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ABSTRACT: The authors explore the dynamical origins of rotation of a mature tornado-like vortex (TLV) using an ide-
alized numerical simulation of a supercell thunderstorm. Using 30-min forward parcel trajectories that terminate at the
base of the TLV, the vorticity dynamics are analyzed for n 5 7 parcels. Aside from the integration of the individual terms
of the traditional vorticity equation, an alternative formulation of the vorticity equation and its integral, here referred to as
vorticity source decomposition, is employed. This formulation is derived on the basis of Truesdell’s “basic vorticity
formula,” which is obtained by first formulating the vorticity in material (Lagrangian) coordinates, and then obtaining the
components relative to the fixed spatial (Eulerian) basis by applying the vector transformation rule. The analysis highlights
surface drag as the most reliable vorticity source for the rotation at the base of the vortex for the analyzed parcels. More-
over, the vorticity source decomposition exposes the importance of small amounts of vorticity produced baroclinically,
which may become significant after sufficient stretching occurs. Further, it is shown that ambient vorticity, upon being rear-
ranged as the trajectories pass through the storm, may for some parcels directly contribute to the rotation of the TLV.
Finally, the role of diffusion is addressed using analytical solutions of the steady Burgers–Rott vortex, suggesting that diffu-
sion cannot aid in maintaining the vortex core.
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1. Introduction

Recent work on the vorticity dynamics of supercell torna-

does has emphasized the transition of the dominant processes

by which parcels acquire near-surface vertical vorticity during

tornadogenesis. First, regions of surface vertical vorticity (vor-

tex patches) appear within outflow air of the supercell. The

production of these vortex patches relies on negatively buoy-

ant downdrafts (e.g., Davies-Jones and Brooks 1993; Walko

1993; Dahl et al. 2014; Parker and Dahl 2015). These seed vor-

tex patches tend to axisymmetrize while also amplifying

(Dahl 2020), whereupon horizontal vorticity can be tilted up-

ward abruptly within the corner flow of the vortex (Fischer

and Dahl 2022, and the references therein).

Since parcels in a supercell’s environment carry abundant

horizontal vorticity, a question that arises is whether this vor-

ticity can directly feed the tornado (even if a detour through a

downdraft may occur). Although the association of tornadoes

with strong low-level wind shear has been known for some time

(e.g., Rasmussen and Blanchard 1998), so far only indirect

effects have been identified by which the ambient vorticity is ben-

eficial to tornadoes. For instance, Markowski and Richardson

(2014) and Coffer and Parker (2017) have shown that the more

intense and streamwise the ambient vorticity is, the more

intense and better organized is the mesocyclone, and the lower

its base, implying stronger upward pressure-gradient accelera-

tions. These help lift the vertical-vorticity-bearing outflow air

and thus support tornadogenesis and tornado maintenance.

One challenge in analyzing the direct role of ambient vor-

ticity in maintaining tornadoes is that the integral of the tradi-

tional vorticity equation (i.e., integrating each term of the

vorticity equation separately) merely reveals that, e.g., tilting

and stretching dominates, but the origin of the vorticity that is

being tilted and stretched cannot be identified. Davies-Jones

(2000) pioneered application of a different formulation of the

integral of the vorticity equation, often referred to as vorticity

decomposition, to idealized supercell-like flows.1 This vortic-

ity source decomposition allows one to determine the effect

of tilting and stretching of the part of the vorticity that has

(i) existed initially and (ii) that has subsequently been pro-

duced via baroclinic or mixing effects. Dahl et al. (2014) and

Dahl (2015) applied a simplified version of this decomposition

to the development of vortex patches that serve as seeds for

tornadogenesis within the storm’s outflow. They found that

baroclinically produced and subsequently reoriented vorticity

(“baroclinic vorticity”) dominates in these vortex patches, and

that the average effect of vorticity imported from the environ-

ment at best is neutral (Dahl et al. 2014), or in some cases con-

tributes negatively (Dahl 2015). Markowski (2016) applied the

vorticity source decomposition to idealized “pseudo-supercell”

simulations and found that as the storm matured the main vor-

ticity source of the tornado-like vortices (TLVs) that developed

in the simulation was baroclinic vorticity, though the imported

(“barotropic”) vorticity also contributed. Due to limitations of

the numerical integration of the vorticity parts, the analysis by

Markowski (2016) focused on vortices relatively early in the sim-

ulation, rather than what may be considered mature TLVs. In
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this paper, the problem is thus revisited by considering a mature,

simulated tornado-like vortex in a full-physics simulation, and

by using the complete vorticity source decomposition (including

numerical and subgrid-scale mixing terms) along 30-min forward-

integrated trajectories. We will also contrast the vorticity

source decomposition with the traditional integral of the

vorticity equation.

In the next section, the simulation will be introduced. In

section 3 the vorticity equations, their integrals, and their util-

ity will be reviewed. Further, a derivation of Truesdell’s basic

vorticity formula utilizing tools from differential geometry

will be offered. In section 4 trajectories will be analyzed, and

the results will be discussed in section 5. Finally, conclusions

are offered in section 6.

2. Model setting

We used the Bryan Cloud Model 1 (CM1; Bryan and

Fritsch 2002), release 19, to which parcel diagnostics have

been added, such that the velocity gradient, the curl of the

pressure-gradient force and of numerical and subgrid-scale

(SGS) mixing, as well as the curl of the Coriolis force, are avail-

able along the parcel trajectories. These contributions were

taken directly from the diagnostics available within CM1, and

calculated on the respective staggered grids. The simulation an-

alyzed here is the same as the full-physics simulation of the ma-

ture and intense tornado-like vortex analyzed by Fischer and

Dahl (2022). The horizontal domain has a size of 2003 200 km2,

with a constant horizontal grid spacing of 200 m in the inner

portion of the domain (50 , x , 150 km), stretched to circa

1.8 km toward the domain boundary. The vertical grid spac-

ing increases from 20 m near the ground to 280 m at the do-

main top, which is located at about 18 km AGL. Cloud and

precipitation processes are parameterized using the double-

moment NSSL scheme. The VORTEX2 tornadic composite

sounding obtained by Parker (2014) served as base state,

and the storm was initiated using the updraft nudging tech-

nique as discussed by Fischer and Dahl (2022). The lower

boundary condition is semislip, and the lateral boundary

conditions are open-radiative. A fifth-order horizontal and

vertical advection scheme is employed.

When a semislip boundary condition is used at the lower

boundary, a pseudo pressure gradient force needs to be pre-

sent in order to maintain a quasi-steady environment (without

this, the surface flow will continuously lose momentum). One

common approach, which is also adopted herein, is to include

the Coriolis force, but only allow it to act on the perturbation

winds. In the present case this led to minor adjustment of the

flow field early in the simulation. Davies-Jones (2021) has

warned of some pitfalls in this technique. In this approach, it

is implicitly assumed that the base state is in thermal wind bal-

ance. Consequently, continued circulation production is im-

plied in a vertical plane due to the baroclinity associated with

the thermal wind shear, but this circulation production is bal-

anced by the tilting of planetary vorticity into the horizontal

(Davies-Jones 1991). The Coriolis force thus has an effect

only on the unbalanced (i.e., ageostrophic) part of the flow.

However, since the real wind profile most likely is not

geostrophically balanced (due, e.g., to isallobaric effects and

surface drag), the effect of the Coriolis force may be errone-

ous. However, in the traditional integral of the vorticity

equation, this effect is negligible (the Coriolis forcing is

practically zero for all parcels we investigated). For the

vorticity source decomposition (section 3b), the Coriolis

effect is nonnegligible but it does not contribute meaning-

fully to the vorticity budgets as shown in section 4, so this

error is unlikely to affect the main results significantly.

A total of 5.4 million trajectories were launched at 2400 s

simulation time covering the domain [100, 145] 3 [90, 120] 3

[0.01, 1.8] km3. These initial locations were found iteratively

as described by Fischer and Dahl (2022). The trajectories

were then integrated forward for 30 min. Such long histories

are needed if the intention is to decompose the vorticity into

parts that stem from (approximately) the environment as well

as storm-generated contributions. That is, the parcels ought to

begin their journey in the unperturbed environment upstream

of the storm. Only parcels that became part of the TLV, i.e.,

attained vertical vorticity in excess of 0.1 s21 between 20 and

70 m AGL and between 4135 and 4145 s were considered, giv-

ing 95 parcels. Of those parcels, the majority dropped below

the lowest scalar model level (10 m AGL), rendering them

unsuitable for analysis (Vande Guchte and Dahl 2018). This is

a rather consequential criterion, because tornadoes are char-

acterized by strong upward motion very close to the ground.

This means that there is upward motion at the lowest model

level, implying that parcels generally enter the vortex base

from below the lowest model level. Looking higher above the

ground to identify parcels within the vortex reduces this prob-

lem, but these parcels may no longer capture the “near-

surface” dynamics. Parcels that enter the vortex in the lowest

;50 m AGL and at the same time have not dipped below the

lowest scalar model level are thus very rare.

Moreover, the initial horizontal vorticity of the parcels,

rounded to one hundredth, was not allowed to differ from the

base-state horizontal vorticity rounded to one hundredth. This

was done to ensure that the parcels approximately had the same

vorticity as the base state when starting the integration. For

most parcels, this meantvparcel
h (t0)’venvironment

h ’ 0:01 s21. The

initial vertical vorticity was generally on the order of 1024 s21.

