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Introduction: Decoding an individual's hidden brain states in responses to
musical stimuli under various cognitive loads can unleash the potential of
developing a non-invasive closed-loop brain-machine interface (CLBMI). To
perform a pilot study and investigate the brain response in the context of
CLBMI, we collect multimodal physiological signals and behavioral data within
the working memory experiment in the presence of personalized musical stimuli.

Methods: Participants perform a working memory experiment called the n-
back task in the presence of calming music and exciting music. Utilizing the
skin conductance signal and behavioral data, we decode the brain’'s cognitive
arousal and performance states, respectively. We determine the association of
oxygenated hemoglobin (HbO) data with performance state. Furthermore, we
evaluate the total hemoglobin (HbT) signal energy over each music session.

Results: A relatively low arousal variation was observed with respect to task
difficulty, while the arousal baseline changes considerably with respect to the
type of music. Overall, the performance index is enhanced within the exciting
session. The highest positive correlation between the HbO concentration and
performance was observed within the higher cognitive loads (3-back task) for all
of the participants. Also, the HbT signal energy peak occurs within the exciting
session.

Discussion: Findings may underline the potential of using music as an
intervention to regulate the brain cognitive states. Additionally, the experiment
provides a diverse array of data encompassing multiple physiological signals that
can be used in the brain state decoder paradigm to shed light on the human-
in-the-loop experiments and understand the network-level mechanisms of
auditory stimulation.

KEYWORDS

multimodal dataset, brain-machine interface (BMI), music, closed-loop systems,
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1 Introduction

Recent advances in physiological signal measurement techniques enlighten the non-
invasive closed-loop brain-machine interface (BMI) design. Such signals can be used to
infer individuals’ underlying cognitive brain states and regulate them via non-invasive
interventions such as music (Fekri Azgomi et al., 2023). The human brain state regulation
via musical stimuli would have profound applications in closed-loop BMI (CLBMI)
(Ehrlich et al., 2019), neural rehabilitation (Ottonello et al., 2019; Salas et al., 2019),
and cognitive impairment treatments (Ray and Mittelman, 2017). As an instance of
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such applications, the well-known Yerkes-Dodson law, ak.a.
the inverted-U law, explains that optimal cognitive performance
can be achieved by setting the cognitive arousal within a
moderate level (Yerkes, 1907; Yerkes and Dodson, 1908). This
inspires us to design a pilot study involving a human-subject
working memory experiment in the presence of arousing music
stimuli. We record the multimodal physiological and behavioral
signals to investigate the feasibility of regulating one’s cognitive
arousal and performance via background music with calming and
exciting contents.

Several studies have explored how the introduction of music
can impact cognitive functioning (Parshi et al., 2019; Khazaei
et al., 2021). Multiple studies have used music to influence
driving performance (Unal et al.,, 2012, 2013). In Huang and
Shih (2011) and Kuschpel et al. (2015), the positive effect of
music on concentration and the effectiveness of using music to
reduce cognitive stress in closed-loop systems have been shown.
In our designed working memory experiment, two types of music
are employed, namely, calming and exciting music. Notably, the
calming and exciting music selected by participants such that the
calming and exciting components are supposed to replicate the low
and high arousing conditions, respectively. Here, we mainly focus
on cognitive performance and arousal in the presence of calming
and exciting music.

a hidden brain state that
demonstrates the general performance of one’s cognitive functions

Cognitive performance is
(Khazaei et al., 2024). The cognitive functions of humans can be
divided into two groups, namely, basic cognitive functions and
higher-level cognitive functions. Working memory is one of the
basic cognitive functions that provides temporary storage and
allows the manipulation of information (Baddeley, 1992). Here, the
n-back task serves as a cognitive task of interest, which encourages
working memory usage by inducing different cognitive loads (von
Janczewski et al., 2021; Fekri Azgomi et al., 2023). Decoding the
underlying cognitive performance in a continuous manner is one
of the challenges in this paradigm, which can be addressed by
employing informative data and applying decoding approaches.
One of the most accessible and informative data in this context
would be the behavioral data recorded during the cognitive task
of interest. We consider the sequence of responses as well as the
reaction time of participants as the available behavioral observation
and quantify the cognitive performance using Bayesian filters
within an expectation-maximization (EM) framework (Amin et al.,
2021; Khazaei et al., 2021).

