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Composite laminates with negative Posson’s ratios (i.e., auxetic composite laminates) were experimentally found
to demonstrate a three-fold increase in buckling strength under uniaxial compression in comparison with the
equivalent non-auxetic ones. To investigate whether the enhancement is genuinely due to the negative Poisson’s
ratio (i.e., the auxeticity) or merely caused by the concurrent change in the bending stiffness matrix as the
composite layup changes, a novel monoclinic plate-based composite laminate approach is proposed, which for
the first time, allows to isolate the auxeticity effect from the concurrent change of the stiffness matrix. Results
provided theoretical proof that the auxeticity plays an active role in enhancing the critical buckling strength of
layered composite structure. However, such a role is dynamically sensitive to elements in the bending stiffness
matrix, especially the bending-twisting ratio and the anisotropy of the bending stiffness between the longitudinal
and lateral directions. Insights are expected to provide guidance in exploiting negative Poisson’s ratio for
improving the stability of layered composite structures.

1. Introduction

A material with one or more negative Poisson’s ratios is referred to as
auxetic [1-4]. For carbon fiber reinforced polymer (CFRP) matrix com-
posite laminates, which is a popular class of layered composite struc-
tures used in aerospace, automotive, marine, infrastructure, etc.,
auxeticity can be introduced into the laminates by tailoring the layup [5,
6]. Much of the interest in auxetic composite laminates arises due to
their improved impact and indentation resistance capabilities [7-14].
For instance, Aziz [15] reported that for auxetic and equivalent
non-auxetic CFRP composite laminates with similar longitudinal moduli
of 64.8 and 61.7 GPa, respectively, and in-plane Poisson’s ratios of
—0.134 and 0.446, respectively, there was a 19 % increase in peak load
and a 27 % increase in the energy absorbed for the auxetic laminate in
comparison to the non-auxetic laminate under quasi-static indentation
tests.

In addition to indentation and impact, for the first time, we show that
the stability of the composite laminates can be enhanced by introducing
auxeticity. Fig. 1 shows schematics of auxetic composite laminates
subjected to uniaxial compression under two conditions, one with two
unloaded edges (i.e., left and right edges) being free (see Fig. 1(a)) and
the other with the two unloaded edges being simply supported (see
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Fig. 1(b)). For both schematics, the dashed line represents the original
undeformed shape, and the solid line represents the deformed shape.
Unlike traditional non-auxetic materials which expand in the lateral
direction, the auxetic composite laminate contracts in the lateral di-
rection when the two unloaded edges are free, producing compressive
strain in the lateral direction (Fig. 1(a)), as indicated by the pink arrows
where the length of the arrow represents the magnitude of the
compressive strain. The aggregation of the compressive strains in the
center of the auxetic composite produces a local material densification
effect, which is expected to enhance the stability (i.e., improved buck-
ling resistance). When the two unloaded edges are simply supported
(Fig. 1(b)), the uniaxial compression produces tensile strain (yellow
arrows) only in the vicinity of the unloaded edges whereas primarily
compressive strain in regions away from the two edges. A similar local
material densification is expected as the compressive strain forces the
material to flow into the center of the laminate, thereby enhancing the
stability.

In authors’ prior work [16], it was found through both experiments
and FEA predictions that the critical buckling load of an auxetic CFRP
composite laminate is about three times higher than that of an equiva-
lent non-auxetic laminate under uniaxial compression and with free
unloaded edges. Despite the enhancement in the buckling load that has
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been observed in the experiments, it remains fundamentally unclear if
such an improvement is really due to the auxeticity (ie., negative
Poisson’s ratio) or just simply caused by the change in the bending
stiffness matrix (D matrix) as the composite layup changes. This ambi-
guity results from the fact that the D matrix normally governs the
buckling strength of composite laminates [17] and that, in order to
produce the negative Poisson’s ratio, the layup must be specially
adjusted, which simultaneously modifies the D matrix. Solving such a
fundamental question is not only important to prevent the misinter-
pretation about the influence of negative Poisson’s ratio on the stability
of composites, but also crucial for many related studies on composites
that look into the performance gains of adding auxeticity (e.g., energy
absorption [10,18], translaminar fracture toughness [19]). However,
since the auxeticity and the D matrix change are tightly coupled, it is
difficult to separate the auxeticity effect from the concurrent D matrix
change. To solve this challenge, in this study, we developed and utilized
a novel approach based on a homogeneous monoclinic plate with
matched D matrix as the composite laminate to theoretically prove the
role of negative Poisson’s ratio in enhancing the buckling strength of
composite laminate.

