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Preface

Point processes underlie a range of activities within the human body. Neural spiking,
rhythmic cardiac contraction, and pulsatile hormone secretion all have binary-like
mechanisms at their core. The field of estimating latent states tied to point process
observations has seen a steady growth over a period that has now exceeded two
decades. These state estimation methods have found applications across a range of
specialities including behavioral learning, brain-computer interfaces, sleep studies,
heart rate variability analysis, anesthesia, endocrinology, and human emotion. The
field has also seen an expansion from some of the early state-space estimators
that were limited to point process observations alone to mixed estimators that can
incorporate both binary and continuous-valued observations.

Despite the growth in the field and its widespread applicability, several chal-
lenges are encountered by those with an undergraduate engineering degree who
wish to begin developing these types of estimators. While the estimators are similar
to regular Kalman filters, their design is not typically approached in the way that
regular Kalman filters are. Instead, the design of state estimators for point process
observations is usually approached from a statistical Bayesian point-of-view, rather
than from the typical least squares minimization perspective. Moreover, while a
number of works can be found in the literature involving these types of point
process Bayesian filters, there is no tutorial-like introduction to aid the beginner.
Consequently, the student who wishes to begin research has to spend considerable
time to learn the basics of point process Bayesian filter design; and that often
from material in research papers which are not intended as tutorials. This book
is an attempt to bridge the gap. Hence, an intended reader wishing to learn filter
design is expected to have taken an undergraduate course in basic probability and
statistics as well as a course in signals and systems. Some background in computer
programming would also be necessary to implement the filters. A course in control
systems, although not required, would be helpful as well. A reader merely intending
to use the filters presented here, however, would not need this background but only
require some basic proficiency with MATLAB.

Point process state estimators have found a number of applications in fields
related to physiology and medicine, some of which have been listed above. This
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viii Preface

is partly due to the prevalence of point processes phenomena in different types of
physiological signals. Successful collaborative research has also resulted based on
drawing connections between state-space estimation and physiology—connections
that serve to bridge the gap between engineering and medicine. Our book is also
intended to serve the non-engineering community. Thus, the practitioner who does
not wish to delve into all the mathematical detail underlying filter design but merely
wishes to apply the tools can also use the book. Precisely for this purpose, the
book is accompanied by a MATLAB toolbox of code examples that cover the
different filters. Brief descriptions of the code are also provided at the end of the
main chapters. It is our expectation that the endocrinologist, psychologist, or other
researcher who wishes to estimate latent physiological states underlying binary and
continuous-valued measurements would thus benefit as well.

Point processes are everywhere, if you look for them. Earthquakes, crime
incidents, rainfall, disease infections, customer arrivals at a bank, and website
visits can all be modeled using point processes. Therefore, the applicability of this
book isn’t solely limited to physiology. Researchers in agriculture, epidemiology,
climatology, etc. whose work involves point process phenomena can all find the
book a helpful aid.

The ever-increasing role of technology in our lives is undeniable. We rely
on technology from everything to flying across continents to buying candy from
a vending machine. It is not unlikely that the foreseeable future will involve
an explosion of smart electronics everywhere. These networked devices will be
connected to the cloud where more powerful analytical tools sift through the raw
data. As with the case of latent variable estimation using state-space models, the
merging between physical components and cyber analytics will seek to extract
underlying or hidden patterns and information from the sensed data. The same
scenario is also applicable to the human body. It is likely that the future will involve
an increased adoption of bioelectric and biochemical sensors that will play a crucial
role in our well-being. The sensed physiological signals will inevitably contain some
point process data, all of which capture information regarding latent states within
the human body and brain. Thus, with the aid of appropriate mathematical tools,
some of which are covered in this book, a sensor-laden wristwatch in the future may
be able to precisely tell you some of what’s happening inside your brain and your
body—an idea that led to an Innovators Under 35 recognition by MIT Technology
Review for one of the authors.

It is our hope that this book will be of help to students, researchers, and
practitioners alike.

Colombo, Sri Lanka Dilranjan S. Wickramasuriya
New York, NY, USA Rose T. Faghih



Acknowledgments

The authors gratefully acknowledge the National Science Foundation (NSF) in
the writing of this book. In particular, the work was supported by the following
NSF grants: 2226123/1942585—CAREER: MINDWATCH: Multimodal Intelligent
Noninvasive brain state Decoder for Wearable AdapTive Closed-loop arcHitectures
and 1755780—CRII: CPS: Wearable-Machine Interface Architectures. The open-
access publication of this book was made possible by the support of the New York
University Faculty Startup Fund.

ix



Contents

1 Introduction ............ ..o
1.1  Physiology, State-Space Models, and Estimation...................

1.1.1  State Estimation Step............covvviiiiiiiiiniinnnnnnn...

1.1.2 Parameter Estimation Step .............cccvviiiiiiiiinnn.

1.1.3  Algorithm Summary..........ccoooiiiiiiiiiiiiiiiiinnnn.

1.2 BoOK OUHNE ....oviiiiiti i

2 Some Useful Statistical Results................................oll.
2.1 Basic Concepts Related to Mean and Variance .....................

2.2 Basic Statistical Results Required for Deriving the
Update Equations in the State Estimation Step .....................
2.3 General Observations Related to Gaussian Random Variables ....

3  State-Space Model with One Binary Observation ......................

3.1  Deriving the Predict Equations in the State Estimation Step.......

3.2 Deriving the Update Equations in the State Estimation Step.......

3.3 Smoothing in the State Estimation Step............c.cevvuvunvnnnnnn.

3.4  Deriving the Parameter Estimation Step Equations.................

3.4.1  Deriving the Process Noise Variance ......................

3.5  MATLAB EXamples ......ovviiiiiiiiiiiiiiiiiiieeeens
3.5.1  Application to Skin Conductance and

Sympathetic Arousal ................oo L

4  State-Space Model with One Binary
and One Continuous Observation .......................ooccii..
4.1  Deriving the Predict Equations in the State Estimation Step.......
4.2 Deriving the Update Equations in the State Estimation Step.......
4.3 Deriving the Parameter Estimation Step Equations.................
4.3.1  Deriving the Process Noise Variance ......................
4.3.2  Deriving the Forgetting Factor ......................oo. e,
4.3.3  Deriving the Constant Coefficient Terms..................
4.3.4  Deriving the Sensor Noise Variance .......................

—
WL NN BN =

—

xi



xii Contents

4.4  MATLAB EXamples .......ccooiiiiiiiiiiiiiiiiiiiii e, 48
4.4.1  Application to EMG and Emotional Valence.............. 50
5  State-Space Model with One Binary and Two Continuous
ODSErvations .............uuuiiiiiiii s 53
5.1  Deriving the Predict Equations in the State Estimation Step....... 54
5.2 Deriving the Update Equations in the State Estimation Step....... 55
5.3 Deriving the Parameter Estimation Step Equations................. 58
5.3.1  Deriving the Terms in the State Equation ................. 58
5.3.2  Deriving the Process Noise Variance ...................... 59
5.3.3  Deriving the Constant Coefficient Terms and the
Sensor Noise Variance............oovvvvviiiiiiiiinnnnnnn... 60
54  MATLAB EXamples .......ovuiiiiiiiiiiiiiiieeeeenns 61
5.4.1  Application to Skin Conductance and
Sympathetic Arousal ................ooii 63
6  State-Space Model with One Binary, Two Continuous, and a
Spiking-Type Observation..................cooiiiiiiiiiiiiiiiiiinan 67
6.1  Deriving the Predict Equations in the State Estimation Step....... 69
6.2  Deriving the Update Equations in the State Estimation Step....... 69
6.3  Deriving the Parameter Estimation Step Equations................. 71
6.3.1  Deriving the Coefficients Withina CIF.................... 72
6.4  MATLAB EXamples .......ovviiiiiiiiiiiiiiieeenns 74
6.4.1  Application to Skin Conductance, Heart Rate
and Sympathetic Arousal............oooeiiiiiiiiiii. 74
7  State-Space Model with One Marked Point Process (MPP)
ODSErvation ..............uuuiuiiiiiii s 77
7.1  Deriving the Update Equations in the State Estimation Step....... 78
7.2 Deriving the Parameter Estimation Step Equations................. 81
7.2.1  Deriving the Constant Coefficient Terms.................. 82
7.3  MATLAB EXamples ..........uuuuuuuiiiiiiiiiiiiiiiiiiiiia 83
7.3.1  Application to Skin Conductance and
Sympathetic Arousal ................oo L 85
8 State-Space Model with One MPP and One Continuous Observation 89
8.1  Deriving the Update Equations in the State Estimation Step....... 91
8.2  Deriving the Parameter Estimation Step Equations................. 94
8.3  MATLAB EXamples .....oovviiiiiiiiiiiiiiiiiiiiiiiiiiiieennns 94
8.3.1  Application to Cortisol and Energy........................ 94
9  Additional Models and Derivations....................................... 97
9.1  State-Space Model with a Time-Varying Process Noise
Variance Based on a GARCH(p, q) Framework .................... 97
9.2 Deriving the Parameter Estimation Step Equations for
Terms Related to a Binary Observation .............ccoovvvvvien.... 99

9.3  Extending Estimation to a Vector-Valued State..................... 102



Contents Xiii
9.4  The Use of Machine Learning Methods for State Estimation...... 104
9.5 Additional MATLAB Code Examples ...........cc.oooviieiann 105
9.5.1  State-Space Model with One Binary and One
Spiking-Type Observation ............ccccovvieuieeeeennnn. 106
9.5.2  State-Space Model with One Binary and Two
Continuous Observations with a Circadian Input
in the State Equation ..., 106
10 MATLAB Code Examples .............ccoooiiiiiiiiiiiiiiiiiiiiiiiinns 111
10.1  State-space Model with One Binary Observation................... 111
10.1.1 Simulated Data Example ..........................ooeeelll 111
10.1.2 Experimental Data Example ............................... 114
10.2  State-space Model with One Binary and One Continuous
ODSEIVALION . ...ttt ettt ettt e 119
10.2.1 Simulated Data Example .........................ooee el 119
10.2.2  Experimental Data Example ..................ooooooin 123
10.3  State-space Model with One Binary and Two Continuous
ODSEIVALIONS . ...t eeet ettt et e e 128
10.3.1 Simulated Data Example (« Iy Excluded) ................. 128
10.3.2  Simulated Data Example .........................ooeee e 132
10.3.3 Experimental Data Example (« Iy Excluded).............. 137
10.3.4 Experimental Data Example ............................... 146
10.4  State-space Model with One Binary, Two Continuous and
a Spiking-Type Observation ...........cccovviiiiiiiiiiiiiieeennn. 154
10.4.1 Simulated Data Example .........................ooeell L 154
10.4.2  Experimental Data Example ..................ooooooin 164
10.5 State-space Model with One MPP Observation .................... 177
10.5.1 Simulated Data Example .........................ooeee el 177
10.5.2 Experimental Data Example ..................ooooooin 181
10.6  State-space Model with One MPP and One Continuous
ODSEIVALION . ...ttt ettt 188
10.6.1 Simulated Data Example ..........................ooel Ll 188
10.6.2 Experimental Data Example ............................... 193
10.7 State-space Model with One Binary and One
Spiking-type Observation ............cceeeiiiiiiiiiiiiiiiiiiieennn. 200
10.7.1 Experimental Data Example ............................... 200
10.8 State-space Model with One Binary and Two Continuous
Observations with a Circadian Input in the State Equation ........ 209
10.8.1 Experimental Data Example ............................... 209
11 List of Supplementary MATLAB Functions............................. 217
References. ... ....ooouiiiii i 219
Index . ... 227



List of Figures

Fig. 1.1 Some examples of engineering systems that can be

modeled using state-space representations............c.eevvvuuueeen... 3
Fig. 3.1 A rat in a T-maze experiment with binary-valued

COITECt/INCOITECT TESPOMNSES - .. vvveeeenttteeeeeeniiieeeeenaiiiaeeenn 22
Fig. 3.2 A deconvolved skin conductance signal ...................cooouuiee. 23
Fig. 3.3 State estimation based on observing one binary variable ............ 36
Fig. 3.4 Driver stress estimation .............eeeeiiiiiiiiieeiiiiiiiiieennina. 37
Fig. 4.1 A monkey in a learning experiment with binary-valued

correct/incorrect responses where reaction times are recorded ...... 40
Fig. 4.2 State estimation based on observing one binary and one

continuous variable ... 51
Fig. 5.1 State estimation based on observing one binary and two

continuous variables ... 64
Fig. 5.2 State estimation in Pavlovian fear conditioning ...................... 65
Fig. 6.1 A wearable sensing system for decoding sympathetic arousal....... 68
Fig. 6.2 State estimation based on observing one binary, two

continuous, and one spiking-type variable ..........................L. 76
Fig. 7.1 State estimation based on observing one MPP variable.............. 85
Fig. 7.2 Driver Stress estimation .............eeeeiiiiiiiieeiiiiieeennnna. 86
Fig. 8.1 A deconvolved cortisol profile...............oooeiiiiiiiiiiiiiin... 90
Fig. 8.2 State estimation based on observing one MPP and one

continuous variable ... 95
Fig. 9.1 State estimation based on observing one binary and one

spiking-type variable ...... ... 107
Fig. 9.2 State estimation based on observing one binary and two

continuous variables with a circadian input in the state equation.... 108

XV



Chapter 1 ®
Introduction Check for

The human body is an intricate network of multiple functioning sub-systems. Many
unobserved processes quietly keep running within the body even while we remain
largely unconscious of them. For decades, scientists have sought to understand how
different physiological systems work and how they can be mathematically modeled.
Mathematical models of biological systems provide key scientific insights and also
help guide the development of technologies for treating disorders when proper
functioning no longer occurs. One of the challenges encountered with physiological
systems is that, in a number of instances, the quantities we are interested in are
difficult to observe directly or remain completely inaccessible. This could be either
because they are located deep within the body or simply because they are more
abstract (e.g., emotion). Consider the heart, for instance. The left ventricle pumps
out blood through the aorta to the rest of the body. Blood pressure inside the aorta
(known as central aortic pressure) has been considered a useful predictor of the
future risk of developing cardiovascular disease, perhaps even more useful than the
conventional blood pressure measurements taken from the upper arm [1]. However,
measuring blood pressure inside the aorta is difficult. Consequently, researchers
have had to rely on developing mathematical models with which to estimate
central aortic pressure using other peripheral measurements (e.g., [2]). The same
could be said regarding the recovery of CRH (corticotropin-releasing hormone)
secretion timings within the hypothalamus—a largely inaccessible structure deep
within the brain—using cortisol measurements in the blood based on mathematical
relationships [3]. Emotions could also be placed in this same category. They are
difficult to measure because of their inherently abstract nature. Emotions, however,
do cause changes in heart rate, sweating, and blood pressure that can be measured
and with which someone’s feelings can be estimated. What we have described so
far, in a sense, captures the big picture underlying this book. We have physiological
quantities that are difficult to observe directly, we have measurements that are easier
to acquire, and we have the ability to build mathematical models to estimate those
inaccessible quantities.

© The Author(s) 2024 1
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2 1 Introduction

Let us now consider some examples where the quantities we are interested in
are rather abstract. Consider a situation where new employees at an organization
are being taught a new task to be performed at a computer. Let us assume that
each employee has a cognitive “task learning” state. Suppose also that the training
sessions are accompanied by short quizzes at the end of each section. If we were
to record how the employees performed (e.g., how many answers they got correct
and how much time they took), could we somehow determine this cognitive learning
state, and see how it gradually changes over time? The answer indeed is yes, with the
help of a mathematical model, we can estimate such a state and track an employee’s
progress over time. We will, however, first need to build such a model that relates
learning to quiz performance. As you can see, the basic idea of building models that
relate difficult-to-access quantities to measurements that we can acquire more easily
and then estimate those quantities is a powerful concept. In this book, we will see
how state-space models can be used to relate physiological/behavioral variables to
experimental measurements.

State-space modeling is a mature field within controls engineering. In this book,
we will address a specific subset of state-space models. Namely, we will consider
a class of models where all or part of the observations are binary. You may wonder
why binary observations are so important? In reality, a number of phenomena
within the human body are binary in nature. For instance, the millions of neurons
within our bodies function in a binary-like manner. When these neurons receive
inputs, they either fire or they do not. The pumping action of the heart can also be
seen as a binary mechanism. The heart is either in contraction and pumping out
blood or it is not. The secretion of a number of pulsatile hormones can also be
viewed in a similar manner. The glands responsible for pulsatile secretion are either
secreting the hormone or not. In reality, a number of other binary phenomena exist
and are often encountered in biomedical applications. Consequently, physiological
state-space models involving binary-valued observations have found extensive
applications across a number of fields including behavioral learning [4-9], position,
and movement decoding based on neural spiking observations [10—17], anesthesia,
and comatose state regulation [18-20], sleep studies [21], heart rate analysis
[22, 23], and cognitive flexibility [9, 24]. In this book, we will see how some of
these models can be built and how they can be used to estimate unobserved states of
interest.

1.1 Physiology, State-Space Models, and Estimation

As we have just stated, many things happen inside the human body, even while
we are largely unaware that they are occurring. Energy continues to be produced
through the actions of hormones and biochemicals, changes in emotion occur
within the brain, and mental concentration varies throughout the day depending
on the task at hand. Despite the fact that they cannot be observed, these internal
processes do give rise to changes in different physiological phenomena that can
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indeed be measured. For instance, while energy production cannot be observed
directly, we can indeed measure the hormone concentrations in the blood that affect
the production mechanisms. Similarly, we can also measure physiological changes
that emotions cause (e.g., changes in heart rate). Concentration or cognitive load
also cannot be observed, but we can measure how quickly someone is getting their
work done and how accurately they are performing. Let us now consider how these
state-space models relate unobserved quantities to observed measurements.

Think of any control system such as a spring—mass—damper system or RLC
circuit (Fig. 1.1). Typically, in such a system, we have several internal state variables
and some sensor measurements. Not all the states can be observed directly. However,
sensor readings can and do provide some information about them. By deriving
mathematical relationships between the sensor readings and the internal states, we
can develop tools that enable us to estimate the unobserved states over time. For
instance, we may not be able to directly measure all the voltages and currents in
a circuit, but we can use Kirchoff’s laws to derive relationships between what we
cannot observe and what we do measure. Similarly, we may not be able to measure
all the positions, velocities, or accelerations within a mechanical system, but we
can derive similar relationships using Newton’s laws. Thus, a typical engineering
system can be characterized via a state-space formulation as shown below (for the
time-being, we will ignore any noise terms and non-linearities).

Xp+1 = AXg + Bug (1.1
Yk = Cxg. (1.2)

Here, x; is a vector representing the internal states of the system, yj is a vector
representing the sensor measurements, uy is an external input, and A, B, and C
are matrices. The state evolves with time following the mathematical relationship
in (1.1). While we may be unable to observe x; directly, we do have the sensor
readings yy that are related to it. The question is, can we now apply this formulation
to the human body? In this case, X, could be any of the unobserved quantities we

b |L| . | |
Y Y Y\
T : — L
m  f—

Fig. 1.1 Some examples of engineering systems that can be modeled using state-space represen-
tations. The left sub-figure depicts a spring—mass—damper system, and the right sub-figure depicts
an RLC circuit. We may not be able to directly observe all the states within each system, but we
can build state-space models and use whatever measurements we have to estimate them
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just mentioned (e.g., energy production, emotion, or concentration) and y; could be
any related physiological measurement(s).

In this book, we will make use of an approach known as expectation—
maximization (EM) for estimating unobserved quantities using state-space models.
In a very simple way, here is what the EM algorithm does when applied to state
estimation. Look back at (1.1) and (1.2). Now assume that this formulation governs
how emotional states () vary within the brain and how they give rise to changes
in heart rate and sweat secretions (y) that can be measured. We do not know x; for
k=1,2,..., K, and neither do we know A, B, or C. We only have the recorded
sensor measurements (features) yi. First, we will assume some values for A, B, and
C, i.e., we will begin by assuming that we know them. We will use this knowledge
of A, B, and C to estimate x; fork = 1,2, ..., K. We now know x; at every point
in time. We will then use these x;’s to come up with an estimate for A, B, and
C. We will then use those new values of A, B, and C to calculate an even better
estimate for x;. The newest x; will again be used to determine an even better A, B,
and C. We will repeat these steps in turn until there is hardly any change in x, A,
B, or C. Our EM algorithm is said to have converged at this point. The step where
Xy, is estimated is known as the expectation-step or E-step and the step where A, B,
and C are calculated is known as the maximization-step or M-step. For the purpose
of this book, we will label the E-step as the state estimation step and the M-step as
the parameter estimation step. What follows next is a basic description of what we
do at these steps in slightly more detail.

1.1.1 State Estimation Step

As we have just stated, our EM algorithm consists of two steps: the state estimation
step and the parameter estimation step. At the state estimation step we assume
to know A, B, and C and try to estimate x; for k = 1,2,..., K. We do this
sequentially. Again, look back at (1.1) and (1.2). Suppose you are at time index
k and you know what A, B, C, and x¢_1 are, could you come up with a guess
for x;? You can also assume that you know what the external input u is for
k=1,2,..., K. How would you do determine x ? First, note that we can re-write
the equations as

Xy = AXp_1 + Bug_ (1.3)
Yi = Cxg. (1.4)

If you knew A, B, C, X¢_1, and u;_1, and had to determine X, just at time index
k, you would encounter a small problem here. Do you see that x; appears in both
equations? You could simply plug-in the values of x;_; and ux_; into (1.3) and
get a value for x;. Since you are using the past values up to time index (k — 1) to
determine X, this could be called the predict step. You are done, right? Not quite. If
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you determine X solely based on (1.3), you would always be discounting the sensor
measurement yi in (1.4). This sensor measurement is also an important source of
information about x;. Therefore, at each time index k, we will first have the predict
step where we make use of (1.3) to guess what x; is, and then apply an update step,
where we will make use of y; to improve the x; value that we just predicted. The
full state estimation step will therefore consist of a series of repeated predict, update,
predict, update, . . . steps fork = 1, 2, ..., K. Atthe end of the state estimation step,
we will have a complete set of values for xy.

Dealing with uncertainty is a reality with any engineering system model. These
uncertainties arise due to noise in our sensor measurements, models that are unable
to fully account for actual physical systems and so on. We need to deal with this
notion of uncertainty when designing state estimators. To do so, we will need some
basic concepts in probability and statistics. What we have said so far regarding
estimating Xy can be mathematically formulated in terms of two fundamental ideas
in statistics: mean and variance. In reality, (1.3) and (1.4) should be

Xp = AXp_1 + Bug_1 + e (1.5)
Yk = Cxg + Vi, (1.6)

where e is what we refer to as process noise and vy, is sensor noise. Therefore, when
we “guess” what Xy is at the predict step, what we are really doing is determining the
mean value of x; given that we have observed all the data up to time index (k — 1).
There will also be a certain amount of uncertainty regarding this prediction for xk.
We quantify this uncertainty in terms of variance. Thus we need to determine the
mean and variance of x; at our predict step. But what happens after we observe y; ?
Again, the idea is the same. Now that we have two sources of information regarding
X (one based on the prediction from x;_; and u;_j, and the other based on the
sensor reading yi ), we will still be determining the mean and variance of x. So we
need to calculate one mean and variance of x; at the predict step, and another mean
and variance of x; at the update step.

1.1.2 Parameter Estimation Step

Recall that our EM algorithm iterates between the state estimation step and
the parameter estimation step until convergence. Assume that we sequentially
progressed through repeated predict, update, predict, update, ... steps for k =
1,2, ..., K and determined a set of mean and variance (uncertainty) values for xy.
How could we use all of these mean and variance values to determine what A, B,
and C are? Here is how we proceed. We first calculate the joint probability for all
the x4 and y values. The best estimates for A, B, and C are the values that maximize
this probability (or the log of this probability). Therefore, we need to maximize this
probability with respect to A, B, and C. One simple way to determine the value at
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which a function is maximized is to take its derivative and solve for the location
where it is 0. This is basically what we do to determine A, B, and C (in reality, we
actually maximize the expected value or mean of the joint log probability of all the
x; and yj values to determine A, B, and C).

1.1.3 Algorithm Summary

In summary, we have to calculate means and variances at the state estimation
step and derivatives at the parameter estimation step. We will show how these
equations are derived in a number of examples in the chapters that follow. The
EM approach enables us to build powerful state estimators that can determine
internal physiological quantities that are only accessible through a set of sensor
measurements.

What we have described so far is a very simple introduction to the EM algorithm
as applied to state estimation. Moreover, for someone already familiar with state-
space models, the predict and update steps we have just described should also sound
familiar. These are concepts that are found in Kalman filtering. The derivation of the
Kalman filter equations is generally approached from the point of view of solving
a set of simultaneous equations when new sensor measurements keep coming in. In
this book, we will not approach the design of the filters through traditional recursive
least squares minimization approaches involving matrix computations. Instead, we
will proceed from a statistical viewpoint building up from the basics of mean and
variance. Nevertheless, we will use the terminology of a filter when deriving the
state estimation step equations. For reasons that will become clearer as we proceed,
we can refer to these state estimators as Bayesian filters.

1.2 Book Outline

State-space models have been very useful in a number of physiological applications.
In this book, we consider state-space models that give rise, fully or partially, to
binary observations. We will begin our discussion of how to build Bayesian filters
for physiological state estimation starting with the simplest cases. We will start by
considering a scalar-valued state x; that follows the simple random walk

Xk = Xk—1 + &k, (L.7)

where g, ~ N0, %2) is process noise. We will consider how to derive the state
and parameter estimation step equations when x; gives rise to a single binary
observation n;. We will next proceed to more complicated cases. For instance, one
of the cases will be where we have a forgetting factor p such that
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Xk = PXk—1 + &k, (1.8)

and xj gives rise to both a binary observation n; and a continuous observation ry.
An even more complicated case will involve an external input so that

Xk = pXk—1 +aly + &, (1.9)

where o[} is similar to the Buy in (1.1), and x; gives rise to a binary observation
ny and two continuous observations r¢ and sx. As we shall see, changes in the state
equation primarily affect the predict step within the state estimation step. In contrast,
changes in the observations mainly affect the update step.

Note that we mentioned the observation of binary and continuous features. When
introducing the concept of physiological state estimation for the first time, we used
the formulation

Yk = Cxi + Vi (1.10)

for the sensor measurements. In reality, this represents a very simple case, and
the equations turn out to be similar to that of a Kalman filter. Sensor measure-
ments in biomedical experiments can take many forms. They can take the form
of binary-valued observations, continuous-valued observations, and spiking-type
observations, to name a few. For instance, we may need to estimate the learning
state of a macaque monkey in a behavioral experiment based on whether the monkey
gets the answers correct or incorrect in different trials (a binary observation),
how quickly the monkey responds in each trial (a continuous observation), and
how electrical activity from a specific neuron varies over the trials (a spiking-type
observation). These types of measurements result in filter equations that are more
complicated than in the case of a Kalman filter. We will rely heavily on Bayes’ rule
to derive the mean and variance of x; at the update step in each case.

While the state estimation step relies primarily on mean and variance calcula-
tions, the parameter estimation step relies mainly on derivatives. At the parameter
estimation step, we take the derivatives of the probability terms (or equivalently, of
the log-likelihood terms) to determine the model parameters. For instance, if we use
the state equation in (1.8), we will need to derive p at the parameter estimation
step. Moreover, we also need to determine the model parameters related to our
observations. For instance, we may choose to model a continuous observation ry
as

Tt = Yo + ViXk + Uk, (1.11)

where y and y; are constant coefficients and vy ~ N(0, ovz) is sensor noise. The
three parameters yy, ¥, and 03 all need to be determined at the parameter estimation
step. We could thus divide the parameter estimation step derivations into two parts.
First, there will be the derivations for model parameters in the state equation (e.g.,
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p, a, and 082). And second, there will be the derivations corresponding to each of
the observations (features). Choosing to include a continuous-valued observation
in a state-space model will necessitate the determination of a certain set of model
parameters. Adding a spiking-type observation necessitates a further set of model
parameters. We will see examples of these in due course.

Having laid some of the basic groundwork, we will next proceed with our tutorial
discussion of how to derive the state and parameter estimation step equations for
several different physiological state-space models. Shown below is a list of the state-
space models we will look at along with examples of where they have been applied:

 State-space model with one binary observation:

— Behavioral learning [4]
— Sympathetic arousal estimation using skin conductance signals [25, 26]

* State-space model with one binary and one continuous observation:

— Behavioral learning [5]

— Emotional valence estimation using electromyography (EMG) signals [27]

— Seizure state estimation using scalp electroencephalography (EEG) signals
[28]

» State-space model with one binary and two continuous observations:

— Sympathetic arousal estimation using skin conductance signals [29]
— Energy state estimation using blood cortisol concentrations [30]

» State-space model with one binary, two continuous, and a spiking-type observa-
tion:

— Sympathetic arousal estimation using skin conductance and electrocardiogra-
phy (EKG) signals [31]

» State-space model with one marked point process (MPP) observation:
— Sympathetic arousal estimation using skin conductance signals [32]
* State-space model with one MPP and one continuous observation:

— Energy state estimation using blood cortisol concentrations [33]
— Sympathetic arousal estimation using skin conductance signals [33]

Wearable and smart healthcare technologies are likely to play a key role in the
future [34, 35]. A number of the state-space models listed above have applicability to
healthcare. For instance, patients suffering from emotional disorders, hormone dys-
regulation, or epileptic seizures could be fitted with wearable devices that implement
some of the state-space models (and corresponding EM-based estimators) listed
above for long-term care and monitoring. One of the advantages of the state-space
framework is that it readily presents itself to the design of the closed-loop control
necessary to correct deviation from healthy functioning. Consequently, state-space
controllers can be designed to treat some of these disorders [36, 37]. Looking at the
human body and brain from a control-theoretic perspective could also help design
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bio-inspired controllers that are similar to its already built-in feedback control loops
[38, 39]. The applications, however, are not just limited to healthcare monitoring,
determining hidden psychological and cognitive states also has applications in fields
such as neuromarketing [40], smart homes [41], and smart workplaces [42].

Excursus—A Brief Sketch of How the Kalman Filter Equations Can be
Derived
Here we provide a brief sketch of how the Kalman filter equations can
be derived. We will utilize an approach known as recursive least squares.
The symbols used within this excursus are self-contained and should not be
confused with the standard terminology that is used throughout the rest of this
book.

Suppose we have a column vector of unknowns x and a column vector of
measurements y; that are related to each other through

yi =Aix+e, (1.12)

where A; is a matrix and e; ~ N(0, 2;) is noise (X is the noise
covariance matrix). In general, we may have more measurements than we
have unknowns. Therefore, a solution to this system of equations is given by

xi = (AT ATl ATE Ny, (1.13)

where we have used x; to denote that this solution is only based on the first
set of measurements. Now suppose that we have another set of measurements
y2 such that

y2 = Aox + ey, (1.14)

where Aj is a matrix and e; ~ N(0, 35). In theory, we could just concatenate
all the values to form a single set of equations and solve for x. However, this
would result in a larger matrix inversion each time we get more data. Is there
a better way? It turns out that we can use our previous solution x; to obtain a
better estimate X, without having to solve everything again. If we assume that
e and e; are uncorrelated with each other, the least squares solution is given

WG GOl () () () o
Ay 0 % Aj Aj 0 % Y2
_ —1 1 T
1\ E O ><A1>] T AT (21 0 )(Y1>
1A2)< 0 z7!'/\4; (4T 41)( = \n
(1.16)

(continued)
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X) =X — KAyx| + [P] — P Ag(Ez + Ay Py Ag)_lAzpl]A.erZ_Iyz,
(1.26)

When multiplying the terms on the right, we will define the term Q = (X7 +
Ap PlAg )_1. Making this substitution, we obtain
X) =X — KA»x| + (P] — P A; QAQP])A;EZ_I)’Q (1.27)

X2 =X — KA + PLAIS 'y, — PIA] QAL P AT S Nys. (1.28)

Here is where we will use a small trick. We will insert Q Q! into the third
term and then simplify.

X2 =X — KAoxi + PLAJ 0O '55 'y, — PIAT QAL PL AT S y)
(1.29)
=x; — KAxx; + PLA]J QO™ — A, P A ES Tys. (1.30)
Since Q = (I + A2 P1A]) ™!, 07! = £, + A, P A]. We will substitute this

into (1.30) to obtain

Xo =X — KAyx| + P1A;Q(Ez + A2P1A; — A2P1A;)Zz_ly2 (1.31)
=x| — KAxx; + PIA] 05,5, 'y, (1.32)
=Xx] — KAyx| + Py A; Oy>. (1.33)

Note that PjA] O = P;AT (2 + A, PiAT)~! = K. Therefore,

X) = X] — KAyX] + Ky» (1.34)
=X + K(y2 — Axxy). (1.35)

What does the final equation mean? We simply take our previous solution X1,
predict what y, will be by multiplying it with A, calculate the prediction
error yp — AsXj, and apply this correction to x; based on the multiplication
factor K. These equations, therefore, provide a convenient way to continually
update x when we keep receiving more and more data.
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Excursus—A Brief Sketch of How the EM Algorithm Works
Here we will provide a brief overview of how the EM algorithm works in
the kind of state estimation problems that we shall see. Assume that we have
a set of sensor measurements Y = {y1, y2, ..., Yk} and a set of unobserved
states X = {x1, x2, ..., xg} that we need to estimate. We also have the model
parameters ® that need to be determined.

Let us begin by asking the question as to how we can determine ©.
In general, we select ® such that it maximizes the probability p(®|)).
Assuming that we do not have a particular preference for any of the ® values,
we can use Bayes’ rule to instead select the ® that maximizes p()|®). Now,

mw®winme@mx (136)

We do not know what the true © is, but let us make a guess that it is ©. Let us
now introduce the term p(X|) N ®) into (1.36).

p(X|1YNO)
e) = / = p(XNY|O)dX (1.37)
POIO= | @y nd)” |
. p(XNY|O)
= (XY NO)——————-dX. (1.38)
/x P p(X1YNO)

Take a moment to look carefully at what the integral is doing. It is actually
calculating the expected value of the fraction term with respect to p (X |YN®).
Taking the log on both sides, we have

~ p(XNY|O)

1 e =1 [/ (leﬁG))p—AdX] (1.39)
el pXIY N 6)

Since log(-) is a concave function, the following inequality holds true.

. (X NY|O)

log [p(V]|®)] > f X1y ndlo ["—A}dx (1.40)
@z o tlr@yné)

log [p(V1©)] > fX PX1Y 0 6) log [p(X N V|©)]dX
— /X p(X|Y N O)log[p(X|Y NO)|dx. (1.41)

Recall that we set out to choose the ® that maximized p()|®), or that
equivalently maximized log[p(Y|®)]. Typically, we would approach this

(continued)
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maximization by calculating the derivative of the probability term with
respective to ©, set it to 0, and then solve. For instance, if we had a
continuous-valued observation r; in our state-space model, we would have
to take the derivatives with respect to yp, y1, and avz, set them each to 0, and
solve. Look back at (1.41). Assume we were to calculate the derivative of the
term on the right-hand side of the inequality with respective to ®. Do you
see that the second term does not contain ®? In other words, the derivative
would just treat the second term as a constant. If we had to determine yy, yi,
and crvz, for instance, they would only be present in the first term when taking
derivatives. We can, therefore, safely ignore the second term. This leads to
an important conclusion. If we need to determine the model parameters ® by
maximizing log [ p()Jl@)], we only need to concentrate on maximizing

/Xp(;wym@) log [p(XﬂJJl@)]dX. (1.42)
We could equivalently write (1.42) as

Epyne| log[p(x 0 V10)]] (143)

since this is indeed an expected value. Do you now see the connection between
what we have been discussing so far and the EM algorithm? In reality, what
we are doing at the state estimation step is calculating E[X'|)Y N ©]. At the
parameter estimation step, we calculate the partial derivatives of the expected
value of log [ p(X N y|®)] with respect to all of the model parameters.
During the actual implementation of the EM algorithm, we keep alternating
between the two steps until the model parameters converge. At this point, we

have reached one of the localized maximum values of E X1VN6 [ log [ p(xXn

vie)]]
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Chapter 2 ®
Some Useful Statistical Results Checkfor

The EM algorithms for state estimation that we consider in this book rely on basic
concepts in statistics. In this chapter, we will review some results that will come
in useful later on. Many of the concepts are introductory and only require a basic
knowledge of probability and statistics. If you are already familiar with what is
discussed here, feel free to skip ahead.

2.1 Basic Concepts Related to Mean and Variance

Shown below are some basic statistical results related to mean and variance that will
be helpful when deriving the EM algorithm equations.

Basic Statistical Results—Part A

Given the random variables X; and Zi, and the constant values p and «, the
following results hold true for mean and variance. We use E[-], V (-), and
Cov(-) to denote the mean or expected value, the variance, and covariance,
respectively.

E[Xk + Zk] = E[ Xk ] + E[Zk] (2.1
E[Xk + o] = E[Xk] + « (22)
E[pXk] = pE[Xk] (2.3)
V( Xk + Zi) = V(Xi) + V(Zr) +2Cov(Xk, Zi) 2.4)
(continued)
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V(Xp+a) = V(Xp) (2.5)
V(oXp) = p*V(Xp). (2.6)

2.2 Basic Statistical Results Required for Deriving the
Update Equations in the State Estimation Step

We will also require two results based on Bayes’ rule and Gaussian distributions,
respectively, when deriving the update equations in the state estimation step. The
two results are shown below:

e Result 1:

P(BIANC)P(A|C)

P(AIBNC) = PEIC)

We will consider the derivation of this result in two steps:

— Step I:
P(ANBNC)
P(A|BﬂC):W 2.7)
_ P(ANBNC) o P(C) 2.8)
P(BNC) P(C)
P(ANBNC) 1
= X (2.9)
PO TR
_ PranBicy (2.10)
P(B|C)
— Step 2:
P(ADB|C)=M (2.11)
P(C)
_P@ANBNO PANC) 2.12)
P(C) P(ANC)
P(ANBNC) PANCQOC)
= X (2.13)

P(ANC) P(C)
= P(B|ANC)P(A|C). (2.14)
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We will substitute the result for P(A N B|C) in (2.14) and put it into (2.10) to
obtain
P(ANB|C)  P(BIANC)P(A|C)

P(AIBNC) = PEIC) " PGEIC) . (2.15)

Basic Statistical Results—Part B
Letting A = Xy, B = Y}, and C = Y1.4—1, we can use the result just shown
above to obtain

P (Y| Xg, Y1—1) P(Xi|Y1:6—1)
P(Yi|Y1:6—1) ;

P(Xp|Y14) = P(Xg| Yk, Y1k—1) =
(2.16)

Recall that we split our state estimation into two steps: the predict step and
the update step. At the predict step, we derive an estimate for x; given that we
have not yet observed the sensor reading yi. This estimate is actually based on
P (X|Y1:xk—1) since information only available until time index (k — 1) is used
to derive it. At the update step, we improve the predict step estimate based on
P (X |Y1:x—1) to now include information from the new sensor measurement
Yk, 1.€., we make use of y; to obtain a new estimate based on P (X |Y1.x). The
result in (2.16) will come in very useful at the update step.

* Result 2:

The mean and variance of a Gaussian random variable can be obtained by
taking the derivatives of the exponent term of its probability density function
(PDF).

Consider X ~ N (i1, o2). The PDF of X is given by

(v — 2
e?* where g = M

2.17
2mo? 202 @17

p(x) =

To obtain the mean of X, we take the derivative of ¢ and set it to O to determine
where the maximum value occurs.

dg _ —2x —m) _

dx 202
= X =U. (2.19)

0 (2.18)

Therefore, the mean value occurs at the location for x at which the derivative of
the exponent term is equal to 0.
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We next consider the variance. The second derivative of ¢ with respect to x is

d’q -1
F Ry (2.20)
And therefore, the variance is given by
g\
— o’ = —<—de> . 2.21)

Basic Statistical Results—Part C

In all the derivations of the state estimation step update equations, we will
assume that the density functions are approximately Gaussian. We will also
make use of what we have just shown: (i) the mean value is given by the
location at which the first derivative of the exponent term is equal to 0; (ii)
the variance is given by the negative inverse of the second derivative of the
exponent term.

2.3 General Observations Related to Gaussian Random
Variables

In general, for a set of independent Gaussian random variables Z; ~ N (u;, al.z),
the following holds true.

Za; Z; ~ N( Z a; i, Za?oiz), (2.22)

where the a;’s are constant terms. Also, adding a constant term to a Gaussian random
variable will cause it to remain Gaussian but have a shifted mean and unchanged
variance. This can be verified from first principles (change of variables formula).

Basic Statistical Results—Part D
In general, for a set of independent Gaussian random variables Z; ~

N(Ml ’ Ui2)7

Za,- Z; ~ N( Z a; Wi, Zaizaiz) (2.23)
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Chapter 3 )
State-Space Model with One Binary e
Observation

In this chapter, we will consider a state-space model where a single state variable xj
gives rise to binary observations. We will see how the state and parameter estimation
equations are derived for this case. However, prior to deriving any of the equations,
we will first look at two example scenarios where the need for such a model arises.

We human beings learn. We start learning since the time we were born, and
learning continues thereafter as a life-long process. How exactly do we learn?
And how do animals learn? These are interesting problems that scientists have
investigated for years. One of the problems that arises in learning experiments
with animal models is determining when an animal is considered to have learned
something. For instance, suppose that a macaque monkey needs to learn how to
correctly identify a particular visual target shown on a computer screen. The monkey
may receive a reward for every correct answer. Similarly, a rat may have to learn to
how to recognize an audio cue to receive a reward in a maze (Fig.3.1). How could
we know that the animal has actually learned? This is an interesting question. We
could, for instance, come up with heuristic rules such as stating that the animal
has indeed learned when five consecutive correct answers (or some other number)
are recorded. But could something more systematic be developed? This problem
is what motivated the work in [4]. Here, learning was characterized using a state-
space model. Since correct and incorrect are the only possible trial outcomes, the
observations are binary-valued. Moreover, rather than just deciding whether the
animal has learned or not yet learned, the objective was to estimate a continuous
learning state x; based on the sequence of binary responses ny. When learning
has not yet occurred, more incorrect responses occur in the trials and x; remains
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o Correct/incorrect
responses

E:]“ Cognitive learning
state

Fig. 3.1 A rat in a T-maze experiment with binary-valued correct/incorrect responses. Binary-
valued correct/incorrect responses can be used to estimate the cognitive learning state of a rat
based on its responses in successive trials. The model was used in [4] for this purpose where the
rat had to learn to recognize which direction to proceed in based on an audio cue

low. However, as the animal begins to learn, more correct responses occur and
X increases. Thus it is possible to see how learning continuously progresses over
successive trials.

The second example relates to emotions and the nervous system. We primarily
sweat to maintain internal body temperature. However, tiny bursts of sweat are also
released in response to psychologically arousing stimuli. These variations in sweat
secretions cause changes in the conductivity of the skin and can be picked up easily
by skin conductance sensors. Since the sweat glands are innervated by nerve fibers
belonging to the sympathetic branch of the autonomic nervous system [43], a skin
conductance signal becomes a sensitive index of sympathetic arousal [44]. Now a
skin conductance signal comprises a slow-varying tonic component on top of which
a faster-varying phasic component is superimposed [45, 46]. The phasic component
consists of what are known as skin conductance responses (SCRs). These SCRs
have characteristic bi-exponential shapes. Each of these SCRs can be thought of as
being produced by a single burst of neuroelectric activity to the sweat glands [47].
It is these phasic SCRs that give a skin conductance signal its “spikey” appearance
(Fig.3.2). A deconvolution algorithm can be used to recover the bursts of neural
activity underlying a skin conductance signal [47-50]. Importantly, the occurrence
of these neural impulses is related to a person’s arousal level. In particular, the higher
the underlying sympathetic arousal, the higher the rate at which neural impulses
to the sweat glands (or SCRs) occur [S1]. Thus the same state-space model with
binary observations based on neural impulses to the sweat glands was used in [26]
to estimate sympathetic arousal. By tracking the occurrence of the impulses ny, a
person’s arousal state could be estimated over time.
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Fig. 3.2 A deconvolved skin conductance signal. A skin conductance signal comprises both a
tonic and phasic component. The neural impulses underlying phasic variations can be extracted
via deconvolution. The figure depicts a skin conductance signal (blue) and the sequence of neural
impulses that underlie its phasic variations (red). From [32], used under Creative Commons CC-
BY license

3.1 Deriving the Predict Equations in the State Estimation
Step

Let us now consider the state-space model itself. For simplicity, we will also not
use upper case letters for the unknowns although they are indeed random variables.
Instead, we will follow the more familiar notation for state-space control systems
with lower case letters. Let us begin by assuming that x; evolves with time following
a random walk.

Xk = Xk—1 + &k, (3.1)

where the process noise term g ~ N (0, %2) is independent of any of the x; values.

For now, let us not think of (3.1) as being the state equation in a control system.
Instead, let us just consider (3.1) purely as a relationship between three random
variables. Supposing we only had this equation and had to determine x;, what would
be the best guess that we could come up with and how uncertain would we be about
it? Our best estimate for x; would be its mean, and the uncertainty associated with
it would be its variance. We will use the basic formulas in (2.1)—(2.6) to determine
the mean and variance of x;. We will first derive the mean.

Elxi] = Elxg—1 + &l (3.2)
= E[xx—1] + E[ex] using (2.1) (3.3)
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= E[xr_1] since E[ex] =0 (3.4
CoED] = xe—1k—1s (3.5)

where we have used the notation x;_1x—1 to denote the expected value E[x;_1]. In
a typical state-space control system, xi_1x—1 represents the best estimate for x;_;
given that we have observed all the sensor measurements up to time index (k — 1).
We will also use the notation E[x;] = xxx—1 to denote the mean state estimate at
time index k, given that we have only observed the sensor readings until time index
k—1).

