®

Check for
updates

Satisfiability Modulo Theories:
A Beginner’s Tutorial

Clark Barrett!®) @, Cesare Tinelli?®, Haniel Barbosa®®, Aina Niemetz'®,
Mathias Preiner'®, Andrew Reynolds?®, and Yoni Zohar*

M
Artifact
Evaluation
* Kk

Reusable

FM 1 iversi
Arfifact Stanford University, Stanford, USA

Evulticiion barrett@cs.stanford.edu
2 The University of Iowa, Iowa City, USA
3 Universidade Federal de Minas Gerais,

Belo Horizonte, Brazil

4 Bar-Tlan University, Ramat Gan, Israel

Abstract. Great minds have long dreamed of creating machines that
can function as general-purpose problem solvers. Satisfiability modulo
theories (SMT) has emerged as one pragmatic realization of this dream,
providing significant expressive power and automation. This tutorial is a
beginner’s guide to SMT. It includes an overview of SMT and its formal
foundations, a catalog of the main theories used in SMT solvers, and
illustrations of how to obtain models and proofs. Throughout the tuto-
rial, examples and exercises are provided as hands-on activities for the
reader. They can be run using either Python or the SMT-LIB language,
using either the cvch or the Z3 SMT solver.

1 Introduction

Great minds have long dreamed of creating machines that can reason deduc-
tively, that is, from a set of assumptions, determine whether a particular con-
clusion logically follows. The question of whether such a machine is possible was
posed formally as a grand challenge by the famous mathematician David Hilbert
in 1928, who called it the “Entscheidungsproblem” (decision problem) [24]. In
1936, both Church and Turing showed that, in general, this is impossible—the
problem is undecidable [13,42]. Undeterred, researchers in automated reasoning
have searched for ways to solve either special cases of the problem that are decid-
able or to find heuristics that work well in practice. Satisfiability modulo theories
(SMT) has emerged as an approach that seems to fill a sweet spot in this search
space. SMT leverages a rich collection of decidable theories to provide consid-
erable expressive power without sacrificing decidability. SMT also permits some
queries over problems that are undecidable or whose decidability is unknown.
For these, it employs powerful heuristics that often work well in practice.

This tutorial is an introduction to SMT for new users. We explain what kinds
of problems are suitable for SMT solvers, describe the capabilities of modern
solvers, and provide guidance on how to encode problems as SMT queries.
© The Author(s) 2025

A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 571-596, 2025.
https://doi.org/10.1007/978-3-031-71177-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_31&domain=pdf
http://orcid.org/0000-0002-9522-3084
http://orcid.org/0000-0002-6726-775X
http://orcid.org/0000-0003-0188-2300
http://orcid.org/0000-0003-2600-5283
http://orcid.org/0000-0002-7142-6258
http://orcid.org/0000-0002-3529-8682
http://orcid.org/0000-0002-2972-6695
https://doi.org/10.1007/978-3-031-71177-0_31

572 C. Barrett et al.

Throughout the tutorial, we provide examples and exercises to illustrate the
concepts being explained. Unless otherwise stated, the exercises can be com-
pleted using either the cve5 [3] or the Z3 SMT solver [32], through either their
Python interface or their textual interface based on the SMT-LIB 2 format [§].
The cvch website at cveb.github.io contains documentation that can be used as
a reference to supplement the material in this tutorial. An online version of the
tutorial is also available on that site by clicking on Tutorials. To work through
the examples and exercises, we recommend one of the following options.

A) To use a Python API for SMT, first create a virtual environment.

python3 -m venv smt-tutorial
source smt-tutorial/bin/activate

Next, install cvch’s Python API or Z3’s Python API, or both.

python3 -m pip install cvch
python3 -m pip install z3-solver

cveh is distributed under the BSD 3-clause license. Some features, however,
such as its finite field solver (see Sect. 4.9), are only available in an extended
version of cvch distributed under the GNU General Public License (GPL).!
Since GPL is a problem for some users, the GPL version is not built or
distributed by default. To install the GPL version of cvch, use:

’pythons -m pip install cvc5-gpl

|

Once a solver API is installed, you can copy example Python code into a
script file, e.g., Example.py, and then type:

’pythons Example.py

|

Note that, for the examples below, if you are using Z3 instead of cvch, you
must replace the first line of each Python code snippet with:

’from z3 import *

B) Executables for cvch and Z3 are available for download. For cvc5h, go to
the cvch website, click on Downloads, and follow the link to the release
page on GitHub. Alternatively, for 73, go to the Z3 releases page at
github.com/Z3Prover/z3/releases. From either release page, download the
latest release compatible with your machine (for cva5, choose a GPL down-
load if you want support for finite fields). Once you unzip the downloaded
archive, the executable will be in the bin directory. Thus, if the unzipped
directory is called release-dir, and you have downloaded cvC5, you can
run an SMT-LIB example called Example.smt2 by typing:

release-dir/bin/cvct Example.smt2

from your shell’s command line. If you downloaded Z3, type instead:

! The finite field solver uses the CoCoA library [1], which has a GPL license.

https://cvc5.github.io
https://cvc5.github.io/tutorials.html
https://cvc5.github.io/downloads.html
https://github.com/Z3Prover/z3/releases

Satisfiability Modulo Theories: A Beginner’s Tutorial 573

’release—dir/bin/z3 Example.smt2

C) From the cvch website, click on Try cveb online. This links to a page that
provides a web interface for running cvc5 on scripts in the SMT-LIB format.

This tutorial has been tested with cveb 1.2.0, Z3 4.13.0, and Python 3.12.3,
but later releases should work as well. Solver outputs shown below are based
on ¢vch version 1.2.0. Other versions or solvers should produce conceptually
similar results, but the outputs may not be exactly the same. The SMT-LIB
examples are based on version 2.6 of the format [5]. cvch’s Python API was
designed to be a drop-in replacement for Z3’s Python API. The credit for the
design of the Python API thus goes to the Z3 authors.

2 Overview

At an intuitive level, SMT solvers are general-purpose problem solving tools.
They are somewhat similar to calculators, in that the user provides the problem
of interest, and the tool does some calculation to produce an answer. However,
they are much more powerful than a simple calculator.

SMT solvers reason symbolically, as is done in grade school algebra. The user
provides a set of assertions that describe constraints to be satisfied, and the solver
produces a solution satisfying all of the constraints, if there is one. Consider the
following simple example, mimicking a typical algebra word problem.

Example 1. In 10years, Alice will be twice as old as Bob is now, but in 22 years,
Bob will be twice as old as Alice is now. How old are Alice and Bob?

First, let’s see how to solve this using Python.

from cvch5.pythonic import *
a, b = Ints('a b')
solve(a + 10 == 2 * b, b + 22 == 2 * a)

The Pythonic API is designed to be as simple and intuitive as possible. We
introduce the symbols we are using (SMT solvers always require that symbols
be introduced before they are used), and then we call solve, passing in the two
equations in much the same way we would write them naturally. The output is
a simple representation of the solution as a Python list.

[a = 18, b = 14]

Alternatively, SMT solvers can take as input a script written in the SMT-
LIB language [5], a standard developed by the SMT community whose syntax
is similar to that of LISP. Below is the same example written in SMT-LIB.

(set-logic QF_LIA)
(set-option :produce-models true)

(declare-const a Int)
(declare-const b Int)

https://cvc5.github.io/app/

574 C. Barrett et al.

(assert (= (+ a 10) (*x 2 b)))
(assert (= (+ b 22) (x 2 a)))

(check-sat)
(get-model)

The result is:

sat

(

(define-fun a () Int 18)
(define-fun b () Int 14)
)

Notice that the solver replies sat before giving the solution. This is short for
“satisfiable,” a word meaning that there is at least one solution. SMT solvers
can also identify when a set of assertions has no solution. In this case, the solver
replies unsat, which is short for “unsatisfiable.”

