
Dilranjan S. Wickramasuriya
Rose T. Faghih

Bayesian
Filter Design
for Computational
Medicine
A State-Space Estimation Framework

Bayesian Filter Design for Computational Medicine

Dilranjan S. Wickramasuriya • Rose T. Faghih

Bayesian Filter Design
for Computational
Medicine

A State-Space Estimation Framework

Dilranjan S. Wickramasuriya
hSenid Mobile Solutions
Colombo, Sri Lanka

Rose T. Faghih
Biomedical Engineering Department
New York University
New York, NY, USA

ISBN 978-3-031-47103-2 ISBN 978-3-031-47104-9 (eBook)
https://doi.org/10.1007/978-3-031-47104-9

This work was supported by New York University.

© The Editor(s) (if applicable) and The Author(s) 2024. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.
The images or other third party material in this book are included in the book’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

In honor of Professor Emery N. Brown’s

belated 65th birthday

In honor of Professor Munther Dahleh’s

belated 60th birthday

In honor of Professor Sridevi Sarma’s

belated 50th birthday

In honor of Professor George Verghese’s

70th birthday

Preface

Point processes underlie a range of activities within the human body. Neural spiking,

rhythmic cardiac contraction, and pulsatile hormone secretion all have binary-like

mechanisms at their core. The field of estimating latent states tied to point process

observations has seen a steady growth over a period that has now exceeded two

decades. These state estimation methods have found applications across a range of

specialities including behavioral learning, brain-computer interfaces, sleep studies,

heart rate variability analysis, anesthesia, endocrinology, and human emotion. The

field has also seen an expansion from some of the early state-space estimators

that were limited to point process observations alone to mixed estimators that can

incorporate both binary and continuous-valued observations.

Despite the growth in the field and its widespread applicability, several chal-

lenges are encountered by those with an undergraduate engineering degree who

wish to begin developing these types of estimators. While the estimators are similar

to regular Kalman filters, their design is not typically approached in the way that

regular Kalman filters are. Instead, the design of state estimators for point process

observations is usually approached from a statistical Bayesian point-of-view, rather

than from the typical least squares minimization perspective. Moreover, while a

number of works can be found in the literature involving these types of point

process Bayesian filters, there is no tutorial-like introduction to aid the beginner.

Consequently, the student who wishes to begin research has to spend considerable

time to learn the basics of point process Bayesian filter design; and that often

from material in research papers which are not intended as tutorials. This book

is an attempt to bridge the gap. Hence, an intended reader wishing to learn filter

design is expected to have taken an undergraduate course in basic probability and

statistics as well as a course in signals and systems. Some background in computer

programming would also be necessary to implement the filters. A course in control

systems, although not required, would be helpful as well. A reader merely intending

to use the filters presented here, however, would not need this background but only

require some basic proficiency with MATLAB.

Point process state estimators have found a number of applications in fields

related to physiology and medicine, some of which have been listed above. This

vii

viii Preface

is partly due to the prevalence of point processes phenomena in different types of

physiological signals. Successful collaborative research has also resulted based on

drawing connections between state-space estimation and physiology—connections

that serve to bridge the gap between engineering and medicine. Our book is also

intended to serve the non-engineering community. Thus, the practitioner who does

not wish to delve into all the mathematical detail underlying filter design but merely

wishes to apply the tools can also use the book. Precisely for this purpose, the

book is accompanied by a MATLAB toolbox of code examples that cover the

different filters. Brief descriptions of the code are also provided at the end of the

main chapters. It is our expectation that the endocrinologist, psychologist, or other

researcher who wishes to estimate latent physiological states underlying binary and

continuous-valued measurements would thus benefit as well.

Point processes are everywhere, if you look for them. Earthquakes, crime

incidents, rainfall, disease infections, customer arrivals at a bank, and website

visits can all be modeled using point processes. Therefore, the applicability of this

book isn’t solely limited to physiology. Researchers in agriculture, epidemiology,

climatology, etc. whose work involves point process phenomena can all find the

book a helpful aid.

The ever-increasing role of technology in our lives is undeniable. We rely

on technology from everything to flying across continents to buying candy from

a vending machine. It is not unlikely that the foreseeable future will involve

an explosion of smart electronics everywhere. These networked devices will be

connected to the cloud where more powerful analytical tools sift through the raw

data. As with the case of latent variable estimation using state-space models, the

merging between physical components and cyber analytics will seek to extract

underlying or hidden patterns and information from the sensed data. The same

scenario is also applicable to the human body. It is likely that the future will involve

an increased adoption of bioelectric and biochemical sensors that will play a crucial

role in our well-being. The sensed physiological signals will inevitably contain some

point process data, all of which capture information regarding latent states within

the human body and brain. Thus, with the aid of appropriate mathematical tools,

some of which are covered in this book, a sensor-laden wristwatch in the future may

be able to precisely tell you some of what’s happening inside your brain and your

body—an idea that led to an Innovators Under 35 recognition by MIT Technology

Review for one of the authors.

It is our hope that this book will be of help to students, researchers, and

practitioners alike.

Colombo, Sri Lanka Dilranjan S. Wickramasuriya

New York, NY, USA Rose T. Faghih

Acknowledgments

The authors gratefully acknowledge the National Science Foundation (NSF) in

the writing of this book. In particular, the work was supported by the following

NSF grants: 2226123/1942585—CAREER: MINDWATCH: Multimodal Intelligent

Noninvasive brain state Decoder for Wearable AdapTive Closed-loop arcHitectures

and 1755780—CRII: CPS: Wearable-Machine Interface Architectures. The open-

access publication of this book was made possible by the support of the New York

University Faculty Startup Fund.

ix

Contents

1 Introduction . 1

1.1 Physiology, State-Space Models, and Estimation. 2

1.1.1 State Estimation Step . 4

1.1.2 Parameter Estimation Step . 5

1.1.3 Algorithm Summary . 6

1.2 Book Outline . 6

2 Some Useful Statistical Results . 15

2.1 Basic Concepts Related to Mean and Variance . 15

2.2 Basic Statistical Results Required for Deriving the

Update Equations in the State Estimation Step . 16

2.3 General Observations Related to Gaussian Random Variables 18

3 State-Space Model with One Binary Observation . 21

3.1 Deriving the Predict Equations in the State Estimation Step 23

3.2 Deriving the Update Equations in the State Estimation Step. 25

3.3 Smoothing in the State Estimation Step . 28

3.4 Deriving the Parameter Estimation Step Equations. 30

3.4.1 Deriving the Process Noise Variance . 31

3.5 MATLAB Examples . 32

3.5.1 Application to Skin Conductance and

Sympathetic Arousal . 35

4 State-Space Model with One Binary

and One Continuous Observation . 39

4.1 Deriving the Predict Equations in the State Estimation Step 40

4.2 Deriving the Update Equations in the State Estimation Step. 41

4.3 Deriving the Parameter Estimation Step Equations. 44

4.3.1 Deriving the Process Noise Variance . 44

4.3.2 Deriving the Forgetting Factor . 45

4.3.3 Deriving the Constant Coefficient Terms 46

4.3.4 Deriving the Sensor Noise Variance . 47

xi

xii Contents

4.4 MATLAB Examples . 48

4.4.1 Application to EMG and Emotional Valence. 50

5 State-Space Model with One Binary and Two Continuous

Observations . 53

5.1 Deriving the Predict Equations in the State Estimation Step 54

5.2 Deriving the Update Equations in the State Estimation Step. 55

5.3 Deriving the Parameter Estimation Step Equations. 58

5.3.1 Deriving the Terms in the State Equation 58

5.3.2 Deriving the Process Noise Variance . 59

5.3.3 Deriving the Constant Coefficient Terms and the

Sensor Noise Variance. 60

5.4 MATLAB Examples . 61

5.4.1 Application to Skin Conductance and

Sympathetic Arousal . 63

6 State-Space Model with One Binary, Two Continuous, and a

Spiking-Type Observation . 67

6.1 Deriving the Predict Equations in the State Estimation Step 69

6.2 Deriving the Update Equations in the State Estimation Step. 69

6.3 Deriving the Parameter Estimation Step Equations. 71

6.3.1 Deriving the Coefficients Within a CIF. 72

6.4 MATLAB Examples . 74

6.4.1 Application to Skin Conductance, Heart Rate

and Sympathetic Arousal . 74

7 State-Space Model with One Marked Point Process (MPP)

Observation . 77

7.1 Deriving the Update Equations in the State Estimation Step. 78

7.2 Deriving the Parameter Estimation Step Equations. 81

7.2.1 Deriving the Constant Coefficient Terms 82

7.3 MATLAB Examples . 83

7.3.1 Application to Skin Conductance and

Sympathetic Arousal . 85

8 State-Space Model with One MPP and One Continuous Observation 89

8.1 Deriving the Update Equations in the State Estimation Step. 91

8.2 Deriving the Parameter Estimation Step Equations. 94

8.3 MATLAB Examples . 94

8.3.1 Application to Cortisol and Energy . 94

9 Additional Models and Derivations. 97

9.1 State-Space Model with a Time-Varying Process Noise

Variance Based on a GARCH(p, q) Framework . 97

9.2 Deriving the Parameter Estimation Step Equations for

Terms Related to a Binary Observation . 99

9.3 Extending Estimation to a Vector-Valued State . 102

Contents xiii

9.4 The Use of Machine Learning Methods for State Estimation 104

9.5 Additional MATLAB Code Examples . 105

9.5.1 State-Space Model with One Binary and One

Spiking-Type Observation . 106

9.5.2 State-Space Model with One Binary and Two

Continuous Observations with a Circadian Input

in the State Equation . 106

10 MATLAB Code Examples . 111

10.1 State-space Model with One Binary Observation. 111

10.1.1 Simulated Data Example . 111

10.1.2 Experimental Data Example . 114

10.2 State-space Model with One Binary and One Continuous

Observation . 119

10.2.1 Simulated Data Example . 119

10.2.2 Experimental Data Example . 123

10.3 State-space Model with One Binary and Two Continuous

Observations . 128

10.3.1 Simulated Data Example (αIk Excluded) 128

10.3.2 Simulated Data Example . 132

10.3.3 Experimental Data Example (αIk Excluded). 137

10.3.4 Experimental Data Example . 146

10.4 State-space Model with One Binary, Two Continuous and

a Spiking-Type Observation . 154

10.4.1 Simulated Data Example . 154

10.4.2 Experimental Data Example . 164

10.5 State-space Model with One MPP Observation . 177

10.5.1 Simulated Data Example . 177

10.5.2 Experimental Data Example . 181

10.6 State-space Model with One MPP and One Continuous

Observation . 188

10.6.1 Simulated Data Example . 188

10.6.2 Experimental Data Example . 193

10.7 State-space Model with One Binary and One

Spiking-type Observation . 200

10.7.1 Experimental Data Example . 200

10.8 State-space Model with One Binary and Two Continuous

Observations with a Circadian Input in the State Equation 209

10.8.1 Experimental Data Example . 209

11 List of Supplementary MATLAB Functions. 217

References . 219

Index . 227

List of Figures

Fig. 1.1 Some examples of engineering systems that can be

modeled using state-space representations . 3

Fig. 3.1 A rat in a T-maze experiment with binary-valued

correct/incorrect responses . 22

Fig. 3.2 A deconvolved skin conductance signal . 23

Fig. 3.3 State estimation based on observing one binary variable 36

Fig. 3.4 Driver stress estimation . 37

Fig. 4.1 A monkey in a learning experiment with binary-valued

correct/incorrect responses where reaction times are recorded 40

Fig. 4.2 State estimation based on observing one binary and one

continuous variable . 51

Fig. 5.1 State estimation based on observing one binary and two

continuous variables . 64

Fig. 5.2 State estimation in Pavlovian fear conditioning . 65

Fig. 6.1 A wearable sensing system for decoding sympathetic arousal. 68

Fig. 6.2 State estimation based on observing one binary, two

continuous, and one spiking-type variable . 76

Fig. 7.1 State estimation based on observing one MPP variable 85

Fig. 7.2 Driver stress estimation . 86

Fig. 8.1 A deconvolved cortisol profile . 90

Fig. 8.2 State estimation based on observing one MPP and one

continuous variable . 95

Fig. 9.1 State estimation based on observing one binary and one

spiking-type variable . 107

Fig. 9.2 State estimation based on observing one binary and two

continuous variables with a circadian input in the state equation 108

xv

Chapter 1

Introduction

The human body is an intricate network of multiple functioning sub-systems. Many

unobserved processes quietly keep running within the body even while we remain

largely unconscious of them. For decades, scientists have sought to understand how

different physiological systems work and how they can be mathematically modeled.

Mathematical models of biological systems provide key scientific insights and also

help guide the development of technologies for treating disorders when proper

functioning no longer occurs. One of the challenges encountered with physiological

systems is that, in a number of instances, the quantities we are interested in are

difficult to observe directly or remain completely inaccessible. This could be either

because they are located deep within the body or simply because they are more

abstract (e.g., emotion). Consider the heart, for instance. The left ventricle pumps

out blood through the aorta to the rest of the body. Blood pressure inside the aorta

(known as central aortic pressure) has been considered a useful predictor of the

future risk of developing cardiovascular disease, perhaps even more useful than the

conventional blood pressure measurements taken from the upper arm [1]. However,

measuring blood pressure inside the aorta is difficult. Consequently, researchers

have had to rely on developing mathematical models with which to estimate

central aortic pressure using other peripheral measurements (e.g., [2]). The same

could be said regarding the recovery of CRH (corticotropin-releasing hormone)

secretion timings within the hypothalamus—a largely inaccessible structure deep

within the brain—using cortisol measurements in the blood based on mathematical

relationships [3]. Emotions could also be placed in this same category. They are

difficult to measure because of their inherently abstract nature. Emotions, however,

do cause changes in heart rate, sweating, and blood pressure that can be measured

and with which someone’s feelings can be estimated. What we have described so

far, in a sense, captures the big picture underlying this book. We have physiological

quantities that are difficult to observe directly, we have measurements that are easier

to acquire, and we have the ability to build mathematical models to estimate those

inaccessible quantities.

© The Author(s) 2024

D. S. Wickramasuriya, R. T. Faghih, Bayesian Filter Design for Computational

Medicine, https://doi.org/10.1007/978-3-031-47104-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47104-9protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-3-031-47104-9_1
https://doi.org/10.1007/978-3-031-47104-9_1
https://doi.org/10.1007/978-3-031-47104-9_1
https://doi.org/10.1007/978-3-031-47104-9_1
https://doi.org/10.1007/978-3-031-47104-9_1
https://doi.org/10.1007/978-3-031-47104-9_1
https://doi.org/10.1007/978-3-031-47104-9_1
https://doi.org/10.1007/978-3-031-47104-9_1
https://doi.org/10.1007/978-3-031-47104-9_1
https://doi.org/10.1007/978-3-031-47104-9_1
https://doi.org/10.1007/978-3-031-47104-9_1

2 1 Introduction

Let us now consider some examples where the quantities we are interested in

are rather abstract. Consider a situation where new employees at an organization

are being taught a new task to be performed at a computer. Let us assume that

each employee has a cognitive “task learning” state. Suppose also that the training

sessions are accompanied by short quizzes at the end of each section. If we were

to record how the employees performed (e.g., how many answers they got correct

and how much time they took), could we somehow determine this cognitive learning

state, and see how it gradually changes over time? The answer indeed is yes, with the

help of a mathematical model, we can estimate such a state and track an employee’s

progress over time. We will, however, first need to build such a model that relates

learning to quiz performance. As you can see, the basic idea of building models that

relate difficult-to-access quantities to measurements that we can acquire more easily

and then estimate those quantities is a powerful concept. In this book, we will see

how state-space models can be used to relate physiological/behavioral variables to

experimental measurements.

State-space modeling is a mature field within controls engineering. In this book,

we will address a specific subset of state-space models. Namely, we will consider

a class of models where all or part of the observations are binary. You may wonder

why binary observations are so important? In reality, a number of phenomena

within the human body are binary in nature. For instance, the millions of neurons

within our bodies function in a binary-like manner. When these neurons receive

inputs, they either fire or they do not. The pumping action of the heart can also be

seen as a binary mechanism. The heart is either in contraction and pumping out

blood or it is not. The secretion of a number of pulsatile hormones can also be

viewed in a similar manner. The glands responsible for pulsatile secretion are either

secreting the hormone or not. In reality, a number of other binary phenomena exist

and are often encountered in biomedical applications. Consequently, physiological

state-space models involving binary-valued observations have found extensive

applications across a number of fields including behavioral learning [4–9], position,

and movement decoding based on neural spiking observations [10–17], anesthesia,

and comatose state regulation [18–20], sleep studies [21], heart rate analysis

[22, 23], and cognitive flexibility [9, 24]. In this book, we will see how some of

these models can be built and how they can be used to estimate unobserved states of

interest.

1.1 Physiology, State-Space Models, and Estimation

As we have just stated, many things happen inside the human body, even while

we are largely unaware that they are occurring. Energy continues to be produced

through the actions of hormones and biochemicals, changes in emotion occur

within the brain, and mental concentration varies throughout the day depending

on the task at hand. Despite the fact that they cannot be observed, these internal

processes do give rise to changes in different physiological phenomena that can

1.1 Physiology, State-Space Models, and Estimation 3

indeed be measured. For instance, while energy production cannot be observed

directly, we can indeed measure the hormone concentrations in the blood that affect

the production mechanisms. Similarly, we can also measure physiological changes

that emotions cause (e.g., changes in heart rate). Concentration or cognitive load

also cannot be observed, but we can measure how quickly someone is getting their

work done and how accurately they are performing. Let us now consider how these

state-space models relate unobserved quantities to observed measurements.

Think of any control system such as a spring–mass–damper system or RLC

circuit (Fig. 1.1). Typically, in such a system, we have several internal state variables

and some sensor measurements. Not all the states can be observed directly. However,

sensor readings can and do provide some information about them. By deriving

mathematical relationships between the sensor readings and the internal states, we

can develop tools that enable us to estimate the unobserved states over time. For

instance, we may not be able to directly measure all the voltages and currents in

a circuit, but we can use Kirchoff’s laws to derive relationships between what we

cannot observe and what we do measure. Similarly, we may not be able to measure

all the positions, velocities, or accelerations within a mechanical system, but we

can derive similar relationships using Newton’s laws. Thus, a typical engineering

system can be characterized via a state-space formulation as shown below (for the

time-being, we will ignore any noise terms and non-linearities).

.xk+1 = Axk + Buk. (1.1)

yk = Cxk. (1.2)

Here, .xk is a vector representing the internal states of the system, .yk is a vector

representing the sensor measurements, .uk is an external input, and A, B, and C

are matrices. The state evolves with time following the mathematical relationship

in (1.1). While we may be unable to observe .xk directly, we do have the sensor

readings .yk that are related to it. The question is, can we now apply this formulation

to the human body? In this case, .xk could be any of the unobserved quantities we

Fig. 1.1 Some examples of engineering systems that can be modeled using state-space represen-

tations. The left sub-figure depicts a spring–mass–damper system, and the right sub-figure depicts

an RLC circuit. We may not be able to directly observe all the states within each system, but we

can build state-space models and use whatever measurements we have to estimate them

4 1 Introduction

just mentioned (e.g., energy production, emotion, or concentration) and .yk could be

any related physiological measurement(s).

In this book, we will make use of an approach known as expectation–

maximization (EM) for estimating unobserved quantities using state-space models.

In a very simple way, here is what the EM algorithm does when applied to state

estimation. Look back at (1.1) and (1.2). Now assume that this formulation governs

how emotional states (.xk) vary within the brain and how they give rise to changes

in heart rate and sweat secretions (.yk) that can be measured. We do not know .xk for

.k = 1, 2, . . . , K , and neither do we know A, B, or C. We only have the recorded

sensor measurements (features) .yk . First, we will assume some values for A, B, and

C, i.e., we will begin by assuming that we know them. We will use this knowledge

of A, B, and C to estimate .xk for .k = 1, 2, . . . , K . We now know .xk at every point

in time. We will then use these .xk’s to come up with an estimate for A, B, and

C. We will then use those new values of A, B, and C to calculate an even better

estimate for .xk . The newest .xk will again be used to determine an even better A, B,

and C. We will repeat these steps in turn until there is hardly any change in .xk , A,

B, or C. Our EM algorithm is said to have converged at this point. The step where

.xk is estimated is known as the expectation-step or E-step and the step where A, B,

and C are calculated is known as the maximization-step or M-step. For the purpose

of this book, we will label the E-step as the state estimation step and the M-step as

the parameter estimation step. What follows next is a basic description of what we

do at these steps in slightly more detail.

1.1.1 State Estimation Step

As we have just stated, our EM algorithm consists of two steps: the state estimation

step and the parameter estimation step. At the state estimation step we assume

to know A, B, and C and try to estimate .xk for .k = 1, 2, . . . , K . We do this

sequentially. Again, look back at (1.1) and (1.2). Suppose you are at time index

k and you know what A, B, C, and .xk−1 are, could you come up with a guess

for .xk? You can also assume that you know what the external input .uk is for

.k = 1, 2, . . . , K . How would you do determine .xk? First, note that we can re-write

the equations as

.xk = Axk−1 + Buk−1. (1.3)

yk = Cxk. (1.4)

If you knew A, B, C, .xk−1, and .uk−1, and had to determine .xk just at time index

k, you would encounter a small problem here. Do you see that .xk appears in both

equations? You could simply plug-in the values of .xk−1 and .uk−1 into (1.3) and

get a value for .xk . Since you are using the past values up to time index .(k − 1) to

determine .xk , this could be called the predict step. You are done, right? Not quite. If

1.1 Physiology, State-Space Models, and Estimation 5

you determine .xk solely based on (1.3), you would always be discounting the sensor

measurement .yk in (1.4). This sensor measurement is also an important source of

information about .xk . Therefore, at each time index k, we will first have the predict

step where we make use of (1.3) to guess what .xk is, and then apply an update step,

where we will make use of .yk to improve the .xk value that we just predicted. The

full state estimation step will therefore consist of a series of repeated predict, update,

predict, update, steps for .k = 1, 2, . . . , K . At the end of the state estimation step,

we will have a complete set of values for .xk .

Dealing with uncertainty is a reality with any engineering system model. These

uncertainties arise due to noise in our sensor measurements, models that are unable

to fully account for actual physical systems and so on. We need to deal with this

notion of uncertainty when designing state estimators. To do so, we will need some

basic concepts in probability and statistics. What we have said so far regarding

estimating .xk can be mathematically formulated in terms of two fundamental ideas

in statistics: mean and variance. In reality, (1.3) and (1.4) should be

.xk = Axk−1 + Buk−1 + ek. (1.5)

yk = Cxk + vk, (1.6)

where .ek is what we refer to as process noise and .vk is sensor noise. Therefore, when

we “guess” what .xk is at the predict step, what we are really doing is determining the

mean value of .xk given that we have observed all the data up to time index .(k − 1).

There will also be a certain amount of uncertainty regarding this prediction for .xk .

We quantify this uncertainty in terms of variance. Thus we need to determine the

mean and variance of .xk at our predict step. But what happens after we observe .yk?

Again, the idea is the same. Now that we have two sources of information regarding

.xk (one based on the prediction from .xk−1 and .uk−1, and the other based on the

sensor reading .yk), we will still be determining the mean and variance of .xk . So we

need to calculate one mean and variance of .xk at the predict step, and another mean

and variance of .xk at the update step.

1.1.2 Parameter Estimation Step

Recall that our EM algorithm iterates between the state estimation step and

the parameter estimation step until convergence. Assume that we sequentially

progressed through repeated predict, update, predict, update, steps for .k =

1, 2, . . . , K and determined a set of mean and variance (uncertainty) values for .xk .

How could we use all of these mean and variance values to determine what A, B,

and C are? Here is how we proceed. We first calculate the joint probability for all

the .xk and .yk values. The best estimates for A, B, and C are the values that maximize

this probability (or the log of this probability). Therefore, we need to maximize this

probability with respect to A, B, and C. One simple way to determine the value at

6 1 Introduction

which a function is maximized is to take its derivative and solve for the location

where it is 0. This is basically what we do to determine A, B, and C (in reality, we

actually maximize the expected value or mean of the joint log probability of all the

.xk and .yk values to determine A, B, and C).

1.1.3 Algorithm Summary

In summary, we have to calculate means and variances at the state estimation

step and derivatives at the parameter estimation step. We will show how these

equations are derived in a number of examples in the chapters that follow. The

EM approach enables us to build powerful state estimators that can determine

internal physiological quantities that are only accessible through a set of sensor

measurements.

What we have described so far is a very simple introduction to the EM algorithm

as applied to state estimation. Moreover, for someone already familiar with state-

space models, the predict and update steps we have just described should also sound

familiar. These are concepts that are found in Kalman filtering. The derivation of the

Kalman filter equations is generally approached from the point of view of solving

a set of simultaneous equations when new sensor measurements keep coming in. In

this book, we will not approach the design of the filters through traditional recursive

least squares minimization approaches involving matrix computations. Instead, we

will proceed from a statistical viewpoint building up from the basics of mean and

variance. Nevertheless, we will use the terminology of a filter when deriving the

state estimation step equations. For reasons that will become clearer as we proceed,

we can refer to these state estimators as Bayesian filters.

1.2 Book Outline

State-space models have been very useful in a number of physiological applications.

In this book, we consider state-space models that give rise, fully or partially, to

binary observations. We will begin our discussion of how to build Bayesian filters

for physiological state estimation starting with the simplest cases. We will start by

considering a scalar-valued state .xk that follows the simple random walk

.xk = xk−1 + εk, (1.7)

where .εk ∼ N (0, σ 2
ε) is process noise. We will consider how to derive the state

and parameter estimation step equations when .xk gives rise to a single binary

observation .nk . We will next proceed to more complicated cases. For instance, one

of the cases will be where we have a forgetting factor .ρ such that

1.2 Book Outline 7

.xk = ρxk−1 + εk, (1.8)

and .xk gives rise to both a binary observation .nk and a continuous observation .rk .

An even more complicated case will involve an external input so that

.xk = ρxk−1 + αIk + εk, (1.9)

where .αIk is similar to the .Buk in (1.1), and .xk gives rise to a binary observation

.nk and two continuous observations .rk and .sk . As we shall see, changes in the state

equation primarily affect the predict step within the state estimation step. In contrast,

changes in the observations mainly affect the update step.

Note that we mentioned the observation of binary and continuous features. When

introducing the concept of physiological state estimation for the first time, we used

the formulation

.yk = Cxk + vk (1.10)

for the sensor measurements. In reality, this represents a very simple case, and

the equations turn out to be similar to that of a Kalman filter. Sensor measure-

ments in biomedical experiments can take many forms. They can take the form

of binary-valued observations, continuous-valued observations, and spiking-type

observations, to name a few. For instance, we may need to estimate the learning

state of a macaque monkey in a behavioral experiment based on whether the monkey

gets the answers correct or incorrect in different trials (a binary observation),

how quickly the monkey responds in each trial (a continuous observation), and

how electrical activity from a specific neuron varies over the trials (a spiking-type

observation). These types of measurements result in filter equations that are more

complicated than in the case of a Kalman filter. We will rely heavily on Bayes’ rule

to derive the mean and variance of .xk at the update step in each case.

While the state estimation step relies primarily on mean and variance calcula-

tions, the parameter estimation step relies mainly on derivatives. At the parameter

estimation step, we take the derivatives of the probability terms (or equivalently, of

the log-likelihood terms) to determine the model parameters. For instance, if we use

the state equation in (1.8), we will need to derive .ρ at the parameter estimation

step. Moreover, we also need to determine the model parameters related to our

observations. For instance, we may choose to model a continuous observation .rk
as

.rk = γ0 + γ1xk + vk, (1.11)

where .γ0 and .γ1 are constant coefficients and .vk ∼ N (0, σ 2
v) is sensor noise. The

three parameters .γ0, .γ1, and .σ 2
v all need to be determined at the parameter estimation

step. We could thus divide the parameter estimation step derivations into two parts.

First, there will be the derivations for model parameters in the state equation (e.g.,

8 1 Introduction

.ρ, .α, and .σ 2
ε). And second, there will be the derivations corresponding to each of

the observations (features). Choosing to include a continuous-valued observation

in a state-space model will necessitate the determination of a certain set of model

parameters. Adding a spiking-type observation necessitates a further set of model

parameters. We will see examples of these in due course.

Having laid some of the basic groundwork, we will next proceed with our tutorial

discussion of how to derive the state and parameter estimation step equations for

several different physiological state-space models. Shown below is a list of the state-

space models we will look at along with examples of where they have been applied:

• State-space model with one binary observation:

– Behavioral learning [4]

– Sympathetic arousal estimation using skin conductance signals [25, 26]

• State-space model with one binary and one continuous observation:

– Behavioral learning [5]

– Emotional valence estimation using electromyography (EMG) signals [27]

– Seizure state estimation using scalp electroencephalography (EEG) signals

[28]

• State-space model with one binary and two continuous observations:

– Sympathetic arousal estimation using skin conductance signals [29]

– Energy state estimation using blood cortisol concentrations [30]

• State-space model with one binary, two continuous, and a spiking-type observa-

tion:

– Sympathetic arousal estimation using skin conductance and electrocardiogra-

phy (EKG) signals [31]

• State-space model with one marked point process (MPP) observation:

– Sympathetic arousal estimation using skin conductance signals [32]

• State-space model with one MPP and one continuous observation:

– Energy state estimation using blood cortisol concentrations [33]

– Sympathetic arousal estimation using skin conductance signals [33]

Wearable and smart healthcare technologies are likely to play a key role in the

future [34, 35]. A number of the state-space models listed above have applicability to

healthcare. For instance, patients suffering from emotional disorders, hormone dys-

regulation, or epileptic seizures could be fitted with wearable devices that implement

some of the state-space models (and corresponding EM-based estimators) listed

above for long-term care and monitoring. One of the advantages of the state-space

framework is that it readily presents itself to the design of the closed-loop control

necessary to correct deviation from healthy functioning. Consequently, state-space

controllers can be designed to treat some of these disorders [36, 37]. Looking at the

human body and brain from a control-theoretic perspective could also help design

1.2 Book Outline 9

bio-inspired controllers that are similar to its already built-in feedback control loops

[38, 39]. The applications, however, are not just limited to healthcare monitoring,

determining hidden psychological and cognitive states also has applications in fields

such as neuromarketing [40], smart homes [41], and smart workplaces [42].

Excursus—A Brief Sketch of How the Kalman Filter Equations Can be

Derived

Here we provide a brief sketch of how the Kalman filter equations can

be derived. We will utilize an approach known as recursive least squares.

The symbols used within this excursus are self-contained and should not be

confused with the standard terminology that is used throughout the rest of this

book.

Suppose we have a column vector of unknowns .x and a column vector of

measurements .y1 that are related to each other through

.y1 = A1x + e1, (1.12)

where .A1 is a matrix and .e1 ∼ N (0, �1) is noise (.�1 is the noise

covariance matrix). In general, we may have more measurements than we

have unknowns. Therefore, a solution to this system of equations is given by

.x1 = (A
T

1�−1
1 A1)

−1AT�−1
1 y1, (1.13)

where we have used .x1 to denote that this solution is only based on the first

set of measurements. Now suppose that we have another set of measurements

.y2 such that

.y2 = A2x + e2, (1.14)

where .A2 is a matrix and .e2 ∼ N (0, �2). In theory, we could just concatenate

all the values to form a single set of equations and solve for .x. However, this

would result in a larger matrix inversion each time we get more data. Is there

a better way? It turns out that we can use our previous solution .x1 to obtain a

better estimate .x2 without having to solve everything again. If we assume that

.e1 and .e2 are uncorrelated with each other, the least squares solution is given

by

.x2 =

[(

A1

A2

)T(

�1 0

0 �2

)−1(
A1

A2

)]−1(
A1

A2

)T(

�1 0

0 �2

)−1(
y1

y2

)T

. (1.15)

=

[

(

A
T

1
A
T

2

)

(

�−1
1

0

0 �−1
2

)(

A1

A2

)]−1
(

A
T

1
A
T

2

)

(

�−1
1

0

0 �−1
2

)(

y1

y2

)T

.

(1.16)

(continued)

10 1 Introduction

=
(

A
T

1
�−1
1

A1 + A
T

2
�−1
2

A2

)−1(

A
T

1
�−1
1

y1 + A
T

2
�−1
2

y2

)

. (1.17)

Let us see how this simplifies. We will begin by defining the term .P1 =

(A
T

1�−1
1 A1)

−1. Now,

.x1 = (A
T

1�−1
1 A1)

−1AT�−1
1 y1. (1.18)

= P1A
T�−1

1 y1. (1.19)

=⇒ P −1
1 x1 = AT�−1

1 y1 (1.20)

based on (1.13). Substituting .P −1
1 for .A

T

1�−1
1 A1 and .P −1

1 x1 for .AT�−1
1 y1

in (1.17), we obtain

.x2 =
(

P −1
1 + A

T

2�−1
2 A2

)−1(

P −1
1 x1 + A

T

2�−1
2 y2

)

. (1.21)

We use the matrix inversion lemma to simplify this to

.x2 =
[

P1 − P1A
T

2 (�2 + A2P1A
T

2)−1A2P1

](

P −1
1 x1 + A

T

2�−1
2 y2

)

.

(1.22)

We then perform the multiplication.

.x2 =
[

P1 − P1A
T

2 (�2 + A2P1A
T

2)−1A2P1

]

P −1
1 x1

+
[

P1 − P1A
T

2 (�2 + A2P1A
T

2)−1A2P1

]

A
T

2�−1
2 y2. (1.23)

For the time-being, we will ignore the terms on the right and make the

substitution .K = P1A
T

2 (�2 +A2P1A
T

2)−1 for the term on the left. Therefore,

.x2 =
(

P1 − KA2P1

)

P −1
1 x1

+
[

P1 − P1A
T

2 (�2 + A2P1A
T

2)−1A2P1

]

A
T

2�−1
2 y2. (1.24)

x2 = P1P
−1
1 x1 − KA2P1P

−1
1 x1

+
[

P1 − P1A
T

2 (�2 + A2P1A
T

2)
−1A2P1

]

A
T

2�−1
2 y2. (1.25)

(continued)

1.2 Book Outline 11

x2 = x1 − KA2x1 +
[

P1 − P1A
T

2 (�2 + A2P1A
T

2)−1A2P1

]

A
T

2�−1
2 y2.

(1.26)

When multiplying the terms on the right, we will define the term .Q = (�2 +

A2P1A
T

2)−1. Making this substitution, we obtain

.x2 = x1 − KA2x1 +
(

P1 − P1A
T

2QA2P1

)

A
T

2�−1
2 y2. (1.27)

x2 = x1 − KA2x1 + P1A
T

2�−1
2 y2 − P1A

T

2 QA2P1A
T

2�−1
2 y2. (1.28)

Here is where we will use a small trick. We will insert .QQ−1 into the third

term and then simplify.

.x2 = x1 − KA2x1 + P1A
T

2QQ−1�−1
2 y2 − P1A

T

2QA2P1A
T

2�−1
2 y2.

(1.29)

= x1 − KA2x1 + P1A
T

2 Q(Q−1 − A2P1A
T

2)�
−1
2 y2. (1.30)

Since .Q = (�2 +A2P1A
T

2)−1, .Q−1 = �2 +A2P1A
T

2 . We will substitute this

into (1.30) to obtain

.x2 = x1 − KA2x1 + P1A
T

2Q(�2 + A2P1A
T

2 − A2P1A
T

2)�−1
2 y2. (1.31)

= x1 − KA2x1 + P1A
T

2 Q�2�
−1
2 y2. (1.32)

= x1 − KA2x1 + P1A
T

2 Qy2. (1.33)

Note that .P1A
T

2Q = P1A
T

2 (�2 + A2P1A
T

2)−1 = K . Therefore,

.x2 = x1 − KA2x1 + Ky2. (1.34)

= x1 + K(y2 − A2x1). (1.35)

What does the final equation mean? We simply take our previous solution .x1,

predict what .y2 will be by multiplying it with .A2, calculate the prediction

error .y2 − A2x1, and apply this correction to .x1 based on the multiplication

factor K . These equations, therefore, provide a convenient way to continually

update .x when we keep receiving more and more data.

12 1 Introduction

Excursus—A Brief Sketch of How the EM Algorithm Works

Here we will provide a brief overview of how the EM algorithm works in

the kind of state estimation problems that we shall see. Assume that we have

a set of sensor measurements .Y = {y1, y2, . . . , yK } and a set of unobserved

states .X = {x1, x2, . . . , xK } that we need to estimate. We also have the model

parameters .� that need to be determined.

Let us begin by asking the question as to how we can determine .�.

In general, we select .� such that it maximizes the probability .p(�|Y).

Assuming that we do not have a particular preference for any of the .� values,

we can use Bayes’ rule to instead select the .� that maximizes .p(Y|�). Now,

.p(Y|�) =

∫

X

p(X ∩ Y|�)dX . (1.36)

We do not know what the true .� is, but let us make a guess that it is .�̂. Let us

now introduce the term .p(X |Y ∩ �̂) into (1.36).

.p(Y|�) =

∫

X

p(X |Y ∩ �̂)

p(X |Y ∩ �̂)
p(X ∩ Y|�)dX . (1.37)

=

∫

X

p(X |Y ∩ �̂)
p(X ∩ Y|�)

p(X |Y ∩ �̂)
dX . (1.38)

Take a moment to look carefully at what the integral is doing. It is actually

calculating the expected value of the fraction termwith respect to .p(X |Y∩�̂).

Taking the log on both sides, we have

. log
[

p(Y|�)
]

= log

[∫

X

p(X |Y ∩ �̂)
p(X ∩ Y|�)

p(X |Y ∩ �̂)
dX

]

. (1.39)

Since .log(·) is a concave function, the following inequality holds true.

. log
[

p(Y|�)
]

≥

∫

X

p(X |Y ∩ �̂) log

[

p(X ∩ Y|�)

p(X |Y ∩ �̂)

]

dX . (1.40)

log
[

p(Y|�)
]

≥

∫

X

p(X |Y ∩ �̂) log
[

p(X ∩ Y|�)
]

dX

−

∫

X

p(X |Y ∩ �̂) log
[

p(X |Y ∩ �̂)
]

dX . (1.41)

Recall that we set out to choose the .� that maximized .p(Y|�), or that

equivalently maximized .log
[

p(Y|�)
]

. Typically, we would approach this

(continued)

1.2 Book Outline 13

maximization by calculating the derivative of the probability term with

respective to .�, set it to .0, and then solve. For instance, if we had a

continuous-valued observation .rk in our state-space model, we would have

to take the derivatives with respect to .γ0, .γ1, and .σ
2
v , set them each to 0, and

solve. Look back at (1.41). Assume we were to calculate the derivative of the

term on the right-hand side of the inequality with respective to .�. Do you

see that the second term does not contain .�? In other words, the derivative

would just treat the second term as a constant. If we had to determine .γ0, .γ1,

and .σ 2
v , for instance, they would only be present in the first term when taking

derivatives. We can, therefore, safely ignore the second term. This leads to

an important conclusion. If we need to determine the model parameters .� by

maximizing .log
[

p(Y|�)
]

, we only need to concentrate on maximizing

.

∫

X

p(X |Y ∩ �̂) log
[

p(X ∩ Y|�)
]

dX . (1.42)

We could equivalently write (1.42) as

.E
X |Y∩�̂

[

log
[

p(X ∩ Y|�)
]

]

(1.43)

since this is indeed an expected value. Do you now see the connection between

what we have been discussing so far and the EM algorithm? In reality, what

we are doing at the state estimation step is calculating .E[X |Y ∩ �̂]. At the

parameter estimation step, we calculate the partial derivatives of the expected

value of .log
[

p(X ∩ Y|�)
]

with respect to all of the model parameters.

During the actual implementation of the EM algorithm, we keep alternating

between the two steps until the model parameters converge. At this point, we

have reached one of the localized maximum values of .E
X |Y∩�̂

[

log
[

p(X ∩

Y|�)
]

]

.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 2

Some Useful Statistical Results

The EM algorithms for state estimation that we consider in this book rely on basic

concepts in statistics. In this chapter, we will review some results that will come

in useful later on. Many of the concepts are introductory and only require a basic

knowledge of probability and statistics. If you are already familiar with what is

discussed here, feel free to skip ahead.

2.1 Basic Concepts Related to Mean and Variance

Shown below are some basic statistical results related to mean and variance that will

be helpful when deriving the EM algorithm equations.

Basic Statistical Results—Part A

Given the random variables .Xk and .Zk , and the constant values .ρ and .α, the

following results hold true for mean and variance. We use .E[·], .V (·), and

.Cov(·) to denote the mean or expected value, the variance, and covariance,

respectively.

.E[Xk + Zk] = E[Xk] + E[Zk]. (2.1)

E[Xk + α] = E[Xk] + α. (2.2)

E[ρXk] = ρE[Xk]. (2.3)

V (Xk + Zk) = V (Xk) + V (Zk) + 2Cov(Xk, Zk). (2.4)

(continued)

© The Author(s) 2024

D. S. Wickramasuriya, R. T. Faghih, Bayesian Filter Design for Computational

Medicine, https://doi.org/10.1007/978-3-031-47104-9_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47104-9protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-3-031-47104-9_2
https://doi.org/10.1007/978-3-031-47104-9_2
https://doi.org/10.1007/978-3-031-47104-9_2
https://doi.org/10.1007/978-3-031-47104-9_2
https://doi.org/10.1007/978-3-031-47104-9_2
https://doi.org/10.1007/978-3-031-47104-9_2
https://doi.org/10.1007/978-3-031-47104-9_2
https://doi.org/10.1007/978-3-031-47104-9_2
https://doi.org/10.1007/978-3-031-47104-9_2
https://doi.org/10.1007/978-3-031-47104-9_2
https://doi.org/10.1007/978-3-031-47104-9_2

16 2 Some Useful Statistical Results

V (Xk + α) = V (Xk). (2.5)

V (ρXk) = ρ2V (Xk). (2.6)

2.2 Basic Statistical Results Required for Deriving the

Update Equations in the State Estimation Step

We will also require two results based on Bayes’ rule and Gaussian distributions,

respectively, when deriving the update equations in the state estimation step. The

two results are shown below:

• Result 1:

.P(A|B ∩ C) =
P(B|A ∩ C)P (A|C)

P (B|C)
.

We will consider the derivation of this result in two steps:

– Step 1:

.P(A|B ∩ C) =
P(A ∩ B ∩ C)

P (B ∩ C)
. (2.7)

=
P(A ∩ B ∩ C)

P (B ∩ C)
×

P(C)

P (C)
. (2.8)

=
P(A ∩ B ∩ C)

P (C)
×

1

P(B∩C)
P (C)

. (2.9)

=
P(A ∩ B|C)

P (B|C)
. (2.10)

– Step 2:

.P(A ∩ B|C) =
P(A ∩ B ∩ C)

P (C)
. (2.11)

=
P(A ∩ B ∩ C)

P (C)
×

P(A ∩ C)

P (A ∩ C)
. (2.12)

=
P(A ∩ B ∩ C)

P (A ∩ C)
×

P(A ∩ C)

P (C)
. (2.13)

= P(B|A ∩ C)P (A|C). (2.14)

2.2 Basic Statistical Results Required for Deriving the Update Equations in. . . 17

We will substitute the result for .P(A ∩ B|C) in (2.14) and put it into (2.10) to

obtain

.P(A|B ∩ C) =
P(A ∩ B|C)

P (B|C)
=

P(B|A ∩ C)P (A|C)

P (B|C)
. (2.15)

Basic Statistical Results—Part B

Letting .A = Xk , .B = Yk , and .C = Y1:k−1, we can use the result just shown

above to obtain

.P(Xk|Y1:k) = P(Xk|Yk, Y1:k−1) =
P(Yk|Xk, Y1:k−1)P (Xk|Y1:k−1)

P (Yk|Y1:k−1)
.

(2.16)

Recall that we split our state estimation into two steps: the predict step and

the update step. At the predict step, we derive an estimate for .xk given that we

have not yet observed the sensor reading .yk . This estimate is actually based on

.P(Xk|Y1:k−1) since information only available until time index .(k−1) is used

to derive it. At the update step, we improve the predict step estimate based on

.P(Xk|Y1:k−1) to now include information from the new sensor measurement

.yk , i.e., we make use of .yk to obtain a new estimate based on .P(Xk|Y1:k). The

result in (2.16) will come in very useful at the update step.

• Result 2:

The mean and variance of a Gaussian random variable can be obtained by

taking the derivatives of the exponent term of its probability density function

(PDF).

Consider .X ∼ N (µ, σ 2). The PDF of X is given by

.p(x) =
1

√
2πσ 2

eqx where q =
−(x − µ)2

2σ 2
. (2.17)

To obtain the mean of X, we take the derivative of q and set it to 0 to determine

where the maximum value occurs.

.
dq

dx
=

−2(x − µ)

2σ 2
= 0. (2.18)

=⇒ x = µ. (2.19)

Therefore, the mean value occurs at the location for x at which the derivative of

the exponent term is equal to 0.

18 2 Some Useful Statistical Results

We next consider the variance. The second derivative of q with respect to x is

.
d2q

dx2
=

−1

σ 2
. (2.20)

And therefore, the variance is given by

. =⇒ σ 2 = −
(

d2q

dx2

)−1

. (2.21)

Basic Statistical Results—Part C

In all the derivations of the state estimation step update equations, we will

assume that the density functions are approximately Gaussian. We will also

make use of what we have just shown: (i) the mean value is given by the

location at which the first derivative of the exponent term is equal to 0; (ii)

the variance is given by the negative inverse of the second derivative of the

exponent term.

2.3 General Observations Related to Gaussian Random

Variables

In general, for a set of independent Gaussian random variables .Zi ∼ N (µi, σ
2
i),

the following holds true.

.

∑

i

aiZi ∼ N

(

∑

i

aiµi,
∑

i

a2
i σ

2
i

)

, (2.22)

where the .ai’s are constant terms. Also, adding a constant term to a Gaussian random

variable will cause it to remain Gaussian but have a shifted mean and unchanged

variance. This can be verified from first principles (change of variables formula).

Basic Statistical Results—Part D

In general, for a set of independent Gaussian random variables .Zi ∼
N (µi, σ

2
i),

.

∑

i

aiZi ∼ N

(

∑

i

aiµi,
∑

i

a2
i σ

2
i

)

. (2.23)

2.3 General Observations Related to Gaussian Random Variables 19

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 3

State-Space Model with One Binary
Observation

In this chapter, we will consider a state-space model where a single state variable .xk

gives rise to binary observations. We will see how the state and parameter estimation

equations are derived for this case. However, prior to deriving any of the equations,

we will first look at two example scenarios where the need for such a model arises.

We human beings learn. We start learning since the time we were born, and

learning continues thereafter as a life-long process. How exactly do we learn?

And how do animals learn? These are interesting problems that scientists have

investigated for years. One of the problems that arises in learning experiments

with animal models is determining when an animal is considered to have learned

something. For instance, suppose that a macaque monkey needs to learn how to

correctly identify a particular visual target shown on a computer screen. The monkey

may receive a reward for every correct answer. Similarly, a rat may have to learn to

how to recognize an audio cue to receive a reward in a maze (Fig. 3.1). How could

we know that the animal has actually learned? This is an interesting question. We

could, for instance, come up with heuristic rules such as stating that the animal

has indeed learned when five consecutive correct answers (or some other number)

are recorded. But could something more systematic be developed? This problem

is what motivated the work in [4]. Here, learning was characterized using a state-

space model. Since correct and incorrect are the only possible trial outcomes, the

observations are binary-valued. Moreover, rather than just deciding whether the

animal has learned or not yet learned, the objective was to estimate a continuous

learning state .xk based on the sequence of binary responses .nk . When learning

has not yet occurred, more incorrect responses occur in the trials and .xk remains

Supplementary Information The online version contains supplementary material available at

(https://doi.org/10.1007/978-3-031-47104-9_3).

GitHub https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-

Filters/tree/main/one_bin

© The Author(s) 2024

D. S. Wickramasuriya, R. T. Faghih, Bayesian Filter Design for Computational

Medicine, https://doi.org/10.1007/978-3-031-47104-9_3

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47104-9protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-3-031-47104-9_3
https://doi.org/10.1007/978-3-031-47104-9_3
https://doi.org/10.1007/978-3-031-47104-9_3
https://doi.org/10.1007/978-3-031-47104-9_3
https://doi.org/10.1007/978-3-031-47104-9_3
https://doi.org/10.1007/978-3-031-47104-9_3
https://doi.org/10.1007/978-3-031-47104-9_3
https://doi.org/10.1007/978-3-031-47104-9_3
https://doi.org/10.1007/978-3-031-47104-9_3
https://doi.org/10.1007/978-3-031-47104-9_3
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin
https://doi.org/10.1007/978-3-031-47104-9_3
https://doi.org/10.1007/978-3-031-47104-9_3
https://doi.org/10.1007/978-3-031-47104-9_3
https://doi.org/10.1007/978-3-031-47104-9_3
https://doi.org/10.1007/978-3-031-47104-9_3
https://doi.org/10.1007/978-3-031-47104-9_3
https://doi.org/10.1007/978-3-031-47104-9_3
https://doi.org/10.1007/978-3-031-47104-9_3
https://doi.org/10.1007/978-3-031-47104-9_3
https://doi.org/10.1007/978-3-031-47104-9_3
https://doi.org/10.1007/978-3-031-47104-9_3

22 3 State-Space Model with One Binary Observation

Correct/incorrect

responses

Cogni�ve learning

state

Fig. 3.1 A rat in a T-maze experiment with binary-valued correct/incorrect responses. Binary-

valued correct/incorrect responses can be used to estimate the cognitive learning state of a rat

based on its responses in successive trials. The model was used in [4] for this purpose where the

rat had to learn to recognize which direction to proceed in based on an audio cue

low. However, as the animal begins to learn, more correct responses occur and

.xk increases. Thus it is possible to see how learning continuously progresses over

successive trials.

The second example relates to emotions and the nervous system. We primarily

sweat to maintain internal body temperature. However, tiny bursts of sweat are also

released in response to psychologically arousing stimuli. These variations in sweat

secretions cause changes in the conductivity of the skin and can be picked up easily

by skin conductance sensors. Since the sweat glands are innervated by nerve fibers

belonging to the sympathetic branch of the autonomic nervous system [43], a skin

conductance signal becomes a sensitive index of sympathetic arousal [44]. Now a

skin conductance signal comprises a slow-varying tonic component on top of which

a faster-varying phasic component is superimposed [45, 46]. The phasic component

consists of what are known as skin conductance responses (SCRs). These SCRs

have characteristic bi-exponential shapes. Each of these SCRs can be thought of as

being produced by a single burst of neuroelectric activity to the sweat glands [47].

It is these phasic SCRs that give a skin conductance signal its “spikey” appearance

(Fig. 3.2). A deconvolution algorithm can be used to recover the bursts of neural

activity underlying a skin conductance signal [47–50]. Importantly, the occurrence

of these neural impulses is related to a person’s arousal level. In particular, the higher

the underlying sympathetic arousal, the higher the rate at which neural impulses

to the sweat glands (or SCRs) occur [51]. Thus the same state-space model with

binary observations based on neural impulses to the sweat glands was used in [26]

to estimate sympathetic arousal. By tracking the occurrence of the impulses .nk , a

person’s arousal state could be estimated over time.

3.1 Deriving the Predict Equations in the State Estimation Step 23

0 2 4 6 8 10 12

time (min)

6

8

s
k
in

 c
o
n
d
u
c
ta

n
c
e
 (
µ

S
)

A Skin Conductance Signal

0

10

20

30

n
e
u
ra

l
im

p
u
ls

e
 a

m
p
lit

u
d
e

Fig. 3.2 A deconvolved skin conductance signal. A skin conductance signal comprises both a

tonic and phasic component. The neural impulses underlying phasic variations can be extracted

via deconvolution. The figure depicts a skin conductance signal (blue) and the sequence of neural

impulses that underlie its phasic variations (red). From [32], used under Creative Commons CC-

BY license

3.1 Deriving the Predict Equations in the State Estimation

Step

Let us now consider the state-space model itself. For simplicity, we will also not

use upper case letters for the unknowns although they are indeed random variables.

Instead, we will follow the more familiar notation for state-space control systems

with lower case letters. Let us begin by assuming that .xk evolves with time following

a random walk.

.xk = xk−1 + εk, (3.1)

where the process noise term .εk ∼ N (0, σ 2
ε) is independent of any of the .xk values.

For now, let us not think of (3.1) as being the state equation in a control system.

Instead, let us just consider (3.1) purely as a relationship between three random

variables. Supposing we only had this equation and had to determine .xk , what would

be the best guess that we could come up with and how uncertain would we be about

it? Our best estimate for .xk would be its mean, and the uncertainty associated with

it would be its variance. We will use the basic formulas in (2.1)–(2.6) to determine

the mean and variance of .xk . We will first derive the mean.

.E[xk] = E[xk−1 + εk]. (3.2)

= E[xk−1] + E[εk] using (2.1). (3.3)

24 3 State-Space Model with One Binary Observation

= E[xk−1] since E[εk] = 0. (3.4)

∴ E[xk] = xk−1|k−1, (3.5)

where we have used the notation .xk−1|k−1 to denote the expected value .E[xk−1]. In

a typical state-space control system, .xk−1|k−1 represents the best estimate for .xk−1

given that we have observed all the sensor measurements up to time index .(k − 1).

We will also use the notation .E[xk] = xk|k−1 to denote the mean state estimate at

time index k, given that we have only observed the sensor readings until time index

.(k − 1).

Next we will derive the uncertainty or variance of .xk using the same basic

formulas.

.V (xk) = V (xk−1 + εk). (3.6)

= V (xk−1) + V (εk) + 2Cov(xk−1, εk) using (2.4). (3.7)

= V (xk−1) + V (εk) since εk is uncorrelated with any of the xk terms.

(3.8)

∴ V (xk) = σ 2
k−1|k−1 + σ 2

ε , (3.9)

where we have used the notation .σ 2
k−1|k−1 to denote the variance .V (xk−1). Again, in

a typical state-space control system, .σ 2
k−1|k−1 represents the uncertainty or variance

of .xk−1 given that we have observed all the sensor readings up to time index .(k−1).

