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Abstract— The cognitive performance state is a hidden brain
state that can be decoded from behavioral data. One of
the challenges in the performance decoder design realm is
specifying an informative model and decoder that can re-
alistically reflect the performance dynamics. We employ an
autoregressive conditional heteroskedasticity (ARCH) models
to capture performance volatility over time and represent a
performance state that evolves through a nonlinear and time-
varying model. Leveraging a marked point process (MPP)
framework, we decode the performance state from a se-
quence of correct/incorrect responses and reaction times via
a Bayesian state-space approach within particle filtering. The
MPP framework enables us to account for the reaction times
associated with correct responses. We use both experimental
and simulated data to evaluate the proposed performance
decoder. Findings from experimental data reveal a reliable
state estimation outcome that may preserve the environmental
impact. Our simulation study depicts the reliability of the
decoder. The designed decoder provides an adaptive framework
to preserve the information within the process noise and
decode the hidden performance state from behavioral data.
The proposed performance decoder has potential applications
in human-machine interaction, smart workplaces, and future
educational settings.

I. INTRODUCTION

The term cognitive performance state refers to a dynamic
and hidden brain state that indicates an overall performance
of human cognitive function [1]. Tracking the trajectory of
the hidden performance state requires a decoder that decodes
the state from the available observation. While various de-
coder design procedures can be employed to estimate the
underlying performance state, an ideal decoder is supposed
to reveal the dynamic of the performance state in a realistic
way. In a real-world scenario, external factors, such as music,
can affect performance over time [2]. Hence, a model must
account for such volatility that can increase or decrease in
response to various environmental conditions. On the other
hand, specifying a set of informative observations would
be another crucial step in designing a performance decoder.
Inspired by the autoregressive conditional heteroskedasticity
(ARCH) model jointly with the marked point process (MPP)
framework [3]-[8], we account for the volatile behavior of
performance state and decode the performance state from
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behavioral data collected during the n-back task. The n-
back task is a type of cognitive task that requires working
memory usage [2], [9]. Working memory is a basic cognitive
function that enables the temporary holding and manipulation
of data [9]-[11]. While working memory is a basic cognitive
function, it has a pivotal role in higher cognitive function and
engages in several cognitive tasks [12]. In this research, we
investigate the n-back task as a working memory task of
interest. Several studies present a potential impact of music
type on the cognitive performance state [1], [2]. In this
research, to mimic the potential impact of external stimuli
on performance, we consider the music as a form of external
auditory stimulation, and the studied n-back task has been
performed under 4 different conditions: no background mu-
sic, relaxing background music, exciting background music,
and deep learning-generated relaxing music [1], [2].

The Bayesian state-space approach is one of the common
approaches to model and decode the performance state. It
was developed mainly based on Bayesian principles and
can offer a label-free estimation paradigm [7], [8], [10],
[13]-[17]. Specifically, if utilized with the expectation-
maximization (EM) framework, the performance state tra-
jectory and its dynamics can be decoded from the available
sequential observations and independent of any training ses-
sions. Linear models with time-invariant process noise vari-
ance are commonly used within state-space representations
[18]-[23]. However, incorporating an adaptive innovation
term with time-varying variance within the performance
state model can resemble real-world settings where external
factors influence the performance state [7], [8]. The ARCH
framework is widely used in modeling the financial time
series, and it enables state models to reflect the degree
of variation over a period of time [24], [25]. Cognitive
performance can be affected by multiple external factors such
as music [2]. To be able to account for the surrounding
effects within the dynamics of the state, we model the
process noise via the ARCH framework, and we use the
autoregressive-ARCH (AR-ARCH) model to represent the
hidden performance state [7], [8].

Once the state model is specified, a performance state can
be decoded from the available set of observations such as
a sequence of correct/incorrect responses and reaction times
(i.e., response times) [26]-[30]. Previously, decoders have
been employed to decode the performance state from the
sequence of responses coupled with the reaction times [1],
[9]; the autoregressive (AR) and AR-ARCH models have
been considered for modeling the hidden performance state,
and the corresponding decoders have utilized the pairs of



binary and continuous (BiCo) observations to estimate the
trajectory of performance [1], [7]-[9]. While the pairs of
correct/incorrect responses and reaction times are informative
indices of performance, utilizing this type of observation
can potentially lead to the overestimation of performance
where an incorrect response is accompanied by a fast reaction
time. To address this concern, the MPP framework can be
employed, and the hidden performance can be decoded from
the sequence of responses (point process) as well as the
reaction time (marks) associated with successful trials. The
MPP framework is commonly applied in neuroscience to link
the ensemble neural spiking activity (point process) to the
relevant covariates [4]-[6], [8].

