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Abstract—Goal: Inferring autonomous nervous system
(ANS) activity is a challenging issue and has critical
applications in stress regulation. Sweat secretions caused
by ANS activity influence the electrical conductance of the
skin. Therefore, the variations in skin conductance (SC)
measurements reflect the sudomotor nerve activity (SMNA)
and can be used to infer the underlying ANS activity.
These variations are strongly correlated with emotional
arousal as well as thermoregulation. However, accurately
recovering ANS activity and the corresponding state-space
system from a single channel signal is difficult due to
artifacts introduced by measurement noise. To minimize
the impact of noise on inferring ANS activity, we utilize
multiple channels of SC data. Methods: We model skin
conductance using a second-order differential equation
incorporating a time-shifted sparse impulse train input in
combination with independent cubic basis spline functions.
Finally, we develop a block coordinate descent method for
SC signal decomposition by employing a generalized
cross-validation sparse recovery approach while including
physiological priors. Results: We analyze the experimental
data to validate the performance of the proposed algorithm.
We demonstrate its capacity to recover the ANS activations,
the underlying physiological system parameters, and both
tonic and phasic components. Finally, we present an
overview of the algorithm’s comparative performance
under varying conditions and configurations to substan-
tiate its ability to accurately model ANS activity. Our
results show that our algorithm performs better in terms
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of multiple metrics like noise performance, AUC score, the
goodness of fit of reconstructed signal, and lower missing
impulses compared with the single channel decomposition
approach. Conclusion: In this study, we highlight the
challenges and benefits of concurrent decomposition and
deconvolution of multichannel SC signals.

Index Terms—Biomedical Signal Processing, optimiza-
tion, multichannel Deconvolution, system Identification,
sparse Recovery.

Impact Statement—Multichannel decomposition of elec-
trodermal activity enables more robust inference of ANS
activity from noisy SC data in real-world settings to then
obtain insights into a person’s mental well-being.

I. INTRODUCTION

E
LECTRODERMAL activity (EDA) is a measure of neu-

rally mediated effects on sweat gland permeability, ob-

served as changes in skin conductance (SC) [1]. EDA is influ-

enced by the body’s thermoregulation system, primarily con-

trolled by the hypothalamic area [2]. However, it can also

represent the effects of other physiological events including

emotional arousal [3] originating from the autonomous nervous

system (ANS). We can therefore observe these variations to

infer important characteristics of ANS activity. Additionally,

SC measurement is quite trivial and can be incorporated into

wearables like smart gloves and watches [4], [5], [6]. Such

devices can be used to track the mental health and well-being

of users. Hence, an additional understanding of EDA and how

it correlates with ANS activity is essential.

Skin conductance signal consists of two components - phasic

and tonic [7], [8], [9], [10], [11]. The tonic component of the

signal is a slowly varying wave, whereas the phasic component

is fast varying. It has been shown in [7], [12] that the tonic

component is mainly related to the thermoregulation of the body.

The phasic component, however, is related to the neural activity

of the brain. Changes in mental states like frustration, anger,

and fear can cause the skin in different parts of the body to

secrete sweat and as a result, cause changes in SC. Information

related to ANS activity is encoded in the phasic component of

the signal, and it has been shown in [13] that the information

contained in the phasic component can be used to track the ANS

activity.

Measuring skin conductance (SC) data is noninvasive and

cost-effective. The ability to use SC data for monitoring arousal
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has significant applications and has been historically employed

in psychological research [14]. The SC signal encompasses a

wealth of physiological information related to arousal, making

it valuable for tracking mental health and well-being [15], [16],

[17]. In conjunction with wearable smart devices, SC data can

alert patients, friends, family members, or nearby individuals.

Such devices have the potential to prevent and alleviate mental

breakdowns [18], [19], [20], [21]. Increased stress and pain

levels are associated with a higher risk of suicide, as noted

in [22]. Therefore, investigating the feasibility of utilizing SC

signals to effectively track emotional distress on a daily basis is

warranted. Additionally, SC data can be employed to monitor

and regulate stress in workplaces, potentially enhancing produc-

tivity. Electrodermal activity (EDA) has been used alongside

other physiological sensors to monitor workplace stress, as

demonstrated in a case study in [23]. Improved stress regulation

could boost employee productivity and benefit mental health.

The extraction of reliable arousal state information from Skin

Conductance (SC) signals calls for the effective separation of

tonic and phasic components, a process crucial to understanding

distinct physiological stimuli [8]. Previous studies [10], [11],

[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],

[35], [36], [37], [38] have made strides towards this goal, pre-

dominantly employing single-channel data. This study innovates

by applying a multi-channel approach, concurrently separating

tonic and phasic components from SC data, using physiological

priors as an inherent part of the optimization problem. This

approach is designed to avoid the pitfalls of fixed SCR shape

parameters, which can hamper accuracy, and overfitting, which

is a common issue in model design. We assume that SCR shape

parameters are Gaussian distributed and utilize this as a prior,

informed by parameter estimates from previous research [35],

[39]. The result is an enhancement in the accuracy of system

identification, leading to a deeper understanding of the physio-

logical processes governing SC responses and ANS activity. Our

work paves the way for further advancements in real-time SC

data analysis. To recover ANS activity, previous works relied on

modeling the system as a second-order differential equation [8],

[26], [34], [35]. The model is grounded in the diffusion and

evaporation processes of sweat, which connect SC to unknown

ANS activity. The main challenge lies in optimization, as the

equations become non-convex. This issue is addressed through

a systematic approach combining sparse recovery with general-

ized cross-validation. The optimization is particularly challeng-

ing due to the presence of high noise levels, which often render

noisy signals difficult to deconvolve effectively and necessitate

their exclusion. Concurrent multi-channel deconvolution can

overcome the challenges of noise by using multiple channels

to accurately estimate essential system parameters for signal

recovery. Estimating ANS activity from multiple channels may

lead to a more robust approach resistant to noise, as shown

in [35]. However, this method does not concurrently decompose

the tonic component; instead, it removes it from each channel

separately first, resulting in information loss that could be use-

ful for parameter estimation during optimization. Concurrent

decomposition has the potential to enhance algorithm stability

in situations where noise corruption is present. Such corruption

may arise when electrodes are improperly attached or when con-

siderable movement occurs in close proximity to the electrodes,

a scenario observed in related fields such as cardiography [40].