Next we will derive the uncertainty or variance of x; using the same basic
formulas.

V(xk) = V(xk—1 + &x) (3.6)
= V(xg—1) + V(ex) + 2Cov(xk—1, &) using (2.4) 3.7
= V(xx—1) + V(ex) since & is uncorrelated with any of the x; terms

(3.8)
. _ 2 2
SV = Ok—1lk—1 +o,, 3.9

where we have used the notation Uk{] k1 1O denote the variance V (xx—1). Again, in

a typical state-space control system, ‘71{2—1| ©_1 represents the uncertainty or variance
of xx_1 given that we have observed all the sensor readings up to time index (k — 1).
Just like in the case of the mean, we will use the notation V (x) = UI<2| ¢ to denote
that this is the variance estimate at time index k, given that we have only observed
the sensor readings until time index (k — 1). Therefore, our predict equations in the
state estimation step are

Xklk—1 = Xk—1]k—1 (3.10)

2 2 2
Oklk—1 = Ok—1jk—1 + O¢ - (3.11)

From our knowledge of Gaussian distributions in (2.23), we also know that xj is
Gaussian distributed since xx_1 and ¢, are Gaussian distributed and independent of
each other. Since we have just derived the mean and variance of x;, we can state that

! 2
— O =Xk lk—1)

1 22
e Thk=t o (3.12)

p(xklnix—1) = T
v 27O k-1

where the conditioning on n1.;—; indicates that we have observed the sensor mea-
surements up to time index (k — 1). What happens when we observe measurement
ny at time index k? We will see how our estimates xgx—1 and ak2| ¢ can be
improved/updated once we observe ny in the next section.
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When x; evolves with time following x; = x;_1 + &, the predict equations
in the state estimation step are

Xklk—1 = Xk—1]k—1 (3.13)

2 2 2
Oklk—1 = Ok—1jk—1 T O¢ - (3.14)

3.2 Deriving the Update Equations in the State Estimation
Step

The binary observations ny that we consider here could be in the form of correct/in-
correct responses in a behavioral experiment, neural impulses in a skin conductance
signal, hormone pulses, etc. Let us assume that x; is related to the probability pi
with which the binary events occur through

1

= TrwT (3.15)

Pk

where B is a constant. Here, py = P(ny = 1) and (1 — pr) = P(nr = 0).
Equation (3.15) depicts what is known as a sigmoid relationship. Accordingly, the
higher x; is, the higher will be px. In other words, the higher x; is, the higher the
probability of 1’s occurring in the observations.

At this point, we need to note an important result concerning the derivative of
the sigmoid function.

divk D —~(Bor+x)
d_xk =] m X e 0Xk) ¢ (—1) (316)
1 [ e~ (Botxi) 317
T 1+ e—Botxo) x | 1 4 e~ (Potx) 317
1 (1 4 e~ Potx) _ 1 318
T lde Gt | T 11 e Gorn (Bo1E)
1 i 1
T 11 e Botmo X _1 - 1+e—(,30+xk)i| 12

= pr(1 — pp). (3.20)
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Now the occurrence of ny = 0 or ny = 1 follows a Bernoulli distribution.
Therefore,
plulxe) = pp*(1 — pr)' ™™ (3.21)
1 ng 1 1—ny
- [1 T e(,30+xk)] [1 1+ e(ﬁo+)6k)i| : (3.22)

We will also utilize another useful result here. For a positive number a, a = elog@)
(this can be easily verified by taking the log value on both sides). We can use this to
express p(ng|xx) as shown below.

p(nglxi) = pt (1 — pr)' =" (3.23)
_ Joe[pka-pot-] (3.24)
_ oz [t Jiog [a-py ] (3.25)
— Mk log(pi)+(1—ni) log(1—pr) (3.26)

_ enk log (1571;11(>+10g(1_17k). (3.27)

Now assume that we just observed n;. What would be our best estimate of x; given
that we have observed n1.? In other words, what is p(xg|ni.x), and how can we
derive its mean and variance? We can use the result in (2.16) to determine what

p(xklnig) is.
Pl xp, nik—1) p(Xkln1k—1)

pxrlnik) = p(xplng, nig—1) = . (3.28)
pnglnik—1)

Let us consider the terms in the numerator. Now p (ng|xg, ni:x—1) = p(ng|xx) since
we have an explicit relationship between ny and xj as shown in (3.15), which makes
the additional conditioning on the history ny.x—; irrelevant. We know what p(ny|xx)
is based on (3.26). We also know what p(xx|n.x—1) is based on (3.12).

We now need to determine the mean and variance of p(xg|ni.x). To do so, we
will assume that it is approximately Gaussian distributed. Recall from the earlier
results in (2.19) and (2.21) that the mean and variance of a Gaussian distribution
can be derived from its exponent term alone. Therefore, we only need to consider
the exponent of p(xi|nix) and can ignore the other terms. We will therefore
substitute the terms for p(ny|xx) and p(xg|ni.x—1) in (3.26) and (3.12), respectively,
into (3.28).

*(’fk*xk\k—ﬂz
2
p(xklnii) o p(nglxe) p(xxlngx_1) oc e 0ePOFU=nlog=p) s o g1
(3.29)
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Taking the log on both sides and labeling it as g, we have

q = log[p(xk|n1x)] = nilog(pr) + (1 — ng) log(1 — p)

2

— w + constant. (3.30)

20}jk—1

This equation provides us the exponent of p(x|ni.x), which we will use to derive

the mean and variance. We can obtain the mean by taking the first derivative of the

exponent and then solving for the location where it is 0. Likewise the variance is
given by the negative inverse of the second derivative.

Let us first proceed with calculating the mean. We will make use of the formula

for the derivative of py in (3.20).

dq 1 dpy 1 d 2(xg — Xkjk—1)
—=m———+U-n)——O-p)— ————=0
dxy Pk dxi (1 — pr) dx P 20k2|k—1
(3.31)
1 1 Xk — Xgjk—1)
ng—prk(l — pr) — (1 —np) ————pr(1 — pi) — 2—| =0
Pk (1- Pk) aklk—l
(3.32)
(Xk — Xkjk—1)
k(1 — pi) — (1 — ng) pr — ———%=L — 0
Oklk—1
(3.33)
(Xk — Xkjk—1)
nk—pr — ———E =0 (334)
Oklk—1
Xk — Xgjk—1)
g — pr = 2—' (3.35)
Oklk—1

Xk = Xklk—1 + 0k2|k_1(nk — Pk)- (3.36)

This equation gives us the mean of x;, which is now our new best estimate given
that we have observed all the data up to time index k. We will call this new mean
Xk k- It is an improvement over xgx—1, which did not include information from the
latest observation. Since

1

= T wT (3.37)

Pk

the x4 term appears on both sides of (3.36). Therefore, the equation has to be solved
numerically (e.g., using Newton’s method). To make this dependency explicit, we
will use the notation py; and express the mean as
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Xkk = Xklk—1 + Ukz|k_1(nk — Pklk)- (3.38)

We will next derive the variance. Now the first derivative of the exponent
simplified to

d Xk — Xklk—1)
a9 — g — pr — % (3.39)

dxi Oklk—1
The second derivative yields

d? 1
T = (1= p) = —— (3.40)
dxj; Oklk—1

Based on our knowledge of how variance can be derived from the exponent term
in a Gaussian distribution, the uncertainty or variance associated with our new state
estimate is

d?q\ ! 1 -1
o = —(—Z) = [ — + (1 - Pk):| . (3.41)
dxj, Oklk—1

Again, we will make the dependence of pj on xyx explicit and state

-1

1

ok =|—5—+prad =P | - (3.42)

| 2
Oklk—1

When x; gives rise to a single binary observation g, the update equations in
the state estimation step are

Xkl = Xkk—1 + Og_1 Mk — Pise) (3.43)
| -1
oy = [— + pr (1 — Pklk)] . (3.44)
| 2
Oklk—1

3.3 Smoothing in the State Estimation Step

Although we previously stated that the state estimation step primarily consisted of
the predict and update steps, in reality, there is a third step that we follow. The
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equations for this third step, however, do not vary much depending on the state-
space model and consequently do not require re-derivations every time we have a
new model. In fact, as we shall see, there is only one case where we need to make
changes to this third step. Now we first perform the predict, update, predict, update,
...stepsin turn for k = 1,2, ..., K to determine x; at each point in time. After
coming to the end, we reverse direction and obtain a set of smoothened mean and
variance estimates. The equations for this backward smoother are

2
g,
a2 (3.45)
Ok+11k
Xk|K = Xklk + Ak (k11K — Xkt11k) (3.46)
2 2 2, 2 2
%k = %k T Ak — Tipw)- (3.47)

The only change that occurs in these equations is if there is a forgetting factor p in
the state equation (e.g., xx = pxx—1 + &). In this case, we would have

2
O
Ap 2 p (3.48)
Ok+11k
Since we reverse direction making use of all the data through k = 1,2,..., K to

obtain the smoothened mean and variance estimates, we use the notation xj g and
0/<2| x to denote their values. These new estimates turn out to be smoother since we
now determine x; not just based on k = 1,2, ..., k (what we have observed up to
that point), but ratheron k = 1, 2, ..., K (all what we have observed).

We will also make a further observation. We need to note that x; g and akz‘ x can
be formally expressed as

xkik = Elxklni:x, O] (3.49)
ok = V(xlnik. ©), (3.50)

where ® represents all the model parameters. In the case of our current state-space
model, the only unknown model parameter is 062 (and Bp, but we will assume that
this is calculated differently). Why is the expected value conditioned on ®? Recall
that the EM algorithm consists of the state and parameter estimation steps. At the
state estimation step, we assume that we know all the model parameters and proceed
with calculating x;. Mathematically, we could express this knowledge of the model
parameters in terms of conditioning on ®. In reality, we could also have expressed
Xkjk—1 and xgx (and the variances) in a similar manner, i.e.,

Xklk—1 = Elxg|n1:4-1, O] (3.51)
Xk = Elxg|nix, OJ. (3.52)
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Finally, we also need to note that we often require not only E[xx|n1.x, ®], but
also E[x,f|n1;1<, O] and E[xgxxy1ln1:x, ®] when we move on to the parameter
estimation step. Making use of the state-space covariance algorithm [52], these
values turn out to be

Elxflnix. ©] = Uy = x ¢ + 0k (3.53)
Elxixes1lnrx, ©] = Uk k41 = Xkjg Xkt11K + AkG](2+1|Ks (3.54)

where we have defined the two new terms Uy and U k1.

3.4 Deriving the Parameter Estimation Step Equations

Recall our earliest discussion of the EM algorithm. To describe how it functioned,
we assumed the simple state-space model

Xi+1 = AXy + Bug (3.55)
Yk = Cxy. (3.56)

We stated that, at our state estimation step, we would assume that we knew A, B, and
C and then determine the best estimates for x;. The state estimation step consists of
the predict step, the update step, and the smoothing step that we perform at then end.
At the predict step, we make a prediction for x; using the state equation based on
the past history of values. At the update step, we improve this prediction by making
use of the sensor reading y; that we just observed. After proceeding through the
predict, update, predict, update. .. steps, we finally reverse direction and perform
smoothing. We primarily make use of the ideas of mean and variance at the state
estimation step. It is after performing the state estimation step that we proceed to
the parameter estimation step where we make use of the x; estimates and determine
A, B, and C. We select A, B, and C to maximize a particular probability. This
probability is the joint density of all our x4 and y; values. We also stated that, in
reality, it was not strictly the probability that we maximize, but rather the expected
value or mean of its log. Do you now see why the state estimation step involved
calculating the expected values of xi?

Let us now consider the joint probability term whose expected value of the log
we need to maximize. It is

p(xix Nyrk|®) = p(yrk X1k, O)p(x1:x[©). (3.57)
Since we only observe a single binary variable, we have y; = nj. Therefore,

px1:x Nnpig|®) = p(niklxik, ©)p(x1:k|0O). (3.58)
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We will first consider p(x:.x|®). What would be the total probability of all the xj
values if we only knew the model parameters ®? In other words, if we had no sensor
readings nj, what would be the probability of our x; values? To calculate this, we
would only be able to make use of the state equation, but not the output equation.
This probability is

p(x1:x|0) = p(x1|®) x p(x2]x1, O)
x p(x3lx1,x2,0) x ... X p(xglx1, x2,...,xk—1, ) (3.59)

1 —Cg=xg)?

K
= 202 3.60
,!:[1 JV2no ¢ ( )

Note that in the case of each term xj, xx—; contains within it the history needed to
get to it. Let us take the log of this value and label it Q.

@9l

—K

~ X (xx — xk—1)?
0= — log (2707 — kz = . (3.61)

2
vt 20¢

Now the only model parameter we need to determine is 082 (ignoring Bo). It turns
out that 052 only shows up in this term involving p(x1.x|®) and not in the term
involving p(ni.x|x1.x, ®). Let us now take the expected value of 0 and label it Q.

]E[(Xk - kal)z]

2
20¢

—-K
0= - log (277%2) - Z

k=1

(3.62)

What do we need to do at the parameter estimation step to determine 052? We simply
need to take the derivative of Q with respect to 052’ set it to 0, and solve. But the
expected value we need should be calculated conditioned on knowing ® and having
observed n1.x (i.e., we need E[xg|ni.x, ®]). Do you now see why we expressed
Xk k and Uk2|K in the way that we did in (3.49) and (3.50)?

3.4.1 Deriving the Process Noise Variance

While it is possible to determine the starting state xo as a separate parameter, we
follow one of the options in [4, 5] and set xo = x1. This permits some bias at the
beginning. Therefore,

]E[(Xk - xk—l)z]

2
20¢

-K K
0= - log (277052) - Z

k=2

(3.63)
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We will follow this method of setting xo = x1 in all of our parameter estimation
step derivations. We take the partial derivative of Q with respect to %2 and set it to
0 to solve for the parameter estimation step update.

K
30 —-K 1 a1
b0 =207 2O§]§E[(xk Xio1) ]_0 (3.64)
K
1
{E[x2] - 2B[xexe1] + B[x_, ] (3.65)
k:2
1 K K—1
E{Zuk 2 Uk,k+1+ZUk}. (3.66)
k=2 k=1 k=1

The parameter estimation step update for 062 when x; evolves with time
following xx = xx—1 + & is

1 K K—1 K—1
=E{2Uk—2ZUk,k+1+ZUk}. (3.67)
k=2 k=1 k=1

3.5 MATLAB Examples

In this book, we also provide a set of MATLAB code examples that implement the
EM algorithms described in each chapter. The code examples are organized into the
folder structure shown below:

e one_bin\
sim\

data_one_bin.mat
filter one_ bin.m

expm\

expm_data_one_bin.mat
expm_filter_one_bin.m

e one_mpp\
sim\

data_one_mpp.mat
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filter_one_mpp.m
expm\

expm_data_one_mpp.mat
expm_filter_one_mpp.m

e one_bin_two_cont\

e one_mpp_one_cont\

In the case of each state-space model, the corresponding “.m” file with the code
is self-contained and no additional path variables have to be set up in MATLAB.
The code is written in such a manner that the “.m” file can be run directly (it loads
the necessary data from the corresponding “.mat” file). The code in the “sim\” and
“expm\” folders correspond to examples running on simulated and experimental
data, respectively.

Estimating an unobserved state x; from a single binary observation ny gives rise
to the simplest state-space model and EM algorithm equations. The state-space
model with only nj; was originally developed in [4]. The code for running the
examples for this model are in the “one_bin\sim” and “one_bin\expm” folders. The
“one_bin\sim” folder contains the “filter_one_bin.m” and the “data_one_bin.mat”
files. The “.m” file contains the code and the “.mat” file contains the data. We will
use a similar naming style for all the code examples accompanying this book.

The state-space model we considered in this chapter contained the term Sy in p.
However, we did not yet explain how it was calculated. In several studies involving
behavioral learning experiments (e.g., [4]), Bo was determined empirically instead
of being estimated as a separate term at the parameter estimation step. Now

1
T 1+ e~ Botxo

Dk = log ( ) = Bo + xx, (3.68)

1 — px

and if we assume that x; &~ 0 at the very beginning, we have

ﬂo%log< Po > (3.69)

1 —po

We can use this to calculate Sy [4]. But what is po? In a typical learning experiment
involving correct/incorrect responses, po can be taken to be the probability of getting
an answer correct prior to any learning taking place. For instance, if there are only
two possible answers in each trial, then pg = 0.5. If there are four possible answers
from which to choose, pp = 0.25. Similarly, in experiments involving the estimation
of sympathetic arousal from skin conductance, py can be taken to be the person’s
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baseline probability of neural impulse occurrence. If the experiment involves both
relaxation and stress periods, this baseline can be approximated by the average
probability of an impulse occurring in the whole data.

Let us first consider a basic outline of the code itself. The code takes the binary
inputs ny for which we use the variable n. Only a few parameters need to be set in
this particular code. One of the parameters is the baseline probability pg for which
we use the variable base prob. In general, we will set base prob to the average
probability of ny = 1 occurring in the data. Recall that in the EM algorithm, we
repeat the state estimation step and the parameter estimation step until the model
parameters converge. In this code example, we use the variable tol to determine
the tolerance level. Here we have set it to 107° (i.e., the EM algorithm continues
to execute until there is no change in the model parameters to a precision level in
the order of 107%). The variable ve denotes the process noise variance. We also
use x_pred, x_updt, and x_smth to denote xgx—1, Xk |k, and xx g, respectively. We
alsouse v_pred,v_updt, and v_smth to denote the corresponding variances akzl 1>
O’k2| ¢ and Uk2| x - Prior to performing all the computations, the model parameters need
to be initialized at some values. Here we have initialized the process noise variance
to 0.005 and set the initial value of the x; to 0.

base prob = sum(n) / length(n);
tol = le-6; % convergence criteria

ve(l) = 0.005;
x smth(1l) = 0;
b0 = log(base prob / (1 - base prob)) ;

At a given iteration of the EM algorithm, the code first proceeds in the forward

direction from k = 1,2, ..., K calculating both xzx—1 and xgx.

x pred(k) = x updt(k - 1);

v_pred(k) = v_updt(k - 1) + ve(m);

x_updt (k) = get state update(x pred(k), v_pred(k), b0, n(k));

p updt (k) = 1 / (1 + exp((-1) % (b0 + x updt(k))));

v updt(k) =1 / ((1 / v_pred(k)) + p updt(k) * (1 - p updt(k)));

Here the mean state update xjx is calculated using the function shown below
(Newton—Raphson method).

function [y] = get state update(x pred, v _pred, b0, n)

M = 50; % maximum iterations
it = zeros(l, M);
func = zeros(l, M) ;

df = zeros(l, M);
it (1) = x pred;

for i = 1: (M - 1)
func (i) = it (i)

- x pred - v pred * (n - exp(b0 + it (i)) /
(1 + exp(b0 + it (i)))

) 8
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df (i) = 1 + v _pred * exp(b0 + it(i)) / ((1 + exp(b0 + it (i
))) " 2);
it(i + 1) = it(i) - func(i) / df(i);
if abs(it(i + 1) - it(i)) < le-14
y = it(i + 1);
return
end
end

error ('Newton-Raphson failed to converge.’) ;

end

After proceeding in the forward direction, we reverse direction and proceed through
k=K,(K —1),...,1 to obtain the smoothened x; g and okle values. In the code
shown below, the variables w and cw denote Uy and Uy x4+ in (3.53) and (3.54),
respectively.

x_smth(K) = x updt (K) ;
v_smth(K) = v_updt (K) ;
W(K) = v_smth(K) + (x_smth(K) * 2);
A(l:(end - 1)) = v_updt(l:(end - 1)) ./ v _pred(2:end);
for k = (K - 1):(-1):1
x_smth (k) = x updt (k) + A(k) * (x_smth(k + 1) - x pred(k + 1));
v_smth(k) = v_updt(k) + (A(k) *~ 2) % (v_smth(k + 1) - v_pred(k
+1));
CW(k) = A(k) % v_smth(k + 1) + x_smth(k) % x smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) * 2);

end

After performing state estimation at a particular iteration, we then perform param-
eter estimation. The state estimation and the parameter estimation steps continue to
be executed in turn until convergence.

3.5.1 Application to Skin Conductance and Sympathetic
Arousal

Running both the simulated and experimental data examples produces the results
shown in Fig. 3.3. The code running on simulated data implements the EM algorithm
described in this chapter. The code running on experimental data, on the other hand,
runs a slightly modified version closer to what was implemented in [25, 26] for
estimating sympathetic arousal based on skin conductance. This version of the code
additionally attempts to estimate the starting state x( as a separate model parameter.

If this code is used to estimate sympathetic arousal based on skin conductance,
the only input that is required is the sequence of nj values (denoted by the variable
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n) that represents the presence or absence of neural impulses responsible for SCRs.
Ideally, the sequence of neural impulses must be extracted by deconvolving the skin
conductance data using a deconvolution procedure such as described in [47]. If,
however, deconvolution of the skin conductance data is not possible, a simpler
peak detection mechanism could be also used to provide these locations (peak
detection was used in [25] and deconvolution was used in [26] for sympathetic
arousal estimation). Also with the experimental data, and in several other examples
that follow, we use the term “HAI” to denote “High Arousal Index” since many
of our examples involve the estimation of sympathetic arousal from physiological
data. The HAI is inspired by the “Ideal Observer Certainty” term in [4] and is an
estimate of how much py, is above a certain baseline. The HAI can also be calculated
based on x; exceeding an equivalent baseline since py is related to xy.

The right sub-figure in Fig. 3.3 provides an example of how sympathetic arousal
varied for a particular subject engaged in an experiment involving different stressors.
The experiment is described in [53]. The first three shaded backgrounds correspond
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Fig. 3.3 State estimation based on observing one binary variable. The left sub-figure depicts
estimation on simulated data, and the right sub-figure depicts the estimation of sympathetic arousal
from skin conductance data. The sub-panels on the left, respectively, depict: (a) the binary event
occurrences nx; (b) the probability of binary event occurrence py (blue) and its estimate (red); (c)
the state x; (blue) and its estimate (red); (d) the quantile—quantile (QQ) plot for the residual error of
xi. The sub-panels on the right, respectively, depict: (a) the skin conductance signal; (b) the neural
impulses; (c) the arousal state x; and its 95% confidence limits; (d) the probability of impulse
occurrence and its 95% confidence limits; (e) the HAI (the regions above 90% and below 10% are
shaded in red and green, respectively). The background colors on the right sub-figure correspond
to the instruction period, a counting task, a color—word association task, relaxation, and watching
a horror movie clip. From [32], used under Creative Commons CC-BY license
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Sympathetic Arousal Estimation - Driver Stress
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Fig. 3.4 Driver stress estimation. The sub-panels, respectively, depict: (a) the skin conductance
signal; (b) the neural impulses; (c) the arousal state x; and its 95% confidence limits; (d) the
probability of impulse occurrence and its 95% confidence limits; (e) the HAI (the regions above
90% and below 10% are shaded in red and green, respectively). The background colors in turn
denote rest, city driving, toll road, highway, toll road, city driving, toll road, highway, toll road,
city driving, and rest. From [32], used under Creative Commons CC-BY license

to a period of instructions followed by two cognitive tasks. Arousal remains high
during this period. Arousal drops significantly during the relaxation period that

follows and briefly increases at the beginning of the emotional stressor (horror

movie) after that. Figure 3.4 also provides an additional example of how arousal
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varied in a driver stress experiment. The data come from the study described in [54].
In the experiment, each subject had to drive a vehicle along a set route comprising
of city driving, toll roads, and highways. Figure 3.4 shows how sympathetic arousal
varied during the different road conditions and the rest periods that preceded and
followed the actual drive.
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Chapter 4 ®
State-Space Model with One Binary e
and One Continuous Observation

In this chapter, we will consider the case where x; evolves with time following a
slightly more complicated state equation and gives rise to both a binary observation
ni and a continuous observation r. Prior to looking into the equation derivations,
however, as in the previous chapter, we will again first consider a few example
scenarios where the need for such a model arises.

In the previous chapter, we considered the estimation of a continuous-valued
learning state xj based on correct/incorrect responses in a sequence of experimental
trials. Based on a state-space model consisting of x; and the binary observations
ng, the cognitive learning state of an animal could be estimated over time [4]. Note,
however, that it is not just the correct/incorrect responses that contain information
regarding the animal’s learning state. How fast the animal responds also reflects
changes in learning. For instance, as an animal gradually begins to learn to recognize
a specific visual target, not only do the correct answers begin to occur more
frequently, but the time taken to respond in each of the trials also starts decreasing
(Fig.4.1). Thus, a state-space model with both a binary observation n; and a
continuous observation r; was developed in [5] to estimate learning. This was an
improvement over the earlier model in [4].

This particular state-space model is not just limited to cognitive learning. It can
also be adapted to other applications as well. Human emotion is typically accounted
for along two different axes known as valence and arousal [55]. Valence denotes the
pleasant—unpleasant nature of an emotion, while arousal denotes its corresponding
activation or excitement. Emotional arousal is closely tied to the activation of the
sympathetic nervous system [56, 57]. Changes in arousal can occur regardless of
the valence of the emotion (i.e., arousal can be high when the emotion is negative,
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Correct/incorrect responses

Reaction times
° e ® o °

e

Cognitive learning state

Fig. 4.1 A monkey in a learning experiment with binary-valued correct/incorrect responses where
reaction times are recorded. In a behavioral learning experiment, not only do the binary-valued
correct/incorrect responses contain information regarding learning, but the time taken to respond in
each trial also reflects changes in learning. The state-space model with correct/incorrect responses
and reaction times was used in [5] to estimate a cognitive learning state in animal models

as in the case of rage, or when it is positive, as in the case of excitement). As we
saw in the earlier chapter, skin conductance is a sensitive index of arousal. Changes
in emotional valence, on the other hand, often cause changes in facial expressions.
Information regarding these facial expressions can be captured via EMG sensors
attached to the face. The state-space model with one binary observation nj and one
continuous observation r; was used in [27] for an emotional valence recognition
application based on EMG signals. In [27], Yadav et al. extracted both a binary
feature and a continuous feature based on EMG amplitudes and powers from data
in an experiment where subjects watched a series of music videos meant to evoke
different emotions. Based on the model, they were able to extract a continuous-
valued emotional valence state xj; over time. The same model was also used in [28]
for detecting epileptic seizures. Here, the authors extracted a binary feature and
a continuous feature from scalp EEG signals to detect the occurrence of epileptic
seizures. Based on the features, a continuous-valued seizure severity state could
be tracked over time. These examples serve to illustrate the possibility of using
physiological state-space models for a wide variety of applications.

4.1 Deriving the Predict Equations in the State Estimation
Step

Let us now consider the state-space model itself. Assume that x; varies with time as
Xk = pXk—1 + &k, 4.1)

where p is a constant (forgetting factor) and & ~ A0, 03). As in the previous
chapter, we will, for the time-being, ignore that this is part of state-space control
system, and instead view the equation purely in terms of a relationship between
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three random variables. As before, we will also consider the derivation of the mean
and variance of x; using basic formulas. We first consider the mean.

Elxi] = Elpxg—1 + &l 4.2)
= E[pxr—1] + E[ex] using (2.1) 4.3)

= pE[xr_1] + E[ex] using (2.3) “4.4)

= pE[xr_1] since E[e;] =0 4.5)
SCElxe] = pxe—1jg—1- (4.6)

Next we consider the variance.

V(xk) = V(pxe—1+ &) 4.7
= V(pxi—1) + V(er) +2Cov(pxi_1, &) using (2.4) 4.8)
= V(pxr—1) + V(er) since g is uncorrelated with any of the x; terms

(4.9)
= p?V(xr—1) + V(&x) using (2.6) (4.10)
V) = pPof oy + ol (4.11)

Now that we know the mean and variance of x;, we can use the fact that it is also
Gaussian distributed to state that

2
— Ok =Xk lk—1)

1 202
e klk=1 (4.12)

Pxkl|ntk—1, rik—1) = T
/2710,(‘,(_1

When x; evolves with time following x; = pxr—1 + &k, the predict equations
in the state estimation step are

Xklk—1 = PXk—1[k—1 4.13)

Ofk_t = P O} 11 + 07 (4.14)

4.2 Deriving the Update Equations in the State Estimation
Step

In the current model, xj gives rise to a continuous-valued observation ry in addition
to n. We shall assume that xj is related to r through a linear relationship.
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Tk = Yo + vixk + v, (4.15)

where yg and y; are constants and vy ~ N (0, o*kz) is sensor noise. Our sensor
readings y; now consist of both r; and n;. What would be the best estimate of
xy once we have observed yy ? Just like in the previous chapter, we will make use of
the result in (2.16) to derive this estimate. First, however, we need to note that

— (g =vo=r15)?
2

e 2. (4.16)

p(relxy) =
202

v

This can be easily verified from (4.15). We are now ready to derive the best estimate
(mean) for xj; and its uncertainty. We will need to make use of p(ri|xx), p(ng|xr),
and p(xg|n1:k—1, r1:k—1) to derive this estimate. Note that we now have an additional
exponent term for ry in p(xg|ny.k, r1:x). Using (2.16), we have

Pkl rik)

_ pklxg, nik—1, k=1 Pkl X, nisk—1, Fik—1) POk [Rck—1, F1ik—1)
Pk, relnte—1, rik—1)

(4.17)
o p(ng|xp) p(riclxi) p(Xelnik—1, rik—1) (4.18)

—Ok=vo—v13%)? “Cumge1)?
o M 1og(p+(U—nlog=p1) o, 207 e (4.19)

Taking the log on both sides, we have
(ri — vo — y1x%)*
q = nglog(pr) + (1 —ny) log(1 — pr) — 3
20
_ 2

O = Xk—1)” + constant. (4.20)

2
20k|k—1

The mean and variance of x; can now be derived by taking the first and second
derivatives of g. Making use of (3.39), we have

d 1k —vo —vixe)  (xk — Xpje—1)
d_qznk_pk+’” A (4.21)
Xk 9y Oflk—1

We will use a small trick to solve for x; in the equation above. We will add and
subtract the term yxgx—1 in the term involving ry.
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Y1(rk — Yo — Y1Xk + ViXkk—1 — ViXkk—1)  (Xk — Xkjk—1)

ng — pk +

2 2
9y Oklk—1
(4.22)
Nk — v — Vixep—1) Vi (Xk — Xkjk—1)
ng — pk + 5 — S = Xkp—1) = —————
9y 9y Oklk—1
4.23)
Vi(rk — Y0 — Y1Xkjk—1) 1 i
Mg — Pk + 5 l = (xk _xk|k1)< —+ =
9% Ofk—1 %o
4.24)

o2(nk — pr) + Y1k — Yo — ViXkk—1)
2
UU

2, .22
oy + Vi k-1
=k = Xp-D| ——>=—— |-

Oklk—190

(4.25)
This yields the mean update
2

Okjk—1 2
Xk = Xkjk—1 + ﬁ[av (nk — pi) +v1re — vo — J/1Xk|k71)]-
Y1%k—1 T 0
(4.26)

Again, to clarify the explicit dependence of py on x; and the fact that this is the
estimate of x; having observed ny.x and ry. (the sensor readings up to time index
k), we shall say

2
Oklk—1
Xklk = Xklk—1 + —5

—z[df(nk — prp) + il — vo — leklkfl)}
Y1 %k—1 105

4.27)
We next take the second derivative of ¢ similar to (3.40). This yields
d*q y?2 1
—— ==l = po) — 5 — (4.28)
dx; %0 Oflk—1

Based on (2.21), the uncertainty or variance associated with the new state estimate
Xk |k, therefore, is

d? -1 1 y2 -1
UkZ\k = —<—Z) = [ 5 + prk (1 — prix) + —12} . (4.29)
dx; Oklk—1 oy
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When x; gives rise to a binary observation n; and a continuous observation
1k, the update equations in the state estimation step are

2
Oklk—1
Xk = Xklk—1 + —5—

—2[%2011( — Prik) + V1 — vo — )/lxk|k—l)]
YiO%kk—1 T 0%

(4.30)

1 y21!
f’k2|k = [ + prik (1 — prjk) + } : (4.31)
"k|k 1

U

4.3 Deriving the Parameter Estimation Step Equations

In the previous chapter, we only needed to derive the update equation for the process
noise variance 052 at the parameter estimation step. In the current model, we have a
few more parameters. Thus we will need to derive the update equations for p, yp,

y1, and o2 in addition to the update for o2

4.3.1 Deriving the Process Noise Variance

The derivation of the process noise variance update is very similar to the earlier case
in the preceding chapter. In fact, the only difference from (3.62) is that we will now
have pxi_1 in the log-likelihood term instead of x;_;. We shall label the required
log-likelihood term Q1.

K I[‘3[()% - ka—l)z]

K
0, = T1og (2r0?) kZ 707 (4.32)

We take the partial derivative of Q| with respect to ‘752 and set it to O to solve for the
parameter estimation step update.

901 K
902 202 207 Z [(xk N pxk—l] =0 (4.33)
& O )
1 K
= of = 3 |E[d] - 20E[wen] + 077, ]| (434)

k=2
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1 K K—1 K—-1
2
7{ D Uk=2p) Utisi +0° ) Uk}- (4.35)
k=2 k=1 k=1

The parameter estimation step update for 052 when x; evolves with time
following xx = pxx—1 + &k 1S

1 K K—1 K—1
— ?{ D Uk=20) Urir1 +0* ) Uk}. (4.36)
k=2 k=1 k=1

4.3.2 Deriving the Forgetting Factor

We will take the partial derivative of Q1 in (4.32) with respect to p and set it to O to
solve for its parameter estimation step update.

K
001 _ (=)
o = 302 ,;E[ — 21 (xk = pxi—1)] 4.37)
K K
=-> Elaxi]+pY Elx ] (4.38)
k=2 =
K—1 K—1
=— Z Uke1 +p Z Uk (4.39)
k=1 k=1
K—-1 K—1 -1
p=73 Uk,kH[ > Uk] : (4.40)
k=1 k=1

The parameter estimation step update for o when x; evolves with time
following xx = pxx—1 + & is

a
=
[
|

4.41)

p= ZUkkH[

k

Il
—_
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4.3.3 Deriving the Constant Coefficient Terms

We will next consider the model parameters that are related to . Recall from (3.57)
that we need to maximize the expected value of the log of the joint probability

pxi:xk Ny1kl0®) = p(yrklxix, O)px1:x|0). (4.42)

In the current state-space model, yx comprises both n; and ri. The probability term
containing yy, y1, and 03 is

*(’k*VO*V] 2

205 ) (4.43)

K
plriklx1x, © l_[

:N

Let us first take the log of this term followed by the expected value. Labeling this as
0>, we have

K E| (e —vo — v1x)
szTKlog 27”7 Z [Vk Yo — YiXk ]

k=1

(4.44)

To solve for yg and y;, we have to take the partial derivatives of O, with respect to
yo and y1, set them each to 0, and solve the resulting equations. We first take the
partial derivative with respect to yy.

@—Liﬂ@[}' — Y — x]—O (4.45)
3)/0 = 203 P k Yo YiXk| = .
K K
— 0= Zrk — K —n ZE[xk] (4.46)
k=1 k=1
K K
=Y n—nK-ynY (4.47)
k=1 k=1
K K
YK +n Y Xk =Y i (4.48)
k= =1

This provides one equation containing the two unknowns yp and y;. We next take
the partial derivative with respect to y;.

00,

K
1
= — 2E| xx(re — Yo — vixe) | =0 (4.49)
1 202 1; [ 70 = n]
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= 0= ZrkIE[xk] - % ZE[Xk] - ZE[XI%]

k=1
K K K
=Y nmxk = YKk —n Y U (4.50)
k=1 k=1 k=1
K K K
Y0 ) Xk +vi Y Un =Y rexuk- (4.51)
k=1 k=1 k=1

This provides the second equation necessary to solve for yp and yj.

The parameter estimation step updates for yp and y; when we observe a
continuous variable ry = yo + y1xk + v are

[Vo]z[ K Z;ﬁimcm}_l[ > et Tk } (4.52)

71 PINRE T SRR Kk

4.3.4 Deriving the Sensor Noise Variance

The term Q5 in (4.44) also contains the sensor noise variance avz.

K E[(rk Y — lek)2]

0= Kiog (2no?) — (4.53)
2 v 202 ’
k=1 v
We take its partial derivative with respect to ;2 and set it to 0 to solve for 0.
00, —K 1 2
9 _ 2 IEI[ — vy — ] =0 454
507 = 502+ 307 D B0k — v — vixx) (4.54)
k=1
| X
2 2
= o0, =5 Z]E[(Vk = Y0~ Y1Xk) ]

k=1
K K K

K
{Zr,f+ Ky +vi Y Elx1—=2nw )Y n—2n Y nE[x]

k=1 k=1 k=1 k=1

x|~
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T 20m iE[xk]}

k=1

K K K K

1

:E{E r,f—l—K)/oz—quE Uk_ZVOE rk—2)/1§ TXk|K
k=1 k=1 k=1 k=1

K
+ 2007 Y xkiK } (4.55)
k=1

The parameter estimation step update for 03 when we observe a continuous
variable rp = yo + y1xx + Vg i

K K K K

1

o2 = E{ DRHKY+vEY Uc—20) ri— 20 Y rexuik
k=1 k=1 k=1 k=1

K
+200m Y XK } (4.56)
k=1

4.4 MATLAB Examples

The MATLAB code examples for implementing the EM algorithm described in this
chapter are provided in the following folders:

e one_bin_one_cont\
sim\

data_one_bin_one_cont.mat
filter_one_bin_one_cont.m

expm\

expm_data_one_bin_two_cont.mat
expm_filter_one_bin_one_cont.m

Note that the code implements a slightly different version of what was discussed
here in that the state equation does not contain p. Code examples containing p and
aly are provided in the following chapter for the case where one binary and two
continuous observations are present in the state-space model. The current code can
easily be modified if p is to be included.
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The code for this particular state-space model is an extension of the earlier model.
It takes in as input variables n and r that denote n; and r, respectively. We use
r0, r1, and vr for yp, 1, and 03. Shown below is a part of the code where By is
calculated and the model parameters are initialized.

base prob = sum(n) / length(n);

tol = le-8; % convergence criteria
ve(l) = 0.005;

x _smth(1l) = 0;

ro(l) = 0.1;

r1i(1l) = r(1);

vr(l) = 0.002;

b0 = g(base prob / (1 - base prob)) ;

Similar to the code examples in the preceding chapter, we also use x_pred,
x_updt, and x_smth to denote Xxgx—1, Xkk, and xg g, respectively. Similarly,
v_pred,v_updt, and v_smth are used to denote the corresponding variances sz| 1>

0k2| > and akz‘ - Just like in the earlier case as well, the code first progresses through
the time indices k = 1, 2, ..., K at the state estimation step.

x pred(k) = x updt(k - 1);
v_pred(k) = v _updt(k - 1) + ve(m);

x_updt (k) = get posterior mode(x pred(k), v _pred(k), r(k), r0(m),
rl(m), vr(m), b0, n(k));

p updt(k) =1 / (1 + exp((-1) » (b0 + x updt(k))));

v_updt(k) = 1 / ((1 / v_pred(k)) + ((rl(m) *~ 2) / vr(m)) + p updt
(k) = (1 - p_updt(k)));

The update for x| is calculated using the function shown below based on both
ny and ry.

function [y] = get posterior mode(x pred, v _pred, z, r0, rl, vr,
b0, n)
M = 100; % maximum iterations

it = zeros(1l, M);
f = zeros(1l, M);
df = zeros(1l, M);

it (1) X _pred;

for i = 1: (M - 1)

C = v pred / ((rl *~ 2) %= v_pred + vr);
f(i) = it(i) - x pred - C * (rl * (z - r0 - rl % x pred)
+vr x (n - (1 / (1 + exp((-1) * (b0 + it(i)))))));
f(i) =1 + C x vr * exp(b0 + it(i)) / ((1 + exp(b0 + it(
i))) t2);
it(i + 1) = it(i) - £(i) / 4f (1

if abs(it(i + 1) - it(i)) < le-14
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y = it(i + 1);
return
end
end

error ('Newton-Raphson failed to converge.’) ;

end

The smoothing step also remains the same (there would have been a change if p
was included).

x_smth(K) = x_updt (K) ;
v_smth(K) = v_updt (K) ;
W(K) = v_smth(K) + (x_smth(K) * 2);
A(l:(end - 1)) = v_updt(l:(end - 1)) ./ v _pred(2:end);
for k = (K - 1):(-1):1
x smth(k) = x updt (k) + A(k) * (x smth(k + 1) - x pred(k + 1));
v_smth(k) = v_updt (k) + (A(k) * 2) % (v_smth(k + 1) - v_pred(k
+1));
CW(k) = A(k) % v_smth(k + 1) + x smth(k) * x smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) * 2);
end

The updates for 052, Y0, V1, and avz are calculated at the parameter estimation step.

4.4.1 Application to EMG and Emotional Valence

Running the simulated and experimental data code examples produces the results
shown in Fig.4.2. The experimental data example relates to emotional valence and
EMG. Emotion can be accounted for along two different orthogonal axes known
as valence and arousal [55]. Valence refers to the pleasant—unpleasant nature of an
emotion. In [27], this state-space model with one binary and one continuous feature
was used to estimate emotional valence using EMG signal features. The binary and
continuous features were extracted based on the amplitudes and powers of the EMG
signal. The data were collected as a part of the study described in [58] where subjects
were shown a series of music videos to elicit different emotional responses.
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Fig. 4.2 State estimation based on observing one binary and one continuous variable. The left
sub-figure depicts estimation on simulated data, and the right sub-figure depicts the estimation of
emotional valence from EMG data. The sub-panels on the left, respectively, depict: (a) the binary
event occurrences 1y ; (b) the continuous variable r¢ (blue) and its estimate (red); (¢) the probability
of binary event occurrence py (blue) and its estimate (red); (d) the state xj (blue) and its estimate
(red); (e) the QQ plot for the residual error of xi. The sub-panels on the right, respectively, depict:
(a) the raw EMG signal; (b) the binary EMG feature ny; (¢) the continuous EMG feature ry (blue)
and its estimate (red); (d) the probability of binary event occurrence; (e) the emotional valence
state xi. The shaded background colors on the right sub-figure correspond to music videos where
subject-provided emotional valence ratings were high
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Chapter 5 ®
State-Space Model with One Binary e
and Two Continuous Observations

In this chapter, we will consider a more complicated form of the state equation—one
that contains both a forgetting factor and an external input. We will also extend the
earlier state-space model to the case where we now have one binary observation and
two continuous observations. As before, however, we will first consider a scenario
motivating the need for such a state-space model.

Recall the example two chapters ago concerning the estimation of sympathetic
arousal from skin conductance features. In reality, it is not just the rate of occurrence
of neural impulses to the sweat glands that reflects changes in arousal. Other features
in a skin conductance signal also contain arousal information. A skin conductance
signal comprises a fast-varying phasic component superimposed on top of a slower-
varying tonic component. The phasic component consists of all the SCRs. The
amplitudes of these SCRs (or equivalently, the amplitudes of the neural impulses
that generated them), in addition to their occurrence, also reflect changes in arousal
[59]. In particular, larger SCRs reflect greater sympathetic arousal. Additionally,
the tonic level also contains information regarding general arousal [60]. Thus, there
are three primary sources of information in a skin conductance signal that capture
arousal levels: (i) the occurrence of SCRs (or equivalently the occurrence of the
neural impulses that generated the SCRs); (ii) the amplitudes of the SCRs (or the
amplitudes of the neural impulses); (iii) the tonic component. These three make
up one binary feature and two amplitude (continuous) features. A state-space model
based on these three features was developed in [29], for estimating arousal from skin
conductance. Here, a transformed version of the SCR amplitudes was interpolated
over to derive the first continuous variable, and the tonic component was considered
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the second continuous variable. Different algorithms are available for separating out
the tonic and phasic components in a skin conductance signal (e.g., [61, 62]).

A further note is also worth mentioning here. Recall the uy term in our discussion
of state-space models at the beginning. Thus far, we have not yet considered a model
where an external input also drives the state xj . In reality, external circumstances and
environmental inputs all affect the way we feel. The model in [29] included such
an external input term /. The model was evaluated on two experimental datasets,
one of which involved a Pavlovian fear conditioning experiment. In typical fear
conditioning experiments, a neutral cue is paired with an unpleasant stimulus such
as a painful electric shock. Through repeated pairing, the neutral cue alone begins
to elicit a physiological response that is typically seen for the unpleasant stimulus
[63]. In fear conditioning experiments, the unpleasant stimulus could also take other
forms such a blast of air to the throat, an aversive image, or a loud sound [64, 65].
In [29], the neutral cues along with the unpleasant shocks were modeled as binary-
valued indicator inputs I; that drove the sympathetic arousal state xi.

5.1 Deriving the Predict Equations in the State Estimation
Step

Let us now turn our attention to the state-space model itself and assume that xi
evolves with time as

Xk = pXk—1 +aly + &, (5.1)

where « is a constant and I is an external input. The other terms have their usual
meanings. Let us again consider how we may derive the mean and variance using
basic statistical formulas. Since we know what the external input is, we do not treat
it as a random variable but rather as a constant term. We first consider the mean.

Elxx] = Elpxg—1 + aly + &i] (5.2)
= E[px;—1] + E[ali] + E[eg] using (2.1) (5.3)

= E[pxi—1] + aly + E[ex] using (2.2) 5.4

= pE[xg_1] 4+ aly + E[ex] using (2.3) (5.5)

= pE[xg_1] + al; since E[ex] =0 (5.6)

S El] = pxg—1jp—1 + k. (5.7)

We next consider the variance.

