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Abstract

Cognitive Arousal, frequently elicited by environmental stressors that exceed personal cop-
ing resources, manifests in measurable physiological markers, notably in galvanic skin
responses. This effect is prominent in cognitive tasks such as composition, where fluctua-
tions in these biomarkers correlate with individual expressiveness. It is crucial to understand
the nexus between cognitive arousal and expressiveness. However, there has not been a
concrete study that investigates this inter-relation concurrently. Addressing this, we intro-
duce an innovative methodology for simultaneous monitoring of these elements. Our strat-
egy employs Bayesian analysis in a multi-state filtering format to dissect psychomotor
performance (captured through typing speed), galvanic skin response or skin conductance
(SC), and heart rate variability (HRV). This integrative analysis facilitates the quantification
of expressive behavior and arousal states. At the core, we deploy a state-space model con-
necting one latent psychological arousal condition to neural activities impacting sweating
(inferred through SC responses) and another latent state to expressive behavior during typ-
ing. These states are concurrently evaluated with model parameters using an expectation-
maximization algorithms approach. Assessments using both computer-simulated data and
experimental data substantiate the validity of our approach. Outcomes display distinguish-
able latent state patterns in expressive typing and arousal across different computer soft-
ware used in office management, offering profound implications for Human-Computer
Interaction (HCI) and productivity analysis. This research marks a significant advancement
in decoding human productivity dynamics, with extensive repercussions for optimizing per-
formance in telecommuting scenarios.

Introduction

The intricate relationship between stress and productivity has been a subject of extensive
research across various disciplines [1-3]. Pioneering theories like the Yerkes-Dodson law [1]
have proposed an inverted U-shaped function, suggesting an optimal level of stress that
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maximizes productivity. This law has profound implications for understanding the dynamics
of workplace performance, individual differences in stress response, and the overall impact on
mental and physical health. However, the universality and applicability of this law have been
topics of debate, prompting further exploration into the nuanced relationship between stress
and productivity across different contexts and populations.

Delving deeper into the neuroscientific perspective, stress regulation and productivity are
intricately linked with specific brain regions and their interconnections. The amygdala, known
for its role in processing emotions, especially fear and stress-related response, is a critical
player in this domain. It interacts closely with the prefrontal cortex, which is central to execu-
tive functions, decision-making, and emotional regulation. The hippocampus, another key
region, is vital for memory consolidation and is particularly sensitive to stress, which can
impact its function and structure. These brain regions form a complex network that governs
our responses to stress and influences cognitive capacities like attention, memory, and deci-
sion-making processes [4-6]. Understanding these neural mechanisms is crucial for compre-
hending how stress affects cognitive functions and, consequently, productivity.

In the context of this study, the physiological signals under investigation—such as auto-
nomic nervous system (ANS) activations and HRV—are reflections of the underlying neural
activities. The ANS, with its sympathetic and parasympathetic branches, is directly influenced
by brain activity, particularly in regions like the amygdala and prefrontal cortex [7]. Heart rate
variability, as a measure of ANS function, offers insights into the body’s stress response and its
regulation by the central nervous system. Thus, exploring these physiological markers in the
context of neural substrates provides a more comprehensive understanding of the stress-pro-
ductivity nexus.

This study takes a closer look at the physiological dimensions of productivity, exploring
parameters such as ANS activation, typing dynamics, and HRV. The assessment of ANS acti-
vations through EDA data via deconvolution techniques [8-22] provides valuable insights into
the body’s arousal levels and stress response. HRV data, derived from ECG measurements
[23], further complement these findings by offering a window into the heart’s response to
stress, reflecting the dynamic balance between the sympathetic and parasympathetic nervous
systems. Cognitive arousal, as influenced by these physiological factors, has significant implica-
tions for memory, attention, and overall cognitive performance [24, 25].

The investigation extends to typing dynamics, an innovative measure of cognitive state and
productivity. The correlation between typing speed and brain activity levels [26] reveals how
cognitive and emotional states can manifest in physical activity. Expressive writing, requiring
significant emotional and cognitive engagement, serves as a critical area of study. This type of
writing, often reflective and personal, can induce physiological changes correlating with heart
rate and emotion [27, 28]. The typing patterns observed during such tasks offer a unique lens
through which to view an individual’s cognitive and emotional state, providing a practical
method to assess productivity [29].

A comprehensive approach that integrates different physiological signals enhances the
accuracy of depicting arousal and emotion. Studies have shown that a combination of HRV,
EDA, and typing dynamics can provide a more nuanced understanding of an individual’s cog-
nitive state and emotional well-being [19, 30-47]. In our study, the simultaneous analysis of
these signals aims to paint a comprehensive picture of the interplay between physiological
responses and cognitive states, especially in the context of productivity and stress
management.

The emergence of advanced IoT devices like the Empatica E4 and Emotibit [48, 49] has rev-
olutionized the field of physiological measurement, allowing for high-frequency, non-intrusive
data collection. These technological advancements facilitate deeper insights into the
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interaction between physiological signals and cognitive processes, opening new avenues for
research in productivity, especially in remote work settings [50-53]. Additionally, these
insights have the potential to inform the development of innovative closed-loop control sys-
tems for performance regulation and mental health monitoring [54-60].

In response to these advancements and the identified gaps in the literature, our study pro-
poses a state-space approach to concurrently track cognitive arousal and expressive typing
states, utilizing EDA, HRV, and typing dynamics as key indicators. This approach, grounded in
control systems engineering and informed by Bayesian filtering techniques, enables us to model
and monitor internal brain states and their physiological manifestations. Our methodology dif-
fers from previous works, which predominantly focused on either EDA or HRV for measuring
cognitive arousal [10, 30, 33, 39, 41]. By integrating these diverse data streams, we aim to pro-
vide a more holistic view of the cognitive and emotional factors that influence productivity.

The inclusion of typing dynamics in our analysis is particularly novel, offering a tangible
measure of cognitive engagement and expressive capacity. This aspect of the study is grounded
in the understanding that cognitive processes are not only reflected internally but also exter-
nalized through physical behaviors like typing. By examining these dynamics, we can gain
insights into the real-time cognitive states of individuals, especially in work environments
where typing is a central activity.

Furthermore, the study aims to explore the role of stress in cognitive processes more deeply.
Stress, while often perceived negatively, can also be a driving force for productivity when man-
aged effectively. Understanding the optimal levels of stress, as suggested by the Yerkes-Dodson
law, and their impact on different cognitive functions such as memory, attention, and prob-
lem-solving, is essential for this analysis. This exploration is particularly relevant in the context
of remote work, where traditional stressors may be replaced or compounded by new chal-
lenges related to isolation, work-life balance, and technological reliance.

