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Introduction: Decoding an individual9s hidden brain states in responses to

musical stimuli under various cognitive loads can unleash the potential of

developing a non-invasive closed-loop brain-machine interface (CLBMI). To

perform a pilot study and investigate the brain response in the context of

CLBMI, we collect multimodal physiological signals and behavioral data within

the workingmemory experiment in the presence of personalizedmusical stimuli.

Methods: Participants perform a working memory experiment called the n-

back task in the presence of calming music and exciting music. Utilizing the

skin conductance signal and behavioral data, we decode the brain9s cognitive

arousal and performance states, respectively. We determine the association of

oxygenated hemoglobin (HbO) data with performance state. Furthermore, we

evaluate the total hemoglobin (HbT) signal energy over each music session.

Results: A relatively low arousal variation was observed with respect to task

di�culty, while the arousal baseline changes considerably with respect to the

type of music. Overall, the performance index is enhanced within the exciting

session. The highest positive correlation between the HbO concentration and

performance was observed within the higher cognitive loads (3-back task) for all

of the participants. Also, the HbT signal energy peak occurs within the exciting

session.

Discussion: Findings may underline the potential of using music as an

intervention to regulate the brain cognitive states. Additionally, the experiment

provides a diverse array of data encompassing multiple physiological signals that

can be used in the brain state decoder paradigm to shed light on the human-

in-the-loop experiments and understand the network-level mechanisms of

auditory stimulation.
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multimodal dataset, brain-machine interface (BMI), music, closed-loop systems,
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1 Introduction

Recent advances in physiological signal measurement techniques enlighten the non-

invasive closed-loop brain-machine interface (BMI) design. Such signals can be used to

infer individuals’ underlying cognitive brain states and regulate them via non-invasive

interventions such as music (Fekri Azgomi et al., 2023). The human brain state regulation

via musical stimuli would have profound applications in closed-loop BMI (CLBMI)

(Ehrlich et al., 2019), neural rehabilitation (Ottonello et al., 2019; Salas et al., 2019),

and cognitive impairment treatments (Ray and Mittelman, 2017). As an instance of
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such applications, the well-known Yerkes-Dodson law, a.k.a.

the inverted-U law, explains that optimal cognitive performance

can be achieved by setting the cognitive arousal within a

moderate level (Yerkes, 1907; Yerkes and Dodson, 1908). This

inspires us to design a pilot study involving a human-subject

working memory experiment in the presence of arousing music

stimuli. We record the multimodal physiological and behavioral

signals to investigate the feasibility of regulating one’s cognitive

arousal and performance via background music with calming and

exciting contents.

Several studies have explored how the introduction of music

can impact cognitive functioning (Parshi et al., 2019; Khazaei

et al., 2021). Multiple studies have used music to influence

driving performance (Ünal et al., 2012, 2013). In Huang and

Shih (2011) and Kuschpel et al. (2015), the positive effect of

music on concentration and the effectiveness of using music to

reduce cognitive stress in closed-loop systems have been shown.

In our designed working memory experiment, two types of music

are employed, namely, calming and exciting music. Notably, the

calming and exciting music selected by participants such that the

calming and exciting components are supposed to replicate the low

and high arousing conditions, respectively. Here, we mainly focus

on cognitive performance and arousal in the presence of calming

and exciting music.

Cognitive performance is a hidden brain state that

demonstrates the general performance of one’s cognitive functions

(Khazaei et al., 2024). The cognitive functions of humans can be

divided into two groups, namely, basic cognitive functions and

higher-level cognitive functions. Working memory is one of the

basic cognitive functions that provides temporary storage and

allows the manipulation of information (Baddeley, 1992). Here, the

n-back task serves as a cognitive task of interest, which encourages

working memory usage by inducing different cognitive loads (von

Janczewski et al., 2021; Fekri Azgomi et al., 2023). Decoding the

underlying cognitive performance in a continuous manner is one

of the challenges in this paradigm, which can be addressed by

employing informative data and applying decoding approaches.

One of the most accessible and informative data in this context

would be the behavioral data recorded during the cognitive task

of interest. We consider the sequence of responses as well as the

reaction time of participants as the available behavioral observation

and quantify the cognitive performance using Bayesian filters

within an expectation-maximization (EM) framework (Amin et al.,

2021; Khazaei et al., 2021).

Another hidden brain state that may have impact on cognitive

performance is the underlying arousal state. In particular, the

amygdala plays a crucial role in connecting arousal to memory

formation (McGaugh, 2004). Typically, the arousal state is linked

to the degree of physiological alertness (Cudo et al., 2018), and

variation in arousal is mainly due to the exogenous and endogenous

stimulation, which can be accompanied by neural, hormonal,

and other biochemical changes (Hobson and Lindsley, 1988).

Specifically, previous research on the autonomic nervous system

(ANS) inference presents the electrodermal activity (EDA) as an

informative measurement of cognitive arousal (Wickramasuriya

et al., 2018; Wickramasuriya and Faghih, 2020a). In particular,

the skin conductance (SC) signal (a measure of EDA) reflects

the sweat secretions process, which is firmly linked to the

underlying ANS activity inside the brain (Amin and Faghih,

2022). The variation in skin conductivity can be used as a

quantitative index of arousal during a cognitive task (Khazaei et al.,

2021).