Just like in the case of the mean, we will use the notation .V (xk) = σ 2
k|k−1 to denote

that this is the variance estimate at time index k, given that we have only observed

the sensor readings until time index .(k − 1). Therefore, our predict equations in the

state estimation step are

.xk|k−1 = xk−1|k−1. (3.10)

σ 2
k|k−1 = σ 2

k−1|k−1 + σ 2
ε . (3.11)

From our knowledge of Gaussian distributions in (2.23), we also know that .xk is

Gaussian distributed since .xk−1 and .εk are Gaussian distributed and independent of

each other. Since we have just derived the mean and variance of .xk , we can state that

.p(xk|n1:k−1) =
1

√

2πσ 2
k|k−1

e

−(xk−xk|k−1)2

2σ2
k|k−1 , (3.12)

where the conditioning on .n1:k−1 indicates that we have observed the sensor mea-

surements up to time index .(k − 1). What happens when we observe measurement

.nk at time index k? We will see how our estimates .xk|k−1 and .σ 2
k|k−1 can be

improved/updated once we observe .nk in the next section.

3.2 Deriving the Update Equations in the State Estimation Step 25

When .xk evolves with time following .xk = xk−1 + εk , the predict equations

in the state estimation step are

.xk|k−1 = xk−1|k−1. (3.13)

σ 2
k|k−1 = σ 2

k−1|k−1 + σ 2
ε . (3.14)

3.2 Deriving the Update Equations in the State Estimation

Step

The binary observations .nk that we consider here could be in the form of correct/in-

correct responses in a behavioral experiment, neural impulses in a skin conductance

signal, hormone pulses, etc. Let us assume that .xk is related to the probability .pk

with which the binary events occur through

.pk =
1

1 + e−(β0+xk)
, (3.15)

where .β0 is a constant. Here, .pk = P(nk = 1) and .(1 − pk) = P(nk = 0).

Equation (3.15) depicts what is known as a sigmoid relationship. Accordingly, the

higher .xk is, the higher will be .pk . In other words, the higher .xk is, the higher the

probability of 1’s occurring in the observations.

At this point, we need to note an important result concerning the derivative of

the sigmoid function.

.
dpk

dxk

=
(−1)

[1 + e−(β0+xk)]2
× e−(β0+xk) × (−1). (3.16)

=
1

1 + e−(β0+xk)
×

[

e−(β0+xk)

1 + e−(β0+xk)

]

. (3.17)

=
1

1 + e−(β0+xk)
×

[

1 + e−(β0+xk) − 1

1 + e−(β0+xk)

]

. (3.18)

=
1

1 + e−(β0+xk)
×

[

1 −
1

1 + e−(β0+xk)

]

. (3.19)

= pk(1 − pk). (3.20)

26 3 State-Space Model with One Binary Observation

Now the occurrence of .nk = 0 or .nk = 1 follows a Bernoulli distribution.

Therefore,

.p(nk|xk) = p
nk

k (1 − pk)
1−nk . (3.21)

=

[

1

1 + e−(β0+xk)

]nk
[

1 −
1

1 + e−(β0+xk)

]1−nk

. (3.22)

We will also utilize another useful result here. For a positive number a, .a = elog(a)

(this can be easily verified by taking the log value on both sides). We can use this to

express .p(nk|xk) as shown below.

.p(nk|xk) = p
nk

k (1 − pk)
1−nk . (3.23)

= e
log

[

p
nk
k (1−pk)

1−nk

]

. (3.24)

= e
log

[

p
nk
k

]

+log
[

(1−pk)
1−nk

]

. (3.25)

= enk log(pk)+(1−nk) log(1−pk). (3.26)

= e
nk log

(

pk
1−pk

)

+log(1−pk)
. (3.27)

Now assume that we just observed .nk . What would be our best estimate of .xk given

that we have observed .n1:k? In other words, what is .p(xk|n1:k), and how can we

derive its mean and variance? We can use the result in (2.16) to determine what

.p(xk|n1:k) is.

.p(xk|n1:k) = p(xk|nk, n1:k−1) =
p(nk|xk, n1:k−1)p(xk|n1:k−1)

p(nk|n1:k−1)
. (3.28)

Let us consider the terms in the numerator. Now .p(nk|xk, n1:k−1) = p(nk|xk) since

we have an explicit relationship between .nk and .xk as shown in (3.15), which makes

the additional conditioning on the history .n1:k−1 irrelevant. We know what .p(nk|xk)

is based on (3.26). We also know what .p(xk|n1:k−1) is based on (3.12).

We now need to determine the mean and variance of .p(xk|n1:k). To do so, we

will assume that it is approximately Gaussian distributed. Recall from the earlier

results in (2.19) and (2.21) that the mean and variance of a Gaussian distribution

can be derived from its exponent term alone. Therefore, we only need to consider

the exponent of .p(xk|n1:k) and can ignore the other terms. We will therefore

substitute the terms for .p(nk|xk) and .p(xk|n1:k−1) in (3.26) and (3.12), respectively,

into (3.28).

.p(xk|n1:k) ∝ p(nk|xk)p(xk|n1:k−1) ∝ enk log(pk)+(1−nk) log(1−pk) × e

−(xk−xk|k−1)2

2σ2
k|k−1 .

(3.29)

3.2 Deriving the Update Equations in the State Estimation Step 27

Taking the log on both sides and labeling it as q, we have

.q = log[p(xk|n1:k)] = nk log(pk) + (1 − nk) log(1 − pk)

−
(xk − xk|k−1)

2

2σ 2
k|k−1

+ constant. (3.30)

This equation provides us the exponent of .p(xk|n1:k), which we will use to derive

the mean and variance. We can obtain the mean by taking the first derivative of the

exponent and then solving for the location where it is 0. Likewise the variance is

given by the negative inverse of the second derivative.

Let us first proceed with calculating the mean. We will make use of the formula

for the derivative of .pk in (3.20).

.
dq

dxk

= nk

1

pk

dpk

dxk

+ (1 − nk)
1

(1 − pk)

d

dx
(1 − pk) −

2(xk − xk|k−1)

2σ 2
k|k−1

= 0.

(3.31)

nk

1

pk

pk(1 − pk) − (1 − nk)
1

(1 − pk)
pk(1 − pk) −

(xk − xk|k−1)

σ 2
k|k−1

= 0.

(3.32)

nk(1 − pk) − (1 − nk)pk −
(xk − xk|k−1)

σ 2
k|k−1

= 0.

(3.33)

nk − pk −
(xk − xk|k−1)

σ 2
k|k−1

= 0. (3.34)

nk − pk =
(xk − xk|k−1)

σ 2
k|k−1

. (3.35)

xk = xk|k−1 + σ 2
k|k−1(nk − pk). (3.36)

This equation gives us the mean of .xk , which is now our new best estimate given

that we have observed all the data up to time index k. We will call this new mean

.xk|k . It is an improvement over .xk|k−1, which did not include information from the

latest observation. Since

.pk =
1

1 + e−(β0+xk)
, (3.37)

the .xk term appears on both sides of (3.36). Therefore, the equation has to be solved

numerically (e.g., using Newton’s method). To make this dependency explicit, we

will use the notation .pk|k and express the mean as

28 3 State-Space Model with One Binary Observation

.xk|k = xk|k−1 + σ 2
k|k−1(nk − pk|k). (3.38)

We will next derive the variance. Now the first derivative of the exponent

simplified to

.
dq

dxk

= nk − pk −
(xk − xk|k−1)

σ 2
k|k−1

. (3.39)

The second derivative yields

.
d2q

dx2
k

= −pk(1 − pk) −
1

σ 2
k|k−1

. (3.40)

Based on our knowledge of how variance can be derived from the exponent term

in a Gaussian distribution, the uncertainty or variance associated with our new state

estimate is

.σ 2
k|k = −

(

d2q

dx2
k

)−1

=

[

1

σ 2
k|k−1

+ pk(1 − pk)

]−1

. (3.41)

Again, we will make the dependence of .pk on .xk|k explicit and state

.σ 2
k|k =

[

1

σ 2
k|k−1

+ pk|k(1 − pk|k)

]−1

. (3.42)

When .xk gives rise to a single binary observation .nk , the update equations in

the state estimation step are

.xk|k = xk|k−1 + σ 2
k|k−1(nk − pk|k). (3.43)

σ 2
k|k =

[

1

σ 2
k|k−1

+ pk|k(1 − pk|k)

]−1

. (3.44)

3.3 Smoothing in the State Estimation Step

Although we previously stated that the state estimation step primarily consisted of

the predict and update steps, in reality, there is a third step that we follow. The

3.3 Smoothing in the State Estimation Step 29

equations for this third step, however, do not vary much depending on the state-

space model and consequently do not require re-derivations every time we have a

new model. In fact, as we shall see, there is only one case where we need to make

changes to this third step. Now we first perform the predict, update, predict, update,

.. . . steps in turn for .k = 1, 2, . . . , K to determine .xk at each point in time. After

coming to the end, we reverse direction and obtain a set of smoothened mean and

variance estimates. The equations for this backward smoother are

.Ak Δ
σ 2

k|k

σ 2
k+1|k

. (3.45)

xk|K = xk|k + Ak(xk+1|K − xk+1|k). (3.46)

σ 2
k|K = σ 2

k|k + A2
k(σ

2
k+1|K − σ 2

k+1|k). (3.47)

The only change that occurs in these equations is if there is a forgetting factor .ρ in

the state equation (e.g., .xk = ρxk−1 + εk). In this case, we would have

.Ak Δ ρ
σ 2

k|k

σ 2
k+1|k

. (3.48)

Since we reverse direction making use of all the data through .k = 1, 2, . . . , K to

obtain the smoothened mean and variance estimates, we use the notation .xk|K and

.σ 2
k|K to denote their values. These new estimates turn out to be smoother since we

now determine .xk not just based on .k = 1, 2, . . . , k (what we have observed up to

that point), but rather on .k = 1, 2, . . . , K (all what we have observed).

We will also make a further observation. We need to note that .xk|K and .σ 2
k|K can

be formally expressed as

.xk|K = E[xk|n1:K ,Θ]. (3.49)

σ 2
k|K = V (xk|n1:K ,Θ), (3.50)

where .Θ represents all the model parameters. In the case of our current state-space

model, the only unknown model parameter is .σ 2
ε (and .β0, but we will assume that

this is calculated differently). Why is the expected value conditioned on .Θ? Recall

that the EM algorithm consists of the state and parameter estimation steps. At the

state estimation step, we assume that we know all the model parameters and proceed

with calculating .xk . Mathematically, we could express this knowledge of the model

parameters in terms of conditioning on .Θ. In reality, we could also have expressed

.xk|k−1 and .xk|k (and the variances) in a similar manner, i.e.,

.xk|k−1 = E[xk|n1:k−1,Θ]. (3.51)

xk|k = E[xk|n1:k,Θ]. (3.52)

30 3 State-Space Model with One Binary Observation

Finally, we also need to note that we often require not only .E[xk|n1:K ,Θ], but

also .E[x2
k |n1:K ,Θ] and .E[xkxk+1|n1:K ,Θ] when we move on to the parameter

estimation step. Making use of the state-space covariance algorithm [52], these

values turn out to be

.E[x2
k |n1:K ,Θ] = Uk = x2

k|K + σ 2
k|K . (3.53)

E[xkxk+1|n1:K ,Θ] = Uk,k+1 = xk|Kxk+1|K + Akσ
2
k+1|K , (3.54)

where we have defined the two new terms .Uk and .Uk,k+1.

3.4 Deriving the Parameter Estimation Step Equations

Recall our earliest discussion of the EM algorithm. To describe how it functioned,

we assumed the simple state-space model

.xk+1 = Axk + Buk. (3.55)

yk = Cxk. (3.56)

We stated that, at our state estimation step, we would assume that we knew A, B, and

C and then determine the best estimates for .xk . The state estimation step consists of

the predict step, the update step, and the smoothing step that we perform at then end.

At the predict step, we make a prediction for .xk using the state equation based on

the past history of values. At the update step, we improve this prediction by making

use of the sensor reading .yk that we just observed. After proceeding through the

predict, update, predict, update.. . . steps, we finally reverse direction and perform

smoothing. We primarily make use of the ideas of mean and variance at the state

estimation step. It is after performing the state estimation step that we proceed to

the parameter estimation step where we make use of the .xk estimates and determine

A, B, and C. We select A, B, and C to maximize a particular probability. This

probability is the joint density of all our .xk and .yk values. We also stated that, in

reality, it was not strictly the probability that we maximize, but rather the expected

value or mean of its log. Do you now see why the state estimation step involved

calculating the expected values of .xk?

Let us now consider the joint probability term whose expected value of the log

we need to maximize. It is

.p(x1:K ∩ y1:K |Θ) = p(y1:K |x1:K ,Θ)p(x1:K |Θ). (3.57)

Since we only observe a single binary variable, we have .yk = nk . Therefore,

.p(x1:K ∩ n1:K |Θ) = p(n1:K |x1:K ,Θ)p(x1:K |Θ). (3.58)

3.4 Deriving the Parameter Estimation Step Equations 31

We will first consider .p(x1:K |Θ). What would be the total probability of all the .xk

values if we only knew the model parameters .Θ? In other words, if we had no sensor

readings .nk , what would be the probability of our .xk values? To calculate this, we

would only be able to make use of the state equation, but not the output equation.

This probability is

.p(x1:K |Θ) = p(x1|Θ) × p(x2|x1,Θ)

× p(x3|x1, x2,Θ) × . . . × p(xK |x1, x2, . . . , xK−1,Θ). (3.59)

=

K
∏

k=1

1
√

2πσ 2
ε

e

−(xk−xk−1)2

2σ2 ε . (3.60)

Note that in the case of each term .xk , .xk−1 contains within it the history needed to

get to it. Let us take the log of this value and label it .Q̃.

.Q̃ =
−K

2
log

(

2πσ 2
ε

)

−

K
∑

k=1

(xk − xk−1)
2

2σ 2
ε

. (3.61)

Now the only model parameter we need to determine is .σ 2
ε (ignoring .β0). It turns

out that .σ 2
ε only shows up in this term involving .p(x1:K |Θ) and not in the term

involving .p(n1:K |x1:K ,Θ). Let us now take the expected value of .Q̃ and label it Q.

.Q =
−K

2
log

(

2πσ 2
ε

)

−

K
∑

k=1

E

[

(xk − xk−1)
2
]

2σ 2
ε

. (3.62)

What do we need to do at the parameter estimation step to determine .σ 2
ε ? We simply

need to take the derivative of Q with respect to .σ 2
ε , set it to 0, and solve. But the

expected value we need should be calculated conditioned on knowing .Θ and having

observed .n1:K (i.e., we need .E[xk|n1:K ,Θ]). Do you now see why we expressed

.xk|K and .σ 2
k|K in the way that we did in (3.49) and (3.50)?

3.4.1 Deriving the Process Noise Variance

While it is possible to determine the starting state .x0 as a separate parameter, we

follow one of the options in [4, 5] and set .x0 = x1. This permits some bias at the

beginning. Therefore,

.Q =
−K

2
log

(

2πσ 2
ε

)

−

K
∑

k=2

E

[

(xk − xk−1)
2
]

2σ 2
ε

. (3.63)

32 3 State-Space Model with One Binary Observation

We will follow this method of setting .x0 = x1 in all of our parameter estimation

step derivations. We take the partial derivative of Q with respect to .σ 2
ε and set it to

0 to solve for the parameter estimation step update.

.
∂Q

∂σ 2
ε

=
−K

2σ 2
ε

+
1

2σ 4
ε

K
∑

k=2

E

[

(xk − xk−1)
2
]

= 0. (3.64)

=⇒ σ 2
ε =

1

K

K
∑

k=2

{

E
[

x2
k

]

− 2E
[

xkxk−1

]

+ E
[

x2
k−1

]

}

. (3.65)

=
1

K

{ K
∑

k=2

Uk − 2

K−1
∑

k=1

Uk,k+1 +

K−1
∑

k=1

Uk

}

. (3.66)

The parameter estimation step update for .σ 2
ε when .xk evolves with time

following .xk = xk−1 + εk is

.σ 2
ε =

1

K

{ K
∑

k=2

Uk − 2

K−1
∑

k=1

Uk,k+1 +

K−1
∑

k=1

Uk

}

. (3.67)

3.5 MATLAB Examples

In this book, we also provide a set of MATLAB code examples that implement the

EM algorithms described in each chapter. The code examples are organized into the

folder structure shown below:

• one_bin\

sim\

data_one_bin.mat

filter_one_bin.m

expm\

expm_data_one_bin.mat

expm_filter_one_bin.m

• one_mpp\

sim\

data_one_mpp.mat

3.5 MATLAB Examples 33

filter_one_mpp.m

expm\

expm_data_one_mpp.mat

expm_filter_one_mpp.m

• one_bin_two_cont\

.. . .

• one_mpp_one_cont\

.. . .

•

In the case of each state-space model, the corresponding “.m” file with the code

is self-contained and no additional path variables have to be set up in MATLAB.

The code is written in such a manner that the “.m” file can be run directly (it loads

the necessary data from the corresponding “.mat” file). The code in the “sim\” and

“expm\” folders correspond to examples running on simulated and experimental

data, respectively.

Estimating an unobserved state .xk from a single binary observation .nk gives rise

to the simplest state-space model and EM algorithm equations. The state-space

model with only .nk was originally developed in [4]. The code for running the

examples for this model are in the “one_bin\sim” and “one_bin\expm” folders. The

“one_bin\sim” folder contains the “filter_one_bin.m” and the “data_one_bin.mat”

files. The “.m” file contains the code and the “.mat” file contains the data. We will

use a similar naming style for all the code examples accompanying this book.

The state-space model we considered in this chapter contained the term .β0 in .pk .

However, we did not yet explain how it was calculated. In several studies involving

behavioral learning experiments (e.g., [4]), .β0 was determined empirically instead

of being estimated as a separate term at the parameter estimation step. Now

.pk =
1

1 + e−(β0+xk)
=⇒ log

(

pk

1 − pk

)

= β0 + xk, (3.68)

and if we assume that .xk ≈ 0 at the very beginning, we have

.β0 ≈ log

(

p0

1 − p0

)

. (3.69)

We can use this to calculate .β0 [4]. But what is .p0? In a typical learning experiment

involving correct/incorrect responses, .p0 can be taken to be the probability of getting

an answer correct prior to any learning taking place. For instance, if there are only

two possible answers in each trial, then .p0 = 0.5. If there are four possible answers

from which to choose, .p0 = 0.25. Similarly, in experiments involving the estimation

of sympathetic arousal from skin conductance, .p0 can be taken to be the person’s

34 3 State-Space Model with One Binary Observation

baseline probability of neural impulse occurrence. If the experiment involves both

relaxation and stress periods, this baseline can be approximated by the average

probability of an impulse occurring in the whole data.

Let us first consider a basic outline of the code itself. The code takes the binary

inputs .nk for which we use the variable n. Only a few parameters need to be set in

this particular code. One of the parameters is the baseline probability .p0 for which

we use the variable base_prob. In general, we will set base_prob to the average

probability of .nk = 1 occurring in the data. Recall that in the EM algorithm, we

repeat the state estimation step and the parameter estimation step until the model

parameters converge. In this code example, we use the variable tol to determine

the tolerance level. Here we have set it to .10−6 (i.e., the EM algorithm continues

to execute until there is no change in the model parameters to a precision level in

the order of .10−6). The variable ve denotes the process noise variance. We also

use x_pred, x_updt, and x_smth to denote .xk|k−1, .xk|k , and .xk|K , respectively. We

also use v_pred, v_updt, and v_smth to denote the corresponding variances .σ 2
k|k−1,

.σ 2
k|k , and .σ 2

k|K . Prior to performing all the computations, the model parameters need

to be initialized at some values. Here we have initialized the process noise variance

to .0.005 and set the initial value of the .xk to 0.

base_prob = sum(n) / length(n);
tol = 1e-6; % convergence criteria

ve(1) = 0.005;
x_smth(1) = 0;
b0 = log(base_prob / (1 - base_prob));

At a given iteration of the EM algorithm, the code first proceeds in the forward

direction from .k = 1, 2, . . . , K calculating both .xk|k−1 and .xk|k .

x_pred(k) = x_updt(k - 1);
v_pred(k) = v_updt(k - 1) + ve(m);

x_updt(k) = get_state_update(x_pred(k), v_pred(k), b0, n(k));
p_updt(k) = 1 / (1 + exp((-1) * (b0 + x_updt(k))));
v_updt(k) = 1 / ((1 / v_pred(k)) + p_updt(k) * (1 - p_updt(k)));

Here the mean state update .xk|k is calculated using the function shown below

(Newton–Raphson method).

function [y] = get_state_update(x_pred, v_pred, b0, n)

M = 50; % maximum iterations

it = zeros(1, M);
func = zeros(1, M);
df = zeros(1, M);

it(1) = x_pred;

for i = 1:(M - 1)
func(i) = it(i) - x_pred - v_pred * (n - exp(b0 + it(i)) /

(1 + exp(b0 + it(i))));

3.5 MATLAB Examples 35

df(i) = 1 + v_pred * exp(b0 + it(i)) / ((1 + exp(b0 + it(i
))) ̂ 2);

it(i + 1) = it(i) - func(i) / df(i);

if abs(it(i + 1) - it(i)) < 1e-14
y = it(i + 1);

return
end

end

error(’Newton-Raphson failed to converge.’);

end

After proceeding in the forward direction, we reverse direction and proceed through

.k = K, (K − 1), . . . , 1 to obtain the smoothened .xk|K and .σ 2
k|K values. In the code

shown below, the variables W and CW denote .Uk and .Uk,k+1 in (3.53) and (3.54),

respectively.

x_smth(K) = x_updt(K);
v_smth(K) = v_updt(K);
W(K) = v_smth(K) + (x_smth(K) ^ 2);

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end);

for k = (K - 1):(-1):1
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 1));
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) - v_pred(k

+ 1));

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) ^ 2);

end

After performing state estimation at a particular iteration, we then perform param-

eter estimation. The state estimation and the parameter estimation steps continue to

be executed in turn until convergence.

3.5.1 Application to Skin Conductance and Sympathetic

Arousal

Running both the simulated and experimental data examples produces the results

shown in Fig. 3.3. The code running on simulated data implements the EM algorithm

described in this chapter. The code running on experimental data, on the other hand,

runs a slightly modified version closer to what was implemented in [25, 26] for

estimating sympathetic arousal based on skin conductance. This version of the code

additionally attempts to estimate the starting state .x0 as a separate model parameter.

If this code is used to estimate sympathetic arousal based on skin conductance,

the only input that is required is the sequence of .nk values (denoted by the variable

36 3 State-Space Model with One Binary Observation

n) that represents the presence or absence of neural impulses responsible for SCRs.

Ideally, the sequence of neural impulses must be extracted by deconvolving the skin

conductance data using a deconvolution procedure such as described in [47]. If,

however, deconvolution of the skin conductance data is not possible, a simpler

peak detection mechanism could be also used to provide these locations (peak

detection was used in [25] and deconvolution was used in [26] for sympathetic

arousal estimation). Also with the experimental data, and in several other examples

that follow, we use the term “HAI” to denote “High Arousal Index” since many

of our examples involve the estimation of sympathetic arousal from physiological

data. The HAI is inspired by the “Ideal Observer Certainty” term in [4] and is an

estimate of how much .pk is above a certain baseline. The HAI can also be calculated

based on .xk exceeding an equivalent baseline since .pk is related to .xk .

The right sub-figure in Fig. 3.3 provides an example of how sympathetic arousal

varied for a particular subject engaged in an experiment involving different stressors.

The experiment is described in [53]. The first three shaded backgrounds correspond

0

0.5

1

(a
)

n
k

State Estimation with Simulated Data

0 500 1000 1500 2000 2500

0 500 1000 1500 2000 2500
0

0.5

(b
)

p
k

0 500 1000 1500 2000 2500

time index

-5

0

5

(c
)

x
k

-4 -3 -2 -1 0 1 2 3 4

standard normal quantiles

-2

0

2

(d
)

in
p
u
t
q
u
a
n
ti
le

s

QQ Plot - State Estimate

Fig. 3.3 State estimation based on observing one binary variable. The left sub-figure depicts

estimation on simulated data, and the right sub-figure depicts the estimation of sympathetic arousal

from skin conductance data. The sub-panels on the left, respectively, depict: (a) the binary event

occurrences .nk ; (b) the probability of binary event occurrence .pk (blue) and its estimate (red); (c)

the state .xk (blue) and its estimate (red); (d) the quantile–quantile (QQ) plot for the residual error of

.xk . The sub-panels on the right, respectively, depict: (a) the skin conductance signal; (b) the neural

impulses; (c) the arousal state .xk and its 95% confidence limits; (d) the probability of impulse

occurrence and its 95% confidence limits; (e) the HAI (the regions above 90% and below 10% are

shaded in red and green, respectively). The background colors on the right sub-figure correspond

to the instruction period, a counting task, a color–word association task, relaxation, and watching

a horror movie clip. From [32], used under Creative Commons CC-BY license

3.5 MATLAB Examples 37

Fig. 3.4 Driver stress estimation. The sub-panels, respectively, depict: (a) the skin conductance

signal; (b) the neural impulses; (c) the arousal state .xk and its 95% confidence limits; (d) the

probability of impulse occurrence and its 95% confidence limits; (e) the HAI (the regions above

90% and below 10% are shaded in red and green, respectively). The background colors in turn

denote rest, city driving, toll road, highway, toll road, city driving, toll road, highway, toll road,

city driving, and rest. From [32], used under Creative Commons CC-BY license

to a period of instructions followed by two cognitive tasks. Arousal remains high

during this period. Arousal drops significantly during the relaxation period that

follows and briefly increases at the beginning of the emotional stressor (horror

movie) after that. Figure 3.4 also provides an additional example of how arousal

38 3 State-Space Model with One Binary Observation

varied in a driver stress experiment. The data come from the study described in [54].

In the experiment, each subject had to drive a vehicle along a set route comprising

of city driving, toll roads, and highways. Figure 3.4 shows how sympathetic arousal

varied during the different road conditions and the rest periods that preceded and

followed the actual drive.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 4

State-Space Model with One Binary
and One Continuous Observation

In this chapter, we will consider the case where .xk evolves with time following a

slightly more complicated state equation and gives rise to both a binary observation

.nk and a continuous observation .rk . Prior to looking into the equation derivations,

however, as in the previous chapter, we will again first consider a few example

scenarios where the need for such a model arises.

In the previous chapter, we considered the estimation of a continuous-valued

learning state .xk based on correct/incorrect responses in a sequence of experimental

trials. Based on a state-space model consisting of .xk and the binary observations

.nk , the cognitive learning state of an animal could be estimated over time [4]. Note,

however, that it is not just the correct/incorrect responses that contain information

regarding the animal’s learning state. How fast the animal responds also reflects

changes in learning. For instance, as an animal gradually begins to learn to recognize

a specific visual target, not only do the correct answers begin to occur more

frequently, but the time taken to respond in each of the trials also starts decreasing

(Fig. 4.1). Thus, a state-space model with both a binary observation .nk and a

continuous observation .rk was developed in [5] to estimate learning. This was an

improvement over the earlier model in [4].

This particular state-space model is not just limited to cognitive learning. It can

also be adapted to other applications as well. Human emotion is typically accounted

for along two different axes known as valence and arousal [55]. Valence denotes the

pleasant–unpleasant nature of an emotion, while arousal denotes its corresponding

activation or excitement. Emotional arousal is closely tied to the activation of the

sympathetic nervous system [56, 57]. Changes in arousal can occur regardless of

the valence of the emotion (i.e., arousal can be high when the emotion is negative,

Supplementary Information The online version contains supplementary material available at

(https://doi.org/10.1007/978-3-031-47104-9_4).

GitHub https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-

Filters/tree/main/one_bin_one_cont

© The Author(s) 2024

D. S. Wickramasuriya, R. T. Faghih, Bayesian Filter Design for Computational

Medicine, https://doi.org/10.1007/978-3-031-47104-9_4

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47104-9protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-3-031-47104-9_4
https://doi.org/10.1007/978-3-031-47104-9_4
https://doi.org/10.1007/978-3-031-47104-9_4
https://doi.org/10.1007/978-3-031-47104-9_4
https://doi.org/10.1007/978-3-031-47104-9_4
https://doi.org/10.1007/978-3-031-47104-9_4
https://doi.org/10.1007/978-3-031-47104-9_4
https://doi.org/10.1007/978-3-031-47104-9_4
https://doi.org/10.1007/978-3-031-47104-9_4
https://doi.org/10.1007/978-3-031-47104-9_4
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_cont
https://doi.org/10.1007/978-3-031-47104-9_4
https://doi.org/10.1007/978-3-031-47104-9_4
https://doi.org/10.1007/978-3-031-47104-9_4
https://doi.org/10.1007/978-3-031-47104-9_4
https://doi.org/10.1007/978-3-031-47104-9_4
https://doi.org/10.1007/978-3-031-47104-9_4
https://doi.org/10.1007/978-3-031-47104-9_4
https://doi.org/10.1007/978-3-031-47104-9_4
https://doi.org/10.1007/978-3-031-47104-9_4
https://doi.org/10.1007/978-3-031-47104-9_4
https://doi.org/10.1007/978-3-031-47104-9_4

40 4 State-Space Model with One Binary and One Continuous Observation

Correct/incorrect responses

Reac�on �mes

Cogni�ve learning state

Fig. 4.1 A monkey in a learning experiment with binary-valued correct/incorrect responses where

reaction times are recorded. In a behavioral learning experiment, not only do the binary-valued

correct/incorrect responses contain information regarding learning, but the time taken to respond in

each trial also reflects changes in learning. The state-space model with correct/incorrect responses

and reaction times was used in [5] to estimate a cognitive learning state in animal models

as in the case of rage, or when it is positive, as in the case of excitement). As we

saw in the earlier chapter, skin conductance is a sensitive index of arousal. Changes

in emotional valence, on the other hand, often cause changes in facial expressions.

Information regarding these facial expressions can be captured via EMG sensors

attached to the face. The state-space model with one binary observation .nk and one

continuous observation .rk was used in [27] for an emotional valence recognition

application based on EMG signals. In [27], Yadav et al. extracted both a binary

feature and a continuous feature based on EMG amplitudes and powers from data

in an experiment where subjects watched a series of music videos meant to evoke

different emotions. Based on the model, they were able to extract a continuous-

valued emotional valence state .xk over time. The same model was also used in [28]

for detecting epileptic seizures. Here, the authors extracted a binary feature and

a continuous feature from scalp EEG signals to detect the occurrence of epileptic

seizures. Based on the features, a continuous-valued seizure severity state could

be tracked over time. These examples serve to illustrate the possibility of using

physiological state-space models for a wide variety of applications.

4.1 Deriving the Predict Equations in the State Estimation

Step

Let us now consider the state-space model itself. Assume that .xk varies with time as

.xk = ρxk−1 + εk, (4.1)

where .ρ is a constant (forgetting factor) and .εk ∼ N (0, σ 2
ε). As in the previous

chapter, we will, for the time-being, ignore that this is part of state-space control

system, and instead view the equation purely in terms of a relationship between

4.2 Deriving the Update Equations in the State Estimation Step 41

three random variables. As before, we will also consider the derivation of the mean

and variance of .xk using basic formulas. We first consider the mean.

.E[xk] = E[ρxk−1 + εk]. (4.2)

= E[ρxk−1] + E[εk] using (2.1). (4.3)

= ρE[xk−1] + E[εk] using (2.3). (4.4)

= ρE[xk−1] since E[εk] = 0. (4.5)

∴ E[xk] = ρxk−1|k−1. (4.6)

Next we consider the variance.

.V (xk) = V (ρxk−1 + εk). (4.7)

= V (ρxk−1) + V (εk) + 2Cov(ρxk−1, εk) using (2.4). (4.8)

= V (ρxk−1) + V (εk) since εk is uncorrelated with any of the xk terms.

(4.9)

= ρ2V (xk−1) + V (εk) using (2.6). (4.10)

∴ V (xk) = ρ2σ 2
k−1|k−1 + σ 2

ε . (4.11)

Now that we know the mean and variance of .xk , we can use the fact that it is also

Gaussian distributed to state that

.p(xk|n1:k−1, r1:k−1) =
1

√

2πσ 2
k|k−1

e

−(xk−xk|k−1)2

2σ2
k|k−1 . (4.12)

When .xk evolves with time following .xk = ρxk−1 + εk , the predict equations

in the state estimation step are

.xk|k−1 = ρxk−1|k−1. (4.13)

σ 2
k|k−1 = ρ2σ 2

k−1|k−1 + σ 2
ε . (4.14)

4.2 Deriving the Update Equations in the State Estimation

Step

In the current model, .xk gives rise to a continuous-valued observation .rk in addition

to .nk . We shall assume that .xk is related to .rk through a linear relationship.

42 4 State-Space Model with One Binary and One Continuous Observation

.rk = γ0 + γ1xk + vk, (4.15)

where .γ0 and .γ1 are constants and .vk ∼ N (0, σ 2
k) is sensor noise. Our sensor

readings .yk now consist of both .rk and .nk . What would be the best estimate of

.xk once we have observed .yk? Just like in the previous chapter, we will make use of

the result in (2.16) to derive this estimate. First, however, we need to note that

.p(rk|xk) =
1

√

2πσ 2
v

e

−(rk−γ0−γ1xk)2

2σ2v . (4.16)

This can be easily verified from (4.15). We are now ready to derive the best estimate

(mean) for .xk and its uncertainty. We will need to make use of .p(rk|xk), .p(nk|xk),

and .p(xk|n1:k−1, r1:k−1) to derive this estimate. Note that we now have an additional

exponent term for .rk in .p(xk|n1:k, r1:k). Using (2.16), we have

.p(xk|n1:k, r1:k)

=
p(nk|xk, n1:k−1, r1:k−1)p(rk|xk, n1:k−1, r1:k−1)p(xk|n1:k−1, r1:k−1)

p(nk, rk|n1:k−1, r1:k−1)
.

(4.17)

∝ p(nk|xk)p(rk|xk)p(xk|n1:k−1, r1:k−1). (4.18)

∝ enk log(pk)+(1−nk) log(1−pk) × e

−(rk−γ0−γ1xk)2

2σ2 v × e

−(xk−xk|k−1)2

2σ2
k|k−1 . (4.19)

Taking the log on both sides, we have

.q = nk log(pk) + (1 − nk) log(1 − pk) −
(rk − γ0 − γ1xk)

2

2σ 2
v

−
(xk − xk|k−1)

2

2σ 2
k|k−1

+ constant. (4.20)

The mean and variance of .xk can now be derived by taking the first and second

derivatives of q. Making use of (3.39), we have

.
dq

dxk

= nk − pk +
γ1(rk − γ0 − γ1xk)

σ 2
v

−
(xk − xk|k−1)

σ 2
k|k−1

= 0. (4.21)

We will use a small trick to solve for .xk in the equation above. We will add and

subtract the term .γ1xk|k−1 in the term involving .rk .

4.2 Deriving the Update Equations in the State Estimation Step 43

.nk − pk +
γ1(rk − γ0 − γ1xk + γ1xk|k−1 − γ1xk|k−1)

σ 2
v

=
(xk − xk|k−1)

σ 2
k|k−1

.

(4.22)

nk − pk +
γ1(rk − γ0 − γ1xk|k−1)

σ 2
v

−
γ 2
1

σ 2
v

(xk − xk|k−1) =
(xk − xk|k−1)

σ 2
k|k−1

.

(4.23)

nk − pk +
γ1(rk − γ0 − γ1xk|k−1)

σ 2
v

= (xk − xk|k−1)

(

1

σ 2
k|k−1

+
γ 2
1

σ 2
v

)

.

(4.24)

σ 2
v (nk − pk) + γ1(rk − γ0 − γ1xk|k−1)

σ 2
v

= (xk − xk|k−1)

(

σ 2
v + γ 2

1 σ
2
k|k−1

σ 2
k|k−1σ

2
v

)

.

(4.25)

This yields the mean update

.xk = xk|k−1 +
σ 2

k|k−1

γ 2
1 σ 2

k|k−1 + σ 2
v

[

σ 2
v (nk − pk) + γ1(rk − γ0 − γ1xk|k−1)

]

.

(4.26)

Again, to clarify the explicit dependence of .pk on .xk and the fact that this is the

estimate of .xk having observed .n1:k and .r1:k (the sensor readings up to time index

k), we shall say

.xk|k = xk|k−1 +
σ 2

k|k−1

γ 2
1 σ 2

k|k−1 + σ 2
v

[

σ 2
v (nk − pk|k) + γ1(rk − γ0 − γ1xk|k−1)

]

.

(4.27)

We next take the second derivative of q similar to (3.40). This yields

.
d2q

dx2
k

= −pk(1 − pk) −
γ 2
1

σ 2
v

−
1

σ 2
k|k−1

. (4.28)

Based on (2.21), the uncertainty or variance associated with the new state estimate

.xk|k , therefore, is

.σ 2
k|k = −

(

d2q

dx2
k

)−1

=

[

1

σ 2
k|k−1

+ pk|k(1 − pk|k) +
γ 2
1

σ 2
v

]−1

. (4.29)

44 4 State-Space Model with One Binary and One Continuous Observation

When .xk gives rise to a binary observation .nk and a continuous observation

.rk , the update equations in the state estimation step are

.xk|k = xk|k−1 +
σ 2

k|k−1

γ 2
1 σ 2

k|k−1 + σ 2
v

[

σ 2
v (nk − pk|k) + γ1(rk − γ0 − γ1xk|k−1)

]

.

(4.30)

σ 2
k|k =

[

1

σ 2
k|k−1

+ pk|k(1 − pk|k) +
γ 2
1

σ 2
v

]−1

. (4.31)

4.3 Deriving the Parameter Estimation Step Equations

In the previous chapter, we only needed to derive the update equation for the process

noise variance .σ 2
ε at the parameter estimation step. In the current model, we have a

few more parameters. Thus we will need to derive the update equations for .ρ, .γ0,

.γ1, and .σ 2
v in addition to the update for .σ 2

ε .

4.3.1 Deriving the Process Noise Variance

The derivation of the process noise variance update is very similar to the earlier case

in the preceding chapter. In fact, the only difference from (3.62) is that we will now

have .ρxk−1 in the log-likelihood term instead of .xk−1. We shall label the required

log-likelihood term .Q1.

.Q1 =
−K

2
log

(

2πσ 2
ε

)

−

K
∑

k=2

E

[

(xk − ρxk−1)
2
]

2σ 2
ε

. (4.32)

We take the partial derivative of .Q1 with respect to .σ 2
ε and set it to 0 to solve for the

parameter estimation step update.

.
∂Q1

∂σ 2
ε

=
−K

2σ 2
ε

+
1

2σ 4
ε

K
∑

k=2

E

[

(xk − ρxk−1

]

= 0. (4.33)

=⇒ σ 2
ε =

1

K

K
∑

k=2

{

E
[

x2
k

]

− 2ρE
[

xkxk−1

]

+ ρ2
E

[

x2
k−1

]

}

. (4.34)

4.3 Deriving the Parameter Estimation Step Equations 45

=
1

K

{ K
∑

k=2

Uk − 2ρ

K−1
∑

k=1

Uk,k+1 + ρ2
K−1
∑

k=1

Uk

}

. (4.35)

The parameter estimation step update for .σ 2
ε when .xk evolves with time

following .xk = ρxk−1 + εk is

.σ 2
ε =

1

K

{ K
∑

k=2

Uk − 2ρ

K−1
∑

k=1

Uk,k+1 + ρ2
K−1
∑

k=1

Uk

}

. (4.36)

4.3.2 Deriving the Forgetting Factor

We will take the partial derivative of .Q1 in (4.32) with respect to .ρ and set it to 0 to

solve for its parameter estimation step update.

.
∂Q1

∂ρ
=

(−1)

2σ 2
ε

K
∑

k=2

E
[

− 2xk−1(xk − ρxk−1)
]

. (4.37)

=⇒ 0 = −

K
∑

k=2

E
[

xkxk−1

]

+ ρ

K
∑

k=2

E
[

x2
k−1

]

. (4.38)

= −

K−1
∑

k=1

Uk,k+1 + ρ

K−1
∑

k=1

Uk. (4.39)

ρ =

K−1
∑

k=1

Uk,k+1

[K−1
∑

k=1

Uk

]−1

. (4.40)

The parameter estimation step update for .ρ when .xk evolves with time

following .xk = ρxk−1 + εk is

.ρ =

K−1
∑

k=1

Uk,k+1

[K−1
∑

k=1

Uk

]−1

. (4.41)

46 4 State-Space Model with One Binary and One Continuous Observation

4.3.3 Deriving the Constant Coefficient Terms

We will next consider the model parameters that are related to .rk . Recall from (3.57)

that we need to maximize the expected value of the log of the joint probability

.p(x1:K ∩ y1:K |Θ) = p(y1:K |x1:K ,Θ)p(x1:K |Θ). (4.42)

In the current state-space model, .yk comprises both .nk and .rk . The probability term

containing .γ0, .γ1, and .σ 2
v is

.p(r1:K |x1:K ,Θ) =

K
∏

k=1

1
√

2πσ 2
v

e

−(rk−γ0−γ1xk)2

2σ2v . (4.43)

Let us first take the log of this term followed by the expected value. Labeling this as

.Q2, we have

.Q2 =
−K

2
log

(

2πσ 2
v

)

−

K
∑

k=1

E

[

(rk − γ0 − γ1xk)
2
]

2σ 2
v

. (4.44)

To solve for .γ0 and .γ1, we have to take the partial derivatives of .Q2 with respect to

.γ0 and .γ1, set them each to 0, and solve the resulting equations. We first take the

partial derivative with respect to .γ0.

.
∂Q2

∂γ0
=

1

2σ 2
v

K
∑

k=1

2E
[

rk − γ0 − γ1xk

]

= 0. (4.45)

=⇒ 0 =

K
∑

k=1

rk − γ0K − γ1

K
∑

k=1

E
[

xk

]

. (4.46)

=

K
∑

k=1

rk − γ0K − γ1

K
∑

k=1

xk|K . (4.47)

γ0K + γ1

K
∑

k=1

xk|K =

K
∑

k=1

rk. (4.48)

This provides one equation containing the two unknowns .γ0 and .γ1. We next take

the partial derivative with respect to .γ1.

.
∂Q2

∂γ1
=

1

2σ 2
v

K
∑

k=1

2E
[

xk(rk − γ0 − γ1xk)
]

= 0. (4.49)

4.3 Deriving the Parameter Estimation Step Equations 47

=⇒ 0 =

K
∑

k=1

rkE
[

xk

]

− γ0

K
∑

k=1

E
[

xk

]

− γ1

K
∑

k=1

E
[

x2
k

]

=

K
∑

k=1

rkxk|K − γ0

K
∑

k=1

xk|K − γ1

K
∑

k=1

Uk. (4.50)

γ0

K
∑

k=1

xk|K + γ1

K
∑

k=1

Uk =

K
∑

k=1

rkxk|K . (4.51)

This provides the second equation necessary to solve for .γ0 and .γ1.

The parameter estimation step updates for .γ0 and .γ1 when we observe a

continuous variable .rk = γ0 + γ1xk + vk are

.

[

γ0

γ1

]

=

[

K
∑K

k=1 xk|K
∑K

k=1 xk|K

∑K
k=1 Uk

]−1[∑K
k=1 rk

∑K
k=1 rkxk|K

]

. (4.52)

4.3.4 Deriving the Sensor Noise Variance

The term .Q2 in (4.44) also contains the sensor noise variance .σ 2
v .

.Q2 =
−K

2
log

(

2πσ 2
v

)

−

K
∑

k=1

E

[

(rk − γ0 − γ1xk)
2
]

2σ 2
v

. (4.53)

We take its partial derivative with respect to .σ 2
v and set it to 0 to solve for .σ 2

v .

.
∂Q2

∂σ 2
v

=
−K

2σ 2
v

+
1

2σ 4
v

K
∑

k=1

E

[

(rk − γ0 − γ1xk)
2
]

= 0. (4.54)

=⇒ σ 2
v =

1

K

K
∑

k=1

E

[

(rk − γ0 − γ1xk)
2
]

=
1

K

{ K
∑

k=1

r2 k + Kγ 2
0 + γ 2

1

K
∑

k=1

E
[

x2
k] − 2γ0

K
∑

k=1

rk − 2γ1

K
∑

k=1

rkE
[

xk

]

48 4 State-Space Model with One Binary and One Continuous Observation

+ 2γ0γ1

K
∑

k=1

E
[

xk

]

}

=
1

K

{ K
∑

k=1

r2 k + Kγ 2
0 + γ 2

1

K
∑

k=1

Uk − 2γ0

K
∑

k=1

rk − 2γ1

K
∑

k=1

rkxk|K

+ 2γ0γ1

K
∑

k=1

xk|K

}

. (4.55)

The parameter estimation step update for .σ 2
v when we observe a continuous

variable .rk = γ0 + γ1xk + vk is

.σ 2
v =

1

K

{ K
∑

k=1

r2k + Kγ 2
0 + γ 2

1

K
∑

k=1

Uk − 2γ0

K
∑

k=1

rk − 2γ1

K
∑

k=1

rkxk|K

+ 2γ0γ1

K
∑

k=1

xk|K

}

. (4.56)

4.4 MATLAB Examples

The MATLAB code examples for implementing the EM algorithm described in this

chapter are provided in the following folders:

• one_bin_one_cont\

sim\

data_one_bin_one_cont.mat

filter_one_bin_one_cont.m

expm\

expm_data_one_bin_two_cont.mat

expm_filter_one_bin_one_cont.m

Note that the code implements a slightly different version of what was discussed

here in that the state equation does not contain .ρ. Code examples containing .ρ and

.³Ik are provided in the following chapter for the case where one binary and two

continuous observations are present in the state-space model. The current code can

easily be modified if .ρ is to be included.

4.4 MATLAB Examples 49

The code for this particular state-space model is an extension of the earlier model.

It takes in as input variables n and r that denote .nk and .rk , respectively. We use

r0, r1, and vr for .γ0, .γ1, and .σ
2
v . Shown below is a part of the code where .´0 is

calculated and the model parameters are initialized.

base_prob = sum(n) / length(n);
tol = 1e-8; % convergence criteria

ve(1) = 0.005;
x_smth(1) = 0;
r0(1) = 0.1;
r1(1) = r(1);
vr(1) = 0.002;
b0 = log(base_prob / (1 - base_prob));

Similar to the code examples in the preceding chapter, we also use x_pred,

x_updt, and x_smth to denote .xk|k−1, .xk|k , and .xk|K , respectively. Similarly,

v_pred, v_updt, and v_smth are used to denote the corresponding variances .σ 2
k|k−1,

.σ 2
k|k , and .σ 2

k|K . Just like in the earlier case as well, the code first progresses through

the time indices .k = 1, 2, . . . , K at the state estimation step.

x_pred(k) = x_updt(k - 1);
v_pred(k) = v_updt(k - 1) + ve(m);

x_updt(k) = get_posterior_mode(x_pred(k), v_pred(k), r(k), r0(m),
r1(m), vr(m), b0, n(k));

p_updt(k) = 1 / (1 + exp((-1) * (b0 + x_updt(k))));
v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr(m)) + p_updt

(k) * (1 - p_updt(k)));

The update for .xk|k is calculated using the function shown below based on both

.nk and .rk .

function [y] = get_posterior_mode(x_pred, v_pred, z, r0, r1, vr,
b0, n)

M = 100; % maximum iterations

it = zeros(1, M);
f = zeros(1, M);
df = zeros(1, M);

it(1) = x_pred;

for i = 1:(M - 1)
C = v_pred / ((r1 ^ 2) * v_pred + vr);
f(i) = it(i) - x_pred - C * (r1 * (z - r0 - r1 * x_pred)

+ vr * (n - (1 / (1 + exp((-1) * (b0 + it(i)))))));
df(i) = 1 + C * vr * exp(b0 + it(i)) / ((1 + exp(b0 + it(

i))) ̂ 2);

it(i + 1) = it(i) - f(i) / df(i);

if abs(it(i + 1) - it(i)) < 1e-14

50 4 State-Space Model with One Binary and One Continuous Observation

y = it(i + 1);
return

end
end

error(’Newton-Raphson failed to converge.’);

end

The smoothing step also remains the same (there would have been a change if .ρ

was included).

x_smth(K) = x_updt(K);
v_smth(K) = v_updt(K);
W(K) = v_smth(K) + (x_smth(K) ^ 2);

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end);

for k = (K - 1):(-1):1
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 1));
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) - v_pred(k

+ 1));

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) ^ 2);

end

The updates for .σ 2
ε , .γ0, .γ1, and .σ 2

v are calculated at the parameter estimation step.

4.4.1 Application to EMG and Emotional Valence

Running the simulated and experimental data code examples produces the results

shown in Fig. 4.2. The experimental data example relates to emotional valence and

EMG. Emotion can be accounted for along two different orthogonal axes known

as valence and arousal [55]. Valence refers to the pleasant–unpleasant nature of an

emotion. In [27], this state-space model with one binary and one continuous feature

was used to estimate emotional valence using EMG signal features. The binary and

continuous features were extracted based on the amplitudes and powers of the EMG

signal. The data were collected as a part of the study described in [58] where subjects

were shown a series of music videos to elicit different emotional responses.

4.4 MATLAB Examples 51

0

0.5

1

(a
)

n
k

State Estimation with Simulated Data

0 500 1000 1500 2000 2500

0 500 1000 1500 2000 2500
-2

0

2

(b
)

r k

0 500 1000 1500 2000 2500
0

0.2

0.4

(c
)

p
k

0 500 1000 1500 2000 2500

time index

-5

0

5

(d
)

x k

-4 -3 -2 -1 0 1 2 3 4

standard normal quantiles

-1

0

1

(e
)

in
p
u
t

q
u
a
n
ti
le

s

QQ Plot - State Estimate

Fig. 4.2 State estimation based on observing one binary and one continuous variable. The left

sub-figure depicts estimation on simulated data, and the right sub-figure depicts the estimation of

emotional valence from EMG data. The sub-panels on the left, respectively, depict: (a) the binary

event occurrences .nk ; (b) the continuous variable .rk (blue) and its estimate (red); (c) the probability

of binary event occurrence .pk (blue) and its estimate (red); (d) the state .xk (blue) and its estimate

(red); (e) the QQ plot for the residual error of .xk . The sub-panels on the right, respectively, depict:

(a) the raw EMG signal; (b) the binary EMG feature .nk ; (c) the continuous EMG feature .rk (blue)

and its estimate (red); (d) the probability of binary event occurrence; (e) the emotional valence

state .xk . The shaded background colors on the right sub-figure correspond to music videos where

subject-provided emotional valence ratings were high

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 5

State-Space Model with One Binary
and Two Continuous Observations

In this chapter, we will consider a more complicated form of the state equation—one

that contains both a forgetting factor and an external input. We will also extend the

earlier state-space model to the case where we now have one binary observation and

two continuous observations. As before, however, we will first consider a scenario

motivating the need for such a state-space model.

Recall the example two chapters ago concerning the estimation of sympathetic

arousal from skin conductance features. In reality, it is not just the rate of occurrence

of neural impulses to the sweat glands that reflects changes in arousal. Other features

in a skin conductance signal also contain arousal information. A skin conductance

signal comprises a fast-varying phasic component superimposed on top of a slower-

varying tonic component. The phasic component consists of all the SCRs. The

amplitudes of these SCRs (or equivalently, the amplitudes of the neural impulses

that generated them), in addition to their occurrence, also reflect changes in arousal

[59]. In particular, larger SCRs reflect greater sympathetic arousal. Additionally,

the tonic level also contains information regarding general arousal [60]. Thus, there

are three primary sources of information in a skin conductance signal that capture

arousal levels: (i) the occurrence of SCRs (or equivalently the occurrence of the

neural impulses that generated the SCRs); (ii) the amplitudes of the SCRs (or the

amplitudes of the neural impulses); (iii) the tonic component. These three make

up one binary feature and two amplitude (continuous) features. A state-space model

based on these three features was developed in [29], for estimating arousal from skin

conductance. Here, a transformed version of the SCR amplitudes was interpolated

over to derive the first continuous variable, and the tonic component was considered

Supplementary Information The online version contains supplementary material available at

(https://doi.org/10.1007/978-3-031-47104-9_5).

GitHub https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-

Filters/tree/main/one_bin_two_cont

© The Author(s) 2024

D. S. Wickramasuriya, R. T. Faghih, Bayesian Filter Design for Computational

Medicine, https://doi.org/10.1007/978-3-031-47104-9_5

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47104-9protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-3-031-47104-9_5
https://doi.org/10.1007/978-3-031-47104-9_5
https://doi.org/10.1007/978-3-031-47104-9_5
https://doi.org/10.1007/978-3-031-47104-9_5
https://doi.org/10.1007/978-3-031-47104-9_5
https://doi.org/10.1007/978-3-031-47104-9_5
https://doi.org/10.1007/978-3-031-47104-9_5
https://doi.org/10.1007/978-3-031-47104-9_5
https://doi.org/10.1007/978-3-031-47104-9_5
https://doi.org/10.1007/978-3-031-47104-9_5
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont
https://doi.org/10.1007/978-3-031-47104-9_5
https://doi.org/10.1007/978-3-031-47104-9_5
https://doi.org/10.1007/978-3-031-47104-9_5
https://doi.org/10.1007/978-3-031-47104-9_5
https://doi.org/10.1007/978-3-031-47104-9_5
https://doi.org/10.1007/978-3-031-47104-9_5
https://doi.org/10.1007/978-3-031-47104-9_5
https://doi.org/10.1007/978-3-031-47104-9_5
https://doi.org/10.1007/978-3-031-47104-9_5
https://doi.org/10.1007/978-3-031-47104-9_5
https://doi.org/10.1007/978-3-031-47104-9_5

54 5 State-Space Model with One Binary and Two Continuous Observations

the second continuous variable. Different algorithms are available for separating out

the tonic and phasic components in a skin conductance signal (e.g., [61, 62]).

A further note is also worth mentioning here. Recall the .uk term in our discussion

of state-space models at the beginning. Thus far, we have not yet considered a model

where an external input also drives the state .xk . In reality, external circumstances and

environmental inputs all affect the way we feel. The model in [29] included such

an external input term .Ik . The model was evaluated on two experimental datasets,

one of which involved a Pavlovian fear conditioning experiment. In typical fear

conditioning experiments, a neutral cue is paired with an unpleasant stimulus such

as a painful electric shock. Through repeated pairing, the neutral cue alone begins

to elicit a physiological response that is typically seen for the unpleasant stimulus

[63]. In fear conditioning experiments, the unpleasant stimulus could also take other

forms such a blast of air to the throat, an aversive image, or a loud sound [64, 65].

In [29], the neutral cues along with the unpleasant shocks were modeled as binary-

valued indicator inputs .Ik that drove the sympathetic arousal state .xk .

5.1 Deriving the Predict Equations in the State Estimation

Step

Let us now turn our attention to the state-space model itself and assume that .xk

evolves with time as

.xk = ρxk−1 + αIk + εk, (5.1)

where .α is a constant and .Ik is an external input. The other terms have their usual

meanings. Let us again consider how we may derive the mean and variance using

basic statistical formulas. Since we know what the external input is, we do not treat

it as a random variable but rather as a constant term. We first consider the mean.