Another hidden brain state that may have impact on cognitive
performance is the underlying arousal state. In particular, the
amygdala plays a crucial role in connecting arousal to memory
formation (McGaugh, 2004). Typically, the arousal state is linked
to the degree of physiological alertness (Cudo et al., 2018), and
variation in arousal is mainly due to the exogenous and endogenous
stimulation, which can be accompanied by neural, hormonal,
and other biochemical changes (Hobson and Lindsley, 1988).
Specifically, previous research on the autonomic nervous system
(ANS) inference presents the electrodermal activity (EDA) as an
informative measurement of cognitive arousal (Wickramasuriya
et al., 2018; Wickramasuriya and Faghih, 2020a). In particular,
the skin conductance (SC) signal (a measure of EDA) reflects
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the sweat secretions process, which is firmly linked to the
underlying ANS activity inside the brain (Amin and Faghih,
2022). The variation in skin conductivity can be used as a
quantitative index of arousal during a cognitive task (Khazaei et al.,
2021).

When it comes to designing a CLBMI architecture for
human cognitive functions, it would be crucial to investigate
how the environment and interactions affect the cognitive
capacity of the human operator (Cain, 2007). To gain a better
insight into BMI design procedures and analyze how different
regions of the brain react to the stimuli, neuroimaging methods
with relatively high spatial resolution can play a crucial role.
These neuroimaging methods include but are not limited to
magnetoencephalography (MEG), electroencephalography (EEG),
functional magnetic resonance imaging (fMRI), and functional
near-infrared spectroscopy (fNIRS) (Berka et al., 2007; Wendel
et al., 2009; Baldwin and Penaranda, 2012; Fyshe et al., 2012).
The fNIRS is a relatively new neuroimaging technique that can
show significant spatiotemporal changes for memory tasks in the
prefrontal cortex (PFC) (Hoshi et al,, 2003). Also, the fNIRS
has a higher spatial resolution than EEG, and it is practical for
unobtrusive applications. In the designed experiment, we use the
fNIRS and collect data from the prefrontal cortex (PFC) and
occipital (OC) areas of the participant.

Multiple studies investigate the brain neural activity in the
course of n-back tasks via fNIRS (Ayaz et al, 2007; Roy et al,
2013; Fishburn et al., 2014; Herff et al., 2014). In Ayaz et al. (2007)
and Herff et al. (2014), the cognitive loads and hemodynamic
responses association is considered, and the hemodynamic
responses are classified accordingly. Another study considers the
n-back tasks and presents the fNIRS sensitivity to cognitive load
and transitioning from a resting state to a task (Fishburn et al,
2014). While the link between the cognitive load of n-back task and
corresponding hemodynamic responses is studied vastly, the study
of association between the continuous cognitive performance signal
and fNIRS data in the presence of music is investigated relatively
sparsely. Previous studies such as Meidenbauer et al. (2021) and
Struckmann et al. (2021) have considered the distinctive measures
of cognitive performance, like the number of correct/incorrect
responses and reaction time, and investigated the hemodynamic
response data association. While this set of measurements can
be an informative index of performance, it merely presents a
distinct measure of performance, and might not fully capture the
underlying dynamic of the brain’s cognitive state (Basu et al,
2023). In this research, we study the association between the
oxygenated hemoglobin (HbO) concentration and the continuous
performance state decoded from behavioral data. In particular,
we employ a Bayesian-based performance decoder that accounts
for the underlying dynamic of this brain state, and tracks its
continuous trajectory using behavioral data. Also, we evaluate
the energy of total hemoglobin (HbT) signal within each music
session.

To summarize, the primary purpose of this pilot study is
to provide a multimodal database and examine the viability
of using music as an intervention. The database includes a
diverse array of data encompassing multiple physiological
measurements to shed light on the human-subject experiments
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using music intervention. The available signals include SC data,
electrocardiogram (ECG), skin surface temperature, respiration,
(PPG),
spectroscopy (fNIRS), electromyogram (EMG), de-identified

photoplethysmography functional  near-infrared
facial expression scores, sequence of correct/incorrect responses,
and reaction time recorded during the n-back task. In this
research, we focus on cognitive performance and arousal, and we
present how the HbO concentration is correlated with cognitive
performance. Also, the energy of the HbT signal is evaluated
with respect to each music. We represent how the arousal and
performance indices vary with respect to task difficulty and music
type. Then, we discuss our findings and provide a summary of our
approach, followed by future directions of this research.

