the inclusion of the pressure constraint given in (3.11) is not straightforward to
 515 implement. Note that the discretization is ill-posed without the pressure constraint,
 516 and the local variable p_h and global variable \hat{p}_h can only be determined up to a constant.
 517 Such a singular system can still be handled by a Krylov type of iterative solver
 518 without encountering breakdowns [15, 36]. However, in order to use a direct solver,
 519 an additional treatment is necessary. In this paper, we restrict one DOF of the global
 520 variable \hat{p}_h to be zero such that both p_h and \hat{p}_h can be determined. Once the sys-
 521 tem is solved by the direct solver, we then enforce the pressure constraint (3.11) by
 522 post-processing.

523 REMARK 6. All L^∞ -norms are computed as the maximum norm of the function
 524 values evaluated on all elements using a set of quadrature points with the order of
 525 accuracy $2k + 3$.

526 **4.1. Computational Performance of the proposed HDG and E-HDG**
 527 **methods.** In this subsection, we discuss the computational costs of the HDG and the
 528 E-HDG methods in which the discretization is based on (3.7)-(3.11) but with different
 529 trace approximation spaces (see Remark 1). Table 4.1 summarizes the DOFs needed
 530 by the HDG and E-HDG methods, and Table 4.2 summarizes the corresponding
 531 computational time. The values presented in each cell of Table 4.2 denote the total
 532 wall-clock time spent by the entire process. This includes the three main tasks: the
 533 assembly (locally constructing the Schur complement and allocating it to the global
 534 matrix), the solution of the system of equations (obtaining the global variables), and
 535 the local reconstruction (recovering the local variables from the given global variables
 536 through the solution of the local equations (3.7)). The measurements are based on
 537 the average of five runs, with each run recording the maximal time among all MPI
 538 processes.

539 The reduction in DOFs becomes notably more pronounced for three-dimensional
 540 cases, particularly on finer meshes. For example, applying the E-HDG method with
 541 $k = 1$ on a mesh comprising 24576 elements results in a maximum DOF reduction
 542 of up to 72.58%. This reduction is directly reflected in the computational time, see
 543 Table 4.2, where a 47.74% saving in total computational time is achieved. The ef-
 544 ficiency of the E-HDG method is further illustrated in Figure 4.1 by comparing its
 545 accuracy and computational time with the HDG method for $k = 1, 2$ ⁴ in the context of
 546 three-dimensional cases. However, on coarser meshes, despite substantial reductions
 547 in DOFs, the corresponding savings in computational time are limited (perhaps due
 548 to the efficiency of MUMPS [2, 3]). This discrepancy can be explained through Table

⁴The $k = 3, 4$ is not included since both approaches have similar efficiency if the mesh consisting of 3072 elements is used. In addition, the HDG method is not applicable with the MUMPS solver when the mesh is refined further owing to insufficient memory.

549 **4.3** and Table **4.4**. The former delineates the wall-clock time spent by the linear solver,
 550 while the latter encapsulates the times allocated to the assembly and the local recon-
 551 struction tasks. Analysis of Table **4.4** reveals that the times devoted to assembly and
 552 local reconstruction remain similar for both methods irrespective of mesh refinement,
 553 approximation degree, or dimension. On the other hand, the reduction trend in total
 554 computational time presented in Table **4.2** aligns closely with the computational time
 555 required by the linear solver detailed in Table **4.3**. This alignment suggests that the
 556 advantage of downsizing DOFs may become more substantial when the linear solver
 557 time dominates the overall computational time. In essence, while reducing DOFs
 558 may not significantly impact the assembly and reconstruction times for the HDG and
 559 E-HDG methods, it notably enhances the efficiency of the linear solver in the E-HDG
 560 method for larger problems.

561 In addition to the reduction on computational time, reducing DOFs also adds
 562 advantages in memory management and this can be seen in Table **4.2**. On the three-
 563 dimensional mesh consisting of 24576 elements, the linear solver fails when using the
 564 HDG methods along with $k = 3$ and $k = 4$ due to insufficient memory⁵. In contrast,
 565 such challenges can be overcome by using the E-HDG method, where the linear solver
 566 remains operational under identical circumstances.

Two-dimensions					Three-dimensions				
DOFs used in the HDG method					DOFs used in the HDG method				
elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$	elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$
2	60	90	120	150	6	432	864	1.44E+03	2.16E+03
8	192	288	384	480	48	2.88E+03	5.76E+03	9.60E+03	1.44E+04
32	672	1.01E+03	1.34E+03	1.68E+03	364	2.07E+04	4.15E+04	6.91E+04	1.04E+05
128	2.50E+03	3.74E+03	4.99E+03	6.24E+03	3072	1.57E+05	3.13E+05	5.22E+05	7.83E+05
512	9.60E+03	1.44E+04	1.92E+04	2.40E+04	24576	1.22E+06	2.43E+06	4.06E+06	6.08E+06
DOFs used in the E-HDG method					DOFs used in the E-HDG method				
elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$	elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$
2	36	66	96	126	6	156	378	744	1.25E+03
8	100	196	292	388	48	882	2.19E+03	4.46E+03	7.69E+03
32	324	660	996	1.33E+03	364	5.93E+03	1.47E+04	3.05E+04	5.31E+04
128	1.16E+03	2.40E+03	3.65E+03	4.90E+03	3072	4.35E+04	1.08E+05	2.24E+05	3.93E+05
512	4.36E+03	9.16E+03	1.40E+04	1.88E+04	24576	3.34E+05	8.24E+05	1.72E+06	3.02E+06
Percentage of reduction in DOFs (%)					Percentage of reduction in DOFs (%)				
elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$	elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$
2	-40.00	-26.67	-20.00	-16.00	6	-63.89	-56.25	-48.33	-41.94
8	-47.92	-31.94	-23.96	-19.17	48	-69.38	-61.98	-53.56	-46.62
32	-51.79	-34.52	-25.89	-20.71	364	-71.38	-64.45	-55.93	-48.79
128	-53.69	-35.79	-26.84	-21.47	3072	-72.21	-65.59	-57.05	-49.83
512	-54.62	-36.42	-27.31	-21.85	24576	-72.58	-66.14	-57.59	-50.33

Table 4.1: The summary of DOFs used in E-HDG and HDG discretizations given by (3.7)-(3.11). Note that k denotes the degree of approximation and “elem. #” indicates the number of elements used in a given mesh.

567 **4.2. Linear examples.** A series of linear numerical experiments is carried out
 568 to verify our method in this subsection. We first analyze the accuracy and the conver-
 569 gence in two dimensions for the case of a smooth manufactured solution. In addition,
 570 the pressure robustness of our method is also tested. We then analyze the accuracy
 571 and convergence for a singular manufactured solution. Finally, we perform the analy-
 572 sis of the accuracy, convergence, and pressure robustness for a smooth manufactured

⁵Such breakdown can be avoided by using an iterative solver. However, the design of a preconditioned iterative solver is beyond the scope of this paper, and hence we will pursue this in our future work (see also our previous work in [77]).

Two-dimensions					Three-dimensions				
Total number of MPI processes					Total number of MPI processes				
elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$	elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$
2	1	1	1	1	6	1	1	1	2
8	1	1	1	1	48	1	2	2	2
32	2	2	2	2	364	2	4	4	8
128	2	2	2	2	3072	2	8	8	16
512	4	4	4	4	24576	4	16	16	32
Total wall-clock time by the HDG method (sec)					Total wall-clock time by the HDG method (sec)				
elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$	elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$
2	0.02	0.03	0.07	0.18	6	0.17	1.81	11.06	25.04
8	0.03	0.09	0.25	0.69	48	1.17	7.04	44.79	197.09
32	0.05	0.18	0.50	1.39	364	4.96	29.47	182.88	412.77
128	0.15	0.67	1.98	5.54	3072	43.90	127.43	783.20	1726.52
512	0.31	1.39	4.01	11.29	24576	303.48	879.87	-	-
Total wall-clock time by the E-HDG method (sec)					Total wall-clock time by the E-HDG method (sec)				
elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$	elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$
2	0.01	0.03	0.07	0.18	6	0.16	1.77	11.03	25.05
8	0.02	0.09	0.25	0.69	48	1.14	6.93	45.03	198.85
32	0.05	0.18	0.50	1.39	364	4.65	28.49	182.44	404.38
128	0.14	0.66	1.96	5.51	3072	37.91	117.19	739.76	1650.05
512	0.27	1.36	3.98	11.21	24576	158.59	522.89	3341.03	7473.77
Reduction in total computational time (%)					Reduction in total computational time (%)				
elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$	elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$
2	-50.00	0.00	0.00	0.00	6	-5.88	-2.21	-0.27	0.04
8	-33.33	0.00	0.00	0.00	48	-2.56	-1.56	0.54	0.89
32	0.00	0.00	0.00	0.00	364	-6.25	-3.33	-0.24	-2.03
128	-6.67	-1.49	-1.01	-0.54	3072	-13.64	-8.04	-5.55	-4.43
512	-12.90	-2.16	-0.75	-0.71	24576	-47.74	-40.57	-	-

Table 4.2: The summary of total computational time (the averaged maximum of wall-clock time over five runs of identical setting, among all MPI processes) taken by E-HDG and HDG methods to solve two- and three-dimensional problems with the discretization given in (3.7)-(3.11). The two-dimensional problem is the one presented in Section 4.2.1 with $Re = Rm = 1$ and the three-dimensional problem is the one presented in Section 4.2.3 with $Re = Rm = 1$. Note that k denotes the degree of approximation and “elem. #” indicates the number of elements used in a given mesh.

573 solution in three dimensions.

574 **4.2.1. Two-dimensional smooth manufactured solution.** This example il-
575 lustrates the convergence of the E-HDG scheme applied to a problem posed on the
576 square domain $\Omega = (0, 1) \times (0, 1)$. In particular, the two-dimensional manufactured
577 vortex solution considered in [47] is adopted. We take $Re = Rm \in \{1, 1000\}$ and
578 $\kappa = 1$, and set \mathbf{g} and \mathbf{f} such that the manufactured solution for (3.2)-(3.4) is

579 (4.2a)
$$\mathbf{u} = \begin{pmatrix} -2x^2e^x(-y^2 + y)(2y - 1)(x - 1)^2 \\ -xy^2e^x(x(x + 3) - 2)(x - 1)(y - 1)^2 \end{pmatrix},$$

580 (4.2b)
$$\mathbf{b} = \begin{pmatrix} -2x^2e^x(-y^2 + y)(2y - 1)(x - 1)^2 \\ -xy^2e^x(x(x + 3) - 2)(x - 1)(y - 1)^2 \end{pmatrix},$$

581 (4.2c)
$$p = p_0 \sin(\pi x) \sin(\pi y),$$

582 (4.2d)
$$r = 0,$$

584 with the prescribed fields $\mathbf{w} = \mathbf{u}$ and $\mathbf{d} = \mathbf{b}$, and a constant p_0 . Table 4.5 shows
585 the convergence rates for each local variable and the L^∞ -norm of the divergence

Two-dimensions					Three-dimensions				
elem. #	Total number of MPI processes				elem. #	Total number of MPI processes			
	$k = 1$	$k = 2$	$k = 3$	$k = 4$		$k = 1$	$k = 2$	$k = 3$	$k = 4$
2	1	1	1	1	6	1	1	1	2
8	1	1	1	1	48	1	2	2	2
32	2	2	2	2	364	2	4	4	8
128	2	2	2	2	3072	2	8	8	16
512	4	4	4	4	24576	4	16	16	32

Wall-clock time of linear solver in the HDG method (sec)					Wall-clock time of linear solver in the HDG method (sec)				
elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$	elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$
	0.01	0.01	0.01	0.01		0.01	0.05	0.11	0.42
2	0.01	0.01	0.01	0.01	48	0.04	0.13	0.83	0.98
8	0.01	0.01	0.01	0.01	364	0.41	1.26	3.51	5.93
32	0.01	0.02	0.02	0.02	3072	7.32	14.9	61.91	106.37
128	0.03	0.04	0.06	0.09	24576	156.51	419.73	-	-
512	0.06	0.11	0.17	0.25					

Wall-clock time of linear solver in the E-HDG method (sec)					Wall-clock time of linear solver in the E-HDG method (sec)				
elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$	elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$
	0.01	0.01	0.01	0.01		0.01	0.03	0.09	0.17
2	0.01	0.01	0.01	0.01	48	0.02	0.07	1.2	0.55
8	0.01	0.01	0.01	0.01	364	0.09	0.41	1.17	2.75
32	0.01	0.01	0.02	0.02	3072	0.97	3.52	16.48	37.67
128	0.02	0.03	0.05	0.07	24576	13.08	66.88	414.78	940.11
512	0.03	0.08	0.13	0.20					

Reduction in computational time of linear solver (%)					Reduction in computational time of linear solver (%)				
elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$	elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$
	0.00	0.00	0.00	0.00		0.00	-40.00	-18.18	-59.52
2	0.00	0.00	0.00	0.00	48	-50.00	-46.15	44.58	-43.88
8	0.00	-50.00	0.00	0.00	364	-78.05	-67.46	-66.67	-53.63
32	-33.33	-25.00	-16.67	-22.22	3072	-86.75	-76.38	-73.38	-64.59
128	-50.00	-27.27	-23.53	-20.00	24576	-91.64	-84.07	-	-

Table 4.3: The summary of computational time (the averaged maximum of wall-clock time over five runs of identical setting, among all MPI processes) taken by the linear solver for solving the two- and three-dimensional problems using E-HDG and HDG methods with the discretization given in (3.7)-(3.11). The two-dimensional problem is the one presented in Section 4.2.1 with $\text{Re} = \text{Rm} = 1$ and the three-dimensional problem is the one presented in Section 4.2.3 with $\text{Re} = \text{Rm} = 1$. Note that k denotes the degree of approximation and "elem. #" indicates the number of elements used in a given mesh.