Let’s take a closer look at the SMT-LIB input file, which is a sequence of
commands. The command in the first line tells the solver which logic we are
working in. In this case, we are using QF_LIA which stands for quantifier-free lin-
ear integer arithmetic. We explain more about logics in Sect. 4 below. The second
line tells the solver to produce models. A model assigns a concrete meaning to
every user-declared symbol. Without turning this option on, a solver will still
respond with sat or unsat, but it may not be able to provide a model. The next
two lines declare two uninterpreted constants called a and b. Informally, we often
refer to these as variables, because they play the same role that variables do in
math. However, in the automated reasoning literature, a variable typically refers
to a symbol that is bound by a quantifier, whereas an uninterpreted constant is
a symbol whose value is determined by a model. SMT-LIB follows the the latter
terminology. The next two lines create assertions. An assertion is a way of telling
the solver about a formula that we would like to be true in the model that is
produced. Note that the formulas too are specified in a LISP-like prefix syntax.
Finally, the command (check-sat) tells the solver to check whether the set of
assertions made so far is satisfiable, and the command (get-model) (which is
only legal if the solver returns sat) prints values for each uninterpreted constant,
with the guarantee that assigning these values to the constants makes all the
assertions true. The values are printed using legal SMT-LIB syntax in case the
user wants to copy and paste them into a new SMT-LIB script.

Ezercise 1. Consider a modification of Example 1. The first assertion will stay
the same, but for the second, let’s assert that Bob will be twice as old as Alice
in only 20 years. Modify the Python program or SMT-LIB script to reflect the
new set of constraints. What output does the SMT solver give?

So far, we have seen the most basic use of an SMT solver. Given a set of
assertions, determine whether there is a solution for them. We now show that
this basic capability can be used to answer several similar questions.

Suppose we have a set X of assumptions about the world, and we want to
know whether some hypothetical Y is possible under those assumptions. If we

Satisfiability Modulo Theories: A Beginner’s Tutorial 575

can express X and Y as SMT formulas, then an SMT solver can answer the
question. In fact, we simply assert each assumption in X as well as the formula
representing Y and check whether this set of assertions is satisfiable.

Example 2. Let x and y be 32-bit integers, with & a multiple of 2. Is it possible
for the machine arithmetic product of x and y to be 17

For this problem, we’ll use bit-vectors. SMT solvers use bit-vectors to model
machine arithmetic and other operations on fixed-size vectors of bits. The SMT-
LIB encoding is as follows.

(set-logic QF_BV)

(declare-const x (_ BitVec 32))
(declare-const y (_ BitVec 32))
(declare-const z (_ BitVec 32))

(assert (= x (bvmul z (_ bv2 32))))
(assert (= (bvmul x y) (_ bvi 32)))

(check-sat)

This time, we use the logic QF_BV which stands for quantifier-free bit-vectors.
The underscore symbol _ is used in SMT-LIB to indicate that the next symbol
is indexed by the following argument. It is used to specify the bit-vector size
in this example. The bvmul symbol represents bit-vector multiplication, and the
notation bvX is the bit-vector constant whose value, in decimal notation, is X.
Constant z names the value we must multiply by 2 to get x. Here’s how to solve
it using the Pythonic API. This time, we’ll use the API in a way that more
closely resembles the SMT-LIB script.

from cvch5.pythonic import =*

X, ¥y, z = BitVecs('x y z', 32)
s = SolverFor ('QF_BV')

s.add(x == z * 2)
s.add(x * y == 1)

result = s.check()
print("result: ", result)

There is no solution because an even number does not have a multiplicative
inverse in machine arithmetic (i.e., when doing arithmetic modulo a power of 2).

Exercise 2. Find the multiplicative inverse of 5 (mod 2%).

Another common situation is when we have a set X of assumptions, and we
want to know whether some Y must hold as a consequence. If so, we say that Y
is implied or entailed by X. Again, assuming we can represent X and Y using
formulas, we can start by asserting the formulas representing X . At this point,
however, we do not assert the formula for Y. Instead, we assert its negation. If
the result is unsat, then Y must follow from X. The reasoning is that if it is not
possible for the negation of Y to be true when X is true, then Y itself must be
true. Let’s look at a version of the well-known syllogism about Socrates.

576 C. Barrett et al.

Ezample 8. If all humans are mortal, and Socrates is a human, then must
Socrates be mortal?

The Python code is as follows.

from cvc5.pythonic import *
S = DeclareSort ("S")
Bool = BoolSort ()

Human = Function ("Human", S, Bool)
Mortal = Function("Mortal", S, Bool)
Socrates = Const("Socrates", S)

s = SolverFor ('UF'")

= Const("x", S)

.add (ForAll ([x], Implies(Human(x), Mortal(x))))
.add (Human (Socrates))

.add (Not (Mortal (Socrates)))

nnn K

print (s.check())

The SMT-LIB version of the same problem looks like this.

(set-logic UF)

(declare-sort S 0)
(declare-fun Human (S) Bool)
(declare-fun Mortal (S) Bool)
(declare-const Socrates S)

(assert (forall ((x 8)) (=> (Human x) (Mortal x))))
(assert (Human Socrates))

(assert (not (Mortal Socrates)))

(check-sat)

This problem illustrates a few new encoding tools. First, we use the logic UF
which stands for “uninterpreted functions.” This logic allows us to declare new
function symbols. Note that it is also missing the QF prefix we’ve used above,
which means that quantifiers are also allowed. We declare a new uninterpreted
sort 8. A sort is like a type in programming languages. We use an uninterpreted
sort to represent a class of individual objects that cannot be modeled with the
predefined sorts provided by SMT-LIB, (so far, we’ve seen the predefined sorts
for integers and bit-vectors). Next, we declare two functions, Human and Mortal,
each of which takes a single argument of sort S and returns a Bool, the SMT-LIB
Boolean sort. A function returning a Boolean is also called a predicate. We then
declare an uninterpreted constant called Socrates of sort S. Now, we are ready
to encode the first fact, namely that all humans are mortal. To do so, we use
the universal quantifier, ForAll. The assertion states that for every individual
x of sort S, if the predicate Human holds for that individual, then the predicate
Mortal also holds. The next assertion states that the Human predicate holds
for Socrates. Finally, we want to see whether the fact that Socrates is mortal
necessarily follows from the assumptions. To do this, we assert the negation of
the statement and check for satisfiability. Running the example confirms that
the result is unsatisfiable and thus, indeed, this statement is entailed.

Satisfiability Modulo Theories: A Beginner’s Tutorial 577

What we have presented so far should provide a good high-level idea of what is
possible with SMT solvers.? We cover these ideas in more detail in the following.
In Sect. 3, we briefly describe the formal foundations for SMT. Next, in Sect. 4,
we catalog the different theories supported by SMT solvers and provide examples
of how to use them. We cover the different outputs produced by SMT solvers,
including models and proofs, in Sect. 5, and conclude in Sect. 6 with pointers to
additional resources.

3 Formal Foundations

The satisfiability modulo theories problem can be formalized in many-sorted
first-order logic with equality. We briefly outline the necessary concepts here.
Due to space constraints, we assume some familiarity with basic concepts and
notation from mathematical logic. More details can be found in [21,25].

3.1 Syntax

In first-order logic, one constructs formulas that are statements about individuals
in some domain of discourse and their relationships. Many-sorted logic adds the
possibility of talking about multiple, separate domains.

Signatures. The language of formulas is determined by a vocabulary of sym-
bols, called a signature, which has three main components: sort symbols (such
as Int, Real, Person, etc.) which name, or denote, domains of interest; function
symbols (such as, 4, x, log, mother, father) which denote total functions over the
domains; and relation symbols (such as, =, <, even, married) which denote total
relations over the domains. A signature also specifies the arity of each function
symbol f, which is the number of inputs f takes, as well as its rank, which
consists of the sort of f’s inputs and of f’s output.> We say that f has arity
n and rank o7 ---0,0 in a signature X if f takes n inputs of respective sorts
o1,-..,0, and returns an output of sort o. A function symbol of arity 0 and
rank o (such as 0, 1, true, ...) is also called a constant symbol of sort o. It is
convenient to consider only signatures that have a distinguished sort Bool, for
the Booleans, and treat relation symbols as function symbols whose return type
is Bool. In addition, we assume that every signature contains a distinguished
function symbol &, of rank coBool, denoting the identity relation, for each sort
o of X.