V(xk) = V(pxi—1 +aly + &) (5.8)

= V(pxp—1 +aly) + V(ex) +2Cov(pxr—1 + ali, e¢) using (2.4)
(5.9
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= V(pxi—1 +aly) + V()

since g is uncorrelated with any of the xj or I; terms (5.10)

= V(pxr—1) + V(er) using (2.5) (5.11)

= ,02V()Ck—1) + V(ex) using (2.6) (5.12)

V) = pPof iy + 0l (5.13)

When xj; evolves with time following xx = pxx—1 + aly + &, the predict
equations in the state estimation step are

Xkjk—1 = PXk—1jk—1 + ali (5.14)

Ofk_1 = P O} 11 + 07 (5.15)

5.2 Deriving the Update Equations in the State Estimation
Step

In this state-space model, we include a second continuous variable si. Similar to ry,
we will assume that s too is linearly related to xj as

Sk = 8o + S1xx + wy, (5.16)

where 8o and §; are constants and w; ~ N (0, alf)) is sensor noise. Similar to the
case of r; in (4.16), we also have

1 7(sk750761xk)2

e ¢ . (5.17)

p(silxr) =
202

w

The procedure to derive the update equations in the state estimation step is now
similar to what we have seen earlier. With s; included, we have yet another exponent
term in p(xx|y1.x). Therefore,

Pkl y1:k) o< p(mplx) p(riclxe) p(selxe) p ek In k-1, F1ik—15 S1:k—1) (5.18)
— (g —yo—v12)> —(sg—80—81 )2
o ™ logp)+(—np)log(l—pi) 5, 22 X e 202
*(Xk**‘k|k—l)2

202
xe k-l (5.19)
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Taking the log on both sides, we have

(e — y0 — y1xx)? _ (sk =0 — 81x)?
202 202

q = nylog(pr) + (1 —ni) log(l — pi) —

= g’

5 + constant. (5.20)
2‘7k|k—1

Taking the first derivative of ¢ and setting it to 0 yield

dq Y1(rk —vo — vixk) | S1(sk — 8o — 81xk)
d_ =Nk — Pk + 2 + 2
Xk 0y Tw
_ (xk_zw —0. (5.21)
o
klk—1

We used a trick in the previous chapter to solve for x;. We added and subtracted
Y1Xk|k—1 to the term containing r;. We will do the same here. We will also add and
subtract §1xgjk—1 to the term containing s.

(XK — Xkjk—1) - Y1(rk — Yo — Y1Xk + YiXklk—1 — ViXk[k—1)

— Pkt
2 2
Oklk—1 9y
01(sg — 8o — 81Xk + S1Xkik—1 — 1 Xk|f—
n 1(sk — 80 — S1xk 21 klk—1 — 01Xk|k—1) (5.22)
Uw
Y1k — vo — ViXkk—1)  S1(sx — 8o — S1xkk—1)
=Nk — Pk + 2 : + 2 |
GU Uw
2 2
y é
- (G_lz + 6—12>(Xk — Xk—1) (5.23)
v w
Yi(rk — o — ViXklk—1)  81(sx — 8o — S1xkjk—1)
= Nk — Pk + 2 | + 2 |
GU Uw
2.2 2.2
yioy + 870
- (%)(xk — Xgjk—1)- (5.24)
Gvaw

Therefore,

(X% — Xk—1) n (Vlzaf) + 8302

3 ) v)(xk — Xklk—1)
Oklk—1 090y

v1(rk — Yo — Y1 Xkjk—1) n 31 (s — 80 — 81 Xkjk—1)

:nk_pk+ 2 2
UU w

(5.25)

0.
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57
+ Uklk l(yl otu + 8201)2)
(xx — Xk\k—l) o)
"k\kq"v 0y
262 2
0,0y Y105 (rk — Y0 — Y1Xkjk—1)
= (ng — pr) +
o202 ool
8102 (sk — 80 — S1Xkpk— 1)
+ 2202 (5.26)
This yields the state update
2
Xkl = Xklk—1 + Tl
705 + Ol (vioy + 8io))
X [%203)(’% — Pkik) + oS (e — yo — V1Xk|k—1)
+ 810725k = 80 — S1xk-1) - (5.27)
Likewise, the second derivative yields
2 2
q 1% ) 1
— =-mnl-p)—=-=L—-—. (5.28)
dxj, o} %0 k1
And therefore,
-1
2 1 vi | &
Ok = | 5 — TPl —pr) + 5+ 5| - (5.29)
k|k 1 oy Oy

When xj gives rise to a binary observation n; and two continuous observa-
tions r¢ and sy, the update equations in the state estimation step are

2
Oklk—1

Xklk = Xklk—1 =+ 7 5 3
705 + -1 (Viow + 8107)

Xpﬁﬂw—mw+m%m—m—mmpo

+ 8102 (sk — 80 — 51Xk|k—1)] (5.30)

v? 24-1
2 1 61
Oik = | 57— + Prik(1 — pijr) + 4 + = | - (5.31)
klk 1 Oy

v
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5.3 Deriving the Parameter Estimation Step Equations

In this state-space model, we have the parameters «, p, ¥0, Y1, 60, 01, crvz, and 03) to
determine. We have already seen how yy, y1, and ovz were derived in the previous
chapter when we had rr. We will not repeat those derivations here again. Instead, we
will only consider the derivations related to the new model parameters or changes to
the way that earlier model parameters were derived. We will use this same approach
of not re-deriving previous equations in the chapters that follow as well.

5.3.1 Deriving the Terms in the State Equation

We now have both p and « in the state equation. To determine them at the parameter
estimation step, we will take the partial derivatives of the log-likelihood term
containing p and «. In this case, the term we are interested in is

K
1 2

01=5 ;E[m — pxiot —al?] (5.32)

Again, we set xp = x; to permit some bias at the beginning and ignore the

relationship through p for this boundary condition. Therefore,

0= { i B[ = it — alo?| + E[@)?] } (5.33)

= 252
e Lo

We will now take the partial derivatives of Q1 with respect to & and p and set them
to 0. Let us first begin with «.

30, 1 [&
2
ke 207 { ];E[ — 2Lk (xk — pxk—1 — alp)] + 2a1; } =0
(5.34)
K K K
= 0=— Z Ik]E[xk] +p Z IkE[xk_l] + o Z Ikz
k=2 k=2 k=1
K K K
:_Zlkxk|K+PZIkxk—llK +OlZIk2 (5.35)
k=2 k=2 k=1

K K K
- ;OZIkxk,”K +a21k2:21kxku(' (5.36)
k=2 k=1 k=2
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We will next take the partial derivative of QO with respect to p.

8Q 1 &
1: 207 > S E[ - 201G — preet —ali)] =0 (5.37)
k=2
K K K
= 0=— Z]E[xm 1 +/02E X3 +azlk1E Xe—1]
k=2 k=2 k=2
K—1 K—1 K
= Uekt1 +p ) Uk +a ) ik (5.38)
k=1 k=1 k=2
K
= p Z Uy +0621ka 1K = Z Uk k+1- (5.39)

We now have two equations with which to solve for o and p.

The parameter estimation step updates for p and o when x; evolves with time
following xy = pxx—1 + aly + & are

[,0] :[ MO Y, IkxkllK:| [Zk 1 Ukk+1:|' (5.40)

o St hxi—yk Yhoy I > oes Ik

5.3.2 Deriving the Process Noise Variance

We next consider the parameter estimation step update for the process noise variance
082. The log-likelihood term containing 082 is

[(xk — pXk—1 — Ollk)z]

K K
0y = - log 2710 Z

2

P 20
B Kl B iE[(xk—ka—l—alk)2] ]E[(Otll)z] 541)
2 og (2o P 202 207 '

We take the partial derivative of Q, with respect to 082 and set it to O to solve for the
parameter estimation step update.
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00> _ —K 1

302 ~ 202 " 208

K (al)?
§ 2 —
k_zEl:(Xk — PXk—1 — CYIk) ] + W =0 (542)

K
1
‘752 = X g {E[x,g] — 2,0E[xkxk,1] + sz[x,%_l] — 2aIkIE[xk]

2 K
(07
+ Z(Xplk]E[xk,]]} + ? /; Ik2

(X K—1 K—1 K
ZE{ Z Up —2p Z Ui i1 + 0 Z Uy — 2o Zlkxldl(
k=2 k=1 k=1 k=2

K K
+20p Y Lxi—1k +a221,§}. (5.43)
k=2 k=1

The parameter estimation step update for 052 when x; evolves with time
following xx = pxx—1 + aly + &k is

L K—1 K1 K
o~ E{ ZUk —2p Z Uk it1 + p° Z Uk —ZOtZIkXIqK
k=2 k=1 k=1 k=2
K K

+20p Y Lxiix +a221,§]. (5.44)
k=2 k=1

5.3.3 Deriving the Constant Coefficient Terms and the Sensor
Noise Variance

The procedure for deriving the constant coefficients dg and §; related to s is similar
to what we have seen earlier for yy and y;. The derivation of the sensor noise

variance o2 is also similar to that for 0.

The parameter estimation step updates for ¢, 61, and ai when we observe a
second continuous variable sy = &g + 81xx + wy are

(continued)
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[30}2[ K Z;ﬁm«m}_l[ ;Jf:lsk } (5.45)

K K
D k=1 XkIK Dk Uk D k=1 SkXK|K

K K K K
1
auzj = E{ Zs,% = KS% +3%ZU;€ = 25025k — 261 Zskxle
k=1 k=1 k=1 k=1

K
+ 28081 Y xuk } (5.46)
k=1

5.4 MATLAB Examples

The code examples implementing the EM algorithm for the current state-space
model are provided in the “one_bin_two_cont\sim” and “one_bin_two_cont\expm”
folders. These two directories contain the following files:

e one_bin_two_cont\
sim\

data_one_bin_two_cont.mat
filter_one_bin_two_cont.m
data_one_bin_two_cont_no_extern_stim.mat
filter_one_bin_two_cont_no_extern_stim.m

expm\

expm_data_one_bin_two_cont.mat
expm_filter_one_bin_two_cont.m
expm_data_one_bin_two_cont_no_extern_stim.mat
expm_filter_one_bin_two_cont_no_extern_stim.m

For both simulated and experimental data, we have provided examples with and
without «/; (the external input). Results from running the code on a simulated
example with o[ included and on an experimental data example without « [ are
shown in Fig. 5.1. For simulated and experimental data containing « I, the “.m” files
are named “filter_one_bin_two_cont.m” and “expm_filter_one_bin_two_cont.m,”
respectively. The corresponding examples without al; have the “no_extern_stim”
suffix added to them.

In this case, the model takes in as inputs the variables n, r, and s that denote
ng, riy, and sg, respectively, for estimating xx. Since there are three different
observations, the code also has more parameters to initialize. In the code, the



62 5 State-Space Model with One Binary and Two Continuous Observations

variables ro and r1 are used for yp and y;, respectively, and so0 and s1 are used for
80 and &1. The variables vr and vs denote the corresponding sensor noise variances
03 and 03). Finally, ve, rho, and alpha denote the process noise variance 082, the
forgetting factor p, and the « term related to I, respectively. Shown below is a brief
code snippet showing the parameter initialization.

I
K

Also, base_prob (py) is still calculated based on the average probability of ny =
1 occurring in the data. The other variables x_pred, x_updt, and x_smth for xgx—1,
Xkjk> and xg g remain the same, as well as the corresponding v_pred, v_updt and
v_smth variables for variance. There is a sequential progression in the code through
k=1,2,..., K and then throughk = K, (K—1), ..., | at the state estimation step.
The terms ro, r1, s0, s1, vr, vs, ve, rho, and alpha are calculated at the parameter
estimation step. Shown below is a code snippet in the forward progression.

x pred(k) = rho(m) » x updt(k - 1) + alpha(m) =% I(k);

v_pred(k) = (rho(m) * 2) % v_updt(k - 1) + ve(m);

C(k) = v_pred(k) / (vr(m) % vs(m) + v _pred(k) = ((rl(m) * 2) % vs
(m) + (sl(m) * 2) % vr(m)));

x_updt (k) = get posterior mode(x pred(k), C(k), r(k), rO(m), rl(m
), bO(m), bl(m), vr(m), n(k), s(k), s0(m), s1(m), vs(m));

p updt(k) =1 / (1 + exp((-1) % (b0O(m) + bl(m) * x updt(k))));

v updt(k) =1 / ((1L / v_pred(k)) + ((rl(m) * 2) / vr(m)) + ((

(k

) ~2) / vs(m)) + (bl(m) * 2) * p_updt(k) = (1 - p_updt

The code where we proceed in the reverse direction at the state estimation step is
shown below. While it is largely similar to what we saw in an earlier chapter, now
the variable rho is also included.

x_smth(K) = x_ updt (K) ;
v_smth(K) = v_updt (K) ;
W(K) = v_smth(K) + (x_smth(K) * 2);
A(l:(end - 1)) = rho(m) * v _updt(l:(end - 1)) ./ v_pred(2:end);
for k = (K - 1):(-1):1
x smth(k) = x updt (k) + A(k) * (x_smth(k + 1) - x pred(k + 1));
v_smth(k) = v_updt (k) + (A(k) * 2) % (v_smth(k + 1) - v_pred(k
+ 1)) ;
CW(k) = A(k) % v_smth(k + 1) + x smth(k) * x smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) * 2);

end
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Note that in the examples where an external input is absent, alpha is not calculated.
The state estimation step and the parameter estimation step are performed in turn
until convergence.

5.4.1 Application to Skin Conductance and Sympathetic
Arousal

This state-space model with one binary and two continuous observations was used
in [29] for estimating sympathetic arousal from skin conductance. In the model,
the tonic component made up the continuous variable si. The other continuous
variable ry was derived somewhat differently. SCR amplitudes can have a skewed
distribution which a log transformation can help correct. Therefore, the log of the
SCR amplitudes was taken and interpolated over to generate ry.

A further point is to be noted with experimental data. The estimated state xj
can occasionally overfit to one of the continuous variables [29]. Consequently, an
additional constraint was applied to allow the parameters corresponding to ry and si
a.e., o0, ¥1, 03, 80, 81, and o,%) to update only if the sensor noise variance estimates
did not differ by more than a certain amount. Details of this can be found in [29].
This constraint prevented one of the sensor noise variance estimates from being
driven down at the expense of the other (which takes place during overfitting).

If the external inputs are unknown, the version of the code without af; can
be used. The experimental results in Fig.5.1 are from a case where «l; is not
considered. The data come from the stress experiment in [53] which we also
considered two chapters ago. The portion of the experiment considered here consists
of the cognitive stressors, relaxation, and the horror movie clip. The state estimates
are high during the cognitive stressors and thereafter gradually diminish. However,
the increase seen in the HAI at the beginning of the horror movie clip is quite
significant.

Data from the Pavlovian fear conditioning experiment in [66] are taken for
the experimental code example containing the oy term. The results are shown
in Fig.5.2. The experiment is described in detail in [67, 68]. In a typical fear
conditioning experiment, a neutral cue is paired with an unpleasant stimulus such
as a painful electric shock. Through repeated pairing, a subject begins to display
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State Estimation with Simulated Data 5 4 State Estimation with Experimental Data
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Fig. 5.1 State estimation based on observing one binary and two continuous variables. The left
sub-figure depicts estimation on simulated data, and the right sub-figure depicts the estimation of
sympathetic arousal from skin conductance data. The sub-panels on the left, respectively, depict:
(a) the probability of binary event occurrence py (blue) and its estimate (red) (the green and black
dots above at the top denote the presence or absence of binary events, respectively); (b) the first
continuous variable r; (blue) and its estimate (red); (c¢) the second continuous variable s; (blue)
and its estimate (red); (d) the state x; (blue) and its estimate (red) (the cyan and black dots denote
the presence or absence of external binary inputs, respectively); (e) the QQ plot for the residual
error of xi. The sub-panels on the right, respectively, depict: (a) the skin conductance signal (the
green and black dots on top denote the presence or absence of SCRs, respectively); (b) the phasic-
derived variable r (green solid) and its estimate (dotted); (c¢) the tonic level s; (pink solid) and
its estimate (dotted); (d) the arousal state x; and its 95% confidence limits; (e) the probability of
SCR occurrence py and its 95% confidence limits; (f) the HAI (the regions above 90% and below
10% are shaded in red and green, respectively). The background colors on the right sub-figure
correspond to the instruction period, a counting task, a color—word association task, relaxation,
and watching a horror movie clip. From [32], used under Creative Commons CC-BY license

a response to the neutral cue alone. In the experiment in [66], two types of cues
were used. One of the cues never preceded the electric shock. This is labeled the
CS- cue. The second cue, labeled as CS+, preceded the shock 50% of the time. The
code example sets Iy = 1 at the locations of the neutral cues and the shocks. Other
types of inputs may also be considered for I. Figure 5.2 depicts the averages for
the CS- trials, the CS+ trials that did not contain the electric shock, and the CS+
trials that did contain the shock. As seen in Fig. 5.2, for this particular subject, the
CS+ with the shock elicited the highest skin conductance and sympathetic arousal
responses. The CS- trials had the lowest skin conductance and arousal levels, and
the CS+ without the shock had responses in-between these two.
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Sympathetic Arousal Estimation - Fear Conditioning
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Fig. 5.2 State estimation in Pavlovian fear conditioning. The sub-panels, respectively, depict: (a)
the skin conductance signal zi; (b) the phasic-derived variable (green solid) and its estimate
(dashed); (c) the tonic level s; (mauve solid) and its estimate (dashed); (d) the probability of
SCR occurrence py (the cyan and black dots on top denote the presence or absence of SCRs,
respectively); (e) the arousal state x; (the green and black dots denote the presence or absence
of external binary inputs, respectively); (f) the averages corresponding to different trials for skin
conductance (CS— —green, CS+ without the shock—mauve and CS+ with the shock—red); (g)
the same averages for the arousal state x;. © 2020 IEEE. Reprinted, with permission, from [29]
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Chapter 6 )
State-Space Model with One Binary, Two  <a
Continuous, and a Spiking-Type

Observation

Spiking-type observations are occasionally recorded in experiments. For instance,
neural spiking activity may be recorded from a macaque monkey engaged in a
learning experiment or an EKG signal may be recorded from a human subject in
an experiment. In such instances, we can model the spiking-type variable using
a conditional intensity function (CIF). The CIF is similar to the rate parameter
in a Poisson distribution but is more general. With spiking-type observations, we
usually assume that our state variable x; affects the rate of spiking through the CIF.
Now we need to estimate xj; at each time index k. In the case of a spiking-type
variable, we typically observe the spiking over a short interval corresponding to
time index k. For instance, in the case of a macaque monkey performing a behavioral
learning task, we may observe neural spiking over a period of several hundred
milliseconds corresponding to each trial k. Each trial duration is then divided into
smaller bins indexed over j. Since the spiking-type variables are binary, we assign
either my ; = 0 or my ; = 1 within the interval k for each of the smaller time
bins j based on spike occurrence. Shown below is an example CIF A, ; used in an
experiment where a monkey’s learning state was estimated from measurements that
included neural spiking [6].

Ak j= 690+10xk+25:1 Osm, j—s 6.1)
In general, the specific form of the CIF depends on the type of application. In this

chapter, we will derive the state and parameter estimation step equations for a model
where a spiking-type variable characterized by a general CIF A ; is observed along
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with one binary and two continuous variables. We will, however, first consider the
need for such a state-space model.

In the preceding chapter, we looked at a state-space model for estimating
sympathetic arousal based on one binary and two continuous skin conductance
observations. The occurrence of SCRs made up the binary observation ny. The
continuous observations comprised of a transformed version of the SCR peaks
and the tonic level. In reality, the sympathetic nervous system affects a number
of organs, not just the skin. We can go to any one of these organs to extract
features to estimate arousal. However, not all these organs (or the corresponding
physiological signals) are conveniently accessible. The heart is one organ affected
by sympathetic activation for which the corresponding signals can be measured
easily (e.g., using an EKG). Now sympathetic drive is known to increase heart rate
and the force of ventricular contraction [69]. The heart, however, is innervated by
both sympathetic and parasympathetic fibers and also has its own pacing mechanism
[70]. Consequently, a precise extraction of the sympathetic activation component
from an EKG signal is a challenge. In [31], a state-space model based on three
skin conductance features (the features just referred to) and EKG signals modeled
as spiking observations was used to estimate sympathetic arousal. Here, the model
assumed that increased sympathetic arousal caused EKG inter-beat intervals (known
as RR-intervals) to decrease (i.e., caused heart rate to increase). The CIF was based
on the history-dependent inverse Gaussian (HDIG) probability density function for
RR-intervals [71, 72]. The state-space model could be used for wearable healthcare
applications (Fig. 6.1). Post-traumatic stress disorder (PTSD), for instance, is known
to involve symptoms of hyperarousal [73], while major depression is known
to involve low levels of arousal [74]. Thus, a wearable device based on skin
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Fig. 6.1 A wearable sensing system for decoding sympathetic arousal. The sweat glands are
innervated by sympathetic nerve fibers, and the heart is innervated by both sympathetic and
parasympathetic fibers. This information from skin conductance and heart rate can be used to
estimate sympathetic arousal. From [26], used under Creative Commons CC-BY license
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conductance and heart rate measurements for monitoring arousal could be used to
help care for such patients.

‘We also make another notable observation here. The phenomena occurring within
the human body and brain are rather complex. Thus, it is likely that no single type
of physiological signal or feature captures all the necessary information regarding
latent physiological states. If, for instance, both emotional valence and arousal are
to be decoded, features from a number of signals could be considered [58, 75-78].
Signals such as EMG [27, 79-82], heart rate [83—87], respiration [§8—92], and blood
flow signals within the brain (functional near infrared spectroscopy) [93-97] all
contain information regarding phenomena such as emotion and cognitive effort.

6.1 Deriving the Predict Equations in the State Estimation
Step

We have already considered three different cases for the state equation: (i) the simple
random walk; (ii) the random walk with a forgetting factor p; (iii) the random walk
with a forgetting factor p and an external input /;. You would have noticed by now
that changes to the state equation primarily affect the predict equations in the state
estimation step and not the update equations. The three cases we have considered
thus far cover most of the applications that are encountered in typical physiological
state estimation problems. In the current state-space model, we will assume that
xi evolves with time following one of the state equations we have already seen.
Thus no new predict step equations have to be derived. These signals could be used
for wearable healthcare applications. A study of how different external stimuli also
affect emotion could lead to novel neuromarketing strategies as well [98].

6.2 Deriving the Update Equations in the State Estimation
Step

When dealing with a spiking-type observation, we first split our observation interval
at time index k into smaller segments and index these smaller bins as j =
1,2,..., J. The joint probability of the spikes over the J observation bins is then
[99]

J . L .
Pmi 1, me2, .., mg y|xg) = o=t 108Gk Amej=hej A, (6.2)

Recall from (5.18) that when we had one binary and two continuous observations,
the posterior density was

Pxrlyik) o< p(nglxe) p(relxi) p(se|xe) p g n1k—1, Fik—1, S1:k—1)- (6.3)
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Now that we have the spiking-type observation, we will include p(myg 1, mg 2, ..
mg, j|xk) in p(xk|y1:k) as well. Therefore,

L)

~Cr=v0-r152)* —(s5—80 =81 xp)°
(x| yik) oc e log(pi)+(1—np) log(—pi) 5 , 203 % e 202
—C g1
J S
eX =t 108 M =M A o (6.4)

The procedure for deriving the update equations is again similar to what we have
seen thus far. As before, we will take the first derivative of the exponent term, set
it to 0, and solve for x; to obtain the mean. We will then take the second derivative
to obtain the uncertainty or variance associated with the estimate. Taking the log of
the posterior density and setting the first partial derivative to O yield

d —(xXk — Xklk—1) 1(rk — Y0 — Y1Xk)
d—q=2—|+(nk_Pk)+y n-y
Yk Tlk—1 %
81 (sx — 80 — S1xk) 1 d)\,k
p +Zr ’( m.; — i A) =0. (6.5)
j=1

Solving for xj is now similar to what we saw in the earlier chapter. We simply
need to add and subtract yxgk—1 and §1xkx—1 from the terms containing ry and s,
respectively. The second partial derivative is

d>¢ -1 dp yi 8 d 1 digj
BT oo | 2y dy T
k klk—1 v w j=1 2J k
2 2
=5—-nl-p)— % -~
Oklk—1 v 0w
J 1 dz)»k i dy,
+ |: = (mk j )\k ]A) ( ]) i| (6.6)
; Ak, j dx,% k Jlk dxg

Thus the updates for xyx and ok2| & turn out to be

2
Oklk—1
252 2 ) )
0505 + 0y (yyog + 68700

Xklk = Xk|k—1 + [avzal%(nk — Dklk)
+ V105 (' — Y0 — V1Xkk—1) + 8102 (sk — 80 — S1Xk1k—1)

J
1 di, A jlk

———(mp,j — Ap,j kA)] 6.7)
1 )»k ik dxi J Jl

j=
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2 1 AR
Ok = {2— + Pl = pap) + 5+ —5 — >

Oklk—1 v w0

1 dz)uk i1k me,j ((dAir ik 1!
[_—éj(mk,j — M jlikA) — N (d—]) “ . (6.8)
)\k,jlk dxk )‘k,j\k Xk

Note that the equations may simplify further depending on the specific form of the
CIF. Here we have provided the derivations for the general case.

When x; gives rise to a binary observation ny, two continuous observations
7 and sg and a spiking-type observation my, ; characterized by the CIF A ;,
the update equations in the state estimation step are

2
Oklk—1
2.2 2 2.2 2.2
ojos + 6k|k—1(7’1 oy +9705)

2 2
Xkjk = Xklk—1 + [UU 0y Mk — Pik)

+ Y102 (% — Y0 — V1Xkpe—1) + 8102 (sk — 8o — 81%kk—1)

J
+o.0, Z Ld}hk—’j‘k(mk,j - )»k,j|kA)] (6.9)
i1 Mk dxi
T { L4 o n o XJ:[ L ek
Ok =15 — T Pkik(l — prjp) + 5 + — — —
[ Ukzlk—l 03 01% o Ak, jlk dx,%
D=y =il
mi. i [ dAk jik
(mij — A jik D) — = ’( L ) ” . (6.10)
}‘k,j|k dxy

6.3 Deriving the Parameter Estimation Step Equations

The state-space model we consider here is an extension of what we considered in
the previous chapter that contained one binary and two continuous observations.
Therefore, the only new parameter estimation step equations we need to derive are
for the spiking-type variable.
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6.3.1 Deriving the Coefficients Within a CIF

A CIF can take different forms depending on the type of application. For instance,
when neural spiking data are involved, log(Ax, ;) may be expressed as a linear sum
of history-dependent terms and x; as in (6.1). If this is the case, we would have
to determine ¥ and the 6;’s at the parameter estimation step. When heartbeats
are modeled as a spiking-type variable, the CIF involves an inverse Gaussian
distribution and could be related to x; through its mean [31]. Thus, the terms to
be derived at the parameter estimation step when a spiking-type variable is present
are application-specific. In general, due to the rather complicated nature of a CIF,
the parameter estimation step updates do not have neat closed-form expressions.
Instead, the parameters have to be chosen to maximize the expected log-likelihood

K J

> Y B[ logGu A — 1A 6.11)

k=1 j=1

Q

The form of Q can be deduced from (6.2). The trick to maximizing Q is to perform
a Taylor expansion around the mean xx ¢ = E[x;] for each of the summed terms.
Therefore, when the expected value is finally calculated, we will end up with terms
like E[xx — xg k] and E[(x; — xk|K)2] in the expansion. Now

Elxx — xk k1 = E[xx] — xxx based on (2.2) (6.12)

= xxk — Xkk =0, (6.13)

and E[(xg — x| x)?] is the variance akz‘ k- These two facts will greatly help simplify
the calculation of Q.

Let us now perform the Taylor expansion around xi g [6]. The summed term
within the expected value simplifies to

log(Ag, j A)ymy j — A, j A X1og(hg, jik D)my,j — Ak, jlk A

I 0Akjik
—— ———(mg,j — Ak, j ik D) (Xk — Xk|K)
MK Xk J Jl |
1 1 32)\](/“](
| ————5—0mg,j — Ak j ik D)
2 |:)»k,j|1< ax? ’j JIK
my. i { OAg. i 2
- ( "*’K> :|(xk — xyx)? (6.14)
Mejik \ 9%

Taking the expected value, we have

E[log(kk’jA)mk,j — A.k‘leA] ~ log()\k,ﬂK A)mk,j — )\k,j|KA
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1 A jik
———————(mi,j — Ak j ik D)E|xk — Xk
MK Xk J Jl [ | ]
1 1 32)\,kj|[(
= ———(mj — Ak j ik D)
2|:)»k,j1( 375/3 J JIK
2
Mg (8)»1{,]‘|K>:|
2
)‘k,j|K 00Xy
2
X E[xk —xk\K] . (6.15)

Note the terms E[x; — xy g ] and E[(xx — xg| K)2] in the expression above. The first
of these is 0, and the second is the variance akz‘ x - Therefore,

E[]Og(kk’jA)mk,j — A jIK A] ~log(Ak, jixk Dmy, j — Ak jik A +0
1 |: 1 82)¥k,j|K

2

(mp,j — Ak, jik D)
M ik OxF ! 7l

2
My (Bkk,ﬂK) :|Uk2|1< 6.16)
- . .
Mejik N %

Consequently, Q approximately simplifies to

K J
Q~ > > log(h jik A)mi j — ke jik A
k=1 j=1
I 1 %k Mij (k. jiK e
4 - ———(my,j — M j ik A) — : < : )}f :
2|:)»k,j|1< ox; ' g Al%,j\K 0k "

6.17)

In general, Q will have to be maximized with respect to the model parameters in the
CIF using numerical methods.

The parameter estimation step updates for the terms in a CIF A, ; when we
observe a spiking-type variable m_; are chosen to maximize

K J

0~ > log(h, jik A)my j — he jik A

k=1 j=1

(continued)



74 6 State-Space Model with One Binary, Two Continuous, and a Spiking-Type. ..

+

1 32)»](! K my i [ OAk j|k 2
[ —Jl(mk,j — M jIK D) — ——L /1 0k2|1<-

1
2 M jik 9x? )‘l%,j\K dxk

6.4 MATLAB Examples

MATLAB code examples for simulated and experimental data for the state-space
model with one binary, two continuous, and one spiking-type observation are
provided in the folders shown below:

* one_bin_two_cont_one_spk
sim\

data_one_bin_two_cont_one_spk.mat
filter_one_bin_two_cont_one_spk.m

expm\

expm_data_one_bin_two_cont_one_spk.mat
expm_filter_one_bin_two_cont_one_spk.m

6.4.1 Application to Skin Conductance, Heart Rate and
Sympathetic Arousal

The state-space model described in this chapter was used in [31] to estimate
sympathetic arousal from skin conductance and heart rate measurements. The skin
conductance observations are the same three that were used in [29] (discussed in the
previous chapter). Thus, the only new observation added here relates to heart rate
for which some additional discussion is necessary.

The code examples estimate arousal from the four observations related to skin
conductance and heart rate. The R-peaks in the EKG signals are taken to form the
spiking observations. If L consecutive R-peaks occur at times u; within (0, 7'] such
that 0 < u; <uy < ... <uy <T,and by = u; — u;_; is the /' RR-interval, the
HDIG density function for the RR-intervals at ¢ > u; is

0, —Oy 1t —u; — p)?
+1 ex{ g1t —up — ] } (6.19)

D =\ 5 —un)? 202(t — up)
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where ¢ is the model order, 6,1 is related to the variance, and the mean is

q
=00+ ) Oihiisi + 0, (6.20)

i=1

where 7 is a coefficient to be determined. Accordingly, a change in sympathetic
arousal x; causes the mean of the HDIG density function to shift (i.e., heart rate
speeds up or slows down depending on the arousal level). The CIF Ay ; is

a 8 (T, jluk, ;)
2 - —,
w8 (@lu j)dz

Ak, (6.21)

where uy ; is the time of occurrence of the last R-peak prior to # ;. The CIF
Ak, j is calculated every A = 5 ms [23, 71]. Since skin conductance is typically
analyzed at 4 Hz (#;, = 250 ms), there are 250/5 = 50 smaller observation bins j
for heart rate at each time index k. Due to computational complexity, the 6;’s were
estimated separately in an offline manner using maximum likelihood. Now the work
by Barbieri et al. [71] was one of the earliest to perform point process analysis of
EKG RR-intervals using the HDIG density function.! The EM algorithm in [31]
was executed for several different values of 7, and the best one was selected based
on a maximization of the log-likelihood term in (6.17). Note also that since the
experimental code example involves skin conductance and heart rate with A = 5
ms bins, the heart rate observations need to be provided to the code in a manner
similar to that contained in the .mat file.

The other aspects of the code and the variable names are similar to what
was described in earlier chapters. Running the code examples on simulated and
experimental data yields the results shown in Fig. 6.2. The experimental data results
are from the Pavlovian fear conditioning experiment in [100]. As shown in the
figure, the CS+ trials with the electric shock have the highest average responses,
while the CS- trials have the lowest average responses for the subject considered.
The CS+ trials without the shock have an intermediate response.

I'The code for calculating the 6;’s for a series of RR-interval measurements via maximum
likelihood is provided at http://users.neurostat.mit.edu/barbieri/pphrv.


http://users.neurostat.mit.edu/barbieri/pphrv
http://users.neurostat.mit.edu/barbieri/pphrv
http://users.neurostat.mit.edu/barbieri/pphrv
http://users.neurostat.mit.edu/barbieri/pphrv
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State Estimation with Simulated Data State Estimation with Experimental Data
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Fig. 6.2 State estimation based on observing one binary, two continuous, and one spiking-type
variable. The left sub-figure depicts estimation on simulated data, and the right sub-figure depicts
the estimation of sympathetic arousal from skin conductance and heart rate data. The sub-panels
on the left, respectively, depict: (a) the probability of binary event occurrence pi (blue) and its
estimate (red) (the green and black dots above at the top denote the presence or absence of binary
events, respectively); (b) the first continuous variable ry (blue) and its estimate (red); (¢) the second
continuous variable s; (blue) and its estimate (red); (d) the state x; (blue) and its estimate (red)
(the cyan and black dots denote the presence or absence of external binary inputs, respectively);
(e) the simulated RR-interval sequence (orange) and the fit to the HDIG mean; (f) the QQ plot for
the residual error of x;. The sub-panels on the right, respectively, depict: (a) the skin conductance
signal zx; (b) the probability of SCR occurrence pyi (the green and black dots on top denote the
presence or absence of SCRs, respectively); (¢) the phasic-derived variable (green solid) and its
estimate (dotted); (d) the tonic level s; (pink solid) and its estimate (dotted); (e) the arousal state xj
(the cyan and black dots denote the presence or absence of external binary inputs, respectively); (f)
the RR-interval sequence (orange) and the fit to the HDIG mean; (g) the averages corresponding to
different trials for skin conductance (CS— —green, CS+ without the shock—mauve and CS+ with
the shock—red); (h) the same averages for the state. From [31], used under Creative Commons
CC-BY license

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 7 ®
State-Space Model with One Marked e
Point Process (MPP) Observation

Thus far we have considered binary observations and continuous observations in our
state-space models. With binary observations, we do not consider the magnitudes of
the binary-valued events (since each is just a O or a 1) but are merely interested in
the event occurrences. Consequently, we can treat the spiking-type observations in
the earlier chapter as binary-valued as well. There too, our concern was primarily
with the occurrence of the cardiac contractions and the accompanying spikes in an
EKG signal, but not the actual amplitudes of the spikes. But what happens when
we observe a point process that is not just a sequence of zeros and ones but rather
is a sequence of zeros and real-valued amplitudes? Such a point process forms a
marked point process (MPP). These are encountered frequently in physiological
state estimation applications as well. For instance, the sequence of neural impulses
underlying a skin conductance signal forms an MPP (Fig.3.2). So do pulsatile
hormone secretory events. In this chapter, we will learn how to derive the state
and parameter estimation step equations when the state-space model contains MPP
observations.

In this chapter also, we will begin by considering a motivating example. Now we
can build many models ranging from simple to complex to account for physiological
phenomena. Any mathematical abstraction of a real-world system will have some
imperfections to it and will not be able to fully account for all of the data.
Occasionally, in engineering systems, we will encounter cases where a simpler
model performs better than a more complex model. The estimation of sympathetic
arousal from skin conductance is one such case. The state-space model with one
binary and two continuous observations is quite complex [29]. However, despite its
complexity, it is somewhat imperfect in that it interpolates over a log-transformed
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version of the SCR amplitudes. A more natural way to account for phasic skin
conductance variations is to model the underlying neural impulses as an MPP [32].
This eliminates the need for two continuous variables and is simpler.

A further algorithmic detail is also worth noting here. Mathematical models
of real-world systems will always have some limitations. The limitations may be
in the model itself or have to do with issues that arise during computation. This
book focuses on the estimation of unobserved physiological quantities that are
related (fully or partially) to point process observations. Occasionally, when we
have both binary and continuous variables involved, the EM algorithm can have
a tendency to converge to locations where there is a near-perfect fit to one of the
continuous variables (i.e., overfitting occurs). The state-space model with one binary
and two continuous observations has this tendency to overfit on experimental data.
Consequently, additional constraints have to be put in place to control it [29]. This
issue can also occur in the model with one binary and one continuous observation.
The use of the MPP framework circumvents the need to have a continuous variable
and thus avoids the need for external overfitting control. Thus the simpler MPP state-
space model for estimating arousal based on skin conductance performed quite well
in comparison to others [32].

7.1 Deriving the Update Equations in the State Estimation
Step

In this chapter also, we will assume that x; evolves with time following one of the
state equations we have already seen. Thus no new predict step equations have to be
derived.

Recall from (3.21) that the PDF of a single (Bernoulli-distributed) binary
observation ny is

p(nklxx) = pit(l — pr)' =" (7.1)

This same density function can be written as

1—pr ifng=0
plly =4~ % (7.2)
Dk if npy = 1.

In reality, we could derive our state estimation step update equations based on (7.2)
as well. For instance, if we observed n; = 0 at time index k, the posterior density
would be

— O =Xk gk—1)2 — Ok k=12
pOklnie) o ™ log(piH(1—ni) log(1=pr) o , 2041 —elog=pi) o o 20741
(7.3)
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where we have substituted n; = 0 into the exponent of the first term. We could next
take the first and second derivatives of the exponent to obtain the corresponding
state estimation step update equations for x4 x and szl ¢ We could also do the same
for ny = 1. In the case of n;y = 1, we would have

*(Xk*~"k\k—l)2 *(Xk*"k\k—l)z
POInie) o @ 10eEPOHA=nOlog=p) o o 2ut  — Goe) y ¢ i

(7.4)

Finally, we could express the update step equations for the two different cases based
on an if-else condition. This would be of the form

ifng =0,
Xkk = ... (7.5)
o= (7.6)
ifng=1,
Xklk = -+« (7.7)
= (7.8)

In the case of an MPP where we have non-zero amplitudes only at the instances
where point process events occur, the density function for the observations is

1= pe = elog—pu) ifn,=0

p(nNry|xg) = ~(k=yo—y1:p)? ~tk=yo-r1xp)?
1 202 — eloglp) _1L_, 202 ifng =1,

Pk »,/271038 270l

(7.9)

where the point process event amplitudes (i.e., the marks) r; are assumed to be
linearly related to x; through ry = Yo + y1xx + vk, where v, ~ N (0, 03) is sensor
noise.

Let us now proceed with calculating the update step equations for the two cases
where ny = 0 and n;y = 1. First consider ny = 0. Based on (7.9), the posterior
density is

==Xk lk—1 2

2
POkIy1a) o pQug N relxi) p (el rk—t, F1e—1) oc e8I 5o 2

(7:10)

We can now take the log, take its derivative, and set it to O to solve for the mean.
This yields
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dqi 1 2(xk — Xgjk—1)
A e (= py — TEE L 7
dxg (I - pi) 204 k-1
(Xk — Xkjk—1)
e (7.12)
Oklk—1
Xk =Xpjk—1 + 05—y (—Pi) (7.13)
Xk =Xpk—1+07 1 (ng—pi) since n = 0. (7.14)

Interestingly, this is the same as (3.38) where we only had one binary observation
ng in the state-space model. Let us now calculate the variance by taking the second
derivative.

d? -1
C4 = T — pel = o). (7.15)
dxj; Oklk—1

Again, interestingly, this turns out to be the same as (3.40) where we only had one
binary observation. Therefore, when a point process event does not occur (i.e., when
nx = 0), our state estimation step update equations are similar to the case where we
only had one binary observation in the state-space model.

We will next consider the case when n; = 1. Note that we will then have the ry
amplitude term as well. Based on (7.9), the posterior is now
*(J‘k*"klk—l)z

—k=v0=11%)2 p
pklyrx) oc P x ¢ 2 xe Rl (7.16)

Taking the log and proceeding to take the first derivative, we have

dgp 1 itk —vo —vixk)  (Xk — Xkje—1)
T = — = pi) + . -~ 7
Xk Pk % Oklk—1
Since ny = 1, we will replace (1 — px) with (ny — pi). Therefore,
dq» V(e — Yo — V1ixe)  (Xk — Xkjk—1)
—= = (n — po) + > - ST o, (7.18)
dxy oy Oklk—1

This is the same as (4.21) where we had both a binary variable and a continuous
variable in the state-space model. Therefore, based on (4.26), the mean update for
Xk 18

2
Oklk—1

Xk = Xkjk—1 + ﬁ[af(nk —p)+ ik —vo— J/lxklkfl)}

Yi%kk—1 T 0%

(7.19)
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Also, when we take the second derivative, we end up with

d*qi vi 1
—— =-p(l—p)— % — = (7.20)
dx o0 Okk—1

just like (4.28).

This provides an interesting insight. In the case of an MPP, the state estimation
step update equations switch between those where one binary variable was observed
and where both a binary variable and a continuous variable were observed. This
switching occurs depending on whether ny = 0 or ny = 1.

When x; gives rise to MPP observations comprising of the pairs (ng, r¢), the
update equations in the state estimation step are

if ng =0,

Xkl = Xklk—1 + Og_1 Mk — Pige) (7.21)

| -1
0k2|k = [2— + pre (1 — Pklk)] (7.22)
Oklk—1
if ng =1,
2
Oklk—1

Xklk = Xklk—1 + —5—

—2[‘%2("1( — Prik) + V1 — vo — lek|k—1)]
Yi%kk—1 1t 0y

(7.23)

1 y2 E
otk = [—2 + prk (1 — prje) + —12} : (7.24)
o 0.
klk—1 v

7.2 Deriving the Parameter Estimation Step Equations

The only changes that occur at the parameter estimation step relate to yp, y1, and
2. Parameter estimates for other variables such as the process noise variance o2 do
not change.
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7.2.1 Deriving the Constant Coefficient Terms

Recall from (4.43) that when we observed one binary variable and one continuous
variable, the probability term containing yyp, y;, and 03 required at the parameter
estimation step was

ﬁ 1 *(’k*VO;VI"'k)Z
p(riklxrg, ®) = e 209 . (7.25)

Notice that the product is over k = 1,2, ..., K. This is when we observed a non-
zero ry at each point in time. When we observe an MPP variable as modeled in (7.9),
rr shows up only at the time indices where n; = 1. Let us assume that the point
process events occur at time indices K C {1,2, ..., K}. Therefore, in the case of
an MPP, the probability term we are interested in at the M-step will be

—Ok—vo—v13)°
205 , (7.26)

1
—e
Ig V2ol

where the product is only over the specific indices K rather than everywhere. The
corresponding log-likelihood term is therefore

_IR E| (re — yo — y1x0)?
0= % log (2707) = > [ ] (7.27)

< ZUUZ
keK

We can now proceed by taking the partial derivatives with respect to yy, y1, and O‘vz,
setting them to 0 and solving. This yields

D ore=wlKl+y Y xuk (7.28)
kek kekK
Z T Xk|K = Y0 Z XkK + W1 Z Uk (7.29)
kekK keK kekK
1 .
ol = @{ Yo IR+ Y Uk=20w )
kek kekK keK
=2y Z XKk + 2ot Z Xk|K } (7.30)
keK keK

Note that all three equations shown above are similar to the case where a continuous
variable was always present. Now, however, the summations are only over K. Thus
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the parameter estimation step updates for yy, 1, and ovz are very similar to what we
have seen before.