586 errors, with the corresponding convergence plots in Figure 4.2. Examining Table
 587 suggests that the increment in Re and Rm improves the convergence rates of
 588 some local variables in this problem, notably \mathbf{L}_h , \mathbf{u}_h , and \mathbf{b}_h . For a more definitive
 589 assessment of convergence rates from the numerical experiment, we focus on the results
 590 corresponding to $\text{Re} = \text{Rm} = 1$. In summary, we observe the super convergence rate
 591 of $\bar{k} + 3/2$ for r_h , the optimal convergence rates of $k + 1$ for $\mathbf{u}_h, \mathbf{b}_h$, the optimal
 592 convergence rate of $\bar{k} + 1$ for p_h , and sub-optimal convergence rates of k for $\mathbf{L}_h, \mathbf{J}_h$.

593 To numerically assess the pressure robustness of our method, we intentionally
 594 perturb the pressure solution. The test is carried out on two different meshes, one
 595 with 32 elements and another one with 512 elements, using polynomial degree $k = 2$
 596 for both and a wide range of p_0 values. The results of this study are presented in Table
 597 4.6. It is observed from the table that the L^2 -errors of all local variables including
 598 the velocity and magnetic fields are independent of p_0 regardless of which mesh is
 599 used. The observation implies that these errors do not depend on the pressure field
 600 and hence our method could be pressure robust. A particularly noteworthy discovery
 601 is the independence of the magnetic field error from the pressure field, a phenomenon
 602 previously observed in [47] as well. Plausible reasoning for this observation may stem

Two-dimensions					Three-dimensions				
elem. #	Total number of MPI processes				elem. #	Total number of MPI processes			
	$k = 1$	$k = 2$	$k = 3$	$k = 4$		$k = 1$	$k = 2$	$k = 3$	$k = 4$
2	1	1	1	1	6	1	1	1	2
8	1	1	1	1	48	1	2	2	2
32	2	2	2	2	364	2	4	4	8
128	2	2	2	2	3072	2	8	8	16
512	4	4	4	4	24576	4	16	16	32

Wall-clock time of assembly & reconstruction in the HDG method (sec)	elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$	elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$
	2	0.01	0.02	0.06	0.17	6	0.15	1.77	10.95	24.62
	8	0.02	0.08	0.24	0.68	48	1.13	6.91	43.96	196.12
	32	0.03	0.16	0.48	1.37	364	4.54	28.21	179.37	406.84
	128	0.12	0.63	1.92	5.45	3072	36.58	112.53	721.29	1620.16
	512	0.25	1.28	3.84	11.04	24576	146.97	460.14	-	-

Wall-clock time of assembly & reconstruction in the E-HDG method (sec)	elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$	elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$
	2	0.01	0.03	0.06	0.17	6	0.15	1.74	10.93	24.89
	8	0.02	0.08	0.24	0.68	48	1.12	6.86	43.82	198.3
	32	0.03	0.16	0.48	1.37	364	4.56	28.08	181.27	401.64
	128	0.12	0.63	1.91	5.43	3072	36.94	113.67	723.29	1612.38
	512	0.24	1.28	3.85	11.01	24576	145.51	456.01	2926.25	6533.66

Reduction in computational time of assembly & reconstruction (%)	elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$	elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$
	2	0.00	50.00	0.00	0.00	6	0.00	-1.69	-0.18	1.10
	8	0.00	0.00	0.00	0.00	48	-0.88	-0.72	-0.32	1.11
	32	0.00	0.00	0.00	0.00	364	0.44	-0.46	1.06	-1.28
	128	0.00	0.00	-0.52	-0.37	3072	0.98	1.01	0.28	-0.48
	512	-4.00	0.00	0.26	-0.27	24576	-0.99	-0.90	-	-

Table 4.4: The summary of computational time (the averaged maximum of wall-clock time over five runs of identical setting, among all MPI processes) taken by assembly execution and local reconstruction for solving the two- and three-dimensional problems using E-HDG and HDG methods with the discretization given in (3.7)-(3.11). The two-dimensional problem is the one presented in Section 4.2.1 with $Re = Rm = 1$ and the three-dimensional problem is the one presented in Section 4.2.3 with $Re = Rm = 1$. Note that k denotes the degree of approximation and “elem. #” indicates the number of elements used in a given mesh.

603 from the absence of the pressure field in the magnetic induction equation presented
604 in (3.1c).

605 **4.2.2. Two-dimensional singular manufactured solution.** To assess the
606 robustness of our E-HDG scheme, we apply it to a problem where a strong singularity
607 exists on the boundary. This example illustrates the convergence of the E-HDG
608 scheme using a manufactured solution with a singularity (similar to the example in
609 Section 5.2 of [57] and Section 5.3 of [69]). In particular, we consider a nonconvex
610 domain given by $\Omega = (-1, 1) \times (-1, 1) \setminus [0, 1] \times (-1, 0]$. We take $Re = Rm = \kappa = 1$,
611 $\mathbf{w} = \mathbf{0}$, and $\mathbf{d} = (-1, 1)$. We pick \mathbf{g} and \mathbf{f} such that the analytical solution of

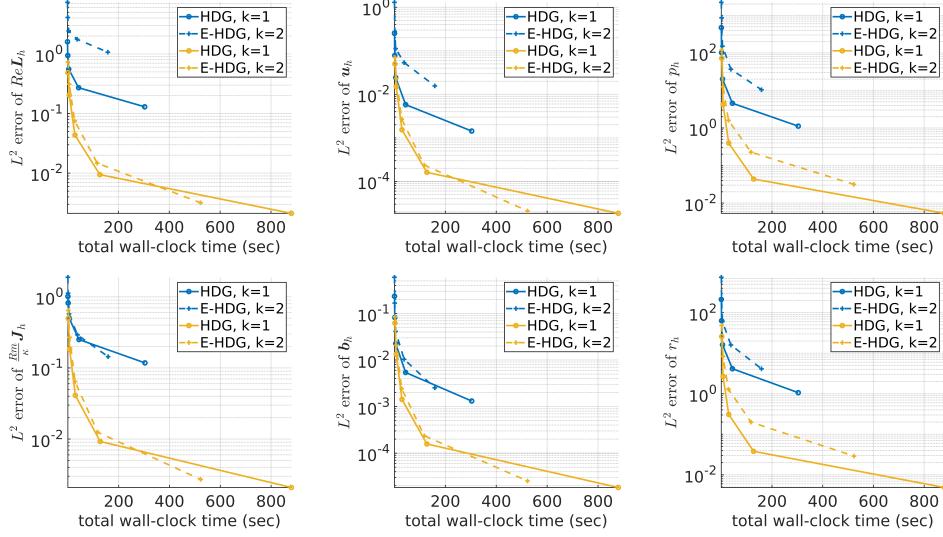


Fig. 4.1: Illustration of Table 4.2 for $k = 1, 2$ with the inclusion of the accuracy of the approximation to different variables.

Re = Rm = 1, $\kappa = 1$								
	Re \mathbf{L}_h	\mathbf{u}_h	p_h	$\frac{Rm}{\kappa} \mathbf{J}_h$	\mathbf{b}_h	r_h	$\ \nabla \cdot \mathbf{u}_h\ _\infty$	$\ \nabla \cdot \mathbf{b}_h\ _\infty$
$k = 1$	1.02	2.29	1.12	1.20	2.40	1.96	3.85E-15	4.06E-15
$k = 2$	2.02	3.08	2.21	2.28	3.06	2.73	3.44E-14	2.71E-14
$k = 3$	3.04	4.06	3.17	3.35	4.03	3.75	7.94E-14	8.45E-14
$k = 4$	4.03	5.08	4.28	4.51	4.91	4.79	2.90E-13	4.55E-13

Re = Rm = 1000, $\kappa = 1$								
	Re \mathbf{L}_h	\mathbf{u}_h	p_h	$\frac{Rm}{\kappa} \mathbf{J}_h$	\mathbf{b}_h	r_h	$\ \nabla \cdot \mathbf{u}_h\ _\infty$	$\ \nabla \cdot \mathbf{b}_h\ _\infty$
$k = 1$	1.29	1.34	0.99	1.36	1.46	0.65	4.30E-15	2.54E-15
$k = 2$	2.93	4.05	2.02	3.01	4.14	2.40	2.50E-14	2.17E-14
$k = 3$	3.98	5.28	3.02	3.85	5.18	3.81	1.35E-12	1.07E-13
$k = 4$	4.16	5.21	4.00	4.17	5.20	4.39	2.67E-12	2.22E-12

Table 4.5: Convergence rates of all local variables and divergence errors of velocity and magnetic fields for the E-HDG method applied to solve the two-dimensional problem with a smooth manufactured solution given in (4.2) with $p_0 = 1$. The corresponding results are also presented in Figure 4.2. In this table, the convergence rates are evaluated at the last two data sets and the divergence errors are evaluated at the last data set.

612 (3.2)-(3.4) has the form

613 (4.3a)
$$\mathbf{u} = \begin{pmatrix} \rho^\lambda [(1 + \lambda) \sin(\phi) \psi(\phi) + \cos(\phi) \psi'(\phi)] \\ \rho^\lambda [-(1 + \lambda) \cos(\phi) \psi(\phi) + \sin(\phi) \psi'(\phi)] \end{pmatrix},$$

614 (4.3b)
$$\mathbf{b} = \nabla \left(\rho^{2/3} \sin \left(\frac{2\phi}{3} \right) \right),$$

615 (4.3c)
$$p = -\rho^{\lambda-1} \frac{(1 + \lambda)^2 \psi'(\phi) + \psi'''(\phi)}{1 - \lambda},$$

616 (4.3d)
$$r = 0,$$

32 elements in total, $h \approx 1.46E - 1$								
p_0	$\text{Re} \ \mathbf{L} - \mathbf{L}_h\ _0$	$\ \mathbf{u} - \mathbf{u}_h\ _0$	$\ p - p_h\ _0$	$\frac{\text{Rm}}{\kappa} \ \mathbf{J} - \mathbf{J}_h\ _0$	$\ \mathbf{b} - \mathbf{b}_h\ _0$	$\ r - r_h\ _0$	$\ \nabla \cdot \mathbf{u}_h\ _\infty$	$\ \nabla \cdot \mathbf{b}_h\ _\infty$
1	2.09E-2	1.27E-3	5.57E-2	1.67E-2	9.66E-4	3.97E-2	7.15E-16	7.49E-16
10	2.09E-2	1.27E-3	2.02E-1	1.67E-2	9.66E-4	3.97E-2	1.40E-15	6.11E-16
25	2.09E-2	1.27E-3	4.90E-1	1.67E-2	9.66E-4	3.97E-2	2.78E-15	6.66E-16
100	2.09E-2	1.27E-3	1.95	1.67E-2	9.66E-4	3.97E-2	1.03E-14	6.38E-16
512 elements in total, $h \approx 3.66E - 2$								
p_0	$\text{Re} \ \mathbf{L} - \mathbf{L}_h\ _0$	$\ \mathbf{u} - \mathbf{u}_h\ _0$	$\ p - p_h\ _0$	$\frac{\text{Rm}}{\kappa} \ \mathbf{J} - \mathbf{J}_h\ _0$	$\ \mathbf{b} - \mathbf{b}_h\ _0$	$\ r - r_h\ _0$	$\ \nabla \cdot \mathbf{u}_h\ _\infty$	$\ \nabla \cdot \mathbf{b}_h\ _\infty$
1	1.27E-3	1.09E-5	2.30E-3	7.48E-4	1.07E-5	1.40E-3	4.44E-15	3.77E-15
10	1.27E-3	1.09E-5	1.26E-2	7.48E-4	1.07E-5	1.40E-3	7.41E-15	3.77E-15
25	1.27E-3	1.09E-5	3.11E-2	7.48E-4	1.07E-5	1.40E-3	1.73E-14	4.05E-15
100	1.27E-3	1.09E-5	1.24E-1	7.48E-4	1.07E-5	1.40E-3	7.92E-14	4.11E-15

Table 4.6: The errors in the local variables for the smooth manufactured solution given in (4.2) for meshes of 32 and 512 elements, a polynomial degree of $k = 2$, and a range of p_0 values. The physical parameters are set to be $\text{Re} = \text{Rm} = 1$ and $\kappa = 1$.