Finally, the integrated vorticity had to match sufficiently closely

the known total vorticity along the trajectories (this determi-

nation was made subjectively). Application of these criteria

eliminated the majority of the trajectories from the analysis;

however, n 5 7 parcel trajectories were found to fulfill all re-

quirements, and these parcels will be analyzed in the remain-

der of the paper.

3. Vorticity equations and their integrals

a. Traditional integration of the vorticity equation

When integrating the vorticity equation (e.g., Markowski

and Richardson 2010) each term is integrated separately,

which decomposes the vorticity into parts that arise from the

tilting and stretching terms, as well as those parts resulting
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from the source (or torque) terms. The vorticity equation for

the present setting is given by

dv

dt
5 v ?=v 2 v(= ? v) 1 1

r2
=r 3 =p 1 = 3 fsgs 1 = 3 fdiff

2 = 3 (fk 3 v′), (1)

where v 5 = 3 v 5 (j, h, z) is the vorticity vector, v is the

wind vector, v′ is the perturbation (ageostrophic) wind, p is

pressure, r is air density, fsgs is the acceleration due to SGS

mixing, and fdiff is the acceleration due to numerical diffusion;

f 5 1024 s21 represents the Coriolis parameter. All variables

are evaluated along parcel trajectories and thus only depend on

time (and the parcel label, which is omitted here for notational

ease). The vorticity, then, is the sum of the integral of each term,

vstr/tilt(t) 5
� t

t0

dt′[v(t′) ?=v(t′) 2 v(t′)= ? v(t′)], (2)

vbc(t) 5
� t

t0

dt′
1

r(t′)2
=r(t′) 3 =p(t′), (3)

vsgs(t) 5
� t

t0

dt′= 3 fsgs(t′), (4)

vdiff(t) 5
� t

t0

dt′= 3 fdiff(t′), (5)

vcor(t) 52

� t

t0

dt′= 3 [ fk 3 v′(t′)], (6)

such that

v(t) 5 v(t0) 1 vstr/tilt(t) 1 vbc(t) 1 vsgs(t) 1 vdiff(t) 1 vcor(t):
(7)

This vorticity decomposition will be referred to as “traditional

integral.” This formulation yields the separate net contribu-

tions due to stretching and tilting (“str” and “tilt”) of the total

vorticity,2 baroclinic vorticity production (“bc”), vorticity gen-

eration via SGS mixing (“sgs”), as well as via numerical diffu-

sion (“diff”). Stretching and tilting of planetary vorticity is

described by vcor. A practical advantage of this formulation is

that it can be integrated using a simple trapezoidal scheme

(see appendix B) because =v (including v) as well as the

source terms, are available along the entire trajectory.

b. Vorticity source decomposition: Truesdell’s basic

vorticity formula

An alternative way of decomposing the vorticity vector is

based on Truesdell’s “basic vorticity formula” (Truesdell

1954, p. 154). An elegant way of obtaining it is afforded by the

use of the material (Lagrangian) coordinate system. This system

is made up of a coordinate grid that moves with the flow and is

deformed along the way (e.g., Salmon 1998, p. 5). The derivation

here utilizes classical tensor calculus following, e.g., Truesdell

(1954) and Dutton (1976), and it extends the treatment by Dahl

et al. (2014, their appendix A) by leveraging the material de-

scription of vorticity. The reader is referred to the extensive

work by Davies-Jones (2000, 2006, 2015, 2022) for alternative

derivations and formulations applicable to specific flows and

configurations with an eye to supercell-like flows, and Epifanio

and Durran (2002) for applications to orographic vortices.

The basic premise of our derivation is that physical laws or

quantities should not depend on the observer. Thus, one may

choose any coordinate system while the laws of physics ought

to be unchanged (e.g., Zee 2013, p. 68). However, when

changing the coordinate basis vectors associated with one co-

ordinate system (ja) to another (xi), a given vector a has its

components changed according to the law

ai 5
­xi

­ja
âa, (8)

which ensures that the vector itself remains unchanged. Here, ai

represent the components with respect to the xi coordinate basis,

and âa are the components with respect to the ja coordinate ba-

sis. In 3D, one may think of the vector as a rigid arrow, and the

above transformation law ensures that the arrow’s projections on

the new coordinate basis leave the arrow itself unchanged. Physi-

cal quantities that exhibit this transformation behavior under

general coordinate transformations are characterized by “general

covariance” (e.g., Zee 2013, p. 47). This principle will be utilized

by formulating the vorticity vector first in material coordinates

and then obtaining the desired components relative to the spatial

basis simply by applying the coordinate transformation matrix.

To begin, we introduce the fixed spatial (Eulerian) coordi-

nates xi and the time-dependent material (Lagrangian) coor-

dinates ja. In addition, in classical tensor analysis there

always exist background Cartesian coordinates y j, relative to

which the other coordinate systems and their coordinate basis

vectors are defined (e.g., Marsden and Hughes 1983, p. 44).

All indices run from 1 to 3, where the spatial components

have Roman letters as indices, and the material components

are represented by Greek letters. That is, the components ai

of a vector a pertain to the spatial basis, and the components

aa pertain to the material basis. The fixed spatial coordinates

are assumed to be non-Cartesian to keep the analysis as gen-

eral as possible, though practically the spatial coordinates are

often taken to be Cartesian. The material coordinates, in the pre-

sent interpretation, remain attached to each fluid parcel and are

given by the spatial coordinates that the parcels occupy at some

arbitrary reference time t0. Throughout, Einstein’s summation

convention is used. The reader is referred to Simmonds (1994)

for some background on classical tensor calculus in curvilinear

coordinates. The advantage of using material coordinates is that

the vorticity equation and its integral are comparatively simple in

these coordinates. Davies-Jones (2022) leveraged this observa-

tion by writing the evolution equation of vorticity in material co-

ordinates, which allowed for a straightforward integration. The

2 If the individual components are written out, the traditional
“tilting” and “stretching” terms can be isolated; e.g., dz/dt|str/tilt 5
2z(= ?v)1vh ?=hw1 z­w/­z52z(=h ? vh)1vh ?=hw, which are
the conventional stretching and tilting terms.
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starting point of our approach is the expression for vorticity itself

and subsequent use of a simple integral of the momentum equa-

tion to obtain the desired vorticity formulas.

Here we are interested in the contravariant components of

the vorticity vector, because these pertain to the local covariant

basis vectors, which are parallel to the coordinate axes, and

lengthen/shorten in the same way as the coordinate axes upon

deformation. The contravariant vorticity components thus natu-

rally embody the effects of deformation on vortex line segments

(e.g., Dahl et al. 2014; Davies-Jones 2022). The curl of the veloc-

ity field u in arbitrary curvilinear coordinates xi is given by

(= 3 v)k 5 vk 5
eijk
��
g

√
­u

j

­xi
, (9)

where uj represents the covariant velocity components, vk

represents the vorticity vector, eijk is the permutation symbol,

and g is the determinant of the metric tensor g, pertaining to

the xi coordinates. It can be shown that
��
g

√
5 J

y
x , where J

y
x is

the Jacobian, i.e., the determinant of the transformation ma-

trix from the curvilinear xi coordinates to the Cartesian frame

yi.3 The Jacobian equals the ratio of volume elements in each

coordinate system (e.g., Aris 1962, p. 83), so for instance,

Jxj 5
V(t)
V(t0)

5
r(t0)
r(t) , (10)

where in the last-step mass conservation was assumed. If the

Jacobian (or the determinant of the metric tensor) is omitted from

the definition of the curl [Eq. (9)], only volume-preserving transfor-

mations without reflections are permitted (e.g., proper rotations),

or else the components of the curl do not transform correctly.

We start by writing the vorticity vector in the time-dependent

material frame:

[= 3 v(t)]g 5 vg(t) 5 eabg
������
G(t)

√
­u

b
(t)

­ja
: (11)

Here G(t) is time dependent in the general case of compressible

flows, because a given material volume element will expand or

compress compared to its initial volume. To obtain the vorticity

formula, one merely has to rewrite ub as an integral of the mate-

rial acceleration. Starting with Newton’s second law,

dub(t)
dt

5 fb(t), (12)

where fb represents the covariant components of the net force f

acting on the parcel and the d/dt operator is the material deriva-

tive (see appendix A). Then the material velocity is given by

u
b
(t) 5 u

b
(t0) 1

� t

t0

dt′f
b
(t′): (13)

The vorticity in the material picture is then simply obtained

by inserting Eq. (13) into Eq. (11):

vg 5
eabg
������
G(t)

√
­ub(t0)
­ja

1

� t

t0

dt′
eabg
������
G(t)

√
­fb(t′)
­ja

: (14)

This equation may be written in a more insightful manner. Start-

ing with the first term, and remembering that
������
G(t)

√
5 J

y
j (t),

the Jacobian may be reformulated using the chain rule (Aris

1962, p. 145):4

J
y
j (t) 5 JyxJ

x
j (t): (15)

So

vg 5
1

Jxj (t)
eabg

J
y
x

­ub(t0)
­ja

1

� t

t0

dt′
eabg

J
y
j (t)

­fb(t′)
­ja

: (16)

Noting that

Jyx 5 J
y
j (t0), (17)

we write

v
g
0 ;

eabg

J
y
j (t0)

­ub(t0)
­ja

, (18)

which is the initial vorticity at the reference time t0. Then,

vg(t) 5 v
g
0

Jxj (t)
1

� t

t0

dt′
eabg

J
y
j (t)

­fb(t′)
­ja

: (19)

The integrand may be rewritten noting that

J
y
j (t′) 5 JyxJ

x
j (t′), (20)

and thus,

Jyx 5
J
y
j (t′)
Jxj (t′)

: (21)

Inserting this expression for Jyx into Eq. (15) gives

J
y
j (t) 5

Jxj (t)
Jxj (t′)

J
y
j (t′): (22)

Finally, using Eq. (10),

J
y
j (t) 5

r(t′)
r(t) J

y
j (t′): (23)

3 If J epresents the transformation matrix from the xj coordi-
nates to Cartesian coordinates, we know that (J ?J)ik 5 JijJ

j
k, and

consequently, (JT ?J)ik 5∑jJ
j
iJ

j
k 5 gik. So, J

T ?J 5 g, which is the

metric tensor, and which implies det(JT ?J) 5 det(g). It follows that

det(JT ?J)5 det(JT) det(J)5 det(J) det(J)5 [det(J)]25 g.