2. Uniaxial compression buckling test

The CFRP composite plates used in the current study were manu-
factured by sandwiching each IM7/977-3 carbon fiber prepreg tape
layup between upper and lower caul plates, inserting the assembly into
an autoclave, and following the manufacturer’s recommended cure
cycle. Upon demolding, both laminate types exhibited a very slight
warpage (<1 mm of lift) on their two corners along the —45° diagonal.
This occurred due to excess resin along the edges of the caul plate. This
area was removed by trimming off 12 mm strips along the four edges of
both laminates. Each laminate had an as-manufactured thickness of 0.7
mm, from which 139.7 mm long by 30 mm wide specimens were cut.

Fig. 2(a) shows the setup for the uniaxial compressive buckling test.
The test fixture of the uniaxial compression buckling test is mounted in a
servo-hydraulic MTS load frame. The upper and lower base plates have
flat surfaces which impose a uniform shortening displacement across the
specimen’s width. The upper and lower surfaces also contain slide plates
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to further ensure out-of-plate alignment of the fixtures, as annotated in
Fig. 2(a). Prior to each test, the slide plates were tightened against the
front and back faces of the specimen and bolted down as shown. The
slide plates also locally constrained displacements in z and rotations
about the x and y-axes, which corresponds to fixed-fixed boundary
conditions along the top and bottom edges. Three specimens of each
type (auxetic and non-auxetic) were tested.

Fig. 2(b) shows a typical load vs. displacement curve. Moduli were
determined from the initial linear portion of the curve, and the straight-
line intersection method [20,21] was used for the determination of the
critical load (buckling strength). As illustrated, this method utilizes the
point of intersection between two straight lines fitted to the linear
portions of the loading and post-buckling paths and allows for an un-
ambiguous definition of the critical load.

3. Buckling load predictions

A finite element (FE) model was created to predict critical buckling
loads using the general-purpose FE software, ABAQUS. The model setup
and the associated mesh is shown in Fig. 3(a), where the composite
laminate was modeled using two-dimensional shell elements. Fixed end
boundary conditions were utilized that replicated those of the experi-
mental setup. A unit shell edge load of 1 N/mm was applied, which
distributes the load equally along the upper edge nodes. The model was
used to compute load per unit width eigenvalues. The critical buckling
load was taken as the lowest predicted eigenvalue multiplied by the
specimen’s width of 30 mm. Fig. 3(b) shows the example Shell General
Stiffness module in the FE model, which uses the A (MPaemm), B
(MPaommz), and D (MPaemm?®) matrices for defining the laminate
stiffness and allows for individual elements to be varied and investigated
independently.

4. Effective in-plane and flexural properties

Fig. 4(a) shows the layups of the considered composite laminates,
where [15/65/15/65/15] allows the laminate to produce negative
effective Poisson’s ratios of —0.41 (in-plane) and —0.37 (flexural) while
[35/60/—5/60/35] allows the laminate to produce positive effective
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Fig. 1. Schematics of local material densification in auxetic composite laminates subjected to uniaxial compression with two unloaded edges (i.e., left and right

edges) being: (a) free and (b) simply supported.
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Fig. 2. (a) Setup for the uniaxial compressive buckling test, (b) buckling strength determination by the straight-line intersection method.
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Fig. 3. (a) The FEA model setup of compressive buckling analysis and the associated mesh, (b) an example Shell General Stiffness module in ABAQUS.