With the increasing prevalence of remote work, understanding the interplay between physio-
logical responses, cognitive states, and productivity has taken on new significance. Our study
aims to contribute valuable insights into how remote workers can optimize their performance by
managing stress and leveraging their cognitive and emotional states. The application of our find-
ings could lead to the development of tools and strategies to enhance productivity and well-being
in remote work settings. Moreover, the potential for integrating these insights into the design of
ergonomic workspaces, productivity software, and mental health support systems is vast.

Our methodology involves detailed data processing and employs cutting-edge technologies
and sophisticated Bayesian models. The findings from this research are expected to not only
validate existing theories but also reveal new patterns and insights into the relationship
between stress, cognitive arousal, and productivity. We will present results from both simu-
lated and experimental data, offering a robust evaluation of our approach.

Finally, the discussion and conclusion sections of this manuscript will reflect on the impli-
cations of our findings, considering both their theoretical and practical applications. We will
also outline potential future research directions, emphasizing the importance of continued
exploration in this field to fully harness the benefits of understanding the stress-productivity
relationship in modern work environments.

Methods

In this section, we delineate the methodologies employed in our study. We describe the dataset
[61] that we used, emphasizing the multimodal nature of the dataset which includes physiolog-
ical signals, computer logging, and behavioral observations under varying stress conditions.
The heart of our methodological framework lies in the application of a state-space model to
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capture the latent dynamics of cognitive arousal and expressive typing state, as represented by
physiological and psychomotor parameters. This model is complemented by a multi-state fil-
tering algorithm, following an Expectation-Maximization (EM) structure, to robustly estimate
the system states and parameters [53, 62]. The algorithm integrates both forward and back-
ward data [34, 40], refining the state space and parameter estimates to enhance the accuracy
and reliability of our findings. Through these sophisticated statistical techniques, we aim to
offer a comprehensive understanding of the interplay between cognitive arousal, stress, and
physiological responses within the context of knowledge work.

Data

In this study, we utilize the SWELL Knowledge Work (SWELL-KW) dataset [61], which is par-
ticularly significant due to its comprehensive collection of multimodal data like computer log-
ging, facial expression from camera recordings, body posture from a Kinect 3D sensor, as well
as physiological signals like heart rate and skin conductance obtained from body sensors. The
dataset, encompassing recordings from 25 subjects performing typical desk work tasks under
varied conditions, provides a rich source for analyzing the complex interactions between phys-
iological states and knowledge work activities. The subjects were exposed to different stressors,
such as email interruptions and time constraints, making it an ideal context for exploring the
relationship between cognitive load, stress, and physiological responses. Despite its robustness,
the dataset does have limitations, including the relatively small sample size and the controlled
experimental setup, which might not fully capture the complexity of real-world work settings.
In our study, we focus specifically on EDA and HRV to assess stress and cognitive load, com-
plemented by detailed analysis of computer logs for mouse and keyboard activities to measure
the expressive typing state. The participants’ subjective experiences, assessed through validated
questionnaires, add qualitative depth to our multi-faceted analysis, providing a holistic view of
the impact of stressors in knowledge work.

State-space model

Assume that our state vector x; involves two states (cognitive arousal state and expressive typ-
ing state) and evolves with time following

X, =X T e (1)

where x, = [x,, x,,]', &, ~ N(0,Z). We observe two sets of binary variables. These are the
deconvolved skin conductance impulse events #; ; and the key press events #y , which we con-

T=ngy

sider as Bernoulli-distributed random variables with mass functions p,5' (1 — p, ) and

(1 = py,)" ", respectively. Here py; = P(x, = 1) and py, = P(ng» = 1). These variables
are related to x; as
1
Pim = 1+ e Botoim) )

where m € 1, 2 and f3,,, are constant coefficients to be determined and x; ; and xy , are indepen-
dent random variables. We determine B = [f,, f5,] empirically similar to [44] assuming that
Xo.m ~ 0 Vj at the very beginning of the random walk. Therefore,

p, = log (1%) . ()
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We use HRV as our continuous variable r; which we assume is related to x; linearly as
e = Vo T V1Xq T Vs T Vo (4)

where v, ~ N(0,0?) is sensor noiseand y = [y, 7, 7,]are parameters relating r, with the
hidden state variable x;.

Multi-state filter algorithm overview

The multi-state filter algorithm is based on the Expectation-Maximization (EM) approach,
used for estimating parameters in a statistical model. The algorithm involves iterative calcula-
tions over two main steps: the E-step (Expectation) and the M-step (Maximization).

E-Step. The algorithm begins by approximating the posterior density as a Gaussian distri-
bution following [62]. The filter update process involves solving for the state estimate xy,
which results in the following update rules:

of (x
X = X T Wi ];—x:) " (5)
—1
L (=)
Wk\k = k\li—l - gxzk ) (6)

Xk|k

Backward smoother equations. For improving state space estimates by using both back-
ward and forward data, the following backward smoothing update equations are utilized:

A= Wk\kwlzil\k (7)
Xyx = Xy T Ak(xk+1|K - xk+1\k) (8)
Wk|K = Wik + AI%(WkJrllK - Wk+uk)- (9)

M-step derivations. This next step focuses on updating the model parameters based on
the expected log-likelihood. The updates for ,, 7; and ¥, can be derived by solving for the fol-
lowing system of linear equations:

K K K
E e —Kyy— 7, E Xr,1 V2 E XkK,2 =0
=1 =1 k=1
K K K
E Xk — Vo § Xyl — V1 § Uk 1
k=1 =1 k=1
K
—V2 E Xrk 1 XkKk2 = 0 (10)
=1

K K K
E "Xk — VUE XkK2 _V1§ Xk 1%k 2
k=1 =1 k=1
K
V2 E Unk 2 =0.
k=1
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The updates for ¢2, g, and o, , are as follows:

1 K ) ) K ) K
o= X {Z”f + Kyp + V?Z”kum + V;Z”k\m
P P P

K K K

- 23’02’% - QZrkxk\K.l - QZrkxk\m (11)
=1 P =
K K K

+ 23’029‘14&1 + zyozxkucz + Zka,lka,Q}'
=1 =1 )

2 K K K
ol = X {Z”km - QZVHKJ + Zuk—l\K,l
=1 k=1 =1
9 (X K K
o’y = X Zuk\K.Q - 22"141@2 + Zuk—l\K.Z .
=1 k=1 =1

The full derivations for these equations can be found in the S1 Appendix. Following this
steps the algorithm executes iteratively, alternating between the E-Step and M-Step for a set
number of iterations. Each iteration refines the parameter estimates, thereby improving the
model’s fit to the observed data.