4 The matrix (Jyj)
i
a 5­yi/­ja may be written, upon applying the

chain rule, as ­yi/­xk ? ­xk/­ja, which may be interpreted as the

product of two matrices. Taking the determinant of a matrix prod-

uct A ? B gives det(A ? B) 5 det(A)det(B). In symbolic notation,

we may then write J
y
j 5 det(­y/­j), and apply the chain rule such

that det(­y/­j)5 det(­y/­x) det(­x/­j).
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Substituting this in the integrand of Eq. (19) and using

Eq. (10) also in the first term, gives

vg(t) 5 r(t)
r(t0)

v
g
0 1

� t

t0

dt′
r(t)
r(t′)

eabg

J
y
j (t′)

­f
b
(t′)

­ja
: (24)

Recognizing the material torque in the integrand,

tg(t′) ; eabg

J
y
j (t′)

­f
b
(t′)

­ja
, (25)

we may write

vg(t) 5 r(t)
r(t0)

v
g
0 1

� t

t0

dt′
r(t)
r(t′) t

g(t′): (26)

This is the vorticity in the material frame, and this formula-

tion affords an interesting interpretation of the vorticity parts.

In the deformed material frame, there is a contribution from

the initial vorticity, which only changes as the volume is ex-

panded or compressed between t0 and t (here referred to as

expansion/compression effect), which is schematically shown

in Fig. 1. This effect can be understood by recognizing that

the vorticity within a vortex tube increases if the tube’s cross-

sectional area decreases. Assume that the jg axis is parallel to

the vortex tube. If the volume of the fluid element, e.g., de-

creases, but such that the cross-sectional area normal to the

vortex tube remains constant, then the material axis parallel

to the vortex tube is compressed, and accordingly the material

vorticity component along this axis increases (Fig. 1b). On the

other hand, if the cross-sectional area normal to the vortex tube,

e.g., decreases but the material axis parallel to the vortex tube re-

mains unchanged, the vorticity component along this axis will in-

crease because of angular momentum conservation (Fig. 1c).

Thus, this effect describes the “nonfrozenness” of this vorticity

part in nonisochoric flows. Finally, if the volume remains cons-

tant, the magnitude of the vorticity vector may still change but

then the vector is frozen into the material frame and the vorticity

components along the material axes remain constant (Fig. 1d).

The second part of Eq. (26) describes the effect of the tor-

ques due to nonconservative forces acting on the flow, taking

into account the incremental expansion/compression effect.

In essence, this part is the integral of the material torque. In

this analysis, the torque includes the baroclinic vorticity pro-

duction, vorticity generated via SGS and numerical mixing, as

well as curl of the Coriolis force.

Except for the compression/expansion effect in nonisochoric

flows, the material description does not include tilting and

stretching of the vorticity vector, which is related to the defor-

mation of the fluid volume. This deformation is implicitly

included in the material description. These effects appear ex-

plicitly if the coordinates are changed to the fixed spatial frame

using the vector transformation law:

vi(t) 5 ­xi

­jg
(t) r(t)

r(t0)
v
g
0 1

� t

t0

dt′
r(t)
r(t′) t

g(t′)
[ ]

: (27)

If the torque in the integrand is zero, the equation recovers

Cauchy’s vorticity formula (e.g., Truesdell 1954; Dutton

1976; Davies-Jones 2000; Dahl et al. 2014). Note that

Eq. (27), giving the spatial components of the vorticity vec-

tor, still pertains to individual parcels. However, rather than

considering the projection of the vorticity parts onto the

time-dependent material coordinate basis [Eq. (26)], we now

consider the projections onto the fixed spatial coordinate basis

(which is usually represented by the standard Cartesian basis).

The torque in Eq. (27) is given in material coordinates and

may be cumbersome to calculate using, e.g., model output or

observational data. However, after a coordinate transforma-

tion, the spatial components of the torque appear:

tg(t′) 5­jg

­xj
(t′)t j(t′): (28)

The final version of Eq. (27) then becomes

vi(t) 5 ­xi

­jg
(t) r(t)

r(t0)
v
g
0 1

� t

t0

dt′
r(t)
r(t′)

­jg

­xj
(t′)t j(t′)

[ ]

: (29)

In symbolic form, Eq. (29) reads

v
g 5

­r

­j
(t) ? r(t)

r(t0)
v0 1

� t

t0

dt′
r(t)
r(t′)

­j

­r
(t′) ? t(t′)

[ ]

: (30)

This is the (slightly reformulated) “not inelegant” basic vortic-

ity formula by Truesdell (1954, p. 154). By writing out each of

the two terms separately and explicitly considering all contri-

butions to t, the vorticity source decomposition is obtained:

FIG. 1. Qualitative depiction of the compression/expansion
effect. The dark-blue arrow represents the vorticity vector, and the
light-blue vector is the projection of this vector on the sidewall of
the material volume. (a) Initial configuration; (b) vertical compres-
sion leaves the horizontal cross-sectional area as well as the vortic-
ity vector unchanged, but the material vertical vorticity component
increases; (c) lateral compression leads to an increase of the vorticity
vector as well as its vertical material component due to horizontal
convergence; (d) the volume is isochorically deformed and the vor-
ticity vector lengthens due to horizontal convergence, but its vertical
material component remains unchanged.
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vi
P(t) 5

­xi

­jg
(t) r(t)

r(t0)
v
g
0 , (31)

vi
N(t) 5

­xi

­jg
(t)

� t

t0

dt′
r(t)
r(t′)

­jg

­xj
(t′)t j

N(t′)
[ ]

, (32)

where the subscripts describe the sources of the vorticity that

is subsequently rearranged. Here, P stands for “preexisting”

and N 2 {BC, SGS, DIFF, COR}, is a placeholder describing

the different torques:

tBC 5 = 3 2
1

r
=p

( )
, (33)

tSGS 5 = 3 fsgs, (34)

tDIFF 5 = 3 fdiff, (35)

tCOR 5 = 3 (2fk 3 v′h): (36)

The meaning of the subscripts as well as the interpretation

of the different vorticity parts are discussed in the next sub-

section. Equations (31) and (32) are, respectively, equiva-

lent to Eqs. (33) and (36) by Davies-Jones (2022). The

initial conditions for vP and vN immediately follow from

Eqs. (31) and (32):

vP(t0) 5 v(t0), (37)

and

vBC(t0) 5 vSGS(t0) 5 vDIFF(t0) 5 vCOR(t0) 5 0: (38)

IMPLEMENTATION OF THE VORTICITY SOURCE

DECOMPOSITION

As shown in appendix A, Truesdell’s vorticity formula,

Eq. (29), leads to this form of the partial vorticity equations,

dv
N

dt
5 v

N
?=v 2 v

N
(= ? v) 1 t

N
, (39)

where now the placeholder N 2 {P, BC, SGS, DIFF, COR} in-

cludes the preexisting part with

t
P
5 0: (40)

Additional torque terms could be used as needed, such as the

torque associated with gradients in hydrometeor load (e.g.,

Davies-Jones 2022). Equations corresponding to Eq. (39)

appeared in Davies-Jones [2006; his Eqs. (5.1)–(5.4)], and for

incompressible flows, in the analyses by, e.g., Epifanio and

Durran (2002) and Markowski (2016). The vorticity parts are

given by the integral of Eq. (39) for each N:

vP(t) 5 v(t0) 1
� t

t0

dt′[vP(t′) ?=v(t′) 2 vP(t′)= ? v(t′)], (41)

vBC(t) 5
� t

t0

dt′[vBC(t′) ?=v(t′) 2 vBC(t′)= ? v(t′) 1 tBC(t′)],

(42)

vSGS(t) 5
� t

t0

dt′[vSGS(t′) ?=v(t′) 2 vSGS(t′)= ? v(t′) 1 tSGS(t′)],

(43)

vDIFF(t) 5
� t

t0

dt′[vDIFF(t′) ?=v(t′) 2 vDIFF(t′)= ? v(t′)

1 tDIFF(t′)], (44)

vCOR(t) 5
� t

t0

dt′[vCOR(t′) ?=v(t′) 2 vCOR(t′)= ? v(t′)

1 tCOR(t′)]: (45)

The first part represents the effect of tilting and stretching of

the initial or preexisting vorticity, and it represents the vortic-

ity imported into the supercell from the environment. This

vorticity part is commonly called “barotropic” vorticity, a

designation apparently first introduced by Dutton (1976,

p. 389) for inviscid flows. However, this designation seems

misleading if mixing is included, which is why we use the term

“preexisting” vorticity.5 The second part is the baroclinically

produced, and subsequently rearranged vorticity, which is re-

ferred to as baroclinic vorticity (suffix “BC”). This part is zero

initially and thus includes the total effect of baroclinic produc-

tion. For example, a small amount of baroclinic production

may lead to initially insignificant vorticity, but upon strong

stretching this vorticity may dominate the flow after some

time. In the traditional picture, the stretching term would

dominate, but in the source decomposition, the baroclinity

would be highlighted as ultimate dynamical source of the vor-

ticity. Finally, there is the vorticity that has been produced by

SGS mixing and numerical diffusion (DIFF), and which has

subsequently been rearranged. Numerical diffusion is also re-

ferred to as implicit diffusion or implicit mixing, and it is pre-

sent when odd-ordered advection schemes are used (e.g., Wicker

and Skamarock 2002), as is the case in the present simulation.