618 where

619
$$\psi(\phi) = \cos(\lambda\omega) \left[\frac{\sin((1+\lambda)\phi)}{1+\lambda} - \frac{\sin((1-\lambda)\phi)}{1-\lambda} \right] - \cos((1+\lambda)\phi) + \cos((1-\lambda)\phi),$$

620
$$621 \omega = \frac{3\pi}{2}, \quad \lambda \approx 0.54448373678246, \quad \phi \in \left[0, \frac{3\pi}{2}\right].$$

622 For this problem, it is known that $\mathbf{u} \in [H^{1+\lambda}(\Omega)]^2$, $p \in H^\lambda(\Omega)$, and $\mathbf{b} \in [H^{2/3}(\Omega)]^2$,
623 and the solution contains magnetic and hydrodynamic singularities that are among
624 the strongest singularities [57] right at the origin. The exact solution is illustrated in
625 the first column of Figure 4.4. It can be observed that singularity is located at the
626 origin for \mathbf{b} and p . While u is relatively smooth, its derivative is singular at the origin.

627 A sequence of unstructured meshes is used to test the convergence of the numerical
628 solution. Figure 4.3 demonstrates the coarsest mesh and a couple of refined meshes
629 that are used in the convergence test. The numerical solution and the absolute error
630 which are obtained on the finest mesh with approximation order $k = 4$ are presented
631 in Figure 4.4 as well.

632 Convergence results for this problem are summarized in Table 4.7 and illustrated
633 in Figure 4.5. For the fluid variables \mathbf{L}_h , \mathbf{u}_h , and p_h , we observe convergence rates
634 of approximately 2/3. In the case of magnetic variables, namely \mathbf{J}_h , \mathbf{b}_h , and r_h ,
635 the observed convergence rates are approximately 1/5, 2/3, and 1/3 respectively.
636 Compared to the result presented in [69], the convergence rates of the fluid variables
637 are lower, while the ones of the magnetic variables are similar. Remarkably, despite
638 the accuracy challenges, divergence errors in both velocity and magnetic fields remain
639 close to machine zero in this singular test case.

640 **4.2.3. Three-dimensional smooth manufactured solution.** We now apply
641 our E-HDG method to a three-dimensional problem on structured tetrahedron meshes.
642 Note that our well-posedness analysis is still valid for this case. We set $\Omega = (0, 1) \times$
643 $(0, 1) \times (0, 1)$ and take $\text{Re} = \text{Rm} \in \{1, 1000\}$ and $\kappa = 1$. For this test case, we choose

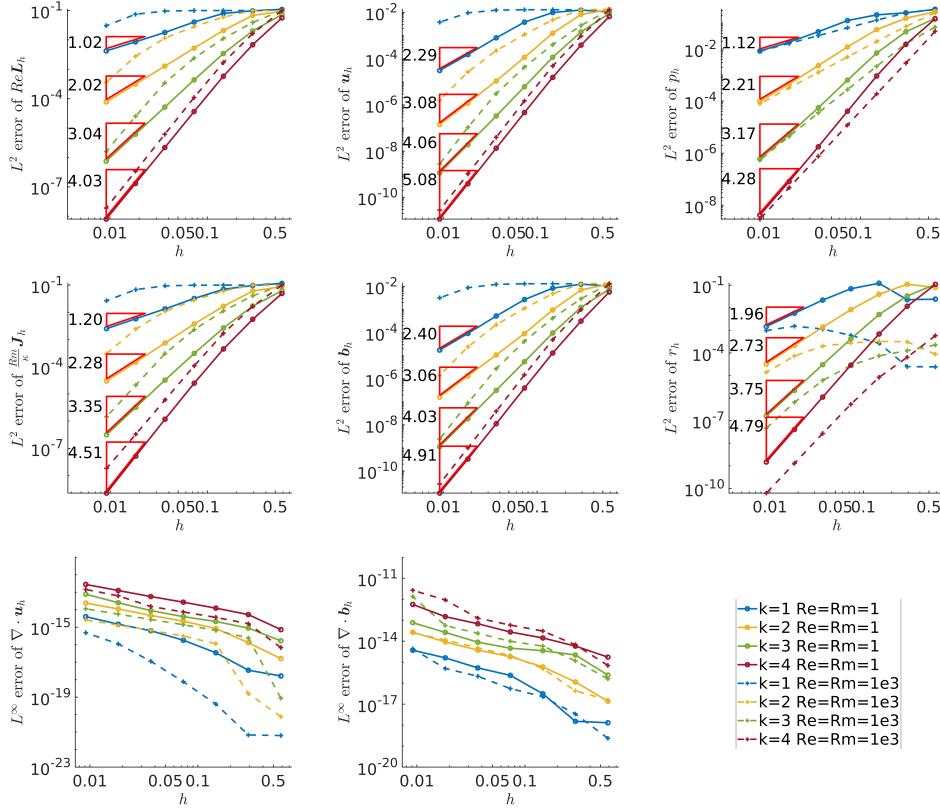


Fig. 4.2: Convergence histories of all local variables and divergence errors for the E-HDG method applied to solve the two-dimensional problem with a smooth manufactured solution given in (4.2) where we set $p_0 = 1$. Only the convergence rates for $\text{Re} = \text{Rm} = 1$ are presented here.

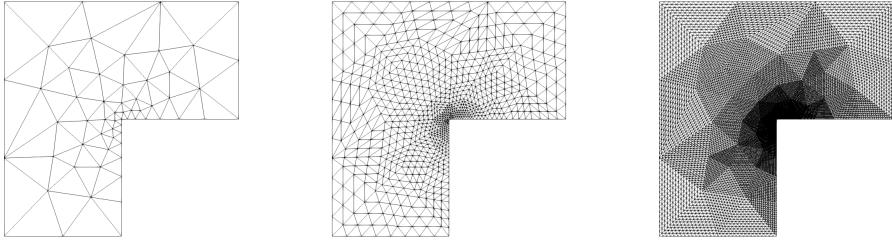


Fig. 4.3: The meshes used in Section 4.2.2. The coarsest mesh is presented in the first column. In the second column, the mesh that undergoes two-times uniform refinement is presented. The finest mesh is shown in the third column and is obtained by four-times uniform refinement.

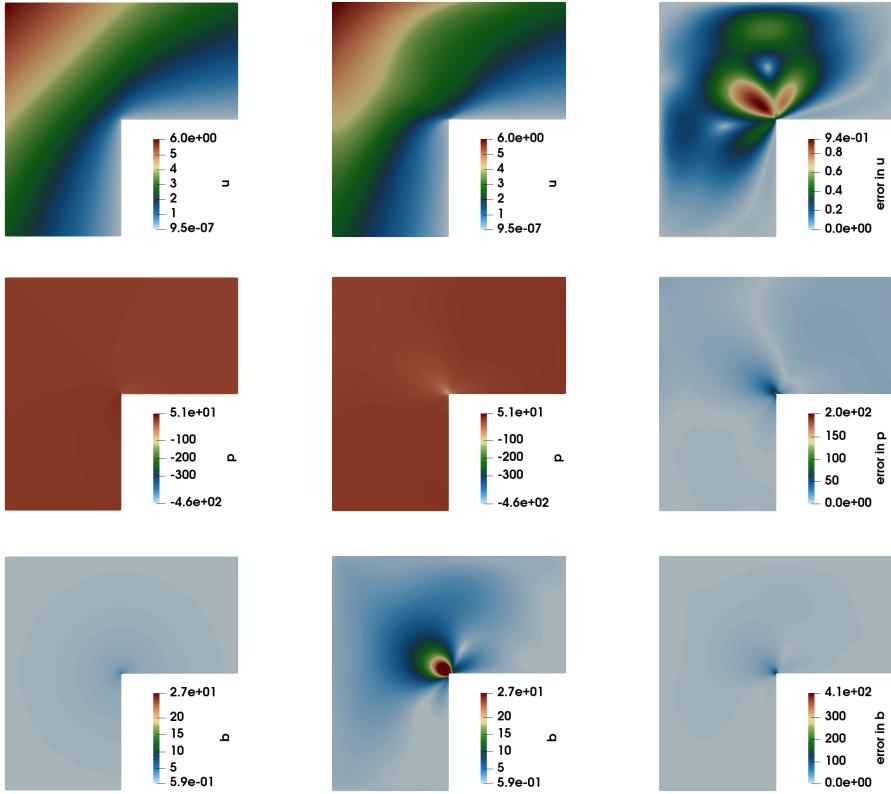


Fig. 4.4: The contour plots of the exact solution (the first column), the numerical solution (the second column), and the error (the third column). The magnitudes of the quantities are presented and all results are obtained by solving the two-dimensional problem with a manufactured solution given in (4.3) where a strong singularity exists in the magnetic field.

$$\text{Re} = \text{Rm} = \kappa = 1$$

	$\text{Re} \mathbf{L}_h$	\mathbf{u}_h	p_h	$\frac{\text{Rm}}{\kappa} \mathbf{J}_h$	\mathbf{b}_h	r_h	$\ \nabla \cdot \mathbf{u}_h\ _\infty$	$\ \nabla \cdot \mathbf{b}_h\ _\infty$
$k = 1$	0.68	0.68	0.70	0.08	0.71	0.29	8.82e-12	4.22e-10
$k = 2$	0.71	0.74	0.76	0.17	0.71	0.31	2.06e-11	4.06e-09
$k = 3$	0.60	0.65	0.69	0.33	0.58	0.40	6.25e-11	1.46e-08
$k = 4$	0.51	0.54	0.56	0.42	0.51	0.44	1.95e-10	3.82e-08

Table 4.7: Convergence rates of all local variables and divergence errors of velocity and magnetic fields for the E-HDG method applied to solve the two-dimensional problem with a singular manufactured solution given in (4.3). The corresponding results are also presented in Figure 4.5. In this table, the convergence rates are evaluated at the last two data sets and the divergence errors are evaluated at the last data set.

644 the forcing function such that the exact solution is given by

645 (4.4a)
$$\mathbf{u} = \begin{pmatrix} -(y \cos(y) + \sin y) e^x, \\ y \sin(y) e^x - (z \cos(z) + \sin(z)) e^y, \\ z \sin(z) e^y \end{pmatrix},$$

646 (4.4b)
$$\mathbf{b} = \mathbf{u}$$

647 (4.4c)
$$p = p_0 \left(2e^x \sin(y) z^2 - \left(\frac{-2}{3} (e \cos(1) - \cos(1) - e + 1) \right) \right)$$

648 (4.4d)
$$r = 0 \quad \text{This manuscript is for review purposes only.}$$

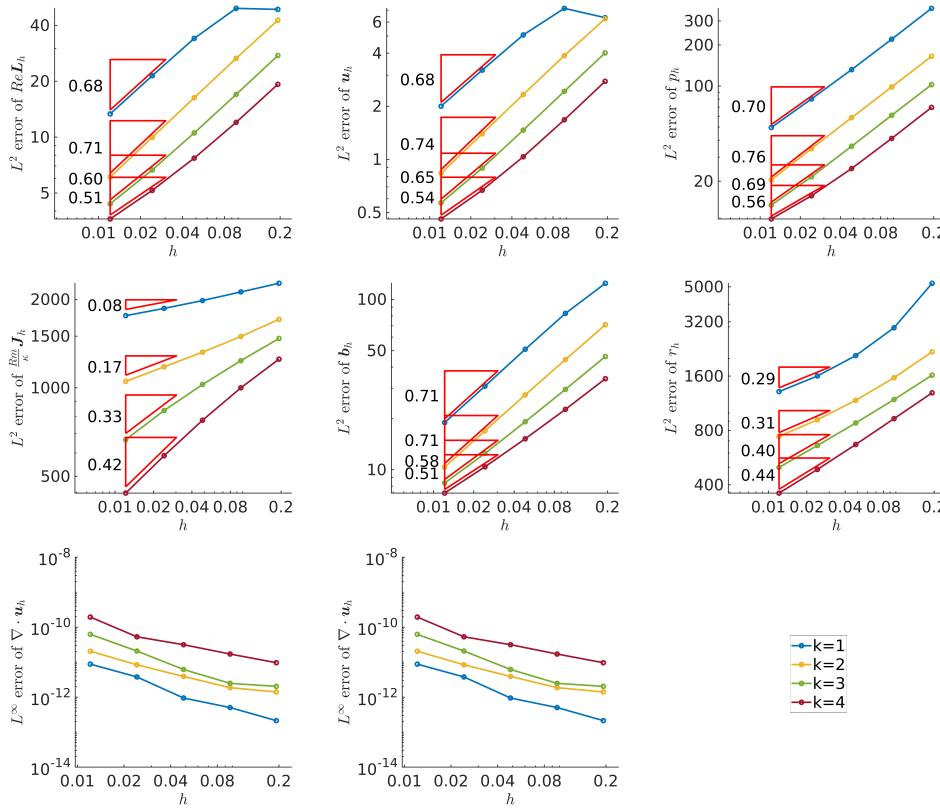


Fig. 4.5: Convergence histories of all local variables and divergence errors for the E-HDG method applied to solve the two-dimensional problem with a manufactured solution given in (4.3) where a strong singularity exists in the magnetic field.