In this research, we propose the MPP-ARCH based per-
formance decoder that can track the underlying performance
trajectory from the correct/incorrect responses and reaction
times associated with correct responses. We link the hidden
performance state to the MPP observation, which accounts
for the reaction times merely when the correct response
occurs. We use the particle filtering within the EM algorithm
to decode the hidden state. In particular, we design a particle
filter that enables us to handle the non-linearity induced by
the ARCH process noise. To evaluate the designed decoder,
we use the simulated data as well as experimental data
recorded during the n-back task in the presence of music
stimuli.

II. METHODS
A. Data

In this research, we employ a publicly available dataset,
which incorporates the n-back experiments in the presence
of safe interventions such as music [31]. The studied n-back
experiment was initially presented in [2]. The experimental
procedures were approved by the IRB at the University of
Houston, TX, USA (STUDY 00002490). A total number
of 17 subjects took part in the experiment, with 7 subjects
were excluded from the original study due to measurement
errors and artifacts, and 10 subjects were studied (Subject
A1-A10). The consent forms were obtained from all of the
subjects prior to the experiment. During the n-back task, a
series of stimuli (e.g., English alphabet) were presented to the
subject, and the subject was required to verify if the current
stimulus matched the n*" previous one. The 1-back and
3-back task blocks were equally and randomly distributed
across 4 sessions: No background music was played in the
first session; the relaxing and exciting background music
were included in the second and third sessions, respectively;
the fourth session contrived with a newly generated relaxing
music via deep learning neural networks [2]. A total number
of 16 task blocks were implemented at each session. Each
task block included 5 seconds of instruction followed by 22
trials. Each trial included 0.5 seconds of stimulus display
followed by 1.5 seconds plus sign. The 10-second resting
time was provided at the end of each task block. Also, there
were 20-second resting periods in the middle of each session.
In total, a subject performed 1408 trials (i.e., 4 sessions X

16 task blocks x 22 trials). A detailed description of the
experiment is presented in [2].

B. State-space Model

Inspired by the proposed performance state model in [7],
[8], we consider the following AR(1)-ARCH(1) model for
the hidden performance state (z;):

Zj = Zj-1 1€ (D

where the process noise term ¢; follows the ARCH
structure, and ¢; ~ N (O,hf) such that the process noise
variance h? varies over the time, and can be written as
h3 = ag 4+ ai€;_;. The terms agp and a; are the unknown
ARCH model parameters to be determined.

To decode the hidden performance state, an observation
vector needs to be specified. Here, we form the observation
vector Y7 from the sequence of responses n; as well as the
log of reaction time log(t;). The observation can be written
in the MPP form such that the continuous log of reaction time
(i.e., 7; = log(t;)) stands for the marked, and the correct
response denotes the observed point process (i.e., n; = 1).
We indicate the correct response indices by J = {j|n; = 1}.

The sequence of responses is assumed to be a Bernoulli-
distributed random variable with probability mass function
p;” (1—p;)' =", the probability of having a correct response
p;j = P(n; = 1) can be related to performance state using
the logit transformation [7], [10], [30]:
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The constant term g can be determined from p =~
log (151)) where p is the average probability of observing
g=J,
a correct response (i.e., p = L"jl ) [7], [10], [18], [32].
Also, the marked observation can be linked to the hidden

state using the following linear function [18]:

Tiej = Y0 + 7z + 5, 3)

where r; = log(t;) is considered merely in the presence of
the correct responses (i.e., j € J); the term v; ~ N(0,02)
stands for the measurement noise, and 7y and ~; are the
unknown parameters to be recovered.

Therefore, the joint density function can be written as

1 —pj ifn; =0
p(n; Nrjlz;) = | Smeem? :
pj me v ifn; =1
4)

To decode the hidden performance state and recover
the unknown model parameters at the same time, the EM
algorithm can be employed [7], [18].