Some channels may also yield irregular or missing impulses

due to health issues such as peripheral neuropathy [41], [42];

using multiple channels can aid in recovering all impulses in the

response.

Amin et al. [35] also assume that the rise and decay times

of impulses in each channel are identical. However, the two

durations are correlated but may vary between channels (See

Fig. 8). Therefore, employing a concurrent multichannel ap-

proach could lead to improved estimation of such parame-

ters [43], [44].

Another challenging aspect of deconvolution is the limited

availability of SC data, which typically originates from a small

number of patients under laboratory conditions [9], [45], [46].

For real-world deployment, algorithms need to be both efficient

and robust. Human skin conductance exhibits non-linearity [47],

[48], necessitating a robust model. State-of-the-art models for

nonlinear time series data often involve deep learning models,

which possess a high degree of freedom and can deliver accurate

and robust results. Moreover, their parallelism can be leveraged

for acceleration. However, these models can overfit easily due to

the large number of parameters involved. To mitigate this issue,

a substantial amount of training and evaluation data is required.

The data demands for wearable devices measuring SC are par-

ticularly high, as users may need to wear them for extended

periods and across a wide range of activities. Collecting such

data is challenging since SC sensors are not commonly found

in consumer-level wearable devices. Consequently, algorithms

must be exceptionally robust against noise and over-fitting is-

sues.

In this research, we propose an approach that concurrently

decomposes phasic and tonic components within a single state-

space model, as demonstrated in [39], but for multichannel

observations, as conducted in [35]. We validate our results by

comparing the phasic and tonic components to corresponding

arousal events and the actual timing of stimulus input.

II. METHODS

A. PsPM-SCRV10 (SCRV) Dataset [49]

SCRV dataset contains SC responses of participants to loud

sounds. It has measurements recorded from 3 locations for 26

healthy unmedicated participants (12 males and 14 females) in

response to single white noise bursts of 1 s duration and 10 ms

ramp (≈ 85 dB). Participants are asked to press a foot pedal upon

hearing a stimulus. A detailed description of the experimental

setting is given in [49].

Skin conductances were recorded from the following places:
� Thenar/hypothenar of the nondominant hand (Channel 1)
� Volar middle phalanx of the dominant 2nd/3 rd finger

(Channel 2)
� Medial plantar surface of the nondominant foot (Channel

3)

Besides this, the study also recorded heartbeat time stamps

(channel 5) and respiration (channel 6). The SCRV dataset has
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event timings for the auditory stimulation events and is used in

this research to investigate the efficacy of the algorithm.

B. Model Formulation

Following the work in [7], we represent the SC signal for

a single channel as a combination of the tonic and phasic

components as follows,

y(t) = ys (t) + yp (t) + v(t). (1)

where y(t) is the SC signal represented as the sum of the phasic

component yp(t), the tonic component ys(t), and the noise v(t).
We will model the skin conductance following [34] and then

extend it to multichannel SC data. These are modeled as follows:

1) Phasic Component: The phasic component can be mod-

eled as a smoothed version of the neural activity. This smoothing

is a result of different physiological systems which include

the sweat glands, epidermis, blood, and other components. We

model this system as the first-order kinetics of diffusion of sweat

from the sweat glands to the strata cornea and the evaporation

of sweat from the strata cornea [7]. Combining these processes,

we get a second-order differential equation given by

τdτr
d2yp(t)

dt2
+ (τd + τr)

dyp(t)

dt
+ yp(t) = u(t). (2)

where τr and τd are the rise and fall times, respectively, of

the SC response assumed to be constant for the entire duration

of the experiment following the assumption made in previous

studies [9], [10], [11], [24], [27]. u(t) is defined as a summation

of N weighted and shifted impulse functions. This is given as,

u(t) =
N−1∑

i=0

uiδ(t−∆i). (3)

∆i is defined as ∆i = iTu where Tu is the sampling interval

of u(t). N is the number of samples in the discrete form of ut.

Since the number of ANS activations is very small compared

to the number of samples in the recorded SC signal, we can

represent the ANS activations as a sparse vector in the discrete

domain for our analysis [27]. We solve the differential equation

assuming the sweat duct is empty at time t = 0 following previ-

ous studies [8], [11], [24], [26], [27]. Hence, the solution to the

differential equation becomes,

yp(t) = yp(0) exp

(
t

τd

)

+ hτ (t) ∗ u(t). (4)

Here,

hτ (t) =

{
exp( −t

τr
)−exp( −t

τr
)

τr−τd
t ≥ 0

0 otherwise
. (5)

2) Tonic Component: The tonic component, ys(t) is mod-

eled as a series of shifted and weighted cubic B spline functions

as has been done in [27]. The equation is given as:

ys(t) = ψ(t) ∗ q(t). (6)

where,

q(t) =

p−1
∑

i=0

qi(t)δ(t− (i− 1)κi). (7)

Here, P indicates the number of different shifted and scaled

cubic B-spline waves used and κi is the knot size of the cubic

B-spline function. It is related to the smoothness of the tonic

component.