650 with the prescribed fields $\mathbf{w} = \mathbf{u}$ and $\mathbf{d} = \mathbf{b}$, and a constant p_0 . Table 4.8 summarizes
651 the convergence rates of all local variables and shows the L^∞ -norm of the divergence
652 errors. The corresponding convergence histories are shown in Figure 4.6. Similar
653 to the two-dimensional smooth testing case presented in Section 4.2.1, we observed
654 that the convergence rates are affected by Re and Rm here as well, but in an adverse
655 manner. The effect is evident for \mathbf{L}_h , \mathbf{u}_h and \mathbf{b}_h . We present the convergence rates
656 for the case $Re = Rm = 1$. As can be seen, p_h and r_h exhibit superconvergence with
657 a rate of $\bar{k} + 3/2$, and the convergence rates of \mathbf{u}_h and \mathbf{b}_h are optimal with $k + 1$.
658 For \mathbf{L}_h and \mathbf{J}_h , the convergence rate is, however, suboptimal with k . The conclusion
659 is consistent with the one made in Section 4.2.1 where the two-dimensional smooth
660 manufactured solution is applied.

661 The numerical assessment of the pressure robustness of our method is also carried
662 out for this manufactured solution. The examination is conducted by perturbing the
663 solution in pressure on two meshes, one consisting of 48 elements and the other with
664 24576 elements, with $k = 2$ and various values of p_0 . Table 4.9 details the results.
665 Similar to the two-dimensional case presented in Table 4.6, the L^2 -errors in velocity
666 and magnetic field are independent of pressure on different meshes.

Re = Rm = 1, $\kappa = 1$							
	Re \mathbf{L}_h	\mathbf{u}_h	p_h	$\frac{Rm}{\kappa} \mathbf{J}_h$	\mathbf{b}_h	r_h	$\ \nabla \cdot \mathbf{u}_h\ _\infty$
$k = 1$	0.72	1.78	1.81	1.02	2.04	1.95	6.19E-13
$k = 2$	2.21	3.50	2.85	2.21	3.23	2.79	1.41E-12
$k = 3$	3.08	3.99	3.66	3.22	4.19	3.75	9.07E-10
$k = 4$	4.22	5.23	4.73	4.24	5.23	4.70	3.66E-09
Re = Rm = 1000, $\kappa = 1$							
	Re \mathbf{L}_h	\mathbf{u}_h	p_h	$\frac{Rm}{\kappa} \mathbf{J}_h$	\mathbf{b}_h	r_h	$\ \nabla \cdot \mathbf{b}_h\ _\infty$
$k = 1$	0.47	1.38	1.89	0.56	0.77	1.96	5.73E-13
$k = 2$	1.28	2.25	3.01	1.31	2.19	2.93	1.64E-12
$k = 3$	3.64	4.69	3.92	3.77	4.72	3.93	1.46E-09
$k = 4$	3.94	4.22	4.91	4.03	4.29	5.49	5.55E-09

Table 4.8: Convergence rates of all local variables and divergence errors of velocity and magnetic fields for the E-HDG method applied to solve the three-dimensional problem with a smooth manufactured solution given in (4.4) where we set $p_0 = 1$. The corresponding results are also presented in Figure 4.6. In this table, the convergence rates are evaluated at the last two data sets and the divergence errors are evaluated at the last data set.

48 elements in total, $h \approx 1.06E - 1$							
p_0	Re $\ \mathbf{L} - \mathbf{L}_h\ _0$	$\ \mathbf{u} - \mathbf{u}_h\ _0$	$\ p - p_h\ _0$	$\frac{Rm}{\kappa} \ \mathbf{J} - \mathbf{J}_h\ _0$	$\ \mathbf{b} - \mathbf{b}_h\ _0$	$\ r - r_h\ _0$	$\ \nabla \cdot \mathbf{u}_h\ _\infty$
1	7.52E-2	2.69E-3	1.59	6.42E-2	2.42E-3	1.29	2.42E-13
10	7.52E-2	2.69E-3	5.99	6.42E-2	2.42E-3	1.29	2.99E-13
25	7.52E-2	2.69E-3	15.57	6.42E-2	2.42E-3	1.29	3.09E-13
100	7.52E-2	2.69E-3	64.09	6.42E-2	2.42E-3	1.29	2.89E-13
24576 elements in total, $h \approx 2.64E - 2$							
1	3.19E-3	2.10E-5	3.16E-2	2.70E-3	2.53E-5	2.90E-2	1.40E-12
10	3.19E-3	2.10E-5	5.83	2.70E-3	2.53E-5	2.90E-2	1.40E-12
25	3.19E-3	2.10E-5	15.55	2.70E-3	2.53E-5	2.90E-2	1.41E-12
100	3.19E-3	2.10E-5	64.13	2.70E-3	2.53E-5	2.90E-2	1.32E-12

Table 4.9: The errors in the local variables for the smooth manufactured solution given in (4.4) for meshes of 48 and 24576 elements, a polynomial degree of $k = 2$, and a range of p_0 values. We set $\text{Re} = \text{Rm} = 1$ and $\kappa = 1$.

667 **4.3. Nonlinear examples.** To verify our nonlinear solver, we conducted several
668 numerical experiments and studied the accuracy and convergence. The first example
669 is the two-dimensional smooth manufactured solution, the second one is the so-called
670 Hartmann flow problem, and the last one is the three-dimensional smooth manufac-
671 tured solution.

672 **4.3.1. Two-dimensional smooth manufactured solution.** Our first numer-
673 ical experiment for the nonlinear solver is a steady manufactured solution. In particu-
674 lar, we use the same solution presented in Section 4.2.1 to investigate the convergence.
675 The results are presented in Table 4.10 and are illustrated in Figure 4.7. The observed
676 convergence rates are almost the same as the rates observed in the linear problem pre-
677 sented in Section 4.2.1. Moreover, the divergence errors also exhibit the same order of
678 magnitude. Finally, the number of iterations needed by the Picard iterative process
679 is reported in Table 4.11 where the user-defined tolerance ε is set to be $1E - 10$ for
680 $k = 1, 2$ and $2E - 10$ for $k = 3, 4$.

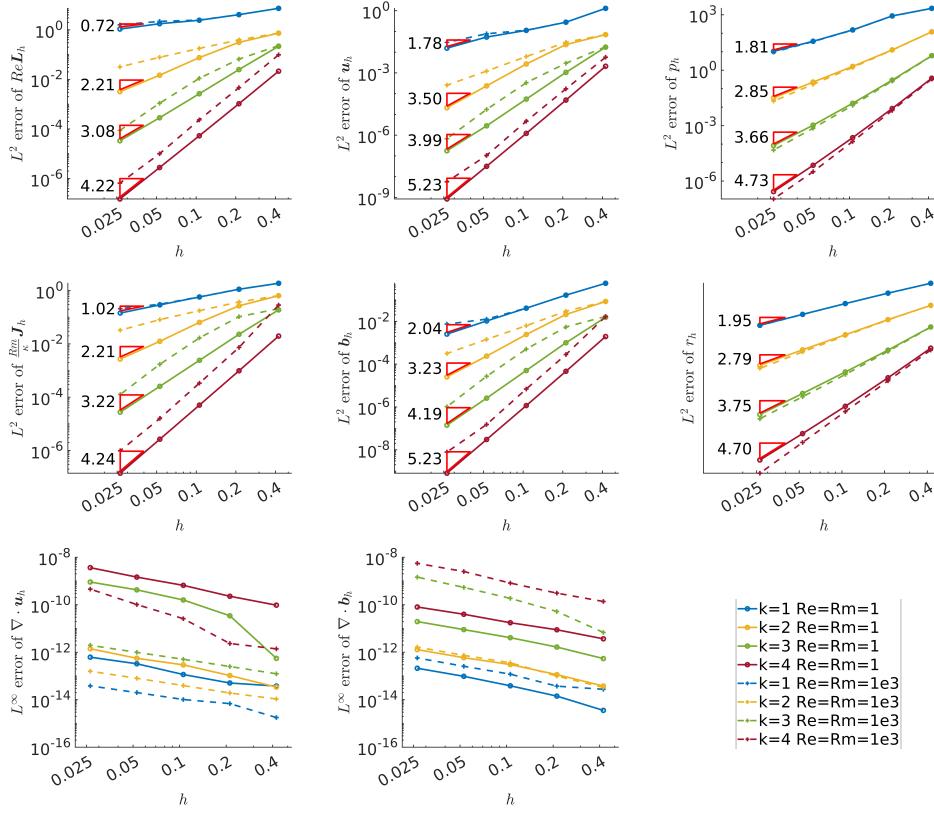


Fig. 4.6: Convergence histories of all local variables and divergence errors for the E-HDG method applied to solve the three-dimensional problem with a smooth manufactured solution given in (4.4) where we set $p_0 = 1$. Only the convergence rates for $Re = Rm = 1$ are presented here.

681 4.3.2. Two-dimensional Hartmann flow. We next consider the Hartmann
682 channel flow, a generalization of the classic plane Poiseuille problem to the setting of
683 the incompressible visco-resistive MHD. In this problem, a conducting incompressible
684 fluid (liquid metal, for example) in a domain $(-\infty, \infty) \times (-l_0, l_0) \times (-\infty, \infty)$ (bounded
685 by infinite parallel plates in the x_2 direction) is driven by a uniform pressure gradient
686 $G := -\frac{\partial p}{\partial x_1}$ in the x_1 direction, and is subject to a uniform external magnetic field b_0 in the x_2 direction. In addition, we enforce no-slip boundary conditions on
687 the x_2 boundaries and assume the infinite parallel plates are perfectly insulating.
688 The resulting flow pattern admits an analytical solution that is one-dimensional in
689 nature. In this numerical study, we consider the simulation of Hartmann flow in a
690 two-dimensional domain $\Omega = (0, 0.025) \times (-1, 1)$. If we define the characteristic velocity
691 as $u_0 := \sqrt{Gl_0/\rho}$ and consider the driving pressure gradient G as a forcing term
692 (incorporated in \mathbf{g}), the nondimensionalized solution with $\mathbf{g} = (1, 0)$, $\mathbf{f} = \mathbf{0}$ takes the

Re = Rm = 1, $\kappa = 1$								
	Re \mathbf{L}_h	\mathbf{u}_h	p_h	$\frac{Rm}{\kappa} \mathbf{J}_h$	\mathbf{b}_h	r_h	$\ \nabla \cdot \mathbf{u}_h\ _\infty$	$\ \nabla \cdot \mathbf{b}_h\ _\infty$
$k = 1$	1.02	2.29	1.12	1.20	2.40	1.96	4.02E-15	3.72E-15
$k = 2$	2.02	3.08	2.21	2.28	3.06	2.73	2.39E-14	2.66E-14
$k = 3$	3.04	4.06	3.17	3.35	4.03	3.75	7.75E-14	7.65E-14
$k = 4$	4.03	5.08	4.28	4.51	4.91	4.79	2.81E-13	5.65E-13
Re = Rm = 1000, $\kappa = 1$								
	Re \mathbf{L}_h	\mathbf{u}_h	p_h	$\frac{Rm}{\kappa} \mathbf{J}_h$	\mathbf{b}_h	r_h	$\ \nabla \cdot \mathbf{u}_h\ _\infty$	$\ \nabla \cdot \mathbf{b}_h\ _\infty$
$k = 1$	1.27	1.35	0.99	1.38	1.47	0.65	2.69E-15	2.83E-15
$k = 2$	2.93	4.04	2.02	3.01	4.14	2.40	2.61E-14	2.35E-14
$k = 3$	3.98	5.28	3.02	3.85	5.18	3.81	1.13E-12	1.10E-13
$k = 4$	4.16	5.20	4.00	4.17	5.20	4.39	2.78E-12	1.73E-12

Table 4.10: Convergence rates of all local variables and divergence errors of velocity and magnetic fields for the nonlinear solver applied to solve the two-dimensional problem with a smooth manufactured solution given in (4.2) where we set $p_0 = 1$. The corresponding results are also presented in Figure 4.7. In this table, the convergence rates are evaluated at the last two data sets and the divergence errors are evaluated at the last data set.