The parameter estimation step updates for yy, y; and 61)2 when we observe an
MPP variable with the amplitudes modeled as ry = yo + y1xx + vi are

[)’0]2[ K| Zkegmm}_l[ Zkek’k} (7.31)
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7.3 MATLAB Examples

The MATLAB code examples for estimating x; from a set of MPP observations are
provided in the following folders:

e one_mpp
sim\

data_one_mpp.mat
filter_one_mpp.m

expm\

expm_data_one_mpp.mat
expm_filter_one_mpp.m

The code examples estimate x; based on the inputs n; and r; denoted by the
variables n and r. A few differences are to be noted in this code compared to the
previous examples. In the previous MATLAB examples, we had the predict, update,
predict, update, etc. steps executed repeatedly for k = 1, 2, ..., K. However, when
we have MPP observations, we have rwo different filter update equations depending
on the value of ng. The r; amplitudes are only taken into account when n; = 1.
Therefore, the state estimation step contains the following:
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x_updt (k) = get posterior mode(x pred(k), v pred(k), r(k), r0(m),
rl(m), vr(m), b0, n(k));

p_updt(k) =1 / (1 + exp((-1) % (b0 + x updt(k))));

if (n(k) == 0)

v updt (k) =1 / ((1 / v_pred(k)) + p updt(k) % (1 - p updt(k)))
else;f (n(k) == 1)
v updt(k) =1 / ((1 / v_pred(k)) + ((rl(m) * 2) / vr(m)) +
p_updt (k) * (1 - p updt(k)));
end

The state update, also based on an if-else depending on the value of ny, is calculated

using the get posterior mode(...) function shown below:
function [y] = get posterior mode(x pred, v _pred, z, r0, rl, vr,
b0, n)
M = 100; % maximum iterations
y = NaN;
it = zeros(l, M);
f = zeros (1, M);

df = zeros(l, M);

it (1) = x pred;
for i = 1: (M - 1)
if (n == 0)
C = v_pred;
£(1) = it(i) - x pred - C x (n - exp(b0 + it(i)) / (1
+ exp (b0 + it (i))));
df (i) = 1 + C % exp(b0 + it(i)) / (1 + exp(b0 + it (i)
)~ o2;

elseif (n == 1)
C = v pred / ((rl © 2) % v_pred + vr);

f(i) = it(i) - x pred - C * (rl * (z - r0 - rl =
x pred) + vr » (n - (1 / (1 + exp((-1) » (b0 + it(i)))))));
df(i) = 1 + C x vr * exp(b0 + it(i)) / ((1 + exp(b0 +
it(i))) * 2);
end
it(i + 1) = it(i) - £(i) / dE(1);
if abs(it(i + 1) - it(i)) < le-14
y = it (i + 1);
return
end
end

error ('Newton-Raphson failed to converge.’) ;

end
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The other variables used in the code largely remain the same. For instance, we
still use x_pred, x_updt, and x_smth to denote xx|k—1, Xk |k, and xi| g , respectively,
and v_pred, v_updt and v_smth to denote the corresponding variances ak2| k1 szl X

2
and Oiik-

7.3.1 Application to Skin Conductance and Sympathetic
Arousal

As stated earlier, the sequence of neural impulses underlying the phasic variations in
a skin conductance signal forms an MPP. This sequence of impulses is extracted via
deconvolution. In the code example, the input (i.e., the deconvolved neural impulse
train) is provided through the variables n and r. The variable r (k) has a non-
zero amplitude whenever n (k) is equal to 1. The r (k) amplitudes are not taken
into account when n (k) is 0. Running the MATLAB examples on simulated and
experimental data produces the results shown in Fig. 7.1. The filter was used in [32]
for estimating sympathetic arousal from deconvolved skin conductance data. The
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Fig. 7.1 State estimation based on observing one MPP variable. The left sub-figure depicts the
estimation on simulated data and the right sub-figure depicts the estimation of sympathetic
arousal from skin conductance data. The sub-panels on the left, respectively, depict (a) the MPP
observations (blue) and the estimated r¢ (red), (b) the point process event occurrence probability
Pk (blue) and its estimate (red), (c) the state x; (blue) and its estimate (red), and (d) the QQ plot for
the residual error of x;. The sub-panels on the right, respectively, depict (a) the skin conductance
signal, (b) the neural impulses underlying phasic variations, (¢) the arousal state x; and its 95%
confidence limits, (d) the probability of impulse occurrence py and its 95% confidence limits, and
(e) the HAI (the regions above 90% and below 10% are shaded in red and green, respectively). The
background colors on the right sub-figure correspond to the instruction period, a counting task, a
color-word association task, relaxation, and watching a horror movie clip. From [32], used under
Creative Commons CC-BY license
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Sympathetic Arousal Estimation - Driver Stress
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Fig. 7.2 Driver stress estimation. The sub-panels, respectively, depict (a) the skin conductance
signal, (b) the neural impulses, (¢) the arousal state x; and its 95% confidence limits, (d) the
probability of impulse occurrence and its 95% confidence limits, and (e) the HAI (the regions
above 90% and below 10% are shaded in red and green, respectively). The background colors in
turn denote rest, city driving, toll road, highway, toll road, city driving, toll road, highway, toll
road, city driving, and rest. From [32], used under Creative Commons CC-BY license

results on experimental data shown in the figure are based on the study described
in [53] (seen in the earlier chapters as well). The study involved different types of
stressors interspersed by periods of relaxation. The results of using the same code
on the driver stress data in [54] for a particular subject are shown in Fig. 7.2.
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Chapter 8 ®
State-Space Model with One MPP and e

One Continuous Observation

In this chapter, we will derive the EM algorithm equations for a state-space model
having an MPP and a continuous-valued variable as its observations. Before looking
at the state-space model itself and the equation derivations, we will again first
consider a scenario for where the need for such a model arises. We stated earlier that
the human body is comprised of multiple internal sub-systems that are networked
with one another. The sub-systems perform specialized functions and all work in
unison to maintain life. Now multiple functions within the body are regulated by
the endocrine system. The endocrine system governs the secretion of a number of
hormones that act on different target cells in the body. These hormones largely serve
as messengers and help coordinate activities between sub-systems within the body.
Functions that hormones are involved in include metabolism, the regulation of blood
glucose and appetite, and playing a role in the body’s immune and stress responses,
to name a few [101].

The secretory mechanism is pulsatile in the case of a number of hormones.
Cortisol is one such example [38]. One of the major functions of cortisol is to
raise blood glucose levels in response to external stressors [102, 103]. When the
brain interprets sensory inputs as requiring cortisol secretion, the hypothalamus
begins to secrete the hormone CRH (corticotropin-releasing hormone). CRH in
turn causes the secretion of ACTH (adrenocorticotropic hormone) from the anterior
pituitary. Finally, ACTH causes the secretion of cortisol from the adrenal glands
[104]. The secretion of cortisol from the adrenal glands has a negative feedback
effect suppressing the further secretion of CRH and ACTH [105, 106]. Between 15
and 22 cortisol secretory events typically occur each day in a healthy adult [38, 107].
When cortisol is secreted into the bloodstream, a large percentage of it remains

Supplementary Information The online version contains supplementary material available at
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bound [108]. It is the unbound cortisol in the blood that remains physiologically
active [109]. This active cortisol aids in energy production at the liver [110, 111].
Since the cortisol concentration in the blood is a continuous variable and its pulsatile
secretion forms an MPP, a state-space model for estimating the energy production
level related to it should incorporate these types of observations. Similar to the case
of skin conductance, a deconvolution procedure can be used to extract the pulsatile
profile underlying a series of blood cortisol measurements [107]. Deconvolution
also typically yields the infusion and clearance rates necessary to reconstruct a
minute-by-minute profile of the cortisol concentration in the blood. Figure 8.1 shows
a deconvolved cortisol profile [113].

Alternately, the same MPP plus continuous variable formulation can also
be applied to skin conductance. Recall that skin conductance contains both a
fast-varying phasic component and a slow-varying tonic component. The phasic
component consists of a series of SCRs that are generated by neural impulses.
These neural impulses form an MPP. The tonic component, which also reflects
sympathetic arousal information, is a continuous observation [60]. Consequently,
the state-space model with an MPP and a continuous observation can also be
applied to the case of skin conductance. Unlike the case where we had one binary
observation and two continuous observations to estimate sympathetic arousal from
the same information, the formulation with the MPP and the continuous observation
conforms more intuitively to the data itself.

A Cortisol Profile
20 T

concentration (ug/dl)
pulse amplitude (ug/dl/min)

9 AM 1PM 5PM 9PM 1AM 5AM 9 AM
time

Fig. 8.1 A deconvolved cortisol profile. Cortisol is secreted in pulses and between 15 and
22 secretory events occur each day in a healthy adult. The figure depicts the blood cortisol
measurements taken at 10 min intervals (blue), the reconstructed blood cortisol concentrations
at a 1 min resolution (black), and the pulsatile secretions (red). From [112], used under Creative
Commons CC-BY license
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8.1 Deriving the Update Equations in the State Estimation
Step

Here again we will assume that x; varies with time following one of the state
equations we have already seen. Therefore, no new predict step equations need to
be derived.

We made an interesting observation in the previous chapter when deriving
the update step equations for the case where x; gives rise to MPP observations.
We observed that the update equations switched between those where one binary
variable was observed and where both a binary variable and a continuous variable
were observed. We will now consider the case where we observe an MPP variable
along with a continuous variable. As in (7.9), the density function for our MPP is
still

1 — pp = elostl=ro) ifng =0

PN rglxe) = — (g =vo=7) ) —(g=vo=r150%
Pr L, 22 — elogp) _L__, 22 ifn, =1,

4/271%2 4/23'[0,)2
(8.1)

where n; and r; denote the occurrence of the point process events and the mark
amplitudes, respectively. In addition to the MPP, we will now assume that we also
observe a continuous variable s; where

Sk = 80 + d1xx + wi, (8.2)

and dg, 81, and wy have their usual meanings. We observe s; at every point in time.
Let us now proceed with deriving the mean and variance for the case when n; = 0.
The posterior density in this case is

2
7(5/(750761’%)2 7(xk7)‘k|k—])

2
pxklyrx) oc 80P 5 o 203 xe k-1 (8.3)
Taking the log on both sides, we have

(s = 80 — S1x0)>  (xk — xugpe—1)’
2 2
203, 204 k-1

q1 = log(1 — p) — + constant. (8.4)

We will next take the first and second derivatives of ¢; to obtain the mean and
variance.

dq 1 S1(sk — 80 — S1xk)  (Xk — Xkjk—1)
A (- p) + 3 - 3 | =0
dxy (- pr) o5 Ofik—1

(8.5)
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S1(sk — 80 — d1xk) (X — Xkjk—1)

O Oklk—1
Since n; = 0, we can rewrite — py as (ny — pi). Therefore,
S1(sk — S0 — d1xk) Xk — Xpjk—1)
ne — pr + > = el (8.7)
Ow Oklk—1

But this is identical to (4.21) with sk, 8¢, and 61 appearing in the equation instead of
k> Y0, and y. Therefore, similar to (4.26), the update for the mean is

2
Oklk—1
Xk = Xklk—1 + | I:Ui,(nk — pk) +81(sk — 8o — 51xk|k71)]~ (8.8)

2 2 2
810k k—1 T 90

We next take the second derivative of g;.

d*q, 8 1
= = py— L - (8.9)
dx %% Oflk—1

This also happens to be identical to (4.28) but with §; and o instead of y; and o2,
Therefore, similar to (4.29), the variance update is

d*q - 1 521!
ol = —<—q2 ) = [ — + prk(1 — pip) + —12} . (8.10)
dx; Oklk—1 Oy

This is interesting. When we observe both an MPP variable and a continuous
variable and n; = 0, the update equations are identical to the case where one binary
variable and one continuous variable were observed.
We will next consider the case where n; = 1 and a non-zero mark r; exists. In
this case, the posterior density is
—(k=ro=yix)? —(sx =881 )2 M
pOxk|yin) oc e8P o 207 xe 2% xe X1 (8.11)

Taking the log value and proceeding to take the first derivative, we have

dg, 1 Vi(rk—vo—vixe)  S1(sk — 80 — Sixk)  (xk — Xkjk—1)
To = PR —p+ 3 + 3 - 3
Xk Pk oy ! Oklk—1
(8.12)

v1(re — Yo — v1xk) n S1(sk — 8o — d1xk) (X — Xkjk—1)

=1—pe+

2
Oklk—1
(8.13)
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Setting this to 0 and replacing (1 — pi) with (nx — py) since ny = 1, we have

dgs vi(re —vo—vixe)  81(sk — 8o — 81xk)  (Xk — Xkjk—1)
e : + . = =0.
Yk % T Tlk—1
(8.14)

But this is identical to (5.21) where we observed one binary variable and two
continuous variables. The second derivative of ¢; yields

d*q» y: 87 1
— =-n(-p) -5 — =% ——5—, (8.15)
dx; %  Ouw  Op

which is the same as (5.28). Therefore, in the case where we observe an MPP
variable along with a continuous variable and n; = 1, our update equations in the
state estimation step are identical to those where we have one binary variable and
two continuous variables.

When x;, gives rise to MPP observations comprising of the pairs (rng, ry) and
a continuous observation s, the update equations in the state estimation step
are

if ng =0,

2
Oklk—1
Xk = Xglk—1 + 252

P [Gli(nk — pk) + yi(sg — 8o — 51xk|k_1):|
Yi%k—1 1 0w

(8.16)
1 527"
Okzlk = [ + (1 — pri) + —] (8.17)
k|k 1 i
if g =1,
2
_ Oklk—1 2 2
Fhlk = Fhlk—1 + o202 + Uklk (Yol + 8ko 2)[ % (% = Pie)

+ Vlﬁf,(rk — Y0 — V1Xk|k—1) + 510,,2(Sk — 80 — 31Xk|k—1)] (8.18)

1 2 52 =l
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Pkt

‘U w



94 8 State-Space Model with One MPP and One Continuous Observation
8.2 Deriving the Parameter Estimation Step Equations

The derivation of the parameter estimation step updates is similar to what we
have seen thus far. The updates for the parameters yp, y1, and crv2 related to rg
are calculated based on the subset of values K corresponding to where n; = 1.
The parameters dg, 81, and o,% corresponding to s; are calculated based on all the
observations.

8.3 MATLAB Examples

The MATLAB code examples are contained in the folders shown below:
* one_mpp_one_cont
sim\

data_one_mpp_one_cont.mat
filter_one_mpp_one_cont.m

expm\

expm_data_one_mpp_one_cont.mat
expm_filter_one_mpp_one_cont.m

The code itself is quite similar to what we have seen before in earlier examples. It
takes in the inputs ng, ri, and sx denoted by the variables n, r, and s to estimate x.
We progress through the repeated predict, update, predict, update, etc. steps with
Xk ik and crkz‘ i being estimated using different equations based on ny. The variable
names are also largely similar to what we have seen earlier.

8.3.1 Application to Cortisol and Energy

Recall the discussion regarding cortisol at the beginning of this chapter. Cortisol is
secreted in pulses and between 15 and 22 of them are secreted by a healthy adult
each day. The pulsatile hormone profile forms an MPP. In addition, the amount
of unbound cortisol in the blood is biologically active and contributes to energy
production. Thus, the observations for estimating the latent cortisol-related energy
production state form an MPP and a continuous-valued variable. The cortisol inputs
are provided to the code using the variables n, r, and s. The variables n and r
denote the MPP observations n; and r. The pulsatile secretions forming the MPP
at aresolution of 1 min will need to be extracted via deconvolution (e.g., using [107,
113, 114]). The cortisol infusion and clearance rates yielded by the deconvolution
algorithm are used to generate s.
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Running the code examples for this particular state-space model produces the
results in Fig. 8.2. The code running on experimental data for this model contains
a notable difference. In general, when a continuous-valued observation is present,
the state estimate can tend to overfit to it. In the experimental code example, the
parameter estimation step updates for &g, 81, and 03) (the three parameters related to
sx) have been adjusted so that only a small step is taken in the direction of the next
predicted values at a time. A second change has also been made in that the sensor
noise variance 03) is initialized at a larger value and the same three parameters Jo,
81, and 03) are only permitted to update until 03) reaches a threshold. These two
changes greatly help reduce the overfitting to sx.

State Estimation with Simulated Data

State Estimation with Experimental Data
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Fig. 8.2 State estimation based on observing one MPP and one continuous variable. The left sub-
figure depicts the estimation on simulated data and the right sub-figure depicts the estimation
of energy from blood cortisol data. The sub-panels on the left, respectively, depict (a) the MPP
observations (blue) and the estimated r (red), (b) the point process event occurrence probability
pr (blue) and its estimate (red), (c) the continuous-valued variable s (blue) and its estimate (red),
(d) the state x; (blue) and its estimate (red), and (e) the QQ plot for the residual error of xi. The
sub-panels on the right, respectively, depict (a) the deconvolved cortisol pulses (blue) and the fit
to r¢ (red), (b) the reconstructed blood cortisol profile s; (orange) and its estimate (red), (c) the
probability of pulse occurrence pi and its 95% confidence limits, and (d) the energy state x; and
its 95% confidence limits. From [33], used under Creative Commons CC-BY license
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Chapter 9 ®
Additional Models and Derivations Chock or

Much of what we have described in the preceding chapters provides the basic tools
necessary to build physiological state-space estimators. In this chapter, we will
briefly review some additional concepts in state-space estimation, a non-traditional
method of estimation, and some supplementary models. These may help serve as
pointers if extensions are to be built to the models already described.

9.1 State-Space Model with a Time-Varying Process Noise
Variance Based on a GARCH(p, q) Framework

Thus far, we have not considered time-varying model parameters. In reality, the
human body is not static. Instead it undergoes changes from time to time (e.g.,
due to disease conditions, adaptation to new environments). In this section, we will
consider a state equation of the form

Xk = Xk—1 + &k .1

where g, ~ N(0, aﬁ ). Note that the process noise variance now depends on
the time index k. Here we will use concepts from the Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) framework to model &;. In a general
GARCH(p, q) framework, we take

&k = hivk, 9.2)
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where vy ~ N0, 1) and

hk_ao+Zoz,sk Z+Zﬁ,hk i (9.3)

where the o;’s and B;’s are coefficients to be determined. Now, conditioned on
having observed all the sensor readings up to time index (k — 1), we have

E[é‘k] = E[hkvk] = th[vk] = hk x0=0 (9.4)

and

q 14

ol = View) = Vhgw) = hiV () = hi x 1 = ag + Zaie,@i + Zﬁjh,’ij.
i=1 j=1

(9.5)

As is evident from (9.5), the variance of e; depends on k. If a GARCH(p, q) model
is used for the process noise term in the random walk, the predict equations in the
state estimation step change to

Xklk—1 = Xk—1lk—1 (9.6)

q p
> _ 2 2 _ 2 2 22
Oflk—1 = Ok—1jk—1 T Oc k = Of_qp—1 T %0 + Z“zsk—i + Z Bihi—;-  9.7)
izl =1

The update equations in the state estimation step remain unchanged. Note also that
the calculation of akz r_1 requires the previous process noise terms. In general, these
will have to be calculated based on successive differences between the x; and x;_;
estimates.

Moreover, we would also have (p + ¢ + 1) additional GARCH terms (the «;’s
and B;’s) to determine at the parameter estimation step. These terms would have to
be chosen to maximize the log-likelihood

_( Do ) (xk — xk—1)?
== k;‘ I:log(Zna&k) + T} (9.8)

1 & ! ;
= G e [or(co+ et L)

+

(X — xk—1)? } ©99)

q 2 P 2
a0+ iy g + 2 Bihi_;
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The maximization of Q with respect to the GARCH terms is rather complicated.
Choosing a GARCH(1, 1) model for & simplifies the computations somewhat.
Additionally, note the recursive form contained within Q. For each value of k, we
have terms of the form h%_ . which contain within them further 42 terms. In general,
computing Q is challenging unless further simplifying assumptions are made.

When x; evolves with time following xx = xx_1 + &, Where & is modeled
using a GARCH(p, q) framework, the predict equations in the state estimation
step are

Xklk—1 = Xk—1|k—1 (9.10)
q P

Olik—1 = O—1jf—1 T 0 + Z“i"?/%—i + Z'th%—j' (9.11)
i=1 j=1

The parameter estimation step updates for the (p + g + 1) GARCH terms are
chosen to maximize

(-1) K q 14
— ZE{ log [Zn (cxo + Zaisi_i 4F Z ,thi_j>:|
k=1 i=1 j=1

Ok — xk—1)? }
a + 21, O‘ig/%—i + Zf:l ﬂjh%—j

+ 9.12)

9.2 Deriving the Parameter Estimation Step Equations for
Terms Related to a Binary Observation

Thus far, we have only considered cases where the probability of binary event
occurrence py is of the form

1

= 9.13)

Pk

We have also thus far only estimated Sy empirically (e.g., based on the average
probability of point process event occurrence). Occasionally, however, we will find
it helpful to model py as

1

| + e~ Bo+Bixi) ©.14)

Pk
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and determine By and B at the parameter estimation step. If we wish to do so, we
will need to consider the probability term that needs to be maximized at this step.
Based on (3.27), this probability term is

=

K 1
l_[ enk log +log(l P 1—[ enk (Bo+Bixk)+log T4ePoFBI ) 9.15)
k=1 k=1

This yields the expected log-likelihood

K
0= ZE[nk(,Bo + Bixe) —log (1 + eﬁ°+ﬁ‘xk)]. (9.16)
k=1

As in the case of determining the parameter updates for the terms in a CIF, this
expected value is also somewhat complicated. Again, the trick is to perform a Taylor
expansion around the mean E[x;] = x|k for each of the individual log terms. After
performing this expansion, we end up with terms like E[x; — xxx] and E[(x; —
Xk| x)*1 which greatly simplify our calculations.

Let us begin by performing a Taylor expansion of the log term around xy x [6].

log (1 + ePtF1k) ~ log (1 4 ePHPIMIKY 4 By pyik (xk — Xk
2

+ %Pkm(l — PrK) (X — XkK)* (9.17)

Note the terms (xx — xk|x) and (xx — x| K)2 in the expansion. Taking the expected
value on both sides,

E[log (1 + eﬁ0+/51)€k)] ~log (1 + eﬂo+ﬁ|x1cu<) + ﬂlPk\KE[xk _ Xk|l<]

2

B
+ - prik (1= prisOB[ O — xig )] (9.18)
Bo+Bixkk /312 2

(9.19)
Therefore,
K ’32
o~ Z [ﬂk(ﬂo + Bixxik) — log (1 4 efotPruuxy — jll’k\K(l - pkK)UkZK]-

k=1
(9.20)
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Now,
M = i[ 1 ] = =D x [_ e*(ﬂoJrﬂle\K)]
9Bo 3o | 1 + e~ Po+hrxx) [l n e—(ﬂ0+ﬂ1Xk|K)]2
= prik (1 — prk). 9.21)
And similarly,
Opk|K
2B = prik (1 — prig)xr k.- (9.22)

Taking the partial derivative of Q with respect to By, we have

K 2 2
00 ePotBixik IBIJHK 9
Y - - = 1 - 9.23
3P0 ]; "k (1 + gﬂo+ﬁ1x1<u<) 2 9B [Pk|K( ple)] (9.23)
K 2 2
Bioik 9
= — PkIK — — 1— 9.24
/; ni — Pr|K 5 aﬁo[pkm( PkK)]} (9.24)
K ¢ 2 2
Bro
= > [m= puk — =1 = pu) (1~ 2pkK>pk|K}. (9.25)

k=1"

And similarly for 8, we have

K 2
9 Bio,
B_/S'Ql :Z |:nk)Ck|K —Xk|K Dk|K — : 2k|K prik (1= pri)[2 + Brxwg (1 — 2pk|K)]j|.
k=1
(9.26)
By setting
9 _, 9.27)
9po
00
¥ o, 9.28
2B (9.28)

we obtain two simultaneous equations with which to solve for By and ;. Note also
that the use of By and B; in py causes changes to the filter update equations for x|«
and ak2| e
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The parameter estimation step updates for fp and B; when we observe a
binary variable nj are obtained by solving

K 2.2
Biog
S [nk — Pk = = (1 = pig) (1 - 2pk.K>pk|K} =0 (9.29)
k=1
K lakle
[”kxle — XK PKK = — —Pkix (1 = pr)[2 + Brxwr (1 — 2pk|K)]]
k=1

=0. (9.30)

9.3 Extending Estimation to a Vector-Valued State

We have also thus far only considered cases where a single state xj gives rise to
different observations. In a number of applications, we will encounter the need to
estimate a vector-valued state x;. For instance, we may need to estimate the position
of a small animal on a 2D plane from neural spiking observations or may need to
estimate different aspects of emotion from physiological signal features. We have a
multi-dimensional x; in each of these cases.

Let us first consider the predict equations in the state estimation step. Assume
that we have a state x; that varies with time following

Xi = AXx—1 + Buy + e, (9.31)

where A and B are matrices and e, ~ A(0, X) is the process noise. The basic
statistical results related to mean and variance in (2.1)—(2.6) simply generalize to
the vector case. Thus, the predict equations in the state estimation step become

Xklk—1 = AXp—1k—1 + Buy (9.32)
D=1 = AXj_1p—1 AT + X, (9.33)

where the covariance (uncertainty) X of x; is now a matrix.

Recall also how we derived the update equations in the state estimation step.
We calculated the terms that appeared in posterior p(xx|y1x) and made a Gaussian
approximation to it in order to derive the mean and variance updates xyx and akz‘ k-
In all of the scalar cases, the log posterior density had the form
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(X — Xgk—1)?

3 + constant, (9.34)
20451

qs = f(xx) —

where f (x;) was some function of xi. This function could take on different forms
depending on whether binary, continuous, or spiking-type observations (or different
combinations of them) were present. In each of the cases, the mean and variance
were derived based on the first and second derivatives of g;.

There are two different ways for calculating the update step equations in the
vector case.

» The first is the traditional approach outlined in [10]. Here, the result that holds
for the 1D case is simply extended to the vector case. Regardless of the types of
observations (features) that are present in the state-space model, the log posterior
is of the form

1 _
gy = f(Xp) — E(Xk — Xk\k—l)TEHkl_l(xk — Xg|k—1) + constant. (9.35)

The manner in which the updates xx and X are calculated, however, is quite
similar. We simply take the first vector derivative of ¢, and solve for where it
is 0 to obtain xix. We next take the Hessian of g, comprising all the second
derivatives and take its negative inverse to obtain Xy .

» The second approach is slightly different [115]. Note that, based on making a
Gaussian approximation to the log posterior, we can write

1 _ 1 _
- i(xk_xklk)TEkV: (Xk —Xk|k) = f(Xk)—E(Xk—xuk—l)TEk”:_l (Xk —Xk k1)
+ constant. (9.36)

Let us take the first vector derivative with respect to x; on both sides. This yields

- af (xx) _
— Eklll(xk - Xk|k) = W — Ekll:—l(xk - Xk|k—1)~ (9.37)
Let us now evaluate this expression at Xy = Xgk—1. Do you see that if we

substitute X; = Xgx—1 in the above expression, the second term on the right
simply goes away? Therefore, we end up with

_ af (xx)
- k“i (Xklk—1 — Xkjk) = J; (9.38)
Xk Xk|k—1
af (Xx)
= Xpk = Xkk—1 + Zkjk J;xk (9.39)

Xk|k—1
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This yields the mean state update for xxx. How do we derive the covariance
matrix Xy x? We simply take the vector derivative of (9.37) again. Note that in

. 2, . . .
this case, 337 is a matrix of all the second derivative terms. Thus, we obtain
k

_ Pfx)
1 1
e ="—5 7t Zp-1 (9.40)
k
2fx) oy 1
= Yk = [— % + Zklkl—li| . 9.41)
Xy

9.4 The Use of Machine Learning Methods for State
Estimation

Machine learning approaches can also be used for state estimation (e.g., [116, 117]).
In these methods, neural networks or other techniques are utilized to learn a
particular state-space model and infer the unobserved state(s) from a dataset. In this
section, we will briefly describe how the neural network approach in [116] is used
for estimation. In [116], Krishnan et al. considered the general Gaussian state-space
model

Xk ~ N (fu, Ck=1)s fo2 (k—1)) (9.42)
i ~ I (fy(xx)), (9.43)

where y; represents the observations. Both the state equation and the output
equation are learned using two separate neural networks (for simplicity, we group
both of them together under the title “state-space neural network”—SSNN). A
separate recurrent neural network (RNN) is used to estimate x;. Taking v and ¢
to denote the parameters of the state-space model and the RNN, respectively, the
networks are trained by maximizing

K
0= ZEq¢(xk\§)[10g Py Oklxn) | — KL(gg (511311 py (x1))
k=1

K

= By ) [KL(gg (a1, D)l py (e xx—1)) ] (9.44)
k=2

where py(-) and g4(-) denote density functions [116]. The actual training is
performed within the algorithm as a minimization of the negative term which we
label Q1. Analogous to the state-space EM algorithms we have seen so far, in
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this neural network approach, the SSNN replaces the explicit state-space model, the
RNN replaces the Bayesian filter, and the weights of the neural networks replace the
model parameters. The objective, however, is still to estimate x; from observations
such as ng, r¢, and sg. Since neural networks are used to learn the state-space model,
more complicated state transitions and input-output relationships are permitted. One
of the drawbacks, however, is that a certain degree of interpretability is lost.

Similarities also exist between the terms in Q7 and the log-likelihood terms
we have seen thus far. For instance, when a binary variable ny is present among the
observations yx, Q7 contains the summation

1 1

Take a moment to look back at how (3.15) and (3.26) fit in with this summation.
In this case, however, f,(-) is learned by the SSNN (in our other approaches, we
explicitly modeled the relationship between xj and py using a sigmoid). Similarly,
if a continuous-valued variable sy is present in y, there is the summation

[sk — fu, (Xk)]2

1
> 5 log [2mfp2 )] + 5 For (k)

, (9.46)

where f,, () and f_2(-) represent mean and variance functions learned by the
SSNN. Again, recall ‘that we had a very similar term at the parameter estimation
step for a continuous variable s.

One of the primary advantages of the neural network approach in [116] is that
we no longer need to derive all the EM algorithm equations when new observations
are added. This is a notable drawback with the traditional EM approach. Moreover,
we can also modify the objective function to

A =p)OmL+p Y O — k), (9.47)

where /i, is an external influence and 0 < p < 1. This provides the option to perform
state estimation while permitting an external influence (e.g., domain knowledge or
subject-provided labels) to affect xy.

9.5 Additional MATLAB Code Examples

In this section we briefly describe the two state-space models in [118] and [30]
for which the MATLAB code examples are provided. The equation derivations for
these two models require no significant new knowledge. The first of these incor-
porates one binary observation from skin conductance and one EKG spiking-type
observation. The second incorporates one binary observation and two continuous
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observations. It is almost identical to the model with the same observations
described in an earlier chapter but has a circadian rhythm term as /. The derivation
of the state and parameter estimation equations is similar to what we have seen
before.

9.5.1 State-Space Model with One Binary and One
Spiking-Type Observation

The MATLAB code example for the state-space model with one binary and one
spiking-type observation is provided in the “one_bin_one_spk” folder. The model is
described in [118] and attempts to estimate sympathetic arousal from binary-valued
SCRs and EKG R-peaks (the RR-intervals are modeled using an HDIG-based CIF).
The results are shown in Fig. 9.1. The data come from the study described in [119]
where subjects had to perform office work-like tasks under different conditions. In
the first condition, the subjects were permitted to take as much time as they liked.
The other two conditions involved e-mail interruptions and time constraints. Based
on the results reported in [118], it appeared that task uncertainty (i.e., how new the
task is) seemed to have generated the highest sympathetic arousal responses for the
subject considered.

9.5.2 State-Space Model with One Binary and Two Continuous
Observations with a Circadian Input in the State
Equation

Cortisol is known to exhibit circadian variation [120, 121]. Typically, cortisol
concentrations in the blood begin to rise early morning during late stages of sleep.
Peak values are reached shortly after awakening. Later in the day, cortisol levels
tend to drop toward bedtime and usually reach their lowest values in the middle of
the night [122, 123]. In [30], a circadian I} term was assumed to drive x; so that it
evolved with time following

Xk = pxk—1 + Ix + €, (9.48)
where
2 dmik ik
I = Z}a,- sin ( 1440) + by cos ( 1440). (9.49)
1=

The model also considered the upper and lower envelopes of the blood cortisol
concentrations as the two continuous variables r; and si. The pulsatile secretions
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State Estimation with Experimental Data

N \W"M\'\M
© 10l w

0 10 20 30 40 50
time (min)

Fig. 9.1 State estimation based on observing one binary and one spiking-type variable. The sub-
panels, respectively, depict (a) the skin conductance signal z; (the green and black dots on top
depict the presence or the absence of SCRs, respectively), (b) the RR-interval sequence (orange)
and the fit to the HDIG mean (red), (c¢) the probability of SCR occurrence py and its 95%
confidence limits, (d) the arousal state x; and its 95% confidence limits, and (e) the HAI (the
regions above 90% and below 10% are shaded in red and green, respectively). © 2019 IEEE.
Reprinted, with permission, from [118]

formed the binary variable ny. The inclusion of each continuous variable neces-
sitates the determination of three model parameters (two governing the linear fit
and the third being the sensor noise variance). In addition, the state-space model
in [30] also estimated By and B in pi. There are also six more parameters in the
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State Estimation with Experimental Data
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Fig. 9.2 State estimation based on observing one binary and two continuous variables with a
circadian input in the state equation. The sub-panels, respectively, depict (a) the cortisol profile (the
green and black dots on top denote the presence or the absence of pulsatile secretions respectively),
(b) the first cortisol concentration envelope rx (green solid) and its estimate (dashed), (¢) the second
cortisol concentration envelope s; (mauve solid) and its estimate (dashed), (d) the probability
of pulse occurrence py, and (e) the energy state x;. © 2019 IEEE. Reprinted, with permission,
from [30]

state equation: p, ai, az, by, by, and 052. To ease computational complexity, the
EM algorithm in [30] treated the four parameters related to the circadian rhythm
(a1, a2, by, and by) somewhat differently. Thus, while all the parameters were
updated at the parameter estimation step, ai, a», b1, and b, were excluded from the
convergence criteria. The results are shown in Fig. 9.2. Here, the data were simulated
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for a hypothetical patient suffering from a type of hypercortisolism (Cushing’s
disease) based on the parameters in [124]. Cushing’s disease involves excess cortisol
secretion into the bloodstream and may be caused by tumors or prolonged drug use
[125]. Symptoms of Cushing’s disease involve a range of physical and psychological
symptoms including insomnia and fatigue [126—128]. The resulting cortisol-related
energy state estimates do not have the usual circadian-like patterns seen for a healthy
subject. This may partially account for why Cushing’s patients experience daytime
bouts of fatigue and nighttime sleeping difficulties.
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Chapter 10
MATLAB Code Examples

10.1 State-space Model with One Binary Observation

10.1.1 Simulated Data Example

load(’data one _bin.mat’) ;

K length (n) ;

M 2e4;
ve = zeros(l, M); % process noise variance

x _pred = zeros(l, K);
v_pred = zeros(l, K);

x updt = zeros(l, K);
v_updt = zeros(l, K);

x_smth = zeros(1l, K);
v_smth = zeros(l, K);

p_updt = zeros(l, K);

base prob = sum(n) / length(n);
tol = le-6; % convergence criteria

1

A zeros (1, K)
W = zeros(l, K)
K
K)

) 8

7

CW = zeros (1,
C = zeros (1,

ve(l) = 0.005;
x_smth(1l) = 0;
b0 = log(base prob / (1 - base prob)) ;

© The Author(s) 2024 111
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for m = 1:M

for k = 1:K

if (k == 1) % boundary condition
x _pred(k) = x smth(1);
v_pred(k) = ve(m) + ve(m);
else
x pred(k) = x_updt(k - 1);
v_pred(k) = v_updt(k - 1) + ve(m);
end
x_updt (k) = get state update(x pred(k), v _pred(k), b0, n(
k))
p_updt (k) = 1 / (1 + exp((-1) * (b0 + x updt(k))));
v_updt (k) 1/ ((1 / v pred(k)) + p updt(k) * (1 -
p_updt (k))) ;
end
x_smth(K) = x updt (K);
v_smth(K) = v_updt (K) ;
W(K) = v_smth(K) + (x_smth(K) * 2);
A(l:(end - 1)) = v_updt(l:(end - 1)) ./ v_pred(2:end);
for k = (K - 1):(-1):1
x _smth(k) = x updt (k) + A(k) * (x_smth(k + 1) - x pred(k +
1));
v_smth(k) = v_updt(k) + (A(k) * 2) % (v_smth(k + 1) -
v _pred(k + 1));
CW(k) = A(k) %= v_smth(k + 1) + x _smth(k) x x smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) * 2);
end

if (m < M)

ve(m + 1) = (sum(W(2:end)) + sum(W(l:(end - 1))) - 2 =
sum (CW)) / K;
mean _dev = mean(abs(ve(m + 1) - ve(m)));

if mean dev < tol
fprintf (‘m = %d\nx0 = %.18f\nve = %.18f\n\n’, m,
x_smth (1), ve(m));
fprintf (' Converged at m = %d\n\n’, m);
break;
else
fprintf (‘m = %d\nx0 = %.18f\nve = %.18f\n\n’, m,
x_smth(1l), ve(m + 1));

x pred = zeros(l, K);
v_pred = zeros(l, K);
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x updt = zeros(l, K);
v_updt = zeros(l, K);

x_smth(2:end) = zeros(l, K - 1); % x smth(1)
needed for next iteration
v_smth = zeros(1l, K);
p_updt = zeros(l, K);
A = zeros(l, K);
W = zeros(l, K)
CW = zeros(1l, K
C = zeros(l, K)
end
end
end

) 8

7

p_smth = 1 ./ (1 + exp((-1) % (b0 + x smth)));

figure;
subplot (411) ;
stem(n, ‘fill’, ’‘color’, [0 0.75 0]);

ylim ([0 1.25]);
ylabel (' (a) n {k}’);
grid; title(’Estimation with Simulated Data’) ;

subplot (412) ;

hold on;

plot(p, 'b’);

plot (p_smth, ’‘r-.’, ’‘linewidth’, 1.25);
ylabel (' (b) p_{k}");

grid;

subplot (413) ;

hold on;

plot(x, 'b’);

plot (x_smth, ’‘r-.’, ’linewidth’, 1.25);
ylabel (* (¢) x_{k}’); xlabel('time index’);
grid;

subplot (414) ;

ggplot (x - x_smth) ;

title(’'QQ Plot - State Estimate’, ’'FontWeight’, ’Normal’) ;
ylabel (' (d) input quantiles’) ;

xlabel (' standard normal quantiles’) ;

grid;

function [y] = get state update(x pred, v _pred, b0, n)

M = 50; % maximum iterations
it = zeros(1l, M);

func = zeros(l, M);

113
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df = zeros(l, M);
it (1) = x pred;
for i = 1:(M - 1)
func (i) = it (i) - x pred - v_pred =x
(1 + exp(b0 + it(i))));
df (i) = 1 + v_pred * exp(b0 + it (1))
))) " 2);
it(i + 1) = it(i) - func(i) / df(i);
if abs(it(i + 1) - it(i)) < le-14
y = it(i + 1);
return
end
end
error ('Newton-Raphson failed to converge
end

10.1.2 Experimental Data Example

load (’expm data one bin.mat’) ;

K
n

length (u) ;
zeros (1, K);

pt = find(u > 0);

n(pt) = 1;

M = 2e4;

ve = zeros(l, M); % process noise variance
x _pred = zeros(l, K);

v_pred = zeros(l, K);

X _updt = zeros(1l, K);

v_updt = zeros(1l, K);

x_smth = zeros(1l, K);

v_smth = zeros(l, K);

p_updt = zeros(l, K);

base_prob = sum(n) / length(n) ;

tol = 1le-8; % convergence criteria
A = zeros(l, K);
W = zeros(l, K);
CW = zeros(l, K);
C = zeros(l, K);

7

(n - exp(b0 + it (i))
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/

/ ((1L + exp(b0 + it (i

7)) B
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ve(l) = 0.005
X smth(l) = 0p
b0 = log(base prob / (1 - base prob)) ;

for m = 1:M
for k = 1:K

if (k == 1) % boundary condition
x pred(k) = x smth(1);
)

v_pred(k) = ve(m) + ve(m);
else
x pred(k) = x updt(k - 1);
v_pred(k) = v_updt(k - 1) + ve(m);
end

x_updt (k) = get_state update(x pred(k), v _pred(k), b0, n(

k));
p_updt (k) = 1 / (1 + exp((-1) % (b0 + x updt(k))));
v updt (k) =1 / ((1 / v_pred(k)) + p updt(k) » (1 -

p_updt (k))) ;

end

x_smth(K) = x updt (K) ;

v_smth(K) = v_updt (K) ;

W(K) = v_smth(K) + (x_smth(K) * 2);

A(l:(end - 1)) = v_updt(l:(end - 1)) ./ v_pred(2:end);

x0_prev = x_smth(1);

for k = (K - 1):(-1):1

x_smth(k) = x updt (k) + A(k) * (x_smth(k + 1) - x pred(k +
1))

v_smth(k) = v_updt (k) + (A(k) * 2) % (v_smth(k + 1) -

v pred(k + 1));

CW(k) = A(k) % v_smth(k + 1) + x smth(k) * x smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) * 2);

if (m < M)

ve(m + 1) = (sum(W(2:end)) + sum(W(l:(end - 1))) - 2 *
sum(CW) + 0.5 % W(1)) / (K + 1);

x0 = x smth(1) / 2;

if (abs(ve(m + 1) - ve(m)) < tol) && (abs(x0 - x0_prev) <
tol)

fprintf (‘m = %$d\nx0 = %.18f\nve = %.18f\n\n’, m,
x_smth(1l), ve(m));

fprintf (' Converged at m = %d\n\n’, m);

break;
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else
fprintf (‘m = %d\nx0 = %.18f\nve = %.18f\n\n’, m,
x _smth(1l), ve(m + 1));

x_pred = zeros(l, K);
v_pred = zeros(l, K);

X_updt zeros (1, K);
v_updt = zeros(l, K);

X _smth(2:end) = zeros(l, K - 1); % x_smth(1)
needed for next iteration
x_smth (1) = x0;

v_smth = zeros(l, K);
p_updt = zeros(l, K);

7

A zeros (1, K)
W zeros (1, K)
K
K)

) 8

7

CW = zeros (1,
C = zeros (1,
end
end
end

p. smth =1 ./ (1 + exp((-1) * (b0 + x_smth)));

lcl x = norminv(0.025, x smth, sgrt(v_smth));
ucl x = norminv(0.975, x smth, sgrt(v_smth));

certainty = 1 - normcdf (prctile(x_smth, 50) x ones(l, length(
x_smth)), x smth, sgrt(v_smth));

lcl_p = zeros(1l, K);
ucl p = zeros(l, K);

disp(’Calculating the pk confidence limits... (this can take time
due to the resolution)’);

for k = 1:K
[1cl p(k), ucl p(k)] = get pk conf lims(v_smth(k), b0, x smth
(k));

end

disp(’Finished calculating the pk confidence limits.’);

fs = 4;
t = (0:(K - 1)) / fs;
tr = ((K - 1):(-1):0) / fs;

u plot = NaN * ones(1l, K);
u _plot (pt) = u(pt);

subplot (511) ;
hold on;
plot(ty, vy, 'k’, ’linewidth’, 1.25);
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ylabel ({’ (a) skin cond.’, ' (\mu S)'});

set (gca, 'xticklabel’, [1); ylim([0 3]1);

title(’State Estimation with Experimental Data’); xlim([0 ty(end)
1)

grid;

yl = ylim;

patch([xp (1), xp(2), xp(2), xp(1)] / fs, [y1(1) y1l(1) yl(2) yl(2)
1, 'r’, 'FaceAlpha’, 0.2, ’'EdgeColor’, ’'none’);

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1) y1(1) yl(2) yl(2)
1, '"g’, ’'FaceAlpha’, 0.2, ’'EdgeColor’, ’'none’);

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) y1(1) yl(2) yl(2)
1, [1 0.647059 0], ’'FaceAlpha’, 0.2, ’'EdgeColor’, ’'none’);

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [y1l(1) y1l(1) yl(2) yl(2)
1, '"b’, ’'FaceAlpha’, 0.2, ’'EdgeColor’, ’'none’);

patch([xp(5), xp(6), xp(6), xp(5)] / f£s, [yl(1) yl(1) yl(2) yl(2)
1, 'y’, ’'FaceAlpha’, 0.2, ’'EdgeColor’, ’'none’);

subplot (512) ;

stem(t, u_plot, ’fill’, ’k’, ’‘markersize’, 3);

ylabel (* (b) n {k}, r {k}’); grid; x1lim([0 t(end)]); ylim([0 15]);

yl = ylim; set(gca, ’'xticklabel’, I[1);

patch([xp (1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1) yl(2) yl(2)
1, 7@7, ’FaceAlpha’ 0.2, ’'EdgeColor’, ’'none’);

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [y1(1) y1l(1) yl(2) yl(2)
1, '"g9g’, ’FaceAlpha’ 0.2, ’'EdgeColor’, ’'mnone’);

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [y1l(1) y1l(1) yl(2) yl(2)
1, [1 0.647059 0], 'FaceAlpha’, 0.2, ’'EdgeColor’, ’'none’);

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1l) yl(1) yl(2) yl(2)
1, '"b’, ’"FaceAlpha’, 0.2, ’'EdgeColor’, ’'none’);

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1l) yl(1) yl(2) yl(2)
1, 'y’, 'FaceAlpha’, 0.2, ’'EdgeColor’, ’‘none’);

subplot (513) ;

hold on;

plot(t, x smth, ’'b’, ’linewidth’, 1.25);

£111([t, tr]l, [lecl x fliplr(ucl x)], ’'c’, ’'EdgeColor’, ’'none’, '
FaceAlpha’, 0.5);

ylabel (’ (c) state (x_{k})’); ylim([-10 5]);

set (gca, 'xticklabel’, []); x1lim ([0 t(end)]);

grid; yl = ylim;

patch([xp (1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1l) yl(2) yl(2)
1, '"x’, ’FaceAlpha’ 0.2, ’'EdgeColor’, ’'none’);

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1l) yl(1) yl(2) yl(2)
1, "g’, ’FaceAlpha’ 0.2, ’'EdgeColor’, ’'none’);

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1l) yl(1) yl(2) yl(2)
1, [1 0.647059 0], 'FaceAlpha’, 0.2, ’'EdgeColor’, ’'none’);

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) yl(1l) yl(2) yl(2)
1, '"b’, ’"FaceAlpha’, 0.2, ’'EdgeColor’, ’‘none’);