2 Materials and methods

2.1 Cognitive task overview

We designed the experiment centered on the working memory
task called the n-back task (Herff et al., 2014; Shin et al., 2018).
Here, the participant was shown a series of alphabets as stimuli,
and the participant had to identify if the most recently displayed
alphabet was the same as the alphabet displayed at the # previous
iteration (Herff et al., 2014; Shin et al., 2018; Khazaei et al., 2021).
In this type of experiment, the cognitive workload increases with
n, and the participant has to recall more of the stimuli with
higher values of n. Here, the experiment was conducted within
two sessions; session one was accompanied by calming background
music, and session two was accompanied by exciting background
music. The participants were requested to share their own music
with “calming” and “exciting” content to be played during the
experiment. We employ this strategy first to enhance the ecological
validity, as people often listen to their own music (Unal etal., 2012);
secondly, this strategy aims to ensure that any behavior observed
in brain activity is not attributable to disliking the music (Unal
et al., 2012). Finally, this strategy enables us to incorporate the
person-specific closed-loop system with personalized intervention.
We delivered the background music via an external speaker. The
music stimulation started at the beginning of each session, and
it continuously played until the end of the session (i.e., 964 s).
We performed the experiment in a closed experiment room to
minimize the impact of external variables. Each session in the
experiment included 8 blocks for each type of n-back task (2
types of n-back task x 8 = 16 blocks within one session). Hence,
we have 16 blocks at each session and 32 blocks during the
whole experiment. We decided to keep the experimental duration
time for a bit longer than half an hour. This ensures that the
collected SC signals do not show a lot of relative drift over
time due to the accumulation of sweat or shift in the position
of electrodes.

Each block includes 5 s instruction followed by 22 trial windows
in which a letter stimulus was displayed for 0.5 s and a cross was
presented for 1.5 s, which resulted in a total 2 s trial window that
participant could deliver the response via Chronos Keypad. Thus,
the total duration of each task block was 49 s (5 + 22 x 2 = 49).
In each task block, 30% of the stimuli were a target. The task
block of each n-back task was randomized. At the end of each
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block, a 10 s “RELAX” segment was presented where a resting
cross was displayed on the screen. After 8 task blocks (the halfway
mark for each session), a 20 s “RELAX” section was presented
where a resting cross is displayed on a smart 65 inch TV screen
connected via HDMI to a laptop. The duration of each session was
964 s, which is ~16 min. After each session, there was a 2 min
relaxation break in which the participant was allowed to relax. A
resting cross was displayed on the screen during this time. Figure 1
describes the timing of one session with randomized trials. The
experiment took a total of 2, 168 s (calming session duration 964+
intersession break 120+ exciting session duration 964+ after the
session rest period 120 = 2,168 s), i.e., approximately half an
hour. Participants were comfortably seated with the attached non-
invasive sensors, and a display screen was placed ~1-2 m in front
of them. The only required movement was pressing one of two
buttons on a Chronos Keypad: the target and non-target buttons.
Participants were required to press one of the buttons for each
stimulus displayed.

2.2 Experimental procedures

The experimental procedures in this study were approved by
the institutional review board at the University of Houston, TX,
USA (STUDY00002013). Only participants who were 18 years
or older and were able to provide consent were permitted to
participate in this experiment. Anyone suffering from known
cardiac ailments or psychological disorders was excluded. Adults
unable to consent, anyone below age 18, pregnant women,
prisoners, students whose grades may be influenced and,
economically and/or educationally disadvantaged persons were
excluded from the study. A total number of 11 healthy
participants (five male and six female) between the ages of 22—
25 participated in this study. Six participants with measurement
error, data corruption, and small modalities were removed.
Hence, the studied sample size here is five (two male and
three female) while the de-identified facial expression scores
for four participants are included in the main database. All
identifiable aspects of the data were removed to ensure privacy.
This includes any data that may be used to identify the
original participants. The experiment focused on collecting
multimodal data to investigate the feasibility of using music
as an intervention. The experiment was conducted with a
multitude of sensors. We describe the sensors applied in the
following subsections.

2.2.1 Functional near infrared spectroscopy
(620-1,000 nm) of the
electromagnetic spectrum is scattered by biological tissue but

The near-infrared region
absorbed by hemoglobin (Villringer et al., 1993); by measuring the
amount of absorbed near-infrared light and using the modified
Beer-Lambert law (Sassaroli and Fantini, 2004), fNIRS measures
changes in oxygenated hemoglobin (HbO), deoxygenated
hemoglobin (HbR), and total hemoglobin (HbT). The {NIRS
demonstrates excellent spatial resolution but relatively poor
temporal resolution (Fazli et al., 2012). The spatial resolution
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FIGURE 1

The experimental setup for multimodal physiological data collection from a female participant during the n-back task. An overview of the

physiological sensors’ placement during the n-back task session

n-back task session

=)

Calming/exciting music

-
Biopac
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Torso
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Respiration
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FIGURE 2

The electrocardiogram (ECG) and respiration sensors configuration. Electrode placements of Electrocardiogram sensors (indicated by blue lines) and

respiration belt on the front torso (shown with black lined indicators).

of fNIRS can be used to obtain the functional connectivity map
of the brain (Santosa et al., 2018). The fNIRS optodes can be
placed according to the international 10 — 5 system (Oostenveld
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and Praamstra, 2001), and readings can be taken from the whole
scalp. The fNIRS channels placed during this experiment collected
hemodynamic data from the PFC and the OC areas of the
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movements.