Poisson’s ratios of 0.16 (in-plane) and 0.06 (flexural). These effective
Poisson’s ratios are those exhibited macroscopically at the laminate-
level under in-plane and flexural loads. Specifically, the in-plane Pois-
son’s ratio, v§,_;, couples the longitudinal and transverse strain, and the
flexural Poisson’s ratio, vﬁH, couples the bending in one direction and
the transverse curvature in the perpendicular direction. These laminate-
level effective Poisson’s ratios along with the effective moduli can be
calculated by the classical lamination theory using the extensional
stiffness matrix (i.e., A matrix) and the bending stiffness matrix (i.e., D
matrix), as discussed below.

From the A matrix, the in-plane effective properties, or the apparent
mechanical properties of a laminate under in-plane loading, can be
expressed in terms of the inverse of the A matrix as shown below:

1 1 az

E .= E . = [
1-i (hall), 2—i (hazz), 12—i all’ (1)

1 Q16 a26

Gy = Vg = Vo = ———

12—-i (ha66)7 16-i 11117 26-i a227

where h is thickness of the composite laminate, a;; is the element in the
inverse of the extensional stiffness matrix (@ = A~ 1).

Similarly, the flexural effective properties, or the apparent me-
chanical properties of a laminate under flexural loading, can be

expressed in terms of the inverse of the D matrix as shown below:

12 12, a4
b (h3du)7 > (h3d22)7 12 dyy’
(2)
G . — 12 - _dis g _dy
12 (h3des) e dy’ 7 doy’

where d;; is the element in the inverse of the bending stiffness matrix (d
=p™h.

The ply-level engineering constants of the IM7/977-3 prepreg are
shown in Table 1 below, using which the A and D stiffness matrices of
the auxetic and non-auxetic composite laminates can be calculated.
These matrices can then be used to determine the laminate-level effec-
tive in-plane and flexural properties according to Egs. (1) and (2).

Fig. 4(b) illustrates the comparison of the critical buckling load be-
tween the auxetic (116 + 7.2 N) and non-auxetic (38 £+ 1.1 N) CFRP
composite laminates under uniaxial compression with two free unloaded
edges. It also shows the comparison between the experimental data and
the prediction from a traditional eigenvalue analysis using FEA (see
Section 3), where close agreement can be observed. Moreover, the
buckling mode predicted from FEA also compares favorably with that
observed from the experimental test, as shown in Fig. 4(c).
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Fig. 4. (a) A comparison of in-plane and flexural Poisson’s ratios for auxetic and non-auxetic layups of the composite laminates, (b) obtained critical buckling load
auxetic laminate vs. non-auxetic laminate, (c) a comparison of the buckling shape between FEA prediction and experimental observation for the auxetic laminate, (d)

steps of converting a composite laminate to an equivalent monoclinic plate.

Table 1
IM7/977-3 ply-level engineering constants [22-24].

Single ply thickness Elastic moduli (GPa) Ply-level Poisson’s ratios
(mm)
0.140 E11 =159, Eyy = E33 = V12 = 13 = 0.253, 1p3 =
9.20 0.456
Gz = G13 = 4.37, Goz =
2.57

5. Monoclinic plate-based composite laminate approach

This section addresses the necessity and rationale of the monoclinic
plate-based approach used in the current study. First, the intuitive way
to demonstrate how a negative Poisson’s ratio affects the buckling
strength of composites would be to hold all other effective properties
(ES, E5, G$,, V56, and v5¢) constant and adjust only the effective Poisson’s
ratio (v§,). This is essentially unfeasible, though, since modifying the
layup leads to concurrent changes for all other effective properties along
with the effective Poisson’s ratio. One alternative method is to manually
alter the individual elements in the D matrix and then observe how such
changes affect the overall data trends of the buckling strength between
the auxetic and non-auxetic composite laminates. The attribution from
the negative Poisson’s ratio is indicated if the buckling strength sub-
stantially departs from each other or from their original trends. More-
over, changing the D matrix elements may force the effective Poisson’s
ratio to change from positive to negative (or vice-versa), and hence,
influence the original data trends of the buckling strength, indicating the
potential impact from the negative Poisson’s ratio.