.E[xk] = E[ρxk−1 + αIk + εk]. (5.2)

= E[ρxk−1] + E[αIk] + E[εk] using (2.1). (5.3)

= E[ρxk−1] + αIk + E[εk] using (2.2). (5.4)

= ρE[xk−1] + αIk + E[εk] using (2.3). (5.5)

= ρE[xk−1] + αIk since E[εk] = 0. (5.6)

∴ E[xk] = ρxk−1|k−1 + αIk. (5.7)

We next consider the variance.

.V (xk) = V (ρxk−1 + αIk + εk). (5.8)

= V (ρxk−1 + αIk) + V (εk) + 2Cov(ρxk−1 + αIk, εk) using (2.4).

(5.9)

5.2 Deriving the Update Equations in the State Estimation Step 55

= V (ρxk−1 + αIk) + V (εk)

since εk is uncorrelated with any of the xk or Ik terms. (5.10)

= V (ρxk−1) + V (εk) using (2.5). (5.11)

= ρ2V (xk−1) + V (εk) using (2.6). (5.12)

∴ V (xk) = ρ2σ 2
k−1|k−1 + σ 2

ε . (5.13)

When .xk evolves with time following .xk = ρxk−1 + αIk + εk , the predict

equations in the state estimation step are

.xk|k−1 = ρxk−1|k−1 + αIk. (5.14)

σ 2
k|k−1 = ρ2σ 2

k−1|k−1 + σ 2
ε . (5.15)

5.2 Deriving the Update Equations in the State Estimation

Step

In this state-space model, we include a second continuous variable .sk . Similar to .rk ,

we will assume that .sk too is linearly related to .xk as

.sk = δ0 + δ1xk + wk, (5.16)

where .δ0 and .δ1 are constants and .wk ∼ N (0, σ 2
w) is sensor noise. Similar to the

case of .rk in (4.16), we also have

.p(sk|xk) =
1

√

2πσ 2
w

e

−(sk−δ0−δ1xk)2

2σ2
w . (5.17)

The procedure to derive the update equations in the state estimation step is now

similar to what we have seen earlier. With .sk included, we have yet another exponent

term in .p(xk|y1:k). Therefore,

.p(xk|y1:k) ∝ p(nk|xk)p(rk|xk)p(sk|xk)p(xk|n1:k−1, r1:k−1, s1:k−1). (5.18)

∝ enk log(pk)+(1−nk) log(1−pk) × e

−(rk−γ0−γ1xk)2

2σ2
v × e

−(sk−δ0−δ1xk)2

2σ2
w

× e

−(xk−xk|k−1)2

2σ2
k|k−1 . (5.19)

56 5 State-Space Model with One Binary and Two Continuous Observations

Taking the log on both sides, we have

.q = nk log(pk) + (1 − nk) log(1 − pk) −
(rk − γ0 − γ1xk)

2

2σ 2
v

−
(sk − δ0 − δ1xk)

2

2σ 2
w

−
(xk − xk|k−1)

2

2σ 2
k|k−1

+ constant. (5.20)

Taking the first derivative of q and setting it to 0 yield

.
dq

dxk

= nk − pk +
γ1(rk − γ0 − γ1xk)

σ 2
v

+
δ1(sk − δ0 − δ1xk)

σ 2
w

−
(xk − xk|k−1)

σ 2
k|k−1

= 0. (5.21)

We used a trick in the previous chapter to solve for .xk . We added and subtracted

.γ1xk|k−1 to the term containing .rk . We will do the same here. We will also add and

subtract .δ1xk|k−1 to the term containing .sk .

.
(xk − xk|k−1)

σ 2
k|k−1

= nk − pk +
γ1(rk − γ0 − γ1xk + γ1xk|k−1 − γ1xk|k−1)

σ 2
v

+
δ1(sk − δ0 − δ1xk + δ1xk|k−1 − δ1xk|k−1)

σ 2
w

. (5.22)

= nk − pk +
γ1(rk − γ0 − γ1xk|k−1)

σ 2
v

+
δ1(sk − δ0 − δ1xk|k−1)

σ 2
w

−

(

γ 2
1

σ 2
v

+
δ2

1

σ 2
w

)

(xk − xk|k−1). (5.23)

= nk − pk +
γ1(rk − γ0 − γ1xk|k−1)

σ 2
v

+
δ1(sk − δ0 − δ1xk|k−1)

σ 2
w

−

(

γ 2
1 σ

2
w + δ2

1σ 2
v

σ 2
v σ 2

w

)

(xk − xk|k−1). (5.24)

Therefore,

.
(xk − xk|k−1)

σ 2
k|k−1

+

(

γ 2
1 σ 2

w + δ2
1σ 2

v

σ 2
v σ 2

w

)

(xk − xk|k−1)

= nk − pk +
γ1(rk − γ0 − γ1xk|k−1)

σ 2
v

+
δ1(sk − δ0 − δ1xk|k−1)

σ 2
w

. (5.25)

5.2 Deriving the Update Equations in the State Estimation Step 57

(xk − xk|k−1)

[

σ 2
v σ 2

w + σ 2
k|k−1(γ

2
1 σ

2
w + δ2

1σ 2
v)

σ 2
k|k−1σ

2
v σ 2

w

]

=
σ 2

v σ 2
w

σ 2
v σ 2

w

(nk − pk) +
γ1σ

2
w(rk − γ0 − γ1xk|k−1)

σ 2
v σ 2

w

+
δ1σ

2
v (sk − δ0 − δ1xk|k−1)

σ 2
v σ 2

w

. (5.26)

This yields the state update

.xk|k = xk|k−1 +
σ 2

k|k−1

σ 2
v σ 2

w + σ 2
k|k−1(γ

2
1 σ 2

w + δ2
1σ 2

v)

×

[

σ 2
v σ 2

w(nk − pk|k) + γ1σ
2
w(rk − γ0 − γ1xk|k−1)

+ δ1σ
2
v (sk − δ0 − δ1xk|k−1)

]

. (5.27)

Likewise, the second derivative yields

.
d2q

dx2
k

= −pk(1 − pk) −
γ 2

1

σ 2
v

−
δ2

1

σ 2
w

−
1

σ 2
k|k−1

. (5.28)

And therefore,

.σ 2
k|k =

[

1

σ 2
k|k−1

+ pk|k(1 − pk|k) +
γ 2

1

σ 2
v

+
δ2

1

σ 2
w

]−1

. (5.29)

When .xk gives rise to a binary observation .nk and two continuous observa-

tions .rk and .sk , the update equations in the state estimation step are

.xk|k = xk|k−1 +
σ 2

k|k−1

σ 2
v σ 2

w + σ 2
k|k−1(γ

2
1 σ 2

w + δ2
1σ 2

v)

×

[

σ 2
v σ 2

w(nk − pk|k) + γ1σ
2
w(rk − γ0 − γ1xk|k−1)

+ δ1σ
2
v (sk − δ0 − δ1xk|k−1)

]

. (5.30)

σ 2
k|k =

[

1

σ 2
k|k−1

+ pk|k(1 − pk|k) +
γ 2

1

σ 2
v

+
δ2

1

σ 2
w

]−1

. (5.31)

58 5 State-Space Model with One Binary and Two Continuous Observations

5.3 Deriving the Parameter Estimation Step Equations

In this state-space model, we have the parameters .α, .ρ, .γ0, .γ1, .δ0, .δ1, .σ 2
v , and .σ 2

w to

determine. We have already seen how .γ0, .γ1, and .σ 2
v were derived in the previous

chapter when we had .rk . We will not repeat those derivations here again. Instead, we

will only consider the derivations related to the new model parameters or changes to

the way that earlier model parameters were derived. We will use this same approach

of not re-deriving previous equations in the chapters that follow as well.

5.3.1 Deriving the Terms in the State Equation

We now have both .ρ and .α in the state equation. To determine them at the parameter

estimation step, we will take the partial derivatives of the log-likelihood term

containing .ρ and .α. In this case, the term we are interested in is

.Q1 =
1

2σ 2
ε

K
∑

k=1

E

[

(xk − ρxk−1 − αIk)
2
]

. (5.32)

Again, we set .x0 = x1 to permit some bias at the beginning and ignore the

relationship through .ρ for this boundary condition. Therefore,

.Q1 =
1

2σ 2
ε

{ K
∑

k=2

E

[

(xk − ρxk−1 − αIk)
2
]

+ E

[

(αI1)
2
]

}

. (5.33)

We will now take the partial derivatives of .Q1 with respect to .α and .ρ and set them

to 0. Let us first begin with .α.

.
∂Q1

∂α
=

1

2σ 2
ε

{ K
∑

k=2

E
[

− 2Ik(xk − ρxk−1 − αIk)
]

+ 2αI 2
1

}

= 0.

(5.34)

=⇒ 0 = −

K
∑

k=2

IkE
[

xk

]

+ ρ

K
∑

k=2

IkE
[

xk−1

]

+ α

K
∑

k=1

I 2
k

= −

K
∑

k=2

Ikxk|K + ρ

K
∑

k=2

Ikxk−1|K + α

K
∑

k=1

I 2
k . (5.35)

=⇒ ρ

K
∑

k=2

Ikxk−1|K + α

K
∑

k=1

I 2
k =

K
∑

k=2

Ikxk|K . (5.36)

5.3 Deriving the Parameter Estimation Step Equations 59

We will next take the partial derivative of .Q1 with respect to .ρ.

.
∂Q1

∂ρ
=

1

2σ 2
ε

K
∑

k=2

E
[

− 2xk−1(xk − ρxk−1 − αIk)
]

= 0. (5.37)

=⇒ 0 = −

K
∑

k=2

E
[

xkxk−1

]

+ ρ

K
∑

k=2

E
[

x2
k−1

]

+ α

K
∑

k=2

IkE
[

xk−1

]

= −

K−1
∑

k=1

Uk,k+1 + ρ

K−1
∑

k=1

Uk + α

K
∑

k=2

Ikxk−1|K . (5.38)

=⇒ ρ

K−1
∑

k=1

Uk + α

K
∑

k=2

Ikxk−1|K =

K−1
∑

k=1

Uk,k+1. (5.39)

We now have two equations with which to solve for .α and .ρ.

The parameter estimation step updates for .ρ and .α when .xk evolves with time

following .xk = ρxk−1 + αIk + εk are

.

[

ρ

α

]

=

[∑K−1
k=1 Uk

∑K
k=2 Ikxk−1|K

∑K
k=2 Ikxk−1|K

∑K
k=1 I 2

k

]−1[∑K−1
k=1 Uk,k+1

∑K
k=2 Ikxk|K

]

. (5.40)

5.3.2 Deriving the Process Noise Variance

We next consider the parameter estimation step update for the process noise variance

.σ 2
ε . The log-likelihood term containing .σ 2

ε is

.Q2 =
−K

2
log

(

2πσ 2
ε

)

−

K
∑

k=1

E

[

(xk − ρxk−1 − αIk)
2
]

2σ 2
ε

=
−K

2
log

(

2πσ 2
ε

)

−

K
∑

k=2

E

[

(xk − ρxk−1 − αIk)
2
]

2σ 2
ε

−
E

[

(αI1)
2
]

2σ 2
ε

. (5.41)

We take the partial derivative of .Q2 with respect to .σ 2
ε and set it to 0 to solve for the

parameter estimation step update.

60 5 State-Space Model with One Binary and Two Continuous Observations

.
∂Q2

∂σ 2
ε

=
−K

2σ 2
ε

+
1

2σ 4
ε

K
∑

k=2

E

[

(xk − ρxk−1 − αIk)
2
]

+
(αI)2

2σ 4
ε

= 0. (5.42)

σ 2
ε =

1

K

K
∑

k=2

{

E
[

x2
k

]

− 2ρE
[

xkxk−1

]

+ ρ2
E

[

x2
k−1

]

− 2αIkE
[

xk

]

+ 2αρIkE
[

xk−1

]

}

+
α2

K

K
∑

k=1

I 2
k

=
1

K

{ K
∑

k=2

Uk − 2ρ

K−1
∑

k=1

Uk,k+1 + ρ2
K−1
∑

k=1

Uk − 2α

K
∑

k=2

Ikxk|K

+ 2αρ

K
∑

k=2

Ikxk−1|K + α2
K

∑

k=1

I 2
k

}

. (5.43)

The parameter estimation step update for .σ 2
ε when .xk evolves with time

following .xk = ρxk−1 + αIk + εk is

.σ 2
ε =

1

K

{ K
∑

k=2

Uk − 2ρ

K−1
∑

k=1

Uk,k+1 + ρ2
K−1
∑

k=1

Uk − 2α

K
∑

k=2

Ikxk|K

+ 2αρ

K
∑

k=2

Ikxk−1|K + α2
K

∑

k=1

I 2
k

}

. (5.44)

5.3.3 Deriving the Constant Coefficient Terms and the Sensor

Noise Variance

The procedure for deriving the constant coefficients .δ0 and .δ1 related to .sk is similar

to what we have seen earlier for .γ0 and .γ1. The derivation of the sensor noise

variance .σ 2
w is also similar to that for .σ 2

v .

The parameter estimation step updates for .δ0, .δ1, and .σ 2
w when we observe a

second continuous variable .sk = δ0 + δ1xk + wk are

(continued)

5.4 MATLAB Examples 61

.

[

δ0

δ1

]

=

[

K
∑K

k=1 xk|K
∑K

k=1 xk|K

∑K
k=1 Uk

]−1[∑K
k=1 sk

∑K
k=1 skxk|K

]

. (5.45)

σ 2
w =

1

K

{ K
∑

k=1

s2
k + Kδ2

0 + δ2
1

K
∑

k=1

Uk − 2δ0

K
∑

k=1

sk − 2δ1

K
∑

k=1

skxk|K

+ 2δ0δ1

K
∑

k=1

xk|K

}

. (5.46)

5.4 MATLAB Examples

The code examples implementing the EM algorithm for the current state-space

model are provided in the “one_bin_two_cont\sim” and “one_bin_two_cont\expm”

folders. These two directories contain the following files:

• one_bin_two_cont\

sim\

data_one_bin_two_cont.mat

filter_one_bin_two_cont.m

data_one_bin_two_cont_no_extern_stim.mat

filter_one_bin_two_cont_no_extern_stim.m

expm\

expm_data_one_bin_two_cont.mat

expm_filter_one_bin_two_cont.m

expm_data_one_bin_two_cont_no_extern_stim.mat

expm_filter_one_bin_two_cont_no_extern_stim.m

For both simulated and experimental data, we have provided examples with and

without .αIk (the external input). Results from running the code on a simulated

example with .αIk included and on an experimental data example without .αIk are

shown in Fig. 5.1. For simulated and experimental data containing .αIk , the “.m” files

are named “filter_one_bin_two_cont.m” and “expm_filter_one_bin_two_cont.m,”

respectively. The corresponding examples without .αIk have the “no_extern_stim”

suffix added to them.

In this case, the model takes in as inputs the variables n, r, and s that denote

.nk , .rk , and .sk , respectively, for estimating .xk . Since there are three different

observations, the code also has more parameters to initialize. In the code, the

62 5 State-Space Model with One Binary and Two Continuous Observations

variables r0 and r1 are used for .γ0 and .γ1, respectively, and s0 and s1 are used for

.δ0 and .δ1. The variables vr and vs denote the corresponding sensor noise variances

.σ 2
v and .σ 2

w. Finally, ve, rho, and alpha denote the process noise variance .σ 2
ε , the

forgetting factor .ρ, and the .α term related to .Ik , respectively. Shown below is a brief

code snippet showing the parameter initialization.

r0(1) = r(1);
r1(1) = 0.5;
s0(1) = s(1);
s1(1) = 1;
vr(1) = 0.05;
vs(1) = 0.05;
ve(1) = 0.05;
rho(1) = 1;
alpha(1) = 0.5;

Also, base_prob (.p0) is still calculated based on the average probability of .nk =

1 occurring in the data. The other variables x_pred, x_updt, and x_smth for .xk|k−1,

.xk|k , and .xk|K remain the same, as well as the corresponding v_pred, v_updt and

v_smth variables for variance. There is a sequential progression in the code through

.k = 1, 2, . . . , K and then through .k = K, (K−1), . . . , 1 at the state estimation step.

The terms r0, r1, s0, s1, vr, vs, ve, rho, and alpha are calculated at the parameter

estimation step. Shown below is a code snippet in the forward progression.

x_pred(k) = rho(m) * x_updt(k - 1) + alpha(m) * I(k);
v_pred(k) = (rho(m) ^ 2) * v_updt(k - 1) + ve(m);

C(k) = v_pred(k) / (vr(m) * vs(m) + v_pred(k) * ((r1(m) ̂ 2) * vs
(m) + (s1(m) ̂ 2) * vr(m)));

x_updt(k) = get_posterior_mode(x_pred(k), C(k), r(k), r0(m), r1(m
), b0(m), b1(m), vr(m), n(k), s(k), s0(m), s1(m), vs(m));

p_updt(k) = 1 / (1 + exp((-1) * (b0(m) + b1(m) * x_updt(k))));
v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ̂ 2) / vr(m)) + ((s1(m

) ^ 2) / vs(m)) + (b1(m) ^ 2) * p_updt(k) * (1 - p_updt(k)));

The code where we proceed in the reverse direction at the state estimation step is

shown below. While it is largely similar to what we saw in an earlier chapter, now

the variable rho is also included.

x_smth(K) = x_updt(K);
v_smth(K) = v_updt(K);
W(K) = v_smth(K) + (x_smth(K) ^ 2);

A(1:(end - 1)) = rho(m) * v_updt(1:(end - 1)) ./ v_pred(2:end);

for k = (K - 1):(-1):1
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 1));
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) - v_pred(k

+ 1));

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) ^ 2);

end

5.4 MATLAB Examples 63

Note that in the examples where an external input is absent, alpha is not calculated.

The state estimation step and the parameter estimation step are performed in turn

until convergence.

5.4.1 Application to Skin Conductance and Sympathetic

Arousal

This state-space model with one binary and two continuous observations was used

in [29] for estimating sympathetic arousal from skin conductance. In the model,

the tonic component made up the continuous variable .sk . The other continuous

variable .rk was derived somewhat differently. SCR amplitudes can have a skewed

distribution which a log transformation can help correct. Therefore, the log of the

SCR amplitudes was taken and interpolated over to generate .rk .

A further point is to be noted with experimental data. The estimated state .xk

can occasionally overfit to one of the continuous variables [29]. Consequently, an

additional constraint was applied to allow the parameters corresponding to .rk and .sk
(i.e., .γ0, .γ1, .σ 2

v , .δ0, .δ1, and .σ 2
w) to update only if the sensor noise variance estimates

did not differ by more than a certain amount. Details of this can be found in [29].

This constraint prevented one of the sensor noise variance estimates from being

driven down at the expense of the other (which takes place during overfitting).

If the external inputs are unknown, the version of the code without .αIk can

be used. The experimental results in Fig. 5.1 are from a case where .αIk is not

considered. The data come from the stress experiment in [53] which we also

considered two chapters ago. The portion of the experiment considered here consists

of the cognitive stressors, relaxation, and the horror movie clip. The state estimates

are high during the cognitive stressors and thereafter gradually diminish. However,

the increase seen in the HAI at the beginning of the horror movie clip is quite

significant.

Data from the Pavlovian fear conditioning experiment in [66] are taken for

the experimental code example containing the .αIk term. The results are shown

in Fig. 5.2. The experiment is described in detail in [67, 68]. In a typical fear

conditioning experiment, a neutral cue is paired with an unpleasant stimulus such

as a painful electric shock. Through repeated pairing, a subject begins to display

64 5 State-Space Model with One Binary and Two Continuous Observations

Fig. 5.1 State estimation based on observing one binary and two continuous variables. The left

sub-figure depicts estimation on simulated data, and the right sub-figure depicts the estimation of

sympathetic arousal from skin conductance data. The sub-panels on the left, respectively, depict:

(a) the probability of binary event occurrence .pk (blue) and its estimate (red) (the green and black

dots above at the top denote the presence or absence of binary events, respectively); (b) the first

continuous variable .rk (blue) and its estimate (red); (c) the second continuous variable .sk (blue)

and its estimate (red); (d) the state .xk (blue) and its estimate (red) (the cyan and black dots denote

the presence or absence of external binary inputs, respectively); (e) the QQ plot for the residual

error of .xk . The sub-panels on the right, respectively, depict: (a) the skin conductance signal (the

green and black dots on top denote the presence or absence of SCRs, respectively); (b) the phasic-

derived variable .rk (green solid) and its estimate (dotted); (c) the tonic level .sk (pink solid) and

its estimate (dotted); (d) the arousal state .xk and its 95% confidence limits; (e) the probability of

SCR occurrence .pk and its 95% confidence limits; (f) the HAI (the regions above 90% and below

10% are shaded in red and green, respectively). The background colors on the right sub-figure

correspond to the instruction period, a counting task, a color–word association task, relaxation,

and watching a horror movie clip. From [32], used under Creative Commons CC-BY license

a response to the neutral cue alone. In the experiment in [66], two types of cues

were used. One of the cues never preceded the electric shock. This is labeled the

CS- cue. The second cue, labeled as CS+, preceded the shock 50% of the time. The

code example sets .Ik = 1 at the locations of the neutral cues and the shocks. Other

types of inputs may also be considered for .Ik . Figure 5.2 depicts the averages for

the CS- trials, the CS+ trials that did not contain the electric shock, and the CS+

trials that did contain the shock. As seen in Fig. 5.2, for this particular subject, the

CS+ with the shock elicited the highest skin conductance and sympathetic arousal

responses. The CS- trials had the lowest skin conductance and arousal levels, and

the CS+ without the shock had responses in-between these two.

5.4 MATLAB Examples 65

Fig. 5.2 State estimation in Pavlovian fear conditioning. The sub-panels, respectively, depict: (a)

the skin conductance signal .zk ; (b) the phasic-derived variable (green solid) and its estimate

(dashed); (c) the tonic level .sk (mauve solid) and its estimate (dashed); (d) the probability of

SCR occurrence .pk (the cyan and black dots on top denote the presence or absence of SCRs,

respectively); (e) the arousal state .xk (the green and black dots denote the presence or absence

of external binary inputs, respectively); (f) the averages corresponding to different trials for skin

conductance (CS.− —green, CS+ without the shock—mauve and CS+ with the shock—red); (g)

the same averages for the arousal state .xk . © 2020 IEEE. Reprinted, with permission, from [29]

66 5 State-Space Model with One Binary and Two Continuous Observations

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 6

State-Space Model with One Binary, Two
Continuous, and a Spiking-Type

Observation

Spiking-type observations are occasionally recorded in experiments. For instance,

neural spiking activity may be recorded from a macaque monkey engaged in a

learning experiment or an EKG signal may be recorded from a human subject in

an experiment. In such instances, we can model the spiking-type variable using

a conditional intensity function (CIF). The CIF is similar to the rate parameter

in a Poisson distribution but is more general. With spiking-type observations, we

usually assume that our state variable .xk affects the rate of spiking through the CIF.

Now we need to estimate .xk at each time index k. In the case of a spiking-type

variable, we typically observe the spiking over a short interval corresponding to

time index k. For instance, in the case of a macaque monkey performing a behavioral

learning task, we may observe neural spiking over a period of several hundred

milliseconds corresponding to each trial k. Each trial duration is then divided into

smaller bins indexed over j . Since the spiking-type variables are binary, we assign

either .mk,j = 0 or .mk,j = 1 within the interval k for each of the smaller time

bins j based on spike occurrence. Shown below is an example CIF .λk,j used in an

experiment where a monkey’s learning state was estimated from measurements that

included neural spiking [6].

.λk,j = eθ0+ψxk+
∑S

s=1 θsmk,j−s . (6.1)

In general, the specific form of the CIF depends on the type of application. In this

chapter, we will derive the state and parameter estimation step equations for a model

where a spiking-type variable characterized by a general CIF .λk,j is observed along

Supplementary Information The online version contains supplementary material available at

(https://doi.org/10.1007/978-3-031-47104-9_6).

GitHub https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-

Filters/tree/main/one_bin_two_cont_one_spk

© The Author(s) 2024

D. S. Wickramasuriya, R. T. Faghih, Bayesian Filter Design for Computational

Medicine, https://doi.org/10.1007/978-3-031-47104-9_6

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47104-9protect T1	extunderscore 6&domain=pdf
https://doi.org/10.1007/978-3-031-47104-9_6
https://doi.org/10.1007/978-3-031-47104-9_6
https://doi.org/10.1007/978-3-031-47104-9_6
https://doi.org/10.1007/978-3-031-47104-9_6
https://doi.org/10.1007/978-3-031-47104-9_6
https://doi.org/10.1007/978-3-031-47104-9_6
https://doi.org/10.1007/978-3-031-47104-9_6
https://doi.org/10.1007/978-3-031-47104-9_6
https://doi.org/10.1007/978-3-031-47104-9_6
https://doi.org/10.1007/978-3-031-47104-9_6
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_one_spk
https://doi.org/10.1007/978-3-031-47104-9_6
https://doi.org/10.1007/978-3-031-47104-9_6
https://doi.org/10.1007/978-3-031-47104-9_6
https://doi.org/10.1007/978-3-031-47104-9_6
https://doi.org/10.1007/978-3-031-47104-9_6
https://doi.org/10.1007/978-3-031-47104-9_6
https://doi.org/10.1007/978-3-031-47104-9_6
https://doi.org/10.1007/978-3-031-47104-9_6
https://doi.org/10.1007/978-3-031-47104-9_6
https://doi.org/10.1007/978-3-031-47104-9_6
https://doi.org/10.1007/978-3-031-47104-9_6

68 6 State-Space Model with One Binary, Two Continuous, and a Spiking-Type. . .

with one binary and two continuous variables. We will, however, first consider the

need for such a state-space model.

In the preceding chapter, we looked at a state-space model for estimating

sympathetic arousal based on one binary and two continuous skin conductance

observations. The occurrence of SCRs made up the binary observation .nk . The

continuous observations comprised of a transformed version of the SCR peaks

and the tonic level. In reality, the sympathetic nervous system affects a number

of organs, not just the skin. We can go to any one of these organs to extract

features to estimate arousal. However, not all these organs (or the corresponding

physiological signals) are conveniently accessible. The heart is one organ affected

by sympathetic activation for which the corresponding signals can be measured

easily (e.g., using an EKG). Now sympathetic drive is known to increase heart rate

and the force of ventricular contraction [69]. The heart, however, is innervated by

both sympathetic and parasympathetic fibers and also has its own pacing mechanism

[70]. Consequently, a precise extraction of the sympathetic activation component

from an EKG signal is a challenge. In [31], a state-space model based on three

skin conductance features (the features just referred to) and EKG signals modeled

as spiking observations was used to estimate sympathetic arousal. Here, the model

assumed that increased sympathetic arousal caused EKG inter-beat intervals (known

as RR-intervals) to decrease (i.e., caused heart rate to increase). The CIF was based

on the history-dependent inverse Gaussian (HDIG) probability density function for

RR-intervals [71, 72]. The state-space model could be used for wearable healthcare

applications (Fig. 6.1). Post-traumatic stress disorder (PTSD), for instance, is known

to involve symptoms of hyperarousal [73], while major depression is known

to involve low levels of arousal [74]. Thus, a wearable device based on skin

`

Sympathe�c

arousal state

Skin conductance

sensor

EKG sensor

patches

Fig. 6.1 A wearable sensing system for decoding sympathetic arousal. The sweat glands are

innervated by sympathetic nerve fibers, and the heart is innervated by both sympathetic and

parasympathetic fibers. This information from skin conductance and heart rate can be used to

estimate sympathetic arousal. From [26], used under Creative Commons CC-BY license

6.2 Deriving the Update Equations in the State Estimation Step 69

conductance and heart rate measurements for monitoring arousal could be used to

help care for such patients.

We also make another notable observation here. The phenomena occurring within

the human body and brain are rather complex. Thus, it is likely that no single type

of physiological signal or feature captures all the necessary information regarding

latent physiological states. If, for instance, both emotional valence and arousal are

to be decoded, features from a number of signals could be considered [58, 75–78].

Signals such as EMG [27, 79–82], heart rate [83–87], respiration [88–92], and blood

flow signals within the brain (functional near infrared spectroscopy) [93–97] all

contain information regarding phenomena such as emotion and cognitive effort.

6.1 Deriving the Predict Equations in the State Estimation

Step

We have already considered three different cases for the state equation: (i) the simple

random walk; (ii) the random walk with a forgetting factor .ρ; (iii) the random walk

with a forgetting factor .ρ and an external input .Ik . You would have noticed by now

that changes to the state equation primarily affect the predict equations in the state

estimation step and not the update equations. The three cases we have considered

thus far cover most of the applications that are encountered in typical physiological

state estimation problems. In the current state-space model, we will assume that

.xk evolves with time following one of the state equations we have already seen.

Thus no new predict step equations have to be derived. These signals could be used

for wearable healthcare applications. A study of how different external stimuli also

affect emotion could lead to novel neuromarketing strategies as well [98].

6.2 Deriving the Update Equations in the State Estimation

Step

When dealing with a spiking-type observation, we first split our observation interval

at time index k into smaller segments and index these smaller bins as .j =

1, 2, . . . , J . The joint probability of the spikes over the J observation bins is then

[99]

.p(mk,1,mk,2, . . . , mk,J |xk) = e
∑J

j=1 log(λk,j Δ)mk,j −λk,j Δ
. (6.2)

Recall from (5.18) that when we had one binary and two continuous observations,

the posterior density was

.p(xk|y1:k) ∝ p(nk|xk)p(rk|xk)p(sk|xk)p(xk|n1:k−1, r1:k−1, s1:k−1). (6.3)

70 6 State-Space Model with One Binary, Two Continuous, and a Spiking-Type. . .

Now that we have the spiking-type observation, we will include .p(mk,1,mk,2, . . . ,

.mk,J |xk) in .p(xk|y1:k) as well. Therefore,

.p(xk|y1:k) ∝ enk log(pk)+(1−nk) log(1−pk) × e

−(rk−γ0−γ1xk)2

2σ2
v × e

−(sk−δ0−δ1xk)2

2σ2
w

× e
∑J

j=1 log(λk,j Δ)mk,j −λk,j Δ
× e

−(xk−xk|k−1)2

2σ2
k|k−1 . (6.4)

The procedure for deriving the update equations is again similar to what we have

seen thus far. As before, we will take the first derivative of the exponent term, set

it to 0, and solve for .xk to obtain the mean. We will then take the second derivative

to obtain the uncertainty or variance associated with the estimate. Taking the log of

the posterior density and setting the first partial derivative to 0 yield

.
dq

dxk

=
−(xk − xk|k−1)

σ 2
k|k−1

+ (nk − pk) +
γ1(rk − γ0 − γ1xk)

σ 2
v

+
δ1(sk − δ0 − δ1xk)

σ 2
w

+

J
∑

j=1

1

λk,j

dλk,j

dxk

(mk,j − λk,jΔ) = 0. (6.5)

Solving for .xk is now similar to what we saw in the earlier chapter. We simply

need to add and subtract .γ1xk|k−1 and .δ1xk|k−1 from the terms containing .rk and .sk ,

respectively. The second partial derivative is

.
d2q

dx2
k

=
−1

σ 2
k|k−1

−
dpk

dxk

−
γ 2

1

σ 2
v

−
δ2

1

σ 2
w

+
d

dxk

[J
∑

j=1

1

λk,j

dλk,j

dxk

(mk,j − λk,jΔ)

]

=
−1

σ 2
k|k−1

− pk(1 − pk) −
γ 2

1

σ 2
v

−
δ2

1

σ 2
w

+

J
∑

j=1

[

1

λk,j

d2λk,j

dx2
k

(mk,j − λk,jΔ) −
mk,j

λ2
k,j |k

(

dλk,j

dxk

)2]

. (6.6)

Thus the updates for .xk|k and .σ 2
k|k turn out to be

.xk|k = xk|k−1 +
σ 2

k|k−1

σ 2
v σ 2

w + σ 2
k|k−1(γ

2
1 σ 2

w + δ2
1σ 2

v)

[

σ 2
v σ 2

w(nk − pk|k)

+ γ1σ
2
w(rk − γ0 − γ1xk|k−1) + δ1σ

2
v (sk − δ0 − δ1xk|k−1)

+ σ 2
v σ 2

w

J
∑

j=1

1

λk,j |k

dλk,j |k

dxk

(mk,j − λk,j |kΔ)

]

. (6.7)

6.3 Deriving the Parameter Estimation Step Equations 71

σ 2
k|k =

{

1

σ 2
k|k−1

+ pk|k(1 − pk|k) +
γ 2

1

σ 2
v

+
δ2

1

σ 2
w

−

J
∑

j=1

[

1

λk,j |k

d2λk,j |k

dx2
k

(mk,j − λk,j |kΔ) −
mk,j

λ2
k,j |k

(

dλk,j |k

dxk

)2]}−1

. (6.8)

Note that the equations may simplify further depending on the specific form of the

CIF. Here we have provided the derivations for the general case.

When .xk gives rise to a binary observation .nk , two continuous observations

.rk and .sk and a spiking-type observation .mk,j characterized by the CIF .λk,j ,

the update equations in the state estimation step are

.xk|k = xk|k−1 +
σ 2

k|k−1

σ 2
v σ 2

w + σ 2
k|k−1(γ

2
1 σ 2

w + δ2
1σ 2

v)

[

σ 2
v σ 2

w(nk − pk|k)

+ γ1σ
2
w(rk − γ0 − γ1xk|k−1) + δ1σ

2
v (sk − δ0 − δ1xk|k−1)

+ σ 2
v σ 2

w

J
∑

j=1

1

λk,j |k

dλk,j |k

dxk

(mk,j − λk,j |kΔ)

]

. (6.9)

σ 2
k|k =

{

1

σ 2
k|k−1

+ pk|k(1 − pk|k) +
γ 2

1

σ 2
v

+
δ2

1

σ 2
w

−

J
∑

j=1

[

1

λk,j |k

d2λk,j |k

dx2
k

(mk,j − λk,j |kΔ) −
mk,j

λ2
k,j |k

(

dλk,j |k

dxk

)2]}−1

. (6.10)

6.3 Deriving the Parameter Estimation Step Equations

The state-space model we consider here is an extension of what we considered in

the previous chapter that contained one binary and two continuous observations.

Therefore, the only new parameter estimation step equations we need to derive are

for the spiking-type variable.

72 6 State-Space Model with One Binary, Two Continuous, and a Spiking-Type. . .

6.3.1 Deriving the Coefficients Within a CIF

A CIF can take different forms depending on the type of application. For instance,

when neural spiking data are involved, .log(λk,j) may be expressed as a linear sum

of history-dependent terms and .xk as in (6.1). If this is the case, we would have

to determine .ψ and the .θs’s at the parameter estimation step. When heartbeats

are modeled as a spiking-type variable, the CIF involves an inverse Gaussian

distribution and could be related to .xk through its mean [31]. Thus, the terms to

be derived at the parameter estimation step when a spiking-type variable is present

are application-specific. In general, due to the rather complicated nature of a CIF,

the parameter estimation step updates do not have neat closed-form expressions.

Instead, the parameters have to be chosen to maximize the expected log-likelihood

.Q =

K
∑

k=1

J
∑

j=1

E

[

log(λk,jΔ)mk,j − λk,jΔ
]

. (6.11)

The form of Q can be deduced from (6.2). The trick to maximizing Q is to perform

a Taylor expansion around the mean .xk|K = E[xk] for each of the summed terms.

Therefore, when the expected value is finally calculated, we will end up with terms

like .E[xk − xk|K] and .E[(xk − xk|K)2] in the expansion. Now

.E[xk − xk|K] = E[xk] − xk|K based on (2.2). (6.12)

= xk|K − xk|K = 0, (6.13)

and .E[(xk − xk|K)2] is the variance .σ 2
k|K . These two facts will greatly help simplify

the calculation of Q.

Let us now perform the Taylor expansion around .xk|K [6]. The summed term

within the expected value simplifies to

. log(λk,jΔ)mk,j − λk,jΔ ≈ log(λk,j |KΔ)mk,j − λk,j |KΔ

+
1

λk,j |K

∂λk,j |K

∂xk

(mk,j − λk,j |KΔ)(xk − xk|K)

+
1

2

[

1

λk,j |K

∂2λk,j |K

∂x2
k

(mk,j − λk,j |KΔ)

−
mk,j

λ2
k,j |K

(

∂λk,j |K

∂xk

)2]

(xk − xk|K)2. (6.14)

Taking the expected value, we have

.E
[

log(λk,jΔ)mk,j − λk,j |KΔ
]

≈ log(λk,j |KΔ)mk,j − λk,j |KΔ

6.3 Deriving the Parameter Estimation Step Equations 73

+
1

λk,j |K

∂λk,j |K

∂xk

(mk,j − λk,j |KΔ)E
[

xk − xk|K

]

+
1

2

[

1

λk,j |K

∂2λk,j |K

∂x2
k

(mk,j − λk,j |KΔ)

−
mk,j

λ2
k,j |K

(

∂λk,j |K

∂xk

)2]

× E
[

xk − xk|K

]2
. (6.15)

Note the terms .E[xk − xk|K] and .E[(xk − xk|K)2] in the expression above. The first

of these is 0, and the second is the variance .σ 2
k|K . Therefore,

.E
[

log(λk,jΔ)mk,j − λk,j |KΔ
]

≈ log(λk,j |KΔ)mk,j − λk,j |KΔ + 0

+
1

2

[

1

λk,j |K

∂2λk,j |K

∂x2
k

(mk,j − λk,j |KΔ)

−
mk,j

λ2
k,j |K

(

∂λk,j |K

∂xk

)2]

σ 2
k|K . (6.16)

Consequently, Q approximately simplifies to

.Q ≈

K
∑

k=1

J
∑

j=1

log(λk,j |KΔ)mk,j − λk,j |KΔ

+
1

2

[

1

λk,j |K

∂2λk,j |K

∂x2
k

(mk,j − λk,j |KΔ) −
mk,j

λ2
k,j |K

(

∂λk,j |K

∂xk

)2]

σ 2
k|K .

(6.17)

In general, Q will have to be maximized with respect to the model parameters in the

CIF using numerical methods.

The parameter estimation step updates for the terms in a CIF .λk,j when we

observe a spiking-type variable .mk,j are chosen to maximize

.Q ≈

K
∑

k=1

J
∑

j=1

log(λk,j |KΔ)mk,j − λk,j |KΔ

(continued)

74 6 State-Space Model with One Binary, Two Continuous, and a Spiking-Type. . .

+
1

2

[

1

λk,j |K

∂2λk,j |K

∂x2
k

(mk,j − λk,j |KΔ) −
mk,j

λ2
k,j |K

(

∂λk,j |K

∂xk

)2]

σ 2
k|K .

(6.18)

6.4 MATLAB Examples

MATLAB code examples for simulated and experimental data for the state-space

model with one binary, two continuous, and one spiking-type observation are

provided in the folders shown below:

• one_bin_two_cont_one_spk

sim\

data_one_bin_two_cont_one_spk.mat

filter_one_bin_two_cont_one_spk.m

expm\

expm_data_one_bin_two_cont_one_spk.mat

expm_filter_one_bin_two_cont_one_spk.m

6.4.1 Application to Skin Conductance, Heart Rate and

Sympathetic Arousal

The state-space model described in this chapter was used in [31] to estimate

sympathetic arousal from skin conductance and heart rate measurements. The skin

conductance observations are the same three that were used in [29] (discussed in the

previous chapter). Thus, the only new observation added here relates to heart rate

for which some additional discussion is necessary.

The code examples estimate arousal from the four observations related to skin

conductance and heart rate. The R-peaks in the EKG signals are taken to form the

spiking observations. If L consecutive R-peaks occur at times .ul within .(0, T] such

that .0 < u1 < u2 < . . . < uL ≤ T , and .hl = ul − ul−1 is the lth RR-interval, the

HDIG density function for the RR-intervals at .t > ul is

.g(t |ul) =

√

θq+1

2π(t − ul)3
exp

{

−θq+1[t − ul − μ]2

2μ2(t − ul)

}

, (6.19)

6.4 MATLAB Examples 75

where q is the model order, .θq+1 is related to the variance, and the mean is

.μ = θ0 +

q
∑

i=1

θihl−i+1 + ηxk, (6.20)

where .η is a coefficient to be determined. Accordingly, a change in sympathetic

arousal .xk causes the mean of the HDIG density function to shift (i.e., heart rate

speeds up or slows down depending on the arousal level). The CIF .λk,j is

.λk,j Δ
g(tk,j |uk,j)

1 −
∫ tk,j

uk,j
g(z|uk,j)dz

, (6.21)

where .uk,j is the time of occurrence of the last R-peak prior to .tk,j . The CIF

.λk,j is calculated every .Δ = 5 ms [23, 71]. Since skin conductance is typically

analyzed at 4 Hz (.ts = 250 ms), there are .250/5 = 50 smaller observation bins j

for heart rate at each time index k. Due to computational complexity, the .θi’s were

estimated separately in an offline manner using maximum likelihood. Now the work

by Barbieri et al. [71] was one of the earliest to perform point process analysis of

EKG RR-intervals using the HDIG density function.1 The EM algorithm in [31]

was executed for several different values of .η, and the best one was selected based

on a maximization of the log-likelihood term in (6.17). Note also that since the

experimental code example involves skin conductance and heart rate with .Δ = 5

ms bins, the heart rate observations need to be provided to the code in a manner

similar to that contained in the .mat file.

The other aspects of the code and the variable names are similar to what

was described in earlier chapters. Running the code examples on simulated and

experimental data yields the results shown in Fig. 6.2. The experimental data results

are from the Pavlovian fear conditioning experiment in [100]. As shown in the

figure, the CS+ trials with the electric shock have the highest average responses,

while the CS- trials have the lowest average responses for the subject considered.

The CS+ trials without the shock have an intermediate response.

1 The code for calculating the .θi ’s for a series of RR-interval measurements via maximum

likelihood is provided at http://users.neurostat.mit.edu/barbieri/pphrv.

http://users.neurostat.mit.edu/barbieri/pphrv
http://users.neurostat.mit.edu/barbieri/pphrv
http://users.neurostat.mit.edu/barbieri/pphrv
http://users.neurostat.mit.edu/barbieri/pphrv
http://users.neurostat.mit.edu/barbieri/pphrv
http://users.neurostat.mit.edu/barbieri/pphrv
http://users.neurostat.mit.edu/barbieri/pphrv

76 6 State-Space Model with One Binary, Two Continuous, and a Spiking-Type. . .

Fig. 6.2 State estimation based on observing one binary, two continuous, and one spiking-type

variable. The left sub-figure depicts estimation on simulated data, and the right sub-figure depicts

the estimation of sympathetic arousal from skin conductance and heart rate data. The sub-panels

on the left, respectively, depict: (a) the probability of binary event occurrence .pk (blue) and its

estimate (red) (the green and black dots above at the top denote the presence or absence of binary

events, respectively); (b) the first continuous variable .rk (blue) and its estimate (red); (c) the second

continuous variable .sk (blue) and its estimate (red); (d) the state .xk (blue) and its estimate (red)

(the cyan and black dots denote the presence or absence of external binary inputs, respectively);

(e) the simulated RR-interval sequence (orange) and the fit to the HDIG mean; (f) the QQ plot for

the residual error of .xk . The sub-panels on the right, respectively, depict: (a) the skin conductance

signal .zk ; (b) the probability of SCR occurrence .pk (the green and black dots on top denote the

presence or absence of SCRs, respectively); (c) the phasic-derived variable (green solid) and its

estimate (dotted); (d) the tonic level .sk (pink solid) and its estimate (dotted); (e) the arousal state .xk

(the cyan and black dots denote the presence or absence of external binary inputs, respectively); (f)

the RR-interval sequence (orange) and the fit to the HDIG mean; (g) the averages corresponding to

different trials for skin conductance (CS.− —green, CS+ without the shock—mauve and CS+ with

the shock—red); (h) the same averages for the state. From [31], used under Creative Commons

CC-BY license

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 7

State-Space Model with One Marked
Point Process (MPP) Observation

Thus far we have considered binary observations and continuous observations in our

state-space models. With binary observations, we do not consider the magnitudes of

the binary-valued events (since each is just a 0 or a 1) but are merely interested in

the event occurrences. Consequently, we can treat the spiking-type observations in

the earlier chapter as binary-valued as well. There too, our concern was primarily

with the occurrence of the cardiac contractions and the accompanying spikes in an

EKG signal, but not the actual amplitudes of the spikes. But what happens when

we observe a point process that is not just a sequence of zeros and ones but rather

is a sequence of zeros and real-valued amplitudes? Such a point process forms a

marked point process (MPP). These are encountered frequently in physiological

state estimation applications as well. For instance, the sequence of neural impulses

underlying a skin conductance signal forms an MPP (Fig. 3.2). So do pulsatile

hormone secretory events. In this chapter, we will learn how to derive the state

and parameter estimation step equations when the state-space model contains MPP

observations.

In this chapter also, we will begin by considering a motivating example. Now we

can build many models ranging from simple to complex to account for physiological

phenomena. Any mathematical abstraction of a real-world system will have some

imperfections to it and will not be able to fully account for all of the data.

Occasionally, in engineering systems, we will encounter cases where a simpler

model performs better than a more complex model. The estimation of sympathetic

arousal from skin conductance is one such case. The state-space model with one

binary and two continuous observations is quite complex [29]. However, despite its

complexity, it is somewhat imperfect in that it interpolates over a log-transformed

Supplementary Information The online version contains supplementary material available at

(https://doi.org/10.1007/978-3-031-47104-9_7).

GitHub https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-

Filters/tree/main/one_mpp

© The Author(s) 2024

D. S. Wickramasuriya, R. T. Faghih, Bayesian Filter Design for Computational

Medicine, https://doi.org/10.1007/978-3-031-47104-9_7

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47104-9protect T1	extunderscore 7&domain=pdf
https://doi.org/10.1007/978-3-031-47104-9_7
https://doi.org/10.1007/978-3-031-47104-9_7
https://doi.org/10.1007/978-3-031-47104-9_7
https://doi.org/10.1007/978-3-031-47104-9_7
https://doi.org/10.1007/978-3-031-47104-9_7
https://doi.org/10.1007/978-3-031-47104-9_7
https://doi.org/10.1007/978-3-031-47104-9_7
https://doi.org/10.1007/978-3-031-47104-9_7
https://doi.org/10.1007/978-3-031-47104-9_7
https://doi.org/10.1007/978-3-031-47104-9_7
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp
https://doi.org/10.1007/978-3-031-47104-9_7
https://doi.org/10.1007/978-3-031-47104-9_7
https://doi.org/10.1007/978-3-031-47104-9_7
https://doi.org/10.1007/978-3-031-47104-9_7
https://doi.org/10.1007/978-3-031-47104-9_7
https://doi.org/10.1007/978-3-031-47104-9_7
https://doi.org/10.1007/978-3-031-47104-9_7
https://doi.org/10.1007/978-3-031-47104-9_7
https://doi.org/10.1007/978-3-031-47104-9_7
https://doi.org/10.1007/978-3-031-47104-9_7
https://doi.org/10.1007/978-3-031-47104-9_7

78 7 State-Space Model with One Marked Point Process (MPP) Observation

version of the SCR amplitudes. A more natural way to account for phasic skin

conductance variations is to model the underlying neural impulses as an MPP [32].

This eliminates the need for two continuous variables and is simpler.

A further algorithmic detail is also worth noting here. Mathematical models

of real-world systems will always have some limitations. The limitations may be

in the model itself or have to do with issues that arise during computation. This

book focuses on the estimation of unobserved physiological quantities that are

related (fully or partially) to point process observations. Occasionally, when we

have both binary and continuous variables involved, the EM algorithm can have

a tendency to converge to locations where there is a near-perfect fit to one of the

continuous variables (i.e., overfitting occurs). The state-space model with one binary

and two continuous observations has this tendency to overfit on experimental data.

Consequently, additional constraints have to be put in place to control it [29]. This

issue can also occur in the model with one binary and one continuous observation.

The use of the MPP framework circumvents the need to have a continuous variable

and thus avoids the need for external overfitting control. Thus the simpler MPP state-

space model for estimating arousal based on skin conductance performed quite well

in comparison to others [32].

7.1 Deriving the Update Equations in the State Estimation

Step

In this chapter also, we will assume that .xk evolves with time following one of the

state equations we have already seen. Thus no new predict step equations have to be

derived.

Recall from (3.21) that the PDF of a single (Bernoulli-distributed) binary

observation .nk is

.p(nk|xk) = p
nk

k (1 − pk)
1−nk . (7.1)

This same density function can be written as

.p(nk|xk) =
{

1 − pk if nk = 0

pk if nk = 1.
(7.2)

In reality, we could derive our state estimation step update equations based on (7.2)

as well. For instance, if we observed .nk = 0 at time index k, the posterior density

would be

.p(xk|n1:k) ∝ enk log(pk)+(1−nk) log(1−pk) × e

−(xk−xk|k−1)2

2σ2
k|k−1 =elog(1−pk) × e

−(xk−xk|k−1)2

2σ2
k|k−1 ,

(7.3)

7.1 Deriving the Update Equations in the State Estimation Step 79

where we have substituted .nk = 0 into the exponent of the first term. We could next

take the first and second derivatives of the exponent to obtain the corresponding

state estimation step update equations for .xk|k and .σ 2
k|k . We could also do the same

for .nk = 1. In the case of .nk = 1, we would have

.p(xk|n1:k) ∝ enk log(pk)+(1−nk) log(1−pk) × e

−(xk−xk|k−1)2

2σ2
k|k−1 = elog(pk) × e

−(xk−xk|k−1)2

2σ2
k|k−1 .

(7.4)

Finally, we could express the update step equations for the two different cases based

on an if-else condition. This would be of the form

if .nk = 0,

.xk|k = (7.5)

σ 2
k|k = . . . (7.6)

if .nk = 1,

.xk|k = (7.7)

σ 2
k|k = (7.8)

In the case of an MPP where we have non-zero amplitudes only at the instances

where point process events occur, the density function for the observations is

.p(nk∩rk|xk)=











1 − pk = elog(1−pk) if nk = 0

pk
1√
2πσ 2

v

e

−(rk−γ0−γ1xk)2

2σ2v = elog(pk) 1√
2πσ 2

v

e

−(rk−γ0−γ1xk)2

2σ2v if nk = 1,

(7.9)

where the point process event amplitudes (i.e., the marks) .rk are assumed to be

linearly related to .xk through .rk = γ0 + γ1xk + vk , where .vk ∼ N (0, σ 2
v) is sensor

noise.

Let us now proceed with calculating the update step equations for the two cases

where .nk = 0 and .nk = 1. First consider .nk = 0. Based on (7.9), the posterior

density is

.p(xk|y1:k) ∝ p(nk ∩ rk|xk)p(xk|n1:k−1, r1:k−1) ∝ elog(1−pk) × e

−(xk−xk|k−1)2

2σ2
k|k−1 .

(7.10)

We can now take the log, take its derivative, and set it to 0 to solve for the mean.

This yields

80 7 State-Space Model with One Marked Point Process (MPP) Observation

.
dq1

dxk

=−
1

(1 − pk)
pk(1 − pk) −

2(xk − xk|k−1)

2σ 2
k|k−1

=0. (7.11)

=⇒
(xk − xk|k−1)

σ 2
k|k−1

=−pk. (7.12)

xk =xk|k−1+σ 2
k|k−1(−pk). (7.13)

xk =xk|k−1+σ 2
k|k−1(nk−pk) since nk = 0. (7.14)

Interestingly, this is the same as (3.38) where we only had one binary observation

.nk in the state-space model. Let us now calculate the variance by taking the second

derivative.

.
d2q1

dx2
k

=
−1

σ 2
k|k−1

− pk(1 − pk). (7.15)

Again, interestingly, this turns out to be the same as (3.40) where we only had one

binary observation. Therefore, when a point process event does not occur (i.e., when

.nk = 0), our state estimation step update equations are similar to the case where we

only had one binary observation in the state-space model.

We will next consider the case when .nk = 1. Note that we will then have the .rk
amplitude term as well. Based on (7.9), the posterior is now

.p(xk|y1:k) ∝ elog(pk) × e

−(rk−γ0−γ1xk)2

2σ2v × e

−(xk−xk|k−1)2

2σ2
k|k−1 . (7.16)

Taking the log and proceeding to take the first derivative, we have

.
dq2

dxk

=
1

pk

pk(1 − pk) +
γ1(rk − γ0 − γ1xk)

σ 2
v

−
(xk − xk|k−1)

σ 2
k|k−1

= 0. (7.17)

Since .nk = 1, we will replace .(1 − pk) with .(nk − pk). Therefore,

.
dq2

dxk

= (nk − pk) +
γ1(rk − γ0 − γ1xk)

σ 2
v

−
(xk − xk|k−1)

σ 2
k|k−1

= 0. (7.18)

This is the same as (4.21) where we had both a binary variable and a continuous

variable in the state-space model. Therefore, based on (4.26), the mean update for

.xk is

.xk = xk|k−1 +
σ 2

k|k−1

γ 2
1 σ 2

k|k−1 + σ 2
v

[

σ 2
v (nk − pk) + γ1(rk − γ0 − γ1xk|k−1)

]

.

(7.19)

7.2 Deriving the Parameter Estimation Step Equations 81

Also, when we take the second derivative, we end up with

.
d2q1

dx2
k

= −pk(1 − pk) −
γ 2
1

σ 2
v

−
1

σ 2
k|k−1

(7.20)

just like (4.28).

This provides an interesting insight. In the case of an MPP, the state estimation

step update equations switch between those where one binary variable was observed

and where both a binary variable and a continuous variable were observed. This

switching occurs depending on whether .nk = 0 or .nk = 1.

When .xk gives rise to MPP observations comprising of the pairs .(nk, rk), the

update equations in the state estimation step are

if .nk = 0,

.xk|k = xk|k−1 + σ 2
k|k−1(nk − pk|k). (7.21)

σ 2
k|k =

[

1

σ 2
k|k−1

+ pk|k(1 − pk|k)

]−1

(7.22)

if .nk = 1,

.xk|k = xk|k−1 +
σ 2

k|k−1

γ 2
1 σ 2

k|k−1 + σ 2
v

[

σ 2
v (nk − pk|k) + γ1(rk − γ0 − γ1xk|k−1)

]

.

(7.23)

σ 2
k|k =

[

1

σ 2
k|k−1

+ pk|k(1 − pk|k) +
γ 2
1

σ 2
v

]−1

. (7.24)

7.2 Deriving the Parameter Estimation Step Equations

The only changes that occur at the parameter estimation step relate to .γ0, .γ1, and

.σ 2
v . Parameter estimates for other variables such as the process noise variance .σ 2

ε do

not change.