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2) yl(2)
1, 'y’, 'FaceAlpha’, 0.2, ’'EdgeColor’, ’‘none’);
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subplot (514) ;
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hold on;

plot(t, p_smth, ’‘r’, ‘linewidth’, 1.5);

£111([t, tr], [lcl p fliplr(ucl p)]l, [1, O, (127 / 255)1, '
EdgeColor’, ’'none’ 'FaceAlpha’, 0.3);

ylim ([0 0.15]);

ylabel (' (d) probability (p_{k})

set (gca, 'xticklabel’, []); x1lim([0 t(end)]);

grid; yl = ylim;

patch([xp (1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1l) yl(2) yl(2)
1, '"r’, ’FaceAlpha’ 0.2, ’'EdgeColor’, ’'none’);

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1) yl(1l) yl(2) yl(2)
1, "g’, ’FaceAlpha’ 0.2, ’'EdgeColor’, ’'mnone’);

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) yl(1l) yl(2) yl(2)
1, [1 0.647059 0] 'FaceAlpha’, 0.2, ’'EdgeColor’, ’'none’);

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) yl(1) yl(2) yl(2)
1, "b", ’FaceAlpha’ 0.2, ’'EdgeColor’, ’'none’);

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2) yl(2)
1, 'v', ’FaceAlpha’ 0.2, ’'EdgeColor’, ’'none’);

subplot (515) ;

hold on;

vl = [0 0.9; t(end) 0.9; t(end) 1; 0 1];

cl = [1 (220 / 255) (220 / 255) 1 (220 / 255) (220 / 255); 1 0
0; 1 0 0];

facesl = [1 2 3 4];

patch(’Faces’, facesl, ’'Vertices’, vl, 'FaceVertexCData’, cl, '’
FaceColor’, ’interp’, .
'EdgeColor’, ’‘none’, ’'FaceAlpha’, 0.7);

v2 = [0 0; t(end) 0; t(end) 0.1; 0 0.17;

c2 = [0 0.8 0; 0 0.8 0; (204 / 255) 1 (204 / 255) (204 / 255) 1
(204 / 255)1;

faces2 = [1 2 3 4];

patch(’Faces’, faces2, ’'Vertices’, v2, 'FaceVertexCDhata’, c2, '’
FaceColor’, ’interp’, .
'EdgeColor’, ’‘none’ 'FaceAlpha’, 0.7);

plot (t, certainty, ’color’, [(138 / 255) (43 / 255) (226 / 255)1,

'linewidth’, 1.5); grid;

ylabel (’ (d) HAI’); xlabel(’time (s)’); x1lim([0 t(end)]);

function [y] = get state update(x pred, v _pred, b0, n)
M = 50; % maximum iterations
it = zeros(l, M);
func = zeros(l, M);
df = zeros(1l, M);
it (1) = x_pred;
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for i = 1: (M - 1)
func (i) = it(i) - x pred - v _pred * (n - exp(b0 + it(i)) /
(1 + exp(b0 + it (i))));

df (1) 1 + v_pred * exp(b0 + it(i)) / ((1 + exp(b0 + it (i
))) "t 2);
it(i + 1) = it(i) - func(i) / df(i);
if abs(it(i + 1) - it(i)) < le-14
y = it(i + 1);
return
end
end

error ('Newton-Raphson failed to converge.’) ;

end
function [lcl, ucl] = get pk conf lims(v, b0, x)
p = (le-6:1le-6:1);
fp = cumtrapz(p, 1 ./ (sgrt(2 = pi * v) * p .x (L - p)) .*
exp(((-1) / (2 » v))* (log(p ./ ((1 - p) %= exp(b0))) - x)
*2));
n = find(fp <= 0.975);
m = find(fp < 0.025);
ucl = p(n(end)) ;
lcl = p(m(end)) ;
end

10.2 State-space Model with One Binary and One
Continuous Observation

10.2.1 Simulated Data Example
load(’data one bin one cont.mat’);

K = length(n) ;

pt = find(n > 0);

M = 5e4;
ve = zeros(l, M); % process noise variance
r0 = zeros(l, M); % linear model coefficients (continuous

variable)
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rl = zeros(1l, M); % linear model coefficients (continuous
variable)
vr = zeros(l, M); % sensor noise variance (continuous variable)

x_pred = zeros(l, K);
v_pred = zeros(l, K);

X _updt = zeros(l, K);
v_updt = zeros(l, K);

x_smth = zeros(l, K);
v_smth = zeros(1l, K);

p_updt = zeros(l, K);

base prob = sum(n) / length(n);
tol = le-8; % convergence criteria

A = zeros(l, K);

W = zeros(l, K);
K) ;
K)

CW = zeros(1,

C = zeros (1, ;
ve(l) = 0.005;
x smth(1l) = 0;
ro(l) = 0.1;
rli(l) = r(1);
vr(l) = 0.002;

(

b0 = log(base prob / (1 - base prob));
for m = 1:M

for k = 1:K

if (k == 1)
x _pred(k) = x smth(1);
v_pred(k) = ve(m) + ve(m);
else
x pred(k) = x updt(k - 1);
v_pred(k) = v_updt(k - 1) + ve(m);
end
x_updt (k) = get posterior mode(x pred(k), v pred(k), r(k)
(m), vr(m), b0, n(k));

(
, rO(m), ril
(
(

p_updt (k) = 1 / (1 + exp((-1) x (b0 + x updt(k))));
v_updt (k) =1 / ((1 / v_pred(k)) + ((rl(m) * 2) / vr(m))
+ p_updt (k) * (1 - p updt(k)));
end
x_smth(K) = x updt (K) ;
v_smth(K) = v_updt (K) ;
W(K) = v_smth(K) + (x_smth(K) * 2);

A(l:(end - 1)) = v_updt(l:(end - 1)) ./ v_pred(2:end);
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for k = (K - 1):(-1):1
x smth(k) = x updt (k) + A(k) * (x smth(k + 1) - x pred(k +
1));
v_smth(k) = v_updt(k) + (A(k) *~ 2) % (v_smth(k + 1) -
v_pred(k + 1));

CW(k) = A(k) » v_smth(k + 1) + x smth(k) * x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) * 2);
end

if (m < M)

R = get linear parameters(x_smth, W, r);

rO(m + 1) = R(1, 1);

rl(m + 1) = R(2, 1);

vr(m + 1) = get maximum variance(r, rO(m + 1), rl(m + 1),
W, x smth);

ve(m + 1) = (sum(W(2:end)) + sum(W(l:(end - 1))) - 2 =

sum (CW)) / K;

mean_dev = mean (abs([ve(m +
)

( 1) ¥rO(m + 1) ril(m + 1) vr(m +
1)] - [ve(m) r0O(m) rl(m) vr(m)])

) 8

if mean dev < tol
fprintf (‘m = %d\nx0 = %.18f\n\nr0 = %.18f\nrl = %.18f
\nvr = %.18f\nve = %.18f\n\n’, m, x_smth(1l), r0(m), rl(m), vr
(m) , ve(m));
fprintf (' Converged at m = %d\n\n’, m);
break;
else
fprintf (‘m
\nvr = %.18f\nve =
+ 1), vr(m + 1), ve

$d\nx0 = %.18f\n\nr0 = %.18f\nrl = %$.18f
.18f\n\n’, m, x smth(1), rO(m + 1), rl(m
m+ 1));

—~ o° ||

x pred = zeros(l, K);
v_pred = zeros(l, K);

x_updt = zeros(l, K);
v_updt = zeros(l, K);

x smth(2:end) = zeros(l, K - 1); % x_smth(1)
needed for next iteration
v_smth = zeros(l, K);

p_updt = zeros(l, K);

A zeros (1, K)

W zeros (1, K);

CW = zeros(1l, K);

C = zeros(1l, K)
end

end

7

7
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end

p updt =1 ./ (1 + exp((-1) * (b0 + x_ updt))) ;
p.smth = 1 ./ (1 + exp((-1) * (b0 + x smth)));
r_smth = r0O(m) + rl(m) % x smth;

figure;

subplot (511) ;

stem(n, ‘fill’, ’'color’, [0 0.75 01);

ylim ([0 1.25]);
ylabel (' (a) n {k}');
grid; title(’Estimation with Simulated Data’) ;

subplot (512) ;

hold on;

plot(r, 'b’);

plot (r_smth, ’‘r-.’, ’‘linewidth’, 1.5);
ylabel (' (b) r {k}");

grid;

subplot (513) ;

hold on;

plot(p, 'b’);

plot (p_smth, ’‘r-.’, ’'linewidth’, 1.5);
ylabel (' (¢) p_{k}’);

grid;

subplot (514) ;

hold on;
plot(x, 'b’);
plot (x_smth, ’‘r-.’, ’‘linewidth’, 1.5);

ylabel (' (d) x {k}’);
xlabel ('time index’) ;
grid;

subplot (515) ;

ggplot (x - x_smth) ;

title(’'QQ Plot - State Estimate’, ‘FontWeight’, ’Normal’) ;
ylabel (' (e) input quantiles’) ;

xlabel (' standard normal quantiles’) ;

grid;
function [y] = get posterior mode(x pred, v _pred, z, r0, rl, vr,
b0, n)
M = 100; % maximum iterations
it = zeros(1l, M);
f = zeros (1, M);

df = zeros(1l, M);
it (1) = x_pred;

for i = 1: (M - 1)
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C = v pred / ((rl * 2) % v_pred + vr);
£(i) = it(i) - x pred - C % (rl * (z - r0 - rl » x pred)
+vr o« (n - (1 / (1 + exp((-1) » (O + it(i)))))));

df(i) =1 + C » vr % exp(b0 + it (1)) / ((1 + exp(b0 + it(
i))) * 2);
it(i + 1) = it(i) - £(i) / dAf(1i);

if abs(it(i + 1) - it(i)) < le-14
y = it(i + 1);
return
end
end

error ('Newton-Raphson failed to converge.’) ;
end

function y = get maximum variance(z, r0, rl, W, x_smth)

K = length(x_smth) ;

A A

y = (z » 2z’ + K » (x0 2) + (rl 2) * sum(W)
- 2 % r0 * sum(z) - 2 % rl x dot(x smth, z) + 2 =«
r0 « rl x sum(x _smth)) / K;

end

function y = get linear parameters(x_smth, W, z)

K = length(x_smth) ;
y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .=x
x _smth)];

end

10.2.2 Experimental Data Example

load(’expm data one bin one cont.mat’);
K = length(n);

pt = find(n > 0);

M = 5e4;

ve = zeros(l, M); % process noise variance

r0 = zeros(l, M); % linear model coefficients (continuous
variable)

rl = zeros(l, M); % linear model coefficients (continuous
variable)

vr = zeros(l, M); % sensor noise variance (continuous variable)
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X _pred = zeros(l, K);
v_pred = zeros(l, K);

X updt = zeros(l, K);
v_updt = zeros(l, K);

x_smth = zeros(l, K);
v_smth = zeros(1l, K);

p_updt = zeros(l, K);

base prob = sum(n) / length(n);
tol = le-8; % convergence criteria

A = zeros(l, K);
W = zeros(l, K);
K) ;
K)

CW = zeros (1,

C = zeros(1l, ;

ve(l) = 0.005;

x smth(l) = 0;

ro(l) = 0.1;

r1l(l) = r(1);

vr(l) = 0.002;

b0 = log(base prob / (1 - base prob));

for m = 1:M

for k = 1:K

if (k == 1)
x pred(k) = x _smth(1);
v_pred(k) = ve(m) + ve(m);
else
x pred(k) = x updt(k - 1);
v_pred(k) = v _updt(k - 1) + ve(m);
end
x_updt (k) = get posterior mode (x pred(k), v _pred(k), r(k)
, rO(m), rl(m), vr(m), b0, n(k));
p_updt (k) =1 / (1 + exp((-1) %= (b0 + x updt(k))));
v_updt(k) = 1 / ((1 / v_pred(k)) + ((rl(m) *~ 2) / vr(m))
+ p_updt (k) x (1 - p updt(k)));
end
x_smth(K) = x updt (K) ;
v_smth (K) = v_updt (K) ;
W(K) = v_smth(K) + (x_smth(K) * 2);
A(l:(end - 1)) = v_updt(l:(end - 1)) ./ v _pred(2:end);
for k = (K - 1):(-1):1
x_smth (k) = x updt (k) + A(k) * (x_smth(k + 1) - x pred(k +

1));
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A

v_smth (k) = v_updt (k) + (A(k)
v_pred(k + 1));

2) * (v_smth(k + 1) -

CW(k) = A(k) % v_smth(k + 1) + x smth(k) * x smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) * 2);

if (m < M)

R = get linear parameters(x smth, W, r);

r0o(m + 1) = R(1, 1);

rli(m + 1) = R(2, 1);

vr(m + 1) = get maximum variance(r, rO(m + 1), rl(m + 1),
W, x smth) ;

ve(m + 1) = (sum(W(2:end)) + sum(W(l:(end - 1))) - 2 *

sum(CW)) / K;

mean dev = mean (abs([ve(m +
)

( 1) rO(m + 1) r1(m + 1) vr(m +
1)] - [ve(m) rO(m) rl(m) vr(m)])

) 8

if mean dev < tol
fprintf ('m = %$d\nx0 = %.18f\n\nr0 = %.18f\nrl = %.18f
\nvr = %.18f\nve = %.18f\n\n’, m, x smth(1), r0(m), rl(m), vr
(m), ve(m));
fprintf (' Converged at m = %d\n\n’, m);
break;
else
fprintf (‘m = %$d\nx0 = %.18f\n\nr0 = %.18f\nrl = %.18f
\nvr = %.18f\nve = %$.18f\n\n’, m, x smth(1), r0O(m + 1), rl(m
+ 1), vr(m + 1), ve(m + 1));

x_pred = zeros(l, K);
v_pred = zeros(l, K);

x updt = zeros(l, K);
v_updt = zeros(l, K);

x_smth(2:end) = zeros(l, K - 1); % x_smth (1)
needed for next iteration
v_smth = zeros(1l, K);

p_updt = zeros(l, K);

A = zeros(l, K);
W = zeros(l, K);
K) ;
K) ;

7

CW = zeros (1,
C = zeros (1,
end
end
end

p updt = 1 ./ (1 + exp((-1) * (b0 + x updt)));
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p_smth =1 ./ (1 + exp((-1) * (b0 + x_smth)));

r smth = r0(m) + rl(m) *» x smth;

n plot = NaN * ones(1l, K);

n_plot(n > 0) = 1;

figure;

subplot (511) ;

hold on;

plot(t, vy, ’‘k’, ’‘linewidth’, 1.5);

patch(xp, yp, [192, 192, 192] / 255, ’'EdgeColor’, ’‘none’, '
FaceAlpha’, 0.3);

grid;

ylabel (' (a) z {k}’); title(’State Estimation with Experimental
Data’) ;

set (gca, "xticklabel’, [1); ylim([(min(y) - 1e2) (max(y) + 1le2)]);

subplot (512) ;

stem(t, n_plot, ’'fill’, ’‘color’, [0 0.75 0]);

patch(xp, yp » 1.25, [192, 192, 192] / 255, ’'EdgeColor’, ’'none’,
'FaceAlpha’, 0.3);

ylim ([0 1.25]);

ylabel (* (b) n {k}’);

grid; set(gca,’xticklabel’, []);

subplot (513) ;

hold on;

plot(t, r, 'b’);

plot(t, r_smth, ’'r’, ’linewidth’, 1.5);

patch(xp, yp, [192, 192, 192] / 255, ’'EdgeColor’, 'none’, '
FaceAlpha’, 0.3);

ylabel (' (¢) r_{k}");

grid; set(gca,’'xticklabel’, []);

subplot (514) ;

hold on;

plot(t, p smth, ‘color’, [(204 / 255), 0, (102 / 255)],
linewidth’, 1.25);

patch(xp, yp = 0.5, [192, 192, 192] / 255, ’'EdgeColor’, ’'none’, '’
FaceAlpha’, 0.3);

ylabel (* (d) p_{k}");

grid; set(gca,’xticklabel’, []);

subplot (515) ;

hold on;

plot(t, x smth, ‘color’, [(153 / 255), 0, (153 / 255)1, '
linewidth’, 1.25);

vyl = ylim;

Yypx = Yp;

ypx(yp == 0) = yl(1);

ypx(yp == 1) = yl(2);

patch(xp, ypx, [192, 192, 192] / 255, ’EdgeColor’, ’'none’, '’
FaceAlpha’, 0.3);

ylabel (' (e) x {k}");
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xlabel (‘time (min)’);
grid; ylim([(min(x_smth) - 2) inf]);

function [y] = get posterior mode(x pred, v _pred, z, r0, rl, vr,
b0, n)
M = 100; % maximum iterations
it = zeros(l, M);
f = zeros (1, M);

df = zeros(l, M);
it (1) = x_pred;

for i = 1: (M - 1)

C = v pred / ((rl * 2) % v_pred + vr);
£(i) = it(i) - x pred - C * (rl * (z - r0 - rl * x pred)
+vr + (n - (1 / (1L + exp((-1) » (b0 + it(1)))))));
df (i) = 1 + C * vr x exp(b0 + it (i)) / ((1 + exp(b0 + it(
i))) * 2);
it(i + 1) = it(i) - £(i) / d4f(d);
if abs(it(i + 1) - it(i)) < le-14
y = it(i + 1);
return
end

end
error ('Newton-Raphson failed to converge.’) ;
end
function y = get maximum variance(z, r0, rl, W, x smth)

K = length(x_smth) ;

A

y = (z x 2" + K x (x0 2) + (r1 2) * sum(W)
- 2 % r0 x sum(z) - 2 % rl % dot(x smth, z) + 2 %
r0 % rl x sum(x smth)) / K;

end
function y = get_linear parameters(x_smth, W, z)

K = length(x_smth) ;

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .=*
x_smth)];

end
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10.3 State-space Model with One Binary and Two
Continuous Observations

10.3.1 Simulated Data Example (I, Excluded)

load(’data _one bin two cont no extern stim.mat’) ;
base prob = sum(n) / length(n);

%% parameters

M = leé6; % maximum iterations

m - I

tol = le-8; % convergence criteria

b0 = zeros (1, M); % binary GLM model

bl = zeros(l, M);

r0 = zeros(1l, M); % continuous model
rl = zeros(1l, M);
vr = zeros(l, M);

o°

continuous model noise variance (1)

s0 = zeros (1, M); % continuous model

sl = zeros(l, M);

ve = zeros(l, M); % continuous model noise variance (2)
ve = zeros(l, M); % process noise variance

rho = zeros(l, M); % random walk forgetting factor

K = length(n) ;

x_pred = zeros(l, K);
v_pred = zeros(l, K);

x updt = zeros(l, K);
v_updt = zeros(l, K);

x_smth = zeros(1l, K);
v_smth = zeros(1l, K);

p_updt = zeros(l, K);

7

b
1

zeros (1, K)
zeros (1, K)
K
K)

=
Il

) 8

1

CW = zeros (1,
C = zeros (1,

%% initial guesses

o
=
I

log (base prob / (1 - base prob));
1;

o
= o
i
I
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; % guess it’s the first value of r

if (k == 1)
x pred(k) = x smth(1);
v_pred(k) = ve(m) + ve(m);
else
x pred(k) = rho(m) » x updt(k - 1);
v_pred(k) = (rho(m) * 2) % v_updt(k - 1) + ve(m);
end
C(k) = v_pred(k) / (vr(m) x vs(m) + v_pred(k) x ((rl(m) *

A

2) % vs(m) + (s1(m) 2) * vr(m)));
x_updt (k) = get posterior mode(x pred(k), C(k), r(k), x0(
m), rl(m), b0O(m), bl(m), vr(m), n(k), s(k), s0(m), sl(m), vs(
m)) ;

p updt(k) =1 / (1 + exp((-1) » (bO(m) + bl(m) * x updt(k
))))

v _updt(k) =1 / ((1 / v_pred(k)) + ((rl(m) * 2) / vr(m))
+ ((sl(m) * 2) / vs(m)) + (bl(m) * 2) » p_updt(k) * (1 -
p_updt (k))) ;
end
x_smth(K) = x updt (K) ;
v_smth(K) = v_updt (K) ;
W(K) = v_smth(K) + (x_smth(K) * 2);
A(l:(end - 1)) = rho(m) * v _updt(l:(end - 1)) ./ v _pred(2:end
)i
for k = (K - 1):(-1):1

x smth(k) = x updt (k) + A(k) * (x smth(k + 1) - x pred(k +

1))
v_smth(k) = v_updt(k) + (A(k) *~ 2) % (v_smth(k + 1) -

v_pred(k + 1));

CW(k) = A(k) % v_smth(k + 1) + x smth(k) x x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) * 2);

prev = [r0(m) rl(m) ve(m) vr(m) rho(m) sO(m) sl(m) vs(m)];
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R get linear parameters(x_smth, W, r, K);
S = get linear parameters(x_smth, W, s, K);

bo(m + 1) = log(base prob / (1 - base prob));

bl(m + 1) = 1;

rho(m + 1) = sum(CW) / sum(W(l:end - 1)) ;

ve(m + 1) = (sum(W(2:end)) + (rho(m + 1) * 2) * sum(W(1l: (end
- 1))) - 2 % rho(m + 1) % sum(CW)) / K;

rO(m + 1) = R(1, 1);

rl(m + 1) = R(2, 1);

sO(m + 1) = S(1, 1);

sl(m + 1) = S(2, 1);

vr(m + 1) = get maximum variance(r, rO(m + 1), rl(m + 1), W,

x_smth, K);

vs(m + 1) = get maximum variance(s, sO(m + 1), sl(m + 1), W,

x_smth, K);

next = [rO(m + 1) ri1(m + 1) ve(m + 1) vr(m + 1) rho(m + 1) s0

(m + 1) sl(m + 1) vs(m +1)];
mean_dev = mean (abs(next - prev));

if mean dev < tol

fprintf (' Converged at m = %d\n\n’, m);

break;
else

fprintf (‘m = %d\nr0 = %.18f\nrl = %.18f\nvr = %.18f\n\nsoO
= %.18f\nsl = %.18f\nvs = %.18f\n\nve = %.18f\nrho = %.18f\n
\n’, ...
m+ 1, ¥rO(m + 1), r1(m + 1), vr(m + 1), s0(m + 1), sl(m +
1), vs(m + 1), ve(m + 1), rho(m + 1));

x _pred = zeros(l, K);
v_pred = zeros(l, K);

x _updt = zeros(l, K);
v_updt = zeros(l, K);

x smth(2:end) = zeros(l, K - 1); % x _smth(1l) needed
for next iteration
v_smth = zeros(l, K);

p_updt = zeros(l, K);

A zeros (1, K);
W = zeros(l, K);
CW = zeros(l, K);
C = zeros(1l, K);
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end
end

%% calculate confidence limits

p.smth = 1 ./ (1 + exp((-1) * (b0O(m) + bl(m) * x smth))); % mode
, lower and upper confidence limits for binary distribution

r smth = rO(m) + rl(m) * x smth;

s_smth = s0(m) + sl(m) * X smth;

%% plot graphs

figure;

subplot (511) ;

hold on;

plot(p, 'b’);

plot (p_smth, ’‘r-.’, ’linewidth’, 1); grid;

plot (find(n == 0) - 1, 1.4 * max(p) * ones(length(find(n == 0))),
'ks’, ’'MarkerFaceColor’, ’'k’, ’'MarkerSize’, 4);

plot (find(n == 1) - 1, 1.4 * max(p) * ones(length(find(n == 1))),
'gs’, 'MarkerFaceColor’, ’'g’, ’‘MarkerSize’, 4);

ylabel (’ (a) p_{k}’); ylim([0 0.18]);
title(’State Estimation with Simulated Data’) ;

subplot (512) ;

hold on;
plot(r, 'b’);
plot (r_smth, ’‘r-.’, ’‘linewidth’, 1.25); grid;

ylabel (’ (b) r {k}’);

subplot (513) ;

hold on;
plot(s, 'b’);
plot(s_smth, ’‘r-.’, ’‘linewidth’, 1.25); grid;

ylabel (' (¢) s {k}");

subplot (514) ;

hold on;

plot(x, 'b’);

plot (x_smth, ’‘r-.’, ’‘linewidth’, 1.25); grid;
ylabel (' (d) x {k}’); xlabel ('time index’) ;

subplot (515) ;

ggplot (x - x_smth) ;

title(’'QQ Plot - State Estimate’, ‘FontWeight’, ’‘Normal’) ;
ylabel (’ (e) input quantiles’) ;

xlabel (' standard normal quantiles’) ;

grid;

%% supplementary functions

function y = get posterior mode(x pred, C, r, r0, rl, b0, bl, vr,
n, s, s0, sl, vs)
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M = 200; % maximum iterations
it = zeros(l, M);
f = zeros(1, M);
df = zeros(l, M);
it (1) = x pred;
for i = 1:(M - 1)
£(i) = it(i) - x pred - C * (rl * vs * (r - r0 - rl =
x pred) + sl  vr * (s - s0 - sl * x pred) +
Vr x vS % bl x (n - (1 / (1 + exp((-1) % (b0 + bl x
it(i)))))));
df (i) = 1 + C * vr * vs * (bl * 2) % exp(b0 + bl % it (i))
/ ((1 + exp(b0 + bl % it (i))) * 2);
it(i + 1) = it(i) - £(i) / df(i);
if abs(it(i + 1) - it(i)) < le-14
y = it(i + 1);
return;
end
end
error ('Newton-Raphson failed to converge.’) ;
end
function y = get maximum variance(z, r0, rl, W, x smth, K)
v =(z % z'" + K% (ro * 2) + (r1 * 2) % sum(W)
- 2 % r0 x sum(z) - 2 * rl % dot(x _smth, z) + 2 «
r0 « rl x sum(x smth)) / K;
end
function y = get_linear parameters(x_smth, W, z, K)
y = [K sum(x smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .=
x_smth)];

end

10.3.2 Simulated Data Example

load(’data one bin two cont.mat’)

base prob = sum(n) / length(n);

%% parameters
M =

leé6; % maximum iterations

7
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m= 1;
tol = le-8; % convergence criteria
b0 = zeros(l, M); % binary GLM model

bl = zeros(1l, M);

oe

r0 = zeros(l, M); continuous model
rl = zeros(l, M);

vr = zeros(l, M);

o\

continuous model noise variance (1)

s0 = zeros(l, M); % continuous model

sl = zeros (1, M);

vs = zeros(l, M); % continuous model noise variance (2)
ve = zeros(l, M); % process noise variance

rho = zeros(l, M); % random walk forgetting factor
alpha = zeros(l, M); % external input gain parameter

K = length(n);

X pred = zeros(l, K);
v_pred = zeros(l, K);

x_updt = zeros(l, K);
v_updt = zeros(1l, K);

x_smth = zeros(l, K);
v_smth = zeros(l, K);

p_updt = zeros(l, K);

hd
1

zeros (1, K);
zeros (1, K);
CW = zeros(l, K);
C = zeros(l, K);

=
It

%% initial guesses
og(base prob / (1 - base prob)) ;

; % guess it’s the first value of r
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for k = 1:K

if (k == 1)
x pred(k) = x smth(1);
v_pred(k) = ve(m) + ve(m);
else
x _pred(k) = rho(m) » x updt(k - 1) + alpha(m) » I(k);
v_pred(k) = (rho(m) * 2) * v_updt(k - 1) + ve(m);
end

C(k) = v_pred(k) / (vr(m) % vs(m) + v _pred(k) % ((rl(m) *
2) « vs(m) + (sl(m) " 2) * vr(m)));
x_updt (k) = get posterior mode(x pred(k), C(k), r(k), xr0(
m), rl(m), b0O(m), bl(m), vr(m), n(k), s(k), s0(m), sl(m), vs(
m)) ;
p_updt (k) =1 / (1 + exp((-1) * (b0(m) + bl(m) % x updt(k
))))
v_updt(k) =1 / ((1 / v_pred(k)) + ((rl(m) * 2) / vr(m))
+ ((sl(m) * 2) / vs(m)) + (bl(m) * 2) * p_updt(k) * (1 -
p_updt (k))) ;
end
x_smth(K) = x updt (K);
v_smth(K) = v_updt (K) ;
W(K) = v_smth(K) + (x_smth(K) * 2);
A(l:(end - 1)) = rho(m) * v _updt(l:(end - 1)) ./ v _pred(2:end
)i
for k = (K - 1):(-1):1
x_smth(k) = x updt (k) + A(k) * (x_smth(k + 1) - x pred(k +
1)) ;

v_smth(k) = v_updt(k) + (A(k)
v pred(k + 1));

2) * (v_smth(k + 1) -

CW(k) = A(k) % v_smth(k + 1) + x smth(k) * x smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) * 2);

end

prev = [alpha(m) r0O(m) rl(m) ve(m) vr(m) rho(m) sO0(m) sl (m)

vs(m)];

R = get linear parameters(x smth, W, r, K);

S = get linear parameters(x smth, W, s, K);

Q = [sum(W(l:end - 1)) (I(2:end) * x smth(l:(end - 1))’);

(I(2:end) * x smth(l:(end - 1))’) (I % I')] \ [sum(CW); (

I(2:end) * x smth(2:end)’)];

bo(m + 1) = log(base prob / (1 - base prob));
bl(m + 1) = 1;

rho(m + 1) = Q(1, 1);
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alpha(m + 1) = Q(2, 1);
ve(m + 1) = (sum(W(2:end)) + (rho(m + 1) * 2) % sum(W(1: (end
- 1))) - 2 x rho(m + 1) * sum(CW) -

2 % alpha(m + 1) * (I(2:end) % x smth(2:end)’) + 2 =

alpha(m + 1) % rho(m + 1) x (I(2:end) % x smth(l:(end - 1))’)
+

(alpha(m + 1) ~ 2) %= (I = I')) / K;

rO(m + 1) = R(1, 1);

rl(m + 1) = R(2, 1);

sO(m + 1) = S(1, 1);

sl(m + 1) = S(2, 1);

vr(m + 1) = get maximum variance(r, rO(m + 1), rl(m + 1), W,
x_smth, K);

vs(m + 1) = get maximum variance(s, sO(m + 1), sl(m + 1), W,
x_smth, K);

next = [alpha(m + 1) rO(m + 1) rl(m + 1) ve(m + 1) vr(m + 1)

rho(m + 1) sO(m + 1) sl(m + 1) vs(m +1)];
mean_dev = mean (abs(next - prev));

if mean dev < tol
fprintf (' Converged at m = %d\n\n’, m);
break;
else
fprintf (‘m = %d\nr0 = %.18f\nrl = %.18f\nvr = %.18f\n\nso0
= %.18f\nsl = %.18f\nvs = %.18f\n\nve = %.18f\nrho = %.18f\
nalpha = %.18f\n\n’,
m+ 1, ¥rO(m + 1), r1(m + 1), vr(m + 1), sO0O(m + 1), sl(m +
1), vs(m + 1), ve(m + 1), rho(m + 1), alpha(m + 1)) ;

x_pred = zeros(l, K);
v_pred = zeros(l, K);

x updt = zeros(l, K);
v_updt = zeros(l, K);

x_smth(2:end) = zeros(l, K - 1); % x_smth(l) needed
for next iteration
v_smth = zeros(l, K);

p_updt = zeros(l, K);

A zeros (1, K);

W zeros (1, K);

CW = zeros(1l, K);

C = zeros(1l, K);
end
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%% calculate confidence limits

p smth =1 ./ (1 + exp((-1) * (b0(m) + bl(m) * x smth))); % mode
, lower and upper confidence limits for binary distribution

r_smth = r0O(m) + rl(m) % x smth;

s_smth = s0(m) + sl(m) * x smth;

%% plot graphs

figure;

subplot (511) ;

hold on;

plot(p, 'b’);

plot (p_smth, ’‘r-.’, ’'linewidth’, 1.25); grid;

plot(find(n == 0) - 1, 1.2 * max(p_smth) * ones(length(find(n ==
0))), 'ks’, 'MarkerFaceColor’, ’'k’, ’'MarkerSize’, 4);

plot(find(n == 1) - 1, 1.2 * max(p_smth) * ones(length(find(n ==
1))), ’'gs’, 'MarkerFaceColor’, ’'g’, ’'MarkerSize’, 4);

ylabel ('’ (a) p_{k}’); ylim([0 0.17]);

title(’State Estimation with Simulated Data’) ;

subplot (512) ;

hold on;
plot(r, 'b’);
plot (r_smth, ’‘r-.’, ’‘linewidth’, 1.25); grid;

ylabel (* (b) r {k}’);

subplot (513) ;

hold on;
plot(s, 'b’);
plot(s_smth, ’‘r-.’, ’‘linewidth’, 1.25); grid;

ylabel (' (¢) s _{k}");

subplot (514) ;

hold on;

plot(x, 'b’);

plot (x_smth, ’‘r-.’, ’‘linewidth’, 1.25); grid;

plot (find(I == 0) - 1, (-8) * ones(length(find(I == 0))), ’‘ks’, '
MarkerFaceColor’, ’'k’, ’'MarkerSize’, 4);

plot (find(I == 1) - 1, (-8) * ones(length(find(I == 1))), ’‘cs’, '
MarkerFaceColor’, ’'c’, 'MarkerSize’, 4);

ylabel (' (d) x {k}’); xlabel ('time index’) ;

subplot (515) ;

ggplot (x - x_smth) ;

title(’'QQ Plot - State Estimate’, ‘FontWeight’, ’‘Normal’) ;
ylabel (’ (e) input quantiles’) ;

xlabel (' standard normal quantiles’) ;

grid;

%% supplementary functions

function y = get posterior mode(x pred, C, r, r0, rl, b0, bl, vr,
n, s, s0, sl, vs)
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M = 200; % maximum iterations
it = zeros(l, M);
f = zeros(1, M);
df = zeros(l, M);
it (1) = x pred;
for i = 1:(M - 1)
£(i) = it(i) - x pred - C * (rl * vs * (r - r0 - rl =«
x pred) + sl  vr * (s - s0 - sl * x pred) +
Vr x vS % bl x (n - (1 / (1 + exp((-1) % (b0 + bl x
it(i)))))));
df (i) = 1 + C * vr * vs * (bl * 2) % exp(b0 + bl % it (i))
/ ((1 + exp(b0 + bl % it (i))) * 2);
it(i + 1) = it(i) - £(i) / df(i);
if abs(it(i + 1) - it(i)) < le-14
y = it(i + 1);
return;
end
end

error ('Newton-Raphson failed to converge.’) ;
end

function y = get maximum variance(z, r0, rl, W, x smth, K)

A

vy = (z x 2z’ + K % (r0 2) + (r1 * 2) % sum(W)
- 2 % r0 * sum(z) - 2 % rl x dot(x smth, z)
r0 « rl x sum(x smth)) / K;
end
function y = get linear parameters(x_smth, W, z, K)
y = [K sum(x smth); sum(x_smth) sum(W)] \ [sum(z); sum(z

x_smth)];

end

10.3.3 Experimental Data Example (I, Excluded)

load (’expm data one bin two cont no extern stim.mat’) ;
min_scr thresh = 0.015;
min_scr_prom = min_scr_ thresh;

fs = 2;

t = (0:(length(phasic) - 1)) / fs;

+ 2 *

. x
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ph = phasic;
tn = tonic;
x orig = y;

[pks, locs] = findpeaks (ph, ’‘MinPeakHeight’, min_scr thresh, ’
MinPeakProminence’, min_ scr_ prom) ;

r = interpl([1 locs length(ph)], log([ph(l) pks ph(end)]), 1:
length(ph), ’‘cubic’);

s = tn;

n = zeros(l, length(r));

I = zeros(l, length(r));

n(locs) = 1;

base prob = sum(n) / length(n);

std_s = std(s);
std r = std(r);

s = s / std s;
r =1r / std r;

%% parameters

M = 5e5; % maximum iterations
tol = le-8; convergence criteria

o\

b0 = zeros (1, M); % binary GLM model
bl = zeros(l, M);

o°

r0 = zeros(1l, M); continuous model
rl = zeros(l, M);

vr = zeros(l, M);

o°

continuous model noise variance (1)

s0 = zeros (1, M); % continuous model

sl = zeros(l, M);

vs = zeros(l, M); % continuous model noise variance (2)
ve = zeros(l, M); % process noise variance

rho = zeros(l, M); % random walk forgetting factor

K = length(n) ;

x pred = zeros(l, K);
v_pred = zeros(l, K);

x_updt = zeros(l, K);
v_updt = zeros(l, K);

x _smth = zeros(1l, K);
v_smth = zeros(1l, K);

p_updt = zeros(l, K);
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A zeros (1, K)
W = zeros(l, K)
K
K)

;
:
) 8

7

CW = zeros (1,
C = zeros (1,

%% initial guesses
= log(base prob / (1 - base prob)) ;

= r(l); % guess it’s the first value of r

if (k == 1)
x pred(k) = x smth(1);
v_pred(k) = ve(m) + ve(m);
else
x _pred(k) = rho(m) » x updt(k - 1);
v_pred(k) = (rho(m) * 2) % v_updt(k - 1) + ve(m);
end
C(k) = v pred(k) / (vr(m) *» vs(m) + v_pred(k) * ((rl(m)
2) % vs(m) + (sl(m) * 2) % vr(m)));
x_updt (k) = get posterior mode(x pred(k), C(k), r(k), x0(
m), ri(m), b0(m), bl(m), vr(m), n(k), s(k), s0(m), sl(m), vs(
m)) ;
p updt(k) =1 / (1 + exp((-1) * (bO(m) + bl(m) * x updt(k
))))
v _updt(k) =1 / ((1 / v_pred(k)) + ((rl(m) * 2) / vr(m))
+ ((sl(m) * 2) / vs(m)) + (bl(m) *~ 2) » p_updt(k) * (1 -
p_updt (k))) ;
end
x_smth(K) = x updt (K) ;
v_smth (K) = v_updt (K) ;
W(K) = v_smth(K) + (x_smth(K) * 2);
A(l:(end - 1)) = rho(m) » v_updt(l:(end - 1)) ./ v_pred(2:end

) 5

for k = (K - 1):(-1):1
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x_smth (k)
1))
v_smth(k) = v_updt (k) + (A(k)
v_pred(k + 1));

x updt (k) + A(k) * (x_smth(k + 1) - x pred(k +

A

2) x (v_smth(k + 1) -

CW(k) = A(k) % v_smth(k + 1) + x smth(k) * x smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) * 2);
if (m < M)

R = get linear parameters(x smth, W, r, K);
S = get linear parameters(x_smth, W, s, K);

bOo(m + 1) = log(base prob / (1 - base prob));

bl(m + 1) = 1;

rho(m + 1) = sum(CW) / sum(W(l:end - 1)) ;

ve(m + 1) = (sum(W(2:end)) + (rho(m + 1) * 2) » sum(W(1: (

end - 1))) - 2 * rho(m + 1) % sum(CW)) / K;

if (abs(get maximum variance(r, R(1, 1), R(2, 1), W,

x_smth, K) - get maximum variance(s, S(1, 1), S(2, 1), W,
x _smth, K)) > 0.1) % overfitting check

rO(m + 1) = r0(m);

rl(m + 1) = rl(m);

sO(m + 1) = s0(m);

sl(m + 1) = s1(m);

vr(m + 1) = vr(m);

ve(m + 1) = vs(m);

mean dev = mean(abs([ve(m + 1) rho(m + 1)] - [ve(m)
rho(m)]));

else

rO(m + 1) = R(1, 1);

rl (m 1) = R(2, 1);

sO(m + 1) = S(1, 1);

sl(m + 1) = S(2, 1);

vr(m + 1) = get maximum variance(r, rO(m + 1), rl(m +

1), W, x_smth, K);
vs(m + 1) = get maximum variance(s, sO0(m + 1), sl(m +

1), W, x_smth, K);

mean dev = mean(abs([rO(m + 1) rl(m + 1) ve(m + 1) vr
(m + 1) rho(m + 1) sO(m + 1) sl(m + 1) vs(m + 1)] -
[rO(m) rl(m) ve(m) vr(m) rho(m) sO(m)

slkm) vs (m)
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if mean dev < tol
fprintf (' Converged at m = %d\n\n’, m);
break;
else
fprintf (‘m
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= %$d\nb0 = %.18f\nbl = %.18f\n\nr0 = %.18f
\nrl = %.18f\nvr = %.18f\n\ns0 = %.18f\nsl = %$.18f\nvs = %

.18
f\n\nve = %.18f\nrho = %.18f\n\n’,
m+ 1, bO(m + 1), bl(m + 1), rO(m + 1), rl(m + 1), vr
(m + 1), sO(m + 1), s1l(m + 1), vs(m + 1), ve(m + 1), rho(m +
1));
x _pred = zeros(l, K);
v_pred = zeros(l, K);
X updt = zeros(l, K);
v_updt = zeros(l, K);
x_smth(2:end) = zeros(l, K - 1); % x_smth(1)
needed for next iteration
v_smth = zeros(l, K);
p_updt = zeros(l, K);
A = zeros(l, K);
W = zeros(l, K);
CW = zeros(1l, K);
C = zeros(l, K);
end
end
end
$% calculate confidence limits
p.smth = 1 ./ (1 + exp((-1) * (bO(m) + bl(m) * x smth))); % mode

, lower and upper confidence limits for binary distribution

r smth = exp(std r * (r0O(m) + rl(m) % x smth));
s_smth = (s0(m) + sl(m) * x smth) x std_s;

lcl x = norminv(0.025, x smth, sgrt(v_smth));
ucl x = norminv(0.975, x smth, sgrt(v_smth));

lcl p = zeros(1l, K);
ucl_p = zeros(1l, K);

for k = 1:K
[1cl p(k),
x_smth(k)) ;

end

ucl p(k)] = get pk conf lims(v_smth(k), b0 (m),

certainty = 1 - normcdf (prctile(x_smth, 50) x ones(l, length(
x_smth)), x_smth, sgrt(v_smth));

%% plot graphs
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disp(’Plotting...’);

xp_fs plot = 4;

index = (0:(K - 1));
t index = index / fs;
r index = ((K - 1):(-1):0) / fs;

transp = 0.3;

subplot (611) ;

hold on;

plot (t_index, x orig, ‘k’, ’linewidth’, 1.25);

plot (find(n == 0) / fs, 3.7 * ones(length(find(n == 0))), 'ks’, '
MarkerFaceColor’, ’'k’, 'MarkerSize’, 5);

plot (find(n == 1) / fs, 3.7 % ones(length(find(n == 1))), ’‘gs’, '’
MarkerFaceColor’, ’'g’, ’‘MarkerSize’, 5);

ylim([0 4]1); vyl = ylim;

patch([xp (1), xp(2), xp(2), xp(1)] / xp_fs plot, [yl(l) yl(1) yl

(2) y1(2)], 'r’', 'FaceAlpha’, 0.2, 'EdgeColor’, ’'mnone’);
patch([xp(2), xp(3), xp(3), xp(2)] / xp_fs plot, [yl(l) yl(1) yl
(2) y1(2)], "g’, ’'FaceAlpha’, 0.2, 'EdgeColor’, ’‘none’);

patch([xp(3), xp(4), xp(4), xp(3)] / xp_fs plot, [yl(l) yl(1) yl
(2) y1(2)], [1 0.647059 0], 'FaceAlpha’, 0.2, ’'EdgeColor’, '

none’) ;
patch([xp(4), xp(5), xp(5), xp(4)] / xp_fs_plot, [yl(1l) yl(1) yl
(2) y1(2)], 'b’, ’'FaceAlpha’, 0.2, 'EdgeColor’, ’'mnone’);
patch([xp(5), xp(6), xp(6), xp(5)] / xp_fs_plot, [yl(1l) yl(1) yl
(2) y1(2)1, 'y’, 'FaceAlpha’, 0.2, ’'EdgeColor’, ’'mnone’);
ylabel ({’ (a) skin cond.’, ' (\mu S)’}); grid; xlim([0 (xp(6) /

xp_fs plot)]);
set (gca, 'xticklabel’, [1);
title(’State Estimation with Experimental Data’) ;

subplot (612) ;

hold on;

plot (t_index, r smth, ’:’, ’‘color’, [0 0.3 0], ’linewidth’, 1.5);

plot (t_index, exp(r * std r), ’color’, [0 0.9 0], ’linewidth’,
1.5);

grid;

x1lim([0 (xp(6) / xp fs plot)l);
ylim([(min([exp(r * std r) r smth]) - 0.25) (0.25 + max([exp(r =*
std r) r smth]))]); vyl = ylim;

patch([xp (1), xp(2), xp(2), xp(1)] / xp_fs plot, [yl(1l) yl(1) yl

(2) y1(2)], 'r’, ’'FaceAlpha’, 0.2, ’'EdgeColor’, ’'none’);
patch([xp(2), xp(3), xp(3), xp(2)] / xp_fs plot, [yl(1l) yl(1) yl
(2) y1(2)], ’"g’, ’'FaceAlpha’, 0.2, ’'EdgeColor’, ’'none’);
patch([xp(3), xp(4), xp(4), xp(3)] / xp_f£fs plot, [yl(1l) yl(1) yl

(2) y1(2)], [1 0.647059 0], ’'FaceAlpha’, 0.2, ’'EdgeColor’,

none’) ;
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patch([xp(4), xp(5), xp(5), xp(4)] / xp_fs plot, [yl(1l) yl(1) yl