Re = Rm = 1, $\kappa = 1$					Re = Rm = 1000, $\kappa = 1$				
The Picard iteration number					The Picard iteration number				
elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$	elem. #	$k = 1$	$k = 2$	$k = 3$	$k = 4$
2	3	3	4	4	2	2	2	2	3
8	3	4	4	4	8	2	2	23	38
32	3	4	3	3	32	2	24	35	25
128	4	3	3	2	128	3	33	30	16
512	3	3	2	2	512	4	37	26	10
2048	3	3	2	1	2048	8	36	18	5
8192	3	2	2	2	8192	24	32	11	6

Table 4.11: The summary of iteration number required by the Picard iterative process of solving the two-dimensional problem with a smooth manufactured solution given in (4.2) where we set $p_0 = 1$. The user-defined tolerance ε is set to be $1E - 10$ for $k = 1, 2$ and $2E - 10$ for $k = 3, 4$.

694 form (see, i.e., [88, 89])

695 (4.5a)
$$\mathbf{u} = \left(\frac{\text{Re}}{Ha \tanh(Ha)} \left[1 - \frac{\cosh(Ha \cdot y)}{\cosh(Ha)} \right], 0 \right),$$

696 (4.5b)
$$\mathbf{b} = \left(\frac{1}{\kappa} \left[\frac{\sinh(Ha \cdot y)}{\sinh(Ha)} - y \right], 1 \right),$$

697 (4.5c)
$$p = -\frac{1}{2\kappa} \left[\frac{\sinh(Ha \cdot y)}{\sinh(Ha)} - y \right]^2 - p_0,$$

698 (4.5d)
$$r = 0$$

700 where $Ha := \sqrt{\kappa \text{Re} \text{Rm}}$, and p_0 is a constant that enables p to satisfy the zero average
701 pressure condition.

702 At refinement level l , the domain is divided into $l \times 80l$ squares, each of which is
703 divided into two triangles from top right to bottom left. Figure 4.8 shows the conver-
704 gence plots with $\text{Re} = \text{Rm} = 7.07$ and $\kappa = 200$ and the corresponding convergence

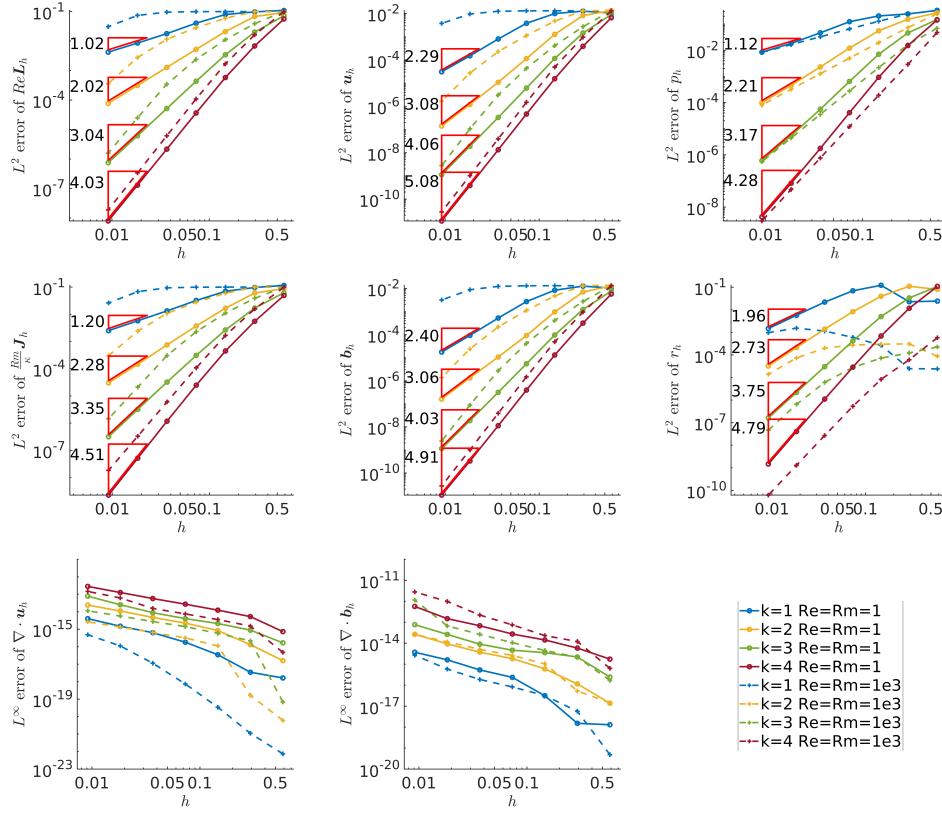


Fig. 4.7: Convergence histories of all local variables and divergence errors for the nonlinear solver applied to solve the two-dimensional problem with a smooth manufactured solution given in (4.2) where we set $p_0 = 1$. Only the convergence rates for $\text{Re} = \text{Rm} = 1$ are presented here.

705 rates are summarized in Table 4.12. In this example, user-defined tolerance ε is set to
 706 be $1E-10$ and the Picard iteration numbers for all cases presented in Figure 4.8 reach
 707 50, which is the maximum allowable number of iterations. However, the computed
 708 tolerance TOL is acceptable since it is hovering around $O(1E-9) - O(1E-10)$ for
 709 $k = 1$, $O(1E-8) - O(1E-9)$ for $k = 2$, and $O(1E-8)$ for both $k = 3$ and $k = 4$. On
 710 the other hand, the convergence rates for \mathbf{L}_h , \mathbf{u}_h , $\bar{\mathbf{p}}_h$, \mathbf{J}_h , \mathbf{b}_h , and r_h are observed to
 711 be approximately k , $k - 1/2$, $\bar{k} + 1$, k , $k + 1/2$, and $\bar{k} + 1$. The observation is consistent
 712 with the rates observed in Section 4.2.1 and 4.2.3 except for the ones of the velocity
 713 and magnetic fields, which are sub-optimal here.

714 **4.3.3. Three-dimensional smooth manufactured solution.** We now turn
 715 our attention to a three-dimensional nonlinear problem, demonstrating the conver-
 716 gence of the nonlinear solver utilizing a smooth manufactured solution as outlined
 717 in Section 4.2.3. The numerical results are presented in Table 4.13 and visually pre-
 718 presented in Figure 4.9. The observed convergence rates are consistent with the rates
 719 presented in Section 4.3.3 where a linear problem with the same smooth manufactured
 720 solution is solved. Particularly, Table 4.13 closely mirrors the content of Table 4.8. In

Re = Rm = 7.07, $\kappa = 200$

	Re \mathbf{L}_h	\mathbf{u}_h	p_h	$\frac{Rm}{\kappa} \mathbf{J}_h$	\mathbf{b}_h	r_h	$\ \nabla \cdot \mathbf{u}_h\ _\infty$	$\ \nabla \cdot \mathbf{b}_h\ _\infty$
$k = 1$	1.01	3.68	1.01	1.03	1.87	1.26	3.52E-09	5.50E-12
$k = 2$	2.08	1.81	2.03	1.96	2.58	1.74	2.95E-08	1.28E-10
$k = 3$	3.20	2.59	3.16	3.55	3.64	3.18	1.30E-07	2.90E-10
$k = 4$	4.17	3.72	4.13	4.21	4.20	3.96	3.16E-07	7.02E-10

Table 4.12: Convergence rates of all local variables and divergence errors of velocity and magnetic fields for the nonlinear solver applied to solve the two-dimensional Hartmann flow problem that admits the solution given in (4.5). The corresponding results are also presented in Figure 4.8. In this table, the convergence rates are evaluated at the last two data sets and the divergence errors are evaluated at the last data set.

721 addition, the same order of magnitude is observed for the divergence errors as well.

722 Table 4.14 concludes the number of iterations needed by the Picard iterative
 723 process. In this example, the user-defined tolerance ε is set to be $2E - 10$. It is
 724 widely known that the Picard solver may not converge consistently, and the success
 725 of the iteration is contingent upon the initial guess and the contractive property.
 726 Our findings underscore that the convergence of the Picard solver is substantially
 727 influenced by the physical parameters Re, Rm , the degree of approximation k , and
 728 the mesh refinement. This implies that the contractive property of the linear map
 729 $(\mathbf{w}, \mathbf{d}) \mapsto (\mathbf{u}, \mathbf{b})$ can be largely affected by these factors. This is not surprising as
 730 our analysis in [77] showed the contraction factor is proportional to the initial guess,
 731 $\mathbf{f}, \mathbf{g}, Re, Rm/\kappa$ and depends on \mathbf{w} and \mathbf{d} in a nontrivial nonlinear manner. Specifically,
 732 in the testing cases with $Re = Rm = 1000$ and $k > 1$, the Picard iteration does not
 733 converge when using the initial guess $\mathbf{u}_h^0 = \mathbf{b}_h^0 = \mathbf{0}$. Taking $Re = Rm = 1000$, the
 734 Picard iteration stalls when $k = 2$ is used on the mesh with 364 elements (TOL
 735 stagnates around $O(1E - 4)$), $k = 3$ on the mesh with 48 elements (TOL stagnates
 736 around $O(1E - 4)$), and $k = 4$ on the mesh with 6 elements (TOL stagnates around
 737 $O(1E - 5)$). Only the case with $k = 1$ exhibits convergence across a sequence of
 738 meshes with 6, 48, 364, 3072, and 24576 elements, and the results of this case are
 739 presented in both Table 4.13 and Figure 4.9.

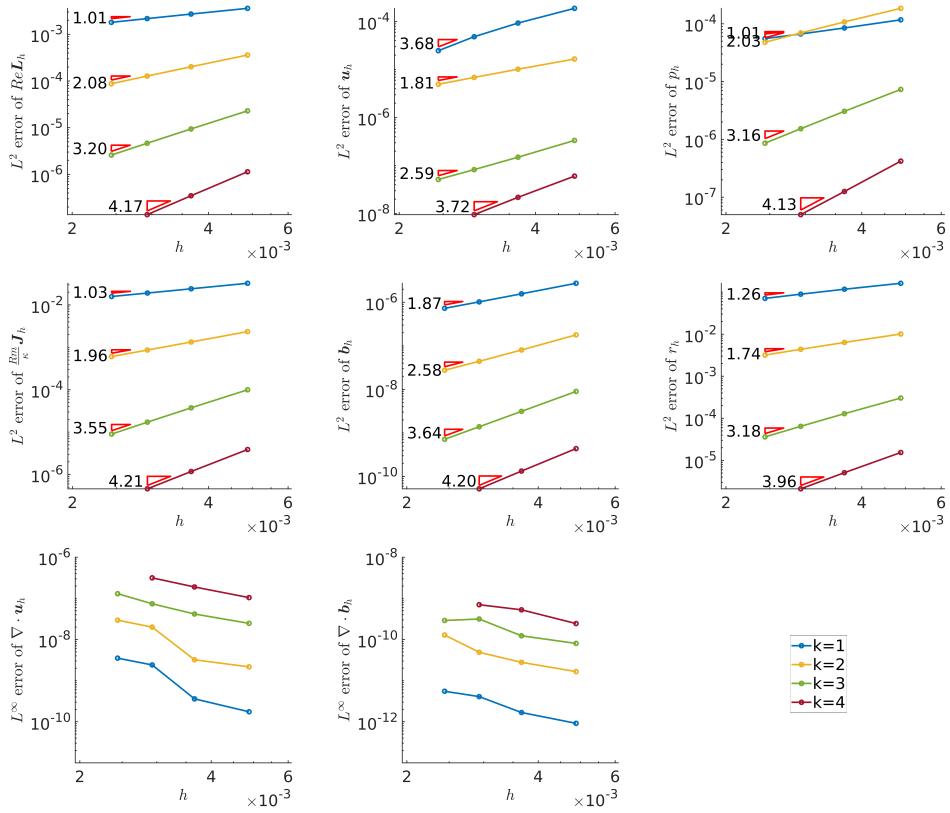


Fig. 4.8: Convergence histories of all local variables and divergence errors for the nonlinear solver applied to solve the two-dimensional Hartmann flow problem that admits the solution given in (4.5).