82 7 State-Space Model with One Marked Point Process (MPP) Observation

7.2.1 Deriving the Constant Coefficient Terms

Recall from (4.43) that when we observed one binary variable and one continuous

variable, the probability term containing .γ0, .γ1, and .σ
2
v required at the parameter

estimation step was

.p(r1:K |x1:K ,Θ) =
K
∏

k=1

1
√

2πσ 2
v

e

−(rk−γ0−γ1xk)2

2σ2v . (7.25)

Notice that the product is over .k = 1, 2, . . . , K . This is when we observed a non-

zero .rk at each point in time. When we observe an MPP variable as modeled in (7.9),

.rk shows up only at the time indices where .nk = 1. Let us assume that the point

process events occur at time indices .K̃ ⊆ {1, 2, . . . , K}. Therefore, in the case of
an MPP, the probability term we are interested in at the M-step will be

.

∏

k∈K̃

1
√

2πσ 2
v

e

−(rk−γ0−γ1xk)2

2σ2v , (7.26)

where the product is only over the specific indices .K̃ rather than everywhere. The

corresponding log-likelihood term is therefore

.Q =
−|K̃|
2

log
(

2πσ 2
v

)

−
∑

k∈K̃

E

[

(rk − γ0 − γ1xk)
2
]

2σ 2
v

. (7.27)

We can now proceed by taking the partial derivatives with respect to .γ0, .γ1, and .σ 2
v ,

setting them to 0 and solving. This yields

.

∑

k∈K̃

rk = γ0|K̃| + γ1
∑

k∈K̃

xk|K . (7.28)

∑

k∈K̃

rkxk|K = γ0
∑

k∈K̃

xk|K + γ1
∑

k∈K̃

Uk. (7.29)

σ 2
v =

1

|K̃|

{

∑

k∈K̃

r2 k + |K̃|γ 2
0 + γ 2

1

∑

k∈K̃

Uk − 2γ0
∑

k∈K̃

rk

− 2γ1
∑

k∈K̃

rkxk|K + 2γ0γ1
∑

k∈K̃

xk|K

}

. (7.30)

Note that all three equations shown above are similar to the case where a continuous

variable was always present. Now, however, the summations are only over .K̃ . Thus

7.3 MATLAB Examples 83

the parameter estimation step updates for .γ0, .γ1, and .σ 2
v are very similar to what we

have seen before.

The parameter estimation step updates for .γ0, .γ1 and .σ 2
v when we observe an

MPP variable with the amplitudes modeled as .rk = γ0 + γ1xk + vk are

.

[

γ0

γ1

]

=
[

|K̃|
∑

k∈K̃
xk|K

∑

k∈K̃
xk|K

∑

k∈K̃
Uk

]−1[∑

k∈K̃
rk

∑

k∈K̃
rkxk|K

]

. (7.31)

σ 2
v =

1

|K̃|

{

∑

k∈K̃

r2 k + |K̃|γ 2
0 + γ 2

1

∑

k∈K̃

Uk − 2γ0
∑

k∈K̃

rk − 2γ1
∑

k∈K̃

rkxk|K

+ 2γ0γ1
∑

k∈K̃

xk|K

}

. (7.32)

7.3 MATLAB Examples

The MATLAB code examples for estimating .xk from a set of MPP observations are

provided in the following folders:

• one_mpp

sim\

data_one_mpp.mat

filter_one_mpp.m

expm\

expm_data_one_mpp.mat

expm_filter_one_mpp.m

The code examples estimate .xk based on the inputs .nk and .rk denoted by the

variables n and r. A few differences are to be noted in this code compared to the

previous examples. In the previous MATLAB examples, we had the predict, update,

predict, update, etc. steps executed repeatedly for .k = 1, 2, . . . , K . However, when

we have MPP observations, we have two different filter update equations depending

on the value of .nk . The .rk amplitudes are only taken into account when .nk = 1.

Therefore, the state estimation step contains the following:

84 7 State-Space Model with One Marked Point Process (MPP) Observation

x_updt(k) = get_posterior_mode(x_pred(k), v_pred(k), r(k), r0(m),
r1(m), vr(m), b0, n(k));

p_updt(k) = 1 / (1 + exp((-1) * (b0 + x_updt(k))));

if (n(k) == 0)
v_updt(k) = 1 / ((1 / v_pred(k)) + p_updt(k) * (1 - p_updt(k)))

;
elseif (n(k) == 1)

v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr(m)) +
p_updt(k) * (1 - p_updt(k)));

end

The state update, also based on an if-else depending on the value of .nk , is calculated

using the get_posterior_mode(...) function shown below:

function [y] = get_posterior_mode(x_pred, v_pred, z, r0, r1, vr,
b0, n)

M = 100; % maximum iterations
y = NaN;

it = zeros(1, M);
f = zeros(1, M);
df = zeros(1, M);

it(1) = x_pred;

for i = 1:(M - 1)
if (n == 0)

C = v_pred;
f(i) = it(i) - x_pred - C * (n - exp(b0 + it(i)) / (1

+ exp(b0 + it(i))));
df(i) = 1 + C * exp(b0 + it(i)) / (1 + exp(b0 + it(i)

)) ^ 2;
elseif (n == 1)

C = v_pred / ((r1 ^ 2) * v_pred + vr);
f(i) = it(i) - x_pred - C * (r1 * (z - r0 - r1 *

x_pred) + vr * (n - (1 / (1 + exp((-1) * (b0 + it(i)))))));
df(i) = 1 + C * vr * exp(b0 + it(i)) / ((1 + exp(b0 +

it(i))) ̂ 2);
end

it(i + 1) = it(i) - f(i) / df(i);

if abs(it(i + 1) - it(i)) < 1e-14
y = it(i + 1);
return

end
end

error(’Newton-Raphson failed to converge.’);

end

7.3 MATLAB Examples 85

The other variables used in the code largely remain the same. For instance, we

still use x_pred, x_updt, and x_smth to denote .xk|k−1, .xk|k , and .xk|K , respectively,

and v_pred, v_updt and v_smth to denote the corresponding variances .σ 2
k|k−1, .σ

2
k|k

and .σ 2
k|K .

7.3.1 Application to Skin Conductance and Sympathetic

Arousal

As stated earlier, the sequence of neural impulses underlying the phasic variations in

a skin conductance signal forms an MPP. This sequence of impulses is extracted via

deconvolution. In the code example, the input (i.e., the deconvolved neural impulse

train) is provided through the variables n and r. The variable r(k) has a non-

zero amplitude whenever n(k) is equal to 1. The r(k) amplitudes are not taken

into account when n(k) is 0. Running the MATLAB examples on simulated and

experimental data produces the results shown in Fig. 7.1. The filter was used in [32]

for estimating sympathetic arousal from deconvolved skin conductance data. The

0 500 1000 1500 2000 2500
-2

0

2

(a
)

n
k
 ,

r k

State Estimation with Simulated Data

0 500 1000 1500 2000 2500
0

0.1

0.2

(b
)

p
k

0 500 1000 1500 2000 2500

time index

-2

0

2

(c
)

x
k

-4 -3 -2 -1 0 1 2 3 4

standard normal quantiles

-2

0

2

(d
)

in
p

u
t

q
u

a
n

ti
le

s

QQ Plot - State Estimate

Fig. 7.1 State estimation based on observing one MPP variable. The left sub-figure depicts the

estimation on simulated data and the right sub-figure depicts the estimation of sympathetic

arousal from skin conductance data. The sub-panels on the left, respectively, depict (a) the MPP

observations (blue) and the estimated .rk (red), (b) the point process event occurrence probability

.pk (blue) and its estimate (red), (c) the state .xk (blue) and its estimate (red), and (d) the QQ plot for

the residual error of .xk . The sub-panels on the right, respectively, depict (a) the skin conductance

signal, (b) the neural impulses underlying phasic variations, (c) the arousal state .xk and its 95%

confidence limits, (d) the probability of impulse occurrence .pk and its 95% confidence limits, and

(e) the HAI (the regions above 90% and below 10% are shaded in red and green, respectively). The

background colors on the right sub-figure correspond to the instruction period, a counting task, a

color-word association task, relaxation, and watching a horror movie clip. From [32], used under

Creative Commons CC-BY license

86 7 State-Space Model with One Marked Point Process (MPP) Observation

Fig. 7.2 Driver stress estimation. The sub-panels, respectively, depict (a) the skin conductance

signal, (b) the neural impulses, (c) the arousal state .xk and its 95% confidence limits, (d) the

probability of impulse occurrence and its 95% confidence limits, and (e) the HAI (the regions

above 90% and below 10% are shaded in red and green, respectively). The background colors in

turn denote rest, city driving, toll road, highway, toll road, city driving, toll road, highway, toll

road, city driving, and rest. From [32], used under Creative Commons CC-BY license

results on experimental data shown in the figure are based on the study described

in [53] (seen in the earlier chapters as well). The study involved different types of

stressors interspersed by periods of relaxation. The results of using the same code

on the driver stress data in [54] for a particular subject are shown in Fig. 7.2.

7.3 MATLAB Examples 87

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 8

State-Space Model with One MPP and
One Continuous Observation

In this chapter, we will derive the EM algorithm equations for a state-space model

having an MPP and a continuous-valued variable as its observations. Before looking

at the state-space model itself and the equation derivations, we will again first

consider a scenario for where the need for such a model arises. We stated earlier that

the human body is comprised of multiple internal sub-systems that are networked

with one another. The sub-systems perform specialized functions and all work in

unison to maintain life. Now multiple functions within the body are regulated by

the endocrine system. The endocrine system governs the secretion of a number of

hormones that act on different target cells in the body. These hormones largely serve

as messengers and help coordinate activities between sub-systems within the body.

Functions that hormones are involved in include metabolism, the regulation of blood

glucose and appetite, and playing a role in the body’s immune and stress responses,

to name a few [101].

The secretory mechanism is pulsatile in the case of a number of hormones.

Cortisol is one such example [38]. One of the major functions of cortisol is to

raise blood glucose levels in response to external stressors [102, 103]. When the

brain interprets sensory inputs as requiring cortisol secretion, the hypothalamus

begins to secrete the hormone CRH (corticotropin-releasing hormone). CRH in

turn causes the secretion of ACTH (adrenocorticotropic hormone) from the anterior

pituitary. Finally, ACTH causes the secretion of cortisol from the adrenal glands

[104]. The secretion of cortisol from the adrenal glands has a negative feedback

effect suppressing the further secretion of CRH and ACTH [105, 106]. Between 15

and 22 cortisol secretory events typically occur each day in a healthy adult [38, 107].

When cortisol is secreted into the bloodstream, a large percentage of it remains

Supplementary Information The online version contains supplementary material available at

(https://doi.org/10.1007/978-3-031-47104-9_8).

GitHub https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-

Filters/tree/main/one_mpp_one_cont

© The Author(s) 2024

D. S. Wickramasuriya, R. T. Faghih, Bayesian Filter Design for Computational

Medicine, https://doi.org/10.1007/978-3-031-47104-9_8

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47104-9protect T1	extunderscore 8&domain=pdf
https://doi.org/10.1007/978-3-031-47104-9_8
https://doi.org/10.1007/978-3-031-47104-9_8
https://doi.org/10.1007/978-3-031-47104-9_8
https://doi.org/10.1007/978-3-031-47104-9_8
https://doi.org/10.1007/978-3-031-47104-9_8
https://doi.org/10.1007/978-3-031-47104-9_8
https://doi.org/10.1007/978-3-031-47104-9_8
https://doi.org/10.1007/978-3-031-47104-9_8
https://doi.org/10.1007/978-3-031-47104-9_8
https://doi.org/10.1007/978-3-031-47104-9_8
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp_one_cont
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_mpp_one_cont
https://doi.org/10.1007/978-3-031-47104-9_8
https://doi.org/10.1007/978-3-031-47104-9_8
https://doi.org/10.1007/978-3-031-47104-9_8
https://doi.org/10.1007/978-3-031-47104-9_8
https://doi.org/10.1007/978-3-031-47104-9_8
https://doi.org/10.1007/978-3-031-47104-9_8
https://doi.org/10.1007/978-3-031-47104-9_8
https://doi.org/10.1007/978-3-031-47104-9_8
https://doi.org/10.1007/978-3-031-47104-9_8
https://doi.org/10.1007/978-3-031-47104-9_8
https://doi.org/10.1007/978-3-031-47104-9_8

90 8 State-Space Model with One MPP and One Continuous Observation

bound [108]. It is the unbound cortisol in the blood that remains physiologically

active [109]. This active cortisol aids in energy production at the liver [110, 111].

Since the cortisol concentration in the blood is a continuous variable and its pulsatile

secretion forms an MPP, a state-space model for estimating the energy production

level related to it should incorporate these types of observations. Similar to the case

of skin conductance, a deconvolution procedure can be used to extract the pulsatile

profile underlying a series of blood cortisol measurements [107]. Deconvolution

also typically yields the infusion and clearance rates necessary to reconstruct a

minute-by-minute profile of the cortisol concentration in the blood. Figure 8.1 shows

a deconvolved cortisol profile [113].

Alternately, the same MPP plus continuous variable formulation can also

be applied to skin conductance. Recall that skin conductance contains both a

fast-varying phasic component and a slow-varying tonic component. The phasic

component consists of a series of SCRs that are generated by neural impulses.

These neural impulses form an MPP. The tonic component, which also reflects

sympathetic arousal information, is a continuous observation [60]. Consequently,

the state-space model with an MPP and a continuous observation can also be

applied to the case of skin conductance. Unlike the case where we had one binary

observation and two continuous observations to estimate sympathetic arousal from

the same information, the formulation with the MPP and the continuous observation

conforms more intuitively to the data itself.

9 AM 1 PM 5 PM 9 PM 1 AM 5 AM 9 AM

time

0

10

20

c
o
n
c
e
n
tr

a
ti
o
n
 (
µ

g
/d

l)

A Cortisol Profile

0

10

p
u
ls

e
 a

m
p
lit

u
d
e
 (
µ

g
/d

l/
m

in
)

Fig. 8.1 A deconvolved cortisol profile. Cortisol is secreted in pulses and between 15 and

22 secretory events occur each day in a healthy adult. The figure depicts the blood cortisol

measurements taken at 10 min intervals (blue), the reconstructed blood cortisol concentrations

at a 1 min resolution (black), and the pulsatile secretions (red). From [112], used under Creative

Commons CC-BY license

8.1 Deriving the Update Equations in the State Estimation Step 91

8.1 Deriving the Update Equations in the State Estimation

Step

Here again we will assume that .xk varies with time following one of the state

equations we have already seen. Therefore, no new predict step equations need to

be derived.

We made an interesting observation in the previous chapter when deriving

the update step equations for the case where .xk gives rise to MPP observations.

We observed that the update equations switched between those where one binary

variable was observed and where both a binary variable and a continuous variable

were observed. We will now consider the case where we observe an MPP variable

along with a continuous variable. As in (7.9), the density function for our MPP is

still

.p(nk∩ rk|xk)=











1 − pk = elog(1−pk) if nk = 0

pk
1√
2πσ 2

v

e

−(rk−γ0−γ1xk)2

2σ2v = elog(pk) 1√
2πσ 2

v

e

−(rk−γ0−γ1xk)2

2σ2v if nk = 1,

(8.1)

where .nk and .rk denote the occurrence of the point process events and the mark

amplitudes, respectively. In addition to the MPP, we will now assume that we also

observe a continuous variable .sk where

.sk = δ0 + δ1xk + wk, (8.2)

and .δ0, .δ1, and .wk have their usual meanings. We observe .sk at every point in time.

Let us now proceed with deriving the mean and variance for the case when .nk = 0.

The posterior density in this case is

.p(xk|y1:k) ∝ elog(1−pk) × e

−(sk−δ0−δ1xk)2

2σ2w × e

−(xk−xk|k−1)2

2σ2
k|k−1 . (8.3)

Taking the log on both sides, we have

.q1 = log(1 − pk) −
(sk − δ0 − δ1xk)

2

2σ 2
w

−
(xk − xk|k−1)

2

2σ 2
k|k−1

+ constant. (8.4)

We will next take the first and second derivatives of .q1 to obtain the mean and

variance.

.
dq1

dxk

= −
1

(1 − pk)
pk(1 − pk) +

δ1(sk − δ0 − δ1xk)

σ 2
w

−
(xk − xk|k−1)

σ 2
k|k−1

= 0.

(8.5)

92 8 State-Space Model with One MPP and One Continuous Observation

=⇒ 0 = −pk +
δ1(sk − δ0 − δ1xk)

σ 2
w

−
(xk − xk|k−1)

σ 2
k|k−1

. (8.6)

Since .nk = 0, we can rewrite .−pk as .(nk − pk). Therefore,

.nk − pk +
δ1(sk − δ0 − δ1xk)

σ 2
w

=
(xk − xk|k−1)

σ 2
k|k−1

. (8.7)

But this is identical to (4.21) with .sk , .δ0, and .δ1 appearing in the equation instead of

.rk , .γ0, and .γ1. Therefore, similar to (4.26), the update for the mean is

.xk = xk|k−1 +
σ 2

k|k−1

δ21σ
2
k|k−1 + σ 2

w

[

σ 2
w(nk − pk) + δ1(sk − δ0 − δ1xk|k−1)

]

. (8.8)

We next take the second derivative of .q1.

.
d2q1

dx2
k

= −pk(1 − pk) −
δ21

σ 2
w

−
1

σ 2
k|k−1

. (8.9)

This also happens to be identical to (4.28) but with .δ1 and .σ 2
w instead of .γ1 and .σ 2

v .

Therefore, similar to (4.29), the variance update is

.σ 2
k|k = −

(

d2q1

dx2
k

)−1

=
[

1

σ 2
k|k−1

+ pk|k(1 − pk|k) +
δ21

σ 2
w

]−1

. (8.10)

This is interesting. When we observe both an MPP variable and a continuous

variable and .nk = 0, the update equations are identical to the case where one binary

variable and one continuous variable were observed.

We will next consider the case where .nk = 1 and a non-zero mark .rk exists. In

this case, the posterior density is

.p(xk|y1:k) ∝ elog(pk) × e

−(rk−γ0−γ1xk)2

2σ2v × e

−(sk−δ0−δ1xk)2

2σ2w × e

−(xk−xk|k−1)2

2σ2
k|k−1 . (8.11)

Taking the log value and proceeding to take the first derivative, we have

.
dq2

dxk

=
1

pk

pk(1−pk)+
γ1(rk−γ0−γ1xk)

σ 2
v

+
δ1(sk − δ0 − δ1xk)

σ 2
w

−
(xk − xk|k−1)

σ 2
k|k−1

.

(8.12)

= 1 − pk +
γ1(rk − γ0 − γ1xk)

σ 2
v

+
δ1(sk − δ0 − δ1xk)

σ 2
w

−
(xk − xk|k−1)

σ 2
k|k−1

.

(8.13)

8.1 Deriving the Update Equations in the State Estimation Step 93

Setting this to 0 and replacing .(1 − pk) with .(nk − pk) since .nk = 1, we have

.
dq2

dxk

= nk − pk +
γ1(rk − γ0 − γ1xk)

σ 2
v

+
δ1(sk − δ0 − δ1xk)

σ 2
w

−
(xk − xk|k−1)

σ 2
k|k−1

= 0.

(8.14)

But this is identical to (5.21) where we observed one binary variable and two

continuous variables. The second derivative of .q2 yields

.
d2q2

dx2
k

= −pk(1 − pk) −
γ 2
1

σ 2
v

−
δ21

σ 2
w

−
1

σ 2
k|k−1

, (8.15)

which is the same as (5.28). Therefore, in the case where we observe an MPP

variable along with a continuous variable and .nk = 1, our update equations in the

state estimation step are identical to those where we have one binary variable and

two continuous variables.

When .xk gives rise to MPP observations comprising of the pairs .(nk, rk) and

a continuous observation .sk , the update equations in the state estimation step

are

if .nk = 0,

.xk = xk|k−1 +
σ 2

k|k−1

γ 2
1 σ 2

k|k−1 + σ 2
w

[

σ 2
w(nk − pk) + γ1(sk − δ0 − δ1xk|k−1)

]

.

(8.16)

σ 2
k|k =

[

1

σ 2
k|k−1

+ pk|k(1 − pk|k) +
δ2 1

σ 2
w

]−1

(8.17)

if .nk = 1,

.xk|k = xk|k−1 +
σ 2

k|k−1

σ 2
v σ 2

w + σ 2
k|k−1(γ

2
1 σ 2

w + δ21σ
2
v)

[

σ 2
v σ 2

w(nk − pk|k)

+ γ1σ
2
w(rk − γ0 − γ1xk|k−1) + δ1σ

2
v (sk − δ0 − δ1xk|k−1)

]

. (8.18)

σ 2
k|k =

[

1

σ 2
k|k−1

+ pk|k(1 − pk|k) +
γ 2
1

σ 2
v

+
δ2 1

σ 2
w

]−1

. (8.19)

94 8 State-Space Model with One MPP and One Continuous Observation

8.2 Deriving the Parameter Estimation Step Equations

The derivation of the parameter estimation step updates is similar to what we

have seen thus far. The updates for the parameters .γ0, .γ1, and .σ
2
v related to .rk

are calculated based on the subset of values .K̃ corresponding to where .nk = 1.

The parameters .δ0, .δ1, and .σ
2
w corresponding to .sk are calculated based on all the

observations.

8.3 MATLAB Examples

The MATLAB code examples are contained in the folders shown below:

• one_mpp_one_cont

sim\

data_one_mpp_one_cont.mat

filter_one_mpp_one_cont.m

expm\

expm_data_one_mpp_one_cont.mat

expm_filter_one_mpp_one_cont.m

The code itself is quite similar to what we have seen before in earlier examples. It

takes in the inputs .nk , .rk , and .sk denoted by the variables n, r, and s to estimate .xk .

We progress through the repeated predict, update, predict, update, etc. steps with

.xk|k and .σ 2
k|k being estimated using different equations based on .nk . The variable

names are also largely similar to what we have seen earlier.

8.3.1 Application to Cortisol and Energy

Recall the discussion regarding cortisol at the beginning of this chapter. Cortisol is

secreted in pulses and between 15 and 22 of them are secreted by a healthy adult

each day. The pulsatile hormone profile forms an MPP. In addition, the amount

of unbound cortisol in the blood is biologically active and contributes to energy

production. Thus, the observations for estimating the latent cortisol-related energy

production state form an MPP and a continuous-valued variable. The cortisol inputs

are provided to the code using the variables n, r, and s. The variables n and r

denote the MPP observations .nk and .rk . The pulsatile secretions forming the MPP

at a resolution of 1 min will need to be extracted via deconvolution (e.g., using [107,

113, 114]). The cortisol infusion and clearance rates yielded by the deconvolution

algorithm are used to generate .sk .

8.3 MATLAB Examples 95

Running the code examples for this particular state-space model produces the

results in Fig. 8.2. The code running on experimental data for this model contains

a notable difference. In general, when a continuous-valued observation is present,

the state estimate can tend to overfit to it. In the experimental code example, the

parameter estimation step updates for .δ0, .δ1, and .σ 2
w (the three parameters related to

.sk) have been adjusted so that only a small step is taken in the direction of the next

predicted values at a time. A second change has also been made in that the sensor

noise variance .σ 2
w is initialized at a larger value and the same three parameters .δ0,

.δ1, and .σ
2
w are only permitted to update until .σ 2

w reaches a threshold. These two

changes greatly help reduce the overfitting to .sk .

0 500 1000 1500 2000 2500
-2

0

2

(a
)

n
k
 ,

r k

State Estimation with Simulated Data

0 500 1000 1500 2000 2500
0

0.2

0.4

(b
)

p
k

0 500 1000 1500 2000 2500
-2

0

2

(c
)

s
k

0 500 1000 1500 2000 2500

time index

-5

0

5

(d
)

x
k

-4 -3 -2 -1 0 1 2 3 4

standard normal quantiles

-1

0

1

(e
)

in
p

u
t

q
u

a
n

ti
le

s

QQ Plot - State Estimate

Fig. 8.2 State estimation based on observing one MPP and one continuous variable. The left sub-

figure depicts the estimation on simulated data and the right sub-figure depicts the estimation

of energy from blood cortisol data. The sub-panels on the left, respectively, depict (a) the MPP

observations (blue) and the estimated .rk (red), (b) the point process event occurrence probability

.pk (blue) and its estimate (red), (c) the continuous-valued variable .sk (blue) and its estimate (red),

(d) the state .xk (blue) and its estimate (red), and (e) the QQ plot for the residual error of .xk . The

sub-panels on the right, respectively, depict (a) the deconvolved cortisol pulses (blue) and the fit

to .rk (red), (b) the reconstructed blood cortisol profile .sk (orange) and its estimate (red), (c) the

probability of pulse occurrence .pk and its 95% confidence limits, and (d) the energy state .xk and

its 95% confidence limits. From [33], used under Creative Commons CC-BY license

96 8 State-Space Model with One MPP and One Continuous Observation

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 9

Additional Models and Derivations

Much of what we have described in the preceding chapters provides the basic tools

necessary to build physiological state-space estimators. In this chapter, we will

briefly review some additional concepts in state-space estimation, a non-traditional

method of estimation, and some supplementary models. These may help serve as

pointers if extensions are to be built to the models already described.

9.1 State-Space Model with a Time-Varying Process Noise

Variance Based on a GARCH(p, q) Framework

Thus far, we have not considered time-varying model parameters. In reality, the

human body is not static. Instead it undergoes changes from time to time (e.g.,

due to disease conditions, adaptation to new environments). In this section, we will

consider a state equation of the form

.xk = xk−1 + εk (9.1)

where .εk ∼ N (0, σ 2
ε,k). Note that the process noise variance now depends on

the time index k. Here we will use concepts from the Generalized Autoregressive

Conditional Heteroskedasticity (GARCH) framework to model .εk . In a general

GARCH(p, q) framework, we take

.εk = hkνk, (9.2)

Supplementary Information The online version contains supplementary material available at

(https://doi.org/10.1007/978-3-031-47104-9_9).

GitHub https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-

Filters/tree/main/one_bin_one_spk

GitHub https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-

Filters/tree/main/one_bin_two_cont_circadian

© The Author(s) 2024

D. S. Wickramasuriya, R. T. Faghih, Bayesian Filter Design for Computational

Medicine, https://doi.org/10.1007/978-3-031-47104-9_9

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47104-9protect T1	extunderscore 9&domain=pdf
https://doi.org/10.1007/978-3-031-47104-9_9
https://doi.org/10.1007/978-3-031-47104-9_9
https://doi.org/10.1007/978-3-031-47104-9_9
https://doi.org/10.1007/978-3-031-47104-9_9
https://doi.org/10.1007/978-3-031-47104-9_9
https://doi.org/10.1007/978-3-031-47104-9_9
https://doi.org/10.1007/978-3-031-47104-9_9
https://doi.org/10.1007/978-3-031-47104-9_9
https://doi.org/10.1007/978-3-031-47104-9_9
https://doi.org/10.1007/978-3-031-47104-9_9
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_one_spk
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_circadian
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_circadian
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_circadian
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_circadian
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_circadian
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_circadian
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_circadian
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_circadian
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_circadian
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_circadian
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_circadian
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_circadian
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_circadian
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_circadian
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_circadian
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_circadian
https://github.com/computational-medicine-lab/A-Tutorial-on-the-Design-of-Bayesian-Filters/tree/main/one_bin_two_cont_circadian
https://doi.org/10.1007/978-3-031-47104-9_9
https://doi.org/10.1007/978-3-031-47104-9_9
https://doi.org/10.1007/978-3-031-47104-9_9
https://doi.org/10.1007/978-3-031-47104-9_9
https://doi.org/10.1007/978-3-031-47104-9_9
https://doi.org/10.1007/978-3-031-47104-9_9
https://doi.org/10.1007/978-3-031-47104-9_9
https://doi.org/10.1007/978-3-031-47104-9_9
https://doi.org/10.1007/978-3-031-47104-9_9
https://doi.org/10.1007/978-3-031-47104-9_9
https://doi.org/10.1007/978-3-031-47104-9_9

98 9 Additional Models and Derivations

where .νk ∼ N (0, 1) and

.h2k = α0 +

q
∑

i=1

αiε
2
k−i +

p
∑

j=1

βjh
2
k−j , (9.3)

where the .αi’s and .βj ’s are coefficients to be determined. Now, conditioned on

having observed all the sensor readings up to time index .(k − 1), we have

.E[εk] = E[hkvk] = hkE[vk] = hk × 0 = 0 (9.4)

and

.σ 2
ε,k = V (εk) = V (hkνk) = h2kV (νk) = h2k × 1 = α0 +

q
∑

i=1

αiε
2
k−i +

p
∑

j=1

βjh
2
k−j .

(9.5)

As is evident from (9.5), the variance of .εk depends on k. If a GARCH(p, q) model

is used for the process noise term in the random walk, the predict equations in the

state estimation step change to

.xk|k−1 = xk−1|k−1. (9.6)

σ 2
k|k−1 = σ 2

k−1|k−1 + σ 2
ε,k = σ 2

k−1|k−1 + α0 +

q
∑

i=1

αiε
2
k−i +

p
∑

j=1

βjh
2
k−j . (9.7)

The update equations in the state estimation step remain unchanged. Note also that

the calculation of .σ 2
k|k−1 requires the previous process noise terms. In general, these

will have to be calculated based on successive differences between the .xk and .xk−1

estimates.

Moreover, we would also have .(p + q + 1) additional GARCH terms (the .αi’s

and .βj ’s) to determine at the parameter estimation step. These terms would have to

be chosen to maximize the log-likelihood

.Q =
(−1)

2

K
∑

k=1

E

[

log(2πσ 2
ε,k) +

(xk − xk−1)
2

σ 2
ε,k

]

. (9.8)

=
(−1)

2

K
∑

k=1

E

{

log

[

2π

(

α0 +

q
∑

i=1

αiε
2
k−i +

p
∑

j=1

βjh
2
k−j

)]

+
(xk − xk−1)

2

α0 +
∑q

i=1 αiε
2
k−i +

∑p

j=1 βjh
2
k−j

}

. (9.9)

9.2 Deriving the Parameter Estimation Step Equations for Terms Related to a. . . 99

The maximization of Q with respect to the GARCH terms is rather complicated.

Choosing a GARCH(1, 1) model for .εk simplifies the computations somewhat.

Additionally, note the recursive form contained within Q. For each value of k, we

have terms of the form .h2k−j which contain within them further .h2 terms. In general,

computing Q is challenging unless further simplifying assumptions are made.

When .xk evolves with time following .xk = xk−1 + εk , where .εk is modeled

using a GARCH(p, q) framework, the predict equations in the state estimation

step are

.xk|k−1 = xk−1|k−1. (9.10)

σ 2
k|k−1 = σ 2

k−1|k−1 + α0 +

q
∑

i=1

αiε
2
k−i +

p
∑

j=1

βjh
2
k−j . (9.11)

The parameter estimation step updates for the .(p + q + 1) GARCH terms are

chosen to maximize

.
(−1)

2

K
∑

k=1

E

{

log

[

2π

(

α0 +

q
∑

i=1

αiε
2
k−i +

p
∑

j=1

βjh
2
k−j

)]

+
(xk − xk−1)

2

α0 +
∑q

i=1 αiε
2
k−i +

∑p

j=1 βjh
2
k−j

}

. (9.12)

9.2 Deriving the Parameter Estimation Step Equations for

Terms Related to a Binary Observation

Thus far, we have only considered cases where the probability of binary event

occurrence .pk is of the form

.pk =
1

1 + e−(β0+xk)
. (9.13)

We have also thus far only estimated .β0 empirically (e.g., based on the average

probability of point process event occurrence). Occasionally, however, we will find

it helpful to model .pk as

.pk =
1

1 + e−(β0+β1xk)
(9.14)

100 9 Additional Models and Derivations

and determine .β0 and .β1 at the parameter estimation step. If we wish to do so, we

will need to consider the probability term that needs to be maximized at this step.

Based on (3.27), this probability term is

.

K
∏

k=1

e
nk log

(

pk
1−pk

)

+log(1−pk) =

K
∏

k=1

e
nk(β0+β1xk)+log

(

1

1+eβ0+β1xk

)

. (9.15)

This yields the expected log-likelihood

.Q =

K
∑

k=1

E

[

nk(β0 + β1xk) − log
(

1 + eβ0+β1xk
)

]

. (9.16)

As in the case of determining the parameter updates for the terms in a CIF, this

expected value is also somewhat complicated. Again, the trick is to perform a Taylor

expansion around the mean .E[xk] = xk|K for each of the individual log terms. After

performing this expansion, we end up with terms like .E[xk − xk|K] and .E[(xk −
xk|K)2] which greatly simplify our calculations.

Let us begin by performing a Taylor expansion of the log term around .xk|K [6].

. log
(

1 + eβ0+β1xk
)

≈ log
(

1 + eβ0+β1xk|K
)

+ β1pk|K(xk − xk|K)

+
β2
1

2
pk|K(1 − pk|K)(xk − xk|K)2. (9.17)

Note the terms .(xk − xk|K) and .(xk − xk|K)2 in the expansion. Taking the expected

value on both sides,

.E

[

log
(

1 + eβ0+β1xk
)

]

≈ log
(

1 + eβ0+β1xk|K
)

+ β1pk|KE
[

xk − xk|K

]

+
β2
1

2
pk|K(1 − pk|K)E

[

(xk − xk|K)2
]

. (9.18)

= log
(

1 + eβ0+β1xk|K
)

+ 0 +
β2
1

2
pk|K(1 − pk|K)σ 2

k|K .

(9.19)

Therefore,

.Q ≈

K
∑

k=1

[

nk(β0 + β1xk|K) − log
(

1 + eβ0+β1xk|K
)

−
β2
1

2
pk|K(1 − pk|K)σ 2

k|K

]

.

(9.20)

9.2 Deriving the Parameter Estimation Step Equations for Terms Related to a. . . 101

Now,

.
∂pk|K

∂β0
=

∂

∂β0

[

1

1 + e−(β0+β1xk|K)

]

=
(−1)

[

1 + e−(β0+β1xk|K)
]2

×
[

− e−(β0+β1xk|K)
]

= pk|K(1 − pk|K). (9.21)

And similarly,

.
∂pk|K

∂β1
= pk|K(1 − pk|K)xk|K . (9.22)

Taking the partial derivative of Q with respect to .β0, we have

.
∂Q

∂β0
=

K
∑

k=1

{

nk −
eβ0+β1xk|K

(

1 + eβ0+β1xk|K
) −

β2
1σ

2
k|K

2

∂

∂β0

[

pk|K(1 − pk|K)
]

}

. (9.23)

=

K
∑

k=1

{

nk − pk|K −
β2
1σ

2
k|K

2

∂

∂β0

[

pk|K(1 − pk|K)
]

}

. (9.24)

=

K
∑

k=1

[

nk − pk|K −
β2
1σ

2
k|K

2
(1 − pk|K)(1 − 2pk|K)pk|K

]

. (9.25)

And similarly for .β1, we have

.
∂Q

∂β1
=

K
∑

k=1

[

nkxk|K −xk|Kpk|K −
β1σ

2
k|K

2
pk|K(1−pk|K)

[

2 + β1xk|K(1 − 2pk|K)
]

]

.

(9.26)

By setting

.
∂Q

∂β0
= 0. (9.27)

∂Q

∂β1
= 0, (9.28)

we obtain two simultaneous equations with which to solve for .β0 and .β1. Note also

that the use of .β0 and .β1 in .pk causes changes to the filter update equations for .xk|k

and .σ 2
k|k .

102 9 Additional Models and Derivations

The parameter estimation step updates for .β0 and .β1 when we observe a

binary variable .nk are obtained by solving

.

K
∑

k=1

[

nk − pk|K −
β2
1σ

2
k|K

2
(1 − pk|K)(1 − 2pk|K)pk|K

]

= 0. (9.29)

K
∑

k=1

[

nkxk|K − xk|Kpk|K −
β1σ

2
k|K

2
pk|K(1 − pk|K)

[

2 + β1xk|K(1 − 2pk|K)
]

]

= 0. (9.30)

9.3 Extending Estimation to a Vector-Valued State

We have also thus far only considered cases where a single state .xk gives rise to

different observations. In a number of applications, we will encounter the need to

estimate a vector-valued state .xk . For instance, we may need to estimate the position

of a small animal on a 2D plane from neural spiking observations or may need to

estimate different aspects of emotion from physiological signal features. We have a

multi-dimensional .xk in each of these cases.

Let us first consider the predict equations in the state estimation step. Assume

that we have a state .xk that varies with time following

.xk = Axk−1 + Buk + ek, (9.31)

where A and B are matrices and .ek ∼ N (0,Σ) is the process noise. The basic

statistical results related to mean and variance in (2.1)–(2.6) simply generalize to

the vector case. Thus, the predict equations in the state estimation step become

.xk|k−1 = Axk−1|k−1 + Buk. (9.32)

Σk|k−1 = AΣk−1|k−1A
T + Σ, (9.33)

where the covariance (uncertainty) .Σ of .xk is now a matrix.

Recall also how we derived the update equations in the state estimation step.

We calculated the terms that appeared in posterior .p(xk|y1:k) and made a Gaussian

approximation to it in order to derive the mean and variance updates .xk|k and .σ 2
k|k .

In all of the scalar cases, the log posterior density had the form

9.3 Extending Estimation to a Vector-Valued State 103

.qs = f (xk) −
(xk − xk|k−1)

2

2σ 2
k|k−1

+ constant, (9.34)

where .f (xk) was some function of .xk . This function could take on different forms

depending on whether binary, continuous, or spiking-type observations (or different

combinations of them) were present. In each of the cases, the mean and variance

were derived based on the first and second derivatives of .qs .

There are two different ways for calculating the update step equations in the

vector case.

• The first is the traditional approach outlined in [10]. Here, the result that holds

for the 1D case is simply extended to the vector case. Regardless of the types of

observations (features) that are present in the state-space model, the log posterior

is of the form

.qv = f (xk) −
1

2
(xk − xk|k−1)

TΣ−1
k|k−1(xk − xk|k−1) + constant. (9.35)

The manner in which the updates .xk|k and .Σk|k are calculated, however, is quite

similar. We simply take the first vector derivative of .qv and solve for where it

is .0 to obtain .xk|k . We next take the Hessian of .qv comprising all the second

derivatives and take its negative inverse to obtain .Σk|k .

• The second approach is slightly different [115]. Note that, based on making a

Gaussian approximation to the log posterior, we can write

. −
1

2
(xk−xk|k)

TΣ−1
k|k (xk−xk|k) = f (xk)−

1

2
(xk−xk|k−1)

TΣ−1
k|k−1(xk−xk|k−1)

+ constant. (9.36)

Let us take the first vector derivative with respect to .xk on both sides. This yields

. − Σ−1
k|k (xk − xk|k) =

∂f (xk)

∂xk

− Σ−1
k|k−1(xk − xk|k−1). (9.37)

Let us now evaluate this expression at .xk = xk|k−1. Do you see that if we

substitute .xk = xk|k−1 in the above expression, the second term on the right

simply goes away? Therefore, we end up with

. − Σ−1
k|k (xk|k−1 − xk|k) =

∂f (xk)

∂xk

∣

∣

∣

∣

xk|k−1

. (9.38)

=⇒ xk|k = xk|k−1 + Σk|k
∂f (xk)

∂xk

∣

∣

∣

∣

xk|k−1

. (9.39)

104 9 Additional Models and Derivations

This yields the mean state update for .xk|k . How do we derive the covariance

matrix .Σk|k? We simply take the vector derivative of (9.37) again. Note that in

this case, . ∂
2

∂x2k
is a matrix of all the second derivative terms. Thus, we obtain

.Σ−1
k|k = −

∂2f (xk)

∂x2k
+ Σ−1

k|k−1. (9.40)

=⇒ Σk|k =

[

−
∂2f (xk)

∂x2 k
+ Σ−1

k|k−1

]−1

. (9.41)

9.4 The Use of Machine Learning Methods for State

Estimation

Machine learning approaches can also be used for state estimation (e.g., [116, 117]).

In these methods, neural networks or other techniques are utilized to learn a

particular state-space model and infer the unobserved state(s) from a dataset. In this

section, we will briefly describe how the neural network approach in [116] is used

for estimation. In [116], Krishnan et al. considered the general Gaussian state-space

model

.xk ∼ N (fµx (xk−1), fσ 2
x
(xk−1)). (9.42)

yk ∼ Π(fy(xk)), (9.43)

where .yk represents the observations. Both the state equation and the output

equation are learned using two separate neural networks (for simplicity, we group

both of them together under the title “state-space neural network”—SSNN). A

separate recurrent neural network (RNN) is used to estimate .xk . Taking .ψ and .φ

to denote the parameters of the state-space model and the RNN, respectively, the

networks are trained by maximizing

.Q̃ =

K
∑

k=1

Eqφ(xk |→y)

[

logpψ (yk|xk)
]

− KL(qφ(x1|→y)||pψ (x1))

−

K
∑

k=2

Eqφ(xk−1|→y)

[

KL(qφ(xk|xk−1, →y)||pψ (xk|xk−1))
]

, (9.44)

where .pψ (·) and .qφ(·) denote density functions [116]. The actual training is

performed within the algorithm as a minimization of the negative term which we

label .QML. Analogous to the state-space EM algorithms we have seen so far, in

9.5 Additional MATLAB Code Examples 105

this neural network approach, the SSNN replaces the explicit state-space model, the

RNN replaces the Bayesian filter, and the weights of the neural networks replace the

model parameters. The objective, however, is still to estimate .xk from observations

such as .nk , .rk , and .sk . Since neural networks are used to learn the state-space model,

more complicated state transitions and input-output relationships are permitted. One

of the drawbacks, however, is that a certain degree of interpretability is lost.

Similarities also exist between the terms in .QML and the log-likelihood terms

we have seen thus far. For instance, when a binary variable .nk is present among the

observations .yk , .QML contains the summation

. −
∑

[

nk log
(1

1 + e−fn(xk)

)

+ (1 − nk) log
(

1 −
1

1 + e−fn(xk)

)]

. (9.45)

Take a moment to look back at how (3.15) and (3.26) fit in with this summation.

In this case, however, .fn(·) is learned by the SSNN (in our other approaches, we
explicitly modeled the relationship between .xk and .pk using a sigmoid). Similarly,

if a continuous-valued variable .sk is present in .yk , there is the summation

.

∑ 1

2
log

[

2πfσ 2
s
(xk)

]

+

[

sk − fµs (xk)
]2

2fσ 2
s
(xk)

, (9.46)

where .fµs (·) and .fσ 2
s
(·) represent mean and variance functions learned by the

SSNN. Again, recall that we had a very similar term at the parameter estimation

step for a continuous variable .sk .

One of the primary advantages of the neural network approach in [116] is that

we no longer need to derive all the EM algorithm equations when new observations

are added. This is a notable drawback with the traditional EM approach. Moreover,

we can also modify the objective function to

.(1 − ρ)QML + ρ
∑

(xk − lk)
2, (9.47)

where .lk is an external influence and .0 ≤ ρ ≤ 1. This provides the option to perform

state estimation while permitting an external influence (e.g., domain knowledge or

subject-provided labels) to affect .xk .

9.5 Additional MATLAB Code Examples

In this section we briefly describe the two state-space models in [118] and [30]

for which the MATLAB code examples are provided. The equation derivations for

these two models require no significant new knowledge. The first of these incor-

porates one binary observation from skin conductance and one EKG spiking-type

observation. The second incorporates one binary observation and two continuous

106 9 Additional Models and Derivations

observations. It is almost identical to the model with the same observations

described in an earlier chapter but has a circadian rhythm term as .Ik . The derivation

of the state and parameter estimation equations is similar to what we have seen

before.

9.5.1 State-Space Model with One Binary and One

Spiking-Type Observation

The MATLAB code example for the state-space model with one binary and one

spiking-type observation is provided in the “one_bin_one_spk” folder. The model is

described in [118] and attempts to estimate sympathetic arousal from binary-valued

SCRs and EKG R-peaks (the RR-intervals are modeled using an HDIG-based CIF).

The results are shown in Fig. 9.1. The data come from the study described in [119]

where subjects had to perform office work-like tasks under different conditions. In

the first condition, the subjects were permitted to take as much time as they liked.

The other two conditions involved e-mail interruptions and time constraints. Based

on the results reported in [118], it appeared that task uncertainty (i.e., how new the

task is) seemed to have generated the highest sympathetic arousal responses for the

subject considered.

9.5.2 State-Space Model with One Binary and Two Continuous

Observations with a Circadian Input in the State

Equation

Cortisol is known to exhibit circadian variation [120, 121]. Typically, cortisol

concentrations in the blood begin to rise early morning during late stages of sleep.

Peak values are reached shortly after awakening. Later in the day, cortisol levels

tend to drop toward bedtime and usually reach their lowest values in the middle of

the night [122, 123]. In [30], a circadian .Ik term was assumed to drive .xk so that it

evolved with time following

.xk = ρxk−1 + Ik + εk, (9.48)

where

.Ik =

2
∑

i=1

ai sin
(2πik

1440

)

+ bi cos
(2πik

1440

)

. (9.49)

The model also considered the upper and lower envelopes of the blood cortisol

concentrations as the two continuous variables .rk and .sk . The pulsatile secretions

9.5 Additional MATLAB Code Examples 107

Fig. 9.1 State estimation based on observing one binary and one spiking-type variable. The sub-

panels, respectively, depict (a) the skin conductance signal .zk (the green and black dots on top

depict the presence or the absence of SCRs, respectively), (b) the RR-interval sequence (orange)

and the fit to the HDIG mean (red), (c) the probability of SCR occurrence .pk and its 95%

confidence limits, (d) the arousal state .xk and its 95% confidence limits, and (e) the HAI (the

regions above 90% and below 10% are shaded in red and green, respectively). © 2019 IEEE.

Reprinted, with permission, from [118]

formed the binary variable .nk . The inclusion of each continuous variable neces-

sitates the determination of three model parameters (two governing the linear fit

and the third being the sensor noise variance). In addition, the state-space model

in [30] also estimated .β0 and .β1 in .pk . There are also six more parameters in the

108 9 Additional Models and Derivations

Fig. 9.2 State estimation based on observing one binary and two continuous variables with a

circadian input in the state equation. The sub-panels, respectively, depict (a) the cortisol profile (the

green and black dots on top denote the presence or the absence of pulsatile secretions respectively),

(b) the first cortisol concentration envelope .rk (green solid) and its estimate (dashed), (c) the second

cortisol concentration envelope .sk (mauve solid) and its estimate (dashed), (d) the probability

of pulse occurrence .pk , and (e) the energy state .xk . © 2019 IEEE. Reprinted, with permission,

from [30]

state equation: .ρ, .a1, .a2, .b1, .b2, and .σ
2
ε . To ease computational complexity, the

EM algorithm in [30] treated the four parameters related to the circadian rhythm

(.a1, .a2, .b1, and .b2) somewhat differently. Thus, while all the parameters were

updated at the parameter estimation step, .a1, .a2, .b1, and .b2 were excluded from the

convergence criteria. The results are shown in Fig. 9.2. Here, the data were simulated

9.5 Additional MATLAB Code Examples 109

for a hypothetical patient suffering from a type of hypercortisolism (Cushing’s

disease) based on the parameters in [124]. Cushing’s disease involves excess cortisol

secretion into the bloodstream and may be caused by tumors or prolonged drug use

[125]. Symptoms of Cushing’s disease involve a range of physical and psychological

symptoms including insomnia and fatigue [126–128]. The resulting cortisol-related

energy state estimates do not have the usual circadian-like patterns seen for a healthy

subject. This may partially account for why Cushing’s patients experience daytime

bouts of fatigue and nighttime sleeping difficulties.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 10

MATLAB Code Examples

10.1 State-space Model with One Binary Observation

10.1.1 Simulated Data Example

load(’data_one_bin.mat’);

K = length(n);

M = 2e4;
ve = zeros(1, M); % process noise variance

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth = zeros(1, K);
v_smth = zeros(1, K);

p_updt = zeros(1, K);

base_prob = sum(n) / length(n);
tol = 1e-6; % convergence criteria

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

ve(1) = 0.005;
x_smth(1) = 0;
b0 = log(base_prob / (1 - base_prob));

© The Author(s) 2024

D. S. Wickramasuriya, R. T. Faghih, Bayesian Filter Design for Computational

Medicine, https://doi.org/10.1007/978-3-031-47104-9_10

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47104-9protect T1	extunderscore 10&domain=pdf
https://doi.org/10.1007/978-3-031-47104-9_10
https://doi.org/10.1007/978-3-031-47104-9_10
https://doi.org/10.1007/978-3-031-47104-9_10
https://doi.org/10.1007/978-3-031-47104-9_10
https://doi.org/10.1007/978-3-031-47104-9_10
https://doi.org/10.1007/978-3-031-47104-9_10
https://doi.org/10.1007/978-3-031-47104-9_10
https://doi.org/10.1007/978-3-031-47104-9_10
https://doi.org/10.1007/978-3-031-47104-9_10
https://doi.org/10.1007/978-3-031-47104-9_10
https://doi.org/10.1007/978-3-031-47104-9_10

112 10 MATLAB Code Examples

for m = 1:M

for k = 1:K

if (k == 1) % boundary condition
x_pred(k) = x_smth(1);
v_pred(k) = ve(m) + ve(m);

else
x_pred(k) = x_updt(k - 1);
v_pred(k) = v_updt(k - 1) + ve(m);

end

x_updt(k) = get_state_update(x_pred(k), v_pred(k), b0, n(
k));

p_updt(k) = 1 / (1 + exp((-1) * (b0 + x_updt(k))));
v_updt(k) = 1 / ((1 / v_pred(k)) + p_updt(k) * (1 -

p_updt(k)));
end

x_smth(K) = x_updt(K);
v_smth(K) = v_updt(K);
W(K) = v_smth(K) + (x_smth(K) ^ 2);

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end);

for k = (K - 1):(-1):1
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k +

1));
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1));

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) ^ 2);

end

if (m < M)

ve(m + 1) = (sum(W(2:end)) + sum(W(1:(end - 1))) - 2 *
sum(CW)) / K;

mean_dev = mean(abs(ve(m + 1) - ve(m)));

if mean_dev < tol
fprintf(’m = %d\nx0 = %.18f\nve = %.18f\n\n’, m,

x_smth(1), ve(m));
fprintf(’Converged at m = %d\n\n’, m);
break;

else
fprintf(’m = %d\nx0 = %.18f\nve = %.18f\n\n’, m,

x_smth(1), ve(m + 1));

x_pred = zeros(1, K);
v_pred = zeros(1, K);

10.1 State-space Model with One Binary Observation 113

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth(2:end) = zeros(1, K - 1); % x_smth(1)
needed for next iteration

v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

end
end

end

p_smth = 1 ./ (1 + exp((-1) * (b0 + x_smth)));

figure;
subplot(411);
stem(n, ’fill’, ’color’, [0 0.75 0]);
ylim([0 1.25]);
ylabel(’(a) n_{k}’);
grid; title(’Estimation with Simulated Data’);

subplot(412);
hold on;
plot(p, ’b’);
plot(p_smth, ’r-.’, ’linewidth’, 1.25);
ylabel(’(b) p_{k}’);
grid;

subplot(413);
hold on;
plot(x, ’b’);
plot(x_smth, ’r-.’, ’linewidth’, 1.25);
ylabel(’(c) x_{k}’); xlabel(’time index’);
grid;

subplot(414);
qqplot(x - x_smth);
title(’QQ Plot - State Estimate’, ’FontWeight’, ’Normal’);
ylabel(’(d) input quantiles’);
xlabel(’standard normal quantiles’);
grid;

function [y] = get_state_update(x_pred, v_pred, b0, n)

M = 50; % maximum iterations

it = zeros(1, M);
func = zeros(1, M);

114 10 MATLAB Code Examples

df = zeros(1, M);

it(1) = x_pred;

for i = 1:(M - 1)
func(i) = it(i) - x_pred - v_pred * (n - exp(b0 + it(i)) /

(1 + exp(b0 + it(i))));
df(i) = 1 + v_pred * exp(b0 + it(i)) / ((1 + exp(b0 + it(i

))) ̂ 2);
it(i + 1) = it(i) - func(i) / df(i);

if abs(it(i + 1) - it(i)) < 1e-14
y = it(i + 1);

return
end

end

error(’Newton-Raphson failed to converge.’);

end

10.1.2 Experimental Data Example

load(’expm_data_one_bin.mat’);

K = length(u);
n = zeros(1, K);

pt = find(u > 0);
n(pt) = 1;

M = 2e4;
ve = zeros(1, M); % process noise variance

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth = zeros(1, K);
v_smth = zeros(1, K);

p_updt = zeros(1, K);

base_prob = sum(n) / length(n);
tol = 1e-8; % convergence criteria

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

10.1 State-space Model with One Binary Observation 115

ve(1) = 0.005;
x_smth(1) = 0;
b0 = log(base_prob / (1 - base_prob));

for m = 1:M

for k = 1:K

if (k == 1) % boundary condition
x_pred(k) = x_smth(1);
v_pred(k) = ve(m) + ve(m);

else
x_pred(k) = x_updt(k - 1);
v_pred(k) = v_updt(k - 1) + ve(m);

end

x_updt(k) = get_state_update(x_pred(k), v_pred(k), b0, n(
k));

p_updt(k) = 1 / (1 + exp((-1) * (b0 + x_updt(k))));
v_updt(k) = 1 / ((1 / v_pred(k)) + p_updt(k) * (1 -

p_updt(k)));
end

x_smth(K) = x_updt(K);
v_smth(K) = v_updt(K);
W(K) = v_smth(K) + (x_smth(K) ^ 2);

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end);
x0_prev = x_smth(1);

for k = (K - 1):(-1):1
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k +

1));
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1));

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) ^ 2);

end

if (m < M)

ve(m + 1) = (sum(W(2:end)) + sum(W(1:(end - 1))) - 2 *
sum(CW) + 0.5 * W(1)) / (K + 1);

x0 = x_smth(1) / 2;

if (abs(ve(m + 1) - ve(m)) < tol) && (abs(x0 - x0_prev) <
tol)

fprintf(’m = %d\nx0 = %.18f\nve = %.18f\n\n’, m,
x_smth(1), ve(m));

fprintf(’Converged at m = %d\n\n’, m);
break;

116 10 MATLAB Code Examples

else
fprintf(’m = %d\nx0 = %.18f\nve = %.18f\n\n’, m,

x_smth(1), ve(m + 1));