When it comes to designing a CLBMI architecture for

human cognitive functions, it would be crucial to investigate

how the environment and interactions affect the cognitive

capacity of the human operator (Cain, 2007). To gain a better

insight into BMI design procedures and analyze how different

regions of the brain react to the stimuli, neuroimaging methods

with relatively high spatial resolution can play a crucial role.

These neuroimaging methods include but are not limited to

magnetoencephalography (MEG), electroencephalography (EEG),

functional magnetic resonance imaging (fMRI), and functional

near-infrared spectroscopy (fNIRS) (Berka et al., 2007; Wendel

et al., 2009; Baldwin and Penaranda, 2012; Fyshe et al., 2012).

The fNIRS is a relatively new neuroimaging technique that can

show significant spatiotemporal changes for memory tasks in the

prefrontal cortex (PFC) (Hoshi et al., 2003). Also, the fNIRS

has a higher spatial resolution than EEG, and it is practical for

unobtrusive applications. In the designed experiment, we use the

fNIRS and collect data from the prefrontal cortex (PFC) and

occipital (OC) areas of the participant.

Multiple studies investigate the brain neural activity in the

course of n-back tasks via fNIRS (Ayaz et al., 2007; Roy et al.,

2013; Fishburn et al., 2014; Herff et al., 2014). In Ayaz et al. (2007)

and Herff et al. (2014), the cognitive loads and hemodynamic

responses association is considered, and the hemodynamic

responses are classified accordingly. Another study considers the

n-back tasks and presents the fNIRS sensitivity to cognitive load

and transitioning from a resting state to a task (Fishburn et al.,

2014). While the link between the cognitive load of n-back task and

corresponding hemodynamic responses is studied vastly, the study

of association between the continuous cognitive performance signal

and fNIRS data in the presence of music is investigated relatively

sparsely. Previous studies such as Meidenbauer et al. (2021) and

Struckmann et al. (2021) have considered the distinctive measures

of cognitive performance, like the number of correct/incorrect

responses and reaction time, and investigated the hemodynamic

response data association. While this set of measurements can

be an informative index of performance, it merely presents a

distinct measure of performance, and might not fully capture the

underlying dynamic of the brain’s cognitive state (Basu et al.,

2023). In this research, we study the association between the

oxygenated hemoglobin (HbO) concentration and the continuous

performance state decoded from behavioral data. In particular,

we employ a Bayesian-based performance decoder that accounts

for the underlying dynamic of this brain state, and tracks its

continuous trajectory using behavioral data. Also, we evaluate

the energy of total hemoglobin (HbT) signal within each music

session.

To summarize, the primary purpose of this pilot study is

to provide a multimodal database and examine the viability

of using music as an intervention. The database includes a

diverse array of data encompassing multiple physiological

measurements to shed light on the human-subject experiments

Frontiers inNeuroscience 02 frontiersin.org



Khazaei et al. 10.3389/fnins.2024.1406814

using music intervention. The available signals include SC data,

electrocardiogram (ECG), skin surface temperature, respiration,

photoplethysmography (PPG), functional near-infrared

spectroscopy (fNIRS), electromyogram (EMG), de-identified

facial expression scores, sequence of correct/incorrect responses,

and reaction time recorded during the n-back task. In this

research, we focus on cognitive performance and arousal, and we

present how the HbO concentration is correlated with cognitive

performance. Also, the energy of the HbT signal is evaluated

with respect to each music. We represent how the arousal and

performance indices vary with respect to task difficulty and music

type. Then, we discuss our findings and provide a summary of our

approach, followed by future directions of this research.

2 Materials and methods

2.1 Cognitive task overview

We designed the experiment centered on the working memory

task called the n-back task (Herff et al., 2014; Shin et al., 2018).

Here, the participant was shown a series of alphabets as stimuli,

and the participant had to identify if the most recently displayed

alphabet was the same as the alphabet displayed at the nth previous

iteration (Herff et al., 2014; Shin et al., 2018; Khazaei et al., 2021).

In this type of experiment, the cognitive workload increases with

n, and the participant has to recall more of the stimuli with

higher values of n. Here, the experiment was conducted within

two sessions; session one was accompanied by calming background

music, and session two was accompanied by exciting background

music. The participants were requested to share their own music

with “calming” and “exciting” content to be played during the

experiment. We employ this strategy first to enhance the ecological

validity, as people often listen to their ownmusic (Ünal et al., 2012);

secondly, this strategy aims to ensure that any behavior observed

in brain activity is not attributable to disliking the music (Ünal

et al., 2012). Finally, this strategy enables us to incorporate the

person-specific closed-loop system with personalized intervention.

We delivered the background music via an external speaker. The

music stimulation started at the beginning of each session, and

it continuously played until the end of the session (i.e., 964 s).

We performed the experiment in a closed experiment room to

minimize the impact of external variables. Each session in the

experiment included 8 blocks for each type of n-back task (2

types of n-back task × 8 = 16 blocks within one session). Hence,

we have 16 blocks at each session and 32 blocks during the

whole experiment. We decided to keep the experimental duration

time for a bit longer than half an hour. This ensures that the

collected SC signals do not show a lot of relative drift over

time due to the accumulation of sweat or shift in the position

of electrodes.

Each block includes 5 s instruction followed by 22 trial windows

in which a letter stimulus was displayed for 0.5 s and a cross was

presented for 1.5 s, which resulted in a total 2 s trial window that

participant could deliver the response via Chronos Keypad. Thus,

the total duration of each task block was 49 s (5 + 22 × 2 = 49).