An overview of the algorithm is shown in Algorithm 1

Algorithm 1 Overview of the Multi-State Filter Algorithm
Initialize Variables
for N iterations do

(12)

x;1 «— 0
W +— o
for j from 2 to J do > E - Step
X5 — Xj-1
Solve x,, = x,, , + W, , Ogi’;k)hk‘k for X 4.1 from Eq (5)
-1
Wk\k = <W;\i71 - 0251?) xkk>
end for > Smoothing
A = WkaW;Jrl\k

X g = Xkt A (X1 gk~ Xie1k)
Wy = Wy + AW,y — W py),) > M Step
Update yI[0, 1, 2] via Egq (10)
Update o, via Eg (11)
Update o, (1,27 via Eg (12)
end for

Results and discussion
Evaluation using simulated data

To validate the multi-state filter, we compare its accuracy on simulated datasets. We generated
ten sets of simulated data. To generate the data we randomly assigned typical values of y =

[7o 71 7o) such that they are in range [—0.7, 0.7]. We also assigned o, = [0.003, 0.003] and
0, = 0.03. We created a random vector ¢ = N'(0, 6?) of length K = 2500 and generated the
state values x according to Eq (1). We then calculated the value of vector r from Eq (4). Follow-
ing this, we calculate 3 as shown in Eq (3) based on approximating p, ; and p, , by the average
probability of an impulse occurring in the data similar to [44]. We simulated two point pro-
cesses having a true value of py ; = 0.2 and p, , = 0.3. Using these generated data, we tested our
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Estimation for Simulated Dataset 1 Estimation for Simulated Dataset 2
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Fig 1. Latent state estimations for simulated data. The two panels above in order from top show the simulated
binary random variables 7, and #,, the continuous variable r, the estimated latent variables ¥, and X, (shown in blue)
alongside the ground truths x; and x, (shown in red). Following that are the occurrence probabilities p, and p,, (shown
in blue) alongside the ground truths p; and p, (shown in red). Lastly, the quantile-quantile (QQ) plot for the residual
error of x is shown.

https://doi.org/10.1371/journal.pone.0300786.9001

algorithm’s capacity to estimate the unobserved sympathetic arousal and expressive typing
states and recover the model parameters from the set of observations. The results of this simu-
lation for 2 datasets are shown in Fig 1. The QQ plots indicate that we obtain good fits to the
simulated data. The state estimate can deviate from the true value in regions where there are
large gaps between impulses for an extended period of time as we see for the 1st simulated data
in the left panel. The estimates are closer to the true state in regions where more impulses tend
to occur.

We estimate observed system parameters for 10 different simulated datasets and the per-
centage deviations from the true values are shown in Table 1. In the table, we see that, ¥, ¥>,
and o, show relatively smaller errors overall. It is important to note that these system parame-
ters can have multiple solutions due to the greater degrees of freedom afforded by multiple
states. Therefore, the technique may not always converge to the exact values with which the
simulated data were created.

Experimental results and discussions

To illustrate the effectiveness of the algorithm, we analyze its performance on experimental
data from the SWELL-KW dataset. In the experiment, the subject is tasked with writing a

Table 1. Estimation Error of system parameters for our approach on simulated data.

System Parameter Average Percentage Error
Yo 2.85
71 11.4
23 2.95
o, 5.00
o, 8.6
o, 9.9

https://doi.org/10.1371/journal.pone.0300786.t001
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Fig 2. Latent state estimations for experimental data with no stressors. Each of the panels above shows the
experimental data for no-stressor sessions. From the top, the binary variables #; and n, derived from deconvolved
EDA data and typing data respectively, the continuous variable r denoting the RR intervals derived from heart rate (red
line) and 7 estimated x; and x, (purple line) x; and x, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of green, red, and cyan indicate
what application the subject was using at the time of measurement. Green indicates applications for information
search like internet explorer, red is for typing like Microsoft word and PowerPoint, and cyan is for when subjects are
looking at their emails. Finally, the QQ plot for the residual error of r is shown. The panel on the left is for subject 1
and the one on the right is for subject 11.

https://doi.org/10.1371/journal.pone.0300786.g002

general essay under different conditions as explained in the Data section. Figs 2-4 show exam-
ples of decoded arousal and expressive typing states for each session. We can expect the subject
to feel more cognitive stress initially when they start searching for resources online, which
gradually decreases once the subject feels more confident about the topic. Conversely, after

Sub ect 1, Sessmn 2 Subject 15, Session 2
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e o
= s
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Fig 3. Latent state estimations for experimental data with time limit. Each of the panels above shows the
experimental data for no-stressor sessions. From the top, the binary variables #; and n, derived from deconvolved
EDA data and typing data respectively, the continuous variable r denoting the RR intervals derived from heart rate (red
line) and 7 estimated x; and x; (purple line), x; and x; in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of green, red, and cyan indicate
what application the subject was using at the time of measurement. Green indicates applications for information
search like internet explorer, red is for typing like Microsoft word and PowerPoint, and cyan is for when subjects are
looking at their emails. Finally, the QQ plot for the residual error of r is shown. The panel on the left is for subject 1
and the one on the right is for subject 15.

https://doi.org/10.1371/journal.pone.0300786.9003
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Fig 4. Latent state estimations for experimental data with interruptions. Each of the panels above shows the
experimental data for no-stressor sessions. From the top, the binary variables #; and n, derived from deconvolved
EDA data and typing data respectively, the continuous variable r denoting the RR intervals derived from heart rate (red
line) and 7 estimated from latent variables x; and x, (purple line), x; and x, in order from top indicating cognitive
arousal state and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of green, red,
and cyan indicate what application the subject was using at the time of measurement. Green indicates applications for
information search like internet explorer, red is for typing like Microsoft word and PowerPoint, and cyan is for when
subjects are looking at their emails. The Blue vertical line indicates the time email notifications were sent. Finally, the
QQ plot for the residual error of r is shown. The panel on the left is for subject 1 and the one on the right is for subject
13.

https://doi.org/10.1371/journal.pone.0300786.9004

gaining a good handle on the topic, the expressive typing state will also increase after some
time as the stress decreases. Figs 2—4 also indicate that this trend is common for all sessions
and is appropriately captured by the algorithm.