(2) y1(2)], ’"b’, ’'FaceAlpha’, 0.2, 'EdgeColor’, ’'none’);
patch([xp(5), xp(6), xp(6), xp(5)] / xp_fs plot, [yl(1l) yl(1) yl
(2) y1(2)1, 'y’', 'FaceAlpha’, 0.2, 'EdgeColor’, ’'mnone’);

set (gca, 'xticklabel’, []);
ylabel (’ (b) phasic’);

subplot (613) ;
hold on;

plot (t_index, s smth, ’':’, ‘color’, [0.5 (25 / 255) (66 / 255)],
'linewidth’, 1.5);

plot(t_index, s % std s, ’‘color’, [1 0.5 (179 / 255)], ’linewidth
', 1.5); grid;

x1lim ([0 (xp(6) / xp_fs_plot)l);
ylim([(min([(s * std s) s_smth]) - 0.25) (0.25 + max([(s % std_s)
s_smth]l))1); yl = ylim;

patch([xp (1), xp(2), xp(2), xp(1)] / xp_fs plot, [yl(1l) yl(1) yl

(2) y1(2)], 'r’', ’'FaceAlpha’, 0.2, ’'EdgeColor’, ’‘none’);
patch([xp(2), xp(3), xp(3), xp(2)] / xp_fs plot, [yl(l) yl(1) yl
(2) y1(2)], "g’, ’'FaceAlpha’, 0.2, ’'EdgeColor’, ’‘none’);
patch([xp(3), xp(4), xp(4), xp(3)] / xp_fs plot, [yl(l) yl(1) yl

(2) y1(2)], [1 0.647059 0], 'FaceAlpha’, 0.2, ’‘EdgeColor’, '
none’) ;
patch([xp(4), xp(5), xp(5), xp(4)] / xp fs plot, [yl(1l) yl(1) yl
(2) y1(2)], 'b’, ’'FaceAlpha’, 0.2, ’'EdgeColor’, ’'mnone’);
patch([xp(5), xp(6), xp(6), xp(5)] / xp fs plot, [yl(1l) yl(1) yl
(2) y1(2)1, 'y’, 'FaceAlpha’, 0.2, ’'EdgeColor’, ’'mnone’);

set (gca, 'xticklabel’, [1);
ylabel (' (¢) tonic’);

subplot (614) ;

hold on;

plot (t_index, x_smth, ’‘color’, ’‘b’, ’linewidth’, 1.25); grid;

£111 ([t_index, r_ index], [lcl x fliplr(ucl x)], ’‘c’, ’'EdgeColor’,
‘none’, ‘FaceAlpha’, 0.5);

ylim ([ (min(x_smth) - 0.25) (0.25 + max(x_smth))]); yl = ylim;

patch([xp (1), xp(2), xp(2), xp(1)] / xp_fs_plot, [yl(1l) yl(1) yl

(2) y1(2)], 'xr’, ’'FaceAlpha’, 0.2, ’EdgeColor’, ’'none’);
patch([xp(2), xp(3), xp(3), xp(2)] / xp_fs plot, [yl(1l) yl(1) vyl
(2) y1(2)], 'g’, ’'FaceAlpha’, 0.2, ’'EdgeColor’, ‘none’);
patch([xp(3), xp(4), xp(4), xp(3)] / xp_£fs_plot, [yl(1l) yl(1) vyl
(2) y1(2)], [1 0.647059 0], 'FaceAlpha’, 0.2, ’‘EdgeColor’,
none’) ;
patch([xp(4), xp(5), xp(5), xp(4)] / xp_fs plot, [yl(1l) yl(1) yl
(2) y1(2)], '"b’, ’'FaceAlpha’, 0.2, ’'EdgeColor’, ’‘mnone’);

patch([xp(5), xp(6), xp(6), xp(5)] / xp_fs plot, [yl(1l) yl(1) yl
(2) y1(2)1, 'y’, 'FaceAlpha’, 0.2, ’'EdgeColor’, ’'none’);
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x1lim([0 (xp(6) / xp fs plot)l);
set (gca, 'xticklabel’, []1);

ylabel (* (d) state (x {k})’);

subplot (615) ;
hold on;

10 MATLAB Code Examples

plot (t_index, p_smth, ’‘r’, ’linewidth’, 1.5); grid;

fill([t_index, r_index], [lcl_p fliplr(ucl_p)l, [1, 0, (127 /
255)], ’EdgeColor’, ’'mnone’, ’'FaceAlpha’, 0.3);

x1lim ([0 (xp(6) / xp_fs plot)]);

ylim([0 (max(p_smth) » 1.5)]1); yl = ylim;

patch([xp (1), xp(2), xp(2), xp(1)] / xp_fs plot, [yl(1l) yl(1) yl
(2) y1(2)], 'r’', ’'FaceAlpha’, 0.2, 'EdgeColor’, ’'mnone’);

patch([xp(2), xp(3), xp(3), xp(2)] / xp_fs plot, [yl(l) yl(1) yl
(2) y1(2)], "g’, ’'FaceAlpha’, 0.2, 'EdgeColor’, ’'none’);

patch([xp(3), xp(4), xp(4), xp(3)] / xp_fs plot, [yl(l) yl(1) yl
(2) y1(2)], [1 0.647059 0], 'FaceAlpha’, 0.2, ’'EdgeColor’, '
none’) ;

patch([xp(4), xp(5), xp(5), xp(4)] / xp fs plot, [yl(1l) yl(1) vyl
(2) y1(2)], ’'b’, ’'FaceAlpha’, 0.2, ’'EdgeColor’, ’'mnone’);

patch([xp(5), xp(6), xp(6), xp(5)] / xp fs plot, [yl(1l) yl(1) yl
(2) y1(2)1, 'y’, 'FaceAlpha’, 0.2, 'EdgeColor’, ’'mnone’);

set (gca, 'xticklabel’, [1);

ylabel ({’ (e) probability’, ’ (p_{k})’}, ’'FontSize’, 11);

subplot (616) ;

hold on;

vl = [0 0.9; t(end) 0.9; t(end) 1; 0 11;

cl = [1 (220 / 255) (220 / 255); 1 (220 / 255) (220 / 255); 1 0
0; 1 0 0];

facesl = [1 2 3 4];

patch(’Faces’, facesl, ’'Vertices’, vl, 'FaceVertexCData’, cl, '’
FaceColor’, ’interp’, .
"EdgeColor’, ’‘none’, ’'FaceAlpha’, 0.7);

v2 = [0 0; t(end) 0; t(end) 0.1; 0 0.17];

c2 = [0 0.8 0; 0 0.8 0; (204 / 255) 1 (204 / 255); (204 / 255) 1
(204 / 255)1;

faces2 = [1 2 3 4];

patch(’Faces’, faces2, ’'Vertices’, v2, 'FaceVertexCDhata’, c2, '’
FaceColor’, ’interp’, .
'EdgeColor’, ’‘none’, 'FaceAlpha’, 0.7);

plot (t, certainty, ‘color’, [(138 / 255) (43 / 255) (226 / 255)1,
'linewidth’, 1.5); grid;

x1lim ([0 (xp(6) / xp_fs plot)]);

(s)");

xlabel (' time
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ylabel (’ (f) HAI');

$% supplementary functions
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function y = get_posterior mode(x pred, C, r, r0, rl, b0, bl, vr,

n, s, s0, sl1, vs)

M = 200; % maximum iterations
it = zeros(l, M);
f = zeros(1l, M);

df = zeros(l, M);

it (1) = x pred;

for i = 1:(M - 1)

£(i) = it(i) - x pred - C * (rl * vs * (r - r0 - rl =
x pred) + sl  vr * (s - s0 - sl * x pred) +
Vr * VS % bl x (n - (1 / (1 + exp((-1) % (b0 + bl x
it(1)))))));
df (i) = 1 + C % vr » vs » (bl *~ 2) % exp(b0 + bl x it (i))
/ ((1 + exp(b0 + bl % it (i))) * 2);
it(i + 1) = it(i) - £(i) / df(i);

if abs(it(i + 1) - it(i)) < le-14
y = it(i + 1);
return;
end
end

error ('Newton-Raphson failed to converge.’) ;
end
function [lcl, ucl] = get pk conf lims(v, b0, x)
p = (le-4:1le-4:1);
fp = cumtrapz(p, 1 ./ (sgrt(2 = pi » v) * p .* (1 - p))

exp(((-1) / (2 » v))* (log(p ./ ((1L - p) * exp(b0)))
2));

n = find(fp <= 0.975);
m = find(fp < 0.025);

ucl = p(n(end)) ;
lcl = p(m(end)) ;
end

function y = get_maximum variance(z, r0, rl, W, x smth, K)

A

y = (z » 2z’ + K x (x0 2) + (rl 2) * sum(W)

. x

- x)
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- 2 % r0 x sum(z) - 2 * rl % dot(x smth, z) + 2 «
r0 » rl x» sum(x smth)) / K;

end
function y = get_linear parameters(x_smth, W, z, K)

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .=*
x_smth)];

end

10.3.4 Experimental Data Example

load (’expm data one bin two cont.mat’);

min_scr_ thresh = 0.015;

min_ scr prom = min scr_ thresh;
fs = 4;

epoch = 10;

subj = 1;

stim = s _data.aug stim;
ph = s _data.ph;
tn = s_data.tn;

[pks, locs] = findpeaks(ph, ’MinPeakHeight’, min scr thresh, -’
MinPeakProminence’, min scr_ prom) ;

r = interpl([1 locs length(ph)], log([ph(find(ph > 0, 1)) pks ph(
end)]), 1l:length(ph), ‘cubic’);

s = tn;

n = zeros(l, length(r));
I = zeros(l, length(r));
n(locs) = 1;

I(stim) = 1;

std_s = std(s);
std_r = std(r);

s = s / std_s;
r =r / std r;

%% parameters

M = 5e5; % maximum iterations
tol = le-8; convergence criteria

o°

bo
bl

zeros (1, M) ; % binary GLM model
zeros (1, M) ;
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r0 = zeros(1l, M); % continuous model
rl = zeros(l, M);
vr = zeros(l, M);

o°

continuous model noise variance (1)

s0 = zeros (1, M); % continuous model

sl = zeros(l, M);

vs = zeros(l, M); % continuous model noise variance (2)
ve = zeros(l, M); % process noise variance

rho = zeros(l, M); % random walk forgetting factor
alpha = zeros(1l, M); % input gain parameter

K = length(n) ;

x_pred = zeros(l, K);
v_pred = zeros(l, K);

X updt = zeros(l, K);
v_updt = zeros(l, K);

x_smth = zeros(1l, K);
v_smth = zeros(l, K);

p_updt = zeros(l, K);
p_smth = zeros(l, K);

A zeros (1, K);
W zeros (1, K);
CW = zeros(l, K);
C = zeros(l, K);

%% initial guesses

base prob = sum(n) / length(n);
log(base prob / (1 - base prob)) ;

I
[y

= r(l); % guess it’s the first value of r
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x pred(k) = x smth(1);
v_pred(k) = ve(m) + ve(m);
else
x pred(k) = rho(m) » x updt(k - 1) + alpha(m) =% I(k);
v_pred(k) = (rho(m) ~2) o« v_updt(k - 1) + ve(m);
end
C(k) = v_pred(k) / (vr(m) * vs(m) + v_pred(k) = ((rl(m) *

A

2) % vs(m) + (s1(m) 2) « vr(m)));
x_updt (k) = get posterior mode (x pred(k), C(k), r(k), x0(
m), rl(m), b0O(m), bl(m), vr(m), n(k), s(k), s0(m), sl(m), vs(

p updt(k) =1 / (1 + exp((-1) » (bO(m) + bl(m) * x updt(k
))))
v_updt (k) =1 / ((1 / v_pred(k)) + ((rl(m) * 2) / vr(m))
+ ((sl(m) * 2) / vs(m)) + (bl(m) * 2) » p_updt(k) * (1 -
p_updt (k))) ;
end
x_smth(K) = x updt (K) ;
v_smth(K) = v_updt (K);
W(K) = v_smth(K) + (x_smth(K) * 2);
A(l:(end - 1)) = rho(m) % v updt(l:(end - 1)) ./ v _pred(2:end
)i
for k = (K - 1):(-1):1
x _smth(k) = x updt (k) + A(k) * (x_smth(k + 1) - x pred(k +
1))
v_smth(k) = v_updt(k) + (A(k) * 2) % (v_smth(k + 1) -
v_pred(k + 1));
CW(k) = A(k) %= v_smth(k + 1) + x _smth(k) x x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) * 2);
end

if (m < M)

R = get linear parameters(x _smth, W, r, K);
S = get linear parameters(x_smth, W, s, K);

Q = [sum(W(l:end - 1)) (I(2:end) * x smth(l:(end - 1))’);

(I(2:end) * x smth(l:(end - 1))’) (I %= I')] \ [sum(CW
); (I(2:end) % x smth(2:end)’)];

bo(m + 1) = log(base prob / (1 - base prob)) ;
bl(m + 1) = 1;
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else
alpha(m + 1) = Q(2, 1);
end
ve(m + 1) = (sum(W(2:end)) + (rho(m + 1) * 2) % sum(W(1: (
end - 1))) - 2 x rho(m + 1) * sum(CW) -
2 * alpha(m + 1) % (I(2:end) * x smth(2:end)’) + 2 =*
alpha(m + 1) % rho(m + 1) » (I(2:end) % x smth(l:(end - 1))’)
+
(alpha(m + 1) * 2) = (I = I')) / K;
if (abs(get maximum variance(r, R(1, 1), R(2, 1), W,
x_smth, K) - get maximum variance(s, S(1, 1), S(2, 1), W,
x _smth, K)) > 0.1) % overfitting check
rO(m + 1) = r0(m);
rl(m + 1) = rl(m);
sO(m + 1) = s0(m);
sl(m + 1) = sl(m);
vr(m + 1) = vr(m);
ve(m + 1) = vs(m);
mean_dev = mean(abs([ve(m + 1) rho(m + 1) alpha(m +
1)] - [ve(m) rho(m) alpha(m)]));
else
rO(m + 1) = R(1, 1);
rl(m + 1) = R(2, 1);
sO(m + 1) = S(1, 1);
sl(m + 1) = S(2, 1);
vr(m + 1) = get maximum variance(r, rO(m + 1), rl(m +
1), W, x_smth, K);
vs(m + 1) = get maximum variance(s, sO(m + 1), sl(m +

1), W, x_smth, K);

mean dev = mean(abs([r0O(m + 1) rl(m + 1)
(m + 1) rho(m + 1) alpha(m + 1) sO(m + 1) sl(m +

ve(m + 1) vr
1) vs(m + 1)

[rO(m) rl(m) ve(m) vr(m) rho(m) alpha(m) s0(m) sl

(m) vs(m)l));
end

if mean dev < tol
fprintf (' Converged at m = %d\n\n’, m);
break;
else
fprintf (‘m

$d\nb0 = %.18f\nbl = %.18f\n\nr0 = %.18f

\nrl = %.18f\nvr = %.18f\n\ns0 = %.18f\nsl = %.18f\nvs = %.18

f\n\nve = %.18f\nrho = %.18f\nalpha = %.18f\n\n’,

m+ 1, bO(m + 1), bl(m + 1), ¥O(m + 1), rl(m + 1), vr
(m+ 1), sO(m + 1), 81(m + 1), vs(m + 1), ve(m + 1), rho(m +

1), alpha(m + 1)) ;
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x pred = zeros(l, K);
v_pred = zeros(l, K);
x_updt = zeros(l, K);
v_updt = zeros(l, K);
x _smth(2:end) = zeros(l, K - 1); % x_smth(1)
needed for next iteration
v_smth = zeros(1l, K);
p_updt = zeros(l, K);
p_smth = zeros(l, K);
A = zeros(l, K);
W = zeros(l, K);
CW = zeros(l, K);
C = zeros (1, K);
end
end
end
%% calculate confidence limits
fp mode = 1 ./ (1 + exp((-1) * (bO(m) + bl(m) % x smth))); %
mode, lower and upper confidence limits for binary
distribution
lcl fp = zeros(1l, K);
ucl_fp = zeros(1l, K);
r smth = exp((r0(m) + rl(m) * x smth) x std r);
s_smth = (s0(m) + sl(m) * x smth) x std_s;
skn_avg = get trial averages(s_data, x smth, epoch, fs, ’‘skn’);
X avg = get trial averages(s_data, x smth, epoch, fs, 'x smth’);
t epoch = ((-1):(1 / £s):(epoch - 1 - (1 / £fs)));
tr epoch = ((epoch - 1 - (1 / fs)):(-1 / £s):(-1));

%% plot graphs

disp(’/Plotting. .. (
index = (0:(K - 1)
t index = index /
r_index = ((K - 1)
transp = 0.3;
subplot (611) ;

plot (t_index, s _da

ylabel (‘' (a) z_{k}’
set (gca, 'xticklabe
ylim([(min(s_data.

you may need to press the Enter key again)’);

)i
fs;
: (-1) %

)

:0) ; reverse index

ta.x, ’‘color’, [(102 / 255) 0 (204 / 255)1);
); grid; xlim([0 t_index(end)]);

1, [1);
x) 0.1)

(max (s_data.x) + 0.1)1);

title(’State Estimation with Experimental Data’) ;
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subplot (612) ;

hold on;

plot (find(n == 0) / fs, max(fp mode) % 1.3 * ones(length(find(n
== 0))), 'ks’, ’'MarkerFaceColor’, ’'k’, ’'MarkerSize’, 3);

plot (find(n == 1) / fs, max(fp _mode) » 1.3 x ones(length(find(n
== 1))), ’'gs’, ’'MarkerFaceColor’, ’'g’, ’'MarkerSize’, 3);

plot (t_index, fp mode, 'r’);

ylabel (' (b) p_{k}’)
x1im([0 t index(end)]); ylim([0 (max(fp mode) * 1.5)]1); grid;
set (gca, 'xticklabel’, []);

subplot (613) ;

hold on;
plot (t_index, r_smth, ’:’, ’‘color’, [0 0.3 0], ’linewidth’, 1.5);
plot (t_index, exp(r x std r), ’color’, [0 0.9 0]);

ylabel (' (¢) e™{r_{k}}’'); grid;
x1lim ([0 t_index(end)]) ;
set (gca, 'xticklabel’, []);

subplot (614) ;

hold on;

plot(t_index, s _smth, ‘:’, ‘color’, [0.5 (25 / 255) (66 / 255)1],
'linewidth’, 1.5);

plot(t_index, s x std s, ‘color’, [1 0.5 (179 / 255)1);

ylabel (' (d) s_{k}")
x1im ([0 t_index(end)]); grid;
set (gca, 'xticklabel’, []);

subplot (615) ;

hold on;

plot (t_index, x smth, ’‘color’, 'b’);

plot (find(I == 0) / fs, (min(x smth) - 0.5) % ones(length(find(I
== 0))), 'ks’, ’'MarkerFaceColor’, ’'k’, ’'MarkerSize’, 3);

plot (find(I == 1) / fs, (min(x_smth) - 0.5) % ones(length(find(I
== 1))), ’'cs’, 'MarkerFaceColor’, ’'c’, 'MarkerSize’, 3);

ylabel (' (e) x {k}’); ylim([(min(x_smth) - 1) (max(x_smth) + 1)]1);

x1lim ([0 t_index(end)]); grid; xlabel ('Time (s)’);

subplot (6, 2, 11);

hold on;

plot (t_epoch, skn avg(l, :), 'r’, ’‘linewidth’, 1.5);

£i11 ([t_epoch, tr epochl, [skn avg(2, :) fliplr(skn avg(3, :))],
‘r’, 'EdgeColor’, ’'none’, ’'FaceAlpha’, 0.2);

plot (t_epoch, skn avg(4, :), 'm’, ’‘linewidth’, 1.5);

£i11 ([t_epoch, tr epochl, [skn avg(5, :) fliplr(skn avg(6, :))I],
‘m’, ’‘EdgeColor’, ’'none’, ’'FaceAlpha’, 0.2);

plot (t_epoch, skn avg(7, :), ’‘color’, [0 0.8 0], ’linewidth’,

1.5);
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£i11 ([t_epoch, tr epochl, [skn avg(8, :) fliplr(skn avg(9, :))I],
'g’, 'EdgeColor’, ’'none’, ’'FaceAlpha’, 0.2);

xlim([t_epoch(1l) t epoch(end)]) ;

ylim ([ (min(min(skn avg)) - 0.5) (max(max(skn avg)) + 0.5)]);

grid;

xlabel (' Time (s)’); ylabel(’ (£) z {k}’);

subplot (6, 2, 12);

hold on;

plot (t_epoch, x avg(l, :), ’'r’, ’'linewidth’, 1.5);

£111 ([t_epoch, tr epochl, [x avg(2, :) fliplr(x avg(3, :))1, 'xr’,
'EdgeColor’, ’'none’, ’'FaceAlpha’, 0.2);

plot (t_epoch, x avg(4, :), 'm’, ’'linewidth’, 1.5);

£1i11([t_epoch, tr epochl, [x avg(5, :) fliplr(x avg(6, :))], 'm’,
'EdgeColor’, ’'none’, ’'FaceAlpha’, 0.2);

plot (t_epoch, x avg(7, :), ’‘color’, [0 0.8 0], ’linewidth’, 1.5);

£1i11 ([t_epoch, tr epochl, [x_avg(8, :) fliplr(x avg(9, :))1, ’'g’,
'EdgeColor’, ’'mnone’, ’'FaceAlpha’, 0.2);

xlim([t_epoch(1l) t _epoch(end)]) ;

ylim([(min(min(x_avg)) - 0.2) (max(max(x avg)) + 0.2)]1);

grid;

xlabel (‘time (s)’); ylabel(’ (g) x_{k}’);

%% supplementary functions

function y = get posterior mode(x pred, C, r, r0, rl, b0, bl, vr,
n, s, s0, sl, vs)

M = 200; % maximum iterations
it = zeros(1l, M);
f = zeros (1, M);

df = zeros(1l, M);

it (1) x_pred;

for 1 = 1: (M - 1)

f(i) = it(i) - x pred - C % (rl = vs = (r - r0 - rl =*
x pred) + sl  vr * (s - s0 - sl *» x pred) +
vr * vS x bl » (n - (1 / (1 + exp((-1) » (b0 + bl =*
it(i)))))));
df (i) = 1 + C % vr » vs » (bl *~ 2) % exp(b0 + bl x it(i))
/ ((1 + exp(b0 + bl % it (i))) * 2);
it(i + 1) = it(i) - £(i) / dAf(i);
if abs(it(i + 1) - it(i)) < le-14
y = it(i + 1);
return;

end
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end
error ('Newton-Raphson failed to converge.’);

end

function y = get maximum variance(z, r0, rl, W, x smth, K)

A

y = (z * 2z’ + K x (r0 2) + (rl * 2) % sum(W)
- 2 x ¥0 % sum(z) - 2 % rl *x dot(x _smth, z) + 2 =«
r0 * rl x» sum(x smth)) / K;

end
function y = get_linear parameters(x_smth, W, z, K)

y = [K sum(x_smth); sum(x smth) sum(W)] \ [sum(z); sum(z .=*
x_smth)];

end
function y = get_trial averages(s, x smth, epoch, fs, option)

y = zeros (9, epoch x fs);

csm_ep = zeros(length(s.csm), epoch x fs);
csp_us_ep = zeros (length(s.csp _us), epoch x fs);
csp_nus_ep = zeros(length(s.csp_nus), epoch * fs);

csm = s.csm;
CsSp_us = S.CSp_us;
CsSp_nus = S.CsSp nus;

if strcmp(option, ’‘x smth’)

for j = 1:length(csm)
csm_ep(j, :) = x_smth((s.stim(csm(j)) - £s ):(s.stim(
csm(j)) + 9 » fs - 1));
end

for j = l:length(csp_us)
csp us_ep(j, :) = x smth((s.stim(csp us(j)) - fs):(s.
stim(csp us(j)) + 9 = fs - 1));
end

for j = l:length(csp nus)
csp nus_ep(j, :) = x smth((s.stim(csp nus(j)) - £s):(
s.stim(csp nus(j)) + 9 x fs - 1));
end

elseif strcmp(option, ‘skn’)

for j = 1:length(csm)
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csm ep(j, :) = s.x((s.stim(csm(j)) - £s ):(s.stim(csm
(3)) + 9 = fs - 1));
end

for j = l:length(csp_us)
csp us_ep(j, :) = s.x((s.stim(csp_us(j)) - £fs):(s.
stim(csp us(j)) + 9 * fs - 1));
end

for j = l:length(csp nus)

csp nus_ep(j, :) = s.x((s.stim(csp nus(j)) - £s):(s
stim(csp nus(j)) + 9 » fs - 1));
end
end
y(1, :) = mean(csp_us_ep) ;
y(2, :) = mean(csp_us_ep) + tinv(0.975, length(csp us) - 1) =
std(csp us_ep) / sqgrt(length(csp us));
y(3, :) = mean(csp _us_ep) + tinv(0.025, length(csp us) - 1) =

std(csp us_ep) / sqgrt(length(csp us));

y(4, :) = mean(csp nus_ep);

vy ( :) = mean(csp nus_ep) + tinv(0.975, length(csp nus) - 1)
* std(csp nus_ep) / sqgrt(length(csp nus)) ;

y(6, :) = mean(csp nus_ep) + tinv(0.025, length(csp nus) - 1)
* std(csp nus_ep) / sqgrt(length(csp nus)) ;

y(7, :) = mean(csm_ep) ;

y(8, :) = mean(csm _ep) + tinv(0.975, length(csm) - 1) » std(
csm_ep) / sqgrt(length(csm)) ;

y(9, :) = mean(csm _ep) + tinv(0.025, length(csm) - 1) » std(
csm_ep) / sqgrt(length(csm));

10.4 State-space Model with One Binary, Two Continuous

and a Spiking-Type Observation

10.4.1 Simulated Data Example

load(’data one bin two cont one spk.mat’) ;

delta = 0.005;

%% parameters

M =
tol

S5e5; % maximum iterations
= le-5; % convergence criteria
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b0 = zeros (1, M); % binary GLM model
bl = zeros (1, M);

o°

r0 = zeros(1l, M); continuous model
rl = zeros(l, M);

vr = zeros(l, M);

o°

continuous model noise variance

s0 = zeros(l, M); % continuous model

sl = zeros(l, M);

vs = zeros(l, M); % continuous model noise variance
ve = zeros(l, M); % process noise variance

rho = zeros(l, M); % random walk fogetting factor
alpha = zeros(1l, M); % input gain parameter

K = length(n) ;

x_pred = zeros(l, K);
v_pred = zeros(l, K);

X updt = zeros(l, K);
v_updt = zeros(l, K);

x_smth = zeros(1l, K);
v_smth = zeros(l, K);

p_updt = zeros(l, K);

A = zeros(1l, K);
W = zeros(l, K);
K) ;
K) ;

7

CW = zeros (1,
C = zeros (1,

rpeaks = zeros(l, K % 50);

rpeaks (round (rpeak locs / delta)) = 1;
rpeaks = reshape (rpeaks, [50, K])’;
exception counter = 0;

$% initial guesses

base prob = sum(n) / length(n);
b0 (1) = log(base prob / (1 - base prob));

bi(1) = 1;

r0(1l) = 0.27154;
rl(l) = 0.5057;
vr(l) = 0.00187;
s0(1) = -0.73899;
s1(1l) = 0.25324;
vs(l) = 0.00302;

ve(l) = 0.01883;
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rho(1l) = 0.99411;
alpha (1) = 0.00818;

theta = theta’;

= -0.001;

main function

if (k == 1)
x pred(k) = x smth(1);
v_pred(k) = ve(m) + ve(m);
else
x pred(k) = rho(m) » x updt(k - 1) + alpha(m) =% I(k);
v_pred(k) = (rho(m) * 2) % v_updt(k - 1) + ve(m);
end
C(k) = v_pred(k) / (vr(m) x vs(m) + v_pred(k) x ((rl(m) *
2) % vs(m) + (sl(m) * 2) % vr(m)));
try % numerical issues can occur due to the integrals
[templ, temp2] = get posterior mode (x_pred(k), C(k),
r(k), ro(m), rl(m), bO(m), bl(m), vr(m), n(k), s(k), s0(m),
sl(m), vs(m),
rpeaks(k, :), ul(k, :), delta, w(k, :, :), theta
', eta);
x_updt (k) = templ;
p updt (k) =1 / (1 + exp((-1) » (b0O(m) + bl(m) »
x_updt (k)))) ;
v updt (k) = 1 / ((1 / v_pred(k)) + ((rl(m) * 2) / vr(
m)) + ((sl(m) © 2) / vs(m)) + (bl(m) * 2) % p updt(k) » (1 -
p_updt (k)) - temp2) ;
catch
x_updt (k) = x pred(k) ;
v_updt (k) = v_pred(k);
exception counter = exception counter + 1;
end
if (mod(k, 100) == 0)
fprintf('%d ', k);
end
if (mod(k, 2500) == 0)
fprintf ('\n’) ;
end
end
x_smth(K) = x updt (K);
v_smth (K) = v_updt (K) ;
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W(K) = v_smth(K) + (x_smth(K) * 2);
A(l:(end - 1)) = rho(m) * v _updt(l:(end - 1)) ./ v _pred(2:end
)i
for k = (K - 1):(-1):1
x_smth (k) = x updt (k) + A(k) * (x_smth(k + 1) - x pred(k +
1))
v_smth(k) = v_updt (k) + (A(k) * 2) % (v_smth(k + 1) -
v_pred(k + 1));
CW(k) = A(k) * v_smth(k + 1) + x smth(k) * x smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) * 2);
end
if (m < M)
R = get linear parameters(x smth, W, r, K);
S = get_linear parameters(x_smth, W, s, K);
Q = [sum(W(l:end - 1)) (I(2:end) * x smth(l:(end - 1))’);
(I(2:end) * x smth(l:(end - 1))’) (I %= I')] \ [sum(CW

); (I(2:end) * x smth(2:end)’)];

bo(m + 1) = log(base prob / (1 - base prob)) ;
bl(m + 1) = 1;

rho(m + 1) = Q(1, 1);
if (Q(2, 1) < 0) % in case this happens (generally

only needed with experimental data)
alpha(m + 1) = alpha(m);

3

*

else
alpha(m + 1) = Q(2, 1);
end
ve(m + 1) = (sum(W(2:end)) + (rho(m + 1) *~ 2) % sum(W(1l
end - 1))) - 2 x rho(m + 1) * sum(CW) -
2 * alpha(m + 1) % (I(2:end) * x smth(2:end)’) + 2
alpha(m + 1) % rho(m + 1) x (I(2:end) % x smth(l:(end - 1))’)
+
(alpha(m + 1) *~ 2) = (I » I')) / K;
ro(m + 1) = R(1, 1);
rl(m + 1) = R(2, 1);
sO(m + 1) = S(1, 1);
sl (m 1) = s(2, 1);
vr(m + 1) = get maximum variance(r, rO(m + 1), rl(m + 1),

vs(m + 1) = get maximum variance(s, sO(m + 1), sl(m + 1),
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mean dev = mean(abs([b0(m + 1) bl(m + 1) rO(m + 1) rl(m
+ 1) ve(m + 1) vr(m + 1) rho(m + 1) alpha(m + 1) sO0(m + 1) sl
(m + 1) vs(m + 1)1 -
[b0(m) bl(m) r0(m) rl(m) ve(m) vr(m) rho(m) alpha (m)
s0(m) s1l(m) vs(m)]));
if mean dev < tol
fprintf (' \n\nConverged at m = %d\n\n’, m);
break;
else
fprintf ('m = %$d\nb0 = %.18f\nbl = %.18f\n\nr0 = %.18f
\nrl = %.18f\nvr = %.18f\n\ns0 = %.18f\nsl = %.18f\nvs = %.18
f\n\nve = %.18f\nrho = %.18f\nalpha = %.18f\n\ndev = %.18f\n\
n’,
m+ 1, bO(m + 1), bl(m + 1), ¥rO(m + 1), rl(m + 1), vr
(m+ 1), sO(m + 1), s1l(m + 1), vs(m + 1), ve(m + 1), rho(m +
1), alpha(m + 1), mean dev);
x_pred = zeros(l, K);
v_pred = zeros(l, K);
X updt = zeros(l, K);
v_updt = zeros(l, K);
x_smth(2:end) = zeros(l, K - 1); % x_smth(1)
needed for next iteration
v_smth = zeros(l, K);
p_updt = zeros(l, K);
A = zeros(l, K);
W = zeros(l, K);
CW = zeros(l, K);
C = zeros(l, K);
end
end
end
$% calculate confidence limits
p smth =1 ./ (1 + exp((-1) * (b0(m) + bl(m) * x smth)));
r smth = r0(m) + rl(m) » x smth;
s_smth = s0(m) + sl(m) *» x smth;
lambda = zeros (K, 50);
mean rr = zeros (K, 50);
for i = 1:K
for j = 1:50
wl = [squeeze(w(i, j, :))’ [eta x smth(i)l];
if (f(theta’, ul(i, j), wl) > le-18)
lambda (i, j) = fetch lambda(theta’, ul(i, j), wl);

end
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mean rr (i, j) = mu(theta’, wl);
end
end

lambda_start_index = find(reshape(rpeaks’, 1, numel (rpeaks)), 1);
lambda = reshape (lambda’, 1, numel (lambda)) ;

11 = get _log likelihood(eta, rpeaks, ul, delta, w, theta’, x smth
, v_smth) ;

11 final = sum(nansum(1ll)) ;

%% plot graphs

figure;

mean rr = reshape(mean rr’, 1, numel (mean rr)) ;

rri = diff (rpeak locs) ;
rr _times = rpeak locs(2:end) ;

index = (0:(K - 1));

fs_hyp = 4;

t_index = index / fs_hyp;

r index = ((K - 1):(-1):0); % reverse index

transp = 0.3;

subplot (611) ;

hold on;

plot (t_index, p, 'b’); grid;

plot (t_index, p_smth, ’'r’);

plot ((find(n == 0) - 1) / fs hyp, 1.2 % max(p) * ones(length(find
(n == O))), 'ks’, 'MarkerFaceColor’, 'k’, ’'MarkerSize’, 4);

plot ((find(n == 1) - 1) / fs hyp, 1.2 % max(p) * ones(length(find
(n == 1))), 'gs’, ’'MarkerFaceColor’, ’'g’, ’'MarkerSize’, 4);

ylabel (' (a) p_{k}’); ylim([0 0.25]);

title(’State Estimation with Simulated Data’) ;

subplot (612) ;

hold on;

plot(t_index, r, ’'b’); grid;
plot (t_index, r smth, 'r’);
ylabel (* (b) r_ {k}")

subplot (613) ;

hold on;

plot (t_index, s, 'b’); grid;
plot (t_index, s smth, 'r’);
ylabel (' (¢) s_{k}")

subplot (614) ;

hold on;

plot (t_index, x, ’'b’); grid;

plot (t_index, x_smth, 'r’);

plot ((find(I == 0) - 1) / fs hyp, (-8) * ones(length(find(I == 0)

)), 'ks’, 'MarkerFaceColor’, 'k’, ’'MarkerSize’, 4);
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plot ((£ind(I == 1) - 1) / £s hyp, (-8) x* ones(length(find(I == 1)
)), 'cs’, 'MarkerFaceColor’, ’'c’, 'MarkerSize’, 4);
ylabel (' (d) x {k}");

subplot (615) ;

hold on;
plot(rr_ times, rri, ‘o’, ’‘Color’, [1, 0.5, 0.25],
MarkerFaceColor’, [1, 0.5, 0.25], ’MarkerSize’, 2); grid;

mu_start index = round(rpeak locs(2) / delta);

plot (((0: (length(mean_ rr (mu_start_index:end)) - 1)) = delta),
mean rr (mu_start index:end), 'b’);

ylabel(’ (e) rr_{i}’); x1im([0 t_index(end)]); xlabel ('time (s)’);

subplot (616) ;

ggplot (x_smth - x); grid;

title(’'QQ Plot - State Estimate’, ‘FontWeight’, ’‘normal’) ;
ylabel (' (£) input quantiles’) ;

xlabel (' standard normal quantiles’) ;

figure;
get_ks plot (rpeak locs, lambda(lambda_ start index:end), delta, 1)

ylabel({’Theoretical’, ’Quantiles’}); xlabel ('Empirical Quantiles
“)
title(’'KS Plot’);

%% supplementary functions

function [y, H2] = get posterior mode(x pred, C, r, r0, rl, boO,
bl, vr, n, s, s0, sl, vs, rpeaks, ul, delta, w_all, theta,
eta)
M = 200; % maximum iterations
it = zeros(l, M);
func = zeros(1l, M);

df = zeros(l, M);

it (1) = x pred;

for 1 = 1: (M - 1)

H1 = zeros(l, 50);

H2 = zeros(l, 50);

for j = 1:50 $ 5ms -> 0.25 s (4 Hz for skin
conductance)

w = [squeeze(w_all(l, j, :))’ [eta it(i)]1]1;

if (f(theta, ul(j), w) > le-18) %
lambda = fetch lambda(theta, ul(j), w);
dl_dx = dlambda dx(theta, ul(j), w);
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H1(j) = dl_dx * (rpeaks(j) - lambda * delta) /
lambda;
H2(j) = d2lambda dx2(theta, ul(j), w) * (rpeaks(j
) - lambda * delta) / lambda - rpeaks(j) * (dl dx ~2) /|
lambda * 2);
end
end
H1l = sum(H1) ;
H2 = sum(H2) ;
func (i) = it (i) - x pred - C * (rl  vs * (r - r0 - rl =«
x pred) + sl  vr * (s - s0 - sl » x pred) +
Vr * vS % bl x (n - (1 / (1 + exp((-1) % (b0 + bl x
it(i)))))) + vr * vs x H1);
df (i) = 1 + C * vr * vs * ((bl * 2) % exp(b0 + bl % it (i)
) / ((1 + exp(b0 + bl » it(i))) * 2) - H2);
it(i + 1) = it(i) - func(i) / df(di);

if abs(it(i + 1) - it(i)) < le-14
y = it(i + 1);
return;
end
end

error ('Newton-Raphson failed to converge.’) ;
end

function y = get maximum variance(z, r0, rl, W, x smth, K)

A A

y = (z » z'" + K » (x0 2) + (rl 2) * sum(W)
- 2 % r0 * sum(z) - 2 % rl x dot(x smth, z) + 2 *
r0 + rl x sum(x smth)) / K;

end
function y = get linear parameters(x_smth, W, z, K)

y = [K sum(x smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .=*
x_smth)];

end
function [y] = f(theta, t, w)
y = sgrt(theta(end) ./ (2 * pi x (t kL.
exp((theta(end) % ((t - mu(theta, w)) .* 2)) ./
((-2) * (mu(theta, w) * 2) * t));

end

function [y] = intf (theta, t, w)



162

y = integral(@(t)f(theta, t, w), O,

end

function mu (theta, w)

lyl =
eta = w(end - 1);

x = w(end) ;

p = length(theta) - 2;

theta(l) + theta(2:(2 + p - 1))

Yy

end

function [y] = fetch lambda(theta, t,

cdf
y:

intf (theta, t,

= w) ;
f(theta, t, w) ./ (1 - cdf);

if (ecdf > 1) % numerical issue

y = 0;
end

end

function [yl = df dmu(theta, t, w)

y = (mu (theta, w)

- mu (theta,

7

(theta (end) /
w)))

end

function [y] = df dx(theta, t, w)

eta = w(end = 1),’

y = df _dmu(theta, t, w) .* eta;

end

function [y] = intdf dx(theta, t, w)

y = integral (@(t)df dx(theta, t, w)

end

function [y] = dlambda_ dx(theta, t, w)

cdf = intf (theta, t, w);

if (edf > 1) % numerical issue
y = 0;

else
y = cdf)

((1 - .+ df dx(theta,

t);

* w(l:p)’

w)

*3))

’

t,

*

0,

w)
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+ eta * x;

(f (theta, t, w) .x (t

t);

4t
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f(theta, t, w) .* intdf dx(theta, t, w)) ./ ((1 - cdf

end
function [y] = d2f dmu2(theta, t, w)

y = theta(end) % (df_dmu(theta, t, w) . ((t - mu(theta, w))
/

(mu (theta, w) =~ 3)) +
f(theta, t, w) .% ((2 % mu(theta, w) - 3 % t) / (mu(theta
,ow) N 4)));

end
function [yl = d2f dx2(theta, t, w)

eta = w(end - 1);
y = d2f dmu2(theta, t, w) .% (eta * 2);

end
function [y] = intd2f dx2(theta, t, w)
y = integral (@(t)d2f dx2(theta, t, w), 0, t);
end
function [y] = d2lambda_ dx2 (theta, t, w)
y = (2 % dlambda dx(theta, t, w) * (1 - intf(theta, t, w)) =*
intdf dx(theta, t, w) +
d2f dx2(theta, t, w) x (1 - intf(theta, t, w)) + ...
f(theta, t, w) » intd2f dx2(theta, t, w)) / ((1 - intf(
theta, t, w)) ~ 2);

end

function [y] = get log likelihood(eta, rpeaks, ul, delta, w_all,
theta, x, v)

K
Y

length (x) ;
zeros (K, 50) ;

for k = 1:K
for j 1:50
w = [squeeze(w_all(k, j, :))’ [eta x(k)]];

if (f(theta, ul(k, j), w) > le-18)

lambda = fetch lambda(theta, ul(k, j), w);
dl dx = dlambda_dx(theta, ul(k, j), w);
d21 dx2 = d2lambda_dx2 (theta, ul(k, j), w);

nkj = rpeaks(k, j);
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yv(k, j) = nkj * log(delta * lambda) - delta =*
lambda +
(d21 dx2 * (nkj - lambda * delta) / lambda -
nkj % (dl_dx * 2) / (lambda * 2)) % v(k) * 0.5;
end

end
end

end

10.4.2 Experimental Data Example

load(’expm data one bin two cont one spk.mat’) ;

delta = 0.005;

min_scr_ thresh = 0.015;

min_ scr prom = min scr_ thresh;
fs = 4;

epoch = 10;

stim = s _data.aug stim;
ph = s _data.ph;
tn = s_data.tn;
rpeaks = s_data.rpeaks;
ul = s data.ul;

[pks, locs] = findpeaks(ph, ’MinPeakHeight’, min scr thresh, -’
MinPeakProminence’, min scr_ prom) ;

r = interpl([1 locs length(ph)], log([ph(find(ph > 0, 1)) pks ph(
end)]), 1l:length(s_data.ph), ’‘cubic’);

s = tn;

n = zeros(l, length(r));
I = zeros(l, length(r));
n(locs) = 1;

I(stim) = 1;

std_s = std(s);
std_r = std(r);

s = s / std_s;
r =r / std r;

%% parameters

M = 5e5; % maximum iterations
tol = le-6; convergence criteria

o°

bo
bl

zeros (1, M) ; % binary GLM model
zeros (1, M) ;
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r0 = zeros(1l, M); % continuous GLM model
rl = zeros(1l, M);
vr = zeros(l, M);

o°

continuous GLM model noise variance (1)

s0 = zeros (1, M); % continuous GLM

sl = zeros(l, M);

vs = zeros(l, M); % continuous GLM model noise variance (2)
ve = zeros(l, M); % process noise variance

rho = zeros(l, M); % random walk correlation

alpha = zeros(1l, M); % input gain parameter

K = length(n) ;

x_pred = zeros(l, K);
v_pred = zeros(l, K);

X updt = zeros(l, K);
v_updt = zeros(l, K);

x_smth = zeros(1l, K);
v_smth = zeros(l, K);

p_updt = zeros(l, K);

A = zeros(1l, K);
W = zeros(l, K);
K) ;
K) ;

7

CW = zeros (1,
C = zeros (1,

exception counter = 0;
$% initial guesses

base prob = sum(n) / length(n);
log (base_prob / (1 - base prob)) ;

= r(l); % guess it’s the first value of r

theta = s_data.theta;
eta = -0.001;

%% main function
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for m 1:M

for k

1:K

if (k == 1)
x_pred (k)
v_pred (k)
else
x_pred (k)
v_pred (k)
end

C (k)
* vs(m)

v_pred(
+

o
)

nume
[templ, te
rO(m), rl(m)
vs (m) ,
rpeaks
eta) ;

x_updt (k)

try

r
S

(k) ,
1(m),
theta’,

p_updt (k)
x_updt (k))));
v_updt (k)
m)) + ((sl(m) * 2)
p_updt (k)) - temp2
catch
x_updt (k)
v_updt (k)
exception
end
if (mod(k, 100
fprintf (%
end
if

(mod (k, 250

(s1 (m)
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x_smth (1) ;
ve (m) + ve (m) ;

rho (m)
(rho (m)

*+ x updt(k - 1) + alpha(m) * I(k);
*2) % v_updt(k - 1) + ve(m);

A

k) / (vr(m) * vs(m) + v _pred(k) = ((rl(m)
22) % vr(m)));

rical issues can occur due to the integrals
mp2 ] get_posterior mode (x_pred(k), C(k),
bo(m), bl(m), vr(m), n(k), s(k), s0(m),

’

(k, :), ul(k, :), delta, s_data.w(k, 1),

templ;

1/

(1 + exp((-1) = (bO(m) + bl(m) =*

A

1/
/ vs(m))

) 5

((1 / v_pred(k))
+ (bl(m) * 2)

((rl(m)
* p_updt (k)

2)
*

/ vr(
(1

an

) 8
)

exception counter + 1;

X _pred
v_pred
counter

(k
(k

)
d

)
) 8

== 0
T,k

’

0)

0)

fprintf ('\n’) ;

end
end

x_smth (K) X _updt
v_smth (K) v_updt
W (K) v_smth (K) +

A(l:
) 5

7

(end - 1))

for k (K - 1):(-
x_smth (k)
1));

rho (m)

x_updt (k)

(X) ;
(K) ;
(x_smth (K)

A

2);