That is, the odd-ordered advection scheme has a built-in noise

5 Consider an inviscid fluid, in which one may always define a
preexisting vorticity part that behaves as if the flow were baro-
tropic, hence the designation “barotropic vorticity.” The remain-
ing vorticity part is newly generated via baroclinity and then
rearranged, which is the baroclinic vorticity. However, in baro-
tropic flows with nonzero (molecular, eddy, or computational)
mixing, the designation is perhaps misleading because now there is
a barotropic part (preexisting vorticity being rearranged) and a
“nonbarotropic” part that is caused by viscous effects. There
would thus be nonbarotropic vorticity even though the flow is
purely barotropic. Moreover, this nomenclature has led several au-
thors to refer to the rearrangement of preexisting vortex lines as a
“barotropic” process (e.g., Davies-Jones 2008; Markowski 2016;
Dahl 2017), which in most cases is misleading because horizontal
gradients in vertical motion in convective storms are often associ-
ated with horizontal buoyancy gradients, i.e., baroclinity.
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filter. The SGS mixing term is especially large near the surface

where it describes the effect of surface drag (e.g., Markowski and

Bryan 2016).

The vorticity source decomposition offers different insights

into the vorticity dynamics than the traditional formulation.

Aside from the effect just described, whereby a small amount

of vorticity production may be identified as dynamically im-

portant, the impact of the initial, or preexisting, vorticity can

be quantified. If the initial vorticity closely corresponds to

the base-state vorticity, the direct contribution of imported

ambient vorticity to the rotation of the tornado can be as-

sessed. A practical disadvantage of this vorticity source de-

composition is that the vorticity parts in the integrands are

not known along the trajectory and they must be calculated

using an iterative or an implicit scheme (appendix B). Unfor-

tunately, this integration is prone to error growth, and match-

ing vorticity budgets are less likely to be achieved than for

traditional budgets. While Markowski (2016) attributed most

of the error growth to the nonlinear advection, in our case

this is related to the fact that the tilting and stretching terms

are calculated using the partial vorticity obtained from the

previous integration steps (in the “traditional” integration,

one uses the known interpolated vorticity components, so the

problem is not as severe). This effect is aggravated near the

vortex where large velocity gradients exist, so that the errors

rapidly escalate. To alleviate these errors, we used trajectory

data output on every large model time step (0.5 s). The trajec-

tory data were calculated during runtime within CM1 on their

respective staggered grids, and then interpolated trilinearly to

the parcel locations. When integrating the vorticity budgets

several solvers were tested to mitigate error growth (including

those available in the Python library solve_ivp as well as

manually implemented Runge–Kutta and implicit schemes).

While all solution methods yielded the same results, the

implicit scheme (appendix B) was most efficient computa-

tionally.6 Despite the efforts to maximize trajectory accu-

racy, as well as accuracy when calculating the forcing terms,

only for a small number of parcels (n 5 7; see section 2)

were the integrals of sufficient quality to warrant further

analysis.

4. Results

Figure 2 shows the tornado-like vortex at the lowest scalar

model level (Fig. 2a), along with the vertical motion field at

250 m AGL. Besides the main cyclonic vortex, a weaker anti-

cyclonic vortex is also present, and there is a downdraft be-

tween the vortices and southwest of the main (cyclonic)

vortex. These downdrafts are likely forced by dynamic pres-

sure gradient accelerations (e.g., Klemp and Rotunno 1983;

Schenkman et al. 2016). Northwest of the main vortex there is

a rather stationary internal boundary as revealed by the hori-

zontal wind-vector convergence, which is accompanied by a

tongue of rising motion northwest of the TLV. This boundary

and the associated region of upward motion persisted through-

out the TLV’s lifetime. As will be seen, these vertical motion

regimes are critical in shaping the parcel trajectories as they

approach the main vortex.

Figure 2b shows a vertical (south–north) cross section through

the center of the cyclonic vortex. Although the vertical vorticity in

the vortex core does not exhibit an annular structure, a two-celled

structure is apparent in the flow field, with downflow in the cen-

tral vortex portions and an annular corner-like flow surrounding

it. The upward velocity at the southern vortex periphery exceeds

40 m s21 at about 1 km AGL. The vortex formed around 3000 s

simulation time and persisted through the end of the simulation

at 5400 s.

a. Trajectory overview

The seven trajectories based on the storm-relative wind are

shown as black line segments in Fig. 3 and are seen to enter

the TLV. The vast majority of the trajectories originating

from the north/northeast of the vortex descend below the low-

est scalar model level or had poorly matching budgets and

were not considered. The focus is thus on the airstream origi-

nating east of the mesocyclone. While parcels with similar tra-

jectories have been identified in previous studies (e.g., Wicker

and Wilhelmson 1995; Markowski and Richardson 2014; Dahl

et al. 2014; Mashiko 2016; Boyer and Dahl 2020), in the pre-

sent case the descent in the forward flank region is rather gen-

tle, and the parcels do not yet reach the surface. Instead, they

rise again as they traverse the tongue of rising motion north-

west of the main TLV discussed in the previous paragraph.

The parcels subsequently descend comparatively quickly close

to the surface in the occlusion downdraft before they enter

the TLV [as was also observed by, e.g., Schenkman et al.

(2014) and Mashiko (2016)].

Before analyzing the vorticity dynamics in detail, the verti-

cal vorticity parts of the parcels as they enter the base of the

vortex, obtained by integrating Eqs. (41)–(45) along each of

the seven trajectories, are shown in Fig. 4. Parcel A is repre-

sented in blue, and parcel B in red. Notably, for all parcels the

vertical vorticity is dominated by the SGS part caused mainly

by surface drag [even for parcel A (blue dots), zSGS becomes

slightly positive as the parcel rises in the vortex]. The zP and

zBC parts contribute positively only for some parcels. Interest-

ingly, for the parcels analyzed here, when the imported part is

positive, the baroclinic part is negative, and vice versa. The

part due to numerical mixing zDIFF also makes a net positive

contribution to the vorticity budgets and will be analyzed

separately in section 5b. Finally, the contribution due to the

Coriolis force (rearrangement of planetary vorticity) is gener-

ally small and will not be discussed in the subsequent analysis.

In the following we will consider two representative parcels

for which either the imported or the baroclinic vertical vortic-

ity dominates at the base of the TLV.

b. Parcel A

First, we consider parcel A (Fig. 3). Before presenting the

vorticity source decomposition, the results of the traditional

integration of the vorticity equation, Eqs. (2)–(6), will be

6 Note that the data required along the trajectory are the same for
the traditional integration as for the vorticity source decomposition.
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shown separately for the horizontal vorticity magnitude and

the vertical vorticity component. The contributions to the

horizontal vorticity magnitude are displayed in two different

ways: (i) by calculating the magnitudes due to each contri-

bution separately (e.g., vbc
h 5

������������
j2bc 1 h2

bc

√
), shown in Fig. 5a.

Because the different contributions are generally not paral-

lel to one another, their sum does not add up to the total

horizontal vorticity magnitude; (ii) by calculating the pro-

jection of each integrated horizontal vorticity contribution

onto the horizontal vorticity vector, which follows from the

equation for the horizontal vorticity magnitude (e.g., Boyer

and Dahl 2020), d|vh|/dt5 s ? v̇h, where s 5 vh/|vh| is the

unit vector parallel to the horizontal vorticity. This is shown

in Fig. 5b.

n = 95 m sm s-1-1

x (km)
ζ (s-1)

z (km)

y 
(k

m
)

z 
(k

m
)

B
A

FIG. 3. Overview of the trajectories analyzed in this study, spanning the time interval [2400,
4200] s. The blue and red trajectories (labeled A and B, respectively) pertain to the two parcels
analyzed in detail, and the black trajectories represent the seven analyzed parcels. The gray line
segments show all remaining 88 trajectories, including many that descended below the lowest
scalar model level or otherwise did not qualify for analysis. The vorticity field (shaded), the
storm-relative wind field (vectors), and the 21 K potential temperature perturbation contour
(blue line) are shown at 10 m AGL and 4200 s.

a)

   w 
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b)

FIG. 2. (a) Vertical velocity at 250 m AGL (shaded), horizontal storm-relative wind vectors at 10 m AGL, and vertical vorticity at
10 m AGL [contours, (20.1, 20.05, 0.05, 0.1, 0.15, 0.2) s21]. (b) South–north cross section through the vortex at x 5 101.1 km. Vertical
motion is shaded, the red contours represent the pressure perturbation (hPa), and the black contours represent vertical vorticity (s21).
The velocity vectors in the (y, z) plane are also shown (black arrows). Both fields are shown at 4020 s simulation time.
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The analysis reveals that the horizontal vorticity magni-

tude is dominated by horizontal stretching as the parcels ac-

celerate toward the vortex (Fig. 5a). There are relatively

large contributions from the SGS mixing terms after about

4000 s, which however are oriented such that the horizontal

vorticity magnitude decreases somewhat. This is seen in

Fig. 5b, which shows the projection of each integrated hori-

zontal vorticity contribution onto the horizontal vorticity

vector.