3) Extension to Multichannel Data: Since the system re-

sponses in various locations in the body can be different (See

Fig. 8), we need to add different values for the decay and rise

times for each channel. These should give intuitively better

results for the deconvolved signal. The (2) for M channels

becomes:

τd1
τr1

d2yp,1(t)

dt2
+ (τd1

+ τr1)
dyp,1(t)

dt
+ yp,1(t) = u(t),

τd2
τr2

d2yp,2(t)

dt2
+ (τd2

+ τr2)
dyp,2(t)

dt
+ yp,2(t)=u (t− β2),

...

τdM
τrM

d2yp,M (t)

dt2
+(τdM

+ τrM )
dyp,M (t)

dt

+ yp,M (t)=u (t− βM ) . (8)

Here, βm is the delay of SNS signals for the mth channel with

respect to the 1st channel. Thus, β1 is 0.

The equations (4) and (6) represent a continuous form system.

However, we need to express this as a discrete model to use with

discrete data. Let us consider that the SC data is sampled with a

period of Ts forN measurements. Let us consider that x2m−1(t)
and x2m(t) are the internal states. Then, following [1], [8], [26],

[27], the differential equation in the mth channel can be written

in a state-space form as:

ẋ2m−1(t) = −
1

τrm
x2m−1(t) +

1

τrm
x2m−1(t), (9)

ẋ2m(t) = −
1

τdm

x2m−1(t) +
1

τdm

x2m(t). (10)

This corresponds to the continuous equation given by

ym(t) = αmx2m(t) + νm(t). (11)

Here, ym(t) is the continuous observation variable and νm(t)
refers to the noise process. In matrix form, the state-space model

can be written as follows:
[

ẋ2m−1(t)

ẋ2m(t)

]

=

[

− 1
τrm

0
1

τdm
− 1

τdm

][

x2m−1(t)

x2m(t)

]

+

[
1

τrm

0

]

u(t),

(12)

ym(t) =
[

0 αm

]
[

x2m−1(t)

x2m(t)

]

+ νm(t). (13)

In state-space form, the equations become:

ẋ(t) = Acx(t) +Bcu(t), (14)

y(t) = Ccx(t) + ν(t). (15)
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Fig. 1. Preprocessing pipeline for deconvolution Each SC signal passes through a noise calculation block which passes the estimated noise to
the deconvolution algorithm. The SC Signals are then aligned, filtered, and downsampled before being fed to the main algorithm block.

Here,

x(t) =
[

x1(t) x2(t) . . . x2N (t)
]T

2N×1

y(t) =
[

y1(t) y2(t) . . . yN (t)
]T

N×1

ν(t) =
[

ν1(t) ν2(t)
... νN (t)

]T

N×1
Ac

=

£

¤
¤
¤
¤
¥

a1 0 . . . 0

0 a2 . . . 0
... 0

. . .
...

0 0 . . . aN

¦

§
§
§
§
¨

2N×2N

where,

an =

[

− 1
τrn

0
1

τdn
− 1

τdn

]

,

Bc =
[

b1 b2 . . . bN

]

2N×1
,

where

bn =
[

1
τrn

0
]

,

and

Cc =

£

¤
¤
¤
¤
¥

c1 0 . . . 0

0 c2 . . . 0
... 0

. . .
...

0 0 . . . cN

¦

§
§
§
§
¨

2N×2N

where,

cn =

[

0 1 0 0

0 1 0 αn

]

4) Discretization: LetTu = 0.25 s andTy = 1 s be the sam-

pling interval of ANS activity and the phasic SC data, respec-

tively, for each channel. The timing of the neural impulses can

be written as γi = iTu; ui is zero if there is no impulse at the

ith instance. Let ym,k be the observed phasic SC for the mth

channel at time instance tk = kTy . We can write

ym,k = αmx2m(tk) + νm,k. (16)

where νm,k is the noise associated with the mth channel;

νm,k is a zero-mean Gaussian random variable. Under the

assumption that the input and states are constant over Tu, the

discrete form of the ANS activations can be written as a vec-

tor u = [u1 u2 · · · uL]
� that represents the ANS activity

over the entire duration of SC data. Let Φ = eAcTu , and Γ =
∫ Tu

0 eAc(Tu−ρ)Bcdρ. Then we can write the discrete state-space

equivalent of (14)–(15)) as:

x [k + 1] = Φx [k] + Γu[k], (17)

y [k] = Ccx [k] + ν [k] . (18)

Since, Tu �= Ty, let, Ty = LTu where L is a positive integer, we

let

Ad = ΦL,

Bd = [ΦL−1Γ ΦL−2Γ · · · Γ ],

ud[k] = [u[Lk] u[Lk + 1] · · · u[Lk + L− 1] ]�,

νd[k] = ν[Lk] and z[k] = x[Lk];

Thus, the multi-rate system can be represented as follows:

z [k + 1] = Adz [k] +Bdud [k] , (19)

y[k] = Ccz [k] + νd [k] . (20)

where Ad and Bd are functions of τ = [ τr τd ]
�, α, Tu, and Ty .