C. State-space Decoder

To simultaneously decode the state and recover the un-
known model parameters 0, = {9, 71,02, g, 1 } from the
observation vector Y7/ = {(nl, r1), (N2, 7"2) s ryei)ths
the EM algorithm can be utilized. However, including the
ARCH noise within the state model introduces non-linearity
[33]. To handle the non-linearity, we use a particle filtering
approach [7], [8], [33]. We decode the hidden performance
at the E-step, and recover the model parameters 6,, at the M-
step [7], [8], [33]. Inspired by the presented framework in
[7] and [33], we design a decoder that enables us to decode
the performance from the MPP-type observation. The E-step
and M-step derivations are shown below:

E-Step:

e Step 1: Generate K number of particles by setting the
initial process noise variance to its unconditional and
stationarity value (i.e., hg = ﬁ), and assuming an
arbitrary initial mean state value Z; and state variance
o2,

e Step 2: Move forward from j —1 to j and generate par-
ticles Z;(k) based on the proposed distribution = such

~ N<2j(k) 02.(@)

that Z;(k) , 05

where z; stands for

conditional state mean, and 0]2- denotes the conditional
variance [7].
Case when n = 0:

300 = (22201209 ) (my = 09 + 2140,

)]
1 i i —1
ng'(k) = [afl(k)—i—h?(k) +Pj(k)<1 —Pj(k)ﬂ
(6)

Case when n = 1:

_ o7y (k) + h3(k)
zj(k) = o,
(w1300 ) + o2
7N
+mn (7"]' — Y — ’h?:‘jl(k)) +251(k),
0]2'(]“) = 0'2.1(k)1—|—h2(/<:) + pj (k) (1 —Pj(k)> ®)

where hf(k;) can be derived from

2
h3(k) = ap + ay (2j1(k) — zjg(k)) )

By plugging p;(k) = [1 + e~ #F2E)] ™" in ll as
well as (7), the term z;(k) would appear on both sides,

and one can solve for Z;(k) by incorporating numerical
approaches such as Newton Raphson.

o Step 3: Specify the importance weight w;(k) of each
sample Z;(k) using the weight density function of
interest. Here, given the proposed distribution m, we
employ the sequential importance sampling (SIS) [34],
[35], and the importance weight w; can be obtained
from

(k) _ (k—l)p(nj ﬂrj|z?j(k))p<2j(k)éj_l(k))
wf® = w w(@(zﬁ)w@:j-l(’ﬁ%’”&j) |

J J

(10)

e Step 4: To avoid the particle degeneracy, normalize
[5)

k) .

J

the weights w( and execute particle

Zw;lzk)
resampling [7], [36]. Following the proposed approach
in [37], the effective sample size can be approximated as

Negs = m Assigning K /2 as the threshold,

if Ness < K/2, the residual resampling can be executed
[38], [39].

o Step 5: After proceeding in the forward direction (j =
J), we reverse the direction and derive a set of smoothed
state Zj(k) with equally smoothed weights w;(k) =
1/K from the distribution of interest. To mitigate the
risk of overfitting, we consider p(Z;(k — 1)|2,(k)) as
the distribution of interest and evolve the smoothed state
solely based on the dynamics of the system. [7], [40].

M-Step: At the M-step, the unknown model parameters
can be recovered such that they maximize the expected
value of log-likelihood function. The expected value of
the log-likelihood E[Q(z],ﬁ )] can be approximated as

E[Q(z;,0,)] ~ KZk 1Q(ZJ( ), p>, where the log-

2 <nj — 5, (k) likelihood function (Q) is presented as [7], [8], [33], [41]:

J
Q=Y [nj (B + z;) — log(1 + eﬁJij)} (11)
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+ log (ao + ai(zj—1 — Zj—2)2>] .

The term J denotes the indices of correct responses.
Hence, we may find a set of parameters 6, =
{70, 71,02, &, &1 } that maximizes the E[Q(z;,60,)] [7], [8].
The algorithm iterates between the E-step and the M-step
until convergence.
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Fig. 1: The decoded cognitive performance state using experimental data. The sub-figures from left to right present: (A) the MPP-ARCH decoder
findings, (B) the BiCo-ARCH decoder findings [8], and (C) the BiCo-AR decoder findings on experimental data [2], [8]. In each sub-figure, the
sub-panels, in turn, depict: The applied observation (red) and its fit (black); the sequence of incorrect responses (blue vertical line); decoded performance
state (blue) and its 95% confidence limits; the decoded probability (blue); the HPI (blue). The cyan, green, red, and yellow background colors correspond
to the no music, relaxing, exciting, and generated relaxing music sessions, respectively.
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Fig. 2: Distribution of HPI within different music sessions derived from MPP-ARCH decoder. Each sub-figure presents the box plots of HPI with
respect to music sessions for each subject. Each box shows the HPI within the music session of interest. The cyan, green, red, and yellow background
colors correspond to the no music, relaxing, exciting, and generated relaxing music sessions, respectively.