To utilize the above alternative method, there are two obstacles that
must be overcome first. The first one is that although changing the in-
dividual element of the D matrix can change the flexural effective
Poisson’s ratio (i.e., Viz,f = — dg1/d11, where d is the inverse of the D

matrix) from negative to positive (or vice versa), the in-plane effective
Poisson’s ratio (i.e., ¥§, ; = — aa1/a11, where a is the inverse of the A

matrix) will stay negative or positive since the A matrix remains un-
changed. For example, the auxetic layup of [15/65/15/65/15] allows to
produce a negative in-plane effective Poisson’s ratio of —0.41 and a
negative flexural effective Poisson’s ratio of —0.37 (see Fig. 4(a)). If we
change the individual elements in the D matrix to manually change the
flexural effective Poisson’s ratio from —0.37 to a positive value, the in-
plane effective Poisson’s ratio remains unchanged at —0.41. Such a
contradictory situation will cause confusion and makes it difficult to
interpret the true influence of the negative Poisson’s ratio on the ob-
servables (i.e., the buckling strength in this context). The second
obstacle is that changing the D matrix while holding the A matrix con-
stant (B = 0 for symmetric laminates) will result in a fictitious laminate,
which may not be physically achievable.

To overcome the above-mentioned two challenges, a monoclinic
plate-based composite laminate approach is proposed. The unique
feature of a homogeneous monoclinic plate is that the in-plane effective
properties are identical to the flexural effective properties. Therefore,
creating a monoclinic plate with a matched D matrix with the auxetic
composite laminate will result in an identical in-plane and flexural
negative Poisson’s ratio and a synchronous change from negative to
positive when the D matrix is altered. Fig. 4(d) shows the flow chart of
the steps involved in creating a monoclinic plate with a matched D
matrix from a base composite laminate (i.e., D™ = D, where the su-
perscript “mono” represents the monoclinic plate). To achieve this, the A
matrix of the monoclinic plate, A™", is obtained by the inverse of the
a™", where ™™ = h%d/12, h is the thickness of the composite lami-
nate, and d is the inverse of the D matrix. Substituting the corresponding
elements of the newly obtained @™ in Eq. (1) will lead to matched in-
plane properties and flexural properties. Table 2 shows the calculated in-
plane and flexural effective properties as well as D matrix elements of
the auxetic composite laminate ([15/65/15/65/15]) (i.e., before con-
version to the monoclinic plate) and the created auxetic monoclinic
plate (i.e., after the conversion, denoted as “Aux”).

As shown in Table 2, the conversion allows the monoclinic plate to
retain all flexural effective properties, including the Poisson’s ratio of
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Table 2
Predicted effective moduli, Poisson’s ratios, and nondimensional groups of the D
matrix.

Property Auxetic Auxetic Non-auxetic counterpart
composite monoclinic plate monoclinic plate (“NA™)
laminate (“Aux™)

[15/65/15/65/
15]

E{_; (GPa) 51.29 56.44 56.63

E5_; (GPa) 25.53 21.02 21.09

Ve, -0.41 -0.37 0.36

E_; (GPa) 56.44 56.44 56.63

E5_; (GPa) 21.02 21.02 21.09

Viy s -0.37 -0.37 0.36

Dn 3.26 3.26 3.26

(GPa-mm®)

Dis /D11 0.26 0.26 0.26

Dy /D11 0.11 0.11 0.11

Dy /D1y 0.27 0.27 0.27

(D12 + 2D¢)  0.41 0.41 0.55

/D

the original composite laminate, while at the same time, equating the
flexural effective properties to the in-plane effective properties. In other
words, the in-plane and flexural effective properties, including the
Poisson’s ratios are matched for the auxetic monoclinic plate. Note that
the monoclinic plate does not represent the layup of the original com-
posite laminate. It is created separately to study how the negative
Poisson’s ratio affects the buckling strength. Therefore, it is conceivable
that the predicted critical buckling load of monoclinic plate from FEA
will not match the experimental data in Fig. 4(b).

To discern the effect of auxeticity versus changes in the elements
themselves on the buckling load, the elements of the D matrix can then
be varied independently, as this can be considered as simply choosing a
different monoclinic material. Given the universe of layups, materials,
and laminate thicknesses of the composite laminates, it is clear that the
stacking sequences of the composite laminate counterpart can be
physically achieved for each case considered.