It is essential to note that unlike in [34] where the absence of neural stimuli caused the EM
estimate to fail in predicting minute changes in the latent state, here, the algorithm does not
suffer from that problem. This is due to the fact that the algorithm uses multiple binary ran-
dom variables to predict the latent states and it will only fail when both impulses become
scarcer which we see exemplified in Fig 1.

Influence of stressors

In our analysis of the SWELL dataset, where three distinct sessions were recorded for each
experiment, we observe significant behavioral patterns emerging across different stress condi-
tions. Each session involved subjects writing essays, a task requiring both information gather-
ing and opinion expression. The first session serves as a baseline with no stressors, providing a
control scenario for comparison. The second session introduces a time constraint, adding a
layer of urgency and thereby testing the subjects’ ability to manage time pressure. In the final
session, subjects face frequent email interruptions, challenging their focus and multitasking
abilities. These varying conditions, analyzed in Figs 2-4, reveal clear patterns in cognitive and
emotional responses to stressors. Notably, the hidden states captured in the data effectively
track the arousal and expressive typing states across different sessions. This is evident when
correlating the active applications used by the subjects with the respective state values. The sig-
nificance of these findings lies in their potential to enhance our understanding of stress
impacts in knowledge work environments. By analyzing how subjects adapt their cognitive
and emotional responses under varying stress conditions, we can gain insights into designing
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more effective work strategies and tools, particularly in scenarios replicating real-world chal-
lenges such as time constraints and frequent interruptions.

Baseline session. For the first session or the baseline session, where no external stressors
were introduced, subjects exhibited a unique pattern of cognitive and expressive behaviors, as
seen in Fig 2 for subjects 1 and 11. This session was characterized by a more relaxed environ-
ment, allowing subjects to engage in the essay-writing task with relative ease. Initially, the sub-
jects focused on gathering information, which is reflected in the elevated cognitive arousal
state, denoted as x;. This heightened state of arousal during the information gathering phase
indicates an intensive cognitive engagement, a critical aspect of the knowledge work. As the
session progressed and the subjects shifted from information gathering to writing, there was a
noticeable transition in their cognitive state. The arousal state gradually stabilized or oscillated,
indicating a shift in cognitive demands. Concurrently, the expressive typing state, x,, which
initially started at a lower level, began to rise. This increase in x; aligns with the subjects’ transi-
tion into the writing phase, where expressive typing becomes more pronounced. The elevated
expressive typing state towards the latter part of the session underscores the subjects’ engage-
ment in the creative and expressive aspect of essay writing. This observation from the baseline
session provides valuable insights into the natural progression of cognitive and expressive
states in a stress-free environment, serving as a crucial reference point for comparing subject
behaviors under different stress conditions in subsequent sessions.

Timed sessions. In the timed sessions of our study, while the general patterns of expres-
sive typing state and cognitive arousal observed across all sessions align with the trends
described in Experimental Results And Discussions, a distinct dynamic emerges under the
time constraints. Subjects in these sessions faced added pressure to complete their tasks within
a set time frame, influencing their cognitive and expressive behaviors, as depicted in Fig 3. A
notable observation is the peak in the middle of the session in the expressive typing state for
most subjects, indicating a concentrated effort to accomplish the majority of the writing task.
This peak is a significant indicator of increased typing activity, possibly reflecting a heightened
state of focused work. The cognitive arousal state, denoted as x;, is observed to be high at the
beginning and end of these sessions. Initially, the subjects engage in intensive information
gathering, which requires significant cognitive processing, thereby elevating the arousal state.
As they transition from gathering to writing, a decrease in cognitive arousal is observed, coin-
ciding with an increase in the expressive typing state. This inverse relationship between the
two states highlights the shift from cognitive-intensive to expression-intensive phases of the
task. Towards the end of the session, the cognitive arousal rises again, likely due to the subjects’
efforts to review and finalize their work within the time limit. This rise at the end underscores
the return to cognitive-intensive activities, such as editing and revising the written content.
The behavioral patterns observed in these time-limited sessions offer insightful revelations
about the impact of time pressure on cognitive and expressive states, shedding light on how
individuals manage their workload under constrained conditions.

Email interrupted sessions. The email-interrupted sessions in our study present an
intriguing scenario where subjects encounter continual distractions in the form of emails,
leading to varied patterns in cognitive and expressive states. This variability among subjects is
particularly evident in their responses to interruptions, as some exhibit a marked change in
their arousal state while others maintain a more steady level, reflecting their individual coping
strategies with such disruptions. These interruptions inevitably impact the expressive typing
state, typically causing a degradation, which can be attributed to the frequent breaks in con-
centration and the resultant shift in focus away from the primary task of essay writing. Unlike
the time-limited sessions where distinct peaks in arousal and expressive typing states were
observed, the patterns in the email-interrupted sessions do not exhibit such definitive forms.
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The lack of pronounced peaks in these sessions suggests a more erratic and disrupted work-
flow, indicating how the constant email notifications influence cognitive load and the ability to
maintain a consistent level of expressive output. This observation sheds light on the impact of
intermittent distractions on task performance, highlighting the need for strategies to manage
such interruptions in work environments where maintaining focus is crucial for productivity.
State distribution for different office applications. In our analysis, the visualization of
cognitive arousal and expressive typing states with respect to the use of various applications
offers insightful revelations about the subjects’ interaction with technology. By examining
these states in the context of specific applications, we gain an understanding of how different
tasks influence cognitive and expressive behaviors. For instance, as shown in Fig 5, subjects
exhibit a higher level of cognitive arousal when engaged in responding to emails. This height-
ened arousal could be attributed to the immediate cognitive processing required to compre-
hend and respond to incoming information [1, 63]. Contrastingly, when subjects use
Microsoft Word, a platform primarily for writing, they demonstrate a high expressive typing
state, coupled with a relatively lower level of cognitive arousal. This pattern suggests a more
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Fig 5. State distribution for different applications. The histograms above show the variations of state vectors x;
representing cognitive arousal state and x, representing expressive typing state for four applications Word,
PowerPoint, Internet Explorer, and VLC Player in order from left. The expressive typing state variations are shown in
orange bars whereas the arousal state by blue bars. Notice the variations depend on the nature of the applications.
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focused and sustained engagement in the expressive aspect of the task. Furthermore, the use of
applications like PowerPoint, which necessitates a combination of typing and cognitive efforts
to create and structure documents, results in overlapping variations in the histograms of both
cognitive arousal and expressive typing states. These overlapping variations highlight the dual
demands of such applications, requiring both cognitive processing for conceptualizing content
and expressive output for its articulation. The distinct patterns observed across different appli-
cations underscore the nuanced relationship between the nature of the task and the associated
cognitive and expressive states, providing a window into how specific activities can differen-
tially engage cognitive and expressive faculties.