III. RESULTS estimated performance associated with BiCo-AR decoder

We test the designed decoder on both the experimental and (2], [9], [10), [30]. Within each s.ub-ﬁgure, the subplots,

. . .. . from top to bottom, show the applied observation r; (red)
simulated data. In particular, we use the music intervention .

. .. . and the fitted (i.e., reconstructed) one (black), a sequence
dataset in [2], and apply the existing BiCo-based decoders of incorrect responses, estimated performance state (blue)
(i.c., BiCo-AR and BiCo-ARCH) as well as MPP-ARCH de-  ©. . POTISES, per o e,

der. To simulate a set of data, we set the model parameters estimated probability (blue), and the high performance index
o .1' to [71. 8] ’ (HPI). It should be noted that while the developed MPP-
simrar to 171, 181, L. . ARCH decoder here uses MPP observation (i.e., 7, 7), the

The performance state estimations based on experimen- . . . JEJ,
previously applied BiCo-based decoders employ pairs of

tal data are depicted in F.lg' From left to right, sub- binary and continuous observations (i.e., r; is observed at
figures present: (A) The estimated performance based on the L
each time index).

developed MPP-ARCH decoder; (B) The estimated perfor-
mance from BiCo-ARCH decoder developed in [7]; (C) The In regard to the experimental data, the absence of ground
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Fig. 3: The decoded cognitive performance state using simulated data. The sub-figures from left to right present: (A) the MPP-ARCH decoder
findings, (B) the BiCo-ARCH decoder findings, and (C) the BiCo-AR decoder findings on simulated data. In each sub-figure, the sub-panels, in turn,
depict: The applied observation (red) and its fit (black); the sequence of simulated incorrect responses (blue vertical line); the simulated performance
state (red) and the decoded performance state (blue); the simulated probability (red) and the decoded probability (blue); the HPI (blue).

truth may lead to an implicit evaluation of the decoder.
As an instance of such implicit evaluation, we fit (i.e.,
reconstruct) the employed MPP observation by plugging
the decoded state into -y + 7125, and we evaluate if the
reconstructed signal can capture the trend. To further assess
the performance of the decoder, we can focus on the cluster
of incorrect responses and expect to observe a decrease in
the estimated performance.

In order to have a general and person-specific index of
performance, we formulate the HPI, derived from the p(zj >
Zihreshold )» Where the threshold is set to be the median of the
subject’s performance state [1], [8]. This type of index is
between zero and one, and it is known as the ideal observer
certainty level [18]. In the context of behavioral learning,
HPI mainly presents the probability that a correct response
occurs more than just by chance [18], [19]. We depict the
box plot of HPI with respect to each music session for all
subjects in Fig. 2]

The sub-figures of Fig. [3|depict the estimated performance
associated with the simulated data using the MPP-ARCH
decoder, BiCo-ARCH decoder, and BiCo-AR decoder, re-
spectively. The subplots, from top to bottom, present the
applied observation r; (red) and the fitted one (black), the
simulated sequence of incorrect response, the simulated per-
formance state (red) and estimated one (blue), the simulated
probability (red) and estimated one (blue), and the HPIL
The mean squared error (MSE) of estimated performance
state associated with the MPP-ARCH decoder, BiCo-ARCH
decoder, and BiCo-AR decoder are 0.0807, 0.2969, and
0.5207, respectively.

IV. DISCUSSION

Given the findings on the experimental data and comparing
the estimated HPI in depicted decoders (Fig. [T), we can

note the instances of performance overestimation: Comparing
MPP-ARCH and BiCo-AR decoders, at trials 600-622, where
a relatively high number of incorrect responses are gathered,
the HPI derived from the BiCo-AR decoder is constantly
high while this is not the case for the estimated HPI via
the MPP-ARCH decoder. Also, an example of performance
underestimation can be noted in the BiCo-AR decoder, where
the estimated HPI during the end of calming session is
persistently low regardless of the observed correct responses.
On the other hand, the decoded performance from the BiCo-
ARCH decoder tends to overfit to the continuous reaction
time.