To conclusively establish the dependence or independence of the
critical buckling load (Ny) on the sign of the effective Poisson’s ratio, a
counterpart laminate was required where all D matrix elements were
essentially the same, but with a very slight difference such that one was
auxetic and one was not. From preliminary FEA results, it was observed
that increasing only the D;, element for the auxetic plate from 0.4022
GPa-mm® to 0.8609 GPa-mm® would produce a monoclinic plate with an
identical buckling load (under the free unloaded edge condition and with
an aspect ratio of 0.2) that would be non-auxetic and which would have
the same values of all other D matrix elements as the auxetic plate. This
plate is denoted as “NA”, which provided yet another starting point for
variations in each D matrix elements. This proposed new approach
provides a unique tool to discern the effect of auxeticity from the con-
current change in the D matrix as the composite layup changes, which
cannot be achieved using the traditional one-parameter-at-a-time
method.

It is worth stressing that, to the authors’ knowledge, past studies
have only looked at the effect of different stacking sequences of com-
posite laminates on variations in the buckling strength (e.g.,, [17,25]),
which required the simultaneous change of all elements in the D matrix.
Conversely, the current approach allows the effects of the individual D
matrix elements to be isolated from the auxeticity effect. Specifically,
four elements are individually changed including D16, D26, D22, and (D12
+ 2Dgg), which correspond to the four coefficients of the governing
equation of the instability of a composite laminate [17].

6. Results

The stability of composite laminates is highly sensitive to the
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boundary conditions and the aspect ratio of the plate (i.e., a/b, where a is
the length and b is the width of the plate). The effect of auxeticity due to
the local material densification phenomenon could be triggered or
augmented as the boundary conditions and the aspect ratio of the plate
change, which is evidenced in the results presented in Figs. 5-8. Spe-
cifically, Figs. 5 and 6 present the buckling results for the auxetic and
non-auxetic monoclinic plates with unloaded edges being free and
simply supported, respectively, while holding the aspect ratio constant
at a/b = 0.2. Figs. 7 and 8 show the results for those having an aspect
ratio of a/b = 1. These results were obtained from the validated eigen-
value analysis using FEA by individually changing the D matrix ele-
ments. By observing the effects of respective modifications on the
overall data trends of obtained buckling strength, the attribution from
the negative Poisson’s ratio can be indicated if the buckling strength
substantially departs from each other or from their original trends.
Numerically, this was achieved by assigning a Shell General Stiffness
section to a 2D shell plate using the general-purpose FEA software
ABAQUS, which allowed for the manual entry of stiffness matrix values
(including A™"°, B™", and D matrices, where B™*" = 0 for symmetric
laminates) while maintaining the matrices’ positive definiteness (see
Fig. 3(b)).

Results in Fig. 5 demonstrate that when the monoclinic plate or the
composite laminate has an aspect ratio of a/b = 0.2, auxeticity has no
intrinsic effect on buckling strength under uniaxial compression with
free unloaded edges. Figs. 5(a) - 5(d) illustrate how the normalized
critical buckling load of the auxetic and non-auxetic plates is affected by
the change in the nondimensional D matrix elements. In these figures,
the black discrete dots denote the original auxetic and non-auxetic
monoclinic plates where the D matrices were un-altered (i.e., exactly
same with those in Table 2) while the red discrete dots represent cases
where auxetic monoclinic plates (v, < 0) that became non-auxetic
(5, > 0) due to the change of the individual elements in D or vice-
versa. The same annotation format was employed in Figs. 6-8. Note
here the critical buckling load, Ny, has a unit of N/mm, after normali-
zation by the D;; element of bending stiffness matrix, the normalized
critical buckling load has a unit of 1/mm? as shown in the vertical axes
for Figs. 5-8.