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth(2:end) = zeros(1, K - 1); % x_smth(1)
needed for next iteration

x_smth(1) = x0;
v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

end
end

end

p_smth = 1 ./ (1 + exp((-1) * (b0 + x_smth)));

lcl_x = norminv(0.025, x_smth, sqrt(v_smth));
ucl_x = norminv(0.975, x_smth, sqrt(v_smth));

certainty = 1 - normcdf(prctile(x_smth, 50) * ones(1, length(
x_smth)), x_smth, sqrt(v_smth));

lcl_p = zeros(1, K);
ucl_p = zeros(1, K);

disp(’Calculating the pk confidence limits... (this can take time
due to the resolution)’);

for k = 1:K
[lcl_p(k), ucl_p(k)] = get_pk_conf_lims(v_smth(k), b0, x_smth
(k));

end
disp(’Finished calculating the pk confidence limits.’);

fs = 4;
t = (0:(K - 1)) / fs;
tr = ((K - 1):(-1):0) / fs;

u_plot = NaN * ones(1, K);
u_plot(pt) = u(pt);

subplot(511);
hold on;
plot(ty, y, ’k’, ’linewidth’, 1.25);

10.1 State-space Model with One Binary Observation 117

ylabel({’(a) skin cond.’, ’(\mu S)’});
set(gca,’xticklabel’, []); ylim([0 3]);
title(’State Estimation with Experimental Data’); xlim([0 ty(end)

]);
grid;
yl = ylim;

patch([xp(1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) yl(1) yl(2) yl(2)
], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

subplot(512);
stem(t, u_plot, ’fill’, ’k’, ’markersize’, 3);
ylabel(’(b) n_{k}, r_{k}’); grid; xlim([0 t(end)]); ylim([0 15]);
yl = ylim; set(gca,’xticklabel’, []);

patch([xp(1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) yl(1) yl(2) yl(2)
], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

subplot(513);
hold on;
plot(t, x_smth, ’b’, ’linewidth’, 1.25);
fill([t, tr], [lcl_x fliplr(ucl_x)], ’c’, ’EdgeColor’, ’none’, ’

FaceAlpha’, 0.5);
ylabel(’(c) state (x_{k})’); ylim([-10 5]);
set(gca,’xticklabel’, []); xlim([0 t(end)]);
grid; yl = ylim;

patch([xp(1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) yl(1) yl(2) yl(2)
], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

118 10 MATLAB Code Examples

subplot(514);
hold on;
plot(t, p_smth, ’r’, ’linewidth’, 1.5);
fill([t, tr], [lcl_p fliplr(ucl_p)], [1, 0, (127 / 255)], ’

EdgeColor’, ’none’, ’FaceAlpha’, 0.3);
ylim([0 0.15]);
ylabel(’(d) probability (p_{k})’);
set(gca,’xticklabel’, []); xlim([0 t(end)]);
grid; yl = ylim;

patch([xp(1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) yl(1) yl(2) yl(2)
], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

subplot(515);
hold on;
v1 = [0 0.9; t(end) 0.9; t(end) 1; 0 1];
c1 = [1 (220 / 255) (220 / 255); 1 (220 / 255) (220 / 255); 1 0

0; 1 0 0];
faces1 = [1 2 3 4];

patch(’Faces’, faces1, ’Vertices’, v1, ’FaceVertexCData’, c1, ’
FaceColor’, ’interp’, ...
’EdgeColor’, ’none’, ’FaceAlpha’, 0.7);

v2 = [0 0; t(end) 0; t(end) 0.1; 0 0.1];
c2 = [0 0.8 0; 0 0.8 0; (204 / 255) 1 (204 / 255); (204 / 255) 1

(204 / 255)];
faces2 = [1 2 3 4];

patch(’Faces’, faces2, ’Vertices’, v2, ’FaceVertexCData’, c2, ’
FaceColor’, ’interp’, ...
’EdgeColor’, ’none’, ’FaceAlpha’, 0.7);

plot(t, certainty, ’color’, [(138 / 255) (43 / 255) (226 / 255)],
’linewidth’, 1.5); grid;

ylabel(’(d) HAI’); xlabel(’time (s)’); xlim([0 t(end)]);

function [y] = get_state_update(x_pred, v_pred, b0, n)

M = 50; % maximum iterations

it = zeros(1, M);
func = zeros(1, M);
df = zeros(1, M);

it(1) = x_pred;

10.2 State-space Model with One Binary and One Continuous Observation 119

for i = 1:(M - 1)
func(i) = it(i) - x_pred - v_pred * (n - exp(b0 + it(i)) /

(1 + exp(b0 + it(i))));
df(i) = 1 + v_pred * exp(b0 + it(i)) / ((1 + exp(b0 + it(i

))) ̂ 2);
it(i + 1) = it(i) - func(i) / df(i);

if abs(it(i + 1) - it(i)) < 1e-14
y = it(i + 1);

return
end

end

error(’Newton-Raphson failed to converge.’);

end

function [lcl, ucl] = get_pk_conf_lims(v, b0, x)

p = (1e-6:1e-6:1);

fp = cumtrapz(p, 1 ./ (sqrt(2 * pi * v) * p .* (1 - p)) .*
...

exp(((-1) / (2 * v))* (log(p ./ ((1 - p) * exp(b0))) - x)
.^ 2));

n = find(fp <= 0.975);
m = find(fp < 0.025);

ucl = p(n(end));
lcl = p(m(end));

end

10.2 State-space Model with One Binary and One

Continuous Observation

10.2.1 Simulated Data Example

load(’data_one_bin_one_cont.mat’);

K = length(n);

pt = find(n > 0);

M = 5e4;
ve = zeros(1, M); % process noise variance
r0 = zeros(1, M); % linear model coefficients (continuous

variable)

120 10 MATLAB Code Examples

r1 = zeros(1, M); % linear model coefficients (continuous
variable)

vr = zeros(1, M); % sensor noise variance (continuous variable)

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth = zeros(1, K);
v_smth = zeros(1, K);

p_updt = zeros(1, K);

base_prob = sum(n) / length(n);
tol = 1e-8; % convergence criteria

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

ve(1) = 0.005;
x_smth(1) = 0;
r0(1) = 0.1;
r1(1) = r(1);
vr(1) = 0.002;
b0 = log(base_prob / (1 - base_prob));

for m = 1:M

for k = 1:K

if (k == 1)
x_pred(k) = x_smth(1);
v_pred(k) = ve(m) + ve(m);

else
x_pred(k) = x_updt(k - 1);
v_pred(k) = v_updt(k - 1) + ve(m);

end
x_updt(k) = get_posterior_mode(x_pred(k), v_pred(k), r(k)

, r0(m), r1(m), vr(m), b0, n(k));
p_updt(k) = 1 / (1 + exp((-1) * (b0 + x_updt(k))));
v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr(m))

+ p_updt(k) * (1 - p_updt(k)));
end

x_smth(K) = x_updt(K);
v_smth(K) = v_updt(K);
W(K) = v_smth(K) + (x_smth(K) ^ 2);

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end);

10.2 State-space Model with One Binary and One Continuous Observation 121

for k = (K - 1):(-1):1
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k +

1));
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1));

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) ^ 2);

end

if (m < M)

R = get_linear_parameters(x_smth, W, r);

r0(m + 1) = R(1, 1);
r1(m + 1) = R(2, 1);
vr(m + 1) = get_maximum_variance(r, r0(m + 1), r1(m + 1),

W, x_smth);

ve(m + 1) = (sum(W(2:end)) + sum(W(1:(end - 1))) - 2 *
sum(CW)) / K;

mean_dev = mean(abs([ve(m + 1) r0(m + 1) r1(m + 1) vr(m +
1)] - [ve(m) r0(m) r1(m) vr(m)]));

if mean_dev < tol
fprintf(’m = %d\nx0 = %.18f\n\nr0 = %.18f\nr1 = %.18f

\nvr = %.18f\nve = %.18f\n\n’, m, x_smth(1), r0(m), r1(m), vr
(m), ve(m));

fprintf(’Converged at m = %d\n\n’, m);
break;

else
fprintf(’m = %d\nx0 = %.18f\n\nr0 = %.18f\nr1 = %.18f

\nvr = %.18f\nve = %.18f\n\n’, m, x_smth(1), r0(m + 1), r1(m
+ 1), vr(m + 1), ve(m + 1));

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth(2:end) = zeros(1, K - 1); % x_smth(1)
needed for next iteration

v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

end
end

122 10 MATLAB Code Examples

end

p_updt = 1 ./ (1 + exp((-1) * (b0 + x_updt)));
p_smth = 1 ./ (1 + exp((-1) * (b0 + x_smth)));
r_smth = r0(m) + r1(m) * x_smth;

figure;
subplot(511);
stem(n, ’fill’, ’color’, [0 0.75 0]);
ylim([0 1.25]);
ylabel(’(a) n_{k}’);
grid; title(’Estimation with Simulated Data’);

subplot(512);
hold on;
plot(r, ’b’);
plot(r_smth, ’r-.’, ’linewidth’, 1.5);
ylabel(’(b) r_{k}’);
grid;

subplot(513);
hold on;
plot(p, ’b’);
plot(p_smth, ’r-.’, ’linewidth’, 1.5);
ylabel(’(c) p_{k}’);
grid;

subplot(514);
hold on;
plot(x, ’b’);
plot(x_smth, ’r-.’, ’linewidth’, 1.5);
ylabel(’(d) x_{k}’);
xlabel(’time index’);
grid;

subplot(515);
qqplot(x - x_smth);
title(’QQ Plot - State Estimate’, ’FontWeight’, ’Normal’);
ylabel(’(e) input quantiles’);
xlabel(’standard normal quantiles’);
grid;

function [y] = get_posterior_mode(x_pred, v_pred, z, r0, r1, vr,
b0, n)

M = 100; % maximum iterations

it = zeros(1, M);
f = zeros(1, M);
df = zeros(1, M);

it(1) = x_pred;

for i = 1:(M - 1)

10.2 State-space Model with One Binary and One Continuous Observation 123

C = v_pred / ((r1 ^ 2) * v_pred + vr);
f(i) = it(i) - x_pred - C * (r1 * (z - r0 - r1 * x_pred)

+ vr * (n - (1 / (1 + exp((-1) * (b0 + it(i)))))));
df(i) = 1 + C * vr * exp(b0 + it(i)) / ((1 + exp(b0 + it(

i))) ̂ 2);

it(i + 1) = it(i) - f(i) / df(i);

if abs(it(i + 1) - it(i)) < 1e-14
y = it(i + 1);
return

end
end

error(’Newton-Raphson failed to converge.’);

end

function y = get_maximum_variance(z, r0, r1, W, x_smth)

K = length(x_smth);

y = (z * z’ + K * (r0 ^ 2) + (r1 ^ 2) * sum(W) ...
- 2 * r0 * sum(z) - 2 * r1 * dot(x_smth, z) + 2 *

r0 * r1 * sum(x_smth)) / K;
end

function y = get_linear_parameters(x_smth, W, z)

K = length(x_smth);

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .*
x_smth)];

end

10.2.2 Experimental Data Example

load(’expm_data_one_bin_one_cont.mat’);

K = length(n);

pt = find(n > 0);

M = 5e4;
ve = zeros(1, M); % process noise variance
r0 = zeros(1, M); % linear model coefficients (continuous

variable)
r1 = zeros(1, M); % linear model coefficients (continuous

variable)
vr = zeros(1, M); % sensor noise variance (continuous variable)

124 10 MATLAB Code Examples

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth = zeros(1, K);
v_smth = zeros(1, K);

p_updt = zeros(1, K);

base_prob = sum(n) / length(n);
tol = 1e-8; % convergence criteria

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

ve(1) = 0.005;
x_smth(1) = 0;
r0(1) = 0.1;
r1(1) = r(1);
vr(1) = 0.002;
b0 = log(base_prob / (1 - base_prob));

for m = 1:M

for k = 1:K

if (k == 1)
x_pred(k) = x_smth(1);
v_pred(k) = ve(m) + ve(m);

else
x_pred(k) = x_updt(k - 1);
v_pred(k) = v_updt(k - 1) + ve(m);

end
x_updt(k) = get_posterior_mode(x_pred(k), v_pred(k), r(k)

, r0(m), r1(m), vr(m), b0, n(k));
p_updt(k) = 1 / (1 + exp((-1) * (b0 + x_updt(k))));
v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr(m))

+ p_updt(k) * (1 - p_updt(k)));
end

x_smth(K) = x_updt(K);
v_smth(K) = v_updt(K);
W(K) = v_smth(K) + (x_smth(K) ^ 2);

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end);

for k = (K - 1):(-1):1
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k +

1));

10.2 State-space Model with One Binary and One Continuous Observation 125

v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -
v_pred(k + 1));

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) ^ 2);

end

if (m < M)

R = get_linear_parameters(x_smth, W, r);

r0(m + 1) = R(1, 1);
r1(m + 1) = R(2, 1);
vr(m + 1) = get_maximum_variance(r, r0(m + 1), r1(m + 1),

W, x_smth);

ve(m + 1) = (sum(W(2:end)) + sum(W(1:(end - 1))) - 2 *
sum(CW)) / K;

mean_dev = mean(abs([ve(m + 1) r0(m + 1) r1(m + 1) vr(m +
1)] - [ve(m) r0(m) r1(m) vr(m)]));

if mean_dev < tol
fprintf(’m = %d\nx0 = %.18f\n\nr0 = %.18f\nr1 = %.18f

\nvr = %.18f\nve = %.18f\n\n’, m, x_smth(1), r0(m), r1(m), vr
(m), ve(m));

fprintf(’Converged at m = %d\n\n’, m);
break;

else
fprintf(’m = %d\nx0 = %.18f\n\nr0 = %.18f\nr1 = %.18f

\nvr = %.18f\nve = %.18f\n\n’, m, x_smth(1), r0(m + 1), r1(m
+ 1), vr(m + 1), ve(m + 1));

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth(2:end) = zeros(1, K - 1); % x_smth(1)
needed for next iteration

v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

end
end

end

p_updt = 1 ./ (1 + exp((-1) * (b0 + x_updt)));

126 10 MATLAB Code Examples

p_smth = 1 ./ (1 + exp((-1) * (b0 + x_smth)));
r_smth = r0(m) + r1(m) * x_smth;
n_plot = NaN * ones(1, K);
n_plot(n > 0) = 1;

figure;

subplot(511);
hold on;
plot(t, y, ’k’, ’linewidth’, 1.5);
patch(xp, yp, [192, 192, 192] / 255, ’EdgeColor’, ’none’, ’

FaceAlpha’, 0.3);
grid;
ylabel(’(a) z_{k}’); title(’State Estimation with Experimental

Data’);
set(gca,’xticklabel’, []); ylim([(min(y) - 1e2) (max(y) + 1e2)]);

subplot(512);
stem(t, n_plot, ’fill’, ’color’, [0 0.75 0]);
patch(xp, yp * 1.25, [192, 192, 192] / 255, ’EdgeColor’, ’none’,

’FaceAlpha’, 0.3);
ylim([0 1.25]);
ylabel(’(b) n_{k}’);
grid; set(gca,’xticklabel’, []);

subplot(513);
hold on;
plot(t, r, ’b’);
plot(t, r_smth, ’r’, ’linewidth’, 1.5);
patch(xp, yp, [192, 192, 192] / 255, ’EdgeColor’, ’none’, ’

FaceAlpha’, 0.3);
ylabel(’(c) r_{k}’);
grid; set(gca,’xticklabel’, []);

subplot(514);
hold on;
plot(t, p_smth, ’color’, [(204 / 255), 0, (102 / 255)], ’

linewidth’, 1.25);
patch(xp, yp * 0.5, [192, 192, 192] / 255, ’EdgeColor’, ’none’, ’

FaceAlpha’, 0.3);
ylabel(’(d) p_{k}’);
grid; set(gca,’xticklabel’, []);

subplot(515);
hold on;
plot(t, x_smth, ’color’, [(153 / 255), 0, (153 / 255)], ’

linewidth’, 1.25);
yl = ylim;
ypx = yp;
ypx(yp == 0) = yl(1);
ypx(yp == 1) = yl(2);
patch(xp, ypx, [192, 192, 192] / 255, ’EdgeColor’, ’none’, ’

FaceAlpha’, 0.3);
ylabel(’(e) x_{k}’);

10.2 State-space Model with One Binary and One Continuous Observation 127

xlabel(’time (min)’);
grid; ylim([(min(x_smth) - 2) inf]);

function [y] = get_posterior_mode(x_pred, v_pred, z, r0, r1, vr,
b0, n)

M = 100; % maximum iterations

it = zeros(1, M);
f = zeros(1, M);
df = zeros(1, M);

it(1) = x_pred;

for i = 1:(M - 1)
C = v_pred / ((r1 ^ 2) * v_pred + vr);
f(i) = it(i) - x_pred - C * (r1 * (z - r0 - r1 * x_pred)

+ vr * (n - (1 / (1 + exp((-1) * (b0 + it(i)))))));
df(i) = 1 + C * vr * exp(b0 + it(i)) / ((1 + exp(b0 + it(

i))) ̂ 2);

it(i + 1) = it(i) - f(i) / df(i);

if abs(it(i + 1) - it(i)) < 1e-14
y = it(i + 1);
return

end
end

error(’Newton-Raphson failed to converge.’);

end

function y = get_maximum_variance(z, r0, r1, W, x_smth)

K = length(x_smth);

y = (z * z’ + K * (r0 ^ 2) + (r1 ^ 2) * sum(W) ...
- 2 * r0 * sum(z) - 2 * r1 * dot(x_smth, z) + 2 *

r0 * r1 * sum(x_smth)) / K;
end

function y = get_linear_parameters(x_smth, W, z)

K = length(x_smth);

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .*
x_smth)];

end

128 10 MATLAB Code Examples

10.3 State-space Model with One Binary and Two

Continuous Observations

10.3.1 Simulated Data Example (αIk Excluded)

load(’data_one_bin_two_cont_no_extern_stim.mat’);

base_prob = sum(n) / length(n);

%% parameters

M = 1e6; % maximum iterations
m = 1;
tol = 1e-8; % convergence criteria

b0 = zeros(1, M); % binary GLM model
b1 = zeros(1, M);

r0 = zeros(1, M); % continuous model
r1 = zeros(1, M);
vr = zeros(1, M); % continuous model noise variance (1)

s0 = zeros(1, M); % continuous model
s1 = zeros(1, M);
vs = zeros(1, M); % continuous model noise variance (2)

ve = zeros(1, M); % process noise variance
rho = zeros(1, M); % random walk forgetting factor

K = length(n);

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth = zeros(1, K);
v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

%% initial guesses

b0(1) = log(base_prob / (1 - base_prob));
b1(1) = 1;

10.3 State-space Model with One Binary and Two Continuous Observations 129

r0(1) = r(1); % guess it’s the first value of r
r1(1) = 0.5;
s0(1) = s(1);
s1(1) = 1;
vr(1) = 0.05;
vs(1) = 0.05;
ve(1) = 0.05;
rho(1) = 1;

%% main function

for m = 1:M

for k = 1:K

if (k == 1)
x_pred(k) = x_smth(1);
v_pred(k) = ve(m) + ve(m);

else
x_pred(k) = rho(m) * x_updt(k - 1);
v_pred(k) = (rho(m) ^ 2) * v_updt(k - 1) + ve(m);

end

C(k) = v_pred(k) / (vr(m) * vs(m) + v_pred(k) * ((r1(m) ^
2) * vs(m) + (s1(m) ^ 2) * vr(m)));

x_updt(k) = get_posterior_mode(x_pred(k), C(k), r(k), r0(
m), r1(m), b0(m), b1(m), vr(m), n(k), s(k), s0(m), s1(m), vs(
m));

p_updt(k) = 1 / (1 + exp((-1) * (b0(m) + b1(m) * x_updt(k
))));

v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr(m))
+ ((s1(m) ^ 2) / vs(m)) + (b1(m) ^ 2) * p_updt(k) * (1 -
p_updt(k)));
end

x_smth(K) = x_updt(K);
v_smth(K) = v_updt(K);
W(K) = v_smth(K) + (x_smth(K) ^ 2);

A(1:(end - 1)) = rho(m) * v_updt(1:(end - 1)) ./ v_pred(2:end
);

for k = (K - 1):(-1):1
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k +

1));
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1));

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) ^ 2);

end

prev = [r0(m) r1(m) ve(m) vr(m) rho(m) s0(m) s1(m) vs(m)];

130 10 MATLAB Code Examples

R = get_linear_parameters(x_smth, W, r, K);
S = get_linear_parameters(x_smth, W, s, K);

b0(m + 1) = log(base_prob / (1 - base_prob));
b1(m + 1) = 1;

rho(m + 1) = sum(CW) / sum(W(1:end - 1));

ve(m + 1) = (sum(W(2:end)) + (rho(m + 1) ̂ 2) * sum(W(1:(end
- 1))) - 2 * rho(m + 1) * sum(CW)) / K;

r0(m + 1) = R(1, 1);
r1(m + 1) = R(2, 1);

s0(m + 1) = S(1, 1);
s1(m + 1) = S(2, 1);

vr(m + 1) = get_maximum_variance(r, r0(m + 1), r1(m + 1), W,
x_smth, K);
vs(m + 1) = get_maximum_variance(s, s0(m + 1), s1(m + 1), W,
x_smth, K);

next = [r0(m + 1) r1(m + 1) ve(m + 1) vr(m + 1) rho(m + 1) s0
(m + 1) s1(m + 1) vs(m +1)];

mean_dev = mean(abs(next - prev));

if mean_dev < tol
fprintf(’Converged at m = %d\n\n’, m);
break;

else
fprintf(’m = %d\nr0 = %.18f\nr1 = %.18f\nvr = %.18f\n\ns0

= %.18f\ns1 = %.18f\nvs = %.18f\n\nve = %.18f\nrho = %.18f\n
\n’, ...

m + 1, r0(m + 1), r1(m + 1), vr(m + 1), s0(m + 1), s1(m +
1), vs(m + 1), ve(m + 1), rho(m + 1));

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth(2:end) = zeros(1, K - 1); % x_smth(1) needed
for next iteration

v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

10.3 State-space Model with One Binary and Two Continuous Observations 131

end
end

%% calculate confidence limits

p_smth = 1 ./ (1 + exp((-1) * (b0(m) + b1(m) * x_smth))); % mode
, lower and upper confidence limits for binary distribution

r_smth = r0(m) + r1(m) * x_smth;
s_smth = s0(m) + s1(m) * x_smth;

%% plot graphs

figure;

subplot(511);
hold on;
plot(p, ’b’);
plot(p_smth, ’r-.’, ’linewidth’, 1); grid;
plot(find(n == 0) - 1, 1.4 * max(p) * ones(length(find(n == 0))),

’ks’, ’MarkerFaceColor’, ’k’, ’MarkerSize’, 4);
plot(find(n == 1) - 1, 1.4 * max(p) * ones(length(find(n == 1))),

’gs’, ’MarkerFaceColor’, ’g’, ’MarkerSize’, 4);
ylabel(’(a) p_{k}’); ylim([0 0.18]);
title(’State Estimation with Simulated Data’);

subplot(512);
hold on;
plot(r, ’b’);
plot(r_smth, ’r-.’, ’linewidth’, 1.25); grid;
ylabel(’(b) r_{k}’);

subplot(513);
hold on;
plot(s, ’b’);
plot(s_smth, ’r-.’, ’linewidth’, 1.25); grid;
ylabel(’(c) s_{k}’);

subplot(514);
hold on;
plot(x, ’b’);
plot(x_smth, ’r-.’, ’linewidth’, 1.25); grid;
ylabel(’(d) x_{k}’); xlabel(’time index’);

subplot(515);
qqplot(x - x_smth);
title(’QQ Plot - State Estimate’, ’FontWeight’, ’Normal’);
ylabel(’(e) input quantiles’);
xlabel(’standard normal quantiles’);
grid;

%% supplementary functions

function y = get_posterior_mode(x_pred, C, r, r0, r1, b0, b1, vr,
n, s, s0, s1, vs)

132 10 MATLAB Code Examples

M = 200; % maximum iterations

it = zeros(1, M);
f = zeros(1, M);
df = zeros(1, M);

it(1) = x_pred;

for i = 1:(M - 1)
f(i) = it(i) - x_pred - C * (r1 * vs * (r - r0 - r1 *

x_pred) + s1 * vr * (s - s0 - s1 * x_pred) + ...
vr * vs * b1 * (n - (1 / (1 + exp((-1) * (b0 + b1 *

it(i)))))));
df(i) = 1 + C * vr * vs * (b1 ^ 2) * exp(b0 + b1 * it(i))

/ ((1 + exp(b0 + b1 * it(i))) ̂ 2);
it(i + 1) = it(i) - f(i) / df(i);

if abs(it(i + 1) - it(i)) < 1e-14
y = it(i + 1);
return;

end
end

error(’Newton-Raphson failed to converge.’);

end

function y = get_maximum_variance(z, r0, r1, W, x_smth, K)

y = (z * z’ + K * (r0 ^ 2) + (r1 ^ 2) * sum(W) ...
- 2 * r0 * sum(z) - 2 * r1 * dot(x_smth, z) + 2 *

r0 * r1 * sum(x_smth)) / K;

end

function y = get_linear_parameters(x_smth, W, z, K)

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .*
x_smth)];

end

10.3.2 Simulated Data Example

load(’data_one_bin_two_cont.mat’);

base_prob = sum(n) / length(n);

%% parameters

M = 1e6; % maximum iterations

10.3 State-space Model with One Binary and Two Continuous Observations 133

m = 1;
tol = 1e-8; % convergence criteria

b0 = zeros(1, M); % binary GLM model
b1 = zeros(1, M);

r0 = zeros(1, M); % continuous model
r1 = zeros(1, M);
vr = zeros(1, M); % continuous model noise variance (1)

s0 = zeros(1, M); % continuous model
s1 = zeros(1, M);
vs = zeros(1, M); % continuous model noise variance (2)

ve = zeros(1, M); % process noise variance
rho = zeros(1, M); % random walk forgetting factor
alpha = zeros(1, M); % external input gain parameter

K = length(n);

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth = zeros(1, K);
v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

%% initial guesses

b0(1) = log(base_prob / (1 - base_prob));
b1(1) = 1;
r0(1) = r(1); % guess it’s the first value of r
r1(1) = 0.5;
s0(1) = s(1);
s1(1) = 1;
vr(1) = 0.05;
vs(1) = 0.05;
ve(1) = 0.05;
rho(1) = 1;
alpha(1) = 0.5;

%% main function

for m = 1:M

134 10 MATLAB Code Examples

for k = 1:K

if (k == 1)
x_pred(k) = x_smth(1);
v_pred(k) = ve(m) + ve(m);

else
x_pred(k) = rho(m) * x_updt(k - 1) + alpha(m) * I(k);
v_pred(k) = (rho(m) ^ 2) * v_updt(k - 1) + ve(m);

end

C(k) = v_pred(k) / (vr(m) * vs(m) + v_pred(k) * ((r1(m) ^
2) * vs(m) + (s1(m) ^ 2) * vr(m)));

x_updt(k) = get_posterior_mode(x_pred(k), C(k), r(k), r0(
m), r1(m), b0(m), b1(m), vr(m), n(k), s(k), s0(m), s1(m), vs(
m));

p_updt(k) = 1 / (1 + exp((-1) * (b0(m) + b1(m) * x_updt(k
))));

v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr(m))
+ ((s1(m) ^ 2) / vs(m)) + (b1(m) ^ 2) * p_updt(k) * (1 -
p_updt(k)));
end

x_smth(K) = x_updt(K);
v_smth(K) = v_updt(K);
W(K) = v_smth(K) + (x_smth(K) ^ 2);

A(1:(end - 1)) = rho(m) * v_updt(1:(end - 1)) ./ v_pred(2:end
);

for k = (K - 1):(-1):1
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k +

1));
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1));

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) ^ 2);

end

prev = [alpha(m) r0(m) r1(m) ve(m) vr(m) rho(m) s0(m) s1(m)
vs(m)];

R = get_linear_parameters(x_smth, W, r, K);
S = get_linear_parameters(x_smth, W, s, K);

Q = [sum(W(1:end - 1)) (I(2:end) * x_smth(1:(end - 1))’); ...
(I(2:end) * x_smth(1:(end - 1))’) (I * I’)] \ [sum(CW); (

I(2:end) * x_smth(2:end)’)];

b0(m + 1) = log(base_prob / (1 - base_prob));
b1(m + 1) = 1;

rho(m + 1) = Q(1, 1);

10.3 State-space Model with One Binary and Two Continuous Observations 135

alpha(m + 1) = Q(2, 1);

ve(m + 1) = (sum(W(2:end)) + (rho(m + 1) ̂ 2) * sum(W(1:(end
- 1))) - 2 * rho(m + 1) * sum(CW) - ...

2 * alpha(m + 1) * (I(2:end) * x_smth(2:end)’) + 2 *
alpha(m + 1) * rho(m + 1) * (I(2:end) * x_smth(1:(end - 1))’)
+ ...

(alpha(m + 1) ^ 2) * (I * I’)) / K;

r0(m + 1) = R(1, 1);
r1(m + 1) = R(2, 1);

s0(m + 1) = S(1, 1);
s1(m + 1) = S(2, 1);

vr(m + 1) = get_maximum_variance(r, r0(m + 1), r1(m + 1), W,
x_smth, K);
vs(m + 1) = get_maximum_variance(s, s0(m + 1), s1(m + 1), W,
x_smth, K);

next = [alpha(m + 1) r0(m + 1) r1(m + 1) ve(m + 1) vr(m + 1)
rho(m + 1) s0(m + 1) s1(m + 1) vs(m +1)];

mean_dev = mean(abs(next - prev));

if mean_dev < tol
fprintf(’Converged at m = %d\n\n’, m);
break;

else
fprintf(’m = %d\nr0 = %.18f\nr1 = %.18f\nvr = %.18f\n\ns0

= %.18f\ns1 = %.18f\nvs = %.18f\n\nve = %.18f\nrho = %.18f\
nalpha = %.18f\n\n’, ...

m + 1, r0(m + 1), r1(m + 1), vr(m + 1), s0(m + 1), s1(m +
1), vs(m + 1), ve(m + 1), rho(m + 1), alpha(m + 1));

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth(2:end) = zeros(1, K - 1); % x_smth(1) needed
for next iteration

v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

end
end

136 10 MATLAB Code Examples

%% calculate confidence limits

p_smth = 1 ./ (1 + exp((-1) * (b0(m) + b1(m) * x_smth))); % mode
, lower and upper confidence limits for binary distribution

r_smth = r0(m) + r1(m) * x_smth;
s_smth = s0(m) + s1(m) * x_smth;

%% plot graphs

figure;
subplot(511);
hold on;
plot(p, ’b’);
plot(p_smth, ’r-.’, ’linewidth’, 1.25); grid;
plot(find(n == 0) - 1, 1.2 * max(p_smth) * ones(length(find(n ==

0))), ’ks’, ’MarkerFaceColor’, ’k’, ’MarkerSize’, 4);
plot(find(n == 1) - 1, 1.2 * max(p_smth) * ones(length(find(n ==

1))), ’gs’, ’MarkerFaceColor’, ’g’, ’MarkerSize’, 4);
ylabel(’(a) p_{k}’); ylim([0 0.17]);
title(’State Estimation with Simulated Data’);

subplot(512);
hold on;
plot(r, ’b’);
plot(r_smth, ’r-.’, ’linewidth’, 1.25); grid;
ylabel(’(b) r_{k}’);

subplot(513);
hold on;
plot(s, ’b’);
plot(s_smth, ’r-.’, ’linewidth’, 1.25); grid;
ylabel(’(c) s_{k}’);

subplot(514);
hold on;
plot(x, ’b’);
plot(x_smth, ’r-.’, ’linewidth’, 1.25); grid;
plot(find(I == 0) - 1, (-8) * ones(length(find(I == 0))), ’ks’, ’

MarkerFaceColor’, ’k’, ’MarkerSize’, 4);
plot(find(I == 1) - 1, (-8) * ones(length(find(I == 1))), ’cs’, ’

MarkerFaceColor’, ’c’, ’MarkerSize’, 4);
ylabel(’(d) x_{k}’); xlabel(’time index’);

subplot(515);
qqplot(x - x_smth);
title(’QQ Plot - State Estimate’, ’FontWeight’, ’Normal’);
ylabel(’(e) input quantiles’);
xlabel(’standard normal quantiles’);
grid;

%% supplementary functions

function y = get_posterior_mode(x_pred, C, r, r0, r1, b0, b1, vr,
n, s, s0, s1, vs)

10.3 State-space Model with One Binary and Two Continuous Observations 137

M = 200; % maximum iterations

it = zeros(1, M);
f = zeros(1, M);
df = zeros(1, M);

it(1) = x_pred;

for i = 1:(M - 1)
f(i) = it(i) - x_pred - C * (r1 * vs * (r - r0 - r1 *

x_pred) + s1 * vr * (s - s0 - s1 * x_pred) + ...
vr * vs * b1 * (n - (1 / (1 + exp((-1) * (b0 + b1 *

it(i)))))));
df(i) = 1 + C * vr * vs * (b1 ^ 2) * exp(b0 + b1 * it(i))

/ ((1 + exp(b0 + b1 * it(i))) ̂ 2);
it(i + 1) = it(i) - f(i) / df(i);

if abs(it(i + 1) - it(i)) < 1e-14
y = it(i + 1);
return;

end
end

error(’Newton-Raphson failed to converge.’);

end

function y = get_maximum_variance(z, r0, r1, W, x_smth, K)

y = (z * z’ + K * (r0 ^ 2) + (r1 ^ 2) * sum(W) ...
- 2 * r0 * sum(z) - 2 * r1 * dot(x_smth, z) + 2 *

r0 * r1 * sum(x_smth)) / K;

end

function y = get_linear_parameters(x_smth, W, z, K)

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .*
x_smth)];

end

10.3.3 Experimental Data Example (αIk Excluded)

load(’expm_data_one_bin_two_cont_no_extern_stim.mat’);

min_scr_thresh = 0.015;
min_scr_prom = min_scr_thresh;
fs = 2;

t = (0:(length(phasic) - 1)) / fs;

138 10 MATLAB Code Examples

ph = phasic;
tn = tonic;
x_orig = y;

[pks, locs] = findpeaks(ph, ’MinPeakHeight’, min_scr_thresh, ’
MinPeakProminence’, min_scr_prom);

r = interp1([1 locs length(ph)], log([ph(1) pks ph(end)]), 1:
length(ph), ’cubic’);

s = tn;
n = zeros(1, length(r));
I = zeros(1, length(r));
n(locs) = 1;

base_prob = sum(n) / length(n);

std_s = std(s);
std_r = std(r);

s = s / std_s;
r = r / std_r;

%% parameters

M = 5e5; % maximum iterations
tol = 1e-8; % convergence criteria

b0 = zeros(1, M); % binary GLM model
b1 = zeros(1, M);

r0 = zeros(1, M); % continuous model
r1 = zeros(1, M);
vr = zeros(1, M); % continuous model noise variance (1)

s0 = zeros(1, M); % continuous model
s1 = zeros(1, M);
vs = zeros(1, M); % continuous model noise variance (2)

ve = zeros(1, M); % process noise variance
rho = zeros(1, M); % random walk forgetting factor

K = length(n);

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth = zeros(1, K);
v_smth = zeros(1, K);

p_updt = zeros(1, K);

10.3 State-space Model with One Binary and Two Continuous Observations 139

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

%% initial guesses

b0(1) = log(base_prob / (1 - base_prob));
b1(1) = 1;
r0(1) = r(1); % guess it’s the first value of r
r1(1) = 1;
s0(1) = s(1);
s1(1) = 1;
vr(1) = 0.05;
vs(1) = 0.05;
ve(1) = 0.05;
rho(1) = 1;

%% main function

for m = 1:M

for k = 1:K

if (k == 1)
x_pred(k) = x_smth(1);
v_pred(k) = ve(m) + ve(m);

else
x_pred(k) = rho(m) * x_updt(k - 1);
v_pred(k) = (rho(m) ^ 2) * v_updt(k - 1) + ve(m);

end

C(k) = v_pred(k) / (vr(m) * vs(m) + v_pred(k) * ((r1(m) ^
2) * vs(m) + (s1(m) ^ 2) * vr(m)));

x_updt(k) = get_posterior_mode(x_pred(k), C(k), r(k), r0(
m), r1(m), b0(m), b1(m), vr(m), n(k), s(k), s0(m), s1(m), vs(
m));

p_updt(k) = 1 / (1 + exp((-1) * (b0(m) + b1(m) * x_updt(k
))));

v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr(m))
+ ((s1(m) ^ 2) / vs(m)) + (b1(m) ^ 2) * p_updt(k) * (1 -
p_updt(k)));
end

x_smth(K) = x_updt(K);
v_smth(K) = v_updt(K);
W(K) = v_smth(K) + (x_smth(K) ^ 2);

A(1:(end - 1)) = rho(m) * v_updt(1:(end - 1)) ./ v_pred(2:end
);

for k = (K - 1):(-1):1

140 10 MATLAB Code Examples

x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k +
1));

v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -
v_pred(k + 1));

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) ^ 2);

end

if (m < M)

R = get_linear_parameters(x_smth, W, r, K);
S = get_linear_parameters(x_smth, W, s, K);

b0(m + 1) = log(base_prob / (1 - base_prob));
b1(m + 1) = 1;

rho(m + 1) = sum(CW) / sum(W(1:end - 1));

ve(m + 1) = (sum(W(2:end)) + (rho(m + 1) ^ 2) * sum(W(1:(
end - 1))) - 2 * rho(m + 1) * sum(CW)) / K;

if (abs(get_maximum_variance(r, R(1, 1), R(2, 1), W,
x_smth, K) - get_maximum_variance(s, S(1, 1), S(2, 1), W,
x_smth, K)) > 0.1) % overfitting check

r0(m + 1) = r0(m);
r1(m + 1) = r1(m);

s0(m + 1) = s0(m);
s1(m + 1) = s1(m);

vr(m + 1) = vr(m);
vs(m + 1) = vs(m);

mean_dev = mean(abs([ve(m + 1) rho(m + 1)] - [ve(m)
rho(m)]));

else
r0(m + 1) = R(1, 1);
r1(m + 1) = R(2, 1);

s0(m + 1) = S(1, 1);
s1(m + 1) = S(2, 1);

vr(m + 1) = get_maximum_variance(r, r0(m + 1), r1(m +
1), W, x_smth, K);

vs(m + 1) = get_maximum_variance(s, s0(m + 1), s1(m +
1), W, x_smth, K);

mean_dev = mean(abs([r0(m + 1) r1(m + 1) ve(m + 1) vr
(m + 1) rho(m + 1) s0(m + 1) s1(m + 1) vs(m + 1)] - ...

[r0(m) r1(m) ve(m) vr(m) rho(m) s0(m) s1(m) vs(m)
]));

end

10.3 State-space Model with One Binary and Two Continuous Observations 141

if mean_dev < tol
fprintf(’Converged at m = %d\n\n’, m);
break;

else
fprintf(’m = %d\nb0 = %.18f\nb1 = %.18f\n\nr0 = %.18f

\nr1 = %.18f\nvr = %.18f\n\ns0 = %.18f\ns1 = %.18f\nvs = %.18
f\n\nve = %.18f\nrho = %.18f\n\n’, ...

m + 1, b0(m + 1), b1(m + 1), r0(m + 1), r1(m + 1), vr
(m + 1), s0(m + 1), s1(m + 1), vs(m + 1), ve(m + 1), rho(m +
1));

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth(2:end) = zeros(1, K - 1); % x_smth(1)
needed for next iteration

v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

end
end

end

%% calculate confidence limits

p_smth = 1 ./ (1 + exp((-1) * (b0(m) + b1(m) * x_smth))); % mode
, lower and upper confidence limits for binary distribution

r_smth = exp(std_r * (r0(m) + r1(m) * x_smth));

s_smth = (s0(m) + s1(m) * x_smth) * std_s;

lcl_x = norminv(0.025, x_smth, sqrt(v_smth));
ucl_x = norminv(0.975, x_smth, sqrt(v_smth));

lcl_p = zeros(1, K);
ucl_p = zeros(1, K);

for k = 1:K
[lcl_p(k), ucl_p(k)] = get_pk_conf_lims(v_smth(k), b0(m),
x_smth(k));

end

certainty = 1 - normcdf(prctile(x_smth, 50) * ones(1, length(
x_smth)), x_smth, sqrt(v_smth));

%% plot graphs

142 10 MATLAB Code Examples

disp(’Plotting...’);

xp_fs_plot = 4;

index = (0:(K - 1));
t_index = index / fs;
r_index = ((K - 1):(-1):0) / fs;
transp = 0.3;

subplot(611);
hold on;
plot(t_index, x_orig, ’k’, ’linewidth’, 1.25);
plot(find(n == 0) / fs, 3.7 * ones(length(find(n == 0))), ’ks’, ’

MarkerFaceColor’, ’k’, ’MarkerSize’, 5);
plot(find(n == 1) / fs, 3.7 * ones(length(find(n == 1))), ’gs’, ’

MarkerFaceColor’, ’g’, ’MarkerSize’, 5);
ylim([0 4]); yl = ylim;

patch([xp(1), xp(2), xp(2), xp(1)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(2), xp(3), xp(3), xp(2)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(3), xp(4), xp(4), xp(3)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’
none’);

patch([xp(4), xp(5), xp(5), xp(4)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(5), xp(6), xp(6), xp(5)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

ylabel({’(a) skin cond.’, ’(\mu S)’}); grid; xlim([0 (xp(6) /
xp_fs_plot)]);

set(gca,’xticklabel’, []);
title(’State Estimation with Experimental Data’);

subplot(612);
hold on;

plot(t_index, r_smth, ’:’, ’color’, [0 0.3 0], ’linewidth’, 1.5);
plot(t_index, exp(r * std_r), ’color’, [0 0.9 0], ’linewidth’,

1.5);
grid;

xlim([0 (xp(6) / xp_fs_plot)]);
ylim([(min([exp(r * std_r) r_smth]) - 0.25) (0.25 + max([exp(r *

std_r) r_smth]))]); yl = ylim;

patch([xp(1), xp(2), xp(2), xp(1)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(2), xp(3), xp(3), xp(2)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(3), xp(4), xp(4), xp(3)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’
none’);

10.3 State-space Model with One Binary and Two Continuous Observations 143

patch([xp(4), xp(5), xp(5), xp(4)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(5), xp(6), xp(6), xp(5)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

set(gca,’xticklabel’, []);
ylabel(’(b) phasic’);

subplot(613);
hold on;

plot(t_index, s_smth, ’:’, ’color’, [0.5 (25 / 255) (66 / 255)],
’linewidth’, 1.5);

plot(t_index, s * std_s, ’color’, [1 0.5 (179 / 255)], ’linewidth
’, 1.5); grid;

xlim([0 (xp(6) / xp_fs_plot)]);
ylim([(min([(s * std_s) s_smth]) - 0.25) (0.25 + max([(s * std_s)

s_smth]))]); yl = ylim;

patch([xp(1), xp(2), xp(2), xp(1)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(2), xp(3), xp(3), xp(2)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(3), xp(4), xp(4), xp(3)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’
none’);

patch([xp(4), xp(5), xp(5), xp(4)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(5), xp(6), xp(6), xp(5)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

set(gca,’xticklabel’, []);
ylabel(’(c) tonic’);

subplot(614);
hold on;
plot(t_index, x_smth, ’color’, ’b’, ’linewidth’, 1.25); grid;
fill([t_index, r_index], [lcl_x fliplr(ucl_x)], ’c’, ’EdgeColor’,

’none’, ’FaceAlpha’, 0.5);
ylim([(min(x_smth) - 0.25) (0.25 + max(x_smth))]); yl = ylim;

patch([xp(1), xp(2), xp(2), xp(1)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(2), xp(3), xp(3), xp(2)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(3), xp(4), xp(4), xp(3)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’
none’);

patch([xp(4), xp(5), xp(5), xp(4)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(5), xp(6), xp(6), xp(5)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

144 10 MATLAB Code Examples

xlim([0 (xp(6) / xp_fs_plot)]);

set(gca,’xticklabel’, []);
ylabel(’(d) state (x_{k})’);

subplot(615);
hold on;
plot(t_index, p_smth, ’r’, ’linewidth’, 1.5); grid;
fill([t_index, r_index], [lcl_p fliplr(ucl_p)], [1, 0, (127 /

255)], ’EdgeColor’, ’none’, ’FaceAlpha’, 0.3);

xlim([0 (xp(6) / xp_fs_plot)]);
ylim([0 (max(p_smth) * 1.5)]); yl = ylim;

patch([xp(1), xp(2), xp(2), xp(1)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(2), xp(3), xp(3), xp(2)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(3), xp(4), xp(4), xp(3)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’
none’);

patch([xp(4), xp(5), xp(5), xp(4)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(5), xp(6), xp(6), xp(5)] / xp_fs_plot, [yl(1) yl(1) yl
(2) yl(2)], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

set(gca,’xticklabel’,[]);
ylabel({’(e) probability’, ’(p_{k})’}, ’FontSize’, 11);

subplot(616);
hold on;
v1 = [0 0.9; t(end) 0.9; t(end) 1; 0 1];
c1 = [1 (220 / 255) (220 / 255); 1 (220 / 255) (220 / 255); 1 0

0; 1 0 0];
faces1 = [1 2 3 4];

patch(’Faces’, faces1, ’Vertices’, v1, ’FaceVertexCData’, c1, ’
FaceColor’, ’interp’, ...
’EdgeColor’, ’none’, ’FaceAlpha’, 0.7);

v2 = [0 0; t(end) 0; t(end) 0.1; 0 0.1];
c2 = [0 0.8 0; 0 0.8 0; (204 / 255) 1 (204 / 255); (204 / 255) 1

(204 / 255)];
faces2 = [1 2 3 4];

patch(’Faces’, faces2, ’Vertices’, v2, ’FaceVertexCData’, c2, ’
FaceColor’, ’interp’, ...
’EdgeColor’, ’none’, ’FaceAlpha’, 0.7);

plot(t, certainty, ’color’, [(138 / 255) (43 / 255) (226 / 255)],
’linewidth’, 1.5); grid;

xlim([0 (xp(6) / xp_fs_plot)]);

xlabel(’time (s)’);

10.3 State-space Model with One Binary and Two Continuous Observations 145

ylabel(’(f) HAI’);

%% supplementary functions

function y = get_posterior_mode(x_pred, C, r, r0, r1, b0, b1, vr,
n, s, s0, s1, vs)

M = 200; % maximum iterations

it = zeros(1, M);
f = zeros(1, M);
df = zeros(1, M);

it(1) = x_pred;

for i = 1:(M - 1)
f(i) = it(i) - x_pred - C * (r1 * vs * (r - r0 - r1 *

x_pred) + s1 * vr * (s - s0 - s1 * x_pred) + ...
vr * vs * b1 * (n - (1 / (1 + exp((-1) * (b0 + b1 *

it(i)))))));
df(i) = 1 + C * vr * vs * (b1 ^ 2) * exp(b0 + b1 * it(i))

/ ((1 + exp(b0 + b1 * it(i))) ̂ 2);
it(i + 1) = it(i) - f(i) / df(i);

if abs(it(i + 1) - it(i)) < 1e-14
y = it(i + 1);
return;

end
end

error(’Newton-Raphson failed to converge.’);

end

function [lcl, ucl] = get_pk_conf_lims(v, b0, x)

p = (1e-4:1e-4:1);

fp = cumtrapz(p, 1 ./ (sqrt(2 * pi * v) * p .* (1 - p)) .*
...

exp(((-1) / (2 * v))* (log(p ./ ((1 - p) * exp(b0))) - x)
.^ 2));

n = find(fp <= 0.975);
m = find(fp < 0.025);

ucl = p(n(end));
lcl = p(m(end));

end

function y = get_maximum_variance(z, r0, r1, W, x_smth, K)

y = (z * z’ + K * (r0 ^ 2) + (r1 ^ 2) * sum(W) ...

146 10 MATLAB Code Examples

- 2 * r0 * sum(z) - 2 * r1 * dot(x_smth, z) + 2 *
r0 * r1 * sum(x_smth)) / K;

end

function y = get_linear_parameters(x_smth, W, z, K)

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .*
x_smth)];

end

10.3.4 Experimental Data Example

load(’expm_data_one_bin_two_cont.mat’);

min_scr_thresh = 0.015;
min_scr_prom = min_scr_thresh;
fs = 4;
epoch = 10;

subj = 1;

stim = s_data.aug_stim;
ph = s_data.ph;
tn = s_data.tn;

[pks, locs] = findpeaks(ph, ’MinPeakHeight’, min_scr_thresh, ’
MinPeakProminence’, min_scr_prom);

r = interp1([1 locs length(ph)], log([ph(find(ph > 0, 1)) pks ph(
end)]), 1:length(ph), ’cubic’);

s = tn;
n = zeros(1, length(r));
I = zeros(1, length(r));

n(locs) = 1;
I(stim) = 1;

std_s = std(s);
std_r = std(r);

s = s / std_s;
r = r / std_r;

%% parameters

M = 5e5; % maximum iterations
tol = 1e-8; % convergence criteria

b0 = zeros(1, M); % binary GLM model
b1 = zeros(1, M);

10.3 State-space Model with One Binary and Two Continuous Observations 147

r0 = zeros(1, M); % continuous model
r1 = zeros(1, M);
vr = zeros(1, M); % continuous model noise variance (1)

s0 = zeros(1, M); % continuous model
s1 = zeros(1, M);
vs = zeros(1, M); % continuous model noise variance (2)

ve = zeros(1, M); % process noise variance
rho = zeros(1, M); % random walk forgetting factor
alpha = zeros(1, M); % input gain parameter

K = length(n);

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth = zeros(1, K);
v_smth = zeros(1, K);

p_updt = zeros(1, K);
p_smth = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

%% initial guesses

base_prob = sum(n) / length(n);
b0(1) = log(base_prob / (1 - base_prob));
b1(1) = 1;
r0(1) = r(1); % guess it’s the first value of r
r1(1) = 1;
s0(1) = s(1);
s1(1) = 1;
vr(1) = 0.05;
vs(1) = 0.05;
ve(1) = 0.05;
rho(1) = 1;
alpha(1) = 0.5;

%% main function

for m = 1:M

for k = 1:K

if (k == 1)

148 10 MATLAB Code Examples

x_pred(k) = x_smth(1);
v_pred(k) = ve(m) + ve(m);

else
x_pred(k) = rho(m) * x_updt(k - 1) + alpha(m) * I(k);
v_pred(k) = (rho(m) ^ 2) * v_updt(k - 1) + ve(m);

end

C(k) = v_pred(k) / (vr(m) * vs(m) + v_pred(k) * ((r1(m) ^
2) * vs(m) + (s1(m) ^ 2) * vr(m)));

x_updt(k) = get_posterior_mode(x_pred(k), C(k), r(k), r0(
m), r1(m), b0(m), b1(m), vr(m), n(k), s(k), s0(m), s1(m), vs(
m));

p_updt(k) = 1 / (1 + exp((-1) * (b0(m) + b1(m) * x_updt(k
))));

v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr(m))
+ ((s1(m) ^ 2) / vs(m)) + (b1(m) ^ 2) * p_updt(k) * (1 -
p_updt(k)));
end

x_smth(K) = x_updt(K);
v_smth(K) = v_updt(K);
W(K) = v_smth(K) + (x_smth(K) ^ 2);

A(1:(end - 1)) = rho(m) * v_updt(1:(end - 1)) ./ v_pred(2:end
);

for k = (K - 1):(-1):1
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k +

1));
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1));

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) ^ 2);

end

if (m < M)

R = get_linear_parameters(x_smth, W, r, K);
S = get_linear_parameters(x_smth, W, s, K);

Q = [sum(W(1:end - 1)) (I(2:end) * x_smth(1:(end - 1))’);
...

(I(2:end) * x_smth(1:(end - 1))’) (I * I’)] \ [sum(CW
); (I(2:end) * x_smth(2:end)’)];

b0(m + 1) = log(base_prob / (1 - base_prob));
b1(m + 1) = 1;

rho(m + 1) = Q(1, 1);

if (Q(2, 1) < 0)
alpha(m + 1) = alpha(m);

10.3 State-space Model with One Binary and Two Continuous Observations 149

else
alpha(m + 1) = Q(2, 1);

end

ve(m + 1) = (sum(W(2:end)) + (rho(m + 1) ^ 2) * sum(W(1:(
end - 1))) - 2 * rho(m + 1) * sum(CW) - ...

2 * alpha(m + 1) * (I(2:end) * x_smth(2:end)’) + 2 *
alpha(m + 1) * rho(m + 1) * (I(2:end) * x_smth(1:(end - 1))’)
+ ...

(alpha(m + 1) ^ 2) * (I * I’)) / K;

if (abs(get_maximum_variance(r, R(1, 1), R(2, 1), W,
x_smth, K) - get_maximum_variance(s, S(1, 1), S(2, 1), W,
x_smth, K)) > 0.1) % overfitting check

r0(m + 1) = r0(m);
r1(m + 1) = r1(m);

s0(m + 1) = s0(m);
s1(m + 1) = s1(m);

vr(m + 1) = vr(m);
vs(m + 1) = vs(m);

mean_dev = mean(abs([ve(m + 1) rho(m + 1) alpha(m +
1)] - [ve(m) rho(m) alpha(m)]));

else
r0(m + 1) = R(1, 1);
r1(m + 1) = R(2, 1);

s0(m + 1) = S(1, 1);
s1(m + 1) = S(2, 1);

vr(m + 1) = get_maximum_variance(r, r0(m + 1), r1(m +
1), W, x_smth, K);

vs(m + 1) = get_maximum_variance(s, s0(m + 1), s1(m +
1), W, x_smth, K);

mean_dev = mean(abs([r0(m + 1) r1(m + 1) ve(m + 1) vr
(m + 1) rho(m + 1) alpha(m + 1) s0(m + 1) s1(m + 1) vs(m + 1)
] - ...