In each task block, 30% of the stimuli were a target. The task

block of each n-back task was randomized. At the end of each

block, a 10 s “RELAX” segment was presented where a resting

cross was displayed on the screen. After 8 task blocks (the halfway

mark for each session), a 20 s “RELAX” section was presented

where a resting cross is displayed on a smart 65 inch TV screen

connected via HDMI to a laptop. The duration of each session was

964 s, which is ∼16 min. After each session, there was a 2 min

relaxation break in which the participant was allowed to relax. A

resting cross was displayed on the screen during this time. Figure 1

describes the timing of one session with randomized trials. The

experiment took a total of 2, 168 s (calming session duration 964+
intersession break 120+ exciting session duration 964+ after the

session rest period 120 = 2, 168 s), i.e., approximately half an

hour. Participants were comfortably seated with the attached non-

invasive sensors, and a display screen was placed ∼1–2 m in front

of them. The only required movement was pressing one of two

buttons on a Chronos Keypad: the target and non-target buttons.

Participants were required to press one of the buttons for each

stimulus displayed.

2.2 Experimental procedures

The experimental procedures in this study were approved by

the institutional review board at the University of Houston, TX,

USA (STUDY00002013). Only participants who were 18 years

or older and were able to provide consent were permitted to

participate in this experiment. Anyone suffering from known

cardiac ailments or psychological disorders was excluded. Adults

unable to consent, anyone below age 18, pregnant women,

prisoners, students whose grades may be influenced and,

economically and/or educationally disadvantaged persons were

excluded from the study. A total number of 11 healthy

participants (five male and six female) between the ages of 22–

25 participated in this study. Six participants with measurement

error, data corruption, and small modalities were removed.

Hence, the studied sample size here is five (two male and

three female) while the de-identified facial expression scores

for four participants are included in the main database. All

identifiable aspects of the data were removed to ensure privacy.

This includes any data that may be used to identify the

original participants. The experiment focused on collecting

multimodal data to investigate the feasibility of using music

as an intervention. The experiment was conducted with a

multitude of sensors. We describe the sensors applied in the

following subsections.

2.2.1 Functional near infrared spectroscopy
The near-infrared region (620–1, 000 nm) of the

electromagnetic spectrum is scattered by biological tissue but

absorbed by hemoglobin (Villringer et al., 1993); by measuring the

amount of absorbed near-infrared light and using the modified

Beer-Lambert law (Sassaroli and Fantini, 2004), fNIRS measures

changes in oxygenated hemoglobin (HbO), deoxygenated

hemoglobin (HbR), and total hemoglobin (HbT). The fNIRS

demonstrates excellent spatial resolution but relatively poor

temporal resolution (Fazli et al., 2012). The spatial resolution
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FIGURE 1

The experimental setup for multimodal physiological data collection from a female participant during the n-back task. An overview of the

physiological sensors9 placement during the n-back task session.

FIGURE 2

The electrocardiogram (ECG) and respiration sensors conûguration. Electrode placements of Electrocardiogram sensors (indicated by blue lines) and

respiration belt on the front torso (shown with black lined indicators).

of fNIRS can be used to obtain the functional connectivity map

of the brain (Santosa et al., 2018). The fNIRS optodes can be

placed according to the international 10 − 5 system (Oostenveld

and Praamstra, 2001), and readings can be taken from the whole

scalp. The fNIRS channels placed during this experiment collected

hemodynamic data from the PFC and the OC areas of the

Frontiers inNeuroscience 04 frontiersin.org
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FIGURE 3

The electrodermal activity (EDA), photoplethysmography (PPG), and electromyogram (EMG) sensors conûguration. (A) Sensor placements on the

hand for PPG, EDA, and Skin Temperature. (B) EMG sensors were placed on the participant9s trapezius muscles to detect stress states from muscle

movements.

FIGURE 4

The Functional Near Infrared Spectroscopy (fNIRS) sensor conûguration. (A) Optode layout of the fNIRS sources (red), detectors (blue), and channels

(green) used during the experiment. The Nasion (Nz, the intersection point of the frontal and nasal bones), Inion (Iz, the occipital protuberance

behind the scalp), and Left and Right Pre-auricular points (LPA, RPA, the points anterior to the ears in front of the upper end of the tragus) are labeled

accordingly. (B) The channel numbers and studied regions of PFC and OC areas located on right and left hemisphere: LF1- to LF4, RF1 to RF4, LB1 to

LB4, and RB1 to RB4.

brain. In particular, the employed fNIRS sensor is NIRSport 2,

configured as shown in Figure 4. The sources (S) and detectors

(D) were placed according to the positions depicted in the

figure (on a head cap worn by the participants). There were 16

sources and 14 detectors located on PFC and OC areas, and

signals were recorded from 44 channels. The sampling frequency

is 7.81 Hz.

2.2.2 Electrocardiogram
ECG is the electrogram of the heart. Specifically, it is

the electrical signal that correlates with the expansion and

contraction of the heart muscle, and it is used to detect

heart problems such as arrhythmia. In our experiment,

ECG sensors were placed on the torso of the participants,

as shown in Figure 2. We collected the ECG data with the
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MP160 BioPac system and the BioNomadix wireless devices.

The EL503 BioPac general-purpose disposable electrodes

were used on the torso region. The sampling frequency

is 2, 000 Hz.