Re = Rm = 1, $\kappa = 1$								
	Re \mathbf{L}_h	\mathbf{u}_h	p_h	$\frac{Rm}{\kappa} \mathbf{J}_h$	\mathbf{b}_h	r_h	$\ \nabla \cdot \mathbf{u}_h\ _\infty$	$\ \nabla \cdot \mathbf{b}_h\ _\infty$
$k = 1$	0.72	1.78	1.81	1.02	2.04	1.95	6.89E-13	2.97E-13
$k = 2$	2.21	3.50	2.85	2.21	3.23	2.78	1.37E-12	1.37E-12
$k = 3$	3.08	3.99	3.66	3.22	4.19	3.75	9.32E-10	2.07E-11
$k = 4$	4.22	5.23	4.73	4.24	5.23	4.70	3.47E-09	8.38E-11
Re = Rm = 1000, $\kappa = 1$								
$k = 1$	0.47	1.36	1.89	0.57	0.80	1.96	6.08E-13	2.47E-13

Table 4.13: Convergence rates of all local variables and divergence errors of velocity and magnetic fields for the Picard iterations applied to solve the three-dimensional problem with a smooth manufactured solution given in (4.4) where we set $p_0 = 1$. The corresponding results are also presented in Figure 4.9. In this table, the convergence rates are evaluated at the last two data sets and the divergence errors are evaluated at the last data set.

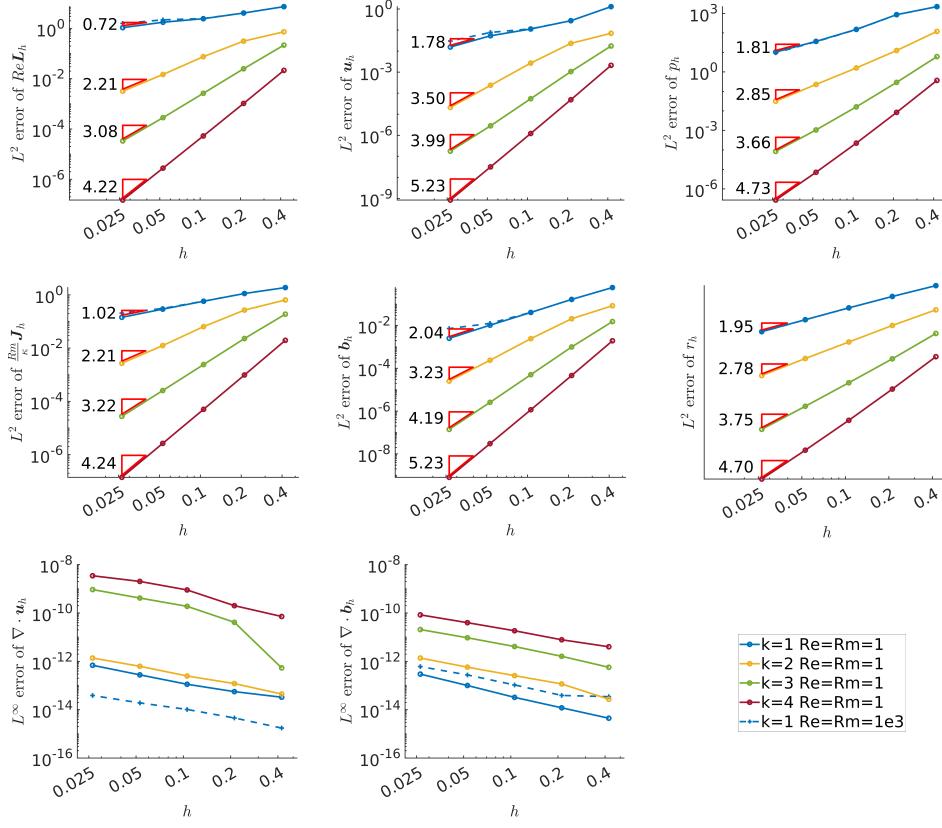


Fig. 4.9: Convergence histories of all local variables and divergence errors for the Picard iterations applied to solve the three-dimensional problem with a smooth manufactured solution given in (4.4) where we set $p_0 = 1$. Only the convergence rates for $Re = Rm = 1$ are presented here.

Re = Rm = 1, $\kappa = 1$						Re = Rm = 1000, $\kappa = 1$					
The Picard iteration number						The Picard iteration number					
elem. #	k = 1	k = 2	k = 3	k = 4		k = 1	k = 2	k = 3	k = 4		
6	3	3	4	5		6	3	3	-	-	
48	3	5	6	5		48	3	5	-	-	
364	5	7	5	2		364	5	-	-	-	
3072	7	6	3	1		3072	10	-	-	-	
24576	8	5	2	1		24576	47	-	-	-	

Table 4.14: The summary of iteration number required by the Picard iterative process of solving the two-dimensional problem with a smooth manufactured solution given in (4.4) where we set $p_0 = 1$. In all cases, the user-defined tolerance ε is set to be $2E - 10$. The symbol “-” in the table indicates the failure of the Picard solver, in which not only is the maximum allowable number of iterations reached but also is the computed tolerance TOL generally too large to be acceptable.

740 **5. Conclusion and future work.** This paper presents two new divergence-free
 741 and $H(\text{div})$ -conforming HDG methods for the linearized incompressible viso-resistive
 742 MHD equations with well-posedness analysis. Particularly, we have showed that on
 743 simplicial meshes, the well-posedness of the proposed approaches can be established
 744 by the use of a one-order lower approximation in local variables for the pressure p_h and
 745 the Lagrange multiplier r_h , and by appropriately chosen stabilization parameters. One
 746 of the motivations for adopting E-HDG in lieu of HDG methods lies in computational
 747 gain. Indeed, our experiments have revealed a significant acceleration in the runtime,
 748 manifested through the utilization of fewer DOFs in E-HDG, particularly in cases
 749 where the linear solver dominates the overall computational time, such as in three
 750 dimensions with high-order approximations on fine meshes. Linear problems with
 751 both smooth and singular solutions were presented to examine the convergence of
 752 the proposed E-HDG method. For problems with smooth solutions, both two- and
 753 three-dimensional settings were tested. The numerical convergence rates are shown
 754 to be optimal for both velocity and magnetic fields in the regime of low Reynolds
 755 number and magnetic Reynolds number. Moreover, the pressure robustness of our
 756 method was numerically verified. For the singular solution, the convergence rate is
 757 limited by the regularity of the solution. However, the divergence-free property is still
 758 guaranteed.

759 By incorporating the E-HDG discretization into the fixed point Picard iteration,
 760 we can solve the nonlinear incompressible viso-resistive MHD equations iteratively.
 761 The globally divergence-free property still holds for both the velocity and the magnetic
 762 fields. The convergence of the nonlinear solver is investigated through nonlinear prob-
 763 lems with smooth solutions. The convergence rates in the tests are almost identical
 764 to the ones observed in the linear tests in both two- and three-dimensional settings.
 765 Further, divergence errors in both velocity and magnetic fields are indeed observed to
 766 be machine zero.

767 While various aspects of our proposed E-HDG method have been discussed in this
 768 paper, there remain several noteworthy issues. Firstly, a rigorous convergence analysis
 769 is required, albeit consistent convergence rates for each local variable are observed in
 770 numerous numerical experiments in this paper. Secondly, the analysis presented in
 771 Section 4.1 may offer an incomplete depiction of the correlation between DOFs and
 772 computational time. This limitation arises from the potential inapplicability of the
 773 discussed insights to iterative solvers, which are heavily relied upon to address large-
 774 scale problems (i.e., see [41, 87, 77] for the discussion about the design of scalable solver
 775 in the context of DG, HDG and EDG with application to flow and MHD problems.).
 776 Therefore, the development of a scalable iterative approach that demonstrates efficacy
 777 across a wide spectrum of Reynolds and magnetic Reynolds numbers is necessary.
 778 Finally, it is found that the Picard solver does not converge in some cases on three-
 779 dimensional meshes in the regime of high Reynolds number and magnetic Reynolds
 780 number. The observation implies that the linear map $(\mathbf{w}, \mathbf{d}) \mapsto (\mathbf{u}, \mathbf{b})$ can be largely
 781 affected by various factors. Investigating the contraction of this map could provide
 782 insights for devising a more robust algorithm. These topics are non-trivial and could
 783 each be expanded into individual papers. Thus, we aim to address them in our future
 784 research agenda.

785 **Acknowledgments.** This research is partially funded by the National Science
 786 Foundation awards NSF-OAC-2212442, NSF-2108320, NSF-1808576 and NSF-CAREER-
 787 1845799; by the Department of Energy award DE-SC0018147 and DE-SC0022211.

789 [1] O. M. AL-HABAHBEEH, M. AL-SAQQA, M. SAFI, AND T. ABO KHATER, *Review of magnetohy-
790 drodynamic pump applications*, Alexandria Engineering Journal, 55 (2016), pp. 1347–1358,
791 <https://doi.org/10.1016/j.aej.2016.03.001>.

792 [2] P. R. AMESTOY, I. S. DUFF, J.-Y. L'EXCELLENT, AND J. KOSTER, *A fully asynchronous multi-
793 frontal solver using distributed dynamic scheduling*, SIAM Journal on Matrix Analysis and
794 Applications, 23 (2001), pp. 15–41, <https://doi.org/10.1137/S0895479899358194>.

795 [3] P. R. AMESTOY, A. GUERMOUCHE, J.-Y. L'EXCELLENT, AND S. PRALET, *Hybrid scheduling
796 for the parallel solution of linear systems*, Parallel Computing, 32 (2006), pp. 136–156,
797 <https://doi.org/https://doi.org/10.1016/j.parco.2005.07.004>. Parallel Matrix Algorithms
798 and Applications (PMAA'04).

799 [4] R. ANDERSON, J. ANDREJ, A. BARKER, J. BRAMWELL, J.-S. CAMIER, J. CERVENY, V. DOBREV,
800 Y. DUDOUIT, A. FISHER, T. KOLEV, W. PAZNER, M. STOWELL, V. TOMOV, I. AKKERMANN,
801 J. DAHM, D. MEDINA, AND S. ZAMPINI, *MFEM: A modular finite element methods library*,
802 Computers & Mathematics with Applications, 81 (2021), pp. 42–74, <https://doi.org/10.1016/j.camwa.2020.06.009>.

803 [5] F. ARMERO AND J. C. SIMO, *Long-term dissipativity of time-stepping algorithms for an abstract
804 evolution equation with applications to the incompressible MHD and Navier-Stokes equa-
805 tions*, Computer Methods in Applied Mechanics and Engineering, 131 (1996), pp. 41–90,
806 [https://doi.org/10.1016/0045-7825\(95\)00931-0](https://doi.org/10.1016/0045-7825(95)00931-0).

807 [6] D. N. ARNOLD, *An interior penalty finite element method with discontinuous elements*, SIAM
808 Journal on Numerical Analysis, 19 (1982), pp. 742–760, <https://doi.org/10.1137/0719052>.
809 Publisher: Society for Industrial and Applied Mathematics.

810 [7] G. A. BAKER, *Finite element methods for elliptic equations using nonconforming ele-
811 ments*, Mathematics of Computation, 31 (1977), pp. 45–59, <https://doi.org/10.1090/S0025-5718-1977-0431742-5>.

812 [8] G. A. BAKER, W. N. JUREIDINI, AND O. A. KARAKASHIAN, *Piecewise solenoidal vector fields
813 and the Stokes problem*, SIAM Journal on Numerical Analysis, 27 (1990), pp. 1466–1485.
814 Publisher: Society for Industrial and Applied Mathematics.

815 [9] S. BALAY, S. ABHYANKAR, M. ADAMS, S. BENSON, J. BROWN, P. BRUNE, K. BUSCHELMAN,
816 E. CONSTANTINESCU, L. DALCIN, A. DENER, V. EIJKHOUT, J. FAIBUSOWITSCH, W. GROPP,
817 V. HAPLA, T. ISAAC, P. JOLIVET, D. KARPEEV, D. KAUSHIK, M. KNEPLEY, F. KONG,
818 S. KRUGER, D. MAY, L. MCINNES, R. MILLS, L. MITCHELL, T. MUNSON, J. ROMAN,
819 K. RUPP, P. SANAN, J. SARICH, B. SMITH, S. ZAMPINI, H. ZHANG, H. ZHANG, AND
820 J. ZHANG, *PETSc/TAO users manual (rev. 3.19)*, 2023, <https://doi.org/10.2172/1968587>.

821 [10] S. BALAY, W. D. GROPP, L. C. MCINNES, AND B. F. SMITH, *Efficient management of par-
822 allelism in object-oriented numerical software libraries*, in Modern Software Tools for Sci-
823 entific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhäuser, 1997,
824 pp. 163–202, https://doi.org/10.1007/978-1-4612-1986-6_8.

825 [11] D. S. BALSARA AND D. S. SPICER, *A staggered mesh algorithm using high order godunov
826 fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations*, Journal of
827 Computational Physics, 149 (1999), pp. 270–292, <https://doi.org/10.1006/jcph.1998.6153>.