Notably, there is practically (but not perfectly) zero baro-

clinic production of horizontal vorticity along the parcel’s

30 min history. What little baroclinic vorticity production the

parcel experiences occurs in the forward flank region of the

storm, where there are weak horizontal buoyancy gradients

(Fig. 6). Notably, but perhaps not unexpectedly, no apprecia-

ble horizontal vorticity is generated baroclinically as the par-

cels descend through the occlusion downdraft.7

The vertical vorticity budget, shown in Fig. 7 is dominated

by the tilting and stretching terms, as well as by implicit diffu-

sion. It is seen that the tilting and numerical diffusion contri-

butions increase as the parcel reaches its nadir (at about

13 m AGL), leading to an increase in vertical vorticity. Subse-

quently, the stretching term, acting on that vertical vorticity,

leads to a rapid increase of vertical vorticity as the parcel en-

ters, and rises within, the vortex. This progression is consistent

with the “in-and-up” mechanism (Boyer and Dahl 2020;

Fischer and Dahl 2022) augmented by diffusion.

Perhaps surprisingly, when considering the vorticity source

decomposition (Fig. 8) the seemingly negligible amount of

baroclinically produced vorticity is subject to significant stretch-

ing, such that the baroclinic vorticity becomes a dominant

source in terms of vorticity magnitude. Another significant con-

tribution comes from the imported vorticity. However, as seen

in Figs. 8a and 8b, the two vorticity parts point in opposite

directions. The vP part contributes positively to the vertical

vorticity, while the baroclinic part contributes negatively. That

is, the imported vorticity directly helps maintain the rotation of

the TLV via abrupt upward tilting as the parcel enters the TLV.

The vorticity due to SGS mixing remains horizontal as the

parcel enters the vortex, and thus does not contribute to the

vertical vorticity of the parcel (only a bit later the SGS vortic-

ity attains a positive vertical component as the air continues

to rise). The diffusive vertical vorticity contributes the most,

but as will be discussed in section 5b, this effect does not

contribute to vortex maintenance. Figure 8 only affords a

qualitative picture of the relative magnitudes and general

orientations of the different vorticity parts. To quantify the

different vorticity parts, Fig. 9 shows the individual horizon-

tal vorticity magnitudes as well as the vertical vorticity,

highlighting the diffusive and preexisting (imported) parts as

the dominant contributors.

c. Parcel B

The traditional integrals for parcel B (Fig. 3) reveal a simi-

lar evolution as was found for parcel A. When considering the

P

FIG. 4. Vertical vorticity (z) parts at the moment the parcels com-
mence their ascent as they enter the vortex. Each color uniquely
corresponds to one parcel. Parcel A is represented by blue dots, and
parcel B by red dots.

a)

b)
Nadir

Nadir

Projections onto ωω h

FIG. 5. Time series of (a) the horizontal vorticity magnitudes
based on the different integrated terms in the traditional vorticity
equation for parcel A. The parcel height is shown as gray dashed
line. (b) Integrated projection onto the horizontal vorticity vector of
the individual terms of the traditional horizontal vorticity equation
for parcel A.

7 The perturbation pressure gradient accelerations are approxi-
mately irrotational, and consequently cannot generate vorticity.
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magnitudes of the horizontal vorticity contributions using the

traditional integral, shown in Fig. 10a, the dominant terms are

again the tilting/stretching terms as the parcel accelerates to-

ward the vortex, entering it about 20 m AGL. The magnitude

of the integrated baroclinic production is nonzero, but this

contribution has a component in the opposite direction of

the horizontal vorticity vector, implying that it tends to reduce

the horizontal vorticity magnitude. This is inferred from the

projections of the horizontal vorticity contributions onto

the horizontal vorticity vector, shown in Fig. 10b. Likewise,

implicit mixing again contributes negatively, but in contrast to

parcel A, SGS mixing leads to an increase of horizontal vor-

ticity magnitude due to surface drag.

The vertical vorticity budget, shown in Fig. 11, likewise

resembles that of parcel A. First the vertical vorticity due to

tilting increases, and this vorticity is subsequently stretched

vertically as the parcel rises in the updraft. The effect of im-

plicit diffusion also contributes to an increase in vertical vor-

ticity, as for the other parcel. In short, the traditional vorticity

budgets are quite similar for both parcels.

The source decomposition reveals rather large differences

in the vorticity dynamics of parcel B compared to parcel A.

As shown in Fig. 12, both the imported and baroclinic vor-

ticity vectors along trajectory B become oriented oppositely

to the corresponding vectors along trajectory A. That is, the

imported preexisting vorticity attains a downward compo-

nent, while the baroclinic vorticity points upward, which

thereby contributes positively to the rotation of the TLV.

This is also seen in the time evolution of the different vortic-

ity parts displayed in Fig. 13. Moreover, the SGS vorticity,

caused mainly by surface drag is abruptly tilted upward at

the base of the vortex, as also recognized by Schenkman

et al. (2014), Roberts et al. (2016), and Roberts and Xue

(2017).

In summary, while the analysis of the traditional vorticity

equation suggests that both parcels behave rather similarly

to one another, the vorticity source decomposition reveals

stark differences in the relative contributions of imported

and baroclinic vorticity. These differences are explored in

the next section.

10-4 s-2

x (km)

z (km)
y 

(k
m

)
z 

(k
m

)

b (m s-2) x 102 

FIG. 6. Buoyancy field as well as baroclinic vorticity production at 452 m AGL and 3240 s. The
location of parcel A pertaining to the level and time shown is marked as a blue circle.

Nadir

FIG. 7. Vertical vorticity budgets using the traditional vorticity
integral for parcel A. Here, diffusion refers to implicit (numeri-
cal) mixing.
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5. Discussion

a. Difference in behavior of imported and baroclinic

vorticity between trajectories A and B

An interesting observation in the analysis is that, while the

traditional vorticity budgets pointed to rather similar vorticity

dynamics, the vorticity source decomposition yielded large dif-

ferences between parcels A and B in the configuration of both

the baroclinic and imported vorticity vectors. While the vorticity

vectors (either imported or baroclinic) are initially aligned simi-

larly, they are imbedded in different strain fields, which is in

part related to the inhomogeneous downdraft field these parcels

pass through (Fig. 14). To see the differences in the strain field

along the trajectories, the principal axes of the local strain ten-

sor corresponding to the intermediate eigenvalues are shown in

Fig. 15, along with the imported vorticity. The eigenvectors

were calculated following Kundu and Cohen (2008, p. 41). The

orientation of the eigenvectors corresponds to the axes of defor-

mation. Although one might expect the vorticity vectors to be-

come aligned with the eigenvector associated with the largest

positive eigenvalue, which signifies the direction of maximum

stretching (Hamlington et al. 2008), it has long been recognized

that the vorticity vectors tend to become aligned with the inter-

mediate axis of deformation of the rate-of-strain tensor (e.g.,

Hamlington et al. 2008; Coriton and Frank 2016). Hamlington

et al. (2008) explain this behavior with the strain induced by the

local vortex structure itself, which often exceeds the background

strain that reoriented and stretched the vortex in the first place.

As can be seen in Fig. 15, the imported vorticity has a different

alignment for each parcel relative to the deformation axis, indicat-

ing that the vorticity vectors along each trajectorywill be reoriented

in a different fashion, ultimately resulting in opposite orientations

of the vectors for each parcel. The final alignment approaches the

intermediate deformation axis (Hamlington et al. 2008).

The result is that all vorticity parts tend to become oriented

approximately parallel or antiparallel to one another, as is also

apparent in the analysis by Dahl et al. (2014) and Dahl (2015).

This implies that even in the presence of the source terms,

influencing the vorticity evolution for all but the imported vortic-

ity parts, the deformation effect (tilting/stretching) dominates

over those sources. That is, the tendency to become aligned with

the intermediate deformation axis is not affected much by the

production of new vorticity, which would not in general be

aligned with the intermediate deformation axis.

a) b)

c) d)

z (m
)

z (m
)

z (m
)

z (m
)

ωω ω

ω ω

P BC

SGS DIFF

FIG. 8. Qualitative 3D depiction of the vorticity source decomposition, with (a) imported preexisting vorticityvP, (b) baroclinic vorticity
vBC, (c) SGS vorticity vSGS, and (d) diffusive vorticity vDIFF of parcel A. The vorticity vectors are represented by line segments originat-
ing from the trajectory (black line). The black arrows indicate the direction of the vertical vorticity vector at the end of the time interval
for which the trajectory is displayed, [3550, 4125] s.
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b. Role of implicit diffusion

Many parcels experience an increase in vertical vorticity via

implicit diffusion as they enter the vortex (e.g., Fig. 7; see also

Markowski et al. 2014; Schenkman et al. 2014; Boyer and

Dahl 2020; Fischer and Dahl 2022). To understand this contri-

bution, consider the well-known Burgers–Rott vortex solu-

tion. Here, the azimuthal velocity is given by (e.g., Markowski

and Richardson 2010)

y (r) 5 G

2pr
1 2 exp 2

a

2n
r2

( )[ ]

, (46)

where y(r) is the azimuthal velocity, a is half the horizontal

convergence, n is the kinematic viscosity, G is the circulation.