Letθ = [τ� α� ]�. Since the system is causal, we use (19)–(20)

to obtain the observation equation for the kth sample:

y [k] = F [k] z [0] +D [k]u+ νd [k] .

where F [k] = CcA
k
d ,

D[k] = Cc[
Ak−1

d Bd Ak−2
d Bd · · · Bd 0 · · · 0

︸ ︷︷ ︸

N−kL
],

and u = [ud[0] ud[1] · · · ud[k − 1] · · · ud[M − 1] ]�N×1. For

the initial condition, we can let zθ0
= z[0] =

[ 0 y1(0) 0
y2(0)
α2

· · · 0 yM (0)
αM

]� similar to the work in [26].

Then, let y = [y[1]� y[2]� · · · y[N ]� ]�MN×1 where y[k] =

[y1, k y2, k · · · yM,k ]
�, ∀k ∈ {1, 2, . . . ,M}. Similarly,

ν =[ νd[1] νd[2] · · · νd[N ] ]�MN×1 where νd[k] =
[ν1, k ν2, k · · · νM,k ]

�, ∀k ∈ {1, 2, . . . , N}. Moreover,

let Fθ = [F [0] F [1] · · · F [N − 1] ]�MN×2M and Dθ =
[D[0] D[1] · · · D[N − 1] ]�MN×L . Therefore, we can write the

solution for the observation equation for all the sampled data as
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Fig. 2. Simplified overview of our algorithm. The algorithm has two
stages to aid convergence - one for initial estimation and the next for
fine-tuning output.

follows,

y = Fθzθ0
+Dθu+ ν.

Equivalently, we can separately represent the solution for each

channel as follows:

y1 = Fθ1
zθ0

+Dθ1
u+ ν1,

y2 = Fθ2
zθ0

+Dθ2
u+ ν2,

...

yN = FθN
zθ0

+DθN
u+ ν2. (21)

Hereyn,Fθn
,Dθn

, andνn correspond to the vector and matrices

taking the (N(k − 1) + n)th rows from y, Fθ , Dθ , and ν,

respectively, ∀k ∈ {1, 2, 3, . . . ,M}.

For each channel, we independently obtain the tonic compo-

nent from (6). Let qm be the weights and Gm be the coefficients

of the b-spline functions for the mth channel. These are inde-

pendent of each other and therefore the tonic component for the

mth channel is given by

ysm = Gmqm. (22)

For ease of notation, we combine all model parameters to

obtain θ =
[

τT , zT
θ0
,αT

]

.

C. Estimation

A brief overall flowchart of the algorithm is presented in

Fig. 2. The estimation occurs in two stages. We pre-process

the signal and for a fixed number of iterations (Ninit), we

use a sparse recovery algorithm to get an initial estimate of

ANS activity. This algorithm is called FOcal Underdetermined

System Solver (FOCUSS+) and allows for solving for non-

negative sparse inputs [50]. We use this estimate to update

system parameters and the cubic B-spline coefficients. Next, we

iterate with a more accurate sparse recovery algorithm. In our

case, we use an algorithm known as GCV-FOCUSS+, which

combines FOCUSS+ and generalized cross-validation (GCV)

for estimating an appropriate regularization parameter, similar

to [29], [35], [51] to obtain the final estimate of the ANS activity.

The GCV-FOCUSS+ algorithm requires setting an amplitude

threshold parameter manually to get the best results. We instead

follow an empirical approach to selecting an amplitude threshold

parameter. An initial threshold is selected following [52] and an

empirical update rule described in detail in Section II-C2

1) Pre-Processing: Before passing the multichannel SC

data to the main algorithm, we process the data to remove

unwanted artifacts. A brief overview of the process is given in

Fig. 1. First, we filter the signal using a low pass filter with a

cut-off frequency of 0.5 Hz to discard the high-frequency noise

as the SC signal is known to be band-limited to 0.5 Hz. Then,

we downsample the filtered signal to achieve a 1 Hz sampling

frequency; hence, the sampling period for the SC signalTy = 1 s

seconds. To obtain a higher time resolution, a sampling rate

Tu = 0.25 seconds is used for ANS activity.

2) Problem Formulation: To estimate the unknown param-

eters u, q, and τ we assume the sparsity constraint on u and

including the constraint that the tonic component is always less

than or equal to the SC signal, we formulate the following

optimization problem,

minimize
u, τr, τd,

α, zθ0
, q

J (u,θ, q) =
1

2

M∑

m=1

‖y −Fθm
zθ0

−Dθm
u

−Gmqm‖22 (23)

subject to,

τrmin
≤ τr ≤ τrmax

, τdmin
≤ τd ≤ τdmax

,

0 < α, 0 < zθ0
.

We include the l2-norm penalization term with regularization

parameter λ1 to avoid over-fitting while solving for the tonic

component coefficients q. The formulation is a sparse recovery

problem as ‖u‖0 � M < N . We encourage the sparsity of

u with lp-norm (0 < p < 2) regularization as a relaxation to

the l0-norm. In particular, we let p = 0.5. We can rewrite the

optimization problem as follows:

minimize
u, τr, τd,

α, zθ0
, q

J (u,θ, q) =
1

2

M∑

m=1

(‖y −Fθm
zθ0

−Dθm
u−Gmqm‖22

+ λ1‖qm‖22 + λ2‖u‖
p
p) (24)

subject to,

τrmin
≤ τr ≤ τrmax

, τdmin
≤ τd ≤ τdmax

,

0 < α, 0 < zθ0
.

Finally, inspired by the work in [24], [35], we also consider the

priors on Skin Conductance Response (SCR) shape parameters.



ALAM et al.: SPARSE MULTICHANNEL DECOMPOSITION OF ELECTRODERMAL ACTIVITY WITH PHYSIOLOGICAL PRIORS 239

Algorithm: Concurrent Multichannel Deconvolution.