828 [12] F. BASSI, A. CRIVELLINI, D. A. DI PIETRO, AND S. REBAY, *An artificial compressibility flux
829 for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations*,
830 Journal of Computational Physics, 218 (2006), pp. 794–815, <https://doi.org/10.1016/j.jcp.2006.03.006>.

831 [13] F. BASSI, A. CRIVELLINI, D. A. DI PIETRO, AND S. REBAY, *An implicit high-order discontinuous
832 Galerkin method for steady and unsteady incompressible flows*, Computers & Fluids, 36
833 (2007), pp. 1529–1546, <https://doi.org/10.1016/j.compfluid.2007.03.012>.

834 [14] P. BASTIAN AND B. RIVIÈRE, *Superconvergence and $h(div)$ projection for discontinuous
835 Galerkin methods*, International Journal for Numerical Methods in
836 Fluids, 42 (2003), pp. 1043–1057, <https://doi.org/10.1002/fld.562>. eprint:
837 <https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.562>.

838 [15] M. BENZI, G. H. GOLUB, AND J. LIESEN, *Numerical solution of saddle point problems*, Acta
839 Numerica, 14 (2005), p. 1–137, <https://doi.org/10.1017/S0962492904000212>.

840 [16] D. BOFFI, F. BREZZI, AND M. FORTIN, *Mixed Finite Element Methods and Applications*, vol. 44
841 of Springer Series in Computational Mathematics, Springer, 2013, <https://doi.org/10.1007/978-3-642-36519-5>.

842 [17] M. BOHM, A. R. WINTERS, G. J. GASSNER, D. DERIGS, F. HINDENLANG, AND J. SAUR, *An
843 entropy stable nodal discontinuous Galerkin method for the resistive MHD equations.
844 part i: Theory and numerical verification*, Journal of Computational Physics, 422 (2020),

849 p. 108076, <https://doi.org/10.1016/j.jcp.2018.06.027>.

850 [18] L. BOTTI AND D. A. DI PIETRO, *A pressure-correction scheme for convection-dominated in-*
 851 *compressible flows with discontinuous velocity and continuous pressure*, Journal of Com-
 852 *putational Physics*, 230 (2011), pp. 572–585, <https://doi.org/10.1016/j.jcp.2010.10.004>.

853 [19] J. U. BRACKBILL AND D. C. BARNES, *The effect of nonzero $\nabla \cdot b$ on the numerical solu-*
 854 *tion of the magnetohydrodynamic equations*, Journal of Computational Physics, 35 (1980),
 855 pp. 426–430, [https://doi.org/10.1016/0021-9991\(80\)90079-0](https://doi.org/10.1016/0021-9991(80)90079-0).

856 [20] F. H. BUSSE, *Magnetohydrodynamics of the earth's dynamo*, Annual Review of Fluid Mechan-
 857 ics, 10 (1978), pp. 435–462, <https://doi.org/10.1146/annurev.fl.10.010178.002251>. _eprint:
 858 <https://doi.org/10.1146/annurev.fl.10.010178.002251>.

859 [21] J. CARRERO, B. COCKBURN, AND D. SCHÖTZAU, *Hybridized globally divergence-free LDG meth-
 860 ods. part i: The Stokes problem*, Mathematics of Computation, 75 (2006), pp. 533–563.
 861 Publisher: American Mathematical Society.

862 [22] A. CESMELIOGLU, B. COCKBURN, N. C. NGUYEN, AND J. PERAIRE, *Analysis of HDG methods
 863 for oseen equations*, Journal of Scientific Computing, 55 (2013), pp. 392–431, <https://doi.org/10.1007/s10915-012-9639-y>.

864 [23] C. CIUCU, P. FERNANDEZ, A. CHRISTOPHE, N. C. NGUYEN, AND J. PERAIRE, *Implicit hy-
 865 ybridized discontinuous Galerkin methods for compressible magnetohydrodynamics*, Else-
 866 vier, (2020). Accepted: 2021-10-27T20:36:09Z Publisher: Elsevier BV.

867 [24] B. COCKBURN, *Discontinuous Galerkin methods for computational fluid dynamics*, in
 868 Encyclopedia of Computational Mechanics Second Edition, John Wiley & Sons,
 869 Ltd, 2017, pp. 1–63, <https://doi.org/10.1002/9781119176817.ecm2053>. _eprint:
 870 <https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119176817.ecm2053>.

871 [25] B. COCKBURN, J. GOPALAKRISHNAN, AND R. LAZAROV, *Unified hybridization of discontinuous
 872 Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems*,
 873 SIAM Journal on Numerical Analysis, 47 (2009), pp. 1319–1365, <https://doi.org/10.1137/070706616>. Publisher: Society for Industrial and Applied Mathematics.

874 [26] B. COCKBURN, J. GOPALAKRISHNAN, N. C. NGUYEN, J. PERAIRE, AND F.-J. SAYAS,
 875 *Analysis of HDG methods for stokes flow*, 80, pp. 723–723, <https://doi.org/10.1090/S0025-5718-2010-02410-X>.

876 [27] B. COCKBURN, G. KANSCHAT, AND D. SCHÖTZAU, *A locally conservative LDG method for the in-
 877 compressible Navier-Stokes equations*, Mathematics of Computation, 74 (2005), pp. 1067–
 878 1095. Publisher: American Mathematical Society.

879 [28] B. COCKBURN, G. KANSCHAT, AND D. SCHÖTZAU, *A note on discontinuous Galerkin divergence-
 880 free solutions of the Navier-Stokes equations*, Journal of Scientific Computing, 31 (2007),
 881 pp. 61–73, <https://doi.org/10.1007/s10915-006-9107-7>.

882 [29] B. COCKBURN, G. KANSCHAT, AND D. SCHÖTZAU, *An equal-order DG method for the incom-
 883 pressible Navier-Stokes equations*, Journal of Scientific Computing, 40 (2009), pp. 188–210,
 884 <https://doi.org/10.1007/s10915-008-9261-1>.

885 [30] B. COCKBURN AND F.-J. SAYAS, *Divergence-conforming HDG methods for Stokes flows*,
 886 Mathematics of Computation, 83 (2014), pp. 1571–1598, <https://doi.org/10.1090/S0025-5718-2014-02802-0>.

887 [31] P. A. DAVIDSON, *Magnetohydrodynamics in materials processing*, Annual Review of Fluid Me-
 888 chanics, 31 (1999), pp. 273–300, <https://doi.org/10.1146/annurev.fluid.31.1.273>. _eprint:
 889 <https://doi.org/10.1146/annurev.fluid.31.1.273>.

890 [32] P. A. DAVIDSON, *An Introduction to Magnetohydrodynamics*, Cambridge Texts in
 891 Applied Mathematics, Cambridge University Press, 2001, <https://doi.org/10.1017/CBO9780511626333>.

892 [33] A. DEDNER, F. KEMM, D. KRÖNER, C. D. MUNZ, T. SCHNITZER, AND M. WESENBERG, *Hyper-
 893 bolic divergence cleaning for the MHD equations*, Journal of Computational Physics, 175
 894 (2002), pp. 645–673, <https://doi.org/10.1006/jcph.2001.6961>.

895 [34] D. DERIGS, A. R. WINTERS, G. J. GASSNER, AND S. WALCH, *A novel high-order, entropy
 896 stable, 3d AMR MHD solver with guaranteed positive pressure*, Journal of Computational
 897 Physics, 317 (2016), pp. 223–256, <https://doi.org/10.1016/j.jcp.2016.04.048>.

898 [35] J. DOUGLAS AND T. DUPONT, *Interior penalty procedures for elliptic and parabolic Galerkin
 899 methods*, in Computing Methods in Applied Sciences, R. Glowinski and J. L. Lions,
 900 eds., Lecture Notes in Physics, Springer, 1976, pp. 207–216, <https://doi.org/10.1007/BFb0120591>.

901 [36] H. ELMAN, D. SILVESTER, AND A. WATHEN, *Finite Elements and Fast Iterative Solvers: with
 902 Applications in Incompressible Fluid Dynamics*, Oxford University Press, 06 2014, <https://doi.org/10.1093/acprof:oso/9780199678792.001.0001>.

903 [37] A. ERN AND J.-L. GUERMOND, *Finite Elements I: Approximation and Interpolation*, vol. 72 of

911 Texts in Applied Mathematics, Springer International Publishing, 2021, <https://doi.org/10.1007/978-3-030-56341-7>.

912 [38] C. R. EVANS AND J. F. HAWLEY, *Simulation of magnetohydrodynamic flows: A constrained*
 913 *transport model*, The Astrophysical Journal, 332 (1988), p. 659, <https://doi.org/10.1086/166684>. ADS Bibcode: 1988ApJ...332..659E.

914 [39] L. C. EVANS, *Partial differential equations*, vol. 19, American Mathematical Society, 2022.

915 [40] P. FERNANDEZ, N. C. NGUYEN, AND J. PERAIRE, *The hybridized discontinuous galerkin method*
 916 *for implicit large-eddy simulation of transitional turbulent flows*, 336, pp. 308–329, <https://doi.org/10.1016/j.jcp.2017.02.015>.

917 [41] K. FIDKOWSKI, *Analysis of iterative solvers for hybridized discontinuous Galerkin*
 918 *methods*, in AIAA AVIATION 2021 FORUM, American Institute of Aero-
 919 *nautics and Astronautics*, 2021, <https://doi.org/10.2514/6.2021-2718>. _eprint:
 920 <https://arc.aiaa.org/doi/pdf/10.2514/6.2021-2718>.

921 [42] C. FORSBERG, *The advanced high-temperature reactor: High-temperature fuel, liquid salt*
 922 *coolant, liquid-metal-reactor plant*, Progress in Nuclear Energy, 47 (2005), pp. 32–43,
 923 <https://doi.org/10.1016/j.pnucene.2005.05.002>.

924 [43] G. FU, *An explicit divergence-free DG method for incompressible magnetohydrodynamics*,
 925 *Journal of Scientific Computing*, 79 (2019), pp. 1737–1752, <https://doi.org/10.1007/s10915-019-00909-2>.

926 [44] J.-F. GERBEAU, *A stabilized finite element method for the incompressible magnetohydrody-
 927 *namic equations**, Numerische Mathematik, 87 (2000), pp. 83–111, <https://doi.org/10.1007/s002110000193>.

928 [45] J.-F. GERBEAU, C. LE BRIS, AND T. LELIÈVRE, *Mathematical methods for the magnetohydro-
 929 *dynamics of liquid metals**, Clarendon Press, 2006.

930 [46] V. GIRAUT AND P.-A. RAVIART, *Finite Element Methods for Navier-Stokes Equations*, vol. 5 of
 931 Springer Series in Computational Mathematics, Springer, 1986, <https://doi.org/10.1007/978-3-642-61623-5>.

932 [47] T. A. GLEASON, E. L. PETERS, AND J. A. EVANS, *A divergence-conforming hybridized discontinuous Galerkin method for the incompressible magnetohydrodynamics equations*, 2022,
 933 <https://doi.org/10.48550/arXiv.2201.01906>, [https://arxiv.org/abs/2201.01906\[cs,math\]](https://arxiv.org/abs/2201.01906[cs,math]).

934 [48] J. P. H. GOEDBLOED AND S. POEDTS, *Principles of Magnetohydrodynamics: With Applications*
 935 *to Laboratory and Astrophysical Plasmas*, Cambridge University Press, 2004, <https://doi.org/10.1017/CBO9780511616945>.

936 [49] M. GOOSSENS, *An Introduction to Plasma Astrophysics and Magnetohydrodynamics*, vol. 294
 937 of Astrophysics and Space Science Library, Springer Netherlands, 2003, <https://doi.org/10.1007/978-94-007-1076-4>.

938 [50] C. GREIF, D. LI, D. SCHÖTZAU, AND X. WEI, *A mixed finite element method with exactly*
 939 *divergence-free velocities for incompressible magnetohydrodynamics*, Computer Methods
 940 *in Applied Mechanics and Engineering*, 199 (2010), pp. 2840–2855, <https://doi.org/10.1016/j.cma.2010.05.007>.

941 [51] M. D. GUNZBURGER, A. J. MEIR, AND J. S. PETERSON, *On the existence, uniqueness, and*
 942 *finite element approximation of solutions of the equations of stationary, incompressible*
 943 *magnetohydrodynamics*, Mathematics of Computation, 56 (1991), pp. 523–563, <https://doi.org/10.1090/S0025-5718-1991-1066834-0>.

944 [52] J. GUZMÁN, C.-W. SHU, AND F. A. SEQUEIRA, *$H(div)$ conforming and DG methods for incom-
 945 *pressible Euler's equations**, IMA Journal of Numerical Analysis, 37 (2017), pp. 1733–1771,
 946 <https://doi.org/10.1093/imanum/drw054>.