The findings of this study have significant practical implications, especially in remote work
environments where managing stress and maintaining productivity are crucial. Understanding
the impact of different stressors and work activities on cognitive states can inform the design
of more effective work strategies and tools. Additionally, the study lays the groundwork for
future research, expanding the understanding of cognitive responses in work environments.
Translating these findings into practice involves developing interventions and tools to manage
stress and enhance productivity. By leveraging the study’s insights, practitioners can better
understand and mitigate the impact of stressors in various work settings. Therefore, this line
of research is crucial for advancing our understanding of workplace stress and productivity. It
opens avenues for developing more adaptive and responsive work environments, ultimately
contributing to improved well-being and efficiency. However, while the study provides valu-
able insights, it has some limitations, including the controlled nature of the experimental setup
and the dataset’s sample size. Despite these limitations, the study’s multimodal approach and
detailed analysis offer a comprehensive understanding of the interaction between stressors,
cognitive states, and productivity.

Implications of the study

The field of cognitive response analysis in work environments, a critical aspect of occupational
psychology and human-computer interaction, is undergoing rapid evolution. This change is
primarily driven by the technological advancements in data collection and analysis methodol-
ogies. In today’s era, marked by an increasing reliance on digital tools and remote working
arrangements [64], understanding the nuances of cognitive responses to various stressors in
the workplace is not just academically intriguing but also practically essential [65]. It has sig-
nificant implications for enhancing both employee well-being and workplace productivity
[66].

Our study builds upon the foundational work in state space modeling and Bayesian filters
[30, 31, 33, 34, 37-47, 62], extending the knowledge frontier by integrating refined multi-state
filtering methodologies. We delve deeper into the nuanced effects of stressors on cognitive and
expressive states and their inter-relation, a subject that has been of perennial interest but inad-
equately explored due to technological and methodological limitations in the past. By employ-
ing a multi-state filtering technique, and leveraging a more diverse dataset, this research
provides intricate insights into the dynamic interplay between various work-related stressors
and cognitive responses. These insights are pivotal in our understanding of the cognitive load,
a concept critical in designing effective and humane work environments.

The implications of our findings are far-reaching and multifaceted. Primarily, they contrib-
ute significantly to the discourse on workplace productivity and stress management. By sys-
tematically unraveling how different stressors—ranging from time constraints to intermittent
distractions—affect cognitive arousal and expressive typing states, our study provides empiri-
cal evidence that can inform the design of workplace strategies and tools. These tools and
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strategies are not just theoretical constructs but have real-world applicability in enhancing
work efficiency and reducing the detrimental effects of stress [67].

In the context of the evolving dynamics of the workplace, particularly with the surge in
remote work and digital collaboration, the insights from our study are especially pertinent.
Remote work, while offering flexibility and perceived freedom, brings with it unique chal-
lenges, including the blurring of work-life boundaries and the potential for increased stress
due to isolation or overwork. Our findings offer a roadmap for navigating these challenges
[68], helping organizations and individuals to strike a balance between productivity and well-
being in these digitally mediated work environments.

Moreover, our research methodology and the resulting findings lay a solid foundation for
future studies. The detailed analysis of cognitive responses to different stressors, conducted
with rigor and precision, opens up new avenues for research. These include personalized stress
management strategies and productivity enhancement techniques. Our study thus acts as a cat-
alyst, spurring further exploration and innovation in this domain.

One of the most exciting prospects of this research is its potential contribution to HCI,
especially to the development of intelligent tools for real-time stress and productivity monitor-
ing by using underlying states. Such tools, harnessing the power of artificial intelligence and
machine learning, could provide immediate feedback and interventions, helping individuals
manage their workloads and stress levels more effectively as showcased in [60, 69]. This aligns
with the broader trend of digitalization in the workplace [70] and represents a significant leap
forward from traditional, more reactive approaches to workplace well-being.

The ultimate goal of this line of research is ambitious yet profoundly impactful: to achieve a
comprehensive understanding of the cognitive impacts of various work-related stressors and
to translate this understanding into practical tools and strategies. These tools and strategies
aim to enhance productivity and well-being in the workplace, addressing one of the funda-
mental challenges of modern work life.

However, reaching this goal is not without its challenges. The primary challenge lies in the
translation of theoretical knowledge and experimental findings into practical, real-world appli-
cations that are effective across diverse work environments and individual differences. This
requires not just academic insight but also a deep understanding of the complexities and vari-
abilities of real-world work settings in addition to strategic data collection that mimic practical
use-cases.

To achieve this ambitious goal, interdisciplinary knowledge spanning psychology, data sci-
ence, human-computer interaction, and occupational health is required. Moreover, technolog-
ical advancements, particularly in non-invasive physiological monitoring [71], sophisticated
data analytics [72], and Al-driven predictive modeling [73], are crucial. The development and
refinement of such technologies will play a pivotal role in the practical application of our find-
ings, bridging the gap between research and real-world application.

As workplaces continue to evolve, particularly with the increasing prevalence of remote
work, the insights gained from this research will be invaluable. They will not only shape the
future of work but also ensure that this future is more adaptable, efficient, and conducive to
mental health and well-being. This research, therefore, stands at the intersection of technologi-
cal innovation and human-centric design, heralding a new era in workplace productivity and
health.

Conclusion

In this study, we have explored the intricate relationship between expressive typing state, and
cognitive arousal. Our research demonstrates the potential of multi-state filters in accurately
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tracking these states, offering a promising tool for performance tracking in both traditional
and remote work environments. The utilization of such advanced algorithms could revolution-
ize how we understand and manage productivity and stress in the workplace. Theoretically,
our findings contribute to the broader discourse on cognitive workload and its manifestation
in behavioral patterns. Practically, the application of this research could lead to the develop-
ment of intelligent systems capable of enhancing workplace efficiency by providing real-time
feedback on cognitive states. While our results with simulated data show promise, we recog-
nize the need for further refinement, particularly in modeling the complexity of real-world
interactions. Future research directions include expanding the scope of variables considered,
such as incorporating analysis of correct and incorrect key responses and utilizing marked
point process observations based on physiological data. Additionally, integrating more com-
plex interactions, like mouse usage and application switching, could provide a richer under-
standing of cognitive states. However, limitations in current datasets, such as the SWELL
dataset’s lack of comprehensive typing data, highlight the need for more detailed experimental
studies tailored to the evolving landscape of remote work.