2.2.3 Respiration
The respiration belt sensor of the MP160 BioPac system

was placed on the abdomen of the participant in contact

with the torso as described in the BioPac manual and

depicted in Figure 2. The contraction and expansion of

the lungs are captured by the belt. The sampling frequency

is 2, 000 Hz.

2.2.4 Skin surface temperature
As portrayed in Figure 3, the skin surface temperature data

is collected from the minimus digitus (little finger) of the

non-dominant hand using the MP160 BioPac system with the

BioNomadix wearable device coupled with the BN-TEMP-A-

XDCR BioPac sensor. Also, the Empatica E4 wearable wristband

worn by the participant collected skin temperature data. The

sampling frequency for BioPac is 2, 000 Hz, and for Empatica E4

is 4 Hz.

2.2.5 Electrodermal activity
Sensors from both the MP160 BioPac system and Empatica

E4 wearable wristband were used to record EDA. The Empatica

E4 wearable wristband was worn on the wrist by the participant.

The M160 BioPac system sensors were placed over the digitus

quartus manus (ring finger) and digitus medius manus (middle

finger) of the participant, as shown in Figure 3. The BioPac

EL507 disposable electrodes are used as the leads for EDA. The

sampling frequency for BioPac is 2, 000 Hz, and for Empatica E4

is 4 Hz.

2.2.6 Photoplethysmography
Wearable physiological sensor BN-PULSE-XDCR coupled with

BioNomadix unit is placed on the digitus secundus manus (index

finger) of the non-dominant hand (Figure 3) to obtain PPG data

with the M160 BioPac system. Also, the Empatica E4 wearable

wristband (worn on the wrist) collected PPG data. PPG is an

optical means to detect changes in blood volume in a tissue.

PPG is generally used to monitor cardiac health and heart

rate. The sampling frequency for the BioPac system is 2, 000

Hz. The sampling frequency for the Empatica E4 wristband

is 4 Hz.

2.2.7 Electromyogram
As depicted in Figure 3, sensors from the MP160 BioPac

system are placed on the participant’s trapezius muscle for EMG

recordings. The EL503 general-purpose electrodes are used in

this case. EMG is used to detect the health of muscles and the

nerves that control them. In this experiment, the placement of

EMG electrodes provides data about the tensing of a participant’s

shoulders and back while performing a cognitive stress task. The

sampling frequency is 2, 000 Hz.

2.2.8 Facereader
Facial expression data were recorded via a dedicated

camera. Then, the facial expression scores were obtained

using Face Reader software. De-identified facial expression

scores for four participants are included in the multimodal

dataset.

2.2.9 Synchronization and behavioral data
recording

The experimental design, timing, and triggers for different

equipment have been executed using the Chronos input

device and E-Prime software. The Chronos and E-Prime offer

a script-free way to synchronize data with task events. The

participant’s behavioral signals, including the number of

correct and incorrect responses along with reaction times,

were collected.

2.3 Data analysis methods

To decode the cognitive state of interest, we employ the

Bayesian filtering approach within the expectation-maximization

framework. We utilize the SC signal collected via MP160 BioPac

system to decode a cognitive arousal state. This is done by

considering the arousal events occurrences and their amplitudes

as the available observation (Wickramasuriya et al., 2018, 2019,

2022; Wickramasuriya and Faghih, 2019a,b, 2020a,b). Also, to

quantify the hidden performance state, we use the sequence

of correct and incorrect responses and the reaction time as

binary and continuous observations, respectively (Prerau et al.,

2009).

2.3.1 Arousal state estimation
The arousal state (xj) can be modeled as a random walk process

(Wickramasuriya and Faghih, 2020a):

xj = xj−1 + ëj, (1)

where ëj ∼ N (0, Ã 2
ë ) is the process noise and j stands for

the time index. Following the marked point process filtering

approach (Wickramasuriya and Faghih, 2020a), we consider

Bernoulli distribution for neural impulse occurrence (arousal

events) nj with probability mass function a
nj
j (1 − aj)

1−nj such that

P(nj = 1) = aj.

We can relate xj to aj by applying a sigmoid transform (Young
et al., 2004). Thus,

aj =
1

1+ e−(xj+´)
, (2)
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where ´ is a constant that can be derived from ´ ≈ log

(

a0
1−a0

)

,

and a0 is the average probability of observing an impulse during the
experiment. As described in Wickramasuriya and Faghih (2020a),

the continuous-valued amplitude rj of each neural impulse can be

represented as

rj = µ0 + µ1xj + vj, (3)

where vj ∼ N (0, Ã 2
v ) presents the sensor noise, µ0 and µ1

are the unknown model parameters in arousal state model in

Equations (1)–(4), to be determined. Consequently, the joint

density function for the observed neural impulse is

p(nj ∩ rj|xj) =

ù

ü

ú

ü

û

1− aj if nj = 0

aj
1√
2ÃÃ 2

v

e

−(rj−µ0−µ1xj)
2

2Ã2v if nj = 1
. (4)

The unknown parameters »A = {Ã 2
ë , µ0, µ1, Ã

2
v }, and hidden

arousal state xj can be decoded at the same time using an

expectation-maximization (EM) framework (Wickramasuriya and

Faghih, 2020a). A description of the applied arousal state decoder

is available in the Supplementary material.

2.3.2 Performance state estimation
Inspired by the proposed state-space model in Prerau et al.

(2009), we model the cognitive performance state as

zk = zk−1 + wk, (5)

where zk is the performance state, wk ∼ N (0, Ã 2
w) stands for the

process noise and k is the trial number during the experiment.