A signature X' is a subsignature of a signature {2, and {2 is a supersignature
of X, if all the sort and function symbols of X' are also in {2 and the function
symbols have the same rank in (2 as they do in X.

2 More sophisticated features and use cases are beyond the scope of this tutorial, but
we plan to provide additional tutorials on more advanced topics in the future.

3 For simplicity, we do not consider the more general case where function symbols
can be overloaded by being assigned more than one arity and/or rank.

578 C. Barrett et al.

Variables, Terms and Formulas. To build formulas, in addition to fixing a
signature X', we also fix a set X of sorted variables, each associated with a sort
o and standing for some element from (the set denoted by) o. We can then build
terms out of variables and function symbols from Y. Given a signature X, a
well-sorted X-term, or just term for short, is defined inductively as follows: ()
a variable or constant symbol of sort ¢ is a term of sort o (i7) if f is a function
symbol of rank o; - - - o,,0, with n > 0, and t4,...,t, are terms of sort oy - - - o,
respectively, then the expression f(ti,...,t,) is a term of sort o; (¢i7) if ¢ is
a term of sort Bool and x is a variable of sort o, then the expressions Jz:0. ¢
and YV x:0. @ are terms of sort Bool. We then identify formulas with terms of sort
Bool. The distinguished symbols V and 3 are quantifier symbols. We say that a
variable x occurs free in a formula ¢ if x occurs in ¢ and either ¢ contains no
quantifier symbols or it has the form Jy:0. ¢’ or Vy:o. ¢', for some variable y,
where x occurs free in ¢'.

3.2 Semantics

For each signature X', the meaning of Y-terms is provided by mathematical
structures called interpretations. A Y'-interpretation Z maps:

— each sort o of X to a non-empty set o, the domain of ¢ in Z, with Bool®
being the binary set {true, false};

— each variable z € X of sort ¢ to an element zZ € o7;

— each function symbol f of rank oy ---0,0 to a total function fZ of type
o x ... x ol — o (and, in particular, each constant symbol ¢ of sort o to

an element ¢ € o7).

We say that o (resp. z, f) denotes the set o (element %, function fZ) in Z.
Every X-interpretation Z extends from variables and function symbols to X-
terms t as follows: (i) a term f(t1,...,t,) evaluates in Z to fZ(t¥,... tZ), the
value returned by function fZ when applied to the elements denoted by t1,. .., t,;
(#4) an existentially quantified formula 3 z:0. ¢ evaluates to true in Z if and only
if ¢ evaluates to true in an interpretation Z[z — a] that maps = to some suitable
a € of and is otherwise identical to Z; (i) a universally quantified formula
YV z:0. ¢ evaluates to true in Z if and only if ¢ evaluates to true in Z[z — a] for
all possible choices of values for z in oZ.

An interpretation Z satisfies a formula ¢ if ¢* = true and falsifies it if
o = false. In the former case, we also say that T is a model of .

The reduct of an 2-interpretation Z to a subsignature X' of {2 is the (unique)
X-interpretation that interprets the symbols of X exactly as Z. Intuitively, the
reduct is obtained by forgetting the symbols of {2 that are not in X.

In the definition of interpretation above, we have not provided a meaning for
the usual Boolean connectives such as =, A,V,= and so on. In SMT, specific
interpretations of function symbols are provided by a theory, as explained next.

Satisfiability Modulo Theories: A Beginner’s Tutorial 579

3.3 Theories

In general, we are not interested in arbitrary interpretations of terms and formu-
las in a signature X' but in interpretations belonging to a specific theory T that
constrain the meaning of the symbols in Y; for instance, that interpret — and A
as logical negation and conjunction, 0,1, 2, ... as the natural numbers, and so on.
Traditionally in logic, a theory is defined by a set of formulas, called axioms: one
considers only Y-interpretations that satisfy all the axioms. In SMT, a theory is,
more generally, a class of interpretations that can be specified axiomatically or in
other ways. More precisely, a Y-theory T is a pair (X, I) where X is a signature
and I is a class of Y-interpretations, however specified. We describe and discuss
several examples of theories commonly used in SMT in the next section.

Given a theory T = (X, 1), we consider not just X-formulas but 2-formulas
for some supersignature {2 of Y. In the context of T, we refer to the symbols
of X as theory symbols and to the additional symbols in (2 as uninterpreted
symbols. For instance, in the theory of reals, we may write a formula of the form
a+ 1 > b where a and b are uninterpreted, or symbolic, constants of sort Real.
Intuitively, while the meaning of 4+ and 1 is fixed by the theory, the meaning of
a and b is not. Hence, we consider the formula satisfiable if there are real values
for @ and b which make the formula evaluate to true. This idea is formalized in
the notion of satisfiability in T.

Satisfiability Modulo a Theory. If T is a Y-theory, a T-interpretation is
any (2-interpretation Z for some supersignature {2 of X' whose restriction to X
differs from an interpretation of T at most in the way it interprets the variables.

An 2-formula ¢ is satisfiable in T if it is satisfied by some T-interpretation
Z—which may interpret the variables of ¢ and the sort, function, and predicate
symbols not in X arbitrarily. The formula is valid in T if it is satisfied by all
T-interpretations. A set @ of 2-formulas entails ¢ in T, written & =1 ¢, if
every T-interpretation that satisfies all formulas in @ satisfies ¢ as well. The set
@ is satisfiable in T if there is a T-interpretation that satisfies all of its formulas.

4 SMT Theories

A key feature of SMT is that the entire problem is parameterized by the choice
of a theory T. This is important because it means that SMT is an algorithmic
framework, rather than a fixed algorithm. Thus, if a particular problem cannot
easily be encoded in any existing theory supported by SMT solvers, one option
is to add support for a new theory which is better suited to the problem. In fact,
this is exactly the process by which many of the theories supported by modern
SMT solvers were added.

Theories can be used alone or in arbitrary combinations. Besides the the-
ory, other parameters related to the syntax of formulas include whether or not
to enable quantifiers and whether to disallow or limit the use of certain the-
ory operations. In the SMT-LIB standard, and in solvers that support it, these

580 C. Barrett et al.

parameters are configured by specifying a logic. A logic identifies the theory (or
theories) being used and optionally imposes syntactic restrictions on the allowed
formulas. Users can provide the SMT solver with a predefined logic name (like
QF_LIA, QF_BV, and UF seen earlier) to specify which logic is to be used. By
default (i.e., if no logic name is provided), SMT solvers typically enable all the
theories they support and allow all operations. This is equivalent to using the
special logic name ALL. However, solvers are often tuned with specific heuristics
for specific logics. Thus, it is advisable to provide the solver with the most spe-
cific logic name possible. In this section, we discuss the most common theories
and logics supported by SMT solvers, with examples of each.

4.1 Core Theory and Uninterpreted Symbols

The SMT-LIB standard defines a core theory which consists of a core signature
with a fixed interpretation that is always present, regardless of which other theo-
ries are being used. The core theory defines the Boolean sort Bool (BoolSort ()
in Python), the Boolean theory constants true and false (BoolVal(True) and
BoolVal(False) in Python), and the operators =, not, and, or, xor, and => (==,
Not, And, Or, Xor, and Implies in Python), all with the usual meanings. The
equality symbol = is polymorphic: it can be applied to two terms of the same
sort, for any predefined or user-declared sort. There are also two more polymor-
phic operators that require a bit more explanation. The distinct (Distinct)
operator takes two or more arguments of the same sort and returns true exactly
when all the arguments have pairwise distinct values. The ite (If) operator
takes three arguments, the first of which must be of Boolean sort. The other two
arguments can have any sort as long as it is the same for both. The meaning of
the ite operator is the second argument when the first argument is true, and
the third argument otherwise.