Supporting information

S1 Appendix. Summary derivations. Derivations for different steps of the multi-state filter.
(PDF)

S1 Fig. Latent state estimations for experimental data with no stressors for subject 1. The
panel shows the experimental data for no stressor sessions. From top, the binary variables n,
and n, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x; in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TTF)

S2 Fig. Latent state estimations for experimental data with time limit for subject 1. The
panel shows the experimental data with time limit. From top, the binary variables #; and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x;, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TTF)

S3 Fig. Latent state estimations for experimental data with interruptions for subject 1. The
panel shows the experimental data with interruptions. From top, the binary variables n; and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x;, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
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green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. The Blue vertical line indicates the time email notifications were sent. Finally, the QQ
plot for the residual error of r is shown.

(TIF)

S4 Fig. Latent state estimations for experimental data with no stressors for subject 2. The
panel shows the experimental data for no stressor sessions. From top, the binary variables n,
and #, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TTF)

S5 Fig. Latent state estimations for experimental data with time limit for subject 2. The
panel shows the experimental data with time limit. From top, the binary variables #; and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x;, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

S6 Fig. Latent state estimations for experimental data with interruptions for subject 2. The
panel shows the experimental data with interruptions. From top, the binary variables #; and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x;, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. The Blue vertical line indicates the time email notifications were sent. Finally, the QQ
plot for the residual error of r is shown.

(TTF)

S7 Fig. Latent state estimations for experimental data with no stressors for subject 3. The
panel shows the experimental data for no stressor sessions. From top, the binary variables n;
and n, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of
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measurement. Green indicates applications for information search like internet explorer, red
is for typing like Microsoft word and PowerPoint and cyan is for when subjects are looking at
their emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

S8 Fig. Latent state estimations for experimental data with time limit for subject 3. The
panel shows the experimental data with time limit. From top, the binary variables »; and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x;, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

S9 Fig. Latent state estimations for experimental data with interruptions for subject 3. The
panel shows the experimental data with interruptions. From top, the binary variables n; and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. The Blue vertical line indicates the time email notifications were sent. Finally, the QQ
plot for the residual error of r is shown.

(TIF)

$10 Fig. Latent state estimations for experimental data with no stressors for subject 4. The
panel shows the experimental data for no stressor sessions. From top, the binary variables n,
and n, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

S11 Fig. Latent state estimations for experimental data with time limit for subject 4. The
panel shows the experimental data with time limit. From top, the binary variables #; and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
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emails. Finally, the QQ plot for the residual error of r is shown.
(TIF)

S12 Fig. Latent state estimations for experimental data with interruptions for subject 4.
The panel shows the experimental data with interruptions. From top, the binary variables 7,
and n, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. The Blue vertical line indicates the time email notifications were sent. Finally, the QQ
plot for the residual error of r is shown.

(TIF)

$13 Fig. Latent state estimations for experimental data with no stressors for subject 5. The
panel shows the experimental data for no stressor sessions. From top, the binary variables n,
and n, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x; in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

S14 Fig. Latent state estimations for experimental data with time limit for subject 5. The
panel shows the experimental data with time limit. From top, the binary variables #; and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

S15 Fig. Latent state estimations for experimental data with interruptions for subject 5.
The panel shows the experimental data with interruptions. From top, the binary variables n;
and n, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x; in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. The Blue vertical line indicates the time email notifications were sent. Finally, the QQ
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plot for the residual error of r is shown.
(TIF)

S16 Fig. Latent state estimations for experimental data with no stressors for subject 6. The
panel shows the experimental data for no stressor sessions. From top, the binary variables n;
and n, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

S17 Fig. Latent state estimations for experimental data with time limit for subject 6. The
panel shows the experimental data with time limit. From top, the binary variables #, and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

S18 Fig. Latent state estimations for experimental data with interruptions for subject 6.
The panel shows the experimental data with interruptions. From top, the binary variables n;
and #, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. The Blue vertical line indicates the time email notifications were sent. Finally, the QQ
plot for the residual error of r is shown.

(TTF)

S19 Fig. Latent state estimations for experimental data with no stressors for subject 7. The
panel shows the experimental data for no stressor sessions. From top, the binary variables #;
and n, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x; in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
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emails. Finally, the QQ plot for the residual error of r is shown.
(TIF)

$20 Fig. Latent state estimations for experimental data with time limit for subject 7. The
panel shows the experimental data with time limit. From top, the binary variables #; and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

$21 Fig. Latent state estimations for experimental data with interruptions for subject 7.
The panel shows the experimental data with interruptions. From top, the binary variables n,
and #, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x; in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. The Blue vertical line indicates the time email notifications were sent. Finally, the QQ
plot for the residual error of r is shown.

(TIF)

$22 Fig. Latent state estimations for experimental data with no stressors for subject 8. The
panel shows the experimental data for no stressor sessions. From top, the binary variables n;
and n, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x; in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

$23 Fig. Latent state estimations for experimental data with time limit for subject 8. The
panel shows the experimental data with time limit. From top, the binary variables #; and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
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emails. Finally, the QQ plot for the residual error of r is shown.
(TIF)

$24 Fig. Latent state estimations for experimental data with interruptions for subject 8.
The panel shows the experimental data with interruptions. From top, the binary variables 7,
and n, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. The Blue vertical line indicates the time email notifications were sent. Finally, the QQ
plot for the residual error of r is shown.

(TIF)

$25 Fig. Latent state estimations for experimental data with no stressors for subject 9. The
panel shows the experimental data for no stressor sessions. From top, the binary variables n,
and n, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x; in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

$26 Fig. Latent state estimations for experimental data with time limit for subject 9. The
panel shows the experimental data with time limit. From top, the binary variables #; and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

$27 Fig. Latent state estimations for experimental data with interruptions for subject 9.
The panel shows the experimental data with interruptions. From top, the binary variables n;
and n, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x; in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. The Blue vertical line indicates the time email notifications were sent. Finally, the QQ
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plot for the residual error of r is shown.
(TIF)

$28 Fig. Latent state estimations for experimental data with no stressors for subject 10.
The panel shows the experimental data for no stressor sessions. From top, the binary vari-
ables n; and n, derived from deconvolved EDA data and typing data respectively, the con-
tinuous variable r denoting the RR intervals derived from heart rate (red line) and 7
estimated from latent variables x; and x, (purple line), x; and x, in order from top indicat-
ing cognitive arousal state and expressive typing state respectively. p; and p, show the esti-
mated probabilities. Patches of green, red, and cyan indicate what application the subject
was using at the time of measurement. Green indicates applications for information search
like internet explorer, red is for typing like Microsoft word and PowerPoint and cyan is for
when subjects are looking at their emails. Finally, the QQ plot for the residual error of r is
shown.