Similar to Prerau et al. (2009), we can form the observation

model by specifying one binary observation (correct/incorrect

response at kth trial) and one continuous observation (reaction

time of the corresponding response). The Bernoulli probability

model is assumed for the binary responses with the probability

mass function of p
mk

k
(1− pk)

1−mk . Applying sigmoid transform we

express the pk in terms of zk such that

pk =
1

1+ e−(zk+µ)
. (6)

The constant term µ can be derived from µ ≈ log

(

p0
1−p0

)

where p0 is the average probability of having a correct response.

The reaction time tk can be related to the performance state as

Ik = log tk = ³0 + ³1zk + ¶k, (7)

where we consider the log of reaction time at each trial (Ik) to follow

the linear model with the Gaussian noise term ¶k ∼ N (0, Ã 2
¶ ); the

vector of unknown model parameters in performance state model

in Equations (5)–(7), »P = {Ã 2
w,³0,³1, Ã 2

¶ } and the performance

state zk can be decoded using the EM approach (Prerau et al., 2009;

Khazaei et al., 2021). A description of the applied performance state

decoder is available in the Supplementary material.

2.3.3 fNIRS processing
Similar to Yaghmour et al. (2021) and Parshi et al. (2019),

we preprocess the collected hemodynamic data using the Nirslab

software (Xu et al., 2014). The preprocessing steps include bandpass

filtering and converting the light intensity data to HbO, HbR, and

HbT concentrations (Yaghmour et al., 2021).

We first analyze the HbO data. To study the PFC and OC areas,

the combinations of HbO channels are considered such that we

cover 16 different brain regions. These brain regions are distributed

within the right and left sides of the PFC and OC areas (Donadel

et al., 2021). As depicted in Figure 4B, each of the studied areas is

surrounded by four channels, and the average HbO concentration

can be derived accordingly. We evaluate the epoch of HbO signal

over 22 trials (within each task block) of the n-back task with

respect to the task difficulty (e.g., 1-back) and music session. The

epoch of a signal can be defined as a signal segment within a specific

time window. Such evaluation is inspired by the event-related

potential (ERP) study, which analyzes a brainwave in response to

the stimuli (Luck, 2014). Here, we consider the signal segment over

22 trials (≈44 s), and we perform a similar ERP-like study to derive

an epoch of performance state with respect to the type of task

(i.e., task difficulty) and music session. Then, we find the Pearson

correlation coefficient between the epoch of HbO and continuous

performance.

Additionally, inspired by the study in Wickramasuriya et al.

(2023), we investigate HbT signal energy with respect to the

presented music types. Particularly, we consider the collected signal

from the PFC channels (i.e., channels 23–44) and smooth the signal

using a 10 s sample-by-sample running average filter.

2.3.4 Statistical analysis
The differences in human brain structure can lead to variation

in behaviors, cognitive abilities, and mental and physical health

(Gu and Kanai, 2014). To have a general and person-specific index

of cognitive states with respect to an individual’s baseline, we

formulate the metrics called high arousal index (HAI) and high

performance index (HPI) (Wickramasuriya and Faghih, 2020a).

These arousal and performance indices can be calculated from

prob(statej > threshold) where the threshold has been set to the

median of the state values. Here, we decode the hidden arousal

and performance state merely based on the SC and behavioral

data (Fekri Azgomi et al., 2023). The HAI and HPI are evaluated

with respect to task difficulty and music sessions. In particular, we

perform the two-sided sign test to compare the 1-back task and 3-

back task data (i.e., 1-back vs. 3-back) during each music session

(N = 176); similarly, the two-sided sign test is executed to compare

the HAI and HPI associated with calming and exciting sessions

(calming vs. exciting) during each task difficulty level. We consider

0.01 as the significance level (99% confidence), and the p−values

are reported in Tables 1, 2.

3 Results

Given the HAI boxplots in Figure 5, a higher variation in the

arousal matrices with respect to the calming and exciting session

is noted, while such variation can not be observed with respect to

the task difficulty. The median values of HAI in 1-back and 3-back
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TABLE 1 The performed signrank test with respect to music sessions and n-back di�culty levels given the decoded high arousal index (HAI).

p-values

Groups Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

Calming session trials (1-back vs. 3-back) 0.0595 0.2582 1 0.3271 0.0129

Exciting session trials (1-back vs. 3-back) 0.821 0.0288 1.7349e-05 0.0012 0.5977

1-back trials (calming vs. exciting) 8.4957e-14 5.1376e-30 2.6388e-13 2.3808e-12 9.8706e-40

3-back trials (calming vs. exciting) 4.3804e-18 2.3884e-22 9.8706e-40 2.2015e-26 9.8706e-40

TABLE 2 The performed signrank test with respect to music sessions and n-back di�culty levels given the decoded high performance index (HPI).

p-values

Groups Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

Calming session trials (1-back vs. 3-back) 1.0693e-34 4.2545e-33 8.2346e-15 8.3044e-28 2.4552e-36

Exciting session trials (1-back vs. 3-back) 5.3702e-23 4.2647e-06 8.2346e-15 4.2545e-33 3.7427e-08

1-back trials (calming vs. exciting) 3.3866e-05 0.0033 4.4108e-07 3.9597e-04 0.8211

3-back trials (calming vs. exciting) 2.3808e-12 1.6276e-17 0.0053 2.1008e-16 1.1527e-18

(1-back vs. 3-back) tasks do not diverge considerably. However,

considering the music sessions (calming vs. exciting), the median

values associated with the calming sessions do not fall within the

range of exciting session boxes. According to the reported p-values

and boxplots (Table 1), there is no significant difference between

the HAI in calming session 1-back tasks and 3-back ones. In regards

to HAI associated with exciting sessions, participants 3 and 4 are

the only ones who depict a significant difference between the 1-

back task and 3-back task data (Table 1). Considering the HAI

with respect to the music, all the participants present significant

differences when shifting from a calming to an exciting session

(Table 1).