(a) Let j = 0. Initialize θ̃
0

by uniform sampling from

range [0.10,1.5] for τ̃
(0)
rm , [1.5,6] for τ̃

(0)
dm

, on [0, y1] for

yp0m
∀m ∈ {1, 2, 3, . . . ,M} and on [0.01, 1] for

α̃0
m, ∀m ∈ {2, 3, . . . ,M}; also initialize ˜qm

0 by

sampling P Gaussian random variables

N (0.1, 0.02)∀m ∈ {1, 2, 3, . . . ,M} let and

Q̃
(j)

= {q̃1
(j), q̃2

(j), q̃3
(j), . . . , ˜qM

(j)}.

(b) Set j = j + 1.

(c) Set θ = θ̃
(j−1)

and Q = Q̃(j−1); use FOCUSS+ to

solve (25) for ũ(j) by initializing ũ(j−1) as a vector of

all ones.

(d) Set u = ũ(j) and q = Q̃(j−1); use interior point

method to minimize (25) and solve for θ̃
(j)

by

initializing the at θ̃
(j−1)

.

(e) Set θ = θ̃
(j)

and u = ũ(j); use interior point method

to minimize (25) and solve for q̃(j) by initializing at

Q̃(j−1).

(f) Repeat between steps (b)–(e) until j = 30.

(g) Let i = 0. Set θ̂
0
= θ̃

(j)
, û0 = ũ(j), and q̂0 = Q̃(j).

(h) Set i = i+ 1.

(i) Set θ = θ̂
(i−1)

and Q = Q̂(i−1); use GCV-FOCUSS+

to solve (25) for û(i) by initializing at û(i−1).

(j) Set u = û(i) and Q = Q̂(i−1); use interior point

method to minimize (25) and solve for θ̂
(i)

by

initializing at θ̂
(i−1)

.

(k) Set θ = θ̂
(i−1)

and u = û(i−1); solve (26) to obtain

λ1, and use interior point method to minimize (25) and

solve for Q̂(i) by initializing at Q̂(i−1).

(l) Iterate between (h)–(k) until convergence.

We assume that among different individuals, the rise time τr
and decay times τd are Gaussian distributed with means µτrand

µτd with corresponding standard deviations στr and στr , respec-

tively. The optimization formulation with the priors on the SCR

shape parameters becomes as follows:

minimize
u, τr, τd,

α, zθ0
, q

J (u,θ, q) =
1

2

M∑

m=1

(‖y −Fθm
zθ0

−Dθm
u−Gmqm‖22

+ λ1‖qm‖22 + λ2‖u‖
p
p)

+
λ3

στr

‖τr − µτr‖
2
2 +

λ4

στd

‖τd − µτd‖
2
2

(25)

subject to,

τrmin
≤ τr ≤ τrmax

, τdmin
≤ τd ≤ τdmax

,

0 < α, 0 < zθ0
.

Fig. 3. Adaptive Threshold Update Rule For FOCUSS+. The update
rule for the adaptive FOCUSS algorithm before eliminating impulses
below the threshold in each step is shown in (a). The blue impulse is
an impulse that is not eliminated in the update step as they are above
the threshold and the yellow impulse will be eliminated in the following
step. In contrast to the regular GCV-FOCUSS+ algorithm, we amplify
the blue impulse instead of leaving it as is. If we draw the wave (marked
by a red dotted line) generated by convolving the system model with the
blue impulse, the part of the yellow nullified impulses that intersect the
wave (marked red) is added to the blue impulse as shown in (b).

We can solve the inverse problem of finding a sparse non-

negativeu by using the FOCUSS+ algorithm [53], which utilizes

an iterative least squares (IRLS) approach. We find an initial

solution with the FOCUSS+ algorithm. Then we use a modified

version of FOCUSS+ called GCV-FOCUSS+ [51] to do the final

estimation.

The GCV-FOCUSS+ algorithm is similar to the original FO-

CUSS algorithm. However, in contrast to FOCUSS and FO-

CUSS+, GCV-FOCUSS+ solves for u without a fixed number

for sparsity, i.e., the upper bound on the number of the non-zero

elements. It utilizes the GCV technique to determine the sparse

vector u. The GCV technique is used for choosing the regu-

larization parameter λ2 to balance between capturing the noise

and the sparsity level of u. Zdunek et al. [51] utilized the GCV

technique for estimating the value of λ for the FOCUSS+ [54]

algorithm with the singular value decomposition as follows:

min
λ2

G2(λ2) =
M

∑M
i=1 γ

2
i

(
λ2

σ2

i
+λ2

)2

∑M
i=1

(
λ2

σ2

i
+λ2

)2 .

subject to 0 ≤ λ2 ≤ 1× 10−4 (26)
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Fig. 4. Estimated Deconvolution of the Experimental Multichannel SC Signals of Two Female and Two Male Participants: In each of the panels,
the top sub-panel (i) shows the actual SC signal (orange ∗ markers) versus the reconstructed SC signal (represented by the solid green line) and
the tonic component of the signal (solid blue line) for the 1st channel. The timings of the actual stimulation events are shown as gray vertical lines
in all panels. (ii) shows the recovered phasic component for channel 1. (iii), (iv), (v), and (vi) show the same figures for channel 2 and channel 3
respectively, and finally (vii) shows the estimated ANS activations.