In Fig. 5(a), although slight difference is observed, the normalized
buckling load follows the same trend for both the auxetic and non-
auxetic plates with the change of D1¢/D;;. For the auxetic plate, there
are two red discrete dots at D;¢/D1; = 0.10 and D16/D;; = 0.15, which
indicate cases where the auxetic plate became non-auxetic due to the
change in the Dy element. As one can see, there is no change in the data
trend for the auxetic plate with varying D, when the auxetic case be-
comes non-auxetic. The normalized buckling load matched between the
auxetic and non-auxetic plates at D16 /D11 = 0.26, which is expected as
the D matrix of the non-auxetic plate was deliberately designed to match
the critical buckling load (see Section 4). A similar pattern can be
observed in Fig. 5(b), where the auxetic plate became non-auxetic at
Dye /D11 = 0.05 and the non-auxetic plate became auxetic at Dag/D11 =
0.17 and D¢/Dy1 = 0.18. Such changes have not resulted in any
noticeable changes in the data trends for either plate type. In Fig. 5(c),
the auxetic and non-auxetic results virtually coincide as the Dy /D1q
changes. No cases were found where auxetic becomes non-auxetic or vice
versa. In Fig. 5(d), the normalized buckling load for the original auxetic
case and non-auxetic case does not overlap, which is expected since the
Ds» element is different for the two cases (i.e., D12 = 0.4022 GPa-mm°®
for auxetic and D;» = 0.8609 GPa-mm° for non-auxetic). Two configu-
rations were taken into consideration for changing the nondimensional
group of (D12 + 2Dec)/D11: one configuration fixed D, and merely
varied Deg, while the second configuration was the opposite. For the first
configuration, several cases exist where the auxetic case becomes non-
auxetic or vice versa. Nevertheless, the data trend remains and the dif-
ferences between auxetic and non-auxetic stay the same as the nondi-
mensional group changes. For the second configuration, the range of the
nondimensional group of (D13 +2Dgg)/D11 over which the variations of
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the normalized buckling load occur is different for the two sets of plates
due to the limitation of the positive definiteness of the D matrix while
varying the individual D,,. Hence, such a comparison does not yield any
conclusive findings. Fig. 5(e) shows a comparison of the buckling mode
between the original auxetic and non-auxetic plates, where an identical
pattern can be observed. A similar identical comparison can also be
found for cases where the D elements vary. The combination of

observations leads to the conclusion that auxeticity has no intrinsic ef-
fect on buckling strength of the monoclinic plate with an aspect ratio of
a/b = 0.2 under uniaxial compression with free unloaded edges. Rather,
the differences in the buckling strength are due to differences in the
elements of the D matrix and the way that they interact to affect the
critical buckling load.

When the boundary condition of the two unloaded edges were
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changed to simply supported, the enhancement effect due to auxeticity Fig. 6(a), it shows that the overall data trend of the normalized buckling
(ie., local material densification) is evident and started to provide load of the auxetic plate is largely different from that of the non-auxetic
enhancement in the buckling strength, as shown in results in Fig. 6. In one. Specifically, the non-auxetic plate showed only a slight increase as
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the D16 /D11 increases, whereas the auxetic plate showed a mild increase
first at lower D1¢/Dq; ratios and exhibited an abrupt jump when Di¢
/D11 reaches near 0.3. The difference between the auxetic and non-
auxetic plates continuously increases as the Djg/D;; increases. This
signifies that the auxetic monoclinic plate and composite laminate, if
designed with a larger Dy¢/D11, i.e., physically more bending-twisting
coupling, will receive benefit from the auxeticity effect, resulting in
substantially improved buckling strength. The buckling modes of the
auxetic and non-auxetic monoclinic plate at D;g/D1; = 0.35 are anno-
tated in Fig. 6(a), where it can be seen that the buckling pattern (i.e., the
out-of-plane deflection) of the auxetic plate is more concentrated in the
upper half whereas the buckling pattern of the non-auxetic plate is more
dispersed over the whole plate. The same apparent enhancement effect
has not been observed in Figs. 6(b) and 6(c), indicating that the negative
Poisson’s ratio effect remains inactive as the Dys/D11 and Dyz /D11
change. Although there are a few cases where the auxetic case became
non-auxetic and vice versa in Fig. 6(b), they did not influence the overall
data trend of either the auxetic or the non-auxetic case.