We evaluate the HPI in a similar manner, and as expected,

we find that the median of HPI within the 1-back task trials is

considerably higher than in 3-back task trials (Figure 6). Also, the

HPI median values among all the participants are higher within

the 3-back task trials during the exciting session compared to the

calming session (Figure 6). The reported p−values in Table 2 depict

the significant difference in HPI with respect to the task difficulty as

well as music session in most of the cases.

Figure 7 presents the epochs of HbO concentration and

performance across the task blocks for participant 2. As noted

earlier, 16 specific brain regions from the left and right sides of

the PFC and OC areas are considered. The correlation between the

HbO epochs and performance epochs with respect to the types of

the n-back task and the played music is illustrated. In particular,

Figure 7A displays the correlation in the 1-back task blocks within

the calming session; Figure 7B pays attention to the 3-back task

blocks within the calming session; Figure 7C addresses the 1-

back task blocks within the exciting session; Figure 7D considers

the 3-back task blocks within the exciting session. The Pearson

correlation coefficient (r) of performance and HbO concentration

for each studied brain region is reported in a box next to each

subplot. The highest HbO and performance positive correlation

for participant 2 corresponds to the RF1 region (right side of the

PFC) during the 3-back task blocks within the exciting session.

Similar demonstrations for the other participants can be found in

the Supplementary material. Also, the highest positive correlation

can be observed within the 3-back task blocks for all participants.

In particular, we can see that the highest correlation in participants

1–5 corresponds to LB1, RF1, LF4, LF3, and LF2, respectively. Four

out of five participants presented the highest performance-HbO

correlation with the acquired HbO signal from the left hemisphere.

A similar trend can be noted concerning the PFC areas.

In Figure 8, we present the mean energy (black) and mean

envelope (blue) of smoothed HbT signal collected from the PFC

channels (i.e., channels 23–44). The Figure 8A presents the results

within the calming session (green), and Figure 8B is related to the

exciting session (red). The 1-back task blocks are indicated with

lighter colors, while the 3-back ones are represented with more

intense background colors. Aside from participant 3, it can be seen

that the peak of the HbT energy is located within the exciting

session.

4 Discussion

We have performed a working memory experiment in the

presence of musical stimuli to collect multimodal physiological

signals along with brain hemodynamic response signals of

participants and evaluate the possibility of using music as an

intervention. Participants were asked to perform a working

memory task with different difficulty levels and music types

(i.e., calming and exciting). The difficulty levels were included

to ensure different cognitive loads during the experiment. We

have used fNIRS to record the brain hemodynamic response. By

incorporating multiple physiological signals in the experimental

data collection, we have derived a rich neuro-physiological

dataset that could offer a more comprehensive picture of the

body and brain’s reaction to music and cognitive load. In

this dataset, we have implemented the musical stimuli by

conducting the cognitive task in two sessions–one with calming
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FIGURE 5

Distribution of high arousal index (HAI) within trials with respect to task di�culties and music sessions. Each sub-plot shows the box plot of the

average HAI data within the trials with respect to 1-back task in the calming session (green box), 3-back task in the calming session (blue box),

1-back task in the exciting session (gray box), and 3-back task in the exciting session (red box).

music content and the other with exciting music content. The

presence of calming music was supposed to mimic the low

arousal condition, while the exciting one was simulating the high

arousal one. To incorporate the personalized version of CLBMI,

we have used personalized music selected by the participants

for calming and exciting music. While the applied music

intervention offers us a personalized closed-loop architecture, it can

induce the subject familiarity with the experiment environment.

One possible approach to preserve the person-specific nature

of the intervention and reduce the impact of the subject’s

familiarity is to employ newly generated music based on the

subject’s preference in future studies (Fekri Azgomi et al.,

2023).

In the presented research, we have collected data using both

research grade (e.g., Biopac) and wearable devices (e.g., Empatica

E4). While wearable devices can be implemented in everyday life

settings and they seem to be more aligned with the future closed-

loop architecture, the employed signal processing algorithms and

estimation framework are more compatible with the research

grade devices, and they outperform in the lab settings. Hence,
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FIGURE 6

Distribution of high performance index (HPI) within trials with respect to task di�culties and music sessions. Each sub-plot shows the box plot of the

HPI data within the trials with respect to 1-back task in the calming session (green box), 3-back task in the calming session (blue box), 1-back task in

the exciting session (gray box), and 3-back task in the exciting session (red box).

we perform our in-depth analysis based on the data collected

using research-grade devices. Although the presented framework

includes a multimodal measurement that can be used concurrently

for brain state estimation and classification, here, we analyze

the SC data, oxygenated hemoglobin, total hemoglobin, and

behavioral signals. However, we deliver complete dataset and

experimental settings to provide a framework for any researcher

who is interested in performing research in this paradigm.