The simplest logic that builds on the core theory is QF_UF, short for
“quantifier-free uninterpreted functions.” This logic disallows quantifiers and does
not define any new symbols beyond those in the core theory. However, it allows
the user to extend the signature with new sorts and symbols. The SMT solver
is allowed to interpret these symbols in any way it chooses. This is why they
are referred to as uninterpreted: the solver does not impose any restrictions on
the interpretation (besides the declared arity and rank). The following example
illustrates the use of uninterpreted symbols as well as the And and Distinct
operators.

Example 4. Let f be a unary function from U to U, for some set U. Check that,

}V(ha)tever the meaning of f, if f(f(f(z))) =z and f(f(f(f(f(x))))) = z, then

We show a solution in Python followed by one using SMT-LIB.

from cvcS.pythonic import *
) DeclareSort ("U")

f Function("f", U, U)

X Const ("x", U)

Satisfiability Modulo Theories: A Beginner’s Tutorial 581

s = SolverFor ('QF_UF')

s.add (And ((£(£(£(x))) == x), (£(£(£(£(£(x))))) == x)))
s.add(Distinct (f(x), x)) # negation of f(x) = x

print (s.check())

(set-logic QF_UF)
(declare-sort U 0)

(declare-fun £ (U) U)
(declare-const x U)

(assert (and (= (f (f (f x))) x) (= (£ (£ (£ (£ (£f x))))) x)))
(assert (distinct (f x) x))

(check-sat)

We can derive f(z) = x from the first assertion by performing a series of substi-
tutions, and thus the problem is unsatisfiable. Now, we present a simple example
that illustrates the ite operator. It also shows that in Python, we can use !=
instead of Distinct to assert that two terms are distinct.

Example 5. Suppose we know that z is either equal to y or z, depending on the
value of the Boolean b. Suppose we further know that w is equal to one of y or
z. Does it follow that z = w?

The Python solution is shown below.*

from cvch5.pythonic import *

U = DeclareSort("U")

b = Const("b", BoolSort())

X, ¥y, z, w = Consts("x y z w", U)

= SolverFor ('QF_UF"')

.add(x == (If(b, y, z)))
.add (0r ((w == y), (w == 2)))
.add(x '= w)

nnono

if s.check() == sat:
m = s.model ()
print ("\n".join([str(k) + " : " + str(m[k]) for k in ml))

cveh outputs the following for this example.

: True
(as QU_0 U)
(as @U_1 U)
(as @U_1 U)
(as QU_0 U)

N< W = O

The result tells us that it does not follow that x = w. The model gives us a
counterexample to that claim. Because the sort U is uninterpreted, the model
returned by cvc5 must choose an interpretation for it. Here, cvc5 tells us that
it is interpreting U as a set with two elements, named @U_O and @U_1. The model

4 Due to space constraints, the SMT-LIB versions of the remaining examples do not
appear in the text. They are available in the online version of the tutorial available
from the Tutorials link on the cvch website.

https://cvc5.github.io/tutorials.html

582 C. Barrett et al.

then specifies that x and y have one value and z and w have the other, so x is
not equal to w.

Ezercise 3. Modify Example 4 to make it satisfiable and Example 5 to make it
unsatisfiable.

4.2 Arithmetic

Though there are many tools available for arithmetic reasoning, SMT solvers are
unique in their ability to reason efficiently about arbitrary Boolean combinations
of arithmetic constraints, as well as to combine arithmetic reasoning with rea-
soning about other theories. It is important to note that SMT solvers reason
precisely about both integer and real arithmetic. That is, they use arbitrary-
precision arithmetic as opposed to machine integer or floating-point approxima-
tions. This means that SMT solvers are not susceptible to the numerical errors
that can arise, for instance, when using floating-point arithmetic to approximate
real arithmetic. It also means that for problems whose complexity lies mainly
in the arithmetic reasoning, as opposed to Boolean reasoning, SMT solvers are
typically slower than tools that use floating-point approximations. The under-
lying algorithms for arithmetic reasoning in SMT solvers are based on standard
techniques that have been adapted to the SMT context, such as the Simplex
algorithm [20] and Cylindrical Algebraic Decomposition [2].

There are a large number of logics to choose from within the arithmetic
umbrella, with reasoning over reals generally more efficient than reasoning over
integers, and reasoning over less expressive formulas generally more efficient than
reasoning over more expressive ones. We briefly discuss the various logics here.

Difference Logic. In difference logic, every arithmetic constraint must be of
the form x—y i ¢ or z < ¢, where <1 € {=, <, >, <, >}, and ¢ is a numeric theory
constant. If x and y range over integers, we call it integer difference logic, and
if they range over reals, we call it real difference logic. Efficient algorithms exist
for both [17,36]. The names of these logics are QF_IDL and QF_RDL, respectively.
One application for difference logic is job shop scheduling [41].

Ezample 6. Suppose we have 3 jobs to complete on 2 machines. Job 1 requires
machine 1 for 10 min and then machine 2 for 5 min. Job 2 requires machine 2 for
20 min and then machine 1 for 5min. And Job 3 requires machine 1 for 5 min
and then machine 2 for 5 min. Can all jobs be completed in 30 min?

To solve the problem, we create integer variables for the start times of each
task within each job. We assert that the start times are non-negative, each task
within each job doesn’t start until the previous task finishes, and tasks on each
machine don’t overlap. Finally, we check that each task finishes on time.

from cvcS.pythonic import *

j11,3j12,3j21,322,331,j32 = Ints("j11 j12 j21 j22 j31 j32")

Satisfiability Modulo Theories: A Beginner’s Tutorial 583

s = SolverFor ('QF_IDL')
s.add(And ([x >= 0 for x in [j11, j12, j21, j22, j31, j3211))
s.add(And(j12 - j11 >= 10, j22 - j21 >= 20, j32 - j31 >= 5))
s.add (And (0r (j22 - jii >= 10, ji1 - j22 >= 5),

0r(j31 - ji11 >= 10, ji1 - j31 >= 5),

0r(j31 - j22 >= 5, j22 - j31 >= 5)))
s.add (And (Or (j21 - j12 >= 5, j12 - j21 >= 5),

0r(j32 - j12 >= 5, j12 - j32 >= B),

0r(j32 - j21 >= 5, j21 - j32 >= 5)))
s.add(And(j12 <= 25, j22 <= 25, j32 <= 25))

print (s.model() if s.check() == sat else "unsat")

Ezercise 4. What is the minimum amount of time that it will take to complete
all of the jobs in Example 67

Linear Arithmetic. The logic of linear arithmetic allows arithmetic constraints
to have any form that is equivalent to > c¢;x; + b <t 0, where b, ¢; are numeric
theory constants and 1 € {=, <, >, <, >}. As before, there are both integer and
real variants, QF_LIA and QF_LRA, respectively. One can also mix the two with
QF_LIRA. Note that, according to the SMT-LIB standard, when using QF_LIRA,
integers and reals should not be mixed in the same linear sum, but most solvers
(including cvch and Z3) are more permissive and do allow mixed terms. Exam-
ple 1 is a good example of a simple QF_LIA problem.

Ezercise 5. Repeat Exercise 1, but change the logic to QF_LRA, change the types
of the variables from Int to Real, and append .0 to each numeric constant.
Now, what output does the solver give?

Nonlinear Arithmetic. Moving up the expressiveness hierarchy, we next have
logics for quantifier-free nonlinear arithmetic. In these logics, arbitrary polyno-
mials are allowed in constraints. The logic QF_NRA is for nonlinear arithmetic
over the reals, which is decidable but with doubly exponential complexity [2].
On the other hand, the same logic over integers, QF_NIA, is undecidable. cvc5h
implements a decision procedure for QF_NRA based on a combination of heuristic
pruning and cylindrical algebraic coverings [29]. cvch and other tools implement
incomplete heuristic procedures for QF_NIA.