[r0(m) r1(m) ve(m) vr(m) rho(m) alpha(m) s0(m) s1
(m) vs(m)]));

end

if mean_dev < tol
fprintf(’Converged at m = %d\n\n’, m);
break;

else
fprintf(’m = %d\nb0 = %.18f\nb1 = %.18f\n\nr0 = %.18f

\nr1 = %.18f\nvr = %.18f\n\ns0 = %.18f\ns1 = %.18f\nvs = %.18
f\n\nve = %.18f\nrho = %.18f\nalpha = %.18f\n\n’, ...

m + 1, b0(m + 1), b1(m + 1), r0(m + 1), r1(m + 1), vr
(m + 1), s0(m + 1), s1(m + 1), vs(m + 1), ve(m + 1), rho(m +
1), alpha(m + 1));

150 10 MATLAB Code Examples

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth(2:end) = zeros(1, K - 1); % x_smth(1)
needed for next iteration

v_smth = zeros(1, K);

p_updt = zeros(1, K);
p_smth = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

end
end

end

%% calculate confidence limits

fp_mode = 1 ./ (1 + exp((-1) * (b0(m) + b1(m) * x_smth))); %
mode, lower and upper confidence limits for binary
distribution

lcl_fp = zeros(1, K);
ucl_fp = zeros(1, K);

r_smth = exp((r0(m) + r1(m) * x_smth) * std_r);
s_smth = (s0(m) + s1(m) * x_smth) * std_s;

skn_avg = get_trial_averages(s_data, x_smth, epoch, fs, ’skn’);
x_avg = get_trial_averages(s_data, x_smth, epoch, fs, ’x_smth’);

t_epoch = ((-1):(1 / fs):(epoch - 1 - (1 / fs)));
tr_epoch = ((epoch - 1 - (1 / fs)):(-1 / fs):(-1));

%% plot graphs
disp(’Plotting...(you may need to press the Enter key again)’);

index = (0:(K - 1));
t_index = index / fs;
r_index = ((K - 1):(-1):0); % reverse index
transp = 0.3;

subplot(611);
plot(t_index, s_data.x, ’color’, [(102 / 255) 0 (204 / 255)]);
ylabel(’(a) z_{k}’); grid; xlim([0 t_index(end)]);
set(gca,’xticklabel’, []);
ylim([(min(s_data.x) - 0.1) (max(s_data.x) + 0.1)]);
title(’State Estimation with Experimental Data’);

10.3 State-space Model with One Binary and Two Continuous Observations 151

subplot(612);
hold on;
plot(find(n == 0) / fs, max(fp_mode) * 1.3 * ones(length(find(n

== 0))), ’ks’, ’MarkerFaceColor’, ’k’, ’MarkerSize’, 3);
plot(find(n == 1) / fs, max(fp_mode) * 1.3 * ones(length(find(n

== 1))), ’gs’, ’MarkerFaceColor’, ’g’, ’MarkerSize’, 3);
plot(t_index, fp_mode, ’r’);

ylabel(’(b) p_{k}’);
xlim([0 t_index(end)]); ylim([0 (max(fp_mode) * 1.5)]); grid;
set(gca,’xticklabel’, []);

subplot(613);
hold on;
plot(t_index, r_smth, ’:’, ’color’, [0 0.3 0], ’linewidth’, 1.5);
plot(t_index, exp(r * std_r), ’color’, [0 0.9 0]);

ylabel(’(c) e^{r_{k}}’); grid;
xlim([0 t_index(end)]);
set(gca,’xticklabel’, []);

subplot(614);
hold on;
plot(t_index, s_smth, ’:’, ’color’, [0.5 (25 / 255) (66 / 255)],

’linewidth’, 1.5);
plot(t_index, s * std_s, ’color’, [1 0.5 (179 / 255)]);

ylabel(’(d) s_{k}’);
xlim([0 t_index(end)]); grid;
set(gca,’xticklabel’, []);

subplot(615);
hold on;
plot(t_index, x_smth, ’color’, ’b’);
plot(find(I == 0) / fs, (min(x_smth) - 0.5) * ones(length(find(I

== 0))), ’ks’, ’MarkerFaceColor’, ’k’, ’MarkerSize’, 3);
plot(find(I == 1) / fs, (min(x_smth) - 0.5) * ones(length(find(I

== 1))), ’cs’, ’MarkerFaceColor’, ’c’, ’MarkerSize’, 3);

ylabel(’(e) x_{k}’); ylim([(min(x_smth) - 1) (max(x_smth) + 1)]);
xlim([0 t_index(end)]); grid; xlabel(’Time (s)’);

subplot(6, 2, 11);
hold on;
plot(t_epoch, skn_avg(1, :), ’r’, ’linewidth’, 1.5);
fill([t_epoch, tr_epoch], [skn_avg(2, :) fliplr(skn_avg(3, :))],

’r’, ’EdgeColor’, ’none’, ’FaceAlpha’, 0.2);

plot(t_epoch, skn_avg(4, :), ’m’, ’linewidth’, 1.5);
fill([t_epoch, tr_epoch], [skn_avg(5, :) fliplr(skn_avg(6, :))],

’m’, ’EdgeColor’, ’none’, ’FaceAlpha’, 0.2);

plot(t_epoch, skn_avg(7, :), ’color’, [0 0.8 0], ’linewidth’,
1.5);

152 10 MATLAB Code Examples

fill([t_epoch, tr_epoch], [skn_avg(8, :) fliplr(skn_avg(9, :))],
’g’, ’EdgeColor’, ’none’, ’FaceAlpha’, 0.2);

xlim([t_epoch(1) t_epoch(end)]);
ylim([(min(min(skn_avg)) - 0.5) (max(max(skn_avg)) + 0.5)]);

grid;
xlabel(’Time (s)’); ylabel(’(f) z_{k}’);

subplot(6, 2, 12);
hold on;
plot(t_epoch, x_avg(1, :), ’r’, ’linewidth’, 1.5);
fill([t_epoch, tr_epoch], [x_avg(2, :) fliplr(x_avg(3, :))], ’r’,

’EdgeColor’, ’none’, ’FaceAlpha’, 0.2);

plot(t_epoch, x_avg(4, :), ’m’, ’linewidth’, 1.5);
fill([t_epoch, tr_epoch], [x_avg(5, :) fliplr(x_avg(6, :))], ’m’,

’EdgeColor’, ’none’, ’FaceAlpha’, 0.2);

plot(t_epoch, x_avg(7, :), ’color’, [0 0.8 0], ’linewidth’, 1.5);
fill([t_epoch, tr_epoch], [x_avg(8, :) fliplr(x_avg(9, :))], ’g’,

’EdgeColor’, ’none’, ’FaceAlpha’, 0.2);
xlim([t_epoch(1) t_epoch(end)]);
ylim([(min(min(x_avg)) - 0.2) (max(max(x_avg)) + 0.2)]);

grid;
xlabel(’time (s)’); ylabel(’(g) x_{k}’);

%% supplementary functions

function y = get_posterior_mode(x_pred, C, r, r0, r1, b0, b1, vr,
n, s, s0, s1, vs)

M = 200; % maximum iterations

it = zeros(1, M);
f = zeros(1, M);
df = zeros(1, M);

it(1) = x_pred;

for i = 1:(M - 1)
f(i) = it(i) - x_pred - C * (r1 * vs * (r - r0 - r1 *

x_pred) + s1 * vr * (s - s0 - s1 * x_pred) + ...
vr * vs * b1 * (n - (1 / (1 + exp((-1) * (b0 + b1 *

it(i)))))));
df(i) = 1 + C * vr * vs * (b1 ^ 2) * exp(b0 + b1 * it(i))

/ ((1 + exp(b0 + b1 * it(i))) ̂ 2);
it(i + 1) = it(i) - f(i) / df(i);

if abs(it(i + 1) - it(i)) < 1e-14
y = it(i + 1);
return;

end

10.3 State-space Model with One Binary and Two Continuous Observations 153

end

error(’Newton-Raphson failed to converge.’);

end

function y = get_maximum_variance(z, r0, r1, W, x_smth, K)

y = (z * z’ + K * (r0 ^ 2) + (r1 ^ 2) * sum(W) ...
- 2 * r0 * sum(z) - 2 * r1 * dot(x_smth, z) + 2 *

r0 * r1 * sum(x_smth)) / K;

end

function y = get_linear_parameters(x_smth, W, z, K)

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .*
x_smth)];

end

function y = get_trial_averages(s, x_smth, epoch, fs, option)

y = zeros(9, epoch * fs);

csm_ep = zeros(length(s.csm), epoch * fs);
csp_us_ep = zeros(length(s.csp_us), epoch * fs);
csp_nus_ep = zeros(length(s.csp_nus), epoch * fs);

csm = s.csm;
csp_us = s.csp_us;
csp_nus = s.csp_nus;

if strcmp(option, ’x_smth’)

for j = 1:length(csm)
csm_ep(j, :) = x_smth((s.stim(csm(j)) - fs):(s.stim(

csm(j)) + 9 * fs - 1));
end

for j = 1:length(csp_us)
csp_us_ep(j, :) = x_smth((s.stim(csp_us(j)) - fs):(s.

stim(csp_us(j)) + 9 * fs - 1));
end

for j = 1:length(csp_nus)
csp_nus_ep(j, :) = x_smth((s.stim(csp_nus(j)) - fs):(

s.stim(csp_nus(j)) + 9 * fs - 1));
end

elseif strcmp(option, ’skn’)

for j = 1:length(csm)

154 10 MATLAB Code Examples

csm_ep(j, :) = s.x((s.stim(csm(j)) - fs):(s.stim(csm
(j)) + 9 * fs - 1));

end

for j = 1:length(csp_us)
csp_us_ep(j, :) = s.x((s.stim(csp_us(j)) - fs):(s.

stim(csp_us(j)) + 9 * fs - 1));
end

for j = 1:length(csp_nus)
csp_nus_ep(j, :) = s.x((s.stim(csp_nus(j)) - fs):(s.

stim(csp_nus(j)) + 9 * fs - 1));
end

end

y(1, :) = mean(csp_us_ep);
y(2, :) = mean(csp_us_ep) + tinv(0.975, length(csp_us) - 1) *
std(csp_us_ep) / sqrt(length(csp_us));

y(3, :) = mean(csp_us_ep) + tinv(0.025, length(csp_us) - 1) *
std(csp_us_ep) / sqrt(length(csp_us));

y(4, :) = mean(csp_nus_ep);
y(5, :) = mean(csp_nus_ep) + tinv(0.975, length(csp_nus) - 1)

* std(csp_nus_ep) / sqrt(length(csp_nus));
y(6, :) = mean(csp_nus_ep) + tinv(0.025, length(csp_nus) - 1)

* std(csp_nus_ep) / sqrt(length(csp_nus));

y(7, :) = mean(csm_ep);
y(8, :) = mean(csm_ep) + tinv(0.975, length(csm) - 1) * std(
csm_ep) / sqrt(length(csm));
y(9, :) = mean(csm_ep) + tinv(0.025, length(csm) - 1) * std(
csm_ep) / sqrt(length(csm));

end

10.4 State-space Model with One Binary, Two Continuous

and a Spiking-Type Observation

10.4.1 Simulated Data Example

load(’data_one_bin_two_cont_one_spk.mat’);

delta = 0.005;

%% parameters

M = 5e5; % maximum iterations
tol = 1e-5; % convergence criteria

10.4 State-space Model with One Binary, Two Continuous and a Spiking-Type. . . 155

b0 = zeros(1, M); % binary GLM model
b1 = zeros(1, M);

r0 = zeros(1, M); % continuous model
r1 = zeros(1, M);
vr = zeros(1, M); % continuous model noise variance (1)

s0 = zeros(1, M); % continuous model
s1 = zeros(1, M);
vs = zeros(1, M); % continuous model noise variance (2)

ve = zeros(1, M); % process noise variance
rho = zeros(1, M); % random walk fogetting factor
alpha = zeros(1, M); % input gain parameter

K = length(n);

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth = zeros(1, K);
v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

rpeaks = zeros(1, K * 50);
rpeaks(round(rpeak_locs / delta)) = 1;
rpeaks = reshape(rpeaks, [50, K])’;

exception_counter = 0;

%% initial guesses

base_prob = sum(n) / length(n);
b0(1) = log(base_prob / (1 - base_prob));
b1(1) = 1;

r0(1) = 0.27154;
r1(1) = 0.5057;
vr(1) = 0.00187;

s0(1) = -0.73899;
s1(1) = 0.25324;
vs(1) = 0.00302;

ve(1) = 0.01883;

156 10 MATLAB Code Examples

rho(1) = 0.99411;
alpha(1) = 0.00818;

theta = theta’;

eta = -0.001;

%% main function

for m = 1:M

for k = 1:K

if (k == 1)
x_pred(k) = x_smth(1);
v_pred(k) = ve(m) + ve(m);

else
x_pred(k) = rho(m) * x_updt(k - 1) + alpha(m) * I(k);
v_pred(k) = (rho(m) ^ 2) * v_updt(k - 1) + ve(m);

end

C(k) = v_pred(k) / (vr(m) * vs(m) + v_pred(k) * ((r1(m) ^
2) * vs(m) + (s1(m) ^ 2) * vr(m)));

try % numerical issues can occur due to the integrals
[temp1, temp2] = get_posterior_mode(x_pred(k), C(k),

r(k), r0(m), r1(m), b0(m), b1(m), vr(m), n(k), s(k), s0(m),
s1(m), vs(m), ...

rpeaks(k, :), ul(k, :), delta, w(k, :, :), theta
’, eta);

x_updt(k) = temp1;

p_updt(k) = 1 / (1 + exp((-1) * (b0(m) + b1(m) *
x_updt(k))));

v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr(
m)) + ((s1(m) ^ 2) / vs(m)) + (b1(m) ^ 2) * p_updt(k) * (1 -
p_updt(k)) - temp2);

catch
x_updt(k) = x_pred(k);
v_updt(k) = v_pred(k);
exception_counter = exception_counter + 1;

end

if (mod(k, 100) == 0)
fprintf(’%d ’, k);

end

if (mod(k, 2500) == 0)
fprintf(’\n’);

end
end

x_smth(K) = x_updt(K);
v_smth(K) = v_updt(K);

10.4 State-space Model with One Binary, Two Continuous and a Spiking-Type. . . 157

W(K) = v_smth(K) + (x_smth(K) ^ 2);

A(1:(end - 1)) = rho(m) * v_updt(1:(end - 1)) ./ v_pred(2:end
);

for k = (K - 1):(-1):1
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k +

1));
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1));

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) ^ 2);

end

if (m < M)

R = get_linear_parameters(x_smth, W, r, K);
S = get_linear_parameters(x_smth, W, s, K);

Q = [sum(W(1:end - 1)) (I(2:end) * x_smth(1:(end - 1))’);
...

(I(2:end) * x_smth(1:(end - 1))’) (I * I’)] \ [sum(CW
); (I(2:end) * x_smth(2:end)’)];

b0(m + 1) = log(base_prob / (1 - base_prob));
b1(m + 1) = 1;

rho(m + 1) = Q(1, 1);

if (Q(2, 1) < 0) % in case this happens (generally
only needed with experimental data)

alpha(m + 1) = alpha(m);
else

alpha(m + 1) = Q(2, 1);
end

ve(m + 1) = (sum(W(2:end)) + (rho(m + 1) ^ 2) * sum(W(1:(
end - 1))) - 2 * rho(m + 1) * sum(CW) - ...

2 * alpha(m + 1) * (I(2:end) * x_smth(2:end)’) + 2 *
alpha(m + 1) * rho(m + 1) * (I(2:end) * x_smth(1:(end - 1))’)
+ ...

(alpha(m + 1) ^ 2) * (I * I’)) / K;

r0(m + 1) = R(1, 1);
r1(m + 1) = R(2, 1);

s0(m + 1) = S(1, 1);
s1(m + 1) = S(2, 1);

vr(m + 1) = get_maximum_variance(r, r0(m + 1), r1(m + 1),
W, x_smth, K);

vs(m + 1) = get_maximum_variance(s, s0(m + 1), s1(m + 1),
W, x_smth, K);

158 10 MATLAB Code Examples

mean_dev = mean(abs([b0(m + 1) b1(m + 1) r0(m + 1) r1(m
+ 1) ve(m + 1) vr(m + 1) rho(m + 1) alpha(m + 1) s0(m + 1) s1
(m + 1) vs(m + 1)] - ...

[b0(m) b1(m) r0(m) r1(m) ve(m) vr(m) rho(m) alpha(m)
s0(m) s1(m) vs(m)]));

if mean_dev < tol
fprintf(’\n\nConverged at m = %d\n\n’, m);
break;

else
fprintf(’m = %d\nb0 = %.18f\nb1 = %.18f\n\nr0 = %.18f

\nr1 = %.18f\nvr = %.18f\n\ns0 = %.18f\ns1 = %.18f\nvs = %.18
f\n\nve = %.18f\nrho = %.18f\nalpha = %.18f\n\ndev = %.18f\n\
n’, ...

m + 1, b0(m + 1), b1(m + 1), r0(m + 1), r1(m + 1), vr
(m + 1), s0(m + 1), s1(m + 1), vs(m + 1), ve(m + 1), rho(m +
1), alpha(m + 1), mean_dev);

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth(2:end) = zeros(1, K - 1); % x_smth(1)
needed for next iteration

v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

end
end

end

%% calculate confidence limits

p_smth = 1 ./ (1 + exp((-1) * (b0(m) + b1(m) * x_smth)));
r_smth = r0(m) + r1(m) * x_smth;
s_smth = s0(m) + s1(m) * x_smth;

lambda = zeros(K, 50);
mean_rr = zeros(K, 50);

for i = 1:K
for j = 1:50

w1 = [squeeze(w(i, j, :))’ [eta x_smth(i)]];
if (f(theta’, ul(i, j), w1) > 1e-18)

lambda(i, j) = fetch_lambda(theta’, ul(i, j), w1);
end

10.4 State-space Model with One Binary, Two Continuous and a Spiking-Type. . . 159

mean_rr(i, j) = mu(theta’, w1);
end

end

lambda_start_index = find(reshape(rpeaks’, 1, numel(rpeaks)), 1);
lambda = reshape(lambda’, 1, numel(lambda));

ll = get_log_likelihood(eta, rpeaks, ul, delta, w, theta’, x_smth
, v_smth);

ll_final = sum(nansum(ll));

%% plot graphs

figure;

mean_rr = reshape(mean_rr’, 1, numel(mean_rr));
rri = diff(rpeak_locs);
rr_times = rpeak_locs(2:end);

index = (0:(K - 1));
fs_hyp = 4;
t_index = index / fs_hyp;
r_index = ((K - 1):(-1):0); % reverse index
transp = 0.3;

subplot(611);
hold on;
plot(t_index, p, ’b’); grid;
plot(t_index, p_smth, ’r’);
plot((find(n == 0) - 1) / fs_hyp, 1.2 * max(p) * ones(length(find

(n == 0))), ’ks’, ’MarkerFaceColor’, ’k’, ’MarkerSize’, 4);
plot((find(n == 1) - 1) / fs_hyp, 1.2 * max(p) * ones(length(find

(n == 1))), ’gs’, ’MarkerFaceColor’, ’g’, ’MarkerSize’, 4);
ylabel(’(a) p_{k}’); ylim([0 0.25]);
title(’State Estimation with Simulated Data’);

subplot(612);
hold on;
plot(t_index, r, ’b’); grid;
plot(t_index, r_smth, ’r’);
ylabel(’(b) r_{k}’);

subplot(613);
hold on;
plot(t_index, s, ’b’); grid;
plot(t_index, s_smth, ’r’);
ylabel(’(c) s_{k}’);

subplot(614);
hold on;
plot(t_index, x, ’b’); grid;
plot(t_index, x_smth, ’r’);
plot((find(I == 0) - 1) / fs_hyp, (-8) * ones(length(find(I == 0)

)), ’ks’, ’MarkerFaceColor’, ’k’, ’MarkerSize’, 4);

160 10 MATLAB Code Examples

plot((find(I == 1) - 1) / fs_hyp, (-8) * ones(length(find(I == 1)
)), ’cs’, ’MarkerFaceColor’, ’c’, ’MarkerSize’, 4);

ylabel(’(d) x_{k}’);

subplot(615);
hold on;
plot(rr_times, rri, ’o’, ’Color’, [1, 0.5, 0.25], ’

MarkerFaceColor’, [1, 0.5, 0.25], ’MarkerSize’, 2); grid;
mu_start_index = round(rpeak_locs(2) / delta);
plot(((0:(length(mean_rr(mu_start_index:end)) - 1)) * delta),

mean_rr(mu_start_index:end), ’b’);
ylabel(’(e) rr_{i}’); xlim([0 t_index(end)]); xlabel(’time (s)’);

subplot(616);
qqplot(x_smth - x); grid;
title(’QQ Plot - State Estimate’, ’FontWeight’, ’normal’);
ylabel(’(f) input quantiles’);
xlabel(’standard normal quantiles’);

figure;
get_ks_plot(rpeak_locs, lambda(lambda_start_index:end), delta, 1)

;
ylabel({’Theoretical’, ’Quantiles’}); xlabel(’Empirical Quantiles

’);
title(’KS Plot’);

%% supplementary functions

function [y, H2] = get_posterior_mode(x_pred, C, r, r0, r1, b0,
b1, vr, n, s, s0, s1, vs, rpeaks, ul, delta, w_all, theta,
eta)

M = 200; % maximum iterations

it = zeros(1, M);
func = zeros(1, M);
df = zeros(1, M);

it(1) = x_pred;

for i = 1:(M - 1)

H1 = zeros(1, 50);
H2 = zeros(1, 50);

for j = 1:50 % 5 ms -> 0.25 s (4 Hz for skin
conductance)

w = [squeeze(w_all(1, j, :))’ [eta it(i)]];

if (f(theta, ul(j), w) > 1e-18) %
lambda = fetch_lambda(theta, ul(j), w);
dl_dx = dlambda_dx(theta, ul(j), w);

10.4 State-space Model with One Binary, Two Continuous and a Spiking-Type. . . 161

H1(j) = dl_dx * (rpeaks(j) - lambda * delta) /
lambda;

H2(j) = d2lambda_dx2(theta, ul(j), w) * (rpeaks(j
) - lambda * delta) / lambda - rpeaks(j) * (dl_dx ^ 2) / (
lambda ^ 2);

end
end

H1 = sum(H1);
H2 = sum(H2);

func(i) = it(i) - x_pred - C * (r1 * vs * (r - r0 - r1 *
x_pred) + s1 * vr * (s - s0 - s1 * x_pred) + ...

vr * vs * b1 * (n - (1 / (1 + exp((-1) * (b0 + b1 *
it(i)))))) + vr * vs * H1);

df(i) = 1 + C * vr * vs * ((b1 ^ 2) * exp(b0 + b1 * it(i)
) / ((1 + exp(b0 + b1 * it(i))) ̂ 2) - H2);

it(i + 1) = it(i) - func(i) / df(i);

if abs(it(i + 1) - it(i)) < 1e-14
y = it(i + 1);
return;

end
end

error(’Newton-Raphson failed to converge.’);

end

function y = get_maximum_variance(z, r0, r1, W, x_smth, K)

y = (z * z’ + K * (r0 ^ 2) + (r1 ^ 2) * sum(W) ...
- 2 * r0 * sum(z) - 2 * r1 * dot(x_smth, z) + 2 *

r0 * r1 * sum(x_smth)) / K;

end

function y = get_linear_parameters(x_smth, W, z, K)

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .*
x_smth)];

end

function [y] = f(theta, t, w)

y = sqrt(theta(end) ./ (2 * pi * (t .^ 3))) .* ...
exp((theta(end) * ((t - mu(theta, w)) .^ 2)) ./ ...
((-2) * (mu(theta, w) ^ 2) * t));

end

function [y] = intf(theta, t, w)

162 10 MATLAB Code Examples

y = integral(@(t)f(theta, t, w), 0, t);

end

function [y] = mu(theta, w)

eta = w(end - 1);
x = w(end);
p = length(theta) - 2;

y = theta(1) + theta(2:(2 + p - 1)) * w(1:p)’ + eta * x;

end

function [y] = fetch_lambda(theta, t, w)

cdf = intf(theta, t, w);
y = f(theta, t, w) ./ (1 - cdf);

if (cdf > 1) % numerical issue
y = 0;

end

end

function [y] = df_dmu(theta, t, w)

y = (theta(end) / (mu(theta, w) ̂ 3)) * (f(theta, t, w) .* (t
- mu(theta, w)));

end

function [y] = df_dx(theta, t, w)

eta = w(end - 1);
y = df_dmu(theta, t, w) .* eta;

end

function [y] = intdf_dx(theta, t, w)

y = integral(@(t)df_dx(theta, t, w), 0, t);

end

function [y] = dlambda_dx(theta, t, w)

cdf = intf(theta, t, w);

if (cdf > 1) % numerical issue
y = 0;

else
y = ((1 - cdf) .* df_dx(theta, t, w) + ...

10.4 State-space Model with One Binary, Two Continuous and a Spiking-Type. . . 163

f(theta, t, w) .* intdf_dx(theta, t, w)) ./ ((1 - cdf
) .^ 2);
end

end

function [y] = d2f_dmu2(theta, t, w)

y = theta(end) * (df_dmu(theta, t, w) .* ((t - mu(theta, w))
/ (mu(theta, w) ^ 3)) + ...

f(theta, t, w) .* ((2 * mu(theta, w) - 3 * t) / (mu(theta
, w) ^ 4)));

end

function [y] = d2f_dx2(theta, t, w)

eta = w(end - 1);
y = d2f_dmu2(theta, t, w) .* (eta ^ 2);

end

function [y] = intd2f_dx2(theta, t, w)

y = integral(@(t)d2f_dx2(theta, t, w), 0, t);

end

function [y] = d2lambda_dx2(theta, t, w)

y = (2 * dlambda_dx(theta, t, w) * (1 - intf(theta, t, w)) *
intdf_dx(theta, t, w) + ...

d2f_dx2(theta, t, w) * (1 - intf(theta, t, w)) + ...
f(theta, t, w) * intd2f_dx2(theta, t, w)) / ((1 - intf(

theta, t, w)) ̂ 2);

end

function [y] = get_log_likelihood(eta, rpeaks, ul, delta, w_all,
theta, x, v)

K = length(x);
y = zeros(K, 50);

for k = 1:K
for j = 1:50

w = [squeeze(w_all(k, j, :))’ [eta x(k)]];

if (f(theta, ul(k, j), w) > 1e-18)

lambda = fetch_lambda(theta, ul(k, j), w);
dl_dx = dlambda_dx(theta, ul(k, j), w);
d2l_dx2 = d2lambda_dx2(theta, ul(k, j), w);
nkj = rpeaks(k, j);

164 10 MATLAB Code Examples

y(k, j) = nkj * log(delta * lambda) - delta *
lambda + ...

(d2l_dx2 * (nkj - lambda * delta) / lambda -
nkj * (dl_dx ^ 2) / (lambda ^ 2)) * v(k) * 0.5;

end

end
end

end

10.4.2 Experimental Data Example

load(’expm_data_one_bin_two_cont_one_spk.mat’);

delta = 0.005;
min_scr_thresh = 0.015;
min_scr_prom = min_scr_thresh;
fs = 4;
epoch = 10;

stim = s_data.aug_stim;
ph = s_data.ph;
tn = s_data.tn;
rpeaks = s_data.rpeaks;
ul = s_data.ul;

[pks, locs] = findpeaks(ph, ’MinPeakHeight’, min_scr_thresh, ’
MinPeakProminence’, min_scr_prom);

r = interp1([1 locs length(ph)], log([ph(find(ph > 0, 1)) pks ph(
end)]), 1:length(s_data.ph), ’cubic’);

s = tn;
n = zeros(1, length(r));
I = zeros(1, length(r));

n(locs) = 1;
I(stim) = 1;

std_s = std(s);
std_r = std(r);

s = s / std_s;
r = r / std_r;

%% parameters

M = 5e5; % maximum iterations
tol = 1e-6; % convergence criteria

b0 = zeros(1, M); % binary GLM model
b1 = zeros(1, M);

10.4 State-space Model with One Binary, Two Continuous and a Spiking-Type. . . 165

r0 = zeros(1, M); % continuous GLM model
r1 = zeros(1, M);
vr = zeros(1, M); % continuous GLM model noise variance (1)

s0 = zeros(1, M); % continuous GLM
s1 = zeros(1, M);
vs = zeros(1, M); % continuous GLM model noise variance (2)

ve = zeros(1, M); % process noise variance
rho = zeros(1, M); % random walk correlation
alpha = zeros(1, M); % input gain parameter

K = length(n);

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth = zeros(1, K);
v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

exception_counter = 0;

%% initial guesses

base_prob = sum(n) / length(n);
b0(1) = log(base_prob / (1 - base_prob));
b1(1) = 1;
r0(1) = r(1); % guess it’s the first value of r
r1(1) = 1;
s0(1) = s(1);
s1(1) = 1;
vr(1) = 0.05;
vs(1) = 0.05;
ve(1) = 0.05;
rho(1) = 1;
alpha(1) = 0.5;

theta = s_data.theta;

eta = -0.001;

%% main function

166 10 MATLAB Code Examples

for m = 1:M

for k = 1:K

if (k == 1)
x_pred(k) = x_smth(1);
v_pred(k) = ve(m) + ve(m);

else
x_pred(k) = rho(m) * x_updt(k - 1) + alpha(m) * I(k);
v_pred(k) = (rho(m) ^ 2) * v_updt(k - 1) + ve(m);

end

C(k) = v_pred(k) / (vr(m) * vs(m) + v_pred(k) * ((r1(m) ^
2) * vs(m) + (s1(m) ^ 2) * vr(m)));

try % numerical issues can occur due to the integrals
[temp1, temp2] = get_posterior_mode(x_pred(k), C(k),

r(k), r0(m), r1(m), b0(m), b1(m), vr(m), n(k), s(k), s0(m),
s1(m), vs(m), ...

rpeaks(k, :), ul(k, :), delta, s_data.w(k, :, :),
theta’, eta);

x_updt(k) = temp1;

p_updt(k) = 1 / (1 + exp((-1) * (b0(m) + b1(m) *
x_updt(k))));

v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr(
m)) + ((s1(m) ^ 2) / vs(m)) + (b1(m) ^ 2) * p_updt(k) * (1 -
p_updt(k)) - temp2);

catch
x_updt(k) = x_pred(k);
v_updt(k) = v_pred(k);
exception_counter = exception_counter + 1;

end

if (mod(k, 100) == 0)
fprintf(’%d ’, k);

end

if (mod(k, 2500) == 0)
fprintf(’\n’);

end
end

x_smth(K) = x_updt(K);
v_smth(K) = v_updt(K);
W(K) = v_smth(K) + (x_smth(K) ^ 2);

A(1:(end - 1)) = rho(m) * v_updt(1:(end - 1)) ./ v_pred(2:end
);

for k = (K - 1):(-1):1
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k +

1));

10.4 State-space Model with One Binary, Two Continuous and a Spiking-Type. . . 167

v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -
v_pred(k + 1));

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) ^ 2);

end

if (m < M)

R = get_linear_parameters(x_smth, W, r, K);
S = get_linear_parameters(x_smth, W, s, K);

Q = [sum(W(1:end - 1)) (I(2:end) * x_smth(1:(end - 1))’);
...

(I(2:end) * x_smth(1:(end - 1))’) (I * I’)] \ [sum(CW
); (I(2:end) * x_smth(2:end)’)];

bb = fsolve(@(b) binary_parameter_derivatives(b, n,
x_smth, v_smth), [-5 1], optimset(’Display’,’off’));

b0(m + 1) = bb(1);
b1(m + 1) = bb(2);

rho(m + 1) = Q(1, 1);

if (Q(2, 1) < 0) % check in case this happens
alpha(m + 1) = alpha(m);

else
alpha(m + 1) = Q(2, 1);

end

ve(m + 1) = (sum(W(2:end)) + (rho(m + 1) ^ 2) * sum(W(1:(
end - 1))) - 2 * rho(m + 1) * sum(CW) - ...

2 * alpha(m + 1) * (I(2:end) * x_smth(2:end)’) + 2 *
alpha(m + 1) * rho(m + 1) * (I(2:end) * x_smth(1:(end - 1))’)
+ ...

(alpha(m + 1) ^ 2) * (I * I’)) / K;

if (abs(get_maximum_variance(r, R(1, 1), R(2, 1), W,
x_smth, K) - get_maximum_variance(s, S(1, 1), S(2, 1), W,
x_smth, K)) > 0.1) % terminate once overfitting is detected

break;
else

r0(m + 1) = R(1, 1);
r1(m + 1) = R(2, 1);

s0(m + 1) = S(1, 1);
s1(m + 1) = S(2, 1);

vr(m + 1) = get_maximum_variance(r, r0(m + 1), r1(m +
1), W, x_smth, K);

vs(m + 1) = get_maximum_variance(s, s0(m + 1), s1(m +
1), W, x_smth, K);

end

168 10 MATLAB Code Examples

mean_dev = mean(abs([b0(m + 1) b1(m + 1) r0(m + 1) r1(m
+ 1) ve(m + 1) vr(m + 1) rho(m + 1) alpha(m + 1) s0(m + 1) s1
(m + 1) vs(m + 1)] - ...

[b0(m) b1(m) r0(m) r1(m) ve(m) vr(m) rho(m) alpha(m)
s0(m) s1(m) vs(m)]));

if mean_dev < tol
fprintf(’Converged at m = %d\n\n’, m);
break;

else
fprintf(’m = %d\nb0 = %.18f\nb1 = %.18f\n\nr0 = %.18f

\nr1 = %.18f\nvr = %.18f\n\ns0 = %.18f\ns1 = %.18f\nvs = %.18
f\n\nve = %.18f\nrho = %.18f\nalpha = %.18f\n\ndev = %.18f\n\
n’, ...

m + 1, b0(m + 1), b1(m + 1), r0(m + 1), r1(m + 1), vr
(m + 1), s0(m + 1), s1(m + 1), vs(m + 1), ve(m + 1), rho(m +
1), alpha(m + 1), mean_dev);

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth(2:end) = zeros(1, K - 1); % x_smth(1)
needed for next iteration

v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

end
end

end

%% calculate confidence limits

p_smth = 1 ./ (1 + exp((-1) * (b0(m) + b1(m) * x_smth)));
lcl_fp = zeros(1, K);
ucl_fp = zeros(1, K);

r_smth = exp((r0(m) + r1(m) * x_smth) * std_r);
s_smth = (s0(m) + s1(m) * x_smth) * std_s;

skn_avg = get_trial_averages(s_data, x_smth, epoch, fs, ’skn’);
x_avg = get_trial_averages(s_data, x_smth, epoch, fs, ’x_smth’);

t_epoch = ((-1):(1 / fs):(epoch - 1 - (1 / fs)));
tr_epoch = ((epoch - 1 - (1 / fs)):(-1 / fs):(-1));

10.4 State-space Model with One Binary, Two Continuous and a Spiking-Type. . . 169

fprintf(’Plotting\n’);

lambda = zeros(K, 50);
mean_rr = zeros(K, 50);

for i = 1:K
for j = 1:50

w = [squeeze(s_data.w(i, j, :))’ [eta x_smth(i)]];
if (f(theta’, ul(i, j), w) > 1e-18)

lambda(i, j) = fetch_lambda(theta’, ul(i, j), w);
end
mean_rr(i, j) = mu(theta’, w);

end
end

lambda_start_index = find(reshape(s_data.rpeaks’, 1, numel(s_data
.rpeaks)), 1);

lambda = reshape(lambda’, 1, numel(lambda));

ll = get_log_likelihood(eta, rpeaks, ul, delta, s_data.w, theta’,
x_smth, v_smth);

ll_final = sum(nansum(ll));

%% plot graphs

mean_rr = reshape(mean_rr’, 1, numel(mean_rr));
rri = diff(s_data.rpeak_locs);
rr_times = s_data.rpeak_locs(2:end);

index = (0:(K - 1));
t_index = index / fs;
r_index = ((K - 1):(-1):0);
transp = 0.3;

subplot(711);
plot(t_index, s_data.x, ’color’, [(102 / 255) 0 (204 / 255)]);
ylabel(’(a) z_{k}’); grid; xlim([0 t_index(end)]);
set(gca,’xticklabel’, []);
ylim([(min(s_data.x) - 0.1) (max(s_data.x) + 0.1)]);
title(’State Estimation with Experimental Data’);

subplot(712);
hold on;
plot(find(n == 0) / fs, max(p_smth) * 1.3 * ones(length(find(n ==

0))), ’ks’, ’MarkerFaceColor’, ’k’, ’MarkerSize’, 3);
plot(find(n == 1) / fs, max(p_smth) * 1.3 * ones(length(find(n ==

1))), ’gs’, ’MarkerFaceColor’, ’g’, ’MarkerSize’, 3);
plot(t_index, p_smth, ’r’);

ylabel(’(b) p_{k}’);
xlim([0 t_index(end)]); ylim([0 (max(p_smth) * 1.5)]); grid;
set(gca,’xticklabel’, []);

subplot(713);

170 10 MATLAB Code Examples

hold on;
plot(t_index, r_smth, ’:’, ’color’, [0 0.3 0], ’linewidth’, 1.5);
plot(t_index, exp(r * std_r), ’color’, [0 0.9 0]);

ylabel(’(c) e^{r_{k}}’); grid;
xlim([0 t_index(end)]);
set(gca,’xticklabel’, []);

subplot(714);
hold on;
plot(t_index, s_smth, ’:’, ’color’, [0.5 (25 / 255) (66 / 255)],

’linewidth’, 1.5);
plot(t_index, s * std_s, ’color’, [1 0.5 (179 / 255)]);

ylabel(’(d) s_{k}’);
xlim([0 t_index(end)]); grid;
set(gca,’xticklabel’, []);

subplot(715);
hold on;
plot(t_index, x_smth, ’color’, ’b’);
plot(find(I == 0) / fs, (min(x_smth) - 0.5) * ones(length(find(I

== 0))), ’ks’, ’MarkerFaceColor’, ’k’, ’MarkerSize’, 3);
plot(find(I == 1) / fs, (min(x_smth) - 0.5) * ones(length(find(I

== 1))), ’cs’, ’MarkerFaceColor’, ’c’, ’MarkerSize’, 3);

ylabel(’(e) x_{k}’); ylim([(min(x_smth) - 1) (max(x_smth) + 1)]);
xlim([0 t_index(end)]); grid; set(gca,’xticklabel’, []);

subplot(716);
hold on;
plot(rr_times / 60, rri, ’o’, ’Color’, [1, 0.5, 0.25], ’

MarkerFaceColor’, [1, 0.5, 0.25], ’MarkerSize’, 3); grid;
mu_start_index = round(s_data.rpeak_locs(2) / delta);
plot(((0:(length(mean_rr(mu_start_index:end)) - 1)) * delta) /

60, mean_rr(mu_start_index:end), ’b’);
ylabel(’(f) rr_{i}’); xlim([0 t_index(end)] / 60); xlabel(’time (

min)’);

subplot(7, 2, 13);
hold on;

plot(t_epoch, skn_avg(7, :), ’color’, [0 0.8 0], ’linewidth’,
1.5);

fill([t_epoch, tr_epoch], [skn_avg(8, :) fliplr(skn_avg(9, :))],
’g’, ’EdgeColor’, ’none’, ’FaceAlpha’, 0.2);

plot(t_epoch, skn_avg(4, :), ’m’, ’linewidth’, 1.5);
fill([t_epoch, tr_epoch], [skn_avg(5, :) fliplr(skn_avg(6, :))],

’m’, ’EdgeColor’, ’none’, ’FaceAlpha’, 0.2);

plot(t_epoch, skn_avg(1, :), ’r’, ’linewidth’, 1.5);
fill([t_epoch, tr_epoch], [skn_avg(2, :) fliplr(skn_avg(3, :))],

’r’, ’EdgeColor’, ’none’, ’FaceAlpha’, 0.2);

10.4 State-space Model with One Binary, Two Continuous and a Spiking-Type. . . 171

xlim([t_epoch(1) t_epoch(end)]);

grid;
xlabel(’time (s)’); ylabel(’(g) z_{k}’);

subplot(7, 2, 14);
hold on;

plot(t_epoch, x_avg(7, :), ’color’, [0 0.8 0], ’linewidth’, 1.5);
fill([t_epoch, tr_epoch], [x_avg(8, :) fliplr(x_avg(9, :))], ’g’,

’EdgeColor’, ’none’, ’FaceAlpha’, 0.2);

plot(t_epoch, x_avg(4, :), ’m’, ’linewidth’, 1.5);
fill([t_epoch, tr_epoch], [x_avg(5, :) fliplr(x_avg(6, :))], ’m’,

’EdgeColor’, ’none’, ’FaceAlpha’, 0.2);

plot(t_epoch, x_avg(1, :), ’r’, ’linewidth’, 1.5);
fill([t_epoch, tr_epoch], [x_avg(2, :) fliplr(x_avg(3, :))], ’r’,

’EdgeColor’, ’none’, ’FaceAlpha’, 0.2);

xlim([t_epoch(1) t_epoch(end)]);

grid;
xlabel(’time (s)’); ylabel(’(h) x_{k}’);

figure;
get_ks_plot(s_data.rpeak_locs, lambda(lambda_start_index:end),

delta, 1);

%% supplementary functions

function [y, H2] = get_posterior_mode(x_pred, C, r, r0, r1, b0,
b1, vr, n, s, s0, s1, vs, rpeaks, ul, delta, w_all, theta,
eta)

M = 200; % maximum iterations

it = zeros(1, M);
func = zeros(1, M);
df = zeros(1, M);

it(1) = x_pred;

for i = 1:(M - 1)

H1 = zeros(1, 50);
H2 = zeros(1, 50);

for j = 1:50 % 5 ms -> 0.25 s (4 Hz for skin
conductance)

w = [squeeze(w_all(1, j, :))’ [eta it(i)]];

if (f(theta, ul(j), w) > 1e-18) %

172 10 MATLAB Code Examples

lambda = fetch_lambda(theta, ul(j), w);
dl_dx = dlambda_dx(theta, ul(j), w);

H1(j) = dl_dx * (rpeaks(j) - lambda * delta) /
lambda;

H2(j) = d2lambda_dx2(theta, ul(j), w) * (rpeaks(j
) - lambda * delta) / lambda - rpeaks(j) * (dl_dx ^ 2) / (
lambda ^ 2);

end
end

H1 = sum(H1);
H2 = sum(H2);

func(i) = it(i) - x_pred - C * (r1 * vs * (r - r0 - r1 *
x_pred) + s1 * vr * (s - s0 - s1 * x_pred) + ...

vr * vs * b1 * (n - (1 / (1 + exp((-1) * (b0 + b1 *
it(i)))))) + vr * vs * H1);

df(i) = 1 + C * vr * vs * ((b1 ^ 2) * exp(b0 + b1 * it(i)
) / ((1 + exp(b0 + b1 * it(i))) ̂ 2) - H2);

it(i + 1) = it(i) - func(i) / df(i);

if abs(it(i + 1) - it(i)) < 1e-14
y = it(i + 1);
return;

end
end

error(’Newton-Raphson failed to converge.’);

end

function y = binary_parameter_derivatives(b, n, x_smth, v_smth)

y = zeros(1, 2);
K = length(n);

b0 = b(1);
b1 = b(2);
p = zeros(1, K);

for k = 1:K
p(k) = 1 / (1 + exp((-1) * (b0 + b1 * x_smth(k))));
y(1) = y(1) + n(k) - p(k) - 0.5 * v_smth(k) * (b1 ^ 2) *

p(k) * (1 - p(k)) * (1 - 2 * p(k));
y(2) = y(2) + n(k) * x_smth(k) - x_smth(k) * p(k) - 0.5 *

v_smth(k) * b1 * p(k) * (1 - p(k)) * (2 + x_smth(k) * b1 *
(1 - 2 * p(k)));
end

end

function y = get_maximum_variance(z, r0, r1, W, x_smth, K)

10.4 State-space Model with One Binary, Two Continuous and a Spiking-Type. . . 173

y = (z * z’ + K * (r0 ^ 2) + (r1 ^ 2) * sum(W) ...
- 2 * r0 * sum(z) - 2 * r1 * dot(x_smth, z) + 2 *

r0 * r1 * sum(x_smth)) / K;

end

function y = get_linear_parameters(x_smth, W, z, K)

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .*
x_smth)];

end

function y = get_trial_averages(s, x_smth, epoch, fs, option)

y = zeros(9, epoch * fs);

csm_ep = zeros(length(s.csm), epoch * fs);
csp_us_ep = zeros(length(s.csp_us), epoch * fs);
csp_nus_ep = zeros(length(s.csp_nus), epoch * fs);

csm = s.csm;
csp_us = s.csp_us;
csp_nus = s.csp_nus;

if strcmp(option, ’x_smth’)

for j = 1:length(csm)
csm_ep(j, :) = x_smth((s.stim(csm(j)) - fs):(s.stim(

csm(j)) + 9 * fs - 1));
end

for j = 1:length(csp_us)
csp_us_ep(j, :) = x_smth((s.stim(csp_us(j)) - fs):(s.

stim(csp_us(j)) + 9 * fs - 1));
end

for j = 1:length(csp_nus)
csp_nus_ep(j, :) = x_smth((s.stim(csp_nus(j)) - fs):(

s.stim(csp_nus(j)) + 9 * fs - 1));
end

elseif strcmp(option, ’skn’)

for j = 1:length(csm)
csm_ep(j, :) = s.x((s.stim(csm(j)) - fs):(s.stim(csm

(j)) + 9 * fs - 1));
end

for j = 1:length(csp_us)
csp_us_ep(j, :) = s.x((s.stim(csp_us(j)) - fs):(s.

stim(csp_us(j)) + 9 * fs - 1));
end

174 10 MATLAB Code Examples

for j = 1:length(csp_nus)
csp_nus_ep(j, :) = s.x((s.stim(csp_nus(j)) - fs):(s.

stim(csp_nus(j)) + 9 * fs - 1));
end

end

y(1, :) = mean(csp_us_ep);
y(2, :) = mean(csp_us_ep) + tinv(0.975, length(csp_us) - 1) *
std(csp_us_ep) / sqrt(length(csp_us));

y(3, :) = mean(csp_us_ep) + tinv(0.025, length(csp_us) - 1) *
std(csp_us_ep) / sqrt(length(csp_us));

y(4, :) = mean(csp_nus_ep);
y(5, :) = mean(csp_nus_ep) + tinv(0.975, length(csp_nus) - 1)

* std(csp_nus_ep) / sqrt(length(csp_nus));
y(6, :) = mean(csp_nus_ep) + tinv(0.025, length(csp_nus) - 1)

* std(csp_nus_ep) / sqrt(length(csp_nus));

y(7, :) = mean(csm_ep);
y(8, :) = mean(csm_ep) + tinv(0.975, length(csm) - 1) * std(
csm_ep) / sqrt(length(csm));
y(9, :) = mean(csm_ep) + tinv(0.025, length(csm) - 1) * std(
csm_ep) / sqrt(length(csm));

end

function [y] = f(theta, t, w)

y = sqrt(theta(end) ./ (2 * pi * (t .^ 3))) .* ...
exp((theta(end) * ((t - mu(theta, w)) .^ 2)) ./ ...
((-2) * (mu(theta, w) ^ 2) * t));

end

function [y] = intf(theta, t, w)

y = integral(@(t)f(theta, t, w), 0, t);

end

function [y] = mu(theta, w)

eta = w(end - 1);
x = w(end);
p = length(theta) - 2;

y = theta(1) + theta(2:(2 + p - 1)) * w(1:p)’ + eta * x;

end

function [y] = fetch_lambda(theta, t, w)

10.4 State-space Model with One Binary, Two Continuous and a Spiking-Type. . . 175

cdf = intf(theta, t, w);
y = f(theta, t, w) ./ (1 - cdf);

if (cdf > 1) % numerical issue
y = 0;

end

end

function [y] = df_dmu(theta, t, w)

y = (theta(end) / (mu(theta, w) ̂ 3)) * (f(theta, t, w) .* (t
- mu(theta, w)));

end

function [y] = df_dx(theta, t, w)

eta = w(end - 1);
y = df_dmu(theta, t, w) .* eta;

end

function [y] = intdf_dx(theta, t, w)

y = integral(@(t)df_dx(theta, t, w), 0, t);

end

function [y] = dlambda_dx(theta, t, w)

cdf = intf(theta, t, w);

if (cdf > 1) % numerical issue
y = 0;

else
y = ((1 - cdf) .* df_dx(theta, t, w) + ...

f(theta, t, w) .* intdf_dx(theta, t, w)) ./ ((1 - cdf
) .^ 2);
end

end

function [y] = d2f_dmu2(theta, t, w)

y = theta(end) * (df_dmu(theta, t, w) .* ((t - mu(theta, w))
/ (mu(theta, w) ^ 3)) + ...

f(theta, t, w) .* ((2 * mu(theta, w) - 3 * t) / (mu(theta
, w) ^ 4)));

end

function [y] = d2f_dx2(theta, t, w)

eta = w(end - 1);

176 10 MATLAB Code Examples

y = d2f_dmu2(theta, t, w) .* (eta ^ 2);

end

function [y] = intd2f_dx2(theta, t, w)

y = integral(@(t)d2f_dx2(theta, t, w), 0, t);

end

function [y] = d2lambda_dx2(theta, t, w)

y = (2 * dlambda_dx(theta, t, w) * (1 - intf(theta, t, w)) *
intdf_dx(theta, t, w) + ...

d2f_dx2(theta, t, w) * (1 - intf(theta, t, w)) + ...
f(theta, t, w) * intd2f_dx2(theta, t, w)) / ((1 - intf(

theta, t, w)) ̂ 2);

end

function [y] = get_log_likelihood(eta, rpeaks, ul, delta, w_all,
theta, x, v)

K = length(x);
y = zeros(K, 50);

for k = 1:K
for j = 1:50

w = [squeeze(w_all(k, j, :))’ [eta x(k)]];

if (f(theta, ul(k, j), w) > 1e-18)

lambda = fetch_lambda(theta, ul(k, j), w);
dl_dx = dlambda_dx(theta, ul(k, j), w);
d2l_dx2 = d2lambda_dx2(theta, ul(k, j), w);
nkj = rpeaks(k, j);

y(k, j) = nkj * log(delta * lambda) - delta *
lambda + ...