Similarly, the auxeticity effect appears to stay inactive as the
nondimensional group (Di2+2Des)/D11 changes, specifically for the
configuration where Dgg was fixed and D;2 was allowed to vary. The
normalized buckling load shows a continuously decreasing trend
regardless of the change in auxeticity, as shown in Fig. 6(d). For the
opposite configuration where D, was fixed and Dge was allowed to vary,
the results were inconclusive. Although the data trends between the
auxetic and non-auxetic plates appear to be largely different, especially
for the data located on the right side of the black dots, most of the
auxetic cases were found to have been converted from auxetic to non-
auxetic due to the change of the Dgs. The difference in the normalized
buckling load in this context is likely caused by the shift in the buckling
modes. For example, the non-auxetic plate converted from the originally
auxetic plate showed a single sine wave whereas the non-auxetic plate
varied from originally non-auxetic showed multiple sine waves, as an-
notated in Fig. 6(d). In addition, the enhancement effect due to aux-
eticity can also be gleaned by comparing the buckling modes between
the original auxetic and non-auxetic plates, as shown in Fig. 6(e), where
the auxetic plate showed four sine waves due to local material densifi-
cation whereas the non-auxetic plate showed only two.

The enhancement effect due to auxeticity is not only active when a
simply supported boundary condition is imposed on the unloaded edges,
it can also be triggered for cases where the unloaded edges are set free
but with an increased plate aspect ratio of a/b = 1, as shown in Fig. 7.
First, the auxeticity effect on the enhancement of the buckling strength
was not evident in Figs. 7(a) and 7(b), where the normalized buckling
load of auxetic and non-auxetic plates tend to vary similarly to each
other with the change of Di¢/D11 and Dys/D11, even for cases where
auxetic changed to non-auxetic or vice versa. The enhancement effect
due to auxeticity became obvious in Fig. 7(c), where the normalized
buckling load exhibited a large difference in the data trend between the
auxetic and non-auxetic plates on the left side of the black dots (i.e., the
original auxetic and non-auxetic plates with un-altered D matrices) with
the change of Dy, /Ds;. Specifically, the auxetic plate generally showed a
decreasing trend starting from a high normalized buckling load whereas
the non-auxetic plate displayed a rising trend beginning from a rela-
tively much lower load. The buckling modes of the two cases are also
distinct as annotated in Fig. 7(c), where the buckling pattern is dispersed
across the entire plate in the auxetic plate whereas the buckling pattern
is more concentrated on the left edge in the non-auxetic plate. When the
data approached the black dots, both the auxetic and non-auxetic began
to plateau and gradually coincide with each other. This physically shows
that the auxeticity effect for enhancing the buckling strength can be
triggered by lowering the Dj3/Dq1, which is the anisotropy of the
bending stiffness between the longitudinal and the lateral directions.
The auxeticity effect was not observed in Fig. 7(d), where changing the
nondimensional group (D12 +2Deg)/D11 in either configuration has not
led to any noticeable difference in the data trends between the auxetic
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and non-auxetic plates, although a few auxetic cases became non-
auxetic and one non-auxetic case turned to auxetic. A comparison of
the buckling pattern between the original auxetic and non-auxetic plates
(where D matrices were un-altered) is provided in Fig. 7(e). It shows that
the two buckling patterns are identical, indicating no direct enhance-
ment effect due to auxeticity in the original configuration.

The auxeticity effect for enhancing the buckling load persists as the
boundary condition of the two unloaded edges were switched to simply
supported for plates having an aspect ratio of a/b = 1. Fig. 8 depicts the
comparison of buckling results between the auxetic and non-auxetic
monoclinic plates. The enhancement effect due to the auxeticity is
clearly observed in Fig. 8(a), where the data trends of the auxetic and
non-auxetic plates are initially similar but significantly deviate from
each other as the D;6/D11 exceeds 0.35. As one can see, the normalized
buckling load of the auxetic plate drastically departed from the original
data trend and increases whereas that of the non-auxetic plate remained
on the original data trend. This indicates that the auxeticity effect clearly
became active as the Dj¢/Di1 exceeds the threshold. A composite
laminate, if designed with a higher D;¢/D1; ratio (i.e., higher bending-
twisting coupling), is expected to gain enhancement in the stability
under uniaxial compression. Interestingly, the auxetic and non-auxetic
plates show similar buckling patterns for cases where the data trends
depart from each other. This implies that the auxeticity did not result in
any significant changes to the buckling mode, but rather, the enhance-
ment in the buckling strength could be due to the unique local material
densification effect as shown in Fig. 1(b). The same enhancement effect
in the buckling load due to auxeticity was not observed in Figs. 8(b)-8
(d). It can be seen that the data trends remain virtually similar to each
other as Dys/D11, D22/D11, and the nondimensional group of
(D12 +2Des) /D11 change. Furthermore, the buckling modes of the
auxetic and non-auxetic plates are identical to each other, as compared
in Fig. 8(e), indicating no direct effect attributable to the auxeticity.