Example 7. Find a solution for x2y + yz + 2xyz + 4xy + Sxz + 16 = 0.

from cvch5.pythonic import *

X, ¥y, z = Reals("x y z")

s = SolverFor ('QF_NRA')

s.add (x*x*y + y*z + 2%kxxy*z + 4%x*xy + 8*x*xz + 16 == 0)
print (s.model() if s.check() == sat else "unsat")

584 C. Barrett et al.

4.3 Arrays

Consider the following Python function which swaps two elements in a dictionary.

def swap(a,i,j):
tmp = alil
ali] = alj]

alj] = tmp

If a[i] and a[j] happen to be equal, the dictionary a is unchanged by the
function. To prove this fact, we could try modeling dictionaries as uninterpreted
functions. However, asserting that two functions are equal is not allowed in first-
order logic. Alternatively, we could use a quantifier to assert that two functions
return the same output when given the same input, for any input. However,
we would like to avoid quantifiers when possible, as their use puts us in an
undecidable logic.

Fortunately, the SMT-LIB standard includes a theory of arrays [30], which
can help in this situation. The theory is perhaps more accurately viewed as
a theory of mutable maps and is parameterized by two sorts, one for the index
(corresponding to the key type of the dictionary) and one for the elements (values
in the dictionary). For example, the SMT-LIB sort (Array Int Real) represents
arrays indexed by integers and containing reals. Note that SMT arrays are always
total, in the sense that they have an element for every value in the index sort.
In particular, an array indexed by Int is conceptually infinite.

The theory has two operators: select, which takes an array and an index
and returns the element at that index, and store, which takes an array a, an
index 7, and an element e, and returns a new array that is the result of updating
a with the element e at index 3.

Typically, the theory of arrays is used in combination with other theories
that make sense for the index and element sorts. For example, the logic QF_ALIA
allows quantifier-free formulas with variables that range over integers and arrays
of integers. The simplest logic with arrays is QF_AX, in which all the sorts must
be uninterpreted.

In the example below, we encode the above problem using the array theory.

Ezxample 8. For the Python program above, show that, for arbitrary index and
element sorts, if a[i] and a[j] are equal, then so are a and swap(a,i,j).

from cvcS.pythonic import =*

I = DeclareSort("I")

E = DeclareSort ("E")

i, j = Comnsts("i j", I)

tmp = Const("tmp", E)

array = ArraySort(I, E)

a_in, a_out = Consts("a_in, a_out", array)

s = SolverFor ('QF_AX"')

s.add(tmp == (Select(a_in, i)))

s.add(a_out == (Store(Store(a_in, i, Select(a_in, j)),
j, tmp)))

s.add ((Select(a_in, i)) == (Select(a_in, j)))

s.add(a_in != a_out)

print (s.check())

Satisfiability Modulo Theories: A Beginner’s Tutorial 585

Exercise 6. Another property of swap that we can prove is that if a[i] and a[j]
are distinct, then swap would change a. Modify the solution for Example 8 to
prove this property.

4.4 Bit-Vectors

Consider a simple implementation (written in a C-like syntax) for computing
the absolute value of a 32-bit integer: abs(z) = x < 0 ? —z : z. Instead of
branching on = < 0, it is possible to compute the absolute value of x with three
or four branch-free operations [28] as follows. Let ars be an abbreviation for the
arithmetic right shift (>>;) of « by 31 bits. Note that the result of this operation
is either 0 or —1 (all bits set to 1), depending on the most significant bit (MSB) of
x: if the MSB of x is 0, zrs is 0; otherwise, xrs is -1. Three branchless alternatives
for computing the absolute value of x are as follows.

1. absi(x) == (z ® xrs) — ars 2. absa(x) = (x + 2rs) ® zrs
3. absz(x) =2 — ((x < 1) & ars)

These branchless versions of abs(z) make use of the 32-bit versions of the
bit-wise operations exclusive or (@), bit-wise and (&), logical shift left (<),
and arithmetic shift right (>>;).

We can use an SMT solver to prove whether the branchless versions are
equivalent to the original implementation. Note that integers, as discussed in
Sect. 4.2, are not a good fit, as it is difficult to model the bitwise operators
using the arithmetic operators. However, the SMT-LIB standard includes a the-
ory of fixed-size bit-vectors, which defines the bit-precise semantics of fixed-size
machine integers. The name for the quantifier-free logic containing just this the-
ory is QF_BV. Using this logic, we can easily check the equivalence of the absolute
value computations.

Ezxample 9. Show that the first branchless alternative abs; is equivalent to abs.

from cvch.pythonic import *
x = Const("x", BitVecSort (32))

xrs = x >> 31

s = SolverFor ('QF_BV"')

s.add(If(x < 0, -x, x) !'= (x - xrs) - xrs) # prove abs() == abs1()
print (s.model () if s.check() == sat else "unsat")

FExercise 7. Show that the second and third branchless alternatives absy and
abss are equivalent to abs.

4.5 Datatypes

Built into the SMT-LIB language is a mechanism for defining (algebraic) data-
types. Datatypes are highly useful in applications for reasoning about data struc-
tures like records, lists, and trees [7]. The quantifier-free logic name is QF_DT.

586 C. Barrett et al.

Ezxample 10. Model a binary tree containing integer data. Find trees z and y
such that (i) the left subtree of x is the same as the right subtree of y and (i7)
the data stored in x is greater than 100.

Note that we need both datatypes and integer arithmetic for this example. cvch
supports the logic name QF_DTLIA, but Z3 does not. Fortunately, we can always
use ALL for the logic if a more specific logic is not available.

from cvcb5.pythonic import =*

decl = Datatype("tree")

decl.declare("node", ("data", IntSort()), ("left", decl), ("right", decl))
decl.declare("nil™")

Tree = decl.create()

x, y = Consts("x y", Tree)

s = SolverFor ('ALL")
s.add(Tree.is_node(x))
s.add(Tree.is_node(y))
s.add(Tree.left(x) == Tree.right(y))
s.add(Tree.data(x) > 100)

print (s.model () if s.check() == sat else "unsat")

The output gives the values for and y.

[x
y

node (101, nil, node(0, nil, nil)),
node (0, node (0, nil, node(0, nil, nil)), nil)]

Ezercise 8. Show that a tree cannot be equal to its own left subtree.

4.6 Floating-Point Arithmetic

The most common representation of real numbers in hardware and software is
the binary floating-point number representation system as defined by the IEEE
Standard 754-2019 for Floating-Point Arithmetic [27]. Floating-point numbers
are encoded as a triple of bit-vectors: the fractional part (the significand), the
exponent (a power of 10 by which the significand is multiplied), and a sign bit.
This representation is of limited range and precision, and thus, the domain of
floating-point numbers is finite. It also includes special values for representing
errors as not-a-number and for plus and minus infinity. In SMT-LIB, the IEEE-
754 standard is formalized as the theory of floating-point arithmetic [11]. The
quantifier-free logic name is QF_FP.

Ezxample 11. The SMT-LIB standard supports a fused multiplication and addi-
tion operator fp.fma. Given three single precision floating-point numbers a, b,
and ¢, show that the floating-point fused multiplication and addition of a, b, and
c is different from first multiplying a and b and then adding c.

from cvchS.pythonic import *

a, b, ¢ = FPs("a b c", Float32())
rm = Const("rm", RNE().sort())
s = SolverFor ('QF_FP')

Satisfiability Modulo Theories: A Beginner’s Tutorial 587

s.add(Distinct (fpFMA(rm, a, b, c), fpAdd(rm, fpMul(rm, a, b),c)))

result = s.check()

m = s.model ()

print (m)

print (f'fpFMA(rm, a, b, c¢c) = {m.eval (fpFMA(rm, a, b, c))}')

print (f'fpAdd(rm, fpMul(rm, a, b),c) = {m.eval(fpAdd(rm, fpMul(rm, a, b),c))}'

The output gives the solution.

[a -1.3333333730697632*(2%*x-1), b = -1.9999998807907104* (2**-1),
c = -1.9999998807907104*(2**-1), rm = RTP ()]

fpFMA(rm, a, b, c) = -1.333333134651184*(2%%-2)

fpAdd (rm, fpMul(rm, a, b),c) = -1.3333330154418945*(2x*-2)

Ezercise 9. Modify the solution to Example 11 to show that floating-point addi-
tion is not associative, i.e., a + (b+c¢) # (a+b) + c.