* v_updt(l:(end - 1)) ./ v _pred(2:end

1):1
*

+ A(k) (x_smth(k + 1) - x pred(k +
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v_smth(k) = v_updt (k) + (A(k) * 2) % (v_smth(k + 1) -
v pred(k + 1));
CW(k) = A(k) % v_smth(k + 1) + x smth(k) * x smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) * 2);
end
if (m < M)
R = get linear parameters(x smth, W, r, K);
S = get linear parameters(x_smth, W, s, K);
Q = [sum(W(l:end - 1)) (I(2:end) x x smth(l:(end - 1))’);
(I(2:end) * x_smth(l:(end - 1))’) (I %= I')] \ [sum(CW
); (I(2:end) * x smth(2:end)’)];
bb = fsolve(@(b) binary parameter derivatives(b, n,
x _smth, v_smth), [-5 1], optimset ('Display’,’off’));
bO(m + 1) = bb(1);
bl(m + 1) = bb(2);
rho(m + 1) = Q(1, 1);
if (Q(2, 1) < 0) % check in case this happens
alpha(m + 1) = alpha(m);
else
alpha(m + 1) = Q(2, 1);
end
ve(m + 1) = (sum(W(2:end)) + (rho(m + 1) * 2) % sum(W(1: (
end - 1))) - 2 x rho(m + 1) * sum(CW) -
2 % alpha(m + 1) * (I(2:end) » x smth(2:end)’) + 2 =«
alpha(m + 1) % rho(m + 1) x (I(2:end) x x_smth(l:(end - 1))’)
+
(alpha(m + 1) *~ 2) = (I » I')) / K;
if (abs(get maximum variance(r, R(1, 1), R(2, 1), W,
x_smth, K) - get maximum variance(s, S(1, 1), S(2, 1), W,
x_smth, K)) > 0.1) % terminate once overfitting is detected
break;
else
rO(m + 1) = R(1, 1);
rl(m + 1) = R(2, 1);
sO(m + 1) = S(1, 1);
sl(m + 1) = S(2, 1);
vr(m + 1) = get maximum variance(r, rO(m + 1), rl(m +
1), W, x smth, K);
vs(m + 1) = get maximum variance(s, sO(m + 1), sl(m +

1), W, x smth, K);

end
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mean dev = mean(abs([bO0(m + 1) bl(m + 1) rO(m + 1) rl
+ 1) ve(m + 1) vr(m + 1) rho(m + 1) alpha(m + 1) s0(m + 1)
(m + 1) vs(m + 1)] -
[b0(m) bl(m) r0(m) rl(m) ve(m) vr(m) rho(m) alpha (
s0(m) sl(m) vs(m)]));

if mean dev < tol
fprintf (' Converged at m = %d\n\n’, m);
break;
else
fprintf ('m = %$d\nb0 = %.18f\nbl = %.18f\n\nr0 = %.
\nrl = %.18f\nvr = %.18f\n\ns0 = %.18f\nsl = %.18f\nvs

f\n\nve = %.18f\nrho = %.18f\nalpha = %.18f\n\ndev = %.18f\n\

n’,
m+ 1, bO(m + 1), bl(m + 1), rO(m + 1), ri(m + 1),

(m + 1), sO(m + 1), s1l(m + 1), vs(m + 1), ve(m + 1), rho(m

1), alpha(m + 1), mean dev);

x_pred = zeros(l, K);
v_pred = zeros(l, K);

X updt = zeros(l, K);
v_updt = zeros(l, K);

x_smth(2:end) = zeros(l, K - 1); % x_smth(1)
needed for next iteration

v_smth = zeros(l, K);

p_updt = zeros(l, K);

7

A zeros (1, K)
W zeros (1, K)
K
K)

) 8

7

CW = zeros (1,
C = zeros (1,
end
end
end

$% calculate confidence limits

p smth =1 ./ (1 + exp((-1) * (b0(m) + bl(m) * x smth)));
lcl fp = zeros(1l, K);

ucl_fp = zeros(1l, K);

r smth = exp((r0O(m) + rl(m) * x smth) » std r);
s_smth = (s0(m) + sl(m) * x smth) x std s;

skn_avg = get trial averages(s_data, x smth, epoch, fs, ’'skn’);

X avg = get trial averages(s_data, x smth, epoch, fs, ’'x smth’

t_epoch = ((-1):(1 / fs):(epoch - 1 - (1 / £fs)));
tr epoch = ((epoch - 1 - (1 / fs)):(-1 / £s):(-1));

(m
sl

m)

vxr
45

7

) 8
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fprintf (' Plotting\n’) ;

lambda = zeros (K, 50);
mean rr = zeros (K, 50);

for i = 1:K
for j = 1:50

w = [squeeze(s_data.w(i, j, :))’ [eta x smth(i)l];
if (f(theta’, ul(i, j), w) > le-18)
lambda (i, j) = fetch lambda(theta’, ul(i, j), w);
end
mean rr(i, j) = mu(theta’, w);

end
end

lambda_start index = find(reshape(s_data.rpeaks’, 1, numel (s data
.rpeaks)), 1);
lambda = reshape (lambda’, 1, numel (lambda)) ;

11 = get log likelihood(eta, rpeaks, ul, delta, s data.w, theta’,
x _smth, v_smth);
11 final = sum(nansum(1ll)) ;

%% plot graphs
mean rr = reshape(mean rr’, 1, numel (mean rr)) ;

rri = diff (s_data.rpeak locs);
rr times = s_data.rpeak locs(2:end);

index = (0:(K - 1));
t index = index / fs;
r index = ((K - 1):(-1):0);

transp = 0.3;

subplot (711) ;

plot(t_index, s data.x, ‘color’, [(102 / 255) 0 (204 / 255)1);
ylabel (' (a) z {k}’); grid; x1im([0 t_index(end)]) ;

set (gca, 'xticklabel’, []);

ylim([(min(s_data.x) - 0.1) (max(s_data.x) + 0.1)]1);

title(’State Estimation with Experimental Data’) ;

subplot (712) ;

hold on;

plot (find(n == 0) / fs, max(p_smth) % 1.3 % ones(length(find(n =
0))), 'ks’, ’"MarkerFaceColor’, ’'k’, ’'MarkerSize’, 3);

plot (find(n == 1) / fs, max(p _smth) % 1.3 % ones(length(find(n ==
1))), ’'gs’, ’'MarkerFaceColor’, ’'g’, ’'MarkerSize’, 3);

plot (t_index, p smth, ’'r’);

ylabel (' (b) p_{k}");

x1im ([0 t_index(end)]); ylim([0 (max(p smth) = 1.5)]); grid;
set (gca, 'xticklabel’, []);

subplot (713) ;
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hold on;
plot (t_index, r smth, ’:’, ’‘color’, [0 0.3 0], ’linewidth’, 1.5);
plot (t_index, exp(r x std r), ’color’, [0 0.9 0]);

ylabel (' (c) e™{r {k}}’"); grid;
x1im ([0 t_index(end)]);
set (gca, 'xticklabel’, []);

subplot (714) ;

hold on;

plot (t_index, s_smth, ’‘:’, ‘color’, [0.5 (25 / 255) (66 / 255)],
'linewidth’, 1.5);

plot (t_index, s *» std s, ’‘color’, [1 0.5 (179 / 255)1);

ylabel (' ( s {k}")
x1lim( [0 t_1ndex(end)]); grid;
set (gca, 'xticklabel’, []);

subplot (715) ;

hold on;

plot (t_index, x_smth, ‘color’, ’'b’);

plot (find(I == 0) / fs, (min(x_smth) - 0.5) * ones(length(find(I
== 0))), ’'ks’, ’'MarkerFaceColor’, ’'k’, ’'MarkerSize’, 3);

plot (find(I == 1) / fs, (min(x_smth) - 0.5) * ones(length(find(I
== 1))), ’‘cs’, ’'MarkerFaceColor’, ’'c’, ’'MarkerSize’, 3);

ylabel (’ (e) x {k}’); ylim([(min(x smth) - 1) (max(x_smth) + 1)]);

x1lim ([0 t_index(end)]); grid; set(gca,’xticklabel’, [1);

subplot (716) ;

hold on;

plot(rr times / 60, rri, ’‘o’, ’'Color’, [1, 0.5, 0.25],
MarkerFaceColor’, [1, 0.5, 0.25], ’MarkerSize’, 3); grid;

mu_start index = round(s_data.rpeak locs(2) / delta);

plot (((0: (length(mean rr(mu start index:end)) - 1)) % delta) /
60, mean rr (mu_start index:end), 'b’);

ylabel (' (£) rr {i}’); x1im([0 t_index(end)] / 60); xlabel(’time (
min) ‘) ;

subplot (7, 2, 13);

hold on;

plot (t_epoch, skn avg(7, :), ’‘color’, [0 0.8 0], ’linewidth’,
1.3) g

£1i11 ([t_epoch, tr epoch]l, [skn avg(8, :) fliplr(skn avg(9, :))I,
'g’, 'EdgeColor’, ’'none’, ’'FaceAlpha’, 0.2);

plot (t_epoch, skn avg(4, :), '‘m’, ‘linewidth’, 1.5);

£1i11 ([t_epoch, tr epoch]l, I[skn avg(5, :) fliplr(skn avg(6, :))I],
‘m’, ’‘EdgeColor’, ’'none’, ’'FaceAlpha’, 0.2);

plot (t_epoch, skn avg(l, :), ‘r’, ’linewidth’, 1.5);

£111 ([t_epoch, tr epoch], I[skn avg(2, :) fliplr(skn _avg(3, :))],

'r’, 'EdgeColor’, ’'none’, 'FaceAlpha’, 0.2);
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xlim([t_epoch(1l) t_epoch(end)]) ;

grid;
xlabel (‘time (s)’); ylabel(’(g) z_{k}');

subplot (7, 2, 14);

hold on;

plot (t_epoch, x avg(7, :), ’‘color’, [0 0.8 0], ’linewidth’, 1.5);

£i11([t_epoch, tr_epochl, [x_avg(8, :) fliplr(x avg(9, :))1, ’'g’,
'EdgeColor’, ’‘none’, 'FaceAlpha’, 0.2);

plot (t_epoch, x avg(4, :), ’'m’, ’'linewidth’, 1.5);

£i11 ([t_epoch, tr_epochl, [x_avg(5, :) fliplr(x_ avg(6, :))1, 'm’,
'EdgeColor’, ’‘mnone’, 'FaceAlpha’, 0.2);

plot (t_epoch, x avg(l, :), ’'r’, ’'linewidth’, 1.5);

£i11 ([t_epoch, tr epochl, [x_avg(2, :) fliplr(x avg(3, :))1, 'r’,
'EdgeColor’, ’‘mnone’, 'FaceAlpha’, 0.2);

xlim([t_epoch(1l) t _epoch(end)]) ;

grid;
xlabel (‘time (s)’); ylabel(’ (h) x {k}’);

figure;
get_ks plot(s_data.rpeak locs, lambda(lambda start index:end),
delta, 1);

%% supplementary functions

function [y, H2] = get posterior mode(x pred, C, r, r0, rl, boO,
bl, vr, n, s, s0, sl, vs, rpeaks, ul, delta, w_all, theta,
eta)
M = 200; % maximum iterations
it = zeros(1l, M);
func = zeros(1l, M);

df = zeros(1l, M);

it (1)

X _pred;
for i = 1:(M - 1)

H1 = zeros(l, 50);

H2 = zeros(l, 50);
for j = 1:50 $ 5ms -> 0.25 s (4 Hz for skin
conductance)

w = [squeeze(w_all(1l, j, :))’ [eta it(i)]];

if (f(theta, ul(j), w) > le-18) %
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lambda = fetch lambda(theta, ul(j), w);
dl dx = dlambda_dx(theta, ul(j), w);

H1(j) = dl dx * (rpeaks(j) - lambda * delta) /
lambda;
H2(j) = d2lambda dx2(theta, ul(j), w) % (rpeaks(j
) - lambda * delta) / lambda - rpeaks(j) = (dl dx * 2) / (
lambda * 2);
end
end

H1 sum (H1) ;
H2 = sum(H2) ;

func (i) = it(i) - x pred - C % (rl  vs * (r - r0 - rl =
x pred) + sl  vr = (s - s0 - sl » x pred) +
vr * vS % bl x (n - (1 / (1 + exp((-1) % (b0 + bl x
it(i)))))) + vr % vs = H1);
df(i) =1 + C %« vr « v * ((bl * 2) % exp(b0 + bl * it (i)
) / ((1 + exp(b0 + bl * it(i))) *~ 2) - H2);
it(i + 1) = it(i) - func(i) / df(1);
if abs (it (i + 1) - it(i)) < le-14
y = it(i + 1);
return;
end

end

error ('Newton-Raphson failed to converge.’);

function y = binary parameter derivatives(b, n, x_smth, v_smth)

end

y = zeros(l, 2);
K = length(n) ;

b0 = b(1);

bl = b(2);

p = zeros(l, K);
for k = 1:K

p(k) =1 / (1 + exp((-1) = (b0 + bl » x smth(k))));

y(1) = y(1) + n(k) - p(k) - 0.5 » v_smth(k) » (b1 * 2) =
p(k) » (1 - p(k)) = (1 - 2  p(k));

y(2) = y(2) + n(k) » x smth(k) - x smth(k) * p(k) - 0.5 *
v_smth(k) * bl » p(k) * (1 - p(k)) * (2 + x smth(k) » bl =«
(1 -2 % p(k)));
end

function y = get maximum variance(z, r0, rl, W, x smth, K)
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A

vy = (z * 2z’ + K % (ro0 2) + (r1 * 2) % sum(W)
- 2 x ¥0 % sum(z) - 2 % rl * dot(x smth, z) + 2 =«
r0 x rl x sum(x smth)) / K;

end
function y = get_linear parameters(x_smth, W, z, K)

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .=*
x_smth)];

end
function y = get_trial averages(s, x_smth, epoch, fs, option)

y = zeros (9, epoch x fs);

csm_ep = zeros(length(s.csm), epoch x fs);
csp_us_ep = zeros (length(s.csp _us), epoch x fs);
csp_nus_ep = zeros(length(s.csp_nus), epoch x fs);

csm = s.csm;
cSp_us = S.CSp_us;
csSp_nus = S.csSp_nus;

if strcmp(option, ’‘x smth’)

for j = 1:length(csm)
csm_ep(j, :) = x_smth((s.stim(csm(j)) - £s ):(s.stim(
csm(j)) + 9 » fs - 1));
end

for j = l:length(csp_us)
csp us_ep(j, :) = x smth((s.stim(csp us(j)) - £fs):(s.
stim(csp us(j)) + 9 * fs - 1));
end

for j = 1l:length(csp_nus)
csp nus_ep(j, :) = x smth((s.stim(csp nus(j)) - £s):(
s.stim(csp nus(j)) + 9 x fs - 1));
end

elseif strcmp(option, ‘skn’)

for j = 1l:length(csm)
csm ep(j, :) = s.x((s.stim(csm(j)) - f£s ):(s.stim(csm
(7)) + 9 = fs - 1)) ;
end

for j = l:length(csp_us)
csp us_ep(j, :) = s.x((s.stim(csp _us(j)) - £s):(s.
stim(csp us(j)) + 9 = fs - 1));
end
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for j = l:length(csp nus)
csp nus_ep(j, :) = s.x((s.stim(csp nus(j)) - fs):(s.
stim(csp nus(j)) + 9 » fs - 1));
end
end
y(1, :) = mean(csp_us_ep) ;
y(2, :) = mean(csp us_ep) + tinv(0.975, length(csp us) - 1) =
std(csp_us_ep) / sqgrt (length (csp_us)) ;
y(3, :) = mean(csp us_ep) + tinv(0.025, length(csp us) - 1) =
std(csp_us_ep) / sqgrt (length (csp_us)) ;
(4, :) = mean(csp_nus_ep) ;
(5, :) = mean(csp nus_ep) + tinv(0.975, length(csp_nus) - 1)
* std(csp _nus_ep) / sqgrt(length(csp_nus)) ;
y(6, :) = mean(csp nus_ep) + tinv(0.025, length(csp nus) - 1)
* std(csp nus_ep) / sqrt(length(csp nus)) ;
y(7, :) = mean(csm_ep) ;
y(8, :) = mean(csm _ep) + tinv(0.975, length(csm) - 1) » std(
csm_ep) / sqgrt(length(csm));
y(9, :) = mean(csm _ep) + tinv(0.025, length(csm) - 1) » std(
csm_ep) / sqgrt(length(csm));
end
function [y] = f(theta, t, w)
y = sgrt(theta(end) ./ (2 % pi % (£ .” 3))) .x .
exp ((theta(end) % ((t - mu(theta, w)) ." 2)) ./
((-2) * (mu(theta, w) ~ 2) * t));
end
function [y] = intf (theta, t, w)
y = integral(@(t) f (theta, t, w), 0, t);
end
function [y] = mu(theta, w)
eta = w(end - 1);
x = w(end) ;
p = length(theta) - 2;
y = theta(l) + theta(2:(2 + p - 1)) * w(l:p)’ + eta » Xx;
end
function [y] = fetch lambda(theta, t, w)
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cdf = intf (theta, t, w);
y = f(theta, t, w) ./ (1 - cdf);

if (edf > 1) % numerical issue
y = 0;
end
end

function [y] = df dmu(theta, t, w)

y = (theta(end) (mu (theta, w) * 3)) * (f(theta, t, w) .* (t
- mu(theta, w)));

end
function [yl = df _dx(theta, t, w)

eta = w(end - 1);
y = df dmu(theta, t, w) .* eta;

end
function [y] = intdf dx(theta, t, w)
y = integral (@(t)df dx(theta, t, w), 0, t);
end
function [y] = dlambda_dx(theta, t, w)
cdf = intf (theta, t, w);
if (cdf > 1) % numerical issue
y = 0;
else
y = ((1 - cdf) .» df dx(theta, t, w) +
f(theta, t, w) .* intdf dx(theta, t, w)) ./ ((1 - cdf
end

function [y] = d2f dmu2(theta, t, w)

y = theta(end) % (df _dmu(theta, t, w) . ((t - mu(theta, w))
/

(mu(theta, w) =~ 3)) +
f(theta, t, w) .* ((2 % mu(theta, w) - 3 % t) / (mu(theta
,ow) t4)));

end
function [y] = d2f dx2(theta, t, w)

eta = w(end - 1);
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y = d2f dmu2(theta, t, w) .% (eta * 2);
end
function [y] = intd2f dx2(theta, t, w)
y = integral(@(t)d2f dx2(theta, t, w), 0, t);
end
function [y] = d2lambda_dx2 (theta, t, w)
y = (2 % dlambda dx(theta, t, w) * (1 - intf (theta, t, w)) =*
intdf dx(theta, t, w) +
d2f dx2(theta, t, w) * (1 - intf(theta, t, w

)
f(theta, t, w) * intd2f dx2(theta, t, w)) / (
theta, t, w)) * 2);

) o+ ...
(1 - intf(
end

function [yl = get_log likelihood(eta, rpeaks, ul, delta, w_all,
theta, x, v)

K
Yy

length (x) ;
zeros (K, 50) ;

for k = 1:K
for j = 1:50
w [squeeze(w_all(k, j, :))’ [eta x(k)1];

if (f(theta, ul(k, j), w) > le-18)

lambda = fetch lambda(theta, ul(k, j), w);
dl dx = dlambda_dx(theta, ul(k, j), w);

d21 dx2 = d2lambda_dx2 (theta, ul(k, j), w);
nkj = rpeaks(k, 3j);

y(k, j) = nkj x log(delta x lambda) - delta =
lambda +
(d21 _dx2 * (nkj - lambda * delta) / lambda -
nkj % (dl_dx * 2) / (lambda * 2)) % v(k) * 0.5;
end

end
end

end
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10.5 State-space Model with One MPP Observation

10.5.1 Simulated Data Example

load(’data one mpp.mat’) ;

K = length(n) ;

pt = find(n > 0);

M = 5e4;

ve = zeros(l, M); % process noise variance

r0 = zeros(l, M); % linear model coefficients (continuous
variable)

rl = zeros(1l, M); % linear model coefficients (continuous
variable)

vr = zeros(l, M); % sensor noise variance (continuous variable)

x _pred = zeros(l, K);
v_pred = zeros(l, K);

X _updt = zeros(l, K);
v_updt = zeros(l, K);

x _smth = zeros(1l, K);
v_smth = zeros(l, K);

p_updt = zeros(l, K);

base_prob = sum(n) / length(n) ;
tol = le-8; % convergence criteria

A = zeros(l, K);
W = zeros(l, K);
CW = zeros (1, K);

K)

C = zeros(1, i

ve(l) = 0.005;

x_smth(l) = 0;

r0(1) = 0.003;

rl1(l) = 0.001;

vr(l) = 0.002;

b0 = log(base prob / (1 - base prob)) ;

for m = 1:M

for k = 1:K

if (k == 1)
x pred(k) = x smth(1);
v_pred(k) = ve(m) + ve(m);

else
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x pred(k) = x updt(k - 1);
v_pred(k) = v _updt(k - 1) + ve(m);

end
x_updt (k) = get posterior mode(x pred(k), v pred(k), r(k)
, ¥r0(m), rl(m), vr(m), bo, n(k));

p updt (k) =1 / (1 + exp((-1) * (b0 + x updt(k))));
if (n(k) == 0)
v _updt (k) =1 / ((1 / v_pred(k)) + p updt(k) = (1 -
p_updt (k) )) ;
elseif (n(k) == 1)
v_updt (k) =1 / ((1 / v_pred(k)) + ((rl(m) * 2) / vr(
m)) + p updt(k) * (1 - p updt(k)));
end
end
x_smth(K) = x updt (K) ;
v_smth (K) = v_updt (K) ;
W(K) = v_smth(K) + (x_smth(K) * 2);
A(l:(end - 1)) = v_updt(l:(end - 1)) ./ v_pred(2:end);
for k = (K - 1):(-1):1
x_smth(k) = x updt (k) + A(k) * (x_smth(k + 1) - x pred(k +
1))
v_smth(k) = v_updt (k) + (A(k) * 2) % (v_smth(k + 1) -
v_pred(k + 1));
CW(k) = A(k) % v_smth(k + 1) + x smth(k) * x smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) * 2);

if (m < M)

R = get linear parameters(x smth, W, r, pt);

rO(m + 1) = R(1, 1);
rl(m + 1) = R(2, 1);
vr(m + 1) = get maximum variance(r, rO(m + 1), rl(m + 1),

W, x _smth, pt);

ve(m + 1) = (sum(W(2:end)) + sum(W(l:(end - 1))) - 2 =
sum(CW)) / K;

mean dev = mean (abs([ve(m +
)

( 1) ¥O(m + 1) ri(m + 1) vr(m +
1)] - [ve(m) rO(m) rl(m) vr(m)])

) 8

if mean dev < tol
fprintf ('m = %$d\nx0 = %.18f\n\nr0 = %.18f\nrl = %.18f
\nvr = %.18f\nve = %.18f\n\n’, m, x_smth(1l), r0(m), rl(m), vr
(m), ve(m));
fprintf (' Converged at m = %d\n\n’, m);
break;
else
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fprintf ('m = %d\nx0 = %.18f\n\nr0 = %.18f\nrl = %.18f
\nvr = %.18f\nve = %$.18f\n\n’, m, x smth(1), rO(m + 1), rl(m
+ 1), vr(m + 1), ve(m + 1));

x_pred = zeros(l, K);
v_pred = zeros(l, K);

x _updt = zeros(l, K);
v_updt = zeros(l, K);

X _smth(2:end) = zeros(l, K - 1); % x_smth(1)
needed for next iteration

v_smth = zeros(l, K);

p_updt = zeros(l, K);

A = zeros(l, K);

W = zeros(l, K

)

) 5
CW = zeros(l, K);

)

C = zeros(l, K);
end
end
end
p updt =1 ./ (1 + exp((-1) * (b0 + x updt))) ;
p. smth =1 ./ (1 + exp((-1) * (b0 + x_smth)));

r smth = r0(m) + rl(m) » x smth;

r plot = NaN % ones (1, K);
r_plot (pt) = r(pt);

figure;

subplot (411) ;

hold on;

stem(r_plot, ’fill’, ’‘color’, ’'b’, ’'markersize’, 4);
plot (r_smth, ’‘r-.’, ’‘linewidth’, 1.5);

ylabel (' (a) n {k}, r {k}");
title(’Estimation with Simulated Data’) ;
grid;

subplot (412) ;

hold on;

PlOt(Pr ’b’);

plot (p_smth, ’‘r-.’, ’‘linewidth’, 1.5);
ylabel (* (b) p_{k}’);

grid;

subplot (413) ;

hold on;
plot(x, 'b’);
plot (x_smth, ’‘r-.’, ’'linewidth’, 1.5);

ylabel (' (c) x {k}");
xlabel ('time index’) ;
grid;
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subplot (414) ;

ggplot (x - x_smth) ;

title(’QQ Plot - State Estimate’, ’'FontWeight’, ’‘Normal’) ;
ylabel (' (d) input quantiles’) ;

xlabel (' standard normal quantiles’) ;

grid;
function [y] = get posterior mode(x pred, v _pred, z, r0, rl, vr,
b0, n)
M = 100; % maximum iterations
y = NaN;
it = zeros(l, M);

f = zeros(1, M);
df = zeros(l, M);

it (1) = x_pred;
for i = 1: (M - 1)
if (n == 0)
C = v_pred;
f(i) = 1it(i) - x pred - C * (n - exp(b0 + it(i)) / (1

+ exp (b0 + it (i))));
df (i) = 1 + C % exp(b0 + it(i)) / (1 + exp(b0 + it (i)
)t 2;
elseif (n == 1)
C = v pred / ((rl * 2) % v_pred + vr);

£(i) = it (i) - x pred - C * (rl * (z - r0 - rl =*
x pred) + vr * (n - (1 / (1 + exp((-1) = (b0 + it(1i)))))));
df (i) = 1 + C x vr * exp(b0 + it (i)) / ((1 + exp(b0 +
it(i))) * 2);
end
it(i + 1) = it(i) - £(i) / df(i);

if abs(it(i + 1) - it(i)) < le-14
y = it(i + 1);
return
end
end

error ('Newton-Raphson failed to converge.’);
end

function y = get maximum variance(z, r0, rl, W, x smth, pt)

x_smth = x smth(pt) ;
W = W(pt);

z = z(pt);

K = length(pt) ;
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A

2) + (r1 ©~ 2) % sum(W)

y = (z » z"” + K * (x0
- 2 % r0 x sum(z) - 2 * rl % dot(x smth, z) + 2 %
r0 * rl » sum(x smth)) / K;

end
function y = get_linear parameters(x_smth, W, z, pt)

x_smth = x smth(pt) ;

W = W(pt);

z = z(pt);

K = length(pt) ;

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .=
x_smth)];

end

10.5.2 Experimental Data Example

load (’expm data one mpp.mat’) ;

=
1

length (u) ;
zeros (1, K);

o)
Il

pt = find(u > 0);

n(pt) = 1;

e = g

M = 5e4;

ve = zeros(l, M); % process noise variance

r0 = zeros(1l, M); % linear model coefficients (continuous
variable)

rl = zeros(1l, M); % linear model coefficients (continuous
variable)

vr = zeros(l, M); % sensor noise variance (continuous variable)

x _pred = zeros(l, K);
v_pred = zeros(l, K);

X _updt = zeros(1l, K);
v_updt = zeros(l, K);

x_smth = zeros(l, K);
v_smth = zeros(l, K);

p_updt = zeros(l, K);

base prob = sum(n) / length(n);
tol = 1le-8; % convergence criteria

A = zeros(1l, K);
W zeros (1, K);
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CW = zeros(l, K);

C = zeros (1, K);

ve(l) = 0.005;

x smth(1l) = 0;

r0(l) = 0.003;

rl(l) = 0.001;

vr(l) = 0.002;

b0 = log(base prob / (1 - base prob)) ;

if (k == 1)
x pred(k) = x smth(1);
v_pred(k) = ve(m) + ve(m);
else
x pred(k) = x updt(k - 1);
v_pred(k) = v _updt(k - 1) + ve(m);
end

x_updt (k) = get posterior mode(x pred(k), v pred(k), r(k)
, ¥r0(m), rl(m), vr(m), b0, n(k));

p updt(k) =1 / (1 + exp((-1) » (b0 + x updt(k))));
if (n(k) == 0)
v_updt(k) =1 / ((1 / v_pred(k)) + p_updt(k) » (1 -
p_updt (k))) ;
elseif (n(k) == 1)
v_updt (k) = 1 / ((1 / v_pred(k)) + ((rl(m) * 2) / vr(
m)) + p updt (k) * (1 - p updt(k)));
end
end
x_smth(K) = x updt (K) ;
v_smth(K) = v_updt (K);
W(K) = v_smth(K) + (x_smth(K) * 2);
A(l:(end - 1)) = v_updt(l:(end - 1)) ./ v_pred(2:end);
for k = (K - 1):(-1):1
x_smth (k) = x updt (k) + A(k) * (x_smth(k + 1) - x pred(k +
1))

v_smth (k) = v_updt (k) + (A(k)
v pred(k + 1));

2) x (v_smth(k + 1) -

CW(k) = A(k) % v_smth(k + 1) + x smth(k) * x smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) * 2);

if (m < M)

R = get linear parameters(x smth, W, r, pt);
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if R(2, 1) > 0

ro(m + 1) = R(1, 1);
rl(m + 1) = R(2, 1);
vr(m + 1) = get maximum variance(r, rO(m + 1), rl(m +

1), W, x smth, pt);
else % a check with experimental data (in case this
happens)
fprintf (‘m = %$d\nx0 = %.18f\n\nr0 = %.18f\nrl = %.18f
\nvr = $.18f\nve = %.18f\n\n’, m, x_smth(1), r0(m), rl(m), vr
(m), ve(m));
fprintf (' Converged at m = %d\n\n’, m);
break;
end

ve(m + 1) = (sum(W(2:end)) + sum(W(l:(end - 1))) - 2 *
sum (CW)) / K;

mean _dev = mean (abs([ve(m +
)

( 1) rO(m + 1) r1(m + 1) vr(m +
1)] - [ve(m) rO(m) rl(m) vr(m)])

) 8

if mean dev < tol
fprintf (‘m = %$d\nx0 = %.18f\n\nr0 = %.18f\nrl = %.18f
\nvr = $.18f\nve = %$.18f\n\n’, m, x smth(1), r0(m), rl(m), vr
(m), ve(m));
fprintf (' Converged at m = %d\n\n’, m);
break;
else
fprintf ('m = %d\nx0 = %.18f\n\nr0 = %.18f\nrl = %.18f
\nvr = %.18f\nve = %$.18f\n\n’, m, x smth(1), r0O(m + 1), rl(m
+ 1), vr(m + 1), ve(

x_pred = zeros(l, K);
v_pred = zeros(l, K);

X updt = zeros(l, K);
v_updt = zeros(l, K);

x_smth(2:end) = zeros(l, K - 1); % x_smth (1)
needed for next iteration
v_smth = zeros(1l, K);

p_updt = zeros(l, K);

A = zeros(1l, K);
W = zeros(l, K);
K);
K) ;

7

CW = zeros (1,
C = zeros (1,
end
end
end

p_smth = 1 ./ (1 + exp((-1) * (b0 + x_smth)));
r smth = r0(m) + rl(m) *» x smth;
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lcl x = norminv(0.025, x smth, sgrt(v_smth));
ucl x = norminv(0.975, x smth, sgrt(v_smth));

certainty = 1 - normcdf (prctile(x_smth, 50) x ones(l, length(
x_smth)), x_smth, sgrt(v_smth));

lcl p = zeros(l, K);
ucl p = zeros(l, K);

for k = 1:K
[lcl p(k), ucl p(k)] = get _pk conf lims(v_smth(k), b0, x_smth

(k));
end
fs = 4;
t = (0:( 1)) / fs;
tr = ((K - 1):(-1):0) / fs;

u_plot = NaN * ones(1l, K);
u_plot (pt) = r(pt);

subplot (511) ;

hold on;

plot(ty, y, 'k’, ’‘linewidth’, 1.25);

ylabel ({’ (a) skin cond.’, ' (\mu S)’});

set (gca, 'xticklabel’, []1); ylim([0 31);

title(’State Estimation with Experimental Data’); x1lim ([0 ty(end)
1)

grid;

yl = ylim;

patch([xp (1), xp(2), xp(2), xp(1)] / £s, [yl(1l) yl(1) yl(2) yl(2)
1, '"r’, ’FaceAlpha’ 0.2, ’'EdgeColor’, ’'none’);

patch([xp(2), xp(3), xp(3), xp(2)] / £s, [yl(1l) yl(1) yl(2) yl(2)
1, '"g9g’, ’FaceAlpha’ 0.2, ’'EdgeColor’, ’‘none’);

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) yl(1) yl(2) yl(2)
1, [1 0.647059 O], 'FaceAlpha’, 0.2, ’'EdgeColor’, ’'none’);

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) y1(1) yl(2) yl(2)
1, '"b’, ’FaceAlpha’ 0.2, ’'EdgeColor’, ’'none’);

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2) yl(2)
1, 'v", ’FaceAlpha’ 0.2, ’'EdgeColor’, ’‘none’);

subplot (512) ;

stem(t, u_plot, ’£fill’, ’k’, ’‘markersize’, 3);

ylabel (’ (b) n {k}, r {k}’); grid; x1lim([0 t(end)]); ylim([0 15]);

vyl = ylim; set(gca,’xticklabel’, []);

patch([xp (1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1) yl(2) yl(2)
1, '"x’, ’FaceAlpha’ 0.2, ’'EdgeColor’, ’'none’);

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1l) yl(1) yl(2) yl(2)
1, "g’, 'FaceAlpha’, 0.2, ’'EdgeColor’, ’‘none’);

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) y1l(1) yl(2) yl(2)

1, [1 0.647059 0], ’'FaceAlpha’, 0.2, ’'EdgeColor’, ’'none’) ;
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patch([xp(4), xp(5), xp(5

)
1, '"b’, ’"FaceAlpha’, 0.2, ’'EdgeColor’, ’‘none’);
patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2) yl(2
1, 'y’, 'FaceAlpha’, 0.2, ’'EdgeColor’, ’‘none’);
subplot (513) ;
hold on;

plot(t, x_smth, ’'b’, ’linewidth’, 1.25);

£1i11([t, trl, [lcl x fliplr(ucl x)1, 'c’
FaceAlpha’, 0.5);

ylabel (’ (c) state (x_{k})

set (gca, 'xticklabel’, []); x1lim([0 t(end)]);

grid; yl = ylim;

patch([xp (1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1) yl(2)
1, '"r’, ’FaceAlpha’ 0.2, ’'EdgeColor’, ’'none’);

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1l) yl(1) yl(2)
1, "g’, ’FaceAlpha’ 0.2, ’'EdgeColor’, ’'none’);

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) yl(1) yl(2)
1, [1 0.647059 O], 'FaceAlpha’, 0.2, ’'EdgeColor’, ’'none’

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) yl(1) yl(2)
1, 'b’, ’'FaceAlpha’, 0.2, ’'EdgeColor’, ’‘none’);

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2)
1, 'y’, 'FaceAlpha’, 0.2, ’'EdgeColor’, ’‘none’);

subplot (514) ;

hold on;

plot(t, p_smth, ’‘r’, ’linewidth’, 1.5);

£i11([t, tr]l, [lcl p fliplr(ucl p)Il, [1, O, (127 / 255)],
EdgeColor’, ’‘none’, 'FaceAlpha’, 0.3);

ylim ([0 0.15]);

ylabel (’ (d) probability (p_{k})

set (gca, 'xticklabel’, []1); x1im([0 t(end)]);
grid; yl = ylim;

patch([xp(1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1) yl(2)

1, '"r’, ’FaceAlpha’ 0.2, ’'EdgeColor’, ’'none’);
patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1l) yl(1) yl(2)

1, "g’, ’'FaceAlpha’, 0.2, ’'EdgeColor’, ’‘none’);
patch([xp(3), xp(4), xp(4), xp(3)] / £s, [yl(1l) yl(1) yl(2)

1, [1 0.647059 0], ’'FaceAlpha’, 0.2, ’'EdgeColor’, ’'none’
patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) yl(1) yl(2)

1, '"b’, ’"FaceAlpha’, 0.2, ’'EdgeColor’, ’‘none’);
patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1l) yl(1) yl(2) yl(2

1, 'y’, 'FaceAlpha’, 0.2, ’'EdgeColor’, ’‘none’);

subplot (515) ;

hold on;

vl = [0 0.9; t(end) O.

cl = [1 (220 / 255) (
0; 1 0 0];

facesl = [1 2 3 4];

9; t(end) 1; 0 1];
20

2 / 255); 1 (220 / 255) (220 / 255);

'EdgeColor’, ’'none’

yl(2
yl(2

yl(2

) 8

yl(2

yl(2

yl(2
yl(2

yl(2

) 8

yl(2

1

, xp(4)] / fs, [yl(1) yl(1) yl(2) yl(2

0

185

)

)

)

)

)

)

)

)

)

)

)

)
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patch(’Faces’, facesl, ’'Vertices’, vl, 'FaceVertexCDhata’, cl, '’
FaceColor’, ’interp’, ..
'EdgeColor’, ’‘none’, 'FaceAlpha’, 0.7);

v2 = [0 0; t(end) 0; t(end) 0.1; 0 0.1]1;

c2 = [0 0.8 0; 0 0.8 O; (204 / 255) 1 (204 / 255); (204 / 255) 1
(204 / 255)1;

faces2 = [1 2 3 4];

patch(’Faces’, faces2, ’'Vertices’, v2, 'FaceVertexCDhata’, c2, '
FaceColor’, ’interp’, ..
"EdgeColor’, ’‘none’, 'FaceAlpha’, 0.7);

plot (t, certainty, ’color’, [(138 / 255) (43 / 255) (226 / 255)1,
’linewidth’, 1.5); grid;

ylabel (' (d) HAI’); xlabel(’'time (s)’); x1im([0 t(end)]) ;
function [y] = get posterior mode(x pred, v _pred, z, r0, rl, vr,
b0, n)
M = 100; % maximum iterations
it = zeros(l, M);
f = zeros(1, M);

df = zeros(l, M);

it (1) = x pred;

for i = 1:(M - 1)
if (n == 0)
C = v_pred;
£(i) = it(i) - x pred - C * (n - exp(b0o + it(i)) / (1
+ exp (b0 + it (i))));
df (i) = 1 + C % exp(b0 + it(i)) / (1 + exp(b0 + it (i)
)) " 2;

elseif (n == 1)
C =v pred / ((rl * 2) % v_pred + vr);

£(i) = it (i) - x pred - C * (rl * (z - r0 - rl =*
x_pred) + vr * (n - (1 / (1 + exp((-1) % (b0 + 1t (1)))))));
df (i) = 1 + C x vr * exp(b0 + it(i)) / ((1 + exp(b0 +
it(i))) * 2);
end
it(i + 1) = it(i) - £(i) / dAf(1i);

if abs(it(i + 1) - it(i)) < le-14
y = it(i + 1);
return
end
end

error ('Newton-Raphson failed to converge.’) ;
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end
function y = get maximum variance(z, r0, rl, W, x smth, pt)

x_smth = x smth(pt) ;
W W(pt) ;

z z (pt) ;

K = length(pt);

A A

vy = (z x 2z’ + K x (r0 2)
- 2 % r0 * sum
r0 * rl % sum(x_smth)) /
end

+ (r1 2) % sum(W)
(z) - 2 x rl » dot(x_smth, z) + 2 *
K;

function y = get_linear parameters(x_smth, W, z, pt)

x_smth = x smth(pt) ;
W W(pt) ;

% z (pt) ;

K = length(pt) ;

y = [K sum(x smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .=
x_smth)];

end

function [lcl, ucl] = get pk conf lims(v, b0, x)

p = (le-4:1le-4:1);
fp = cumtrapz(p, 1 ./ (sgrt(2 = pi * v) * p .* (1 - p)) .=*
exp(((-1) / (2 x v))* (log(p ./ ((1 - p) * exp(b0))) - x)
S2));

n = find(fp <= 0.975);
m = find(fp < 0.025) ;

ucl = p(n(end)) ;
lcl = p(m(end)) ;
end
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10.6 State-space Model with One MPP and One Continuous
Observation

10.6.1 Simulated Data Example

load(’data one mpp one cont.mat’);

base prob = sum(n) / length(n);
pt = find(n > 0);

%% parameters

M = leé6; % maximum iterations

m= 1;

tol = 1le-8; % convergence criteria

r0 = zeros(1l, M); % continuous model

rl = zeros(l, M);

vr = zeros(l, M); % continuous model noise variance (1)
s0 = zeros (1, M); % continuous model

sl = zeros(l, M);

vs = zeros(l, M); % continuous model noise variance (2)
ve = zeros(l, M); % process noise variance

K = length(n) ;

x_pred = zeros(l, K);
v_pred = zeros(l, K);

X updt = zeros(l, K);
v_updt = zeros(l, K);

x_smth = zeros(1l, K);
v_smth = zeros(1l, K);

p_updt = zeros(l, K);

A = zeros(1l, K);
W = zeros(l, K);
K);
K) ;

1

CW = zeros (1,
C = zeros (1,

%% initial guesses

log

( e prob / (1 - base prob));
= ®

o

% guess it’s the first value of r

S
) 8
= 5;
) 8

ba
(1
0.
(1

1

(1)
(1)
(1) =
(1)
(1)

]
o !