Skin Temperature

EMG
Sensors,

Vin+ / \Vin.

The electrodermal activity (EDA), photoplethysmography (PPG), and electromyogram (EMG) sensors configuration. (A) Sensor placements on the
hand for PPG, EDA, and Skin Temperature. (B) EMG sensors were placed on the participant’s trapezius muscles to detect stress states from muscle

LPA

FIGURE 4

LB4, and RB1 to RB4.

The Functional Near Infrared Spectroscopy (fNIRS) sensor configuration. (A) Optode layout of the fNIRS sources (red), detectors (blue), and channels
(green) used during the experiment. The Nasion (Nz, the intersection point of the frontal and nasal bones), Inion (Iz, the occipital protuberance

behind the scalp), and Left and Right Pre-auricular points (LPA, RPA, the points anterior to the ears in front of the upper end of the tragus) are labeled
accordingly. (B) The channel numbers and studied regions of PFC and OC areas located on right and left hemisphere: LF1- to LF4, RF1 to RF4, LB1 to

B

pre-frontal cortex

brain. In particular, the employed fNIRS sensor is NIRSport 2,
configured as shown in Figure 4. The sources (S) and detectors
(D) were placed according to the positions depicted in the
figure (on a head cap worn by the participants). There were 16
sources and 14 detectors located on PFC and OC areas, and
signals were recorded from 44 channels. The sampling frequency
is 7.81 Hz.

Frontiersin Neuroscience

2.2.2 Electrocardiogram

ECG is the electrogram of the heart. Specifically, it is
the electrical signal that correlates with the expansion and
contraction of the heart muscle, and it is used to detect
arrhythmia.
ECG sensors were placed on the torso of the participants,
as shown in Figure 2. We collected the ECG data with the

heart problems such as In our experiment,
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MP160 BioPac system and the BioNomadix wireless devices.
The EL503 BioPac
were used on the torso region. The sampling frequency
is 2,000 Hz.

general-purpose  disposable electrodes

2.2.3 Respiration

The respiration belt sensor of the MPI60 BioPac system
was placed on the abdomen of the participant in contact
with the torso as described in the BioPac manual and
depicted in Figure 2. The contraction and expansion of
the lungs are captured by the belt. The sampling frequency

is 2,000 Hz.

2.2.4 Skin surface temperature

As portrayed in Figure 3, the skin surface temperature data
is collected from the minimus digitus (little finger) of the
non-dominant hand using the MP160 BioPac system with the
BioNomadix wearable device coupled with the BN-TEMP-A-
XDCR BioPac sensor. Also, the Empatica E4 wearable wristband
worn by the participant collected skin temperature data. The
sampling frequency for BioPac is 2,000 Hz, and for Empatica E4
is 4 Hz.

2.2.5 Electrodermal activity

Sensors from both the MP160 BioPac system and Empatica
E4 wearable wristband were used to record EDA. The Empatica
E4 wearable wristband was worn on the wrist by the participant.
The M160 BioPac system sensors were placed over the digitus
quartus manus (ring finger) and digitus medius manus (middle
finger) of the participant, as shown in Figure 3. The BioPac
EL507 disposable electrodes are used as the leads for EDA. The
sampling frequency for BioPac is 2,000 Hz, and for Empatica E4
is 4 Hz.

2.2.6 Photoplethysmography

Wearable physiological sensor BN-PULSE-XDCR coupled with
BioNomadix unit is placed on the digitus secundus manus (index
finger) of the non-dominant hand (Figure 3) to obtain PPG data
with the M160 BioPac system. Also, the Empatica E4 wearable
wristband (worn on the wrist) collected PPG data. PPG is an
optical means to detect changes in blood volume in a tissue.
PPG is generally used to monitor cardiac health and heart
rate. The sampling frequency for the BioPac system is 2,000
Hz. The sampling frequency for the Empatica E4 wristband
is 4 Hz.

2.2.7 Electromyogram

As depicted in Figure 3, sensors from the MPI160 BioPac
system are placed on the participant’s trapezius muscle for EMG
recordings. The EL503 general-purpose electrodes are used in
this case. EMG is used to detect the health of muscles and the
nerves that control them. In this experiment, the placement of

Frontiersin Neuroscience

10.3389/fnins.2024.1406814

EMG electrodes provides data about the tensing of a participant’s
shoulders and back while performing a cognitive stress task. The
sampling frequency is 2,000 Hz.

2.2.8 Facereader

Facial expression data were recorded via a dedicated
camera. Then, the facial expression scores were obtained
using Face Reader software. De-identified facial expression
scores for four participants are included in the multimodal
dataset.