(d2l_dx2 * (nkj - lambda * delta) / lambda -
nkj * (dl_dx ^ 2) / (lambda ^ 2)) * v(k) * 0.5;

end

end
end

end

10.5 State-space Model with One MPP Observation 177

10.5 State-space Model with One MPP Observation

10.5.1 Simulated Data Example

load(’data_one_mpp.mat’);

K = length(n);

pt = find(n > 0);

M = 5e4;
ve = zeros(1, M); % process noise variance
r0 = zeros(1, M); % linear model coefficients (continuous

variable)
r1 = zeros(1, M); % linear model coefficients (continuous

variable)
vr = zeros(1, M); % sensor noise variance (continuous variable)

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth = zeros(1, K);
v_smth = zeros(1, K);

p_updt = zeros(1, K);

base_prob = sum(n) / length(n);
tol = 1e-8; % convergence criteria

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

ve(1) = 0.005;
x_smth(1) = 0;
r0(1) = 0.003;
r1(1) = 0.001;
vr(1) = 0.002;
b0 = log(base_prob / (1 - base_prob));

for m = 1:M

for k = 1:K

if (k == 1)
x_pred(k) = x_smth(1);
v_pred(k) = ve(m) + ve(m);

else

178 10 MATLAB Code Examples

x_pred(k) = x_updt(k - 1);
v_pred(k) = v_updt(k - 1) + ve(m);

end
x_updt(k) = get_posterior_mode(x_pred(k), v_pred(k), r(k)

, r0(m), r1(m), vr(m), b0, n(k));
p_updt(k) = 1 / (1 + exp((-1) * (b0 + x_updt(k))));

if (n(k) == 0)
v_updt(k) = 1 / ((1 / v_pred(k)) + p_updt(k) * (1 -

p_updt(k)));
elseif (n(k) == 1)

v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr(
m)) + p_updt(k) * (1 - p_updt(k)));

end
end

x_smth(K) = x_updt(K);
v_smth(K) = v_updt(K);
W(K) = v_smth(K) + (x_smth(K) ^ 2);

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end);

for k = (K - 1):(-1):1
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k +

1));
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1));

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) ^ 2);

end

if (m < M)

R = get_linear_parameters(x_smth, W, r, pt);

r0(m + 1) = R(1, 1);
r1(m + 1) = R(2, 1);
vr(m + 1) = get_maximum_variance(r, r0(m + 1), r1(m + 1),

W, x_smth, pt);

ve(m + 1) = (sum(W(2:end)) + sum(W(1:(end - 1))) - 2 *
sum(CW)) / K;

mean_dev = mean(abs([ve(m + 1) r0(m + 1) r1(m + 1) vr(m +
1)] - [ve(m) r0(m) r1(m) vr(m)]));

if mean_dev < tol
fprintf(’m = %d\nx0 = %.18f\n\nr0 = %.18f\nr1 = %.18f

\nvr = %.18f\nve = %.18f\n\n’, m, x_smth(1), r0(m), r1(m), vr
(m), ve(m));

fprintf(’Converged at m = %d\n\n’, m);
break;

else

10.5 State-space Model with One MPP Observation 179

fprintf(’m = %d\nx0 = %.18f\n\nr0 = %.18f\nr1 = %.18f
\nvr = %.18f\nve = %.18f\n\n’, m, x_smth(1), r0(m + 1), r1(m
+ 1), vr(m + 1), ve(m + 1));

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth(2:end) = zeros(1, K - 1); % x_smth(1)
needed for next iteration

v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

end
end

end

p_updt = 1 ./ (1 + exp((-1) * (b0 + x_updt)));
p_smth = 1 ./ (1 + exp((-1) * (b0 + x_smth)));
r_smth = r0(m) + r1(m) * x_smth;

r_plot = NaN * ones(1, K);
r_plot(pt) = r(pt);

figure;
subplot(411);
hold on;
stem(r_plot, ’fill’, ’color’, ’b’, ’markersize’, 4);
plot(r_smth, ’r-.’, ’linewidth’, 1.5);
ylabel(’(a) n_{k}, r_{k}’);
title(’Estimation with Simulated Data’);
grid;

subplot(412);
hold on;
plot(p, ’b’);
plot(p_smth, ’r-.’, ’linewidth’, 1.5);
ylabel(’(b) p_{k}’);
grid;

subplot(413);
hold on;
plot(x, ’b’);
plot(x_smth, ’r-.’, ’linewidth’, 1.5);
ylabel(’(c) x_{k}’);
xlabel(’time index’);
grid;

180 10 MATLAB Code Examples

subplot(414);
qqplot(x - x_smth);
title(’QQ Plot - State Estimate’, ’FontWeight’, ’Normal’);
ylabel(’(d) input quantiles’);
xlabel(’standard normal quantiles’);
grid;

function [y] = get_posterior_mode(x_pred, v_pred, z, r0, r1, vr,
b0, n)

M = 100; % maximum iterations
y = NaN;

it = zeros(1, M);
f = zeros(1, M);
df = zeros(1, M);

it(1) = x_pred;

for i = 1:(M - 1)
if (n == 0)

C = v_pred;
f(i) = it(i) - x_pred - C * (n - exp(b0 + it(i)) / (1

+ exp(b0 + it(i))));
df(i) = 1 + C * exp(b0 + it(i)) / (1 + exp(b0 + it(i)

)) ^ 2;
elseif (n == 1)

C = v_pred / ((r1 ^ 2) * v_pred + vr);
f(i) = it(i) - x_pred - C * (r1 * (z - r0 - r1 *

x_pred) + vr * (n - (1 / (1 + exp((-1) * (b0 + it(i)))))));
df(i) = 1 + C * vr * exp(b0 + it(i)) / ((1 + exp(b0 +

it(i))) ̂ 2);
end

it(i + 1) = it(i) - f(i) / df(i);

if abs(it(i + 1) - it(i)) < 1e-14
y = it(i + 1);
return

end
end

error(’Newton-Raphson failed to converge.’);

end

function y = get_maximum_variance(z, r0, r1, W, x_smth, pt)

x_smth = x_smth(pt);
W = W(pt);
z = z(pt);
K = length(pt);

10.5 State-space Model with One MPP Observation 181

y = (z * z’ + K * (r0 ^ 2) + (r1 ^ 2) * sum(W) ...
- 2 * r0 * sum(z) - 2 * r1 * dot(x_smth, z) + 2 *

r0 * r1 * sum(x_smth)) / K;
end

function y = get_linear_parameters(x_smth, W, z, pt)

x_smth = x_smth(pt);
W = W(pt);
z = z(pt);
K = length(pt);

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .*
x_smth)];

end

10.5.2 Experimental Data Example

load(’expm_data_one_mpp.mat’);

K = length(u);
n = zeros(1, K);

pt = find(u > 0);
n(pt) = 1;
r = u;

M = 5e4;
ve = zeros(1, M); % process noise variance
r0 = zeros(1, M); % linear model coefficients (continuous

variable)
r1 = zeros(1, M); % linear model coefficients (continuous

variable)
vr = zeros(1, M); % sensor noise variance (continuous variable)

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth = zeros(1, K);
v_smth = zeros(1, K);

p_updt = zeros(1, K);

base_prob = sum(n) / length(n);
tol = 1e-8; % convergence criteria

A = zeros(1, K);
W = zeros(1, K);

182 10 MATLAB Code Examples

CW = zeros(1, K);
C = zeros(1, K);

ve(1) = 0.005;
x_smth(1) = 0;
r0(1) = 0.003;
r1(1) = 0.001;
vr(1) = 0.002;
b0 = log(base_prob / (1 - base_prob));

for m = 1:M

for k = 1:K

if (k == 1)
x_pred(k) = x_smth(1);
v_pred(k) = ve(m) + ve(m);

else
x_pred(k) = x_updt(k - 1);
v_pred(k) = v_updt(k - 1) + ve(m);

end
x_updt(k) = get_posterior_mode(x_pred(k), v_pred(k), r(k)

, r0(m), r1(m), vr(m), b0, n(k));
p_updt(k) = 1 / (1 + exp((-1) * (b0 + x_updt(k))));

if (n(k) == 0)
v_updt(k) = 1 / ((1 / v_pred(k)) + p_updt(k) * (1 -

p_updt(k)));
elseif (n(k) == 1)

v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr(
m)) + p_updt(k) * (1 - p_updt(k)));

end
end

x_smth(K) = x_updt(K);
v_smth(K) = v_updt(K);
W(K) = v_smth(K) + (x_smth(K) ^ 2);

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end);

for k = (K - 1):(-1):1
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k +

1));
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1));

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) ^ 2);

end

if (m < M)

R = get_linear_parameters(x_smth, W, r, pt);

10.5 State-space Model with One MPP Observation 183

if R(2, 1) > 0
r0(m + 1) = R(1, 1);
r1(m + 1) = R(2, 1);
vr(m + 1) = get_maximum_variance(r, r0(m + 1), r1(m +

1), W, x_smth, pt);
else % a check with experimental data (in case this

happens)
fprintf(’m = %d\nx0 = %.18f\n\nr0 = %.18f\nr1 = %.18f

\nvr = %.18f\nve = %.18f\n\n’, m, x_smth(1), r0(m), r1(m), vr
(m), ve(m));

fprintf(’Converged at m = %d\n\n’, m);
break;

end

ve(m + 1) = (sum(W(2:end)) + sum(W(1:(end - 1))) - 2 *
sum(CW)) / K;

mean_dev = mean(abs([ve(m + 1) r0(m + 1) r1(m + 1) vr(m +
1)] - [ve(m) r0(m) r1(m) vr(m)]));

if mean_dev < tol
fprintf(’m = %d\nx0 = %.18f\n\nr0 = %.18f\nr1 = %.18f

\nvr = %.18f\nve = %.18f\n\n’, m, x_smth(1), r0(m), r1(m), vr
(m), ve(m));

fprintf(’Converged at m = %d\n\n’, m);
break;

else
fprintf(’m = %d\nx0 = %.18f\n\nr0 = %.18f\nr1 = %.18f

\nvr = %.18f\nve = %.18f\n\n’, m, x_smth(1), r0(m + 1), r1(m
+ 1), vr(m + 1), ve(m + 1));

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth(2:end) = zeros(1, K - 1); % x_smth(1)
needed for next iteration

v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

end
end

end

p_smth = 1 ./ (1 + exp((-1) * (b0 + x_smth)));
r_smth = r0(m) + r1(m) * x_smth;

184 10 MATLAB Code Examples

lcl_x = norminv(0.025, x_smth, sqrt(v_smth));
ucl_x = norminv(0.975, x_smth, sqrt(v_smth));

certainty = 1 - normcdf(prctile(x_smth, 50) * ones(1, length(
x_smth)), x_smth, sqrt(v_smth));

lcl_p = zeros(1, K);
ucl_p = zeros(1, K);

for k = 1:K
[lcl_p(k), ucl_p(k)] = get_pk_conf_lims(v_smth(k), b0, x_smth
(k));

end

fs = 4;
t = (0:(K - 1)) / fs;
tr = ((K - 1):(-1):0) / fs;

u_plot = NaN * ones(1, K);
u_plot(pt) = r(pt);

subplot(511);
hold on;
plot(ty, y, ’k’, ’linewidth’, 1.25);
ylabel({’(a) skin cond.’, ’(\mu S)’});
set(gca,’xticklabel’, []); ylim([0 3]);
title(’State Estimation with Experimental Data’); xlim([0 ty(end)

]);
grid;
yl = ylim;

patch([xp(1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) yl(1) yl(2) yl(2)
], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

subplot(512);
stem(t, u_plot, ’fill’, ’k’, ’markersize’, 3);
ylabel(’(b) n_{k}, r_{k}’); grid; xlim([0 t(end)]); ylim([0 15]);
yl = ylim; set(gca,’xticklabel’, []);

patch([xp(1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) yl(1) yl(2) yl(2)
], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

10.5 State-space Model with One MPP Observation 185

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

subplot(513);
hold on;
plot(t, x_smth, ’b’, ’linewidth’, 1.25);
fill([t, tr], [lcl_x fliplr(ucl_x)], ’c’, ’EdgeColor’, ’none’, ’

FaceAlpha’, 0.5);
ylabel(’(c) state (x_{k})’);
set(gca,’xticklabel’, []); xlim([0 t(end)]);
grid; yl = ylim;

patch([xp(1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) yl(1) yl(2) yl(2)
], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

subplot(514);
hold on;
plot(t, p_smth, ’r’, ’linewidth’, 1.5);
fill([t, tr], [lcl_p fliplr(ucl_p)], [1, 0, (127 / 255)], ’

EdgeColor’, ’none’, ’FaceAlpha’, 0.3);
ylim([0 0.15]);
ylabel(’(d) probability (p_{k})’);
set(gca,’xticklabel’, []); xlim([0 t(end)]);
grid; yl = ylim;

patch([xp(1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) yl(1) yl(2) yl(2)
], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2) yl(2)
], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);

subplot(515);
hold on;
v1 = [0 0.9; t(end) 0.9; t(end) 1; 0 1];
c1 = [1 (220 / 255) (220 / 255); 1 (220 / 255) (220 / 255); 1 0

0; 1 0 0];
faces1 = [1 2 3 4];

186 10 MATLAB Code Examples

patch(’Faces’, faces1, ’Vertices’, v1, ’FaceVertexCData’, c1, ’
FaceColor’, ’interp’, ...
’EdgeColor’, ’none’, ’FaceAlpha’, 0.7);

v2 = [0 0; t(end) 0; t(end) 0.1; 0 0.1];
c2 = [0 0.8 0; 0 0.8 0; (204 / 255) 1 (204 / 255); (204 / 255) 1

(204 / 255)];
faces2 = [1 2 3 4];

patch(’Faces’, faces2, ’Vertices’, v2, ’FaceVertexCData’, c2, ’
FaceColor’, ’interp’, ...
’EdgeColor’, ’none’, ’FaceAlpha’, 0.7);

plot(t, certainty, ’color’, [(138 / 255) (43 / 255) (226 / 255)],
’linewidth’, 1.5); grid;

ylabel(’(d) HAI’); xlabel(’time (s)’); xlim([0 t(end)]);

function [y] = get_posterior_mode(x_pred, v_pred, z, r0, r1, vr,
b0, n)

M = 100; % maximum iterations

it = zeros(1, M);
f = zeros(1, M);
df = zeros(1, M);

it(1) = x_pred;

for i = 1:(M - 1)
if (n == 0)

C = v_pred;
f(i) = it(i) - x_pred - C * (n - exp(b0 + it(i)) / (1

+ exp(b0 + it(i))));
df(i) = 1 + C * exp(b0 + it(i)) / (1 + exp(b0 + it(i)

)) ^ 2;
elseif (n == 1)

C = v_pred / ((r1 ^ 2) * v_pred + vr);
f(i) = it(i) - x_pred - C * (r1 * (z - r0 - r1 *

x_pred) + vr * (n - (1 / (1 + exp((-1) * (b0 + it(i)))))));
df(i) = 1 + C * vr * exp(b0 + it(i)) / ((1 + exp(b0 +

it(i))) ̂ 2);
end

it(i + 1) = it(i) - f(i) / df(i);

if abs(it(i + 1) - it(i)) < 1e-14
y = it(i + 1);
return

end
end

error(’Newton-Raphson failed to converge.’);

10.5 State-space Model with One MPP Observation 187

end

function y = get_maximum_variance(z, r0, r1, W, x_smth, pt)

x_smth = x_smth(pt);
W = W(pt);
z = z(pt);
K = length(pt);

y = (z * z’ + K * (r0 ^ 2) + (r1 ^ 2) * sum(W) ...
- 2 * r0 * sum(z) - 2 * r1 * dot(x_smth, z) + 2 *

r0 * r1 * sum(x_smth)) / K;
end

function y = get_linear_parameters(x_smth, W, z, pt)

x_smth = x_smth(pt);
W = W(pt);
z = z(pt);
K = length(pt);

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .*
x_smth)];

end

function [lcl, ucl] = get_pk_conf_lims(v, b0, x)

p = (1e-4:1e-4:1);

fp = cumtrapz(p, 1 ./ (sqrt(2 * pi * v) * p .* (1 - p)) .*
...

exp(((-1) / (2 * v))* (log(p ./ ((1 - p) * exp(b0))) - x)
.^ 2));

n = find(fp <= 0.975);
m = find(fp < 0.025);

ucl = p(n(end));
lcl = p(m(end));

end

188 10 MATLAB Code Examples

10.6 State-space Model with One MPP and One Continuous

Observation

10.6.1 Simulated Data Example

load(’data_one_mpp_one_cont.mat’);

base_prob = sum(n) / length(n);
pt = find(n > 0);

%% parameters

M = 1e6; % maximum iterations
m = 1;
tol = 1e-8; % convergence criteria

r0 = zeros(1, M); % continuous model
r1 = zeros(1, M);
vr = zeros(1, M); % continuous model noise variance (1)

s0 = zeros(1, M); % continuous model
s1 = zeros(1, M);
vs = zeros(1, M); % continuous model noise variance (2)

ve = zeros(1, M); % process noise variance
K = length(n);

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth = zeros(1, K);
v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

%% initial guesses

b0 = log(base_prob / (1 - base_prob));
r0(1) = r(1); % guess it’s the first value of r
r1(1) = 0.5;
s0(1) = s(1);
s1(1) = 1;
vr(1) = 0.05;

10.6 State-space Model with One MPP and One Continuous Observation 189

vs(1) = 0.05;
ve(1) = 0.05;

%% main function

for m = 1:M

for k = 1:K

if (k == 1)
x_pred(k) = x_smth(1);
v_pred(k) = ve(m) + ve(m);

else
x_pred(k) = x_updt(k - 1);
v_pred(k) = v_updt(k - 1) + ve(m);

end

x_updt(k) = get_posterior_mode(x_pred(k), v_pred(k), r(k)
, r0(m), r1(m), b0, vr(m), n(k), s(k), s0(m), s1(m), vs(m));

p_updt(k) = 1 / (1 + exp((-1) * (b0 + x_updt(k))));

if (n(k) == 0)
v_updt(k) = 1 / ((1 / v_pred(k)) + ((s1(m) ^ 2) / vs(

m)) + p_updt(k) * (1 - p_updt(k)));
elseif (n(k) == 1)

v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr(
m)) + ((s1(m) ^ 2) / vs(m)) + p_updt(k) * (1 - p_updt(k)));

end
end

x_smth(K) = x_updt(K);
v_smth(K) = v_updt(K);
W(K) = v_smth(K) + (x_smth(K) ^ 2);

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end);

for k = (K - 1):(-1):1
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k +

1));
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1));

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) ^ 2);

end

prev = [r0(m) r1(m) ve(m) vr(m) s0(m) s1(m) vs(m)];

R = get_linear_parameters_for_mpp(x_smth, W, r, pt);
S = get_linear_parameters(x_smth, W, s, K);

ve(m + 1) = (sum(W(2:end)) + sum(W(1:(end - 1))) - 2 * sum(CW
)) / K;

190 10 MATLAB Code Examples

r0(m + 1) = R(1, 1);
r1(m + 1) = R(2, 1);

s0(m + 1) = S(1, 1);
s1(m + 1) = S(2, 1);

vr(m + 1) = get_maximum_variance_for_mpp(r, r0(m + 1), r1(m +
1), W, x_smth, pt);

vs(m + 1) = get_maximum_variance(s, s0(m + 1), s1(m + 1), W,
x_smth, K);

next = [r0(m + 1) r1(m + 1) ve(m + 1) vr(m + 1) s0(m + 1) s1(
m + 1) vs(m +1)];

mean_dev = mean(abs(next - prev));

if mean_dev < tol
fprintf(’Converged at m = %d\n\n’, m);
break;

else
fprintf(’m = %d\nr0 = %.18f\nr1 = %.18f\nvr = %.18f\n\ns0

= %.18f\ns1 = %.18f\nvs = %.18f\n\nve = %.18f\n\n’, ...
m + 1, r0(m + 1), r1(m + 1), vr(m + 1), s0(m + 1), s1(m +

1), vs(m + 1), ve(m + 1));

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth(2:end) = zeros(1, K - 1); % x_smth(1) needed
for next iteration

v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

end
end

%% calculate confidence limits

p_smth = 1 ./ (1 + exp((-1) * (b0 + x_smth))); % mode, lower and
upper confidence limits for binary distribution

r_smth = r0(m) + r1(m) * x_smth;
s_smth = s0(m) + s1(m) * x_smth;

r_plot = NaN * ones(1, K);
r_plot(pt) = r(pt);

10.6 State-space Model with One MPP and One Continuous Observation 191

%% plot graphs

subplot(511);
hold on;
stem(r_plot, ’fill’, ’color’, ’b’, ’markersize’, 4);
plot(r_smth, ’r-.’, ’linewidth’, 1.25);
ylabel(’(a) n_{k}, r_{k}’);
title(’Estimation with Simulated Data’);
grid;

subplot(512);
hold on;
plot(p, ’b’);
plot(p_smth, ’r-.’, ’linewidth’, 1.25);
ylabel(’(b) p_{k}’);
grid;

subplot(513);
hold on;
plot(s, ’b’);
plot(s_smth, ’r-.’, ’linewidth’, 1.25); grid;
ylabel(’(c) s_{k}’);

subplot(514);
hold on;
plot(x, ’b’);
plot(x_smth, ’r-.’, ’linewidth’, 1.25); grid;
ylabel(’(d) x_{k}’); xlabel(’time index’);

subplot(515);
qqplot(x - x_smth);
title(’QQ Plot - State Estimate’, ’FontWeight’, ’Normal’);
ylabel(’(e) input quantiles’);
xlabel(’standard normal quantiles’);
grid;

%% supplementary functions

function y = get_posterior_mode(x_pred, v_pred, r, r0, r1, b0, vr
, n, s, s0, s1, vs)

M = 200; % maximum iterations

it = zeros(1, M);
f = zeros(1, M);
df = zeros(1, M);

it(1) = x_pred;

for i = 1:(M - 1)

if (n == 0)
C = v_pred / ((s1 ^ 2) * v_pred + vs);

192 10 MATLAB Code Examples

f(i) = it(i) - x_pred - C * (s1 * (s - s0 - s1 *
x_pred) + vs * (n - (1 / (1 + exp((-1) * (b0 + it(i)))))));

df(i) = 1 + C * vs * exp(b0 + it(i)) / ((1 + exp(b0 +
it(i))) ̂ 2);

elseif (n == 1)
C = v_pred / (vr * vs + v_pred * ((r1 ^ 2) * vs + (s1

^ 2) * vr));
f(i) = it(i) - x_pred - C * (r1 * vs * (r - r0 - r1 *

x_pred) + s1 * vr * (s - s0 - s1 * x_pred) + ...
vr * vs * (n - (1 / (1 + exp((-1) * (b0 + it(i)))

))));
df(i) = 1 + C * vr * vs * exp(b0 + it(i)) / ((1 + exp

(b0 + it(i))) ̂ 2);
end

it(i + 1) = it(i) - f(i) / df(i);

if abs(it(i + 1) - it(i)) < 1e-14
y = it(i + 1);
return;

end
end

error(’Newton-Raphson failed to converge.’);

end

function y = get_maximum_variance(z, r0, r1, W, x_smth, K)

y = (z * z’ + K * (r0 ^ 2) + (r1 ^ 2) * sum(W) ...
- 2 * r0 * sum(z) - 2 * r1 * dot(x_smth, z) + 2 *

r0 * r1 * sum(x_smth)) / K;

end

function y = get_linear_parameters(x_smth, W, z, K)

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .*
x_smth)];

end

function y = get_maximum_variance_for_mpp(z, r0, r1, W, x_smth,
pt)

x_smth = x_smth(pt);
W = W(pt);
z = z(pt);
K = length(pt);

y = (z * z’ + K * (r0 ^ 2) + (r1 ^ 2) * sum(W) ...
- 2 * r0 * sum(z) - 2 * r1 * dot(x_smth, z) + 2 *

r0 * r1 * sum(x_smth)) / K;
end

10.6 State-space Model with One MPP and One Continuous Observation 193

function y = get_linear_parameters_for_mpp(x_smth, W, z, pt)

x_smth = x_smth(pt);
W = W(pt);
z = z(pt);
K = length(pt);

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .*
x_smth)];

end

10.6.2 Experimental Data Example

load(’expm_data_one_mpp_one_cont.mat’);

subj = 1;
T = 1450;
n = zeros(1, T);
r = zeros(1, T);

pt = find(u > 0);
n(pt) = 1;
r(pt) = u(pt);
s = y;

base_prob = sum(n) / length(n);
pt = find(n > 0);

%% parameters

M = 1e6; % maximum iterations
m = 1;
tol = 1e-8; % convergence criteria

b0 = zeros(1, M);
b1 = zeros(1, M);

r0 = zeros(1, M); % continuous model
r1 = zeros(1, M);
vr = zeros(1, M); % continuous model noise variance (1)

s0 = zeros(1, M); % continuous model
s1 = zeros(1, M);
vs = zeros(1, M); % continuous model noise variance (2)

ve = zeros(1, M); % process noise variance
K = length(n);

x_pred = zeros(1, K);
v_pred = zeros(1, K);

194 10 MATLAB Code Examples

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth = zeros(1, K);
v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

%% initial guesses

b0(1) = log(base_prob / (1 - base_prob));
b1(1) = 1;
r0(1) = prctile(r(pt), 50);
r1(1) = 0.5;
s0(1) = s(1);
s1(1) = 1;
vr(1) = 0.05;
vs(1) = 1 * var(s); % 1 * var(s)
ve(1) = 0.05;
lambda = 0.01; % 0.01

%% main function

for m = 1:M

for k = 1:K

if (k == 1)
x_pred(k) = x_smth(1);
v_pred(k) = ve(m) + ve(m);

else
x_pred(k) = x_updt(k - 1);
v_pred(k) = v_updt(k - 1) + ve(m);

end

x_updt(k) = get_posterior_mode(x_pred(k), v_pred(k), r(k)
, r0(m), r1(m), b0(m), b1(m), vr(m), n(k), s(k), s0(m), s1(m)
, vs(m));

p_updt(k) = 1 / (1 + exp((-1) * (b0(m) + b1(m) * x_updt(k
))));

if (n(k) == 0)
v_updt(k) = 1 / ((1 / v_pred(k)) + ((s1(m) ^ 2) / vs(

m)) + (b1(m) ̂ 2) * p_updt(k) * (1 - p_updt(k)));
elseif (n(k) == 1)

v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr(
m)) + ((s1(m) ^ 2) / vs(m)) + (b1(m) ^ 2) * p_updt(k) * (1 -
p_updt(k)));

10.6 State-space Model with One MPP and One Continuous Observation 195

end
end

x_smth(K) = x_updt(K);
v_smth(K) = v_updt(K);
W(K) = v_smth(K) + (x_smth(K) ^ 2);

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end);

for k = (K - 1):(-1):1
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k +

1));
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1));

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) ^ 2);

end

R = get_linear_parameters_for_mpp(x_smth, W, r, pt);
S = get_linear_parameters(x_smth, W, s, K);

prev = [r0(m) r1(m) ve(m) vr(m) s0(m) s1(m) vs(m) b0(m) b1(m)
];

ve(m + 1) = (sum(W(2:end)) + sum(W(1:(end - 1))) - 2 * sum(CW
)) / K;

bb = fsolve(@(b) binary_parameter_derivatives(b, n, x_smth,
v_smth), [-5 1], optimset(’Display’,’off’));

b0(m + 1) = bb(1);
b1(m + 1) = bb(2);

r0(m + 1) = R(1, 1);
r1(m + 1) = R(2, 1);
vr(m + 1) = get_maximum_variance_for_mpp(r, r0(m + 1), r1(m +
1), W, x_smth, pt);

if ((vs(m) + lambda * (get_maximum_variance(s, s0(m), s1(m),
W, x_smth, K) - vs(m))) > 0.75 * var(s)) % EM algorithm
intentionally modified slightly for overfitting control

s0(m + 1) = s0(m) + lambda * (S(1, 1) - s0(m));
s1(m + 1) = s1(m) + lambda * (S(2, 1) - s1(m));
vs(m + 1) = vs(m) + lambda * (get_maximum_variance(s, s0(

m), s1(m), W, x_smth, K) - vs(m));
else

s0(m + 1) = s0(m);
s1(m + 1) = s1(m);
vs(m + 1) = vs(m);

end

next = [r0(m + 1) r1(m + 1) ve(m + 1) vr(m + 1) s0(m + 1) s1(
m + 1) vs(m + 1) b0(m + 1) b1(m + 1)];

196 10 MATLAB Code Examples

mean_dev = mean(abs(next - prev));

if (b1(m + 1) < 0) || (r1(m + 1) < 0) % if this happens
with experimental data

fprintf(’Iterations halted at m = %d\n\n’, m);
break;

end

if mean_dev < tol
fprintf(’Converged at m = %d\n\n’, m);
break;

else
fprintf(’m = %d\nr0 = %.18f\nr1 = %.18f\nvr = %.18f\n\ns0

= %.18f\ns1 = %.18f\nvs = %.18f\n\nb0 = %.18f\nb1 = %.18f\n\
nve = %.18f\n\n’, ...

m + 1, r0(m + 1), r1(m + 1), vr(m + 1), s0(m + 1), s1(m +
1), vs(m + 1), b0(m + 1), b1(m + 1), ve(m + 1));

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth(2:end) = zeros(1, K - 1); % x_smth(1) needed
for next iteration

v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

end
end

%% calculate confidence limits

p_smth = 1 ./ (1 + exp((-1) * (b0(m) + b1(m) * x_smth))); % mode
, lower and upper confidence limits for binary distribution

r_smth = r0(m) + r1(m) * x_smth;
s_smth = s0(m) + s1(m) * x_smth;

lcl_x = norminv(0.025, x_smth, sqrt(v_smth));
ucl_x = norminv(0.975, x_smth, sqrt(v_smth));

lcl_p = zeros(1, K);
ucl_p = zeros(1, K);

for k = 1:K
[lcl_p(k), ucl_p(k)] = get_pk_conf_lims(v_smth(k), b0(m), b1(
m), x_smth(k));

10.6 State-space Model with One MPP and One Continuous Observation 197

end

r_plot = NaN * ones(1, K);
r_plot(pt) = r(pt);

%% plot graphs

t = (1:K);
tr = (K:(-1):1);
xtick_pos = 1:(4 * 60):1450;
xtick_labels = {’9 AM’, ’1 PM’, ’5 PM’, ’9 PM’, ’1 AM’, ’5 AM’, ’

9 AM’};

subplot(411);
hold on;
stem(t, r_plot, ’fill’, ’color’, ’b’, ’markersize’, 4);
plot(t, r_smth, ’r-.’, ’linewidth’, 1.25);
ylabel(’(a) n_{k}, r_{k}’); ylim([-inf (max([r_plot, r_smth]) +

2.5)]);
grid; xlim([0, K]); set(gca, ’xtick’, xtick_pos);
set(gca, ’xticklabel’, []);
title(’State Estimation with Experimental Data’);

subplot(412);
hold on;
plot(t, s, ’color’, [1 (128 / 255) 0], ’linewidth’, 1.25); grid;
plot(t, s_smth, ’r-.’, ’linewidth’, 1.25);
ylim([0 (max([s, s_smth]) + 2.5)]);
ylabel(’(b) s_{k}’); set(gca, ’xtick’, xtick_pos);
xlim([0, K]); set(gca, ’xticklabel’, []);

subplot(413);
hold on;
col = [0 (176 / 255) (80 / 255)];
fill([t, tr], [lcl_p fliplr(ucl_p)], [(54 / 255) (208 / 255) (80

/ 255)], ’EdgeColor’, ’none’, ’FaceAlpha’, 0.3);
plot(t, p_smth, ’color’, [(54 / 255) (150 / 255) (80 / 255)], ’

linewidth’, 1.25); grid;
ylabel(’(c) p_{k}’); set(gca, ’xtick’, xtick_pos); ylim([0 (max(

ucl_p) + 0.0075)]);
xlim([0, K]); set(gca, ’xticklabel’, []);

subplot(414);
hold on;
fill([t, tr], [lcl_x fliplr(ucl_x)], [(102 / 255) 0 (204 / 255)],

’EdgeColor’, ’none’, ’FaceAlpha’, 0.3);
plot(t, x_smth, ’color’, [(102 / 255) 0 (150 / 255)], ’linewidth’

, 1.25);
grid; xlim([0, K]); ylim([(min(lcl_x) - 1) (max(ucl_x) + 1)]);
set(gca, ’xtick’, xtick_pos);
set(gca, ’xticklabel’, xtick_labels);
ylabel(’(d) x_{k}’); xlabel(’time’);

198 10 MATLAB Code Examples

function y = get_posterior_mode(x_pred, v_pred, r, r0, r1, b0, b1
, vr, n, s, s0, s1, vs)

M = 200; % maximum iterations

it = zeros(1, M);
f = zeros(1, M);
df = zeros(1, M);

it(1) = x_pred;

for i = 1:(M - 1)

if (n == 0)
C = v_pred / ((s1 ^ 2) * v_pred + vs);
f(i) = it(i) - x_pred - C * (s1 * (s - s0 - s1 *

x_pred) + vs * b1 * (n - (1 / (1 + exp((-1) * (b0 + b1 * it(i
)))))));

df(i) = 1 + C * vs * (b1 ^ 2) * exp(b0 + b1 * it(i))
/ ((1 + exp(b0 + b1 * it(i))) ̂ 2);

elseif (n == 1)
C = v_pred / (vr * vs + v_pred * ((r1 ^ 2) * vs + (s1

^ 2) * vr));
f(i) = it(i) - x_pred - C * (r1 * vs * (r - r0 - r1 *

x_pred) + s1 * vr * (s - s0 - s1 * x_pred) + ...
vr * vs * b1 * (n - (1 / (1 + exp((-1) * (b0 + b1

* it(i)))))));
df(i) = 1 + C * vr * vs * (b1 ^ 2) * exp(b0 + b1 * it

(i)) / ((1 + exp(b0 + b1 * it(i))) ̂ 2);
end

it(i + 1) = it(i) - f(i) / df(i);

if abs(it(i + 1) - it(i)) < 1e-14
y = it(i + 1);
return;

end
end

error(’Newton-Raphson failed to converge.’);

end

function [lcl, ucl] = get_pk_conf_lims(v, b0, b1, x)

p = (1e-4:1e-4:1);

fp = cumtrapz(p, 1 ./ (sqrt(2 * pi * v) * b1 * p .* (1 - p))
.* ...

exp(((-1) / (2 * v))* ((1 / b1) * log(p ./ ((1 - p) * exp
(b0))) - x) .^ 2));

n = find(fp <= 0.975);
m = find(fp < 0.025);

10.6 State-space Model with One MPP and One Continuous Observation 199

ucl = p(n(end));
lcl = p(m(end));

end

function y = get_maximum_variance_for_mpp(z, r0, r1, W, x_smth,
pt)

x_smth = x_smth(pt);
W = W(pt);
z = z(pt);
K = length(pt);

y = (z * z’ + K * (r0 ^ 2) + (r1 ^ 2) * sum(W) ...
- 2 * r0 * sum(z) - 2 * r1 * dot(x_smth, z) + 2 *

r0 * r1 * sum(x_smth)) / K;
end

function y = get_maximum_variance(z, r0, r1, W, x_smth, K)

y = (z * z’ + K * (r0 ^ 2) + (r1 ^ 2) * sum(W) ...
- 2 * r0 * sum(z) - 2 * r1 * dot(x_smth, z) + 2 *

r0 * r1 * sum(x_smth)) / K;
end

function y = get_linear_parameters_for_mpp(x_smth, W, z, pt)

x_smth = x_smth(pt);
W = W(pt);
z = z(pt);
K = length(pt);

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .*
x_smth)];

end

function y = get_linear_parameters(x_smth, W, z, K)

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .*
x_smth)];

end

function y = binary_parameter_derivatives(b, n, x_smth, v_smth)

y = zeros(1, 2);
K = length(n);

b0 = b(1);
b1 = b(2);
p = zeros(1, K);

for k = 1:K

200 10 MATLAB Code Examples

p(k) = 1 / (1 + exp((-1) * (b0 + b1 * x_smth(k))));
y(1) = y(1) + n(k) - p(k) - 0.5 * v_smth(k) * (b1 ^ 2) *

p(k) * (1 - p(k)) * (1 - 2 * p(k));
y(2) = y(2) + n(k) * x_smth(k) - x_smth(k) * p(k) - 0.5 *

v_smth(k) * b1 * p(k) * (1 - p(k)) * (2 + x_smth(k) * b1 *
(1 - 2 * p(k)));
end

end

10.7 State-space Model with One Binary and One

Spiking-type Observation

10.7.1 Experimental Data Example

load(’expm_data_one_bin_one_spk.mat’);

fs = 4;
delta = 0.005;

min_peak_height = 0.1;
min_peak_promn = 0.1;
min_peak_dist = fs;

ph = s.ph;
tn = s.tn;

rpeaks = s.rpeaks;
ul = s.ul;
w = s.w;
theta = s.theta;

[pks, locs] = findpeaks(ph, ’MinPeakHeight’, min_peak_height, ’
MinPeakProminence’, ...
min_peak_promn, ’MinPeakDistance’, min_peak_dist);

n = zeros(1, length(ph));
n(locs) = 1;

K = length(n);
M = 2e4;
ve = zeros(1, M); % process noise variance

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth = zeros(1, K);

10.7 State-space Model with One Binary and One Spiking-type Observation 201

v_smth = zeros(1, K);

p_updt = zeros(1, K);

tpc = 289; % total (SCR) peak count
tsl = 34182; % total signal length

base_prob = tpc / tsl;
b0 = log(base_prob / (1 - base_prob));
tol = 5e-8; % convergence criteria

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

x_smth(1) = 0.44201528159733;
ve(1) = 1.24111644606324e-4;

eta = -0.00004;

exception_counter = 0;

for m = 1:M

for k = 1:K

if (k == 1)
x_pred(k) = x_smth(1);
v_pred(k) = ve(m) + ve(m);

else
x_pred(k) = x_updt(k - 1);
v_pred(k) = v_updt(k - 1) + ve(m);

end

C(k) = v_pred(k);

try % numerical issues can occur due to the integrals
[x_updt(k), H2] = get_posterior_mode(x_pred(k), C(k),

b0, n(k), rpeaks(k, :), ul(k, :), delta, s.w(k, :, :), theta
’, eta);

p_updt(k) = 1 / (1 + exp((-1) * (b0 + x_updt(k))));
v_updt(k) = 1 / ((1 / v_pred(k)) + p_updt(k) * (1 -

p_updt(k)) - H2);
catch

exception_counter = exception_counter + 1;
x_updt(k) = x_pred(k);
v_updt(k) = v_pred(k);

end

if (mod(k, 100) == 0)
fprintf(’%d ’, k);

end

202 10 MATLAB Code Examples

if (mod(k, 2500) == 0)
fprintf(’\n’);

end

end

x_smth(K) = x_updt(K);
v_smth(K) = v_updt(K);
W(K) = v_smth(K) + (x_smth(K) ^ 2);

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end);

for k = (K - 1):(-1):1
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k +

1));
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1));

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) ^ 2);

end

if (m < M)

ve(m + 1) = (sum(W(2:end)) + sum(W(1:(end - 1))) - 2 *
sum(CW)) / K;

mean_dev = mean(abs(ve(m + 1) - ve(m)));

if mean_dev < tol
fprintf(’m = %d\nx0 = %.18f\nve = %.18f\n\n’, m,

x_smth(1), ve(m));
fprintf(’Converged at m = %d\n\n’, m);
break;

else
fprintf(’m = %d\nx0 = %.18f\nve = %.18f\n\n’, m,

x_smth(1), ve(m + 1));

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth(2:end) = zeros(1, K - 1); % x_smth(1)
needed for next iteration

v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

end

10.7 State-space Model with One Binary and One Spiking-type Observation 203

end
end

p_updt = 1 ./ (1 + exp((-1) * (b0 + x_updt)));
p_smth = 1 ./ (1 + exp((-1) * (b0 + x_smth)));

t = (0:(K - 1)) / (fs * 60);
tr = ((K - 1):(-1):0) / (fs * 60);

lcl_x = norminv(0.025, x_smth, sqrt(v_smth));
ucl_x = norminv(0.975, x_smth, sqrt(v_smth));

lcl_p = zeros(1, K);
ucl_p = zeros(1, K);

for k = 1:K
[lcl_p(k), ucl_p(k)] = get_pk_conf_lims(v_smth(k), b0, x_smth
(k));

end

certainty = get_certainty_curve(v_smth, b0, x_smth, base_prob);

lambda = zeros(K, 50);
mean_rr = zeros(K, 50);

for k = 1:K
for j = 1:50

w = [squeeze(s.w(k, j, :))’ [eta x_smth(k)]];
if (f(theta’, ul(k, j), w) > 1e-18)

lambda(k, j) = fetch_lambda(theta’, ul(k, j), w);
end
mean_rr(k, j) = mu(theta’, w);

end
end

lambda_start_index = find(reshape(rpeaks’, 1, numel(rpeaks)), 1);
lambda = reshape(lambda’, 1, numel(lambda));
get_ks_plot(find(reshape(rpeaks’, 1, numel(rpeaks))) * delta,

lambda(lambda_start_index:end), delta, 1);

ll = get_log_likelihood(eta, rpeaks, ul, delta, s.w, theta’,
x_smth, v_smth);

ll_final = sum(nansum(ll));
mean_rr = reshape(mean_rr’, 1, numel(mean_rr));

rri = diff(s.rpeak_locs);
rr_times = s.rpeak_locs(2:end) / 60;

state_ylim = [(min(lcl_x) - 0.1) (max(ucl_x) + 0.1)];
rr_ylim = [(prctile(rri, 1) - 0.05) (prctile(rri, 99) + 0.05)];
prob_ylim = [(min(lcl_p) - 0.0005) (max(ucl_p(3:end)) + 0.0005)];

figure;
subplot(611);

204 10 MATLAB Code Examples

hold on;
plot(t, s.x, ’color’, [(102 / 255) 0 (204 / 255)]); grid;
set(gca,’xticklabel’, []);
ylabel(’(a) z_{k}’); xlim([0 t(end)]); ylim([4 22]); title(’State

Estimation with Experimental Data’);

subplot(612);
n_plot = NaN * ones(1, K);
n_plot(n > 0) = 1;
stem(t, n_plot, ’fill’, ’color’, [1, 0, 1], ’markersize’, 2);
xlim([0 t(end)]); ylim([0 1.25]);
set(gca,’xticklabel’, []);
ylabel(’(b) n_{k}’); grid;

subplot(613);
hold on;
plot(t, x_smth, ’b’, ’linewidth’, 1.25); grid;
set(gca,’xticklabel’, []);
fill([t, tr], [lcl_x fliplr(ucl_x)], ’c’, ’EdgeColor’, ’none’, ’

FaceAlpha’, 0.2);
ylabel(’(c) x_{k}’); xlim([0 t(end)]); ylim(state_ylim);

subplot(614);
hold on;
plot(t, p_smth, ’color’, [(102 / 255), 0, (51 / 255)], ’linewidth

’, 1.25); grid;
set(gca,’xticklabel’, []);
fill([t, tr], [lcl_p fliplr(ucl_p)], [1, 0, (127 / 255)], ’

EdgeColor’, ’none’, ’FaceAlpha’, 0.2);
ylabel(’(d) p_{k}’); xlim([0 t(end)]); ylim([0.0012 0.0388]);
plot([0, t(end)], [base_prob, base_prob], ’k--’, ’linewidth’,

1.25);

subplot(615);
hold on;
plot(rr_times, rri, ’o’, ’col’, [1, 0.5, 0.25], ...

’MarkerFaceColor’, [1, 0.5, 0.25], ’MarkerSize’, 2); grid;
set(gca,’xticklabel’, []);
mu_start_index = round(s.rpeak_locs(2) / delta);
plot(((0:(length(mean_rr(mu_start_index:end)) - 1)) * delta) /

60, mean_rr(mu_start_index:end), ’b’);
ylabel(’(e) rr_{i}’); xlim([0 t(end)]); ylim(rr_ylim);

subplot(616);
hold on;

v1 = [0 0.9; t(end) 0.9; t(end) 1; 0 1];
c1 = [1 (220 / 255) (220 / 255); 1 (220 / 255) (220 / 255); 1 0

0; 1 0 0];
faces1 = [1 2 3 4];

patch(’Faces’, faces1, ’Vertices’, v1, ’FaceVertexCData’, c1, ’
FaceColor’, ’interp’, ...
’EdgeColor’, ’none’, ’FaceAlpha’, 0.7);

10.7 State-space Model with One Binary and One Spiking-type Observation 205

v2 = [0 0; t(end) 0; t(end) 0.1; 0 0.1];
c2 = [0 0.8 0; 0 0.8 0; (204 / 255) 1 (204 / 255); (204 / 255) 1

(204 / 255)];
faces2 = [1 2 3 4];

patch(’Faces’, faces2, ’Vertices’, v2, ’FaceVertexCData’, c2, ’
FaceColor’, ’interp’, ...
’EdgeColor’, ’none’, ’FaceAlpha’, 0.7);

plot(t, certainty, ’b’, ’linewidth’, 1.25); grid; xlim([0 t(end)
]);

ylabel(’(f) HAI’); xlabel(’time (min)’); ylim([0 1]);

function [y, H2] = get_posterior_mode(x_pred, C, b0, n, rpeaks,
ul, delta, w_all, theta, eta)

M = 40; % maximum iterations

it = zeros(1, M);
func = zeros(1, M);
df = zeros(1, M);

it(1) = x_pred;

for i = 1:(M - 1)

H1 = zeros(1, 50);
H2 = zeros(1, 50);

for j = 1:50
w = [squeeze(w_all(1, j, :))’ [eta it(i)]];

if (f(theta, ul(j), w) > 1e-18) %
lambda = fetch_lambda(theta, ul(j), w);
dl_dx = dlambda_dx(theta, ul(j), w);

H1(j) = dl_dx * (rpeaks(j) - lambda * delta) /
lambda;

H2(j) = d2lambda_dx2(theta, ul(j), w) * (rpeaks(j
) - lambda * delta) / lambda - rpeaks(j) * (dl_dx ^ 2) / (
lambda ^ 2);

end
end

H1 = sum(H1);
H2 = sum(H2);

func(i) = it(i) - x_pred - C * (n - exp(b0 + it(i)) / (1 +
exp(b0 + it(i))) + H1);

df(i) = 1 + C * (exp(b0 + it(i)) / (1 + exp(b0 + it(i))) ^
2 - H2);

it(i + 1) = it(i) - func(i) / df(i);

206 10 MATLAB Code Examples

if abs(it(i + 1) - it(i)) < 1e-14
y = it(i + 1);

return
end

end

error(’Newton-Raphson failed to converge.’);

end

function [y] = f(theta, t, w)

y = sqrt(theta(end) ./ (2 * pi * (t .^ 3))) .* ...
exp((theta(end) * ((t - mu(theta, w)) .^ 2)) ./ ...
((-2) * (mu(theta, w) ^ 2) * t));

end

function [y] = intf(theta, t, w)

y = integral(@(t)f(theta, t, w), 0, t);

end

function [y] = mu(theta, w)

eta = w(end - 1);
x = w(end);
y = theta(1) + w(1:3) * theta(2:4)’ + eta * x;

end

function [y] = fetch_lambda(theta, t, w)

cdf = intf(theta, t, w);
y = f(theta, t, w) ./ (1 - cdf);

if (cdf > 1) % numerical issue
y = 0;

end

end

function [y] = df_dmu(theta, t, w)

y = (theta(end) / (mu(theta, w) ̂ 3)) * (f(theta, t, w) .* (t
- mu(theta, w)));

end

function [y] = df_dx(theta, t, w)

eta = w(end - 1);
y = df_dmu(theta, t, w) .* eta;

10.7 State-space Model with One Binary and One Spiking-type Observation 207

end

function [y] = intdf_dx(theta, t, w)

y = integral(@(t)df_dx(theta, t, w), 0, t);

end

function [y] = dlambda_dx(theta, t, w)

cdf = intf(theta, t, w);

if (cdf > 1) % numerical issue
y = 0;

else
y = ((1 - cdf) .* df_dx(theta, t, w) + ...

f(theta, t, w) .* intdf_dx(theta, t, w)) ./ ((1 - cdf
) .^ 2);
end

end

function [y] = d2f_dmu2(theta, t, w)

y = theta(end) * (df_dmu(theta, t, w) .* ((t - mu(theta, w))
/ (mu(theta, w) ^ 3)) + ...

f(theta, t, w) .* ((2 * mu(theta, w) - 3 * t) / (mu(theta
, w) ^ 4)));

end

function [y] = d2f_dx2(theta, t, w)

eta = w(end - 1);
y = d2f_dmu2(theta, t, w) .* (eta ^ 2);

end

function [y] = intd2f_dx2(theta, t, w)

y = integral(@(t)d2f_dx2(theta, t, w), 0, t);

end

function [y] = d2lambda_dx2(theta, t, w)

y = (2 * dlambda_dx(theta, t, w) * (1 - intf(theta, t, w)) *
intdf_dx(theta, t, w) + ...

d2f_dx2(theta, t, w) * (1 - intf(theta, t, w)) + ...
f(theta, t, w) * intd2f_dx2(theta, t, w)) / ((1 - intf(

theta, t, w)) ̂ 2);

end

208 10 MATLAB Code Examples

function [y] = get_log_likelihood(eta, rpeaks, ul, delta, w_all,
theta, x, v)

K = length(x);
y = zeros(K, 50);

for k = 1:K
for j = 1:50

w = [squeeze(w_all(k, j, :))’ [eta x(k)]];

if (f(theta, ul(k, j), w) > 1e-18)

lambda = fetch_lambda(theta, ul(k, j), w);
dl_dx = dlambda_dx(theta, ul(k, j), w);
d2l_dx2 = d2lambda_dx2(theta, ul(k, j), w);
nkj = rpeaks(k, j);

value = nkj * log(delta * lambda) - delta *
lambda + ...

(d2l_dx2 * (nkj - lambda * delta) / lambda -
nkj * (dl_dx ^ 2) / (lambda ^ 2)) * v(k) * 0.5;

if ~isnan(value)
y(k, j) = value;

end
end

end
end

end

function [lcl, ucl] = get_pk_conf_lims(v, b0, x)

p = (1e-4:1e-4:1);

fp = cumtrapz(p, 1 ./ (sqrt(2 * pi * v) * p .* (1 - p)) .*
...

exp(((-1) / (2 * v))* (log(p ./ ((1 - p) * exp(b0))) - x)
.^ 2));

n = find(fp <= 0.975);
m = find(fp < 0.025);

ucl = p(n(end));
lcl = p(m(end));

end

function certainty = get_certainty_curve(vK, mu, xK, chance_prob)

p = (1e-4:1e-4:1);
[~, i] = min(abs(p - chance_prob));
certainty = zeros(1, length(vK));

for j = 1:length(vK)

10.8 State-space Model with One Binary and Two Continuous Observations. . . 209

fp = cumtrapz(p, 1 ./ (sqrt(2 * pi * vK(j)) * p .* (1 - p
)) .* ...

exp(((-1) / (2 * vK(j)))* (log(p ./ ((1 - p) * exp(mu
))) - xK(j)) .^ 2));

certainty(1, j) = 1 - fp(i);
end

end

10.8 State-space Model with One Binary and Two

Continuous Observations with a Circadian Input in the

State Equation

10.8.1 Experimental Data Example

ndays = 5;
T = 1440;
N = ndays * T;
t = (1:N);

load(’expm_data_one_bin_two_cont_circadian.mat’);

std_r = std(r);
std_s = std(s);

r = r / std_r;
s = s / std_s;

base_prob = sum(n) / length(n);

M = 2e6;
ve = zeros(1, M); % process noise variance
rho = zeros(1, M);
b0 = zeros(1, M);
b1 = zeros(1, M);

r0 = zeros(1, M);
r1 = zeros(1, M);
vr = zeros(1, M);

s0 = zeros(1, M);
s1 = zeros(1, M);
vs = zeros(1, M);

K = length(n);

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

210 10 MATLAB Code Examples

x_smth = zeros(1, K);
v_smth = zeros(1, K);

p_updt = zeros(1, K);

tol = 1e-8; % convergence criteria

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

ve(1) = 0.005;
rho(1) = 0.98;

b0(1) = log(base_prob / (1 - base_prob));
b1(1) = 0.9;

r0(1) = r(1);
r1(1) = 1;
vr(1) = 0.005;

s0(1) = s(1);
s1(1) = 1;
vs(1) = 0.005;

for m = 1:M

for k = 1:K

if (k == 1)
x_pred(k) = x_smth(1) + I(k);
v_pred(k) = ve(m) + ve(m);

else
x_pred(k) = rho(m) * x_updt(k - 1) + I(k);
v_pred(k) = (rho(m) ^ 2) * v_updt(k - 1) + ve(m);

end

C(k) = v_pred(k) / (vr(m) * vs(m) + v_pred(k) * ((r1(m) ^
2) * vs(m) + (s1(m) ^ 2) * vr(m)));

x_updt(k) = get_posterior_mode(x_pred(k), C(k), r(k), r0(
m), r1(m), b0(m), b1(m), vr(m), n(k), s(k), s0(m), s1(m), vs(
m));

p_updt(k) = 1 / (1 + exp((-1) * (b0(m) + b1(m) * x_updt(k
))));

v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr(m))
+ ((s1(m) ^ 2) / vs(m)) + (b1(m) ^ 2) * p_updt(k) * (1 -
p_updt(k)));

end

x_smth(K) = x_updt(K);

10.8 State-space Model with One Binary and Two Continuous Observations. . . 211

v_smth(K) = v_updt(K);
W(K) = v_smth(K) + (x_smth(K) ^ 2);

A(1:(end - 1)) = rho(m) * v_updt(1:(end - 1)) ./ v_pred(2:end
);

for k = (K - 1):(-1):1
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k +

1));
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1));

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1);
W(k) = v_smth(k) + (x_smth(k) ^ 2);

end

if (m < M)

rho(m + 1) = sum(CW) / sum(W(1:end - 1));

next_ve = (sum(W(2:end)) + (rho(m + 1) ̂ 2) * sum(W(1:(
end - 1))) - 2 * rho(m + 1) * sum(CW) - ...

2 * (I(2:end) * x_smth(2:end)’) + 2 * rho(m + 1) * (I
(2:end) * x_smth(1:(end - 1))’) + ...

(I * I’)) / K;

if (next_ve > 0) % check - in case this happens with
experimental data

ve(m + 1) = next_ve;
else

ve(m + 1) = ve(m);
end

bb = fsolve(@(b) binary_parameter_derivatives(b, n,
x_smth, v_smth), [-5 1], optimset(’Display’,’off’));

if (bb(2) > 0) % check - in case this happens with
experimental data

b0(m + 1) = bb(1);
b1(m + 1) = bb(2);

else
b0(m + 1) = b0(m);
b1(m + 1) = b1(m);

end

a = fminsearch(@(a) circadian_parameters(a, rho(m + 1),
x_smth, t, T), a, optimset(’Display’, ’off’));

I = rhythm(a, T, t);

R = get_linear_parameters(x_smth, W, r, K);
S = get_linear_parameters(x_smth, W, s, K);

next_vr = get_continuous_variable_variance_update(r, R(1,
1), R(2, 1), W, x_smth, K);

212 10 MATLAB Code Examples

next_vs = get_continuous_variable_variance_update(s, S(1,
1), S(2, 1), W, x_smth, K);

if (abs(next_vr - next_vs) > 0.01) % overfitting control
with experimental data

r0(m + 1) = r0(m);
r1(m + 1) = r1(m);

s0(m + 1) = s0(m);
s1(m + 1) = s1(m);

vr(m + 1) = vr(m);
vs(m + 1) = vs(m);

else
r0(m + 1) = R(1, 1);
r1(m + 1) = R(2, 1);

s0(m + 1) = S(1, 1);
s1(m + 1) = S(2, 1);

vr(m + 1) = next_vr;
vs(m + 1) = next_vs;

end

mean_dev = mean(abs([ve(m + 1) rho(m + 1) r0(m + 1) r1(m
+ 1) vr(m + 1) s0(m + 1) s1(m + 1) vs(m + 1) b1(m + 1) b0(m +
1)] - ...