947 [53] S. GÜZÉY, B. COCKBURN, AND H. K. STOLARSKI, *The embedded discontinuous Galerkin*
 948 *method: application to linear shell problems*, International Journal for Numerical Meth-
 949 *ods in Engineering*, 70 (2007), pp. 757–790, <https://doi.org/10.1002/nme.1893>. _eprint:
 950 <https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1893>.

951 [54] J. S. HESTHAVEN AND T. WARBURTON, *Nodal Discontinuous Galerkin Methods*, vol. 54 of Texts
 952 in Applied Mathematics, Springer, 2008, <https://doi.org/10.1007/978-0-387-72067-8>.

953 [55] T. L. HORVÁTH AND S. RHEBERGEN, *An exactly mass conserving space-time embedded-
 954 *hybridized discontinuous Galerkin method for the Navier-Stokes equations on moving do-
 955 *mains**, Journal of Computational Physics, 417 (2020), p. 109577, <https://doi.org/10.1016/j.jcp.2020.109577>.*

956 [56] T. L. HORVÁTH AND S. RHEBERGEN, *A conforming sliding mesh technique for an embedded-
 957 *hybridized discontinuous Galerkin discretization for fluid-rigid body interaction**, Interna-
 958 *tional Journal for Numerical Methods in Fluids*, 94 (2022), pp. 1784–1809, <https://doi.org/10.1002/fld.5127>. _eprint:
 959 <https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.5127>.

960 [57] P. HOUSTON, D. SCHÖTZAU, AND X. WEI, *A mixed DG method for linearized incompressible*

magnetohydrodynamics, Journal of Scientific Computing, 40 (2009), pp. 281–314, <https://doi.org/10.1007/s10915-008-9265-x>.

[58] P. JANHUNEN, *A positive conservative method for magnetohydrodynamics based on HLL and roe methods*, Journal of Computational Physics, 160 (2000), pp. 649–661, <https://doi.org/10.1006/jcph.2000.6479>.

[59] V. JOHN, A. LINKE, C. MERDON, M. NEILAN, AND L. G. REBOLZ, *On the divergence constraint in mixed finite element methods for incompressible flows*, SIAM Review, 59 (2017), pp. 492–544, <https://doi.org/10.1137/15M1047696>. Publisher: Society for Industrial and Applied Mathematics.

[60] O. A. KARAKASHIAN AND W. N. JUREIDINI, *A nonconforming finite element method for the stationary Navier–Stokes equations*, SIAM Journal on Numerical Analysis, 35 (1998), pp. 93–120. Publisher: Society for Industrial and Applied Mathematics.

[61] B. KLEIN, F. KUMMER, AND M. OBERLACK, *A SIMPLE based discontinuous Galerkin solver for steady incompressible flows*, Journal of Computational Physics, 237 (2013), pp. 235–250, <https://doi.org/10.1016/j.jcp.2012.11.051>.

[62] C. KLINGENBERG, F. PÖRNER, AND Y. XIA, *An efficient implementation of the divergence free constraint in a discontinuous Galerkin method for magnetohydrodynamics on unstructured meshes*, Communications in Computational Physics, 21 (2017), pp. 423–442, <https://doi.org/10.4208/cicp.180515.230616a>. Publisher: Cambridge University Press.

[63] F. KRAUSE AND K.-H. RÄDLER, *Mean-field magnetohydrodynamics and dynamo theory*, Elsevier, 2016.

[64] A. LA SPINA AND J. FISH, *A superconvergent hybridizable discontinuous Galerkin method for weakly compressible magnetohydrodynamics*, Computer Methods in Applied Mechanics and Engineering, 388 (2022), p. 114278, <https://doi.org/10.1016/j.cma.2021.114278>.

[65] R. J. LABEUR AND G. N. WELLS, *A Galerkin interface stabilisation method for the advection–diffusion and incompressible Navier–Stokes equations*, Computer Methods in Applied Mechanics and Engineering, 196 (2007), pp. 4985–5000, <https://doi.org/10.1016/j.cma.2007.06.025>.

[66] R. J. LABEUR AND G. N. WELLS, *Energy stable and momentum conserving hybrid finite element method for the incompressible Navier–Stokes equations*, SIAM Journal on Scientific Computing, 34 (2012), pp. A889–A913, <https://doi.org/10.1137/100818583>. Publisher: Society for Industrial and Applied Mathematics.

[67] P. L. LEDERER, C. LEHRENFELD, AND J. SCHÖBERL, *Hybrid discontinuous Galerkin methods with relaxed $h(\text{div})$ -conformity for incompressible flows. part i*, SIAM Journal on Numerical Analysis, 56 (2018), pp. 2070–2094, <https://doi.org/10.1137/17M1138078>. Publisher: Society for Industrial and Applied Mathematics.

[68] J. J. LEE, S. SHANNON, T. BUI-THANH, AND J. N. SHADID, *Analysis of an HDG method for linearized incompressible resistive MHD equations*, 2019, <https://doi.org/10.48550/arXiv.1702.05124>, <https://arxiv.org/abs/1702.05124>[math].

[69] J. J. LEE, S. J. SHANNON, T. BUI-THANH, AND J. N. SHADID, *Analysis of an HDG method for linearized incompressible resistive MHD equations*, SIAM Journal on Numerical Analysis, 57 (2019), pp. 1697–1722, <https://doi.org/10.1137/18M1166729>. Publisher: Society for Industrial and Applied Mathematics.

[70] C. LEHRENFELD, *Hybrid discontinuous Galerkin methods for solving incompressible flow problems*, Rheinisch-Westfälischen Technischen Hochschule Aachen, 111 (2010).

[71] C. LEHRENFELD AND J. SCHÖBERL, *High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows*, Computer Methods in Applied Mechanics and Engineering, 307 (2016), pp. 339–361, <https://doi.org/10.1016/j.cma.2016.04.025>.

[72] F. LI AND C.-W. SHU, *Locally divergence-free discontinuous Galerkin methods for MHD equations*, Journal of Scientific Computing, 22 (2005), pp. 413–442, <https://doi.org/10.1007/s10915-004-4146-4>.

[73] A. LINKE, *On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime*, Computer Methods in Applied Mechanics and Engineering, 268 (2014), pp. 782–800, <https://doi.org/10.1016/j.cma.2013.10.011>.

[74] A. LINKE AND C. MERDON, *Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier–Stokes equations*, Computer Methods in Applied Mechanics and Engineering, 311 (2016), pp. 304–326, <https://doi.org/10.1016/j.cma.2016.08.018>.

[75] P. LONDRILLO AND L. D. ZANNA, *High-order upwind schemes for multidimensional magnetohydrodynamics*, The Astrophysical Journal, 530 (2000), p. 508, <https://doi.org/10.1086/308344>. Publisher: IOP Publishing.

1035 [76] K. MIYAMOTO, *Plasma physics for nuclear fusion*, Cambridge, (1980).

1036 [77] S. MURALIKRISHNAN, S. SHANNON, T. BUI-THANH, AND J. N. SHADID, *A multilevel block pre- 1037 conditioner for the HDG trace system applied to incompressible resistive MHD*, Computer 1038 Methods in Applied Mechanics and Engineering, 404 (2023), p. 115775, <https://doi.org/10.1016/j.cma.2022.115775>.

1039 [78] N. C. NGUYEN, J. PERAIRE, AND B. COCKBURN, *An implicit high-order hybridizable discontin- 1040 uous galerkin method for the incompressible navier–stokes equations*, 230, pp. 1147–1170, 1041 <https://doi.org/10.1016/j.jcp.2010.10.032>.

1042 [79] N. C. NGUYEN, J. PERAIRE, AND B. COCKBURN, *A class of embedded discontinuous Galerkin 1043 methods for computational fluid dynamics*, Journal of Computational Physics, 302 (2015), 1044 pp. 674–692, <https://doi.org/10.1016/j.jcp.2015.09.024>.

1045 [80] J. PERAIRE, C. NGUYEN, AND B. COCKBURN, *An embedded discontinuous Galerkin method for 1046 the compressible Euler and Navier-Stokes equations*, in 20th AIAA Computational Fluid 1047 Dynamics Conference, 2011, p. 3228.

1048 [81] E. L. PETERS AND J. A. EVANS, *A divergence-conforming hybridized discontinuous Galerkin 1049 method for the incompressible Reynolds-averaged Navier-Stokes equations*, International 1050 Journal for Numerical Methods in Fluids, 91 (2019), pp. 112–133, <https://doi.org/10.1002/fld.4745>. eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.4745>.

1051 [82] K. G. POWELL, P. L. ROE, T. J. LINDE, T. I. GOMBOSI, AND D. L. DE ZEEUW, *A solution- 1052 adaptive upwind scheme for ideal magnetohydrodynamics*, Journal of Computational 1053 Physics, 154 (1999), pp. 284–309, <https://doi.org/10.1006/jcph.1999.6299>.

1054 [83] W. QIU AND K. SHI, *A mixed DG method and an HDG method for incompressible magne- 1055 tohydrodynamics*, IMA Journal of Numerical Analysis, 40 (2020), pp. 1356–1389, <https://doi.org/10.1093/imanum/dry095>.

1056 [84] S. RHEBERGEN AND B. COCKBURN, *A space–time hybridizable discontinuous Galerkin method 1057 for incompressible flows on deforming domains*, Journal of Computational Physics, 231 1058 (2012), pp. 4185–4204, <https://doi.org/10.1016/j.jcp.2012.02.011>.

1059 [85] S. RHEBERGEN AND G. N. WELLS, *Analysis of a hybridized/interface stabilized finite element 1060 method for the Stokes equations*, SIAM Journal on Numerical Analysis, 55 (2017), pp. 1982– 1061 2003, <https://doi.org/10.1137/16M1083839>. Publisher: Society for Industrial and Applied 1062 Mathematics.

1063 [86] S. RHEBERGEN AND G. N. WELLS, *A hybridizable discontinuous Galerkin method for the 1064 Navier–Stokes equations with pointwise divergence-free velocity field*, Journal of Scientific 1065 Computing, 76 (2018), pp. 1484–1501, <https://doi.org/10.1007/s10915-018-0671-4>.

1066 [87] S. RHEBERGEN AND G. N. WELLS, *An embedded–hybridized discontinuous Galerkin finite 1067 element method for the Stokes equations*, Computer Methods in Applied Mechanics and 1068 Engineering, 358 (2020), p. 112619, <https://doi.org/10.1016/j.cma.2019.112619>.

1069 [88] J. N. SHADID, R. P. PAWLOWSKI, J. W. BANKS, L. CHACÓN, P. T. LIN, AND R. S. TUMINARO, 1070 *Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized 1071 FE methods*, Journal of Computational Physics, 229 (2010), pp. 7649–7671, <https://doi.org/10.1016/j.jcp.2010.06.018>.

1072 [89] J. N. SHADID, R. P. PAWLOWSKI, E. C. CYR, R. S. TUMINARO, L. CHACÓN, AND P. D. WE- 1073 BER, *Scalable implicit incompressible resistive MHD with stabilized FE and fully-coupled 1074 newton-krylov-AMG*, Computer Methods in Applied Mechanics and Engineering, 304 1075 (2016), pp. 1–25, <https://doi.org/10.1016/j.cma.2016.01.019>.

1076 [90] F. L. TABARÉS, *Present status of liquid metal research for a fusion reactor*, Plasma Physics and 1077 Controlled Fusion, 58 (2015), p. 014014, <https://doi.org/10.1088/0741-3335/58/1/014014>. 1078 Publisher: IOP Publishing.

1079 [91] G. TÓTH, *The $\nabla \cdot b = 0$ constraint in shock-capturing magnetohydrodynamics codes*, Journal of 1080 Computational Physics, 161 (2000), pp. 605–652, <https://doi.org/10.1006/jcph.2000.6519>.

1081 [92] J. WANG AND X. YE, *New finite element methods in computational fluid dynamics by $h(div)$ 1082 elements*, SIAM Journal on Numerical Analysis, 45 (2007), pp. 1269–1286, <https://doi.org/10.1137/060649227>.

1083 [93] M. F. WHEELER, *An elliptic collocation-finite element method with interior penalties*, SIAM 1084 Journal on Numerical Analysis, 15 (1978), pp. 152–161, <https://doi.org/10.1137/0715010>. 1085 Publisher: Society for Industrial and Applied Mathematics.

1086 [94] S. YAKOVLEV, L. XU, AND F. LI, *Locally divergence-free central discontinuous Galerkin methods 1087 for ideal MHD equations*, Journal of Computational Science, 4 (2013), pp. 80–91, <https://doi.org/10.1016/j.jocs.2012.05.002>.