4.7 Strings

It is often necessary to reason about string data when reasoning about programs.
Reasoning about bit-vector representations of strings has the disadvantage that
it requires fixing the string length up front. Also, the theory of bit-vectors does
not include many of the utility functions for strings that exist in string libraries
in programming languages. The SMT-LIB theory of strings provides support for
variable-length strings and a large set of string operations. The quantifier-free
logic name is QF_S. Typically, though, we use QF_SLIA since we need arithmetic
to reason about string lengths.

Example 12. Given two strings, x1 and x2, each consisting of no more than
two characters, is it possible to build the string "abbaabb" using only 3 string
concatenations (where each concatenation may use any previous result including
x1 and x2)7

We can solve this problem by building a circuit of string concatenations and
using nondeterministic choice to pick the inputs for each concatenation.

from cvchb.pythonic import *

p, x, i = {}, {3, {3

for k in range(1l, 13): pl[k] = Bool("p" + str(k))
for k in range(1l, 6): x[k] = String("x" + str(k))
for k in range(1,7): i[k] = String("i" + str(k))

result = StringVal("abbaabb")

s = SolverFor ('QF_SLIA')
s.add (And (Length(x[1]) <= 2, Length(x[2]) <= 2))

s.add (i [1] == If(pl[1], x[1], x[2]))

s.add(i[2] == If(p[2], x[1], x[21))

s.add(x[3] == Concat(il[1]l, i[2]1))

s.add (i[3] == If(p[3], x[1], If(pl4), x[2], x[31)))

s.add (i[4] == If(p[b], x[1], If(pl6], x[2], x[31)))

s.add (x[4] == Concat(il[3], il[41))

s.add(i[b] == If(pl[7], x[1], If(pl[8], x[2], If(p[9], x[31, x[41))))
s.add (i[6] == If(p[10], x[1], If(pl[11], x[2], If(pl[12], x([3], x[41))))

588 C. Barrett et al.

s.add (x[6] == Concat(i[5], i[6]))
s.add (x[6] == result)
print (s.model () if s.check() == sat else "unsat")

Ezercise 10. Use SMT to determine how many concatenations are needed to get
"abbaabb" if x1 and x2 are both restricted to have a length of 1.

4.8 Quantifiers

We saw an example of quantified formulas in Example 3. Quantifiers can be
enabled in SMT solvers by dropping QF from the logic name. However, enabling
quantifiers typically increases the complexity of the decision problem signifi-
cantly. In fact, solving UF problems is equivalent to solving the decision problem
for first-order logic, Hilbert’s original Entscheidungsproblem, which is undecid-
able. And although LIA, LRA, and NRA are decidable, the decision procedures are
expensive. For these reasons, SMT solvers mostly handle quantifiers by attempt-
ing to find quantifier instantiations that, together with the other quantifier-free
assertions, are unsatisfiable. For problems that are expected to be unsatisfiable,
this approach can be quite effective. Moreover, by using different instantiation
techniques and effort levels, a wide variety of problems can be solved.

cveh supports several techniques for handling quantified formulas, which can
vary based on the logic. By default, cvc5 limits its effort so that it usually returns
quickly with an answer of either unsat or unknown. For logics that include unin-
terpreted functions, it uses a combination of E-matching [31] and conflict-based
instantiation [40]. In case the user wants to invest more effort, these techniques
can be supplemented with techniques such as enumerative instantiation [38]
(option enum-inst). For logics that admit quantifier elimination (e.g., quanti-
fied linear arithmetic or bit-vectors), it uses counterexample-guided quantifier
instantiation [34,39], which is a complete procedure for these logics.

By default, cvch will generally not attempt to determine that an input
with quantified formulas is satisfiable. However, more advanced techniques can
be used to answer sat in the presence of quantified formulas, including finite
model finding [37] (option finite-model-find), model-based quantifier instan-
tiation [23] (option mbqi), and syntax-guided quantifier instantiation [35] (option
sygus-inst).

In general, to set options that are not on by default, we can use the setOption
solver method in Python, as shown below.

from cvc5.pythonic import =*

s = SolverFor ('UF')
s.setOption('enum-inst', True)
.setOption('finite-model-find', True)
.setOption('mbqi', True)
.setOption('sygus-inst', True)

n n o

Satisfiability Modulo Theories: A Beginner’s Tutorial 589

4.9 Non-standard Theories

cveh and Z3 support several theories that are not (yet) part of the SMT-LIB
standard. We discuss a few of them briefly here, focusing on those supported
by cvebh. More documentation about non-standard theories, including reference
tables describing the supported operators can be found on the cvch website.

Sequences. The theory of sequences brings together features of the theories
of arrays and strings. Similar to arrays, sequences are parameterized by the
sort of their elements. So we can declare a sequence of integers, a sequence of
bit-vectors, and so on. Like strings, sequences have a variable but finite length
and can be concatenated together. The sequence theory is enabled whenever the
string theory is enabled (e.g., by using the logic name QF_S or QF_SLIA). Note
that Z3 also supports a theory of sequences that is mostly (but not entirely)
compatible with the cvch version.

Ezxample 13. Let x be a sequence of integers. Find a value for x such that the first
and last elements sum to 9, and if we concatenate x with itself, then (3,4,5)
appears as a subsequence.

from cvch5.pythonic import =*
X, y, z = Consts("x y z", SeqSort(IntSort()))

s = SolverFor ('QF_SLIA')

s.add(Length(x) > 0)

s.add(x[0] + x[Length(x) - 1] == 9)

s.add(y == Concat(x,x))

s.add(z == Concat(Unit(IntVal(3)), Unit(IntVal(4)), Unit(IntVal(5))))
s.add(Contains(y, z))

print (s.model() if s.check() == sat else "unsat")

Exercise 11. Show that it’s not possible to have sequences x, y, and z such that
x is a proper prefix of y, y is a proper prefix of z, and z is a proper prefix of x.

Finite Fields. cvch can reason about constraints over finite fields of order p,
where p is any prime. It relies on the fact that a field of order p is isomorphic to
the integers modulo p. The quantifier-free logic name for finite fields is QF_FF.
At the time of writing, this theory is not supported by other SMT solvers.

Example 1. In a finite field of order 13, find two elements such that their sum
and product are both equal to the multiplicative identity in the field.

Running this example requires a GPL build of ¢vc5, as explained in Sect. 1.

from cvch.pythonic import *

F = FiniteFieldSort(13)

x, y = FiniteFieldElems("x y", F)

s = SolverFor("QF_FF")

s.add(x + y == 1)

s.add(x * y == 1)

print(s.model() if s.check() == sat else "unsat")

590 C. Barrett et al.

Ezercise 12. In a finite field of order 13, find an element such that if you square
it twice you get the multiplicative identity.

Finite Sets. cvch has support for the theory of finite sets. This theory sup-
ports basic set operations like membership, union, and intersection, as well as
constraints on a set’s cardinality. The quantifier-free logic name is QF_FS. At the
time of writing, this theory is not supported by other SMT solvers.

Ezxample 15. Verify that union distributes over intersection.

from cvcS5.pythonic import *

S = DeclareSort ("S")

A, B, C = [Set(i, S) for i in ["A","B","C"]]

s = SolverFor ('QF_FS')

s.add(Not((A | (B & C)) == ((A | B) & (A | C))))
print (s.check())

Ezercise 13. Does set difference distribute over intersection? If not, find a coun-
terexample.

4.10 Combinations of Theories

So far, we have mostly seen examples of how to pose queries that involve a single
theory. Part of the appeal of SMT solvers is their ability to mix reasoning about
different theories. This can be done in a natural way. Any well-sorted formula is
allowed, and all sort constructors can take any other sort as an argument.