[ve(m) rho(m) r0(m) r1(m) vr(m) s0(m) s1(m) vs(m) b1(
m) b0(m)]));

if mean_dev < tol
fprintf(’m = %d\nx0 = %.18f\nve = %.18f\nrho = %.18f\

n\nr0 = %.18f\nr1 = %.18f\nvr = %.18f\ns0 = %.18f\ns1 = %.18f
\nvs = %.18f\n\nb0 = %.18f\nb1 = %.18f\n\n’, ...

m, x_smth(1), ve(m), rho(m), r0(m), r1(m), vr(m),
s0(m), s1(m), vs(m), b0(m), b1(m));

fprintf(’Converged at m = %d\n\n’, m);
break;

else
fprintf(’m = %d\nx0 = %.18f\nve = %.18f\nrho = %.18f\

n\nr0 = %.18f\nr1 = %.18f\nvr = %.18f\n\ns0 = %.18f\ns1 =
%.18f\nvs = %.18f\n\nb0 = %.18f\nb1 = %.18f\n\n’, m, ...

x_smth(1), ve(m + 1), rho(m + 1), r0(m + 1), r1(m
+ 1), vr(m + 1), s0(m + 1), s1(m + 1), vs(m + 1), b0(m + 1),
b1(m + 1));

x_pred = zeros(1, K);
v_pred = zeros(1, K);

x_updt = zeros(1, K);
v_updt = zeros(1, K);

x_smth(2:end) = zeros(1, K - 1); % x_smth(1)
needed for next iteration

10.8 State-space Model with One Binary and Two Continuous Observations. . . 213

v_smth = zeros(1, K);

p_updt = zeros(1, K);

A = zeros(1, K);
W = zeros(1, K);
CW = zeros(1, K);
C = zeros(1, K);

end
end

end

p_smth = 1 ./ (1 + exp((-1) * (b0(m) + b1(m) * x_smth)));
r_smth = (r0(m) + r1(m) * x_smth) * std_r;
s_smth = (s0(m) + s1(m) * x_smth) * std_s;

index = (0:(K - 1));
t_index = index / (60 * 24);
r_index = ((K - 1):(-1):0); % reverse index
transp = 0.3;

subplot(611);
hold on;
plot(t_index, y, ’color’, [(102 / 255) 0 (204 / 255)]); grid;
ylabel(’(a) z_{k}’);
title(’State Estimation with Experimental Data’);
xlim([0 t_index(end)]); ylim([0 (1.1 * max(y))]);
set(gca,’xticklabel’, []);

subplot(612);
n_plot = NaN * ones(1, K);
n_plot(n > 0) = 1;
stem(t_index, n_plot, ’fill’, ’color’, [1, 69 / 255, 0], ’

markersize’, 2);
xlim([0 t_index(end)]); ylim([0 1.25]);
set(gca,’xticklabel’, []);
ylabel(’(b) n_{k}’); grid;

subplot(613);
hold on;
plot(t_index, p_smth, ’r’, ’linewidth’, 1.5); ylim([(0.98 * min(

p_smth)) (1.08 * max(p_smth))]);
ylabel(’(c) p_{k}’); grid;
xlim([0 t_index(end)]);
set(gca,’xticklabel’, []);

subplot(614);
hold on;
plot(t_index, r_smth, ’--’, ’color’, [0 0.3 0], ’linewidth’, 2);
plot(t_index, r * std_r, ’color’, [0 0.9 0]); grid;
xlim([0 t_index(end)]); ylabel(’(d) r_{k}’);
set(gca,’xticklabel’, []);

subplot(615);

214 10 MATLAB Code Examples

hold on;
plot(t_index, s_smth, ’--’, ’color’, [0.5 (25 / 255) (66 / 255)],

’linewidth’, 2);
plot(t_index, s * std_s, ’color’, [1 0.5 (179 / 255)]); grid;
xlim([0 t_index(end)]); ylabel(’(e) s_{k}’);
set(gca,’xticklabel’, []);

subplot(616);
hold on;
plot(t_index, x_smth, ’b’, ’linewidth’, 1.5);
ylabel(’(f) x_{k}’);
xlim([0 t_index(end)]); ylim([(min(x_smth) - 1) (max(x_smth) + 1)

]);
grid;

xticks(0:0.5:4.5); xticklabels({’0000’, ’1200’, ’0000’, ’1200’, ’
0000’, ’1200’, ’0000’, ’1200’, ’0000’, ’1200’});

xlabel(’time (24h clock)’);

function y = get_posterior_mode(x_pred, C, r, r0, r1, b0, b1, vr,
n, s, s0, s1, vs)

M = 200; % maximum iterations

it = zeros(1, M);
f = zeros(1, M);
df = zeros(1, M);

it(1) = x_pred;

for i = 1:(M - 1)
f(i) = it(i) - x_pred - C * (r1 * vs * (r - r0 - r1 *

x_pred) + s1 * vr * (s - s0 - s1 * x_pred) + ...
vr * vs * b1 * (n - (1 / (1 + exp((-1) * (b0 + b1 *

it(i)))))));
df(i) = 1 + C * vr * vs * (b1 ^ 2) * exp(b0 + b1 * it(i))

/ ((1 + exp(b0 + b1 * it(i))) ̂ 2);
it(i + 1) = it(i) - f(i) / df(i);

if abs(it(i + 1) - it(i)) < 1e-14
y = it(i + 1);
return;

end
end

error(’Newton-Raphson failed to converge.’);

end

function y = binary_parameter_derivatives(b, n, x_smth, v_smth)

y = zeros(1, 2);
K = length(n);

10.8 State-space Model with One Binary and Two Continuous Observations. . . 215

b0 = b(1);
b1 = b(2);
p = zeros(1, K);

for k = 1:K
p(k) = 1 / (1 + exp((-1) * (b0 + b1 * x_smth(k))));
y(1) = y(1) + n(k) - p(k) - 0.5 * v_smth(k) * (b1 ^ 2) *

p(k) * (1 - p(k)) * (1 - 2 * p(k));
y(2) = y(2) + n(k) * x_smth(k) - x_smth(k) * p(k) - 0.5 *

v_smth(k) * b1 * p(k) * (1 - p(k)) * (2 + x_smth(k) * b1 *
(1 - 2 * p(k)));
end

end

function y = get_linear_parameters(x_smth, W, z, K)

y = [K sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .*
x_smth)];

end

function y = get_continuous_variable_variance_update(z, r0, r1, W
, x_smth, K)

y = (z * z’ + K * (r0 ^ 2) + (r1 ^ 2) * sum(W) ...
- 2 * r0 * sum(z) - 2 * r1 * dot(x_smth, z) + 2 * r0

* r1 * sum(x_smth)) / K;

end

function y = circadian_parameters(a, rho, x_smth, t, T)

I = rhythm(a, T, t);
y = (I * I’) - 2 * (I(2:end) * x_smth(2:end)’) + 2 * rho * (I
(2:end) * x_smth(1:(end - 1))’);

end

function y = rhythm(a, T, t) % the a0 is ignored
y = 0 + a(2) * sin(2 * pi * t / T) + a(3) * cos(2 * pi * t /
T) + ...

a(4) * sin(2 * pi * t / (T / 2)) + a(5) * cos(2 * pi * t
/ (T / 2));

end

216 10 MATLAB Code Examples

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 11

List of Supplementary MATLAB
Functions

All the MATLAB code examples accompanying this book can be run directly. The

examples are self-contained and do not require additional path variables being set

up. The following is a partial list of the supplementary MATLAB functions that are

called at various stages by the state estimators.

• get_linear_parameters (.. . .)

Calculates the updates for the constant coefficients (e.g., .γ0 and .γ1) for a

continuous variable (e.g., .rk). If this function is present in a MATLAB example

where there is an MPP, but not a continuous variable, then it calculates the

constant coefficients based on the MPP amplitudes.

• get_maximum_variance (.. . .) or get_continuous_variable_variance_update (.. . .)

Calculates the sensor noise variance update (e.g., .σ 2
v) for a continuous variable

(e.g., .rk). If this function is present in a MATLAB example where there is an

MPP, but not a continuous variable, then it calculates the sensor noise variance

based on the MPP amplitudes.

• get_linear_parameters_for_mpp (.. . .)

Calculates the updates for the constant coefficients (e.g., .γ0 and .γ1) for a

series of MPP amplitudes (e.g., .rk). This function is used to calculate the updates

corresponding to an MPP when a continuous variable is also present.

• get_maximum_variance_for_mpp (.. . .)

Calculates the sensor noise variance update (e.g., .σ 2
v) for a series of MPP

amplitudes. This function is used to calculate the update corresponding to an

MPP when a continuous variable is also present.

• get_posterior_mode (.. . .) or get_state_update (.. . .)

Calculates the update .xk|k based on the Newton–Raphson method

• get_pk_conf_lims (.. . .)

Calculates the confidence limits for the probability of binary event occurrence

.pk

• get_certainty_curve (.. . .)

© The Author(s) 2024

D. S. Wickramasuriya, R. T. Faghih, Bayesian Filter Design for Computational

Medicine, https://doi.org/10.1007/978-3-031-47104-9_11

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47104-9protect T1	extunderscore 11&domain=pdf
https://doi.org/10.1007/978-3-031-47104-9_11
https://doi.org/10.1007/978-3-031-47104-9_11
https://doi.org/10.1007/978-3-031-47104-9_11
https://doi.org/10.1007/978-3-031-47104-9_11
https://doi.org/10.1007/978-3-031-47104-9_11
https://doi.org/10.1007/978-3-031-47104-9_11
https://doi.org/10.1007/978-3-031-47104-9_11
https://doi.org/10.1007/978-3-031-47104-9_11
https://doi.org/10.1007/978-3-031-47104-9_11
https://doi.org/10.1007/978-3-031-47104-9_11
https://doi.org/10.1007/978-3-031-47104-9_11

218 11 List of Supplementary MATLAB Functions

Calculates the HAI value based on the probability of binary event occurrence

.pk exceeding a baseline value

• rhythm (.. . .)

Calculates the cortisol-related circadian term .Ik in the state equation

• circadian_parameters (.. . .)

Calculates the log-likelihood term to be optimized when estimating the

(cortisol-related) circadian rhythm terms in the state equation

• get_log_likelihood (.. . .)

Calculates the log-likelihood of the term involving the CIF

• get_ks_plot(.. . .)

Calculates the Kolmogorov–Smirnov (KS) plot for assessing the goodness of

fit of a CIF to point process observations

• Other functions related to a CIF

Functions such as fetch_lambda (.. . .), dlambda_dx (.. . .), f (.. . .), and mu (.. . .)

are all supplementary functions that calculate various components or derivatives

related to an HDIG-based CIF

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

References

1. C. M. McEniery, J. R. Cockcroft, M. J. Roman, S. S. Franklin, and I. B. Wilkinson, “Central

blood pressure: current evidence and clinical importance,” European Heart Journal, vol. 35,

no. 26, pp. 1719–1725, 01 2014. [Online]. Available: https://doi.org/10.1093/eurheartj/eht565

2. Z. Ghasemi, C.-S. Kim, E. Ginsberg, A. Gupta, and J.-O. Hahn, “Model-Based Blind System

Identification Approach to Estimation of Central Aortic Blood Pressure Waveform From

Noninvasive Diametric Circulatory Signals,” Journal of Dynamic Systems, Measurement, and

Control, vol. 139, no. 6, 03 2017, 061003. [Online]. Available: https://doi.org/10.1115/1.

4035451

3. R. T. Faghih, “System identification of cortisol secretion: Characterizing pulsatile dynamics,”

Ph.D. dissertation, Massachusetts Institute of Technology, 2014.

4. A. C. Smith, L. M. Frank, S. Wirth, M. Yanike, D. Hu, Y. Kubota, A. M. Graybiel, W. A.

Suzuki, and E. N. Brown, “Dynamic analysis of learning in behavioral experiments,” Journal

of Neuroscience, vol. 24, no. 2, pp. 447–461, 2004.

5. M. J. Prerau, A. C. Smith, U. T. Eden, Y. Kubota, M. Yanike, W. Suzuki, A. M. Graybiel,

and E. N. Brown, “Characterizing learning by simultaneous analysis of continuous and binary

measures of performance,” Journal of Neurophysiology, vol. 102, no. 5, pp. 3060–3072, 2009.

6. T. P. Coleman, M. Yanike, W. A. Suzuki, and E. N. Brown, “A mixed-filter algorithm for

dynamically tracking learning from multiple behavioral and neurophysiological measures,”

The Dynamic Brain: An Exploration of Neuronal Variability and its Functional Significance,

pp. 3–28, 2011.

7. N. Malem-Shinitski, Y. Zhang, D. T. Gray, S. N. Burke, A. C. Smith, C. A. Barnes, and D. Ba,

“A separable two-dimensional random field model of binary response data from multi-day

behavioral experiments,” Journal of Neuroscience Methods, vol. 307, pp. 175–187, 2018.

8. A. C. Smith, M. R. Stefani, B. Moghaddam, and E. N. Brown, “Analysis and design of

behavioral experiments to characterize population learning,” J. Neurophysiology, vol. 93,

no. 3, pp. 1776–1792, 2005.

9. X. Deng, R. T. Faghih, R. Barbieri, A. C. Paulk, W. F. Asaad, E. N. Brown, D. D. Dougherty,

A. S. Widge, E. N. Eskandar, and U. T. Eden, “Estimating a dynamic state to relate neural

spiking activity to behavioral signals during cognitive tasks,” in 37th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, pp.

7808–7813.

10. E. N. Brown, L. M. Frank, D. Tang, M. C. Quirk, and M. A. Wilson, “A statistical paradigm

for neural spike train decoding applied to position prediction from ensemble firing patterns of

rat hippocampal place cells,” Journal of Neuroscience, vol. 18, no. 18, pp. 7411–7425, 1998.

© The Author(s) 2024

D. S. Wickramasuriya, R. T. Faghih, Bayesian Filter Design for Computational

Medicine, https://doi.org/10.1007/978-3-031-47104-9

219

https://doi.org/10.1093/eurheartj/eht565
https://doi.org/10.1093/eurheartj/eht565
https://doi.org/10.1093/eurheartj/eht565
https://doi.org/10.1093/eurheartj/eht565
https://doi.org/10.1093/eurheartj/eht565
https://doi.org/10.1093/eurheartj/eht565
https://doi.org/10.1093/eurheartj/eht565
https://doi.org/10.1115/1.4035451
https://doi.org/10.1115/1.4035451
https://doi.org/10.1115/1.4035451
https://doi.org/10.1115/1.4035451
https://doi.org/10.1115/1.4035451
https://doi.org/10.1115/1.4035451
https://doi.org/10.1115/1.4035451
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9

220 References

11. R. Barbieri, L. M. Frank, D. P. Nguyen, M. C. Quirk, V. Solo, M. A. Wilson, and E. N. Brown,

“Dynamic analyses of information encoding in neural ensembles,” Neural Computation,

vol. 16, no. 2, pp. 277–307, 2004.

12. M. M. Shanechi, Z. M. Williams, G. W. Wornell, R. C. Hu, M. Powers, and E. N. Brown,

“A real-time brain-machine interface combining motor target and trajectory intent using an

optimal feedback control design,” PloS One, vol. 8, no. 4, p. e59049, 2013.

13. M. M. Shanechi, R. C. Hu, M. Powers, G. W. Wornell, E. N. Brown, and Z. M. Williams,

“Neural population partitioning and a concurrent brain-machine interface for sequential motor

function,” Nature Neuroscience, vol. 15, no. 12, p. 1715, 2012.

14. M. M. Shanechi, G. W. Wornell, Z. M. Williams, and E. N. Brown, “Feedback-controlled

parallel point process filter for estimation of goal-directed movements from neural signals,”

IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, no. 1, pp.

129–140, 2012.

15. X. Deng, D. F. Liu, K. Kay, L. M. Frank, and U. T. Eden, “Clusterless decoding of position

from multiunit activity using a marked point process filter,” Neural Computation, vol. 27,

no. 7, pp. 1438–1460, 2015.

16. K. Arai, D. F. Liu, L. M. Frank, and U. T. Eden, “Marked point process filter for clusterless

and adaptive encoding-decoding of multiunit activity,” bioRxiv, p. 438440, 2018.

17. A. Yousefi, M. R. Rezaei, K. Arai, L. M. Frank, and U. T. Eden, “Real-time point process

filter for multidimensional decoding problems using mixture models,” bioRxiv, p. 505289,

2018.

18. Y. Yang and M. M. Shanechi, “An adaptive and generalizable closed-loop system for control

of medically induced coma and other states of anesthesia,” Journal of Neural Engineering,

vol. 13, no. 6, p. 066019, 2016.

19. Y. Yang, J. T. Lee, J. A. Guidera, K. Y. Vlasov, J. Pei, E. N. Brown, K. Solt, and M. M.

Shanechi, “Developing a personalized closed-loop controller of medically-induced coma in a

rodent model,” Journal of Neural Engineering, vol. 16, no. 3, p. 036022, 2019.

20. Y. Yang and M. M. Shanechi, “A generalizable adaptive brain-machine interface design for

control of anesthesia,” in 37th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC), 2015, pp. 1099–1102.

21. M. J. Prerau, K. E. Hartnack, G. Obregon-Henao, A. Sampson, M. Merlino, K. Gannon,

M. T. Bianchi, J. M. Ellenbogen, and P. L. Purdon, “Tracking the sleep onset process: an

empirical model of behavioral and physiological dynamics,” PLoS Computational Biology,

vol. 10, no. 10, p. e1003866, 2014.

22. R. Barbieri and E. N. Brown, “Application of dynamic point process models to cardiovascular

control,” Biosystems, vol. 93, no. 1–2, pp. 120–125, 2008.

23. ——, “Analysis of heartbeat dynamics by point process adaptive filtering,” IEEE Transactions

on Biomedical Engineering, vol. 53, no. 1, pp. 4–12, 2006.

24. A. Yousefi, I. Basu, A. C. Paulk, N. Peled, E. N. Eskandar, D. D. Dougherty, S. S. Cash, A. S.

Widge, and U. T. Eden, “Decoding hidden cognitive states from behavior and physiology

using a Bayesian approach,” Neural Computation, vol. 31, no. 9, pp. 1751–1788, 2019.

25. D. S. Wickramasuriya, C. Qi, and R. T. Faghih, “A state-space approach for detecting stress

from electrodermal activity,” in Proc. 40th Annu. Int. Conf. IEEE Eng. Medicine and Biology

Society, 2018.

26. D. S. Wickramasuriya, M. R. Amin, and R. T. Faghih, “Skin conductance as a viable alter-

native for closing the deep brain stimulation loop in neuropsychiatric disorders,” Frontiers in

Neuroscience, vol. 13, p. 780, 2019.

27. T. Yadav, M. M. Uddin Atique, H. Fekri Azgomi, J. T. Francis, and R. T. Faghih, “Emotional

valence tracking and classification via state-space analysis of facial electromyography,” in

53rd Asilomar Conference on Signals, Systems, and Computers, 2019, pp. 2116–2120.

28. M. B. Ahmadi, A. Craik, H. F. Azgomi, J. T. Francis, J. L. Contreras-Vidal, and R. T.

Faghih, “Real-time seizure state tracking using two channels: A mixed-filter approach,” in

53rd Asilomar Conference on Signals, Systems, and Computers, 2019, pp. 2033–2039.

References 221

29. D. S. Wickramasuriya and R. T. Faghih, “A Bayesian filtering approach for tracking arousal

from binary and continuous skin conductance features,” IEEE Transactions on Biomedical

Engineering, vol. 67, no. 6, pp. 1749–1760, 2020.

30. D. S. Wickramasuriya and R. T. Faghih, “A cortisol-based energy decoder for investigation

of fatigue in hypercortisolism,” in 41st Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), July 2019, pp. 11–14.

31. D. S. Wickramasuriya and R. T. Faghih, “A mixed filter algorithm for sympathetic arousal

tracking from skin conductance and heart rate measurements in Pavlovian fear conditioning,”

PloS One, vol. 15, no. 4, p. e0231659, 2020.

32. D. S. Wickramasuriya and R. T. Faghih, “A marked point process filtering approach for

tracking sympathetic arousal from skin conductance,” IEEE Access, vol. 8, pp. 68 499–68 513,

2020.

33. D. S. Wickramasuriya, S. Khazaei, R. Kiani and R. T. Faghih, “A Bayesian Filtering Approach

for Tracking Sympathetic Arousal and Cortisol-related Energy from Marked Point Process

and Continuous-valued Observations,” IEEE Access. https://doi.org/10.1109/ACCESS.2023.

3334974.

34. P. J. Soh, G. A. Vandenbosch, M. Mercuri, and D. M.-P. Schreurs, “Wearable wireless

health monitoring: Current developments, challenges, and future trends,” IEEE Microwave

Magazine, vol. 16, no. 4, pp. 55–70, 2015.

35. W. Gao, H. Ota, D. Kiriya, K. Takei, and A. Javey, “Flexible electronics toward wearable

sensing,” Accounts of Chemical Research, vol. 52, no. 3, pp. 523–533, 2019.

36. H. F. Azgomi, D. S. Wickramasuriya, and R. T. Faghih, “State-space modeling and fuzzy

feedback control of cognitive stress,” in 41st Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), 2019, pp. 6327–6330.

37. H. F. Azgomi and R. T. Faghih, “A wearable brain machine interface architecture for

regulation of energy in hypercortisolism,” in 53rd Asilomar Conference on Signals, Systems,

and Computers, 2019, pp. 254–258.

38. R. T. Faghih, M. A. Dahleh, and E. N. Brown, “An optimization formulation for characteriza-

tion of pulsatile cortisol secretion,” Frontiers in Neuroscience, vol. 9, p. 228, 2015.

39. H. Taghvafard, M. Cao, Y. Kawano, and R. T. Faghih, “Design of intermittent control

for cortisol secretion under time-varying demand and holding cost constraints,” IEEE

Transactions on Biomedical Engineering, vol. 67, no. 2, pp. 556–564, 2019.

40. W. M. Lim, “Demystifying neuromarketing,” Journal of Business Research, vol. 91,

pp. 205–220, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0148296318302716

41. L. Angioletti, F. Cassioli, and M. Balconi, “Neurophysiological correlates of user experience

in smart home systems (SHSs): First evidence from electroencephalography and autonomic

measures,” Frontiers in Psychology, vol. 11, p. 411, 2020.

42. E. Whelan, D. McDuff, R. Gleasure, and J. V. Brocke, “How emotion-sensing technology

can reshape the workplace,” MIT Sloan Management Review, vol. 59, no. 3, pp. 7–

10, Spring 2018. [Online]. Available: http://search.proquest.com.ezproxy.lib.uh.edu/docview/

2023991461?accountid=7107

43. P. A. Low, “Chapter 51 - Sweating,” in Primer on the Autonomic Nervous System (Third

Edition), 3rd ed., D. Robertson, I. Biaggioni, G. Burnstock, P. A. Low, and J. F. Paton, Eds.

San Diego: Academic Press, 2012, pp. 249–251.

44. H. D. Critchley, “Electrodermal responses: what happens in the brain,” The Neuroscientist,

vol. 8, no. 2, pp. 132–142, 2002.

45. M. Benedek and C. Kaernbach, “Decomposition of skin conductance data by means of

nonnegative deconvolution,” Psychophysiology, vol. 47, no. 4, pp. 647–658, 2010.

46. ——, “A continuous measure of phasic electrodermal activity,” Journal of Neuroscience

Methods, vol. 190, no. 1, pp. 80–91, 2010.

https://doi.org/10.1109/ACCESS.2023.3334974
https://doi.org/10.1109/ACCESS.2023.3334974
https://doi.org/10.1109/ACCESS.2023.3334974
https://doi.org/10.1109/ACCESS.2023.3334974
https://doi.org/10.1109/ACCESS.2023.3334974
https://doi.org/10.1109/ACCESS.2023.3334974
https://doi.org/10.1109/ACCESS.2023.3334974
https://doi.org/10.1109/ACCESS.2023.3334974
http://www.sciencedirect.com/science/article/pii/S0148296318302716
http://www.sciencedirect.com/science/article/pii/S0148296318302716
http://www.sciencedirect.com/science/article/pii/S0148296318302716
http://www.sciencedirect.com/science/article/pii/S0148296318302716
http://www.sciencedirect.com/science/article/pii/S0148296318302716
http://www.sciencedirect.com/science/article/pii/S0148296318302716
http://www.sciencedirect.com/science/article/pii/S0148296318302716
http://www.sciencedirect.com/science/article/pii/S0148296318302716
http://search.proquest.com.ezproxy.lib.uh.edu/docview/2023991461?accountid=7107
http://search.proquest.com.ezproxy.lib.uh.edu/docview/2023991461?accountid=7107
http://search.proquest.com.ezproxy.lib.uh.edu/docview/2023991461?accountid=7107
http://search.proquest.com.ezproxy.lib.uh.edu/docview/2023991461?accountid=7107
http://search.proquest.com.ezproxy.lib.uh.edu/docview/2023991461?accountid=7107
http://search.proquest.com.ezproxy.lib.uh.edu/docview/2023991461?accountid=7107
http://search.proquest.com.ezproxy.lib.uh.edu/docview/2023991461?accountid=7107
http://search.proquest.com.ezproxy.lib.uh.edu/docview/2023991461?accountid=7107
http://search.proquest.com.ezproxy.lib.uh.edu/docview/2023991461?accountid=7107
http://search.proquest.com.ezproxy.lib.uh.edu/docview/2023991461?accountid=7107
http://search.proquest.com.ezproxy.lib.uh.edu/docview/2023991461?accountid=7107
http://search.proquest.com.ezproxy.lib.uh.edu/docview/2023991461?accountid=7107

222 References

47. M. R. Amin and R. T. Faghih, “Sparse deconvolution of electrodermal activity via continuous-

time system identification,” IEEE Transactions on Biomedical Engineering, vol. 66, no. 9, pp.

2585–2595, 2019.

48. R. T. Faghih, P. A. Stokes, M.-F. Marin, R. G. Zsido, S. Zorowitz, B. L. Rosenbaum,

H. Song, M. R. Milad, D. D. Dougherty, E. N. Eskandar, A. S. Widge, E. N. Brown,

and R. Barbieri, “Characterization of fear conditioning and fear extinction by analysis of

electrodermal activity,” in Proc. 37th Annu. Int. Conf. IEEE Eng. Medicine and Biology

Society, 2015, pp. 7814–7818.

49. M. R. Amin and R. T. Faghih, “Inferring autonomic nervous system stimulation from hand

and foot skin conductance measurements,” in 52nd Asilomar Conference on Signals, Systems,

and Computers, 2018, pp. 655–660.

50. M. R. Amin and R. T. Faghih, “Robust inference of autonomic nervous system activa-

tion using skin conductance measurements: A multi-channel sparse system identification

approach,” IEEE Access, vol. 7, pp. 173 419–173 437, 2019.

51. B. Walsh and E. Usler, “Physiological correlates of fluent and stuttered speech production in

preschool children who stutter,” Journal of Speech, Language, and Hearing Research, vol. 62,

no. 12, pp. 4309–4323, 2019.

52. P. D. Jong and M. J. Mackinnon, “Covariances for smoothed estimates in state space models,”

Biometrika, vol. 75, no. 3, pp. 601–602, 1988.

53. J. Birjandtalab, D. Cogan, M. B. Pouyan, and M. Nourani, “A non-EEG biosignals dataset

for assessment and visualization of neurological status,” in Proc. IEEE Int. Workshop .Signal

Processing Systems, 2016, pp. 110–114.

54. J. A. Healey and R. W. Picard, “Detecting stress during real-world driving tasks using

physiological sensors,” IEEE Transactions on intelligent transportation systems, vol. 6, no. 2,

pp. 156–166, 2005.

55. J. A. Russell, “A circumplex model of affect,” Journal of Personality and Social Psychology,

vol. 39, no. 6, p. 1161, 1980.

56. H. J. Pijeira-Díaz, H. Drachsler, S. Järvelä, and P. A. Kirschner, “Sympathetic arousal

commonalities and arousal contagion during collaborative learning: How attuned are triad

members?” Computers in Human Behavior, vol. 92, pp. 188–197, 2019.

57. M.-Z. Poh, N. C. Swenson, and R. W. Picard, “A wearable sensor for unobtrusive, long-term

assessment of electrodermal activity,” IEEE Transactions on Biomedical Engineering, vol. 57,

no. 5, pp. 1243–1252, 2010.

58. S. Koelstra, C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt,

and I. Patras, “DEAP: A database for emotion analysis using physiological signals,” IEEE

Transactions on Affective Computing, vol. 3, no. 1, pp. 18–31, 2012.

59. D. R. Bach, G. Flandin, K. J. Friston, and R. J. Dolan, “Modelling event-related skin

conductance responses,” Int. J. Psychophysiology, vol. 75, no. 3, pp. 349–356, 2010.

60. J. J. Braithwaite, D. G. Watson, R. Jones, and M. Rowe, “A guide for analysing electrodermal

activity (EDA) & skin conductance responses (SCRs) for psychological experiments,”

Psychophysiology, vol. 49, no. 1, pp. 1017–1034, 2013.

61. M. R. Amin and R. T. Faghih, “Tonic and phasic decomposition of skin conductance data:

A generalized-cross-validation-based block coordinate descent approach,” in 41st Annual

International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),

2019, pp. 745–749.

62. A. Greco, G. Valenza, A. Lanata, E. P. Scilingo, and L. Citi, “cvxEDA: A convex optimization

approach to electrodermal activity processing,” IEEE Trans. Biomed. Eng., vol. 63, no. 4, pp.

797–804, 2016.

63. S. Maren, “Neurobiology of Pavlovian fear conditioning,” Annual Review of Neuroscience,

vol. 24, no. 1, pp. 897–931, 2001.

64. M. R. Milad, S. Igoe, and S. P. Orr, “Fear conditioning in rodents and humans,” in Animal

Models of Behavioral Analysis. Springer, 2011, pp. 111–132.

References 223

65. O. V. Lipp, “Human fear learning: Contemporary procedures and measurement,” Fear and

Learning: From Basic Processes to Clinical Implications, no. 2001, pp. 37–51, 2006.

66. D. R. Bach, J. Daunizeau, K. J. Friston, and R. J. Dolan, “PsPM-HRA1: Skin conductance

responses in fear conditioning with visual CS and electrical US,” Feb. 2017, See the readme

file for more detail. Data are stored as .mat files for use with MATLAB in a format readable

by the PsPM toolbox (pspm.sourceforge.net). This research was supported by Wellcome Trust

grants 098362/Z/12/Z and 098362/Z/12/Z, and Swiss National Science Foundation grant

PA00A-117384. [Online]. Available: https://doi.org/10.5281/zenodo.321641

67. ——, “Dynamic causal modelling of anticipatory skin conductance responses,” Biological

Psychology, vol. 85, no. 1, pp. 163–170, 2010.

68. M. Staib, G. Castegnetti, and D. R. Bach, “Optimising a model-based approach to inferring

fear learning from skin conductance responses,” J. Neuroscience Methods, vol. 255, pp. 131–

138, 2015.

69. R. C. Drew and L. I. Sinoway, “Autonomic control of the heart,” in Primer on the autonomic

nervous system. Elsevier, 2012, pp. 177–180.

70. J. E. Hall and M. E. Hall, Guyton and Hall textbook of medical physiology e-Book. Elsevier

Health Sciences, 2020.

71. R. Barbieri, E. C. Matten, A. A. Alabi, and E. N. Brown, “A point-process model of human

heartbeat intervals: New definitions of heart rate and heart rate variability,” American Journal

of Physiology-Heart and Circulatory Physiology, vol. 288, no. 1, pp. H424–H435, 2005.

72. R. Barbieri and E. N. Brown, “Analysis of heartbeat dynamics by point process adaptive

filtering,” IEEE Trans. Biomed. Eng., vol. 53, no. 1, pp. 4–12, 2006.

73. A. L. Mahan and K. J. Ressler, “Fear conditioning, synaptic plasticity and the amygdala:

implications for posttraumatic stress disorder,” Trends in Neurosciences, vol. 35, no. 1, pp.

24–35, 2012.

74. S. Moratti, G. Rubio, P. Campo, A. Keil, and T. Ortiz, “Hypofunction of right temporoparietal

cortex during emotional arousal in depression,” Archives of General Psychiatry, vol. 65, no. 5,

pp. 532–541, 2008.

75. M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic, “A multimodal database for affect

recognition and implicit tagging,” IEEE Transactions on Affective Computing, vol. 3, no. 1,

pp. 42–55, 2012.

76. M. K. Abadi, R. Subramanian, S. M. Kia, P. Avesani, I. Patras, and N. Sebe, “DECAF:

MEG-based multimodal database for decoding affective physiological responses,” IEEE

Transactions on Affective Computing, vol. 6, no. 3, pp. 209–222, 2015.

77. F. Ringeval, A. Sonderegger, J. Sauer, and D. Lalanne, “Introducing the RECOLA multimodal

corpus of remote collaborative and affective interactions,” in Proc. 2013 10th IEEE Int. Conf.

and Workshops Automatic Face and Gesture Recognition, 2013, pp. 1–8.

78. S. Katsigiannis and N. Ramzan, “DREAMER: a database for emotion recognition through

EEG and ECG signals from wireless low-cost off-the-shelf devices,” IEEE Journal of

Biomedical and Health Informatics, vol. 22, no. 1, pp. 98–107, 2017.

79. M. De Wied, A. V. Boxtel, J. A. Posthumus, P. P. Goudena, and W. Matthys, “Facial EMG

and heart rate responses to emotion-inducing film clips in boys with disruptive behavior

disorders,” Psychophysiology, vol. 46, no. 5, pp. 996–1004, 2009.

80. L. Kulke, D. Feyerabend, and A. Schacht, “A comparison of the Affectiva iMotions facial

expression analysis software with EMG for identifying facial expressions of emotion,”

Frontiers in Psychology, vol. 11, p. 329, 2020.

81. B. t Hart, M. E. Struiksma, A. van Boxtel, and J. J. Van Berkum, “Emotion in stories: Facial

EMG evidence for both mental simulation and moral evaluation,” Frontiers in psychology,

vol. 9, p. 613, 2018.

82. D. S. Wickramasuriya and R. T. Faghih, “Online and offline anger detection via electromyog-

raphy analysis,” in IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT),

2017, pp. 52–55.

https://doi.org/10.5281/zenodo.321641
https://doi.org/10.5281/zenodo.321641
https://doi.org/10.5281/zenodo.321641
https://doi.org/10.5281/zenodo.321641
https://doi.org/10.5281/zenodo.321641
https://doi.org/10.5281/zenodo.321641
https://doi.org/10.5281/zenodo.321641

224 References

83. R. D. Lane, K. McRae, E. M. Reiman, K. Chen, G. L. Ahern, and J. F. Thayer, “Neural

correlates of heart rate variability during emotion,” Neuroimage, vol. 44, no. 1, pp. 213–222,

2009.

84. H. Nakahara, S. Furuya, S. Obata, T. Masuko, and H. Kinoshita, “Emotion-related changes in

heart rate and its variability during performance and perception of music,” Annals of the New

York Academy of Sciences, vol. 1169, no. 1, pp. 359–362, 2009.

85. B. M. Appelhans and L. J. Luecken, “Heart rate variability as an index of regulated emotional

responding,” Review of General Psychology, vol. 10, no. 3, pp. 229–240, 2006.

86. J. Zhu, L. Ji, and C. Liu, “Heart rate variability monitoring for emotion and disorders of

emotion,” Physiological measurement, vol. 40, no. 6, p. 064004, 2019.

87. A. S. Ravindran, S. Nakagome, D. S. Wickramasuriya, J. L. Contreras-Vidal, and R. T.

Faghih, “Emotion recognition by point process characterization of heartbeat dynamics,” in

IEEE Healthcare Innovations and Point of Care Technologies,(HI-POCT). IEEE, 2019, pp.

13–16.

88. H. Takase and Y. Haruki, “Coordination of breathing between ribcage and abdomen in

emotional arousal,” in Respiration and Emotion. Springer, 2001, pp. 75–86.

89. A. Umezawa, “Facilitation and inhibition of breathing during changes in emotion,” in

Respiration and emotion. Springer, 2001, pp. 139–148.

90. C.-K. Wu, P.-C. Chung, and C.-J. Wang, “Representative segment-based emotion analysis and

classification with automatic respiration signal segmentation,” IEEE Transactions on Affective

Computing, vol. 3, no. 4, pp. 482–495, 2012.

91. P. Gomez and B. Danuser, “Relationships between musical structure and psychophysiological

measures of emotion.” Emotion, vol. 7, no. 2, p. 377, 2007.

92. D. S. Wickramasuriya, M. K. Tessmer, and R. T. Faghih, “Facial expression-based emotion

classification using electrocardiogram and respiration signals,” in IEEE Healthcare Innova-

tions and Point of Care Technologies,(HI-POCT), 2019, pp. 9–12.

93. M. Balconi, E. Grippa, and M. E. Vanutelli, “What hemodynamic (fNIRS), electrophysiolog-

ical (EEG) and autonomic integrated measures can tell us about emotional processing,” Brain

and Cognition, vol. 95, pp. 67–76, 2015.

94. E. Glotzbach, A. Mühlberger, K. Gschwendtner, A. J. Fallgatter, P. Pauli, and M. J. Her-

rmann, “Prefrontal brain activation during emotional processing: a functional near infrared

spectroscopy study (fNIRS),” The Open Neuroimaging Journal, vol. 5, p. 33, 2011.

95. M. Balconi, E. Grippa, and M. E. Vanutelli, “Resting lateralized activity predicts the

cortical response and appraisal of emotions: An fNIRS study,” Social Cognitive and Affective

Neuroscience, vol. 10, no. 12, pp. 1607–1614, 2015.

96. X. Hu, C. Zhuang, F. Wang, Y.-J. Liu, C.-H. Im, and D. Zhang, “fNIRS evidence for

recognizably different positive emotions,” Frontiers in Human Neuroscience, vol. 13, p. 120,

2019.

97. S. Parshi, R. Amin, H. F. Azgomi, and R. T. Faghih, “Mental workload classification via

hierarchical latent dictionary learning: A functional near infrared spectroscopy study,” in

IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), 2019, pp.

1–4.

98. M. S. Seet, M. R. Amin, N. I. Abbasi, J. Hamano, A. Chaudhury, A. Bezerianos, R. T. Faghih,

and A. Dragomir, “Olfactory-induced positive affect and autonomic response as a function of

hedonic and intensity attributes of fragrances,” in 42nd Annual International Conference of

the IEEE Engineering in Medicine and Biology Society (EMBC), 2020.

99. U. T. Eden, L. Srinivasan, and S. V. Sarma, “Neural signal processing tutorial II: Point process

model estimation and goodness-of-fit analysis,” in Neural Signal Processing: Quantitative

Analysis of Neural Activity, P. Mitra, Ed. Washington DC: Society for Neuroscience, 2008,

ch. 9, pp. 79–87.

100. A. Tzovara, N. Hofer, D. R. Bach, G. Castegnetti, S. Gerster, C. W. Korn, P. C. Paulus, and

M. Staib, “PsPM-TC: SCR, ECG, EMG and respiration measurements in a discriminant trace

fear conditioning task with visual CS and electrical US.” Aug. 2018, See the readme file

for more detail. Data are stored as .mat files for use with MATLAB (The MathWorks Inc.,

References 225

Natick, USA) in a format readable by the PsPM toolbox (pspm.sourceforge.net). All Matlab

files are saved in MATLAB 9.2 (R2017a) format. This research was supported by Wellcome

Trust grant 091593/Z/10/Z, and Swiss National Science Foundation grant 320030_149586/1.

[Online]. Available: https://doi.org/10.5281/zenodo.1404810

101. S. Melmed, K. S. Polonsky, P. R. Larsen, and H. M. Kronenberg, Williams Textbook of

Endocrinology E-Book. Elsevier Health Sciences, 2015.

102. A. Clow, F. Hucklebridge, and L. Thorn, “The cortisol awakening response in context,” in

Science of Awakening, ser. International Review of Neurobiology, A. Clow and L. Thorn, Eds.

Academic Press, 2010, vol. 93, pp. 153–175. [Online]. Available: http://www.sciencedirect.

com/science/article/pii/S0074774210930079

103. E. K. Do Yup Lee and M. H. Choi, “Technical and clinical aspects of cortisol as a biochemical

marker of chronic stress,” BMB Reports, vol. 48, no. 4, p. 209, 2015.

104. P. M. Stewart and J. D. Newell-Price, “Chapter 15 - The adrenal cortex,” in Williams Textbook

of Endocrinology (Thirteenth Edition), thirteenth ed., S. Melmed, K. S. Polonsky, P. R.

Larsen, and H. M. Kronenberg, Eds., Philadelphia, 2016, pp. 489–555. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/B9780323297387000150

105. R. T. Faghih, K. Savla, M. A. Dahleh, and E. N. Brown, “A feedback control model for

cortisol secretion,” in Annual International Conference of the IEEE Engineering in Medicine

and Biology Society, 2011, pp. 716–719.

106. R. T. Faghih, M. A. Dahleh, G. K. Adler, E. B. Klerman, and E. N. Brown, “Quantifying

pituitary-adrenal dynamics and deconvolution of concurrent cortisol and adrenocorticotropic

hormone data by compressed sensing,” IEEE Transactions on Biomedical Engineering,

vol. 62, no. 10, pp. 2379–2388, 2015.

107. ——, “Deconvolution of serum cortisol levels by using compressed sensing,” PloS one, vol. 9,

no. 1, p. e85204, 2014.

108. C. Kirschbaum and D. H. Hellhammer, “Salivary cortisol,” Encyclopedia of stress, vol. 3, no.

379–383, 2000.

109. M. Anitescu, H. T. Benzon, and R. Variakojis, “Chapter 44 - Pharmacology for the

interventional pain physician,” in Practical Management of Pain (Fifth Edition), 5th ed.,

H. T. Benzon, J. P. Rathmell, C. L. Wu, D. C. Turk, C. E. Argoff, and R. W. Hurley, Eds.

Philadelphia: Mosby, 2014, pp. 596–614.e4. [Online]. Available: http://www.sciencedirect.

com/science/article/pii/B978032308340900044X

110. T. Kuo, A. McQueen, T.-C. Chen, and J.-C. Wang, “Regulation of glucose homeostasis by

glucocorticoids,” in Glucocorticoid Signaling. Springer, 2015, pp. 99–126.

111. L. Rui, “Energy metabolism in the liver,” Comprehensive Physiology, vol. 4, no. 1, pp. 177–

197, 2011.

112. D. S. Wickramasuriya, L. J. Crofford, A. S. Widge, and R. T. Faghih, “Hybrid decoders

for marked point process observations and external influences,” IEEE Transactions on

Biomedical Engineering, vol. 70, no. 1, pp. 343–353, 2023.

113. D. D. Pednekar, M. R. Amin, H. F. Azgomi, K. Aschbacher, L. J. Crofford, and R. T. Faghih,

“Characterization of cortisol dysregulation in fibromyalgia and chronic fatigue syndromes: A

state-space approach,” IEEE Transactions on Biomedical Engineering, 2020.

114. ——, “A system theoretic investigation of cortisol dysregulation in fibromyalgia patients

with chronic fatigue,” in 41st Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC), 2019, pp. 6896–6901.

115. M. M. Shanechi, J. J. Chemali, M. Liberman, K. Solt, and E. N. Brown, “A brain-machine

interface for control of medically-induced coma,” PLoS Computational Biology, vol. 9, no. 10,

p. e1003284, 2013.

116. R. G. Krishnan, U. Shalit, and D. Sontag, “Structured inference networks for nonlinear state

space models,” in 31st AAAI Conf. Artificial Intelligence, 2017.

117. X. Zheng, M. Zaheer, A. Ahmed, Y. Wang, E. P. Xing, and A. J. Smola, “State space LSTM

models with particle MCMC inference,” arXiv preprint arXiv:1711.11179, 2017.

118. D. S. Wickramasuriya and R. T. Faghih, “A novel filter for tracking real-world cognitive stress

using multi-time-scale point process observations,” in 41st Annual International Conference

of the IEEE Engineering in Medicine and Biology Society (EMBC), July 2019, pp. 599–602.

https://doi.org/10.5281/zenodo.1404810
https://doi.org/10.5281/zenodo.1404810
https://doi.org/10.5281/zenodo.1404810
https://doi.org/10.5281/zenodo.1404810
https://doi.org/10.5281/zenodo.1404810
https://doi.org/10.5281/zenodo.1404810
https://doi.org/10.5281/zenodo.1404810
http://www.sciencedirect.com/science/article/pii/S0074774210930079
http://www.sciencedirect.com/science/article/pii/S0074774210930079
http://www.sciencedirect.com/science/article/pii/S0074774210930079
http://www.sciencedirect.com/science/article/pii/S0074774210930079
http://www.sciencedirect.com/science/article/pii/S0074774210930079
http://www.sciencedirect.com/science/article/pii/S0074774210930079
http://www.sciencedirect.com/science/article/pii/S0074774210930079
http://www.sciencedirect.com/science/article/pii/S0074774210930079
http://www.sciencedirect.com/science/article/pii/B9780323297387000150
http://www.sciencedirect.com/science/article/pii/B9780323297387000150
http://www.sciencedirect.com/science/article/pii/B9780323297387000150
http://www.sciencedirect.com/science/article/pii/B9780323297387000150
http://www.sciencedirect.com/science/article/pii/B9780323297387000150
http://www.sciencedirect.com/science/article/pii/B9780323297387000150
http://www.sciencedirect.com/science/article/pii/B9780323297387000150
http://www.sciencedirect.com/science/article/pii/B9780323297387000150
http://www.sciencedirect.com/science/article/pii/B978032308340900044X
http://www.sciencedirect.com/science/article/pii/B978032308340900044X
http://www.sciencedirect.com/science/article/pii/B978032308340900044X
http://www.sciencedirect.com/science/article/pii/B978032308340900044X
http://www.sciencedirect.com/science/article/pii/B978032308340900044X
http://www.sciencedirect.com/science/article/pii/B978032308340900044X
http://www.sciencedirect.com/science/article/pii/B978032308340900044X
http://www.sciencedirect.com/science/article/pii/B978032308340900044X

226 References

119. S. Koldijk, M. Sappelli, S. Verberne, M. A. Neerincx, and W. Kraaij, “The SWELL knowledge

work dataset for stress and user modeling research,” in 16th International Conference on

Multimodal Interaction. ACM, 2014, pp. 291–298.

120. E. N. Brown, P. M. Meehan, and A. P. Dempster, “A stochastic differential equation model of

diurnal cortisol patterns,” American Journal of Physiology-Endocrinology and Metabolism,

vol. 280, no. 3, pp. E450–E461, 2001.

121. I. Vargas, A. N. Vgontzas, J. L. Abelson, R. T. Faghih, K. H. Morales, and M. L. Perlis,

“Altered ultradian cortisol rhythmicity as a potential neurobiologic substrate for chronic

insomnia,” Sleep Medicine Reviews, vol. 41, pp. 234–243, 2018.

122. D. M. Arble, G. Copinschi, M. H. Vitaterna, E. Van Cauter, and F. W. Turek, “Chapter 12 -

Circadian rhythms in neuroendocrine systems,” in Handbook of Neuroendocrinology, G. Fink,

D. W. Pfaff, and J. E. Levine, Eds. San Diego: Academic Press, 2012, pp. 271–305. [Online].

Available: http://www.sciencedirect.com/science/article/pii/B9780123750976100125

123. F. Suay and A. Salvador, “Chapter 3 - Cortisol,” in Psychoneuroendocrinology of Sport and

Exercise: Foundations, Markers, Trends, F. Ehrlenspiel and K. Strahler, Eds. Routledge, 2012,

pp. 43–60.

124. M. A. Lee, N. Bakh, G. Bisker, E. N. Brown, and M. S. Strano, “A pharmacokinetic model

of a tissue implantable cortisol sensor,” Advanced Healthcare Materials, vol. 5, no. 23, pp.

3004–3015, 2016.

125. H. Raff and T. Carroll, “Cushing’s syndrome: From physiological principles to diagnosis and

clinical care,” The Journal of Physiology, vol. 593, no. 3, pp. 493–506, 2015.

126. M. N. Starkman and D. E. Schteingart, “Neuropsychiatric manifestations of patients with

Cushing’s syndrome: relationship to cortisol and adrenocorticotropic hormone levels,”

Archives of Internal Medicine, vol. 141, no. 2, pp. 215–219, 1981.

127. R. A. Feelders, S. Pulgar, A. Kempel, and A. Pereira, “The burden of Cushing’s disease:

Clinical and health-related quality of life aspects,” European Journal of Endocrinology, vol.

167, no. 3, pp. 311–326, 2012.

128. A. Lacroix, R. A. Feelders, C. A. Stratakis, and L. K. Nieman, “Cushing’s syndrome,” The

Lancet, vol. 386, no. 9996, pp. 913–927, 2015. [Online]. Available: http://www.sciencedirect.

com/science/article/pii/S0140673614613751

http://www.sciencedirect.com/science/article/pii/B9780123750976100125
http://www.sciencedirect.com/science/article/pii/B9780123750976100125
http://www.sciencedirect.com/science/article/pii/B9780123750976100125
http://www.sciencedirect.com/science/article/pii/B9780123750976100125
http://www.sciencedirect.com/science/article/pii/B9780123750976100125
http://www.sciencedirect.com/science/article/pii/B9780123750976100125
http://www.sciencedirect.com/science/article/pii/B9780123750976100125
http://www.sciencedirect.com/science/article/pii/B9780123750976100125
http://www.sciencedirect.com/science/article/pii/S0140673614613751
http://www.sciencedirect.com/science/article/pii/S0140673614613751
http://www.sciencedirect.com/science/article/pii/S0140673614613751
http://www.sciencedirect.com/science/article/pii/S0140673614613751
http://www.sciencedirect.com/science/article/pii/S0140673614613751
http://www.sciencedirect.com/science/article/pii/S0140673614613751
http://www.sciencedirect.com/science/article/pii/S0140673614613751
http://www.sciencedirect.com/science/article/pii/S0140673614613751

Index

A

Adrenal glands, 89

Adrenocorticotropic hormone (ACTH), 89

Anesthesia, 2

Autonomic nervous system, 22

B

Bayesian filter, 6, 105

Bayes’ rule, 7, 12, 16

Blood glucose, 89

Blood pressure, 1

C

Circadian rhythm, 106, 108, 109

Coma, 2

Conditional intensity function (CIF), 67, 68,

71–73, 75, 100, 106

Constant coefficients, 46, 60, 82

Corticotropin-releasing hormone (CRH), 89

Cortisol, 1, 8, 89, 90, 94, 106, 109

Cushing’s disease, 109

D

Depression, 68

E

Electrocardiography (EKG), 8, 67, 68, 74, 75,

105, 106

Electroencephalography (EEG), 8, 40

Electromyography (EMG), 8, 40, 50, 69

Energy production, 2–4, 8, 90, 94, 109

Expectation-maximization (EM) algorithm,

4–6, 8, 12, 13, 15, 29, 30, 32–35, 48,

61, 75, 78, 89, 104, 105, 108

External input, 3, 4, 7, 53, 54, 61, 63, 69

F

Fatigue, 109

Fear conditioning, 54, 63, 75

Forgetting factor, 6, 29, 40, 45, 53, 58, 62, 69

G

Generalized Autoregressive Conditional

Heteroskedasticity (GARCH), 97–99

H

Heart rate, 1–4, 68, 69, 74, 75

Hormone, 2, 3, 8, 25, 77, 89, 94

Hypothalamus, 1, 89

K

Kalman filter, 6, 7, 9

L

Learning, 2, 7, 8, 21, 22, 33, 39, 67

M

Machine learning, 104

Marked point process (MPP), 8, 77–79, 81–83,

85, 89–94

© The Editor(s) (if applicable) and The Author(s) 2024

D. S. Wickramasuriya, R. T. Faghih, Bayesian Filter Design for Computational

Medicine, https://doi.org/10.1007/978-3-031-47104-9

227

https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9

228 Index

N

Neural networks, 104, 105

Neural spiking, 2, 67, 72, 102

O

Overfitting, 63, 78, 95

P

Phasic component, 22, 53, 54, 78, 85, 90

Point processes, 75, 77–80, 82, 91, 99

Position decoding, 2, 102

Post-traumatic stress disorder (PTSD), 68

Process noise, 5, 6, 23, 31, 34, 44, 59, 62, 81,

97, 98, 102

R

Recursive least squares, 6, 9

S

Seizure, 8, 40

Sensor noise, 5, 7, 42, 47, 55, 60, 62, 63, 79,

95, 107

Skin conductance, 8, 22, 25, 33, 35, 36, 40, 53,

54, 63, 64, 68, 69, 74, 75, 77, 78, 85,

90, 105

Sleep, 2, 106, 109

Spiking-type variable, 7, 8, 67–74, 77, 103,

105, 106

Stress, 34, 36–38, 63, 86, 89

Sweat, 1, 4, 22

Sweat glands, 22, 53

Sympathetic arousal, 8, 22, 33, 35, 36, 38, 53,

54, 63, 64, 68, 74, 75, 77, 85, 90, 106

Sympathetic nervous system, 22

T

Temperature, 22

Tonic component, 22, 53, 54, 63, 68, 90

V

Valence, 8, 39, 40, 50, 51, 69

W

Wearable monitoring, 8, 68, 69

	Preface
	Acknowledgments
	Contents
	List of Figures
	1 Introduction
	1.1 Physiology, State-Space Models, and Estimation
	1.1.1 State Estimation Step
	1.1.2 Parameter Estimation Step
	1.1.3 Algorithm Summary

	1.2 Book Outline
	2 Some Useful Statistical Results
	2.1 Basic Concepts Related to Mean and Variance
	2.2 Basic Statistical Results Required for Deriving the Update Equations in the State Estimation Step
	2.3 General Observations Related to Gaussian Random Variables

	3 State-Space Model with One Binary Observation
	3.1 Deriving the Predict Equations in the State Estimation Step
	3.2 Deriving the Update Equations in the State Estimation Step
	3.3 Smoothing in the State Estimation Step
	3.4 Deriving the Parameter Estimation Step Equations
	3.4.1 Deriving the Process Noise Variance

	3.5 MATLAB Examples
	3.5.1 Application to Skin Conductance and Sympathetic Arousal

	4 State-Space Model with One Binary and One Continuous Observation
	4.1 Deriving the Predict Equations in the State Estimation Step
	4.2 Deriving the Update Equations in the State Estimation Step
	4.3 Deriving the Parameter Estimation Step Equations
	4.3.1 Deriving the Process Noise Variance
	4.3.2 Deriving the Forgetting Factor
	4.3.3 Deriving the Constant Coefficient Terms
	4.3.4 Deriving the Sensor Noise Variance

	4.4 MATLAB Examples
	4.4.1 Application to EMG and Emotional Valence

	5 State-Space Model with One Binary and Two Continuous Observations
	5.1 Deriving the Predict Equations in the State Estimation Step
	5.2 Deriving the Update Equations in the State Estimation Step
	5.3 Deriving the Parameter Estimation Step Equations
	5.3.1 Deriving the Terms in the State Equation
	5.3.2 Deriving the Process Noise Variance
	5.3.3 Deriving the Constant Coefficient Terms and the Sensor Noise Variance

	5.4 MATLAB Examples
	5.4.1 Application to Skin Conductance and Sympathetic Arousal

	6 State-Space Model with One Binary, Two Continuous, and a Spiking-Type Observation
	6.1 Deriving the Predict Equations in the State Estimation Step
	6.2 Deriving the Update Equations in the State Estimation Step
	6.3 Deriving the Parameter Estimation Step Equations
	6.3.1 Deriving the Coefficients Within a CIF

	6.4 MATLAB Examples
	6.4.1 Application to Skin Conductance, Heart Rate and Sympathetic Arousal

	7 State-Space Model with One Marked Point Process (MPP) Observation
	7.1 Deriving the Update Equations in the State Estimation Step
	7.2 Deriving the Parameter Estimation Step Equations
	7.2.1 Deriving the Constant Coefficient Terms

	7.3 MATLAB Examples
	7.3.1 Application to Skin Conductance and Sympathetic Arousal

	8 State-Space Model with One MPP and One Continuous Observation
	8.1 Deriving the Update Equations in the State Estimation Step
	8.2 Deriving the Parameter Estimation Step Equations
	8.3 MATLAB Examples
	8.3.1 Application to Cortisol and Energy

	9 Additional Models and Derivations
	9.1 State-Space Model with a Time-Varying Process Noise Variance Based on a GARCH(p, q) Framework
	9.2 Deriving the Parameter Estimation Step Equations for Terms Related to a Binary Observation
	9.3 Extending Estimation to a Vector-Valued State
	9.4 The Use of Machine Learning Methods for State Estimation
	9.5 Additional MATLAB Code Examples
	9.5.1 State-Space Model with One Binary and One Spiking-Type Observation
	9.5.2 State-Space Model with One Binary and Two Continuous Observations with a Circadian Input in the State Equation

	10 MATLAB Code Examples
	10.1 State-space Model with One Binary Observation
	10.1.1 Simulated Data Example
	10.1.2 Experimental Data Example

	10.2 State-space Model with One Binary and One Continuous Observation
	10.2.1 Simulated Data Example
	10.2.2 Experimental Data Example

	10.3 State-space Model with One Binary and Two Continuous Observations
	10.3.1 Simulated Data Example (αIk Excluded)
	10.3.2 Simulated Data Example
	10.3.3 Experimental Data Example (αIk Excluded)
	10.3.4 Experimental Data Example

	10.4 State-space Model with One Binary, Two Continuous and a Spiking-Type Observation
	10.4.1 Simulated Data Example
	10.4.2 Experimental Data Example

	10.5 State-space Model with One MPP Observation
	10.5.1 Simulated Data Example
	10.5.2 Experimental Data Example

	10.6 State-space Model with One MPP and One Continuous Observation
	10.6.1 Simulated Data Example
	10.6.2 Experimental Data Example

	10.7 State-space Model with One Binary and One Spiking-type Observation
	10.7.1 Experimental Data Example

	10.8 State-space Model with One Binary and Two Continuous Observations with a Circadian Input in the State Equation
	10.8.1 Experimental Data Example

	11 List of Supplementary MATLAB Functions
	References
	Index