Particularly, the collected data presents a unique opportunity

for future investigations, and it holds the potential to unlock

groundbreaking insights and guide future data collection in

this context.

Recording multimodal physiological signals within a cognitive

task can provide an opportunity to explore cutting-edge strategies

that may extend human cognitive capacities (Mangaroska et al.,

2021). However, multimodal physiological data collection comes

with certain challenges (Cukurova et al., 2020). Specifically, a

suboptimal sensor connection or the presence of motion artifact in

the modalities can lead to data corruption (Mangaroska et al., 2021;

Fekri Azgomi et al., 2023). Consequently, the participant removal

Frontiers inNeuroscience 10 frontiersin.org



Khazaei et al. 10.3389/fnins.2024.1406814

FIGURE 7

The correlation study for the epoch of HbO and performance state across the task blocks for one participant. The sub-ûgures present the epochs of

HbO and performance data recorded within: (A) the 1-back task blocks within the calming music. (B) the 3-back task blocks within the calming

music. (C) the 1-back task blocks within the exciting music. (D) the 3-back task blocks within the exciting music. The sub-plots in each sub-ûgure,

from top to bottom, represent: the HbO data collected from the left side of the PFC, right side of the PFC, left side of the OC area, and right side of

the OC area. The boxes on the right side of subplots present the Pearson correlation coe�cients (r) within the studied brain regions.
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FIGURE 8

The mean energy and mean envelope of smoothed HbT signal collected from PFC channels. The sub-ûgures present: (A) The mean energy (black)

and mean envelope (blue) of smoothed HbT signal collected from PFC channels within the calming music for participants 135. (B) The mean energy

(black) and mean envelope (blue) of smoothed HbT signal collected from PFC channels within the exciting music for participants 135. The

background colors in each sub-panel indicate: the 1-back task during the calming session (light green); the 3-back task during the calming session

(dark green); the 1-back task during the exciting session (light red); the 3-back task during the exciting session (dark red).

rate in this form of research, as observed in this experiment,

can be high. Given the fast-paced advances in biomedical sensor

development, one potential approach to address this concern is

to use a more advanced setup that employs a lower number

of sensors with a more robust connection to collect the signal

of interest. Employing the recently developed sensors may pave

the way for future data collection in a more practical and

efficient manner.

Based on our analysis on the SC signal, we can observe

that the HAI level varies significantly within the music sessions,

while the task-wise perspective does not reveal a significant

variation. One may interpret that the difference in the induced

cognitive load by 1-back and 3-back tasks is not significantly

high enough to be reflected in the HAI signal. Another

interpretation, though less probable, is that the impact of

cognitive load on the arousal level is not as much as the

effect of music type, and the cognitive load does not seem

to have a mediating effect on arousal. Determining a general

relationship that holds out of the scope of this dataset requires a

comprehensive causality analysis, which is not the main focus of

this study.

It should be noted that the HAI for participants 4 and 5

was reduced within the exciting session. This is the opposite of

what the exciting content of music is supposed to elicit. This

is a notable counterexample and demonstrates that the skin

conductance response does not agree with the emotional content

of music for participants 4 and 5. On the other hand, we can see

that the HbT energy signal reaches its peak within the exciting

session in both participant 4 and 5 cases. While the SC is a long-

standing index of arousal (Greco et al., 2016), we can observe that

decoding the arousal from a single SC measurement might lack the

robustness needed to explain the observed behavior. To address

this concern in future investigations and experiment designs, the

graphene e-tattoos (GET) sensors can be applied (Jang et al., 2022),

and the SC data can be collected and analyzed in a multichannel

manner (Alam et al., 2023).

According to the presented HPI, except for participant 2, we

can see that the performance indices are elevated within the second

session, in which the exciting music was presented. While one

may hypothesize that the improved performance is a result of

establishing the arousal within a moderate range using the exciting

music, other factors such as the learning impact and participant’s
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familiarity with the environment can be influential, and we should

avoid making any definite conclusion on the impact of music. Here,

findings may suggest the potential for integrating music into the

closed-loop system. Given the low sample size, the absence of any

mental state score, and the possible confounding factors, further

studies with a higher number of subjects, mental state annotation,

inclusion of a control group, and shuffled task difficulty as well as

music sessions are required for a decisive resolution.

In the context of BMI, users may experience various cognitive

loads and emotional states during the interaction with a technical

system (Herff et al., 2014). Both cognitive load and emotion status

can trigger a particular brain response followed by variation in the

cognitive performance (Fishburn et al., 2014; Bigliassi et al., 2015).

Hence, it is crucial to understand the relation between the brain

response under different cognitive loads and environmental stimuli

to potentially optimize performance. The performed experiment

provides an opportunity to study the hemodynamic response

within different cognitive loads and music sessions. The highest

HbO and performance positive correlation for participants 1–5 can

be seen during the 3-back task blocks (Supplementary material).

One may interpret that the HbO data has the potential to be

applied as an informative biomarker of performance within high

cognitive loads. Also, the observed high HbT energy over the PFC

within exciting sessions may be interpreted as participants’ higher

brain activities within the exciting session compared to the calming

session. This conforms with the findings in Zheng et al. (2020).

Perhaps the participants had to concentrate more within higher

arousal levels (Wickramasuriya et al., 2023). Overall, these findings

may be an indication of a new avenue for decoder design research,

leading to innovative fNIRS feature extraction to decode the hidden

arousal and performance states. It is important to highlight that

due to the small sample size, further studies with a higher number

of participants and more interventions as well as cognitive loads

would be beneficial in drawing a final conclusion.