2.2.9 Synchronization and behavioral data
recording

The experimental design, timing, and triggers for different
equipment have been executed using the Chronos input
device and E-Prime software. The Chronos and E-Prime offer
a script-free way to synchronize data with task events. The
participant’s behavioral signals, including the number of
correct and incorrect responses along with reaction times,

were collected.

2.3 Data analysis methods

To decode the cognitive state of interest, we employ the
Bayesian filtering approach within the expectation-maximization
framework. We utilize the SC signal collected via MP160 BioPac
system to decode a cognitive arousal state. This is done by
considering the arousal events occurrences and their amplitudes
as the available observation (Wickramasuriya et al.,, 2018, 2019,
2022; Wickramasuriya and Faghih, 2019a,b, 2020a,b). Also, to
quantify the hidden performance state, we use the sequence
of correct and incorrect responses and the reaction time as
binary and continuous observations, respectively (Prerau et al,
2009).

2.3.1 Arousal state estimation
The arousal state (x;) can be modeled as a random walk process
(Wickramasuriya and Faghih, 2020a):

Xj = Xj—1 + €j, (1)

where ¢ ~ N(0,02) is the process noise and j stands for
the time index. Following the marked point process filtering
approach (Wickramasuriya and Faghih, 2020a), we consider
Bernoulli distribution for neural impulse occurrence (arousal
events) n; with probability mass function a;lj 1 - aj)l_”i such that
P(i’l]' = 1) = a]‘.

We can relate x; to a; by applying a sigmoid transform (Young
etal, 2004). Thus,

1

T Trew @

4
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a0
1—ap )°

where B is a constant that can be derived from g ~ log

and ay is the average probability of observing an impulse during the
experiment. As described in Wickramasuriya and Faghih (2020a),
the continuous-valued amplitude 7; of each neural impulse can be
represented as

1= Yo+ V1% + 3)

where v; ~ N(0, crvz) presents the sensor noise, yp and y;
are the unknown model parameters in arousal state model in
Equations (1)-(4), to be determined. Consequently, the joint
density function for the observed neural impulse is

1— aj if nj =0

p(nj Nrjlx) = ZGimronx? NG
aj——¢ 207 ifnj =1

The unknown parameters 4 = {03, yo,yl,avz}, and hidden

arousal state x; can be decoded at the same time using an
expectation-maximization (EM) framework (Wickramasuriya and
Faghih, 2020a). A description of the applied arousal state decoder
is available in the Supplementary material.

2.3.2 Performance state estimation
Inspired by the proposed state-space model in Prerau et al.
(2009), we model the cognitive performance state as

Zk = Zp—1 + Wk (5)

where zj is the performance state, wy ~ N(0, af,) stands for the
process noise and k is the trial number during the experiment.

Similar to Prerau et al. (2009), we can form the observation
model by specifying one binary observation (correct/incorrect
response at k™ trial) and one continuous observation (reaction
time of the corresponding response). The Bernoulli probability
model is assumed for the binary responses with the probability
mass function of p;(n"(l — pr)' =™ Applying sigmoid transform we
express the py in terms of z such that

1
T lteG@rme

Pk (6)

1—po
where py is the average probability of having a correct response.

The constant term p can be derived from p =~ 10g< ! )

The reaction time f; can be related to the performance state as

I =logty = oo + o121 + 6> (7)

where we consider the log of reaction time at each trial (i) to follow
the linear model with the Gaussian noise term 8, ~ N(0, 0‘52); the
vector of unknown model parameters in performance state model
in Equations (5)-(7), 6p = {02, g, 1,07} and the performance
state zj can be decoded using the EM approach (Prerau et al., 2009;
Khazaei et al., 2021). A description of the applied performance state
decoder is available in the Supplementary material.
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2.3.3 fNIRS processing

Similar to Yaghmour et al. (2021) and Parshi et al. (2019),
we preprocess the collected hemodynamic data using the Nirslab
software (Xu et al,, 2014). The preprocessing steps include bandpass
filtering and converting the light intensity data to HbO, HbR, and
HbT concentrations (Yaghmour et al., 2021).

We first analyze the HbO data. To study the PFC and OC areas,
the combinations of HbO channels are considered such that we
cover 16 different brain regions. These brain regions are distributed
within the right and left sides of the PFC and OC areas (Donadel
et al., 2021). As depicted in Figure 4B, each of the studied areas is
surrounded by four channels, and the average HbO concentration
can be derived accordingly. We evaluate the epoch of HbO signal
over 22 trials (within each task block) of the n-back task with
respect to the task difficulty (e.g., 1-back) and music session. The
epoch of a signal can be defined as a signal segment within a specific
time window. Such evaluation is inspired by the event-related
potential (ERP) study, which analyzes a brainwave in response to
the stimuli (Luck, 2014). Here, we consider the signal segment over
22 trials (~44 s), and we perform a similar ERP-like study to derive
an epoch of performance state with respect to the type of task
(i.e., task difficulty) and music session. Then, we find the Pearson
correlation coefficient between the epoch of HbO and continuous
performance.