7. Discussion

The results presented above demonstrate that the auxeticity effect is
highly sensitive to the individual bending stiffness matrix elements. The
enhancement of the buckling strength due to the auxeticity from local
material densification could be triggered, augmented, or diminished at
varying individual stiffness matrix elements. Specifically, our results
indicate that for buckling critical applications, composite laminates can
be designed by increasing the bending-twisting ratio (i.e., Di¢/D;1) and
decreasing the anisotropy of the bending stiffness between the longitu-
dinal and lateral directions (i.e., D22/D11) to trigger the auxeticity
enhancement effect on the buckling strength. However, doing so inevi-
tably necessitates the consideration of the manufacturing challenges
because increasing the bending-twisting ratio could lead to warping is-
sues, especially in relatively thin laminates, while lowering the anisot-
ropy of the bending stiffness could indicate a modification in the
material composition. These challenges merit further application-
oriented studies.

It is worth mentioning that the results and the proposed approach in
this study are not only important to understand the auxeticity effect on
the enhancement of stability of the composite laminates, but also pro-
vide a unique capability to isolate the auxeticity effect from the con-
current change of the stiffness matrices. Applications that can benefit
from this capability include comparisons of a layered composite struc-
tures’ resistance to low velocity impact and quasi-static indentation
damage. Traditionally, in those studies, composite laminates were
chosen by either matching the effective values of E§ [5, 7, 8], E [15], or
E$ and E [11, 12]. However, for such out-of-plane loadings, the values
of D matrix elements are also important, with their importance
increasing as the unsupported dimensions of the plate increase. Con-
clusions about the effects of auxeticity based only on matching effective
engineering constants inevitably overlook these effects and attribute
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them solely to auxeticity. Similar considerations can be applied to other
loadings. For example, for tensile loading, elements of the A matrix may
prove to be a better comparison method than through effective engi-
neering constants.

8. Conclusion

Auxetic composite laminates were experimentally shown to outper-
form the equivalent non-auxetic laminates by three times in the critical
buckling strength under uniaxial compression. To investigate whether
such an enhancement effect is due to the negative Poisson’s ratio (i.e.,
auxeticity) or simply caused by the concurrent change of the bending
stiffness matrix (i.e., D matrix) as the layup changes, this study proposed
a novel monoclinic plate-based composite laminate approach, which
uniquely separates the auxeticity effect from the simultaneous change of
the D matrix elements. Results from this study mainly lead to following
conclusions:

The negative Poisson’s ratio (i.e., auxeticity) plays an active role in
enhancing the critical buckling strength of composite laminates due to
the local material densification phenomenon, where such a role is
dynamically responsive to the D matrix elements. When the two
unloaded edges of the composite laminates are simply supported, the
auxeticity effect becomes active as the bending-twisting ratio (i.e., D1¢
/D11) increases. Whereas when the two unloaded edges are set free, the
auxeticity effect is triggered as the anisotropy of the bending stiffness
between the longitudinal and lateral directions (i.e., Doz /D11) decreases.

Results from this study are expected to provide useful guidance in
exploiting the negative Poisson’s ratio to design layered anisotropic
composite structures for improved stability. The proposed approach also
provides a unique capability of isolating the auxeticity effect from the
concurrent changes in stiffness matrices, thereby unraveling the true
auxeticity effect for other related studies that investigate the perfor-
mance gains (e.g, low velocity impact, indentation, fraction toughness)
through introducing auxeticity.
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