Looking into the decoded HPI via MPP-ARCH decoder
in Fig. 2} and considering subjects A2 and A10, the median
of HPI is higher in both of the relaxing sessions compared
to no music and exciting music sessions. It should be noted
that the median of HPI in the music session with generated
relaxing music is slightly higher than in the session with the
subject provided relaxing music. The lowest HPI values are
associated with the exciting session. The median HPI for no
music session (i.e., control group) falls between the exciting
and both relaxing sessions. Conversely, subjects Al and A4
have a higher HPI during the exciting session compared to
relaxing sessions. Subject A7 displays a higher HPI during
the first relaxing session with the provided music, while we
have a reduced HPI in the last session with the generated
music. On the other hand, four subjects presented higher HPI
during the exciting session compared to the relaxing session
with the provided music, while the highest median of HPI
occurred during the generated music session (subjects A3,
AS, A8, and A9). It should be noted that the only subject that
does not present considerable HPI difference (with respect
to median of HPI) across the music sessions is subject A6.

It is worth highlighting that we can observe multiple trends



among the subjects, which can be an indicator of the person-
specific nature of the cognitive function and brain structure
[1]. Following the Yerkes—Dodson law from psychology
[1], [42], [43], which suggests that a moderate level of
arousal —another hidden cognitive state— can result in optimal
performance, one may assume that the baseline of arousal
state in subjects A2 and A10 is high, and exciting music may
arouse the subjects such that the subjects surpass the optimal
arousal level [1]. On the other hand, in subjects A2 and A10,
the level of arousal baseline might be very low during the
relaxing sessions, and exciting music helps the subjects to
become aroused enough to have a better performance in the
exciting session. However, future investigations in which the
arousal will be decoded in a similar adaptive manner are
needed to evaluate these assumptions. Additionally, to draw
a high-resolution conclusion about the music’s impact on
performance, potential confounding factors such as fatigue
level and habituation or learning effect need to be evaluated
carefully [1]. We may note that this study is primarily
dedicated to the performance decoder design procedures.

Findings on experimental data and the MPP-ARCH de-
coder outcome reveal an agreement between the applied
observation and the estimated state. In particular, the values
of the decoded state and probability decrease aligned with the
cluster of incorrect responses. Also, the decoded HPI values
vary with respect to the type of music. The ARCH process
may preserve the environmental impact in the performance
state dynamics. Here, we consider the music as the environ-
mental factor that might interact with performance. It should
be noted that the presented decoder has a relatively high
degree of freedom, which can potentially cause overfitting.
To address this concern, an overfitting control technique can
be employed [32]. Another point to note is the complexity
of the applied particle filter, which may result in a high
computational cost.

In regard to the simulation study (Fig. [3), the MPP-ARCH
decoder seems to provide a relatively reliable estimate given
the MSE values, and it outperforms the BiCo-ARCH and
BiCo-AR decoders. It can be seen that the adaptivity of the
ARCH-based decoders enables decoding the tiny variation in
performance state, whereas the decoded performance based
on the BiCo-AR decoder does not capture the existing
variations associated with the ground truth (i.e., simulated
performance state).

V. CONCLUSION AND FUTURE WORK

In this research, we design a performance state decoder
that accounts for the non-linearity of the process noise
of the performance state dynamic as well as its volatile
nature. Particularly, we enable the performance state model
to preserve the volatility within the ARCH process noise. To
avoid potential overestimation of performance, we consider
the MPP-type observation, and we filter out the continuous
reaction times associated with the incorrect responses. In
general, the proposed decoder is able to reliably decode the
hidden performance state from the MPP-type observation in

the presence of time-varying process noise variance. Specif-
ically, the use of particle filtering within the EM algorithm
enables simultaneous state and parameter estimation.

In the future, we aim to employ and evaluate the decoder in
different experimental settings. Specifically, the decoder can
be applied to various behavioral experiments with a wide
range of interventions, such as auditory, gustatory, visual,
and olfactory stimulation [2]. Another point to be considered
is that in this study, we narrow down our attention to one
basic cognitive function by focusing on the n-back task. The
proposed framework can be further applied to decode the
cognitive performance in various tasks, in which they utilize
basic and higher-level cognitive functions at the same time.

Furthermore, we plan to study the reaction time and
cognitive arousal link to investigate the feasibility of using
reaction time as a common behavioral observation to decode
arousal and performance concurrently [44]. Also, since the
n-back task can be a repetitive task [10], identifying the
link between the state of cognitive arousal and performance
can pave the way for a new avenue of intervention design
procedures.
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