Additionally, inspired by the study in Wickramasuriya et al.
(2023), we investigate HbT signal energy with respect to the
presented music types. Particularly, we consider the collected signal
from the PFC channels (i.e., channels 23-44) and smooth the signal
using a 10 s sample-by-sample running average filter.

2.3.4 Statistical analysis

The differences in human brain structure can lead to variation
in behaviors, cognitive abilities, and mental and physical health
(Gu and Kanai, 2014). To have a general and person-specific index
of cognitive states with respect to an individual’s baseline, we
formulate the metrics called high arousal index (HAI) and high
performance index (HPI) (Wickramasuriya and Faghih, 2020a).
These arousal and performance indices can be calculated from
prob(state; > threshold) where the threshold has been set to the
median of the state values. Here, we decode the hidden arousal
and performance state merely based on the SC and behavioral
data (Fekri Azgomi et al., 2023). The HAI and HPI are evaluated
with respect to task difficulty and music sessions. In particular, we
perform the two-sided sign test to compare the 1-back task and 3-
back task data (i.e., 1-back vs. 3-back) during each music session
(N = 176); similarly, the two-sided sign test is executed to compare
the HAI and HPI associated with calming and exciting sessions
(calming vs. exciting) during each task difficulty level. We consider
0.01 as the significance level (99% confidence), and the p—values
are reported in Tables 1, 2.

3 Results

Given the HAI boxplots in Figure 5, a higher variation in the
arousal matrices with respect to the calming and exciting session
is noted, while such variation can not be observed with respect to
the task difficulty. The median values of HAI in 1-back and 3-back
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TABLE 1 The performed signrank test with respect to music sessions and n-back difficulty levels given the decoded high arousal index (HAI).

p-values

Groups Participant 1 Participant 2 Participant 3 Participant 4 Participant 5
Calming session trials (1-back vs. 3-back) 0.0595 0.2582 1 0.3271 0.0129
Exciting session trials (1-back vs. 3-back) 0.821 0.0288 1.7349¢-05 0.0012 0.5977
1-back trials (calming vs. exciting) 8.4957e-14 5.1376e-30 2.6388e-13 2.3808e-12 9.8706e-40
3-back trials (calming vs. exciting) 4.3804e-18 2.3884e-22 9.8706e-40 2.2015e-26 9.8706e-40

TABLE 2 The performed signrank test with respect to music sessions and n-back difficulty levels given the decoded high performance index (HPI).

p-values

Participant 1

Participant 2

Participant 3

Participant 4

Participant 5

Calming session trials (1-back vs. 3-back) 1.0693e-34 4.2545e-33 8.2346e-15 8.3044e-28 2.4552e-36
Exciting session trials (1-back vs. 3-back) 5.3702e-23 4.2647¢-06 8.2346e-15 4.2545e-33 3.7427e-08
1-back trials (calming vs. exciting) 3.3866e-05 0.0033 4.4108¢-07 3.9597e-04 0.8211

3-back trials (calming vs. exciting) 2.3808e-12 1.6276e-17 0.0053 2.1008e-16 1.1527e-18

(1-back vs. 3-back) tasks do not diverge considerably. However,
considering the music sessions (calming vs. exciting), the median
values associated with the calming sessions do not fall within the
range of exciting session boxes. According to the reported p-values
and boxplots (Table 1), there is no significant difference between
the HAI in calming session 1-back tasks and 3-back ones. In regards
to HAI associated with exciting sessions, participants 3 and 4 are
the only ones who depict a significant difference between the 1-
back task and 3-back task data (Table 1). Considering the HAI
with respect to the music, all the participants present significant
differences when shifting from a calming to an exciting session
(Table 1).

We evaluate the HPI in a similar manner, and as expected,
we find that the median of HPI within the 1-back task trials is
considerably higher than in 3-back task trials (Figure 6). Also, the
HPI median values among all the participants are higher within
the 3-back task trials during the exciting session compared to the
calming session (Figure 6). The reported p—values in Table 2 depict
the significant difference in HPI with respect to the task difficulty as
well as music session in most of the cases.