.05;
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if (k == 1)
x pred(k) = x smth(1);
v_pred(k) = ve(m) + ve(m);
else
x pred(k) = x updt(k - 1);
v_pred(k) = v_updt(k - 1) + ve(m);
end
x_updt (k) = get posterior mode (x pred(k), v _pred(k), r(k)
, ¥r0(m), rl(m), b0, vr(m), n(k), s(k), s0(m), sl(m), vs(m));
p updt(k) =1 / (1 + exp((-1) » (b0 + x updt(k))));
if (n(k) == 0)

v updt (k) = 1 / ((1 / v_pred(k)) + ((sl(m) * 2) / vs(
m)) + p_updt (k) * (1 - p_updt(k)));
elseif (n(k) == 1)
v_updt (k) = 1 / ((1 / v_pred(k)) + ((rl(m) * 2) / vr(
m)) + ((sl(m) * 2) / vs(m)) + p_updt(k) * (1 - p_updt(k)));
end
end
x_smth(K) = x updt (K) ;
v_smth(K) = v_updt (K) ;
W(K) = v_smth(K) + (x_smth(K) * 2);
A(l:(end - 1)) = v_updt(l:(end - 1)) ./ v _pred(2:end);
for k = (K - 1):(-1):1
x_smth(k) = x updt (k) + A(k) * (x_smth(k + 1) - x pred(k +
1))

A

v_smth(k) = v_updt (k) + (A(k)
v pred(k + 1));

2) x (v_smth(k + 1) -

CW(k) = A(k) % v_smth(k + 1) + x smth(k) * x smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) * 2);

end

prev = [r0(m) rl(m) ve(m) vr(m) sO0(m) sl(m) vs(m)];

R get linear parameters for mpp(x smth, W, r, pt);
S = get linear parameters(x _smth, W, s, K);

ve(m + 1) = (sum(W(2:end)) + sum(W(l:(end - 1))) - 2 % sum(CW

)) / K;
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rO(m + 1) = R(1, 1);

rl(m + 1) = R(2, 1);

sO(m + 1) = S(1, 1);

sl(m + 1) = S(2, 1);

vr(m + 1) = get maximum variance for mpp(r, rO(m + 1), rl(m +
1), W, x_smth, pt);

vs(m + 1) = get maximum variance(s, sO(m + 1), sl(m + 1), W,

x_smth, K);

next = [rO(m + 1) ri1(m + 1) ve(m + 1) vr(m + 1) sO(m + 1) s1(

m+ 1) vs(m +1)1;
mean_dev = mean (abs(next - prev));

if mean dev < tol

fprintf (' Converged at m = %d\n\n’, m);

break;
else

fprintf (‘m = %d\nr0 = %.18f\nrl = %.18f\nvr = %.18f\n\ns0
= %.18f\nsl = %.18f\nvs = %.18f\n\nve = %.18f\n\n’,

m+ 1, rO(m + 1), rl1(m + 1), vr(m + 1), sO(m + 1), sl(m +
1), vs(m + 1), ve(m + 1)) ;

x_pred = zeros(l, K);
v_pred = zeros(l, K);

x updt = zeros(l, K);
v_updt = zeros(l, K);

x_smth(2:end) = zeros(l, K - 1); % x_smth(l) needed
for next iteration
v_smth = zeros(1l, K);

p_updt = zeros(l, K);

A = zeros(l, K);
W = zeros (1, K);
CW = zeros(1l, K);
C = zeros(1l, K);
end
end

%% calculate confidence limits

p_smth = 1 ./ (1 + exp((-1) % (b0 + x smth))); % mode, lower and
upper confidence limits for binary distribution

r smth = r0(m) + rl(m) *» x smth;

s_smth = s0(m) + sl(m) *» x smth;

r plot = NaN % ones (1, K);
r plot(pt) = r(pt);



10.6 State-space Model with One MPP and One Continuous Observation

%% plot graphs

subplot (511) ;

hold on;
stem(r_plot, ’fill’, ’‘color’, ’'b’, ’‘markersize’,
plot (r_smth, ’'r-.’, ’‘linewidth’, 1.25);

ylabel (' (a) n_{k}, r {k}’);
title(’Estimation with Simulated Data’) ;
grid;

subplot (512) ;

hold on;

plot(p, 'b’);

plot (p_smth, ’'r-.’, ’‘linewidth’, 1.25);
ylabel (* (b) p_{k}’);

grid;

subplot (513) ;

hold on;
plot(s, 'b’);
plot(s_smth, ’‘r-.’, ’‘linewidth’, 1.25); grid;

ylabel (* (c) s _{k}");

subplot (514) ;

hold on;

plot(x, 'b’);

plot (x_smth, ’‘r-.’, ’‘linewidth’, 1.25); grid;
ylabel (* (d) x_{k}’); xlabel(’'time index’);

subplot (515) ;

ggplot (x - x_smth) ;

title(’'QQ Plot - State Estimate’, ’'FontWeight’,
ylabel (' (e) input quantiles’) ;
xlabel (' standard normal quantiles’) ;

grid;

%% supplementary functions

function y = get_posterior mode(x pred, v_pred,
, n, s, s0, sl, vs)

M = 200; % maximum iterations
it = zeros(1l, M);
f = zeros (1, M);

df = zeros(1l, M);

it (1)

x_pred;

for 1 = 1: (M - 1)

4);

'Normal’) ;

r, r0O, rl,

n
C =v.pred / ((s1 * 2) *» v_pred + vs);

bo,

191

vr
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£(i) = it (i) - x pred - C * (sl * (s - s0 - sl =*
x pred) + vs * (n - (1 / (1 + exp((-1) » (b0 + it(1)))))));
df (i) = 1 + C x vs * exp(b0 + it(i)) / ((1 + exp(b0 +
it(i))) * 2);

elseif (n == 1)
C = v pred / (vr * vs + v_pred * ((rl © 2) * vs + (sl
~2) % vr));
£(i) = it(i) - x pred - C * (rl  vs * (r - r0 - rl =

x pred) + sl x vr * (s - s0 - sl % x pred) +
vr * v§ x (n - (1 / (1 + exp((-1) %= (b0 + it(i)))
))))
df(i) =1 + C x vr * vs % exp(b0 + it(i)) / ((1 + exp
(b0 + it(i))) ~ 2);
end
it(i + 1) = it (i) - £(1) / df(1);
if abs(it(i + 1) - 1it(i)) < le-14
y = it(i + 1);
return;
end

end
error ('Newton-Raphson failed to converge.’);
end

function y = get maximum variance(z, r0, rl, W, x smth, K)

A A

+ (r1 2) x sum(W)
(z) - 2 x rl » dot(x_smth, z) + 2 «
K;

y = (z * z' + K * (r0 2)
- 2 % r0O * sum
r0 « rl % sum(x_smth)) /
end

function y = get linear parameters(x_smth, W, z, K)

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .=*
x_smth)];

end

function y = get maximum variance for mpp(z, r0, rl, W, x smth,

pt)
x _smth = x smth(pt) ;
W = W(pt);
z = z(pt);
K = length(pt) ;
vy = (z % z’" + Kx (r0 * 2) + (rl1 © 2) % sum(W)
* O * sum(z) - 2 % rl x dot(x smth, z) + 2 *

- 2
r0 » rl x» sum(x smth)) / K;
end
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function y = get_linear parameters_for mpp(x smth, W, z, pt)

x_smth = x smth(pt) ;

W = W(pt);

z = z(pt);

K = length(pt) ;

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z
x _smth)];

end

10.6.2 Experimental Data Example

load (’expm data one mpp one cont.mat’);

subj = 1;

T = 1450;

n = zeros(l, T);
r = zeros (1, T);
pt = find(u > 0);
n(pt) = 1;

r(pt) = u(pt);

s = y;

base prob = sum(n) / length(n);
pt = find(n > 0);

%% parameters

M = le6; % maximum iterations
m= 1;
tol = le-8; % convergence criteria

b0 = zeros(l, M);
bl = zeros(l, M);

o°

r0 = zeros(l, M); continuous model
rl = zeros(l, M);

vr = zeros(l, M);

o\°

continuous model noise variance (1)

s0 = zeros(l, M); % continuous model

sl = zeros(1l, M);

vs = zeros(l, M); % continuous model noise variance (2)
ve = zeros(l, M); % process noise variance

. x

193
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X updt = zeros(l, K);
v_updt = zeros(l, K);
x_smth = zeros(1l, K);
v_smth = zeros(1l, K);
p_updt = zeros(l, K);
A = zeros(l, K);
W = zeros(l, K);
CW = zeros(l, K);
C = zeros(l, K);

1

%% initial guesses

((rl(m)

MATLAB Code Examples

), v_pred(k), r(k)
s(k), s0(m), sl(m)
+ bl(m) * x updt(k

/ ((1 / v_pred(k)) + ((sl(m) * 2) / vs(

A

2) / vr(

b0 (1) = log(base prob / (1 - base prob));
bl(1l) = 1;
r0(1l) = prctile(r(pt), 50);
rl(1l) = 0.5;
s0(1) = s(1);
s1(1) = 1;
vr(l) = 0.05;
vs(l) =1 % var(s); % 1 = var(s)
ve(l) = 0.05;
lambda = 0.01; % 0.01
%% main function
for m = 1:M
for k = 1:K
if (k == 1)
x pred(k) = x smth(1);
v_pred (k) = ve(m) + ve(m);
else
x pred(k) = x updt(k - 1);
v_pred(k) = v_updt(k - 1) + ve(m);
end
x_updt (k) = get posterior mode (x pred(k
, ¥0O(m), rl(m), bO(m), bl(m), vr(m), n(k),
, vs(m));
p updt (k) =1 / (1 + exp((-1) % (bO(m)
))))
if (n(k) == 0)
v_updt (k) = 1
m)) + (bl(m) * 2) * p updt(k) * (1 - p updt(k)));
elseif (n(k) == 1)
v_updt (k) 1/ ((1 / v pred(k)) +
m)) + ((sl(m) = 2) / vs(m)) + (bl(m) 2)

p_updt (k))) ;

* p_updt (k) =

(L =
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end

end
x_smth(K) = x updt (K) ;
v_smth (K) = v_updt (K) ;
W(K) = v_smth(K) + (x_smth(K) * 2);
A(l:(end - 1)) = v_updt(l:(end - 1)) ./ v_pred(2:end);
for k = (K - 1):(-1):1

x_smth (k) = x updt (k) + A(k) * (x_smth(k + 1) - x pred(k +
1));

v_smth(k) = v_updt (k) + (A(k) * 2) % (v_smth(k + 1) -

v_pred(k + 1));

CW(k) = A(k) =«
(

v_smth(k + 1) + x_smth(k) * x smth(k + 1);
W(k) = v_smth(k)

k) + (x_smth(k) * 2);

R = get linear parameters for mpp(x smth, W, r, pt);
S = get_linear parameters(x_smth, W, s, K);

prev = [r0(m) rl(m) ve(m) vr(m) sO0(m) sl(m) vs(m) bO(m) bl (m)

1 5

ve(m + 1) = (sum(W(2:end)) + sum(W(l:(end - 1))) - 2 % sum(CW
)) /[ K;

bb = fsolve(@(b) binary parameter derivatives(b, n, x smth,

v_smth), [-5 1], optimset (’Display’,’off’));

bO(m + 1) = bb(1);

bl(m + 1) = bb(2);

roO(m + 1) = R(1, 1);

rl(m + 1) = R(2, 1);

vr(m + 1) = get maximum variance for mpp(r, rO(m + 1), rl(m +
1), W, x_smth pt);

if ((vs(m) + lambda * (get maximum variance(s, s0(m), sl(m),

W, x smth, K) - vs(m))) > 0.75 % var(s)) % EM algorithm
intentionally modified slightly for overfitting control

sO(m + 1) = sO0(m) + lambda x (S(1, 1) - s0(m));

(m + 1) = s1l(m) + lambda * (S(2, 1) - sl(m));

vs(m + 1) = vs(m) + lambda * (get maximum variance(s, sO (
m), 1(m), W, x smth, K) - vs(m));
else

sO(m + 1) = s0(m);

sl(m + 1) = sl(m);

vs(m + 1) = vs(m);
end
next = [rO(m + 1) ri1(m + 1) ve(m + 1) vr(m + 1) sO(m + 1) s1(

m+ 1) vs(m + 1) bO(m + 1) bl(m + 1)1;



196 10 MATLAB Code Examples

mean_dev = mean (abs(next - prev));

if (bl(m + 1) < 0) || (rl(m + 1) < 0) % if this happens
with experimental data

fprintf (' Iterations halted at m = %d\n\n’, m);

break;
end

if mean dev < tol
fprintf (' Converged at m = %d\n\n’, m);
break;
else
fprintf (‘m = %$d\nr0 = %.18f\nrl = %.18f\nvr = %.18f\n\ns0
= %.18f\nsl = %.18f\nvs = %.18f\n\nb0 = %.18f\nbl = %.18f\n\
nve = %.18f\n\n’,
m+ 1, rO(m + 1), rl1(m + 1), vr(m + 1), sO(m + 1), sl(m +
1), ve(m + 1), bO(m + 1), bl(m + 1), ve(m + 1)) ;

x _pred = zeros(l, K);
v_pred = zeros(l, K);

X updt = zeros(l, K);
v_updt = zeros(l, K);

x_smth(2:end) = zeros(l, K - 1); % x_smth(1l) needed
for next iteration

v_smth = zeros(l, K);

p_updt = zeros(l, K);

A zeros (1, K);
W zeros (1, K);
CW = zeros(l, K);
C = zeros(1l, K);
end
end

%% calculate confidence limits

p.smth = 1 ./ (1 + exp((-1) % (bO(m) + bl(m) » x smth))); % mode
, lower and upper confidence limits for binary distribution

r smth = r0(m) + rl(m) » x smth;

s_smth = s0(m) + sl(m) *» x smth;

lcl x = norminv(0.025, x smth, sgrt(v_smth));
ucl x = norminv(0.975, x smth, sgrt(v_smth));

lcl p = zeros(1l, K);
ucl p = zeros(l, K);

for k = 1:K
[1cl p(k), ucl p(k)] = get pk conf lims(v_smth(k), bO(m), bl(
m), x smth(k));
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end

r plot = NaN * ones(1l, K);
r plot(pt) = r(pt);

%% plot graphs

t = (1:K);

tr = (K:(-1):1);

xtick _pos = 1:(4 % 60):1450;

Xtick_labels = {’9 AM’, ’'1 PM’', '5 PM’, '9 PM', 'l AM', '5 AM’', '
9 AM’ };

subplot (411) ;

hold on;

stem(t, r plot, ’fill’, ’‘color’, 'b’, ’markersize’, 4);

plot(t, r_smth, ’'r-.’, ’‘linewidth’, 1.25);

ylabel (' (a) n_{k}, r {k}’); ylim([-inf (max([r_plot, r_smth]l) +
2.5)1);

grid; xlim([0, K]); set(gca, ’'xtick’, xtick pos);
set (gca, ’xticklabel’, [1);
title(’State Estimation with Experimental Data’) ;

subplot (412) ;

hold on;

plot(t, s, ’‘color’, [1 (128 / 255) 0], ’linewidth’, 1.25); grid;
plot(t, s_smth, ’‘r-.’, ’‘linewidth’, 1.25);

ylim ([0 (max([s, s_smth]l) + 2.5)1);

ylabel (* (b) s {k}’); set(gca, ’'xtick’, xtick_pos);

x1lim ([0, K]); set(gca, ’'xticklabel’, []);

subplot (413) ;

hold on;

col = [0 (176 / 255) (80 / 255)];

£i11([t, trl, [lcl p fliplr(ucl p)l, [(54 / 255) (208 / 255) (80
/ 255)]1, ’'EdgeColor’, ’'mone’, ’'FaceAlpha’, 0.3);

plot(t, p smth, ‘color’, [(54 / 255) (150 / 255) (80 / 255)], '
linewidth’, 1.25); grid;

ylabel (’ (¢) p_{k}’'); set(gca, ’'xtick’, xtick pos); ylim([0 (max(
ucl p) + 0.0075)1);

x1lim ([0, K]); set(gca, ’'xticklabel’, []);

subplot (414) ;

hold on;

£i11([t, tr]l, [lel x fliplr(ucl x)], [(102 / 255) 0 (204 / 255)1,
'EdgeColor’, ’‘none’, 'FaceAlpha’, 0.3);

plot(t, x smth, ’color’, [(102 / 255) 0 (150 / 255)], ’linewidth’
, 1.25);

grid; xlim ([0, K]); ylim([(min(lcl x) - 1) (max(ucl x) + 1)1);

set (gca, ’‘xtick’, xtick_pos);
set (gca, ’‘xticklabel’, xtick_labels) ;
ylabel (’ (d) x {k}’); xlabel ('time’);
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function y = get posterior mode(x pred, v pred, r, r0, rl, b0, bl
, vr, n, s, s0, sl, vs)

M = 200; % maximum iterations
it = zeros(l, M);

f = zeros(1l, M);

df = zeros(l, M);

it (1) = x pred;

for i = 1: (M - 1)

if (n == 0)
C = v pred / ((sl1 * 2) % v_pred + vs);
£(i) = it (i) - x pred - C % (s1 * (s - s0 - sl =*
x pred) + vs * bl » (n - (1 / (1 + exp((-1) % (b0 + bl * it (i
)))))))
df(i) = 1 + C % vs * (bl ~ 2) * exp(b0 + bl % it (i))
/ ((1 + exp(b0 + bl x it(i))) * 2);
elseif (n == 1)
C =v pred / (vr » vs + v_pred * ((rl * 2) % vs + (sl
2 2) % vr));
£(i) = it(i) - x pred - C * (rl  vs * (r - r0 - rl =
x pred) + sl » vr = (s - s0 - sl » x pred) +
vr * vS * bl x (n - (1 / (1 + exp((-1) %= (b0 + bl
* it (i)))))));
df(i) =1 + C %« vr  vs (bl © 2) * exp(b0 + bl x it
(1)) / ((1 + exp(b0 + bl » it(i))) * 2);
end
it(i + 1) = it(di) - £(i) / dAf(i);
if abs(it(i + 1) - it(i)) < 1le-14
y = it(i + 1);
return;
end
end

error ('Newton-Raphson failed to converge.’) ;
end
function [lcl, ucl] = get pk conf lims(v, b0, bl, x)

p = (le-4:1e-4:1);

fp = cumtrapz(p, 1 ./ (sgrt(2 = pi * v) *= bl *» p .x (1 - p))
” .'.e>.<p(((—1) / (2 % v))x ((1/ bl) = log(p ./ ((1 - p) * exp
(b0))) - x) ." 2));

n
m

find(fp <= 0.975);
find(fp < 0.025) ;
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ucl = p(n(end)) ;
lcl = p(m(end)) ;
end

function y = get_maximum variance_ for mpp(z, r0, rl, W, x smth,

pt)
x_smth = x_smth(pt) ;
W = W(pt);
z = z(pt);
K = length(pt) ;
vy = (z % 2z’ + Kx (r0 * 2) + (rl1 * 2) * sum(W)
- 2 % r0 x sum(z) - 2 % rl % dot(x_smth, z) + 2 «
r0 » rl x» sum(x smth)) / K;

end

function y = get maximum variance(z, r0, rl, W, x smth, K)

A A

y = (z » 2z’ + K » (x0 2)
- 2 % r0 * sum
r0 * rl * sum(x_smth)) /
end

+ (r1 2) * sum(W)
(z) - 2 x rl » dot(x_smth, z) + 2 =«
K;

function y = get_linear parameters_for mpp(x_smth, W, z, pt)

x_smth = x_smth(pt) ;

W = W(pt) ;

z = z(pt);

K = length(pt) ;

y = [K sum(x smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .=
x_smth)];

end
function y = get linear parameters(x_smth, W, z, K)

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .=
x _smth)];

end
function y = binary parameter derivatives(b, n, x smth, v_smth)

y = zeros(l, 2);
K = length(n) ;

b0 = b(1l);
bl = b(2);
p = zeros(l, K);

for k = 1:K
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p (k) 1/ (1 + exp((-1) * (b0 + bl » x smth(k))));

y(1) = y(1) + n(k) - p(k) - 0.5 » v_smth(k) » (b1 "~ 2) «
p(k) » (1 - p(k)) = (1 - 2 % p(k));

y(2) = y(2) + n(k) » x smth(k) - x smth(k) * p(k) - 0.5 *
v_smth(k) = bl = p(k) » (1 - p(k)) * (2 + x smth(k) * bl *
(1 -2 p(k)));

end

10.7 State-space Model with One Binary and One
Spiking-type Observation

10.7.1 Experimental Data Example

load(’expm data one bin one spk.mat’) ;

fs = 4;
delta = 0.005;

min peak height = 0.1;
min peak promn = 0.1;
min peak dist = fs;

ph
tn

s.ph;
s.tn;

rpeaks = s.rpeaks;
ul = s.ul;
W = S.W;
theta = s.theta;
[pks, locs] = findpeaks(ph, ’‘MinPeakHeight’, min peak height, -’
MinPeakProminence’,
min_peak promn, ’MinPeakDistance’, min_peak_dist) ;

n = zeros(l, length(ph));

n(locs) = 1;

K = length(n) ;

M = 2e4;

ve = zeros(l, M); % process noise variance

x_pred = zeros(l, K);
v_pred = zeros(l, K);

X _updt = zeros(l, K);
v_updt = zeros(l, K);

x_smth = zeros(l, K);
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v_smth = zeros(1l, K);
p_updt = zeros(l, K);

tpc = 289; % total (SCR) peak count
tsl = 34182; % total signal length

base prob = tpc / tsl;
b0 = log(base prob / (1 - base prob)) ;
tol = 5e-8; % convergence criteria

7

A zeros (1, K)
W zeros (1, K)
K
K)

) 8

1

CW = zeros (1,
C = zeros (1,

x smth(1l) = 0.44201528159733;
ve(l) = 1.24111644606324e-4;

eta = -0.00004;
exception counter = 0;
for m = 1:M

for k = 1:K

if (k == 1)
x_pred (k)
v_pred (k)

else
x_pred (k)
v_pred (k)

end

x_smth (1) ;
ve(m) + ve(m);

x updt (k - 1);
v_updt (k - 1) + ve(m);

C(k) = v_pred(k);

201

try % numerical issues can occur due to the integrals
[x updt (k), H2] = get posterior mode (x pred(k),

b0, n(k), rpeaks(k, :), ul(k, :), delta, s.w(k,
', eta);
p_updt (k)

p_updt (k)) - H2);
catch
exception counter =
x_updt (k) = x pred(k) ;
v_updt (k) = v_pred(k);
end

if (mod(k, 100) 0)
fprintf('%d ', k);
end

’

exception counter + 1;

.1

2)) o

*

c(k),
theta

(1

1/ (1 + exp((-1) * (b0 + x updt(k))));
v_updt (k) =1 / ((1 / v_pred(k)) + p_updt (k)
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10
if (mod(k, 2500) == 0)
fprintf (‘\n’) ;
end

end
x_smth(K) =

v_smth(K) =
W(K) = v_smth(K) +

X_updt (K) ;
v_updt (K) ;
(x_smth (K)

A

2);

A(l:(end - 1)) = v_updt(l:(end - 1))
for k =
x_smth (k) =
1)) s
v_smth (k) =

v_pred(k + 1));

(K - 1):(-1):1
x_updt (k) + A(k) =

v_updt (k) + (A(k) * 2) =

CwW (k) =
w(k) =
end

A(k) =
(

v_smth (k) + (x_smth(k) * 2);

if (m < M)

ve(m + 1) = (sum(W(2:end)) + sum(W(1:
sum(CW)) / K;
mean_dev = mean(abs(ve(m + 1)
if mean dev < tol
fprintf (‘m = %d\nx0 =

x_smth(1l), ve(m));

%.18f\nve =

fprintf (' Converged at m = %d\n\n’,
break;
else

fprintf (‘m = %d\nx0 = %.18f\nve =
x _smth(1l), ve(m + 1));

x_pred = zeros(l, K);

v_pred = zeros(l, K);

x updt = zeros(l, K);

v_updt = zeros(l, K);

x_smth(2:end) = zeros(l, K - 1);

needed for next iteration

v_smth = zeros(1l, K);
p_updt = zeros(l, K);
A = zeros(1l, K);
W = zeros(l, K);
CW = zeros(l, K);
C = zeros(l, K);

end

(x_smth(k + 1)

v_smth(k + 1) + x_smth(k)
)

(end -

MATLAB Code Examples

./ v_pred(2:end) ;

- x pred(k +

(v_smth(k + 1) -

* x _smth(k + 1);

1))) - 2 *

- ve(m)));

.18f\n\n’, m,

m) ;

.18f\n\n’, m,

% x_smth(1)



10.7 State-space Model with One Binary and One Spiking-type Observation 203

end
end
pupdt =1 ./ (1 + exp((-1) * (b0 + x updt)));
p_smth =1 ./ (1 + exp((-1) * (b0 + x_smth)));
t = (0:(K - 1)) / (fs » 60);
tr = ((K - 1):(-1):0) / (fs = 60);

lcl x = norminv(0.025, x smth, sgrt(v_smth));
ucl x = norminv(0.975, x smth, sgrt(v_smth));

lcl p = zeros(l, K);
ucl p = zeros(1l, K);

for k = 1:K
[1cl p(k), ucl p(k)] = get_pk conf lims(v_smth(k), b0, x smth
(k));

end
certainty = get certainty curve(v_smth, b0, x smth, base prob) ;

lambda = zeros (K, 50);
mean rr = zeros (K, 50);

for k = 1:K
for j = 1:50

w = [squeeze(s.w(k, j, :))’ [eta x smth(k)]];
if (f(theta’, ul(k, j), w) > le-18)
lambda (k, j) = fetch lambda(theta’, ul(k, j), w);
end
mean rr(k, j) = mu(theta’, w);
end
end
lambda start index = find(reshape (rpeaks’, 1, numel (rpeaks)), 1);
lambda = reshape (lambda’, 1, numel (lambda)) ;
get ks plot (find(reshape (rpeaks’, 1, numel (rpeaks))) =* delta,

lambda (lambda_ start index:end), delta, 1);

11 = get_log likelihood(eta, rpeaks, ul, delta, s.w, theta’,
x_smth, v_smth);

11 final = sum(nansum(1ll)) ;

mean rr = reshape(mean rr’, 1, numel (mean rr)) ;

rri = diff (s.rpeak locs) ;
rr times = s.rpeak locs(2:end) / 60;

state ylim = [(min(lcl x) - 0.1) (max(ucl x) + 0.1)];
rr ylim = [(prctile(rri, 1) - 0.05) (prctile(rri, 99) + 0.05)];
prob ylim = [(min(lcl p) - 0.0005) (max(ucl p(3:end)) + 0.0005)];

figure;
subplot (611) ;
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hold on;

plot(t, s.x, ’‘color’, [(102 / 255) 0 (204 / 255)]1); grid;

set (gca, 'xticklabel’, []);

ylabel (' (a) z {k}’); x1im([0 t(end)]); ylim([4 22]); title(’State
Estimation with Experimental Data’) ;

subplot (612) ;
n plot = NaN * ones(1l, K);

n plot(n > 0) = 1;
stem(t, n_plot, ’fill’, ’color’, [1, 0, 1], ’'markersize’, 2);
x1lim ([0 t(end)]); ylim([0 1.25]);

set (gca, 'xticklabel’, []);
ylabel (' (b) n {k}’); grid;

subplot (613) ;

hold on;

plot(t, x_smth, ’'b’, ’linewidth’, 1.25); grid;

set (gca, 'xticklabel’, []);

£111([t, tr]l, [lcl x fliplr(ucl x)1, ’‘c’, ’‘EdgeColor’, ’'none’, '
FaceAlpha’, 0.2);

ylabel (* (¢) x {k}’); x1im([0 t(end)]); ylim(state ylim);

subplot (614) ;

hold on;

plot(t, p_smth, ‘color’, [(102 / 255), 0, (51 / 255)], ’‘linewidth
‘, 1.25); grid;

set (gca, 'xticklabel’, []);

£i11([t, trl, [lcl p fliplr(ucl p)l, [1, O, (127 / 255)]1, °

EdgeColor’, ’'none’, ’'FaceAlpha’, 0.2);
ylabel (’ (d) p_{k}’); x1im([0 t(end)]); ylim([0.0012 0.0388]) ;
plot ([0, t(end)], [base prob, base prob], ’'k--’, ’‘linewidth’,
1.25);

subplot (615) ;

hold on;

plot (rr times, rri, 'o’, ’‘col’, [1, 0.5, 0.25],
'MarkerFaceColor’, [1, 0.5, 0.25], 'MarkerSize’, 2); grid;

set (gca, 'xticklabel’, []);

mu_start index = round(s.rpeak locs(2) / delta) ;

plot (((0: (length(mean_rr (mu_start_index:end)) - 1)) * delta) /
60, mean rr (mu_start index:end), 'b’);
ylabel (' (e) rr {i}’); x1lim([0 t(end)]); ylim(rr ylim);

subplot (616) ;

hold on;

vl = [0 0.9; t(end) 0.9; t(end) 1; 0 171;

cl = [1 (220 / 255) (220 / 255); 1 (220 / 255) (220 / 255); 1 0
0; 1 0 0];

facesl = [1 2 3 4];

patch(’Faces’, facesl, ’'Vertices’, vl, 'FaceVertexCDhata’, cl, '
FaceColor’, ’interp’,

"EdgeColor’, ’'none’, ’'FaceAlpha’, 0.7);
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v2 = [0 0; t(end) 0; t(end) 0.1; 0 0.17;

c2 = [0 0.8 0; 0 0.8 0; (204 / 255) 1 (204 / 255); (204 / 255) 1
(204 / 255)]1;

faces2 = [1 2 3 4];

patch(’Faces’, faces2, ’'Vertices’, v2, ’'FaceVertexCDhata’, c2, '
FaceColor’, ’interp’, ..
'EdgeColor’, ’'none’, ’'FaceAlpha’, 0.7);

plot (t, certainty, ’‘b’, ’linewidth’, 1.25); grid; xlim([0 t (end)
1)

ylabel (’ (£) HAI’); xlabel(’time (min)’); ylim([0 1]);

function [y, H2] = get_posterior mode(x pred, C, b0, n, rpeaks,

ul, delta, w_all, theta, eta)

M = 40; % maximum iterations
it = zeros(l, M);
func = zeros(l, M);

df = zeros(1l, M);
it (1) = x pred;
for i = 1: (M - 1)

H1 = zeros(1l, 50);

H2 = zeros(1l, 50);
for j = 1:50
w = [squeeze(w_all(l, j, :))’ [eta it(i)11;
if (f(theta, ul(j), w) > le-18) %
lambda = fetch lambda(theta, ul(j), w);
dl dx = dlambda_dx(theta, ul(j), w);
H1(j) = dl_dx * (rpeaks(j) - lambda x delta) /
lambda;
H2(j) = d2lambda dx2(theta, ul(j), w) % (rpeaks(j
) - lambda % delta) / lambda - rpeaks(j) = (dl dx * 2) / (
lambda * 2);
end
end
H1l = sum(H1) ;
H2 = sum(H2) ;
func(i) = it(i) - x pred - C » (n - exp(b0 + it(i)) / (1 +
exp (b0 + it(i))) + H1);
df (i) = 1 + C % (exp(b0 + it(i)) / (1 + exp(b0 + it(i))) *

2 - H2);
it(i + 1) = it(i) - func(i) / df(i);
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if abs(it(i + 1)
y = it(i + 1);
return
end
end

- it(d

))

< le-14
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error ('Newton-Raphson failed to converge.’) ;

+ eta * X;

end
function [y] = f(theta, t, w)
y = sgrt(theta(end) ./ (2 % pi * (£ .~ 3
exp ( (theta(end) * ((t - mu(theta, w)
((-2) % (mu(theta, w) *~ 2) * t));
end
function [y] = intf (theta, t, w)
y = integral(e(t)f (theta, t, w), 0, t);
end
function [y] = mu(theta, w)
eta = w(end - 1);
x = w(end) ;
y = theta(l) + w(l1:3) % theta(2:4)’
end
function [y] = fetch lambda(theta, t, w)
cdf = intf (theta, t, w);
y = f(theta, t, w) ./ (1 - cdf);
if (edf > 1) % numerical issue
y = 0;
end
end
function [y] = df dmu(theta, t, w)
y = (theta(end) / (mu(theta, w) 3)) *
- mu(theta, w)));
end
function [y] = df dx(theta, t, w)
eta = w(end - 1);
y = df_dmu(theta, t, w) .x eta;

(f (theta, t, w) .*
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end
function [y] = intdf dx(theta, t, w)
y = integral(@(t)df dx(theta, t, w), 0, t);
end
function [y] = dlambda_ dx(theta, t, w)
cdf = intf (theta, t, w);
if (edf > 1) % numerical issue
y = 0;
else
y = ((1 - cdf) .» df dx(theta, t, w) +
f(theta, t, w) .* intdf dx(theta, t, w)) ./ ((1 - cdf
end
function [y] = d2f dmu2(theta, t, w)
y = theta(end) % (df_dmu(theta, t, w) . ((t - mu(theta, w))
/ (mu(theta, w) = 3)) +
f(theta, t, w) .x ((2 % mu(theta, w) - 3 % t) / (mu(theta
cow) N 4)));
end

function [y] = d2f dx2(theta, t, w)

eta = w(end = 1),’
y = d2f dmu2(theta, t, w) .* (eta * 2);

end
function [y] = intd2f dx2(theta, t, w)
y = integral (@(t)d2f dx2(theta, t, w), 0, t);
end
function [y] = d2lambda dx2(theta, t, w)
y = (2 % dlambda dx(theta, t, w) * (1 - intf(theta, t, w)) =
intdf dx(theta, t, w) +
d2f dx2(theta, t, w) x (1 - intf(theta, t, w)) + ...
f(theta, t, w) * intd2f dx2(theta, t, w)) / ((1 - intf(

theta, t, w)) ~ 2);

end
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function [y] = get log likelihood(eta, rpeaks, ul, delta, w_all,
theta, x, v)

K
Yy

length (x) ;
zeros (K, 50) ;

for k = 1:K
for j 1:50
w = [squeeze(w_all(k, j, :))’ [eta x(k)]1];

if (f(theta, ul(k, j), w) > le-18)

lambda = fetch lambda(theta, ul(k, j), w);
dl dx = dlambda_dx(theta, ul(k, j), w);
d21_dx2 = d2lambda_dx2 (theta, ul(k, j), w);
nkj = rpeaks(k, j);

value = nkj * log(delta * lambda) - delta =*

lambda +
(d21 dx2 * (nkj - lambda * delta) / lambda -
2) / (lambda * 2)) * v(k) * 0.5;

A

nkj * (dl_dx

if ~isnan (value)
y(k, j) = value;
end
end

end
end

end

function [lcl, ucl] = get pk conf lims(v, b0, x)

p = (le-4:1le-4:1);
fp = cumtrapz(p, 1 ./ (sgrt(2 = pi * v) * p .* (1 - p)) .=*
exp(((-1) / (2 = v))* (log(p ./ ((1L - p) * exp(b0))) - x)
S2));

n = find(fp <= 0.975);
m = find(fp < 0.025) ;

ucl = p(n(end)) ;
lcl = p(m(end)) ;
end
function certainty = get certainty curve(vK, mu, xK, chance prob)
p = (le-4:1e-4:1);
[~, 1] = min(abs(p - chance prob)) ;

certainty = zeros(l, length(vK)) ;

for j = 1:length (vK)
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fp = cumtrapz(p, 1 ./ (sgrt(2 % pi % vK(j)) » p . (1L - p
)) L% ...
exp (((-1)
))) - xK(3)) " 2)
certainty (1, j
end

7

/ (2 % vK(3)))* (log(p ./ ((1 - p) * exp(mu
)
) =1 - fp(i);

end

10.8 State-space Model with One Binary and Two
Continuous Observations with a Circadian Input in the
State Equation

10.8.1 Experimental Data Example

ndays = 5;
T = 1440;
N = ndays * T;
t = (1:N);

load (’expm data one bin two cont circadian.mat’) ;

std r = std(r);
std_s = std(s);

r =1r / std r;
s = s / std s;

base prob = sum(n) / length(n);

M = 2e6;
ve = zeros(l, M); % process noise variance
rho = zeros(1l, M);

b0 = zeros (1, M);
bl = zeros(l, M);

r0 = zeros(l, M);
rl = zeros(l, M);
vr = zeros(l, M);

s0 = zeros(l, M);
sl = zeros(l, M);
ves = zeros(l, M);

K = length(n) ;

x _pred = zeros(l, K);
v_pred = zeros(l, K);

x_updt = zeros(l, K);
v_updt = zeros(l, K);
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+ ve (m) ;

) * x_updt (k

2)

x smth = zeros(1l, K);
v_smth = zeros(1l, K);
p_updt = zeros(l, K);
tol = le-8; % convergence criteria
A = zeros(l, K);
W = zeros(l, K);
CW = zeros(l, K);
C = zeros(l, K);
ve(l) = 0.005;
rho(l) = 0.98;
b0 (1) = log(base prob / (1 - base prob));
bl(1) = 0.9;
ro(l) = r(1l);
ri(l1) = 1;
vr(l) = 0.005;
s0(1) = s(1);
s1(1) = 1;
vs(l) = 0.005;
for m = 1:M
for k = 1:K
if (k == 1)
x pred(k) = x smth(1l) + I(k);
v_pred(k) = ve(m) + ve(m);
else
x pred(k) = rho(m) » x updt(k - 1) + I(k);
v_pred (k) = (rho(m) * 2) % v_updt(k - 1)
end
C(k) = v_pred(k) / (vr(m) * vs(m) + v_pred(k)
2) * vs(m) + (sl(m) * 2) % vr(m)));
x_updt (k) = get posterior mode(x pred(k), C(k),
m), rl(m), bO(m), bl(m), vr(m), n(k), s(k), s0(m)
m)) ;
p updt(k) =1 / (1 + exp((-1) * (bO(m) + bl(m
))))
v _updt(k) =1 / ((1 / v_pred(k)) + ((rl(m) *
+ ((si(m) * 2) / vs(m)) + (bl(m) * 2) * p_updt(k)
p_updt (k))) ;
end
x_smth(K) = x updt (K) ;
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v_smth (K) = v_updt (K) ;
W(K) = v_smth(K) + (x_smth(K) * 2);
A(l:(end - 1)) = rho(m) » v_updt(l:(end - 1)) ./ v_pred(2:end

) 5

for k = (K - 1):(-1):1
x _smth(k) = x updt (k) + A(k) * (x smth(k + 1) - x pred(k +
1))
v_smth(k) = v_updt (k) + (A(k) * 2) % (v_smth(k + 1) -
v_pred(k + 1));
CW(k) = A(k) * v_smth(k + 1) + x smth(k) * x smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) * 2);

if (m < M)

rho(m + 1) = sum(CW) / sum(W(l:end - 1)) ;

next ve = (sum(W(2:end)) + (rho(m + 1) * 2) * sum(W(1l: (
end - 1))) - 2 * rho(m + 1) * sum(CW) -
2 % (I(2:end) % x smth(2:end)’) + 2 * rho(m + 1) x (I
(2:end) * x smth(l:(end - 1))’) +
(I » I)) / K;
if (next_ve > 0) % check - in case this happens with
experimental data
ve(m + 1) = next ve;
else
ve(m + 1) = ve(m);
end

bb = fsolve(@(b) binary parameter derivatives(b, n,
x smth, v_smth), [-5 1], optimset ('Display’,’off’));

if (bb(2) > 0) % check - in case this happens with
experimental data
bO(m + 1) = bb(1);
bl(m + 1) = bb(2);
else
bO(m + 1) = b0 (m);
bl(m + 1) = bl(m);
end
a = fminsearch(@(a) circadian parameters(a, rho(m + 1),
x smth, t, T), a, optimset (’Display’, ’off’));

I = rhythm(a, T, t);

R = get linear parameters(x smth, W, r, K);
S = get linear parameters(x smth, W, s, K);

next vr = get continuous variable variance update(r, R(1,
1), R(2, 1), W, x smth, K);
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next vs = get continuous variable variance update(s, S(1,
1), s(2, 1), W, x smth, K);

if (abs(next vr - next vs) > 0.01) % overfitting control
with experimental data

rO(m + 1) = r0(m);
rl(m + 1) = rl(m);
sO(m + 1) = s0(m);
sl(m + 1) = s1(m);
vr(m + 1) = vr(m);
ve(m + 1) = vs(m);

else
rO(m + 1) = R(1, 1);
rl(m + 1) = R(2, 1);
sO(m + 1) = S(1, 1);
sl(m + 1) = S(2, 1);
vr(m + 1) = next vr;
vs(m + 1) = next vs;

end

mean_dev = mean(abs([ve(m + 1) rho(m + 1) rO(m + 1) rl(m
+ 1) vr(m + 1) sO(m + 1) sl(m + 1) ves(m + 1) bl(m + 1) bO(m +
A)] = coo
[ve (m) rho(m) rO0(m) rl(m) vr(m) sO(m) sl(m) vs(m) Dbl(
m) bO(m)]));

if mean dev < tol
fprintf (‘m = %d\nx0 = %.18f\nve = %.18f\nrho = %.18f\
n\nr0 = %$.18f\nrl = %.18f\nvr = %$.18f\ns0 = %.18f\nsl = %.18f
\nvs = %.18f\n\nb0 = %.18f\nbl = %.18f\n\n’,
m, x smth(l), ve(m), rho(m), rO(m), rl(m), vr(m),
sO(m), s1l(m), vs(m), bO(m), bl(m));
fprintf (' Converged at m = %d\n\n’, m);
break;
else
fprintf (‘m = %d\nx0 = %.18f\nve = %.18f\nrho = %.18f\
n\nr0 = %$.18f\nrl = %.18f\nvr = %.18f\n\ns0 = %.18f\nsl =

o°

%.18f\nvs = %.18f\n\nb0 = %.18f\nbl = %.18f\n\n’, m,
x smth(l), ve(m + 1), rho(m + 1), rO(m + 1), rl(m
+ 1), vr(m + 1), s0O(m + 1), s1l(m + 1), vs(m + 1), bO(m + 1),

bl(m + 1));

x pred = zeros(l, K);
v_pred = zeros(l, K);

x_updt = zeros(l, K);
v_updt = zeros(l, K);

x _smth(2:end) = zeros(l, K - 1); % x_smth(1)
needed for next iteration
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v_smth = zeros(1l, K);

p_updt = zeros(l, K);

A = zeros(l, K);

W = zeros(l, K);

CW = zeros(l, K);

C = zeros(1l, K);

end
end

end
p.smth = 1 ./ (1 + exp((-1) * (b0O(m) + bl(m) % x smth)));
r smth = (r0(m) + rl(m) » x smth) % std r;
s_smth = (s0(m) + sl(m) * x smth) x std_s;
index = (0:(K - 1));
t index = index / (60 * 24);
r index = ((K - 1):(-1):0); % reverse index

transp = 0.3;

subplot (611) ;

hold on;

plot (t_index, y, ’color’, [(102 / 255) 0 (204 / 255)]1); grid;
ylabel (' (a) z {k}’);

title(’State Estimation with Experimental Data’) ;

x1im ([0 t_index(end)]); ylim([0 (1.1 x max(y))]l);

set (gca, 'xticklabel’, []);

subplot (612) ;
n plot = NaN * ones(1l, K);

n plot(n > 0) = 1;

stem(t_index, n plot, ’fill’, ’‘color’, [1, 69 / 255, 0],
markersize’, 2);

x1im ([0 t_index(end)]); ylim([0 1.25]);

set (gca, 'xticklabel’, []);

ylabel (* (b) n {k}’); grid;

subplot (613) ;

hold on;

plot (t_index, p_smth, ’‘r’, ’linewidth’, 1.5); ylim([(0.98 % min(
p_smth)) (1.08 % max(p_smth))]);

ylabel (* (¢) p_{k}’'); grid;

x1lim ([0 t_index(end)]) ;

set (gca, 'xticklabel’, []1);

subplot (614) ;

hold on;

plot (t_index, r smth, ’'--’, ’‘color’, [0 0.3 0], ’'linewidth’, 2);
plot (t_index, r * std r, ’‘color’, [0 0.9 0]); grid;

x1im([0 t_index(end)]); ylabel(’ (d) r {k}’);

set (gca, 'xticklabel’, []1);

subplot (615) ;
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hold on;

plot (t_index, s smth, '--’, ‘color’, [0.5 (25 / 255) (66 / 255)1],
'linewidth’, 2);

plot(t_index, s % std s, ’‘color’, [1 0.5 (179 / 255)]1); grid;

x1im([0 t_index(end)]1); ylabel(’ (e) s {k}’);

set (gca, 'xticklabel’, []);

subplot (616) ;

hold on;

plot (t_index, x smth, ’‘b’, ’linewidth’, 1.5);

ylabel (' (£) x {k}');

x1lim ([0 t_index(end)]); ylim([(min(x_smth) - 1) (max(x_smth) + 1)
1)

grid;

xticks(0:0.5:4.5) ; xticklabels({’OOOO’, 1200, "0000", "1200", '
ooo0’, ’*1200", r*000O’, ’1200’, '0000", ’1200’});

xlabel ("time (24h clock)’);

function y = get posterior mode(x pred, C, r, r0, rl, b0, bl, vr,
n, s, s0, sl, vs)

M = 200; % maximum iterations
it = zeros(l, M);
f = zeros(1l, M);

df = zeros(1l, M);
it (1) = x pred;

for 1 = 1: (M - 1)

f(i) = it(i) - x pred - C * (rl * vs * (r - r0 - rl =
x pred) + sl « vr * (s - s0 - sl * x pred) +
Vvr * vS x bl » (n - (1 / (1 + exp((-1) » (b0 + bl =*
it(1)))))));
df (i) = 1 + C % vr » vs x» (bl *~ 2) % exp(b0 + bl x it (i))
/ ((1 + exp(b0 + bl % it (i))) * 2);
it(i + 1) = it(di) - £(i) / df(d);

if abs(it(i + 1) - it(i)) < 1le-14
y = it(i + 1);
return;
end
end

error ('Newton-Raphson failed to converge.’) ;
end
function y = binary parameter derivatives(b, n, x smth, v_smth)

y = zeros(l, 2);
K length(n) ;
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b0 = b(1);

bl = b(2);

p = zeros(l, K);
for k = 1:K

p(k) =1 / (1 + exp((-1) » (b0 + bl % x smth(k))));

y(1) = y(1) + n(k) - p(k) - 0.5 » v_smth(k) » (bl * 2) =*
pk) » (1 - p(k)) « (L - 2 % p(k));

y(2) = y(2) + n(k) » x smth(k) - x smth(k) * p(k) - 0.5 *
v_smth(k) = bl = p(k) » (1 - p(k)) * (2 + x smth(k) * bl *
(1 -2 +pk));
end

end
function y = get_linear parameters(x_smth, W, z, K)

y = [K sum(x smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .=
x_smth)];

end

function y = get continuous variable variance update(z, r0, rl, W
, X_smth, K)

A A

y = (z » 2z’ + K » (x0 2) + (rl 2) * sum(W)
- 2 % r0 * sum(z) - 2 % rl x dot(x smth, z) + 2 % r0
* rl % sum(x_smth)) / K;
end

function y = circadian parameters(a, rho, x smth, t, T)

I = rhythm(a, T, t);
y = (I * I') - 2 % (I(2:end) * x_smth(2:end)’) + 2 » rho » (I
(e

(2:end) % x smth(l:(end - 1))’);
end
function y = rhythm(a, T, t) % the a0 is ignored
y =0+ a(2) » sin(2 « pi = t / T) + a(3) » cos(2  pi = t /
T) + ...
a(4) % sin(2 = pi = t / (T / 2)) + a(5) « cos(2 % pi = t
/ (T / 2));



216 10 MATLAB Code Examples

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 11 ®
List of Supplementary MATLAB o
Functions

All the MATLAB code examples accompanying this book can be run directly. The
examples are self-contained and do not require additional path variables being set
up. The following is a partial list of the supplementary MATLAB functions that are
called at various stages by the state estimators.

get_linear_parameters (. . .)

Calculates the updates for the constant coefficients (e.g., o and y;) for a
continuous variable (e.g., 7). If this function is present in a MATLAB example
where there is an MPP, but not a continuous variable, then it calculates the
constant coefficients based on the MPP amplitudes.
get_maximum_variance (. ..) or get_continuous_variable_variance_update (. . .)

Calculates the sensor noise variance update (e.g., GUZ) for a continuous variable
(e.g., ry). If this function is present in a MATLAB example where there is an
MPP, but not a continuous variable, then it calculates the sensor noise variance
based on the MPP amplitudes.
get_linear_parameters_for_mpp (.. .)

Calculates the updates for the constant coefficients (e.g., o and y;) for a
series of MPP amplitudes (e.g., r¢). This function is used to calculate the updates
corresponding to an MPP when a continuous variable is also present.
get_maximum_variance_for_mpp (...)

Calculates the sensor noise variance update (e.g., avz) for a series of MPP
amplitudes. This function is used to calculate the update corresponding to an
MPP when a continuous variable is also present.
get_posterior_mode (...) or get_state_update (. ..)

Calculates the update xxx based on the Newton—Raphson method
get_pk_conf_lims (...)

Calculates the confidence limits for the probability of binary event occurrence
Dk
get_certainty_curve (.. .)
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Calculates the HAI value based on the probability of binary event occurrence
pi exceeding a baseline value
e rhythm (...)
Calculates the cortisol-related circadian term I in the state equation
 circadian_parameters (. ..)
Calculates the log-likelihood term to be optimized when estimating the
(cortisol-related) circadian rthythm terms in the state equation
» get_log_likelihood (. ..)
Calculates the log-likelihood of the term involving the CIF
e get_ks_plot(...)
Calculates the Kolmogorov—Smirnov (KS) plot for assessing the goodness of
fit of a CIF to point process observations
* Other functions related to a CIF
Functions such as fetch_lambda (.. .), dlambda_dx (...), f(...),and mu (...)
are all supplementary functions that calculate various components or derivatives
related to an HDIG-based CIF
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