One slight complication is the question of how to specify the logic name.
It is always safe to use ALL as the logic name, though as mentioned above, it
may be more efficient to give a more precise logic name. When mixing the-
ories, cvcH allows any logic name that follows the following rules. First, the
logic name must start with the prefix QF_ if the intent is to limit reasoning
to quantifier-free formulas. The rest of the logic name can include any of the
following components, in any order: (i) A for arrays; (i¢) UF for uninterpreted
functions; (#i7) BV for bit-vectors; (iv) FP for floating-point numbers; (v) DT for
datatypes; (vi) S for strings and sequences; (vii) either IDL, RDL, LIA, LRA, LIRA,
NIA, NRA, or NIRA for arithmetic; (viii) FF for finite fields; and (iz) FS for finite
sets. Thus, for example, QF_AUFDTBVLRA allows formulas that are quantifier-free
and mix arrays, uninterpreted functions, datatypes, bit-vectors, and linear real
arithmetic. Examples 10, 12, and 13 illustrate combinations of theories.

5 SMT Solver Outputs

As we have seen, the main result of an SMT query is either sat or unsat. In
some cases, the solver may also output unknown. This can happen, for example,
if the problem includes quantifiers. In this section, we discuss how to obtain more
information from the solver in each case.

Satisfiability Modulo Theories: A Beginner’s Tutorial 591

Satisfiable Queries. When a solver returns sat, we have already seen that
one possible way to get more information is to call get-model, which returns
values for all of the uninterpreted constants in the formula. A more fine-grained
approach is to call get-value which takes a term as an argument and returns
the value of that specific term.

Unsatisfiable Queries. When a solver returns unsat, it makes a quite strong
statement: there is no interpretation of the user-declared symbols that satisfies
the formula. SMT solvers can provide more information as to why a formula
is unsatisfiable via an unsat(isfiable) core, a subset of the assertions that is
already unsatisfiable. In SMT-LIB scripts, it can be obtained with the command
get-unsat-core. The unsat core is not guaranteed to be minimal, but solvers
generally make an effort to reduce its size as much as possible without having
to solve additional SMT queries.

Some solvers can also produce proofs for the unsatisfiability of a formula,
i.e., a structured argument showing how an inconsistency can be derived from
an unsat core of the formula. A proof can serve as a certificate of the result and be
used to independently validate the solver’s response [4] . A proof (if supported)
can be obtained in an SMT-LIB script with the command get-proof. The result
is dependent on the proof system and format the solver uses to represent its
reasoning. ¢vch has full support for proofs and unsat cores.

Consider again the Socrates example (Example 3). Below, we show how to
retrieve an unsat core and a proof of its unsatisfiability.

from cvcb.pythonic import =*

s = SolverFor ('UF'")

s.set ("produce-proofs", "true")
s.set ("proof -granularity", "theory-rewrite")
s.set ("produce -unsat -cores", "true")

S = DeclareSort ("S")

Human = Function ("Human", S, BoolSort())
Mortal = Function("Mortal", S, BoolSort())
Socrates = Const("Socrates", S)

x = Const("x", S)
s.add (ForAll ([x], Implies(Human(x), Mortal(x))))
s.add (Human (Socrates))

s.add (Not (Mortal (Socrates)))

print (s.check())
print ("The core is: ", s.unsat_core())

p = s.proof ()

print ("The proof is:\n", p)

The first part of the output is the unsat core.

The core is:
- (forall ((x S8)) (=> (Human x) (Mortal x)))
- (Human Socrates)
- (not (Mortal Socrates))

592 C. Barrett et al.

The core contains all three assertions. In this case, the core is minimal, as all
three are needed to derive unsat. The reasoning is shown in the proof. The result
of the proof() method is a proof object which connects the input assertions to
the conclusion (unsat) via a sequence of steps justified by proof rules. The proof
rules used by cvch are documented on the Cvch website.

Figure1l shows a visualization of the proof as a tree. For readability, we
use simple names to abbreviate long terms. Each node in the tree shows: (7)
the formula proved (the conclusion); (i¢) the name of the proof rule used; (#i7)
a numeric id; and (iv) the total number of descendants. Immediate children
of each node represent premises required for the node’s proof rule. The root
of the tree is let9, which stands for (not (and let4 let3 let2)), where
let4, let3, and let2 represent the three assertions. This node has a sin-
gle child containing the conclusion false, based on a proof tree whose leaves
are the three assertions. The derivation of false depends on instantiating the
quantified assertion (let4) with x as Socrates. This is done in node 5, only
after (forall ((x 8)) (=> (Human x) (Mortal x))) (i.e., let4) is rewrit-
ten (node 8) into (forall ((x 8)) (or (not (Human x)) (Mortal x))) (i.e.,
let8). The instantiation (or (not (Human Socrates)) (Mortal Socrates))
is named let6. Node 9 concludes (not let6) from the other assertions.
Finally, node 2 concludes false from the mutually inconsistent clauses derived
by the solver (where let7 is (not let6), let2 is (not letl), and let5 is
(not let3d)).

false letd

CHAIN_RESOLUTION SCOPE

#descendants: 14 #descendants: 15

(or (not let8) let6) let7 let8

IMPLIES_ELIM CHAIN_RESOLUTION EQ_RESOLVE

(or let1 let5 let7)
&) #descendants: 5 #descendants: 4 #descendants: 2
REORDERING

#descendants: 1
(=> 16t let6)

let3
SCOPE (or let7 let5 let1) -

ASSUME
#descendants: 4 CNF_OR_POS

#descendants: 0
#descendants: 0

et
— (=letd letB)

EQ_RESOLVE ASSUME TRUST_THEORY_REWRITE

INSTANTIATE

#descendants: 3

#descendants: 2 2 e 16 #idescendants: 0

letd (= letd let8) letd.

ASSUME TRUST_THEORY_REWRITE ASSUME

#descendants: 0 #descendants: 0 5 #descendants: 0

Fig. 1. A proof tree generated by cvch

Unknown Queries. A solver returns unknown when it is unable to solve the
input problem. There could be several different reasons for this. One is that
the solver’s procedure may be incomplete for the class of problems the input

Satisfiability Modulo Theories: A Beginner’s Tutorial 593

belongs to, which means that it is not always able to determine if the problem
is satisfiable or not. Another possible reason is that some resource limit was
exceeded, causing the solver to stop before it could find an answer. In SMT-
LIB, the command (get-info :reason-unknown) can be used to request more
information about why a solver returned unknown.

6 Conclusion

This tutorial is a basic introduction to using SMT solvers. There are numerous
resources available for those who wish to learn more.

The SMT-LIB website smt-lib.org has details about the SMT-LIB stan-
dard [5], as well as links to software and an extensive collection of benchmarks.
More information on the foundations of SMT and how solvers work under the
hood can be found in several overview papers and book chapters [6,9,18]. There
are also tool papers describing the most prominent SMT solvers, including: Alt-
Ergo [15], Bitwuzla [33], cveh [29], MathSAT [14], OpenSMT2 [26], SMTInter-
pol [12], SMT-RAT [16], STP [22], veriT [10], Yices2 [19], and Z3 [32]. More
information about cvC5 is available on its website.

Data Availability Statement. An artifact with all the examples and tools from the
paper is available at: https://doi.org/10.5281 /zenodo.12763927.