The radial velocity in the Burgers–Rott model is given by

u5 2ar. With this, the vertical vorticity is found to be

z 5
­y

­r
1

y

r
5

Ga

2pn
exp 2

a

2n
r2

( )
: (47)

There is no horizontal vorticity in the Burgers–Rott model.

Now, following the parcel motion with r 5 r(t) 5 r0 exp(2at)

(via integration of u 5 2ar), one obtains the vorticity ten-

dency along a trajectory:

dz

dt
(t) 52

Ga2

2pn2
r(t)u(t)exp 2

a

2n
r(t)2

[ ]
: (48)

To see by which mechanisms this vertical vorticity evolves

along a trajectory for r(t) . 0, we may consider the vertical

vorticity equation, which due to the symmetry of the problem,

reduces to

dz

dt
(t) 52z(t)=

h
? v

h
(t) 1 n=2z(t): (49)

Now, because in this model

=h ? vh 5
du

dr
1

u

r
(50)

a)

b)

Nadir

Nadir

FIG. 9. Time evolution of the different vorticity parts based on
the source decomposition along the trajectory of parcel A. (a) Hori-
zontal vorticity magnitudes of the different vorticity parts; (b) verti-
cal vorticity parts. Note the different time intervals in each panel.

Nadir

a)

Nadir

Projections onto ωωh

b)

FIG. 10. As in Fig. 5, but for parcel B.
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and

=
2 5

1

r

d

dr
1

d2

dr2
, (51)

the vertical vorticity equation becomes

dz

dt
(t) 5 2az(t) 1 a2G

2pn

ar(t)2
n

2 2

[ ]

exp 2
a

2n
r(t)2

[ ]
: (52)

The first term is the stretching term, which requires vertical

vorticity to be nonzero in order to be active, and the second

term describes vorticity acquisition via diffusion, which is the

only vorticity source in the Burgers–Rott model. From the

perspective of the vorticity source decomposition, the only

nonzero part at r . 0 would be vDIFF 5 zDIFFk, which is di-

rected upward everywhere.

The terms in Eq. (52) may be integrated numerically to see

how parcels acquire their vertical vorticity as they enter the

vortex. Figure 16 shows that parcels first gain vertical vorticity

via diffusion, whereupon this vorticity is strongly stretched

vertically. This increase of vertical vorticity via diffusion is

also evident in the vorticity budgets discussed above (Figs. 7

and 11). Because all parcels in the Burgers–Rott solution ac-

quire their vertical vorticity via diffusion, one might conclude

that the vortex core is maintained by diffusion. However, to

obtain the steady vortex solution some initial vertical vorticity

must have been present that subsequently has been concen-

trated. In the steady state, this initial vorticity resides at r 5 0.

Given the free-slip lower boundary in the Burgers–Rott

model, the parcels initially at z5 0 remain there while parcels

at z . 0 rise. The result is continued vertical stretching of

their initial vertical vorticity at r 5 0. It is this stretched initial

vorticity that maintains the vortex. This stretching effect alone

a) b)

c) d)
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FIG. 12. As in Fig. 8, but for parcel B. Here, the time interval spans [3650, 4135] s.

Nadir

FIG. 11. As in Fig. 7, but for parcel B.
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would result in unbounded growth, but it is offset by diffusion.

The relevant vorticity that maintains the vortex is thus infi-

nitely thin and located at the symmetry axis r 5 0. All parcels

outside the symmetry axis acquire their vorticity via diffusion.

The vertical vorticity is never exhausted because the vortex

line terminates at z 5 0 where the vertical velocity is zero. In

real-world vortices, the vorticity in the inner core must be

supplied continuously, in the case of a mature tornado mainly

via upward tilting of horizontal vorticity at the base of the

vortex (e.g., Fischer and Dahl 2022). Incidentally, drain vorti-

ces likewise need a continuous source of vertical vorticity to

persist (Yokoyama et al. 2012).

The implication is that parcels that acquire vertical vorticity

via diffusion do not maintain the core vorticity and hence do

not actively partake in vortex maintenance}these parcels

merely benefit from large vorticity in the central core. Analo-

gous arguments apply to the horizontal vorticity: Another

process must have created large horizontal vorticity gradients

in order for parcels to acquire horizontal vorticity via diffusive

processes. Diffusion can thus not be invoked to explain vortex

maintenance.

c. Connection to angular momentum conservation

At first sight, an easier perspective of vortex maintenance,

rather than using vorticity dynamics, may be to consider angu-

lar momentum (or perhaps more appropriately, circulation)

conservation. Here, the air outside the vortex core has ap-

proximately zero vertical vorticity while the swirl velocity of

air parcels increases as they converge toward the vortex cen-

ter. In other words, the airflow just outside the vortex core,

where still much of the damage associated with a tornado oc-

curs, has no vertical vorticity. One might wonder, then, why

the acquisition of vertical vorticity matters. The reason is that

the air in the far field has positive circulation only because

there is a vortex core}without its presence the circulation

would be zero, because circulation is determined by the vor-

ticity vectors piercing the surface around which circulation is

calculated. Consequently, the average swirl velocity along the

boundary of this surface would be zero if the circulation was

zero (and conservation of zero angular momentum would not

result in increasing swirl velocities upon convergence). The

implication is that the angular momentum explanation of vor-

tex maintenance ultimately relies on the mechanisms that

maintain the vortex core.

d. Limitations

While the analysis suggests that there are rather diverse

pathways by which parcels may acquire large near-ground

vertical vorticity as they enter a tornado, a shortcoming of

this study is the relatively small number of parcels considered.

Aside from the problem of parcels descending beneath the

lowest scalar model level, the main culprit is the fact that the

parcels are subject to strong velocity gradients, potentially

rendering (i) the trajectories themselves and (ii) the vorticity

integration, unreliable. Problems such as this one, requiring

very small time steps for solutions to converge, are sometimes

referred to as stiff (e.g., Shampine et al. 2003) and they are in-

herently difficult to solve. As a result, while meaningful solu-

tions could be found for only a few parcels, the vast majority

of the trajectories could not be used for the analysis. While in

the small sample shown in Fig. 4 the vorticity related to sur-

face drag (SGS mixing) dominates, it is not clear how repre-

sentative this sample is. However, the importance of vSGS in

mature TLVs has been highlighted also in previous studies

(e.g., Schenkman et al. 2014; Roberts et al. 2016; Roberts and

Xue 2017; Fischer and Dahl 2022). Moreover, for our parcels

to acquire large horizontal vorticity due to surface drag, they

need to be close to the lowest scalar model level (only at the

lowest scalar model level the effect of surface drag is in-

cluded). Unless parcels reached heights of ;10 m AGL, they

experience less vorticity production due to surface drag than

real-world “near-surface” parcels would experience. Such

a)

b)

Nadir

Nadir

FIG. 13. Time evolution of the different vorticity parts based on
the source decomposition along the trajectory of parcel B. (a) Hori-
zontal vorticity magnitudes of the different vorticity parts; (b) verti-
cal vorticity parts. Note the different time intervals in each panel.
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parcels enter the vortex from within the boundary layer of the

tornado, such that they most likely experience significant hori-

zontal vorticity production due to surface drag. This implies

that in the present sample the importance of surface drag may

still be underestimated.

An alternative to the integration method used here could

be to use the material stencils as implemented by Dahl et al.

(2014), but the large deformation near the vortex, as well as

the requirement that all stencil parcels remain above the

lowest scalar model level rendered this technique not as

a)
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y 
(k

m
)

z 
(k

m
)
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x10-2

FIG. 14. (a) Magnitude of the 3D the rate-of-strain tensor (shaded) and vertical velocity
(contoured in m s21), as well as storm-relative wind vectors at 170 m AGL, along with the tra-
jectory of parcel A; (b) as in (a), but for parcel B, and the fields are shown at 533 m AGL. The
simulation time in both plots is 3840 s.
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effective for analyzing an intense vortex. For this reason,

Dahl et al. (2014) and Dahl (2015) avoided considering

mature vortices, and instead only focused on the weak near-

ground “seed” vortex patches, such that the velocity gra-

dients still had relatively small magnitudes and the stencils

remained relatively well-behaved. In those settings, a larger

number of parcels could be considered, and for these seed

vortex patches the robustness of the baroclinic downdraft

mechanism could be affirmed (Dahl 2015).

Another possible solution to the small yield of the vorticity

source decomposition technique as applied here is to consider

the circulation evolution of material circuits. Potential disadvan-

tages are that these circuits tend to become extremely contorted

(e.g., Mashiko 2016), possibly rendering the calculations inaccu-

rate, and that only the average partial vorticity component nor-

mal to the surface can be identified.

An error source potentially affecting the interpretation

of the vorticity source decomposition involves the initial

condition. To be able to associate the initial vorticity with

the ambient vorticity, long parcel histories are necessary to

ensure that the parcels are initially in the unperturbed en-

vironment. For that purpose, rather long parcel histories

were considered (30 min), but even with such long histo-

ries, there were still minor perturbations at the parcels’ ini-

tial locations (some parcels may have experienced, e.g.,

small amounts of baroclinic production prior to the begin-

ning of the analysis). The initial vorticity thus did not al-

ways perfectly correspond to the base state. Practically, the

consequences may be minor, however, given that actual en-

vironments are not uniform in the first place, and it is not

trivial to even define what constitutes a storm’s environ-

ment (e.g., Markowski et al. 1998).