(TTF)

$29 Fig. Latent state estimations for experimental data with time limit for subject 10. The
panel shows the experimental data with time limit. From top, the binary variables #; and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

$30 Fig. Latent state estimations for experimental data with interruptions for subject 10.
The panel shows the experimental data with interruptions. From top, the binary variables 7,
and n, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x; in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. The Blue vertical line indicates the time email notifications were sent. Finally, the QQ

plot for the residual error of r is shown.
(TIF)

$31 Fig. Latent state estimations for experimental data with no stressors for subject 12.
The panel shows the experimental data for no stressor sessions. From top, the binary variables
ny and n, derived from deconvolved EDA data and typing data respectively, the continuous
variable r denoting the RR intervals derived from heart rate (red line) and 7 estimated from
latent variables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal
state and expressive typing state respectively. p; and p, show the estimated probabilities.
Patches of green, red, and cyan indicate what application the subject was using at the time of
measurement. Green indicates applications for information search like internet explorer, red
is for typing like Microsoft word and PowerPoint and cyan is for when subjects are looking at
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their emails. Finally, the QQ plot for the residual error of r is shown.
(TIF)

$32 Fig. Latent state estimations for experimental data with time limit for subject 12. The
panel shows the experimental data with time limit. From top, the binary variables #; and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

$33 Fig. Latent state estimations for experimental data with interruptions for subject 12.
The panel shows the experimental data with interruptions. From top, the binary variables n,
and #, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x; in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. The Blue vertical line indicates the time email notifications were sent. Finally, the QQ
plot for the residual error of r is shown.

(TIF)

$34 Fig. Latent state estimations for experimental data with no stressors for subject 13.
The panel shows the experimental data for no stressor sessions. From top, the binary vari-
ables n; and n, derived from deconvolved EDA data and typing data respectively, the con-
tinuous variable r denoting the RR intervals derived from heart rate (red line) and 7
estimated from latent variables x, and x, (purple line), x; and x, in order from top indicat-
ing cognitive arousal state and expressive typing state respectively. p; and p, show the esti-
mated probabilities. Patches of green, red, and cyan indicate what application the subject
was using at the time of measurement. Green indicates applications for information search
like internet explorer, red is for typing like Microsoft word and PowerPoint and cyan is for
when subjects are looking at their emails. Finally, the QQ plot for the residual error of r is
shown.

(TIF)

S35 Fig. Latent state estimations for experimental data with time limit for subject 13. The
panel shows the experimental data with time limit. From top, the binary variables #, and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
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emails. Finally, the QQ plot for the residual error of r is shown.
(TIF)

$36 Fig. Latent state estimations for experimental data with interruptions for subject 13.
The panel shows the experimental data with interruptions. From top, the binary variables 7,
and n, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. The Blue vertical line indicates the time email notifications were sent. Finally, the QQ
plot for the residual error of r is shown.

(TIF)

$37 Fig. Latent state estimations for experimental data with no stressors for subject 15.
The panel shows the experimental data for no stressor sessions. From top, the binary variables
n; and n, derived from deconvolved EDA data and typing data respectively, the continuous
variable 7 denoting the RR intervals derived from heart rate (red line) and 7 estimated from
latent variables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal
state and expressive typing state respectively. p; and p, show the estimated probabilities.
Patches of green, red, and cyan indicate what application the subject was using at the time of
measurement. Green indicates applications for information search like internet explorer, red
is for typing like Microsoft word and PowerPoint and cyan is for when subjects are looking at
their emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

$38 Fig. Latent state estimations for experimental data with time limit for subject 15. The
panel shows the experimental data with time limit. From top, the binary variables #; and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

$39 Fig. Latent state estimations for experimental data with interruptions for subject 15.
The panel shows the experimental data with interruptions. From top, the binary variables n;
and n, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x; in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. The Blue vertical line indicates the time email notifications were sent. Finally, the QQ
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plot for the residual error of r is shown.
(TIF)

$40 Fig. Latent state estimations for experimental data with no stressors for subject 16.
The panel shows the experimental data for no stressor sessions. From top, the binary variables
ny and n, derived from deconvolved EDA data and typing data respectively, the continuous
variable r denoting the RR intervals derived from heart rate (red line) and 7 estimated from
latent variables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal
state and expressive typing state respectively. p; and p, show the estimated probabilities.
Patches of green, red, and cyan indicate what application the subject was using at the time of
measurement. Green indicates applications for information search like internet explorer, red
is for typing like Microsoft word and PowerPoint and cyan is for when subjects are looking at
their emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

$41 Fig. Latent state estimations for experimental data with time limit for subject 16. The
panel shows the experimental data with time limit. From top, the binary variables #, and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

S42 Fig. Latent state estimations for experimental data with interruptions for subject 16.
The panel shows the experimental data with interruptions. From top, the binary variables n;
and #, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. The Blue vertical line indicates the time email notifications were sent. Finally, the QQ
plot for the residual error of r is shown.

(TTF)

$43 Fig. Latent state estimations for experimental data with no stressors for subject 17.
The panel shows the experimental data for no stressor sessions. From top, the binary vari-
ables #; and n, derived from deconvolved EDA data and typing data respectively, the con-
tinuous variable r denoting the RR intervals derived from heart rate (red line) and 7
estimated from latent variables x; and x, (purple line), x; and x, in order from top indicat-
ing cognitive arousal state and expressive typing state respectively. p; and p, show the esti-
mated probabilities. Patches of green, red, and cyan indicate what application the subject
was using at the time of measurement. Green indicates applications for information search
like internet explorer, red is for typing like Microsoft word and PowerPoint and cyan is for
when subjects are looking at their emails. Finally, the QQ plot for the residual error of r is
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shown.
(TIF)

S44 Fig. Latent state estimations for experimental data with time limit for subject 17. The
panel shows the experimental data with time limit. From top, the binary variables #; and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

$45 Fig. Latent state estimations for experimental data with interruptions for subject 17.
The panel shows the experimental data with interruptions. From top, the binary variables n,
and #, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x; in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. The Blue vertical line indicates the time email notifications were sent. Finally, the QQ
plot for the residual error of r is shown.