It would be vital to note that the experiment serves as a

pilot study to investigate the viability of using music as the

brain state regulator. In general, our findings show variation

in collected signals as well as decoded brain states between

different music sessions. According to each person’s unique

physiology and the applied personalized intervention, we are

interested in having a personalized perspective rather than a

general view. Particularly, the brain structure of individuals and

the network-level interaction between cognitive brain states of

individuals can be studied independently regardless of the sample

size (Hurlburt et al., 2015). The preliminary findings show that

music may potentially have ramifications in the BMI system as

a form of background stimulation, while more in-depth research

is required to fully understand the role of music on arousal

and performance. Specifically, in the CLBMI realm, it is crucial

to have precise and robust measurements as well as feedback

mechanisms. The presented pilot study should be improved to

ensure the robustness of the CLBMI pathways. In the future,

magnetoencephalography (MEG) can be employed in parallel with

fNIRS technique to improve the spatial and temporal resolution

of the brain recordings and implement the neurofeedback in our

setup (Yucha and Montgomery, 2008). We intend this study to be

a stepping stone for formulating such studies and developing more

comprehensive experiments.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Institutional

Review Board at the University of Houston, TX, USA. The studies

were conducted in accordance with the local legislation and

institutional requirements. The participants provided their written

informed consent to participate in this study.

Author contributions

SK: Data curation, Investigation, Methodology, Software,

Visualization, Writing – original draft, Writing – review & editing,

Formal analysis, Validation. SP: Investigation, Methodology,

Visualization, Writing – original draft, Writing – review & editing.

SA: Data curation, Writing – original draft, Writing – review &

editing. MA: Data curation, Investigation, Methodology, Writing

– review & editing. RF: Conceptualization, Funding acquisition,

Investigation, Methodology, Resources, Supervision, Writing –

review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported in part by the U.S. National Science Foundation

under grants 1942585/2226123 - CAREER: MINDWATCH:

Multimodal Intelligent Noninvasive brain state Decoder for

Wearable AdapTive Closed- loop arcHitectures, 1755780 - CRII:

CPS: Wearable-Machine Interface Architecture, and in part by the

New York University (NYU) start-up funds to RF.

Acknowledgments

We would like to extend our gratitude to Dilranjan S.

Wickramasuriya for his valuable contribution to data collection.

Conüict of interest

RF and MA are co-inventors of a patent application filed by the

University of Houston based on this research.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher9s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

Frontiers inNeuroscience 13 frontiersin.org



Khazaei et al. 10.3389/fnins.2024.1406814

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnins.2024.

1406814/full#supplementary-material

References

Alam, S., Amin,M. R., and Faghih, R. T. (2023). Sparsemultichannel decomposition
of electrodermal activity with physiological priors. IEEE Open J. Eng. Med. Biol. 4,
234–250. doi: 10.1109/OJEMB.2023.3332839

Amin, M. R., Tahir, M., and Faghih, R. T. (2021). “A state-space investigation of
impact of music on cognitive performance during a working memory experiment,” in
2021 43rd Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC) (Mexico: IEEE), 757–762.

Amin, R., and Faghih, R. T. (2022). Physiological characterization of electrodermal
activity enables scalable near real-time autonomic nervous system activation inference.
PLoS Comput. Biol. 18:e1010275. doi: 10.1371/journal.pcbi.1010275

Ayaz, H., Izzetoglu, M., Bunce, S., Heiman-Patterson, T., and Onaral, B. (2007).
“Detecting cognitive activity related hemodynamic signal for brain computer interface
using functional near infrared spectroscopy,” in 2007 3rd International IEEE/EMBS
Conference on Neural Engineering (Kohala Coast, HI: IEEE), 342–345.

Baddeley, A. (1992). Working memory. Science 255, 556–559.

Baldwin, C. L., and Penaranda, B. (2012). Adaptive training using an artificial
neural network and EEG metrics for within- and cross-task workload classification.
NeuroImage 59, 48–56. doi: 10.1016/j.neuroimage.2011.07.047

Basu, I., Yousefi, A., Crocker, B., Zelmann, R., Paulk, A. C., Peled, N., et al. (2023).
Closed-loop enhancement and neural decoding of cognitive control in humans. Nat.
Biomed. Eng. 7, 576–588. doi: 10.1038/s41551-021-00804-y

Berka, C., Levendowski, D. J., Lumicao, M. N., Yau, A., Davis, G., Zivkovic,
V. T., et al. (2007). EEG correlates of task engagement and mental workload
in vigilance, learning, and memory tasks. Aviat. Space Environ. Med. 78(5Suppl.),
231–244. Available online at: https://www.ingentaconnect.com/content/asma/asem/
2007/00000078/a00105s1/art00032

Bigliassi, M., Barreto-Silva, V., Altimari, L. R., Vandoni, M., Codrons, E.,
and Buzzachera, C. F. (2015). How motivational and calm music may affect
the prefrontal cortex area and emotional responses: a functional near-infrared
spectroscopy (fnirs) study. Percept. Mot. Skil. 120, 202–218. doi: 10.2466/27.24.PMS.
120v12x5

Cain, B. (2007). A Review of the Mental Workload Literature. Technical Report.
Toronto, ON: Defence Research and Development.

Cudo, A., Francuz, P., Augustynowicz, P., and Stróżak, P. (2018). The effects of
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