where γ = R�(y −Fθm
zθ0

−Gmqm) = [γ1 γ2 · · · γM ]�

with Dθm
P

1

2

u = RΣQ� with Pu = diag(|ui|
2−p) and

Σ = diag{σi}; R and Q are unitary matrices and the σi’s

are the singular values of BτP
1

2

u ; N is the total number of

data points in y for each channel. Also here, instead of fixing

a manual threshold value, we employ a mini-max thresholding

function [52] in the GCV-FOCUSS+ solver. After determining

the threshold value Kth, we determine all the non-zero elements

in û below K. If,

I =

{
1 ûn ≤ Kth

0 otherwise

Tn =

{
1 n = t

0 otherwise
(27)

Considering Dθ1
is the matrix formed from the first n rows

from matrix Dθ , then we update ût ∀t | ût ≥ Kth with the
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Fig. 5. Comparison of Single Channel Methods with Ours. Panels
(i)–(iii) show the deconvolution results of cvxEDA for channels 1–3
respectively, panels (iv)–(vi) show the deconvolution results of Ledalab
for channels 1–3 respectively and panel (vii) shows the deconvolution
results of our proposed algorithm.

following update rule

û′ = Dθ1
(û
 Tt)

ût = ût +
N∑

n

min (û′
n 
 In, ûn 
 In) (28)

The equation is illustrated in Fig. 3. In each step of the

update, the GCV-FOCUSS+ algorithm nullifies impulses in

the predicted impulse train below a set threshold. However,

this can often lead to over-sparsity. To constrain this, we use

the empirical rule shown in (28) to update the impulse train.

Here we convolve each impulse in the impulse train above the

threshold separately with the coefficients for the first channel

(Dθ1
) from (21) and add the parts of the nullified impulses that

fall under the wave. The first channel is used as it is considered

the least noisy. In Fig. 3(a), the wave marked in red intersects

the nullified impulses at x1, x2, and x3. These portions are

then added to the corresponding impulse as done in Fig. 3(b).

The motivation for this is that when adjacent impulses are

generated due to interference from noise or the tonic component

of EDA data, a higher value for the primary impulses will be

able to drown out the secondary ones generated due to the

interference and thereafter allow the tonic component to fit to the

residual. In the case of regular GCV-FOCUSS+, the algorithm

may overfit the tonic component due to the interference causing

over-sparsity.

For r = 0, 1, 2, · · · , Our modified GCV-FOCUSS+ works as

follows [29]:

1) P
(r)
u = diag(|u

(r)
i |2−p)

2) u(r+1) = PuB
�
τ (BτPuB

�
τ + λ2I)

−1yθ

3) Update u(r+1) as per (28)

4) λ
(r+1)
2 = argmin0≤λ2≤1×10−4 G2(λ2)

5) Iterate until convergence

To solve for the physiological system parameter in θ, we

solve the optimization problem in (25) using the interior point

method.

III. RESULTS AND DISCUSSION

A. Response to Auditory Stimuli

Comparing ANS activations recovered by deconvolving the

SC response using different methods is not a conclusive eval-

uation as the original stimulus is unknown. Nevertheless, we

can do several ablation studies to show that the results of the

methods we propose are both grounded in their assumptions

and justified in their outputs. One way we can show that the

deconvolved signal is correct is to compare the position and

magnitude of the ANS activations with respect to auditory

stimuli during the experiment. Using the proposed approach, we

decompose the SC measurements collected during the auditory

stimulation experiment described in [49] using our approach

and separate the tonic and phasic components. Furthermore, we

recover the underlying stimuli u(t), the corresponding rise time

(τr), decay times (τd), and the initial phasic SC conditions for

each channel yp0
. We show the results in Fig. 4 to demonstrate

that the proposed algorithm successfully estimates the tonic

and phasic components along with the timing and amplitudes

of ANS activations for two male participants and two female

participants. For additional results, please see Figs. 9–13. Note

that some subjects like the Female participant 12 in Fig. 12 and

the male Participant 11 in Figs. 13 have a lot of noise and some

portions of the data are illegible. We keep those results however

for reference.

B. Comparison to Other Approaches

Although a direct comparison cannot be shown, we demon-

strate our algorithm’s ability to generate a more sparse signal

with multi-channel data compared to single-channel approaches

like cvxEDA and Ledalab while maintaining a higher goodness

of fit. Our proposed algorithm can recover the ANS activations

while suppressing noise. This is in stark contrast to cvxEDA

and ledalab whose results are much less sparse. A comparison

is shown in Fig. 5.

This shows that the proposed algorithm is much more resilient

to input noise and can suppress impulses from noise. This is

essential as SC signals tend to get contaminated with noise in

real-world scenarios [12], [37].

C. Influence of Number of Channels

The primary focus of this work is to use multiple channels to

build a more resilient algorithm for SC deconvolution. To justify

that our approach indeed improves upon the existing single-

channel approach described in [34], [55], [56], [57], we show the
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Fig. 6. Reconstruction Performance of Our Algorithm with Simulated Noise The solid line in the above panels shows the mean value and the
vertical limits are variances of the metric for a particular noise level overall simulated subjects. Panel (i)–(iii) shows the change in R2 value between
the recovered signal and original signal for SC signal, phasic component, and tonic component respectively. Panel (iv) shows the difference between
the non-zero count of the recovered sparse signal to the original. Panel (v)–(viii) shows the percentage error of recovered parameters τr , τd, α, and
Y0 respectively.

TABLE I
COMPARISON OF PREDICTION ERRORS WITH DIFFERENT CHANNEL CONFIGURATIONS

performance of our algorithm with respect to the configuration of

different channels. Here, we use simulated data obtained from

the results of using our approach on the dataset in [49] as a

reference. We recompute the simulated data and show the errors

of different parameters in Table I.