Figure 7 presents the epochs of HbO concentration and
performance across the task blocks for participant 2. As noted
earlier, 16 specific brain regions from the left and right sides of
the PFC and OC areas are considered. The correlation between the
HbO epochs and performance epochs with respect to the types of
the n-back task and the played music is illustrated. In particular,
Figure 7A displays the correlation in the 1-back task blocks within
the calming session; Figure 7B pays attention to the 3-back task
blocks within the calming session; Figure 7C addresses the 1-
back task blocks within the exciting session; Figure 7D considers
the 3-back task blocks within the exciting session. The Pearson
correlation coefficient (r) of performance and HbO concentration
for each studied brain region is reported in a box next to each
subplot. The highest HbO and performance positive correlation
for participant 2 corresponds to the RF1 region (right side of the
PFC) during the 3-back task blocks within the exciting session.
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Similar demonstrations for the other participants can be found in
the Supplementary material. Also, the highest positive correlation
can be observed within the 3-back task blocks for all participants.
In particular, we can see that the highest correlation in participants
1-5 corresponds to LB1, RF1, LF4, LF3, and LF2, respectively. Four
out of five participants presented the highest performance-HbO
correlation with the acquired HbO signal from the left hemisphere.
A similar trend can be noted concerning the PFC areas.

In Figure 8, we present the mean energy (black) and mean
envelope (blue) of smoothed HbT signal collected from the PFC
channels (i.e., channels 23-44). The Figure 8A presents the results
within the calming session (green), and Figure 8B is related to the
exciting session (red). The 1-back task blocks are indicated with
lighter colors, while the 3-back ones are represented with more
intense background colors. Aside from participant 3, it can be seen
that the peak of the HbT energy is located within the exciting
session.

4 Discussion

We have performed a working memory experiment in the
presence of musical stimuli to collect multimodal physiological
signals along with brain hemodynamic response signals of
participants and evaluate the possibility of using music as an
intervention. Participants were asked to perform a working
memory task with different difficulty levels and music types
(i.e., calming and exciting). The difficulty levels were included
to ensure different cognitive loads during the experiment. We
have used fNIRS to record the brain hemodynamic response. By
incorporating multiple physiological signals in the experimental
data collection, we have derived a rich neuro-physiological
dataset that could offer a more comprehensive picture of the
body and brain’s reaction to music and cognitive load. In
this dataset, we have implemented the musical stimuli by
conducting the cognitive task in two sessions-one with calming
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FIGURE 5
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1-back task in the exciting session (gray box), and 3-back task in the exciting session (red box).

music content and the other with exciting music content. The
presence of calming music was supposed to mimic the low
arousal condition, while the exciting one was simulating the high
arousal one. To incorporate the personalized version of CLBMI,
we have used personalized music selected by the participants
for calming and exciting music. While the applied music
intervention offers us a personalized closed-loop architecture, it can
induce the subject familiarity with the experiment environment.
One possible approach to preserve the person-specific nature
of the intervention and reduce the impact of the subjects
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familiarity is to employ newly generated music based on the
subject’s preference in future studies (Fekri Azgomi et al,
2023).

In the presented research, we have collected data using both
research grade (e.g., Biopac) and wearable devices (e.g., Empatica
E4). While wearable devices can be implemented in everyday life
settings and they seem to be more aligned with the future closed-
loop architecture, the employed signal processing algorithms and
estimation framework are more compatible with the research
grade devices, and they outperform in the lab settings. Hence,
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FIGURE 6

Distribution of high performance index (HPI) within trials with respect to task difficulties and music sessions. Each sub-plot shows the box plot of the
HPI data within the trials with respect to 1-back task in the calming session (green box), 3-back task in the calming session (blue box), 1-back task in
the exciting session (gray box), and 3-back task in the exciting session (red box).

we perform our in-depth analysis based on the data collected
using research-grade devices. Although the presented framework
includes a multimodal measurement that can be used concurrently
for brain state estimation and classification, here, we analyze
the SC data, oxygenated hemoglobin, total hemoglobin, and
behavioral signals. However, we deliver complete dataset and
experimental settings to provide a framework for any researcher
who is interested in performing research in this paradigm.
Particularly, the collected data presents a unique opportunity
for future investigations, and it holds the potential to unlock
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groundbreaking insights and guide future data collection in
this context.

Recording multimodal physiological signals within a cognitive
task can provide an opportunity to explore cutting-edge strategies
that may extend human cognitive capacities (Mangaroska et al.,
2021). However, multimodal physiological data collection comes
with certain challenges (Cukurova et al., 2020). Specifically, a
suboptimal sensor connection or the presence of motion artifact in
the modalities can lead to data corruption (Mangaroska et al., 2021;
Fekri Azgomi et al., 2023). Consequently, the participant removal
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rate in this form of research, as observed in this experiment,
can be high. Given the fast-paced advances in biomedical sensor
development, one potential approach to address this concern is
to use a more advanced setup that employs a lower number
of sensors with a more robust connection to collect the signal
of interest. Employing the recently developed sensors may pave
the way for future data collection in a more practical and
efficient manner.