These limitations highlight the challenge of obtaining accu-

rate information about vorticity and circulation budgets for

concentrated vortices.

6. Conclusions

Using the CM1 model to simulate an idealized supercell

that produced a long-lived tornado-like vortex, we presented

the integrals of the traditional vorticity equation along seven

trajectories. In addition, the vorticity vector was decomposed

into parts that arise from the rearrangement of (i) preexisting

(ambient) vorticity, and (ii) vorticity that has subsequently

been generated within the storm. The main findings may be

summarized as follows:

• The most reliable dynamical source contributing to the

rotation of the mature tornado-like vortex is surface

drag (vSGS), which for all analyzed parcels contributed

either positively or, in one case, negligibly, to the verti-

cal vorticity at the base of the vortex (i.e., vSGS never

contributed negatively, unlike the other vorticity parts).

Baroclinic vorticity contributed positively for the major-

ity, although not all of the parcels. While not the domi-

nant source across the sampled parcels, the preexisting

vorticity did directly contribute to the vortex for some

parcels. However, given the small sample size (n 5 7), it

a) b)

x (km) x (km)

y 
(k

m
)

y 
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m
)

FIG. 15. (a) Horizontal projection of the imported vorticity vP (red arrows) and the intermediate principal axes
(black) of the 3D rate-of-strain tensor along the trajectory of parcel A. The time interval shown spans [3400, 4125] s;
(b) as in (a), but for parcel B and the time interval [3400, 4145] s.

t (s)

ζ 
(s

-1)

z 
(m

)

FIG. 16. Time series along a parcel trajectory of the integrated
terms of the traditional vertical vorticity equation for the Burgers–
Rott vortex, Eq. (52). The parcel height is shown as gray dashed
line. Here r(t 5 0) 5 500 m, z(t 5 0) 5 0.1 m, n 5 10 m2 s21,
G 5 104 m2 s21, and a5 2.53 1023 s21.
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cannot be established how representative these findings

are.
• Although the integrated baroclinic vorticity production may

seem negligible along a trajectory using the traditional vor-

ticity equation, the subsequent stretching of this initially

weak vorticity may lead to large baroclinic vorticity near

the vortex as revealed by the vorticity source decomposi-

tion. The traditional vorticity analysis in this case empha-

sizes the importance of tilting and stretching of vorticity,

but deemphasizes the importance of small amounts of vor-

ticity production that may end up having a large effect.
• Although numerical diffusion is found to contribute posi-

tively to the parcels’ vertical vorticity on average, it is shown

that diffusion does not aid in maintaining the vortex using

the Burgers–Rott model.
• The parcels experience the strongest descent in the occlu-

sion downdraft close to the vortex, rather than in the main

downdraft northeast of the mesocyclone. Previous studies

have shown that trajectories early in a vortex patch’s lifetime

are maintained by the downdraft mechanism during which

time the contributing parcels descend to the ground in the

main downdraft and acquire baroclinically generated vortic-

ity. In contrast, the present analysis suggests that once the

vortex matures and the vortex is maintained via abrupt up-

ward tilting of horizontal vorticity at the vortex base, the tra-

jectory topology likewise changes, featuring strong descent

mainly in the occlusion downdraft.

Further research is warranted to improve the management

of the challenges posed by parcels that descend below the low-

est scalar model level, and to increase the accuracy of the inte-

gration schemes used to solve the vorticity equations.
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APPENDIX A

Practical Form of the Vorticity Source Decomposition

In Truesdell’s formulation of the vorticity, Eq. (29), the

transformation matrices (in this context also referred to as

the deformation gradients) need to be known to obtain a

solution, but these are not easily available along trajectories

obtained from model or radar data. Also, near the vortex

the deformation becomes very large, rendering explicit cal-

culation of the deformation gradient (as was done by, e.g.,

Dahl et al. 2014) inaccurate. As an alternative, Eq. (29)

may be differentiated with respect to time, which gives the

evolution equation of the individual vorticity parts. The re-

quired steps are demonstrated in this appendix. The result-

ing equations can then be integrated without the need to

calculate the transformation matrices.

Before calculating the time derivatives of the vorticity

parts inferred from Truesdell’s formula, it is noted that the

material derivative of vP, for example, is given by (e.g.,

Simmonds 1994, p. 57)

dvP

dt
5

d

dt
(g

k
vk
P) 5 g

k

dvk
P

dt
1 vk

P

dgk
dt

: (A1)

This implies

dvk
P

dt
;

dvk
P

dt
1 gk ?

dgi
dt

vi
P, (A2)

where the symbol for the material derivative d/dt signifies the

inclusion of the time derivative of the basis vector gi (g
k is its

reciprocal). The extra term on the rhs of Eq. (A2) arises from

the time dependence of the basis vector gi. If this time depen-

dence results from the basis vector field being nonuniform,

such that a parcel moving through this field experiences chang-

ing basis vectors, the material derivative takes the following

form (e.g., Truesdell 1954, p. 42; Simmonds 1994, p. 57):

dvk
P

dt
5

dvk
P

dt
1 Gk

ijv
i
Pẋ

j, (A3)

with the dot ( ? ) representing the ordinary time derivative and

Gk
ij being the Christoffel symbol. This correction term is

needed for the covariant formulation of the equation: Con-

sider the case where there is uniform flow, but the coordinate

basis vectors vary in space. As a result, the coordinate velocity

uk will also vary in space, resulting in spurious accelerations

duk/dt following a parcel. The term involving the Christoffel

symbol corrects for these spurious changes and ensures the

material derivative honors the tensor transformation law. In

Cartesian coordinates the Christoffel symbol is zero.

Now, starting with vP [Eq. (31)],

vk
P(t) 5

­xk

­jg
(t) r(t)

r(t0)
v
g
0 , (A4)

and calculating the ordinary time derivative [d/dt part of

Eq. (A3)] using the product rule, gives

dvk
P

dt
(t) 5­ẋk

­jg
(t) r(t)

r(t0)
v
g
0 1

­xk

­jg
(t) ṙ(t)

r(t0)
v
g
0 : (A5)

From Eq. (26) with zero torque, it follows that

v
g
P(t0) 5

r(t0)
r(t) v

g
P(t), (A6)
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giving

dvk
P(t)
dt

5
­ẋk

­jg
(t) r(t)

r(t0)
r(t0)
r(t) v

g
P(t) 1

­xk

­jg
(t) ṙ(t)

r(t0)
r(t0)
r(t) v

g
P(t):

(A7)

For notational ease, in the following all variables are as-

sumed to be functions of time t unless otherwise noted. Us-

ing the chain rule and noting that ẋk 5 uk, one obtains

dvk
P

dt
5

­uk

­xi
­xi

­jg
v
g
P 1

­xk

­jg
ṙ

r
v
g
P (A8)

5
­uk

­xi
vi
P 1

ṙ

r
vk
P: (A9)

While this equation is mathematically correct, the lhs does

not describe the physically relevant material rate of change

as described in the beginning of this section. The spatial de-

rivatives on the rhs likewise include the effects of the non-

uniform basis and thus include spurious effects depending

on the choice of the coordinates. Mathematically this is re-

flected by the fact that Eq. (A9) is not a tensor equation.

To fix this problem, we write

dvk
P

dt
5

­uk

­xi
1 Gk

iju
j

( )

vi
P 1

ṙ

r
vk
P (A10)

5 uk;iv
i
P 1

ṙ

r
vk
P, (A11)

which is the proper tensorial formulation, with the covari-

ant derivative on the rhs [­uk/­xi in Eq. (A9) becomes uk;i].

In symbolic form, we write

dv
P

dt
5 vP ?=v 2 vP(= ? v), (A12)

where mass continuity, ṙ/r52= ? v, has been used. Inte-

grating in time gives the imported preexisting vorticity:

vP 5 v(t0) 1
� t

t0

dt′[vP(t′) ?=v(t′) 2 vP(t′)= ? v(t′)]: (A13)

The initial condition is vk
P(t0)5 vk(t0), per Eq. (31).

The vorticity parts arising from the torques due to the

nonconservative forces (pressure-gradient, mixing, and Cori-

olis forces) are included in Eq. (32),

vk
N 5

­xk

­jg

� t

t0

dt′
r(t)
r(t′)

­jg

­xi
(t′)t iN(t′), (A14)

where the subscript N 2 {BC, SGS, DIFF, COR}. Following

the same approach as above, we write

dvk
N

dt
5

d

dt

­xk

­jg
r

� t

t0

dt′
1

r(t′)
­jg

­xi
(t′)t iN(t′)

[ ]

: (A15)

Using again the product rule as well as the first fundamen-

tal theorem of calculus:

dvk
N

dt
5

­uk

­xj
­xj

­jg
r

� t

t0

dt′
1

r(t′)
­jg

­xi
(t′)t iN(t′) (A16)

1
­xk

­jg
ṙ

� t

t0

dt′
1

r(t′)
­jg

­xi
(t′)t iN(t′) (A17)

1
­xk

­jg
r

1

r(t)
­jg

­xi
(t)t iN(t)

[ ]
: (A18)

Now again accounting for the nonuniform basis thus ensur-

ing proper tensor behavior,

dvk
N

dt
5 uk;j

­xj

­jg
r

� t

t0

dt′
1

r(t′)
­jg

­xi
(t′)t iN(t′) (A19)

1
­xk

­jg
ṙ

� t

t0

dt′
1

r(t′)
­jg

­xi
(t′)t iN(t′) (A20)

1
­xk

­jg
r
1

r

­jg

­xi
tiN

( )
: (A21)

Based on Eq. (32), we know that

v
g
N 5

� t

t0

dt′
r(t)
r(t′)

­jg

­xi
(t′)t iN(t′), (A22)

such that

dvk
N

dt
5 uk;j

­xj

­jg
v
g
N 1

ṙ

r

­xk

­jg
v
g
N 1 dki t

i
N (A23)

5 uk;jv
j
N 1

ṙ

r
vk
N 1 tkN: (A24)

In symbolic form, using mass continuity,

dv
N

dt
5 v

N
?=v 2 v

N
(= ? v) 1 t

N
: (A25)

Integrating this equation gives

v
N
5 v

N
(t0) 1

� t

t0

dt′[v
N
(t′) ?=v(t′) 2 v

N
(t′)= ? v(t′) 1 t

N
(t′)]:

(A26)

The initial condition, vk
N(t0)5 0, follows from Eq. (32).