From prior work [58], [59] and from experimental ob-

servation, we see that Channel 1, derived from the thenar/

hypothenar of the non-dominant hand has the most relevant

information and a single channel configuration works best in

this channel. However, the inclusion of multiple channels is
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Fig. 7. ROC Curves for Single vs Multichannel Decomposition. ROC
curves of single channel deconvolution done previously in [39] (indicated
by dashed lines) compared to multichannel deconvolution (indicated by
solid lines) are shown above for lookback durations 3 s (red), 4 s (green)
and 5 s (blue). The average ROC for all subjects is also marked.

able to improve the predicted parameters without over-fitting

to noise. A significant advantage of using multiple channels is

the improved prediction of the number of impulses as well as the

reconstruction error. Since Yp falls exponentially with a much

longer decay time, the influence of Yp on the main signal Y

during the downward slope after some time is heavily dimin-

ished. Hence, the models tend to converge to widely different

values of τd. This is true for Y0 as well since its value only

influences the initial part of the signal after which its influence

greatly diminishes.

D. Analyzing Robustness of Model

To demonstrate the robustness of the algorithm, we also show

the effect of the prediction errors with respect to increasing

corruption of the SC signals with noise. This is shown in

Fig. 6. Most estimation errors drop down with noise reduction.

However, the recovered timings and number of impulses remain

nearly the same on average albeit showing higher variance with

higher noise.

We can also check the robustness of the approach by calcu-

lating ROC [60], [61], [62]. However, comparing two sparse

signals is not straightforward. Thus, we follow the approach

in [35] to calculate ROC. We assume the problem to be that of

binary classification. Based on any detected impulse we check

for impulses with a look back duration, Dt s behind in the actual

simulated data. If there is an impulse within that time frame

we consider it a true positive otherwise, it is considered a false

positive. Compared to [35] which has an average ROC of 0.736

at Dt = 4 s, ours has a ROC of 0.804 for the same time range.

We can see a detailed comparison in Fig. 7 where our algorithm

outperforms the single channel deconvolution for all look-back

durations. The ROC curves of ledaLab and cvxEDA for each

channel are shown in Fig. 14. We can also see this in Table I

done for simulated data. We define a parameter û′ which takes

Fig. 8. Analysis of Rise and Decay Times. A segment of skin conduc-
tance data for subject 1 is shown. Note how the delay between channel
1 (red) and channel 2 (blue) indicated as β2 decreases from 1.01 s to
0.51 s whereas the delay between channel 1 and channel 3 (yellow)
indicated as β3 decreases from 1.66 s to 1.34 s. There is also a missing
impulse in channel 3 that is present in both channel 1 and channel 2.

the maximum within a 5 s window of a ground truth impulse and

masks all residual impulses in that window. We then compare

the zero norm of the signals. We can see that our proposed model

performs better in terms of capturing all ground truth impulses

here as well. Note that the ROC is 0.747 if we do not modify the

GCV-FOCUSS+ algorithm according to (28).

E. Missing Impulses and Variable Delay

In our model, to simplify the problem similar to [35], we

assumed that the delay between channels (βi) is constant and that

the underlying phasic signal for each channel can be represented

as a scaled and delayed version of a reference channel. We have

found that the delay is not constant but rather it can change. The

channels can even have missing impulses. An example of this is

shown in Fig. 8. Here we see that the delay for the second channel

β2 changes from 1.01 s to 0.51 s. A similar situation is seen for

β3. We also see a missing impulse denoted in the figure. The

algorithm optimizes for the delay that reduces the error over

the entire signal, which, given enough impulses shows good

accuracy. However, if a signal has a small number of underlying

impulses, the model will fail to reconstruct the signal accurately.

In such cases, the variability of delay could be integrated into the

model for more accurate deconvolution results. The modeling of

missing skin conductance responses in a couple of channels is

a problem that requires further investigation (see Fig. 8). The

missing impulses could arise from the non-linearity of the

system, for example, different channels could have different

thresholds below which responses are not seen on the SC

data. Another way to model this could be to consider the ANS

activity as originating from multiple sources. In this case, stimuli

from different sources may only register on certain channels

corresponding to different parts of the body. The cause for the

missing skin conductance responses whether it is due to system
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Fig. 9. Estimated Deconvolution of the Experimental Multi-Channel SC Signals of Two Female and Two Male Participants: In each of the panels,
the top sub-panel (i) shows the actual SC signal (orange ∗ markers) versus the reconstructed SC signal (represented by the solid green line) and
the tonic component of the signal (solid blue line) for the 1st channel. The timings of the actual stimulation events are shown as gray vertical lines
in all panels. (ii) shows the recovered phasic component for channel 1. (iii), (iv), (v), and (vi) show the same figures for channel 2 and channel 3,
respectively, and finally (vii) shows the estimated ANS activations.

non-linearity or physiological modeling of the system is an

interesting research prospect, but it is outside the scope of this

work. Hence, it is left for future investigations.

IV. LIMITATIONS AND FUTURE WORK

While the use of multi-channel deconvolution enhances the

robustness of results, it introduces computational challenges

due to the non-linear scaling of computation time. Specifically,

the single-channel algorithm employed in this study relies on

matrix inversion, an operation characterized by a computational

complexity of O(n3). Consequently, extending this algorithm

to accommodate multiple channels significantly prolongs com-

putation time.