Based on our analysis on the SC signal, we can observe
that the HAI level varies significantly within the music sessions,
while the task-wise perspective does not reveal a significant
variation. One may interpret that the difference in the induced
cognitive load by 1-back and 3-back tasks is not significantly
high enough to be reflected in the HAI signal. Another
interpretation, though less probable, is that the impact of
cognitive load on the arousal level is not as much as the
effect of music type, and the cognitive load does not seem
to have a mediating effect on arousal. Determining a general
relationship that holds out of the scope of this dataset requires a
comprehensive causality analysis, which is not the main focus of
this study.
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It should be noted that the HAI for participants 4 and 5
was reduced within the exciting session. This is the opposite of
what the exciting content of music is supposed to elicit. This
is a notable counterexample and demonstrates that the skin
conductance response does not agree with the emotional content
of music for participants 4 and 5. On the other hand, we can see
that the HbT energy signal reaches its peak within the exciting
session in both participant 4 and 5 cases. While the SC is a long-
standing index of arousal (Greco et al., 2016), we can observe that
decoding the arousal from a single SC measurement might lack the
robustness needed to explain the observed behavior. To address
this concern in future investigations and experiment designs, the
graphene e-tattoos (GET) sensors can be applied (Jang et al., 2022),
and the SC data can be collected and analyzed in a multichannel
manner (Alam et al., 2023).

According to the presented HPI, except for participant 2, we
can see that the performance indices are elevated within the second
session, in which the exciting music was presented. While one
may hypothesize that the improved performance is a result of
establishing the arousal within a moderate range using the exciting
music, other factors such as the learning impact and participant’s
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familiarity with the environment can be influential, and we should
avoid making any definite conclusion on the impact of music. Here,
findings may suggest the potential for integrating music into the
closed-loop system. Given the low sample size, the absence of any
mental state score, and the possible confounding factors, further
studies with a higher number of subjects, mental state annotation,
inclusion of a control group, and shuftled task difficulty as well as
music sessions are required for a decisive resolution.

In the context of BMI, users may experience various cognitive
loads and emotional states during the interaction with a technical
system (Herff et al., 2014). Both cognitive load and emotion status
can trigger a particular brain response followed by variation in the
cognitive performance (Fishburn et al., 2014; Bigliassi et al., 2015).
Hence, it is crucial to understand the relation between the brain
response under different cognitive loads and environmental stimuli
to potentially optimize performance. The performed experiment
provides an opportunity to study the hemodynamic response
within different cognitive loads and music sessions. The highest
HbO and performance positive correlation for participants 1-5 can
be seen during the 3-back task blocks (Supplementary material).
One may interpret that the HbO data has the potential to be
applied as an informative biomarker of performance within high
cognitive loads. Also, the observed high HbT energy over the PFC
within exciting sessions may be interpreted as participants’ higher
brain activities within the exciting session compared to the calming
session. This conforms with the findings in Zheng et al. (2020).
Perhaps the participants had to concentrate more within higher
arousal levels (Wickramasuriya et al., 2023). Overall, these findings
may be an indication of a new avenue for decoder design research,
leading to innovative fNIRS feature extraction to decode the hidden
arousal and performance states. It is important to highlight that
due to the small sample size, further studies with a higher number
of participants and more interventions as well as cognitive loads
would be beneficial in drawing a final conclusion.

It would be vital to note that the experiment serves as a
pilot study to investigate the viability of using music as the
brain state regulator. In general, our findings show variation
in collected signals as well as decoded brain states between
different music sessions. According to each person’s unique
physiology and the applied personalized intervention, we are
interested in having a personalized perspective rather than a
general view. Particularly, the brain structure of individuals and
the network-level interaction between cognitive brain states of
individuals can be studied independently regardless of the sample
size (Hurlburt et al., 2015). The preliminary findings show that
music may potentially have ramifications in the BMI system as
a form of background stimulation, while more in-depth research
is required to fully understand the role of music on arousal
and performance. Specifically, in the CLBMI realm, it is crucial
to have precise and robust measurements as well as feedback
mechanisms. The presented pilot study should be improved to
ensure the robustness of the CLBMI pathways. In the future,
magnetoencephalography (MEG) can be employed in parallel with
fNIRS technique to improve the spatial and temporal resolution
of the brain recordings and implement the neurofeedback in our
setup (Yucha and Montgomery, 2008). We intend this study to be
a stepping stone for formulating such studies and developing more
comprehensive experiments.
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