References

1. Abbott, J., Bigatti, A.M., Palezzato, E.: New in CoCoA-5.2.4 and CoCoAlLib-
0.99600 for SC-square. In: Satisfiability Checking and Symbolic Computation.
CEUR Workshop Proceedings, vol. 2189, pp. 88-94. CEUR-WS.org (2018). http://
ceur-ws.org/Vol-2189 /paper4.pdf

2. Abraham, E., Davenport, J.H., England, M., Kremer, G.: Deciding the consistency
of non-linear real arithmetic constraints with a conflict driven search using cylindri-
cal algebraic coverings. J. Log. Algebraic Methods Program. 119, 100633 (2021).
https://doi.org/10.1016/J.JLAMP.2020.100633

3. Barbosa, H., et al.: cvch: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415-442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9 24

4. Barbosa, H., et al.: Generating and exploiting automated reasoning proof certifi-
cates. Commun. ACM 66(10), 86-95 (2023). https://doi.org/10.1145/3587692

5. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Techni-
cal report, Department of Computer Science, The University of Iowa (2017). www.
SMT-LIB.org

6. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories. In:
Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiabil-
ity, Second Edition, Frontiers in Artificial Intelligence and Applications, vol. 336,
chap. 33, pp. 825-885. IOS Press (2021)

7. Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for a theory
of inductive data types. J. Satisfiabil. Boolean Model. Comput. 3, 21-46 (2007)

https://smt-lib.org
https://cvc5.github.io
https://doi.org/10.5281/zenodo.12763927
http://ceur-ws.org/Vol-2189/paper4.pdf
http://ceur-ws.org/Vol-2189/paper4.pdf
https://doi.org/10.1016/J.JLAMP.2020.100633
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1145/3587692
www.SMT-LIB.org
www.SMT-LIB.org

594

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

C. Barrett et al.

Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theorie, Edinburgh, UK (2010)

Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model
Checking, pp. 305-343. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-10575-8 11

Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open,
trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS
(LNAI), vol. 5663, pp. 151-156. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02959-2 12

Brain, M., Tinelli, C., Riimmer, P., Wahl, T.: An automatable formal semantics
for IEEE-754 floating-point arithmetic. In: ARITH, pp. 160-167. IEEE (2015)
Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: an interpolating SMT solver.
In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248-254.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31759-0 19
Church, A.: An unsolvable problem of elementary number theory. Am. J. Math.
58(2), 345-363 (1936)

Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93—
107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7
Conchon, S., Coquereau, A., Iguernlala, M., Mebsout, A.: Alt-Ergo 2.2. In: SMT
Workshop: International Workshop on Satisfiability Modulo Theories, Oxford,
United Kingdom (2018). https://inria.hal.science/hal-01960203

Corzilius, F., Kremer, G., Junges, S., Schupp, S., Abraham, E.: SMT-RAT: an open
source C++ toolbox for strategic and parallel SMT solving. In: Heule, M., Weaver,
S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 360-368. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24318-4 26

Cotton, S., Maler, O.: Fast and flexible difference constraint propagation for
DPLL(T). In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 170-
183. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948 19

De Moura, L., Bjgrner, N.: Satisfiability modulo theories: introduction and appli-
cations. Commun. ACM 54(9), 69-77 (2011). https://doi.org/10.1145/1995376.
1995394

Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737-744. Springer, Cham (2014). https://doi.org/10.1007,/978-3-319-08867-
9 49

Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81-94. Springer, Heidelberg
(2006). https://doi.org/10.1007/11817963 11

Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, Cam-
bridge (1972)

Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519-531. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-73368-3 52

Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306-320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4 25

Hilbert, D., Ackermann, W.: Grundziige der theoretischen Logik, Berlin 1928.
Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit
besonderer Berticksichtigung der Anwendungsgebiete 27 (1938)

https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/978-3-642-36742-7_7
https://inria.hal.science/hal-01960203
https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.1007/11814948_19
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/11817963_11
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Satisfiability Modulo Theories: A Beginner’s Tutorial 595

Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge
(1997)

Hyvérinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: OpenSMT2: an SMT
solver for multi-core and cloud computing. In: Creignou, N., Le Berre, D. (eds.)
SAT 2016. LNCS, vol. 9710, pp. 547-553. Springer, Cham (2016). https://doi.org/
10.1007,/978-3-319-40970-2 35

IEEE: IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revi-
sion of IEEE 754-2008), pp. 1-84 (2019). https://doi.org/10.1109/IEEESTD.2019.
8766229

Jr., H.S.W.: Hacker’s Delight, 2nd edn. Pearson Education, Boston (2013). http://
www.hackersdelight.org/

Kremer, G., Reynolds, A., Barrett, C.W., Tinelli, C.: Cooperating techniques for
solving nonlinear real arithmetic in the cveb5 SMT solver (system description).
In: Blanchette, J., Kovacs, L., Pattinson, D. (eds.) Automated Reasoning - 11th
International Joint Conference, IJCAR 2022, Haifa, Israel, August 8-10, 2022, Pro-
ceedings. Lecture Notes in Computer Science, vol. 13385, pp. 95-105. Springer,
Heidelberg (2022). https://doi.org/10.1007,/978-3-031-10769-6 7

McCarthy, J.: Towards a mathematical science of computation. In: IFIP Congress,
North-Holland, pp. 21-28 (1962)

de Moura, L., Bjgrner, N.: Efficient E-matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183-198. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73595-3 13

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

Niemetz, A., Preiner, M.: Bitwuzla at the SMT-COMP 2020. CoRR
arxiv:2006.01621 (2020)

Niemetz, A., Preiner, M., Reynolds, A., Barrett, C., Tinelli, C.: Solving quantified
bit-vectors using invertibility conditions. In: Chockler, H., Weissenbacher, G. (eds.)
CAV 2018. LNCS, vol. 10982, pp. 236-255. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96142-2 16

Niemetz, A., Preiner, M., Reynolds, A., Barrett, C., Tinelli, C.: Syntax-guided
quantifier instantiation. In: TACAS 2021. LNCS, vol. 12652, pp. 145-163. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-72013-1 8

Nieuwenhuis, R., Oliveras, A.: DPLL(T) with exhaustive theory propagation and
its application to difference logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 321-334. Springer, Heidelberg (2005). https://doi.org/
10.1007/11513988 33

Reynolds, A., Tinelli, C., Goel, A., Krsti¢, S., Deters, M., Barrett, C.: Quantifier
instantiation techniques for finite model finding in SMT. In: Bonacina, M.P. (ed.)
CADE 2013. LNCS (LNAI), vol. 7898, pp. 377-391. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38574-2 26

Reynolds, A., Barbosa, H., Fontaine, P.: Revisiting enumerative instantiation. In:
Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 112-131.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3 7

Reynolds, A., King, T., Kuncak, V.: Solving quantified linear arithmetic by
counterexample-guided instantiation. Formal Methods Syst. Des. 51(3), 500-532
(2017). https://doi.org/10.1007/s10703-017-0290-y

Reynolds, A., Tinelli, C., de Moura, L.M.: Finding conflicting instances of quan-
tified formulas in SMT. In: Formal Methods in Computer-Aided Design, FMCAD

https://doi.org/10.1007/978-3-319-40970-2_35
https://doi.org/10.1007/978-3-319-40970-2_35
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
http://www.hackersdelight.org/
http://www.hackersdelight.org/
https://doi.org/10.1007/978-3-031-10769-6_7
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-540-78800-3_24
http://arxiv.org/abs/2006.01621
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-030-72013-1_8
https://doi.org/10.1007/11513988_33
https://doi.org/10.1007/11513988_33
https://doi.org/10.1007/978-3-642-38574-2_26
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/s10703-017-0290-y

596 C. Barrett et al.

2014, Lausanne, Switzerland, 21-24 October 2014, pp. 195-202. IEEE (2014).
https://doi.org/10.1109/FMCAD.2014.6987613

41. Roselli, S.F., Bengtsson, K., Akesson, K.: SMT solvers for job-shop scheduling
problems: models comparison and performance evaluation. In: 14th IEEE Interna-
tional Conference on Automation Science and Engineering, CASE 2018, Munich,
Germany, 20-24 August 2018, pp. 547-552. IEEE (2018). https://doi.org/10.1109/
COASE.2018.8560344

42. Turing, A.M.: On computable numbers, with an application to the entschei-
dungsproblem. J. Math. 58(345-363), 5 (1936)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/FMCAD.2014.6987613
https://doi.org/10.1109/COASE.2018.8560344
https://doi.org/10.1109/COASE.2018.8560344
http://creativecommons.org/licenses/by/4.0/

	Satisfiability Modulo Theories: A Beginner's Tutorial
	1 Introduction
	2 Overview
	3 Formal Foundations
	3.1 Syntax
	3.2 Semantics
	3.3 Theories

	4 SMT Theories
	4.1 Core Theory and Uninterpreted Symbols
	4.2 Arithmetic
	4.3 Arrays
	4.4 Bit-Vectors
	4.5 Datatypes
	4.6 Floating-Point Arithmetic
	4.7 Strings
	4.8 Quantifiers
	4.9 Non-standard Theories
	4.10 Combinations of Theories

	5 SMT Solver Outputs
	6 Conclusion
	References