For instance, the average runtime of our algorithm is approx-

imately 4.8 hours, in stark contrast to the 8 seconds and 182

seconds needed for cvxEDA and LedaLab, respectively. Despite

the longer processing time, it is crucial to note that neither

cvxEDA nor LedaLab are equipped to handle multi-channel

data, thereby limiting their applicability.

That being said, recent research [24] has unveiled promising

solutions to circumvent these computational complexity issues.
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Fig. 10. Estimated Deconvolution of the Experimental Multi-Channel SC Signals of Two Female and Two Male Participants: In each of the panels,
the top sub-panel (i) shows the actual SC signal (orange ∗ markers) versus the reconstructed SC signal (represented by the solid green line) and
the tonic component of the signal (solid blue line) for the 1st channel. The timings of the actual stimulation events are shown as gray vertical lines
in all panels. (ii) shows the recovered phasic component for channel 1. (iii), (iv), (v), and (vi) show the same figures for channel 2 and channel 3,
respectively, and finally (vii) shows the estimated ANS activations.

As such, future work can capitalize on these advancements,

and focus on developing strategies for efficiently processing

multi-channel inputs, thereby expanding the capability of our

algorithm while ensuring computational feasibility.

V. CONCLUSION

It is quite challenging to decode SC data to predict the esti-

mated ANS activations along with the rise and decay times of

the SC responses. The proposed algorithm has many degrees

of freedom that make it likely to run into overfitting problems.

There exist many solutions for the unknowns that can closely ap-

proximate the sampled signal. The system is under-determined

which makes it more susceptible to noise. However, incorporat-

ing sufficient physiological constraints can simplify the search

space of the problem. We imposed several constraints. The

first is the sparsity constraint on the ANS activations as done

in [35], [39]. Additionally, we constrain the values of the rise
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Fig. 11. Estimated Deconvolution of the Experimental Multi-Channel SC Signals of Two Female and Two Male Participants: In each of the panels,
the top sub-panel (i) shows the actual SC signal (orange ∗ markers) versus the reconstructed SC signal (represented by the solid green line) and
the tonic component of the signal (solid blue line) for the 1st channel. The timings of the actual stimulation events are shown as gray vertical lines
in all panels. (ii) shows the recovered phasic component for channel 1. (iii), (iv), (v), and (vi) show the same figures for channel 2 and channel 3,
respectively, and finally (vii) shows the estimated ANS activations.

and decay times to fixed ranges between τmin = [0.1 1.4] and

τmax = [1.5 6]. We further constrain α in the range [10−2 10]
and yp0

in the range [0 y1] We also impose constraints on the

smoothness of the cubic B-spline basis function by including

l2-norm penalization. Finally, we employ the GCV technique

and adaptive thresholding to have appropriate estimates of λ to

achieve a balance between capturing the data and residual error.

There is also the likelihood that the optimization may stagnate at

local minima. Therefore, we initialize the optimization problem

with several random initializations for τr, τd, and y0. Among

all the deconvolution results using this random initialization, we

choose the one that minimizes the least square reconstruction

error. It is still possible to reach a suboptimal solution, however

using multiple initializations, our proposed algorithm works
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Fig. 12. Estimated Deconvolution of the Experimental Multi-Channel SC Signals of Two Female and Two Male Participants: In each of the panels,
the top sub-panel (i) shows the actual SC signal (orange ∗ markers) versus the reconstructed SC signal (represented by the solid green line) and
the tonic component of the signal (solid blue line) for the 1st channel. The timings of the actual stimulation events are shown as gray vertical lines
in all panels. (ii) shows the recovered phasic component for channel 1. (iii), (iv), (v), and (vi) show the same figures for channel 2 and channel 3,
respectively, and finally (vii) shows the estimated ANS activations.

well in modeling SCR shape. The use of multichannel data also

increases the likelihood of capturing stray impulses. For SC data

in the PsPm-SCRV10 dataset, in particular, the 1st channel is

usually the cleanest while the 3rd is the noisiest. This is shown

in Table I. We see that single channel results for 2nd and 3rd

are much worse than the 1st channel. If we check the SC data

for each channel, we can see that some channels do not show all

the same impulses. To minimize this, we use correlation-based

delay estimation to align all impulses. However, the delay be-

tween impulses is not fixed and we have found that the delay

between impulses can vary slowly over time. This cannot be

properly estimated with a correlation-based delay estimation and

must be included in the system itself to be properly modeled.

However, using a combination of these channels, better results

can generally be obtained. In our proposed algorithm, we fo-

cused on reducing the number of missed impulses by altering
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Fig. 13. Estimated Deconvolution of the Experimental Multi-Channel SC Signals of One Female and Two Male Participants: In each of the panels,
the top sub-panel (i) shows the actual SC signal (orange ∗ markers) versus the reconstructed SC signal (represented by the solid green line) and
the tonic component of the signal (solid blue line) for the 1st channel. The timings of the actual stimulation events are shown as gray vertical lines
in all panels. (ii) shows the recovered phasic component for channel 1. (iii), (iv), (v), and (vi) show the same figures for channel 2 and channel 3,
respectively, and finally (vii) shows the estimated ANS activations.

the GCV-FOCUSS+ algorithm. For future work, we plan to

use the state-space modeling of SC and implement a Bayesian

inference framework to reduce the time complexity. Novel ways

to incorporate varying time delays and missing impulses in SC

channels into the state-space model can also be scope for future

research. Once a real-time algorithm is developed that is resilient

to noise, it can be integrated into a system for arousal regulation

where the output of the algorithm can be used as the control

signal for estimating the arousal state.
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Fig. 14. ROC curves for LedaLab and cvxEDA.
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