(TIF)

$46 Fig. Latent state estimations for experimental data with no stressors for subject 18.
The panel shows the experimental data for no stressor sessions. From top, the binary vari-
ables n; and n, derived from deconvolved EDA data and typing data respectively, the con-
tinuous variable r denoting the RR intervals derived from heart rate (red line) and 7
estimated from latent variables x, and x, (purple line), x; and x, in order from top indicat-
ing cognitive arousal state and expressive typing state respectively. p; and p, show the esti-
mated probabilities. Patches of green, red, and cyan indicate what application the subject
was using at the time of measurement. Green indicates applications for information search
like internet explorer, red is for typing like Microsoft word and PowerPoint and cyan is for
when subjects are looking at their emails. Finally, the QQ plot for the residual error of r is
shown.

(TIF)

$47 Fig. Latent state estimations for experimental data with time limit for subject 18. The
panel shows the experimental data with time limit. From top, the binary variables #, and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
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emails. Finally, the QQ plot for the residual error of r is shown.
(TIF)

$48 Fig. Latent state estimations for experimental data with interruptions for subject 18.
The panel shows the experimental data with interruptions. From top, the binary variables 7,
and n, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. The Blue vertical line indicates the time email notifications were sent. Finally, the QQ
plot for the residual error of r is shown.

(TIF)

$49 Fig. Latent state estimations for experimental data with no stressors for subject 19.
The panel shows the experimental data for no stressor sessions. From top, the binary variables
n; and n, derived from deconvolved EDA data and typing data respectively, the continuous
variable 7 denoting the RR intervals derived from heart rate (red line) and 7 estimated from
latent variables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal
state and expressive typing state respectively. p; and p, show the estimated probabilities.
Patches of green, red, and cyan indicate what application the subject was using at the time of
measurement. Green indicates applications for information search like internet explorer, red
is for typing like Microsoft word and PowerPoint and cyan is for when subjects are looking at
their emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

S50 Fig. Latent state estimations for experimental data with time limit for subject 19. The
panel shows the experimental data with time limit. From top, the binary variables #; and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

S51 Fig. Latent state estimations for experimental data with interruptions for subject 19.
The panel shows the experimental data with interruptions. From top, the binary variables n;
and n, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x; in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. The Blue vertical line indicates the time email notifications were sent. Finally, the QQ
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plot for the residual error of r is shown.
(TIF)

§52 Fig. Latent state estimations for experimental data with no stressors for subject 20.
The panel shows the experimental data for no stressor sessions. From top, the binary vari-
ables n; and n, derived from deconvolved EDA data and typing data respectively, the con-
tinuous variable r denoting the RR intervals derived from heart rate (red line) and 7
estimated from latent variables x; and x, (purple line), x; and x, in order from top indicat-
ing cognitive arousal state and expressive typing state respectively. p; and p, show the esti-
mated probabilities. Patches of green, red, and cyan indicate what application the subject
was using at the time of measurement. Green indicates applications for information search
like internet explorer, red is for typing like Microsoft word and PowerPoint and cyan is for
when subjects are looking at their emails. Finally, the QQ plot for the residual error of r is
shown.

(TTF)

$53 Fig. Latent state estimations for experimental data with time limit for subject 20. The
panel shows the experimental data with time limit. From top, the binary variables #; and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

S54 Fig. Latent state estimations for experimental data with interruptions for subject 20.
The panel shows the experimental data with interruptions. From top, the binary variables 7,
and n, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x; in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. The Blue vertical line indicates the time email notifications were sent. Finally, the QQ

plot for the residual error of r is shown.
(TIF)

S55 Fig. Latent state estimations for experimental data with no stressors for subject 21.
The panel shows the experimental data for no stressor sessions. From top, the binary variables
ny and n, derived from deconvolved EDA data and typing data respectively, the continuous
variable r denoting the RR intervals derived from heart rate (red line) and 7 estimated from
latent variables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal
state and expressive typing state respectively. p; and p, show the estimated probabilities.
Patches of green, red, and cyan indicate what application the subject was using at the time of
measurement. Green indicates applications for information search like internet explorer, red
is for typing like Microsoft word and PowerPoint and cyan is for when subjects are looking at
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their emails. Finally, the QQ plot for the residual error of r is shown.
(TIF)

S56 Fig. Latent state estimations for experimental data with time limit for subject 21. The
panel shows the experimental data with time limit. From top, the binary variables #; and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. Finally, the QQ plot for the residual error of r is shown.

(TIF)

S$57 Fig. Latent state estimations for experimental data with interruptions for subject 21.
The panel shows the experimental data with interruptions. From top, the binary variables n,
and #, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x; in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. The Blue vertical line indicates the time email notifications were sent. Finally, the QQ
plot for the residual error of r is shown.

(TIF)

$58 Fig. Latent state estimations for experimental data with no stressors for subject 22.
The panel shows the experimental data for no stressor sessions. From top, the binary vari-
ables n; and n, derived from deconvolved EDA data and typing data respectively, the con-
tinuous variable r denoting the RR intervals derived from heart rate (red line) and 7
estimated from latent variables x, and x, (purple line), x; and x, in order from top indicat-
ing cognitive arousal state and expressive typing state respectively. p; and p, show the esti-
mated probabilities. Patches of green, red, and cyan indicate what application the subject
was using at the time of measurement. Green indicates applications for information search
like internet explorer, red is for typing like Microsoft word and PowerPoint and cyan is for
when subjects are looking at their emails. Finally, the QQ plot for the residual error of r is
shown.

(TIF)

$59 Fig. Latent state estimations for experimental data with time limit for subject 22. The
panel shows the experimental data with time limit. From top, the binary variables #, and n,
derived from deconvolved EDA data and typing data respectively, the continuous variable r
denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent vari-
ables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state and
expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
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emails. Finally, the QQ plot for the residual error of r is shown.
(TIF)

S60 Fig. Latent state estimations for experimental data with interruptions for subject 22.
The panel shows the experimental data with interruptions. From top, the binary variables 7,
and n, derived from deconvolved EDA data and typing data respectively, the continuous vari-
able r denoting the RR intervals derived from heart rate (red line) and 7 estimated from latent
variables x; and x, (purple line), x; and x, in order from top indicating cognitive arousal state
and expressive typing state respectively. p; and p, show the estimated probabilities. Patches of
green, red, and cyan indicate what application the subject was using at the time of measure-
ment. Green indicates applications for information search like internet explorer, red is for typ-
ing like Microsoft word and PowerPoint and cyan is for when subjects are looking at their
emails. The Blue vertical line indicates the time email notifications were sent. Finally, the QQ
plot for the residual error of r is shown.

(TIF)
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