Upon inspection of Eqs. (A12) and (A25), it is clear that

both equations have the form of Eq. (A25) if tN includes

the preexisting part, so that

tP 5 0, (A27)

tBC 5 = 3 2
1

r
=p

( )
, (A28)
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tSGS 5 = 3 fsgs, (A29)

tDIFF 5 = 3 fdiff , (A30)

and

tCOR 5 = 3 (2fk 3 v′h): (A31)

The sum ∑NvN gives the total vorticity. Since this vorticity

analysis pertains to the relative vorticity on an f plane, the

Coriolis acceleration is treated as “source” term; if one

were to consider the absolute vorticity in an inertial refer-

ence frame, the planetary vorticity would be included in the

vP part (e.g., Dutton 1976, p. 390).

APPENDIX B

Numerical Integration of the Vorticity Equations

We start by introducing the abbreviations

g ;
Dt

2
, (B1)

dn ; (= ? v)n, (B2)

where n is the time step and Dt is the time interval (0.5 s in

this case). Then, the trapezoidal scheme for the vorticity

equation may be written as

vn11 5 vn 1 g(vn ?=vn 2 vndn 1 tn)

1 g(vn11 ?=vn11 2 vn11dn11 1 tn11): (B3)

If the velocity gradients and the forcings (t) are known for all

time steps along the trajectory, which is the case for the tradi-

tional integration, the different terms on the rhs of (B3) can be

readily obtained. In case of the vorticity source decomposition,

vn11 on the rhs is unknown, however. In this case, either an it-

erative approach, such as a Runge–Kutta scheme, can be used to

estimate the values at step n 1 1, or an implicit scheme may be

employed, which in this study proved computationally least ex-

pensive. To obtain the implicit formulation, all unknown n 1 1

terms are moved to the lhs of Eq. (B3), giving

vn11 ? [2g=vn11 1 gdn11I 1 I] 5 vn 1 g[vn ?=vn 2 vndn

1 tn 1 tn11]: (B4)

Symbolically, this equation has the form A ? x 5 b, which

can be solved for x with the matrix

A 5

1 2 g(ux 2 d) 2guy 2guz
2gy

x
1 2 g(y

y
2 d) 2gy

z

2gwx 2gwy 1 2 g(wz 2 d)

£¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¥

¦§§§§§§§§§§§§§§§§§§§§§§§§§§§̈
n11

,

(B5)

where the subscripts designate partial derivatives; the known

vector b, given by

b 5 v
n
1 g[v

n
?=v

n
2 v

n
d
n
1 t

n
1 t

n11]; (B6)

and the desired vorticity vector at step n 1 1, which is rep-

resented by

x 5 (j, h, z)Tn11: (B7)

The solution of this system of linear equations may readily

be obtained using standard solvers.
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CORRIGENDUM

JOHANNES M. L. DAHL
a
AND JANNICK FISCHER

b

a Department of Geosciences, Texas Tech University, Lubbock, Texas
b Karlsruher Institut für Technologie, Germany

(Manuscript received 15 November 2024, in final form 5 December 2024, accepted 5 December 2024)

This corrigendum concerns two equations in Dahl and Fischer’s (2023) derivation: one erroneously

omitted term in their Eq. (13), which, however, will be shown not to affect the downstream mathe-

matical development, and one typo in Eq. (30).

1. Equation (13)

In the following, the correct form of the time integral of the momentum equation, Eq. (13) in Dahl

and Fischer (2023), is presented, and it is demonstrated that an additional term that appears in that

equation is irrotational and hence does not contribute to the vorticity integral, Dahl and Fischer’s

Eq. (14). The momentum equation is given by

dv

dt
5 f, (1)

where v is the velocity vector and f is the net force acting on the fluid parcel. Using the same notation

as in Dahl and Fischer (2023), this may be written as

dv

dt
5

d

dt
(u

a
ga) 5 du

a

dt
ga 1 u

a

dga

dt
5 f: (2)

The term on the rhs involving dua/dt describes the time rate of change of the coordinate velocity ua,

which includes the effect of the force as well as the effect of the time-dependent coordinate basis

vectors. The second term, involving dga/dt, is the geometric term that corrects for the effect of the

time-dependent coordinate basis. In the present case, the basis vectors change because the material

volume, including the coordinate system materially attached to it, is deformed by the flow.1 To obtain

an expression for the time evolution of ga, we first recognize that

ga 5 =ja: (4)

Now, for any parcel property F, we may write F(t) 5 F[r(t), t], where r is the parcel’s location. Using

the chain and product rules, we find

Corresponding author: Johannes Dahl, johannes.dahl@ttu.edu

1 In many applications, the coordinate basis is constant in time but nonuniform in space, such that the geometric term is given by (e.g.,
Simmonds 1994, p. 57)

u
a

dga

dt
5 u

a
ub

­dga

­djb
5 2u

a
ubGa

bgg
g (3)

where ub ­ga/­jb is the time rate of change of ga due to “advection” [see also appendix A of Dahl and Fischer (2023)] and Ga
bg is the

Christoffel symbol.
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=
dF

dt

( )

5 =
­F

­t
1 v ? =F

( )

5
d

dt
(=F) 1 (=v) ? =F: (5)

With F 5 ja and dja/dt5 0, we see that

dga

dt
5

d

dt
(=ja) 52(=v) ? =ja: (6)

The rhs is equivalent to the 3D vector frontogenesis function [vector frontogenesis in 2D is discussed

by Keyser et al. (1988)], which connects the evolution of the coordinate curves to the flow field: Like

isentropes in the usual frontogenesis case, material coordinate curves are deformed and rotated by

the flow; the contravariant basis vectors correspond to the gradients of the isentropes. This implies

that the geometric termGmay be written as

G 5 u
a

dga

dt
(7)

52u
a
(=v) ? =ja (8)

52(=v) ? gau
a

(9)

52(=v) ? v: (10)

With this, the momentum equation becomes

du
b

dt
5

du
b

dt
2 g

b
? [(=v) ? v] 5 f

b
: (11)

This equation is equivalent to Eq. (12) in Dahl and Fischer (2023). When integrating this equation

with respect to time, however, the geometric term needs to be carried along, so Dahl and Fischer’s

Eq. (13) should read

u
b
(t) 5 u

b
(t0) 1

� t

t0

dt′f
b
(t′) 1

� t

t0

dt′g
b
(t′) ? {[=v(t′)] ? v(t′)}: (12)

When this equation is inserted into the expression for the vorticity,

vg(t) 5 eabg
������

G(t)
√

­u
b
(t)

­ja
, (13)

one obtains

vg(t) 5 eabg
������

G(t)
√

­u
b
(t0)

­ja
1

� t

t0

dt′
eabg
������

G(t)
√

­f
b
(t′)

­ja
1

� t

t0

dt′
eabg
������

G(t)
√

­

­ja
{g

b
(t′) ? [=v(t′) ? v(t′)]}: (14)

This equation corresponds to Eq. (14) in Dahl and Fischer (2023), but it includes the geometric term

(the last term on the rhs). To show that this term is zero, we use Eq. (23) from Dahl and Fischer

(2023) and find that

� t

t0

dt′
eabg
������

G(t)
√

­

­ja
{g

b
(t′) ? [=v(t′) ? v(t′)]} 52

� t

t0

dt′
r(t)
r(t′)

eabg
�������

G(t′)
√

­G
b
(t′)

­ja
(15)

52

� t

t0

dt′
r(t)
r(t′) [= 3 G(t′)]g (16)

52

� t

t0

dt′
r(t)
r(t′) g

g(t′) ? [= 3 G(t′)]: (17)

If = 3 G 5 0, this integral vanishes. To see that this is indeed the case, we first apply the product rule

and see that
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G 52(=v) ? v 52
1

2
=(v ? v) 52

1

2
=V2, (18)

where V 5
�����

v ?v
√

is the velocity magnitude. Then,2

= 3 G 52
1

2
= 3 =V2

; 0: (19)

2. Equation (30)

Equation (30) in Dahl and Fischer (2023) is written in symbolic form, so there should be no index

on the lhs. The correct equation is given by

v(t) 5 ­r

­j
(t) ? r(t)

r(t0)
v0 1

� t

t0

dt′
r(t)
r(t′)

­j

­r
(t′) ? t(t′)

[ ]

: (20)
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general and simplified treatment.
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