
Dilranjan S. Wickramasuriya
Rose T. Faghih

Bayesian 
Filter Design 
for Computational 
Medicine
A State-Space Estimation Framework



Bayesian Filter Design for Computational Medicine



Dilranjan S. Wickramasuriya • Rose T. Faghih 

Bayesian Filter Design 
for Computational 
Medicine 

A State-Space Estimation Framework



Dilranjan S. Wickramasuriya 
hSenid Mobile Solutions 
Colombo, Sri Lanka 

Rose T. Faghih 
Biomedical Engineering Department 
New York University 
New York, NY, USA 

ISBN 978-3-031-47103-2 ISBN 978-3-031-47104-9 (eBook) 
https://doi.org/10.1007/978-3-031-47104-9 

This work was supported by New York University. 

© The Editor(s) (if applicable) and The Author(s) 2024. This book is an open access publication. 
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, 
distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons license and indicate if changes 
were made. 
The images or other third party material in this book are included in the book’s Creative Commons 
license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s 
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
https://doi.org/10.1007/978-3-031-47104-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


In honor of Professor Emery N. Brown’s 

belated 65th birthday 

In honor of Professor Munther Dahleh’s 

belated 60th birthday 

In honor of Professor Sridevi Sarma’s 

belated 50th birthday 

In honor of Professor George Verghese’s 

70th birthday



Preface 

Point processes underlie a range of activities within the human body. Neural spiking, 

rhythmic cardiac contraction, and pulsatile hormone secretion all have binary-like 

mechanisms at their core. The field of estimating latent states tied to point process 

observations has seen a steady growth over a period that has now exceeded two 

decades. These state estimation methods have found applications across a range of 

specialities including behavioral learning, brain-computer interfaces, sleep studies, 

heart rate variability analysis, anesthesia, endocrinology, and human emotion. The 

field has also seen an expansion from some of the early state-space estimators 

that were limited to point process observations alone to mixed estimators that can 

incorporate both binary and continuous-valued observations. 

Despite the growth in the field and its widespread applicability, several chal-

lenges are encountered by those with an undergraduate engineering degree who 

wish to begin developing these types of estimators. While the estimators are similar 

to regular Kalman filters, their design is not typically approached in the way that 

regular Kalman filters are. Instead, the design of state estimators for point process 

observations is usually approached from a statistical Bayesian point-of-view, rather 

than from the typical least squares minimization perspective. Moreover, while a 

number of works can be found in the literature involving these types of point 

process Bayesian filters, there is no tutorial-like introduction to aid the beginner. 

Consequently, the student who wishes to begin research has to spend considerable 

time to learn the basics of point process Bayesian filter design; and that often 

from material in research papers which are not intended as tutorials. This book 

is an attempt to bridge the gap. Hence, an intended reader wishing to learn filter 

design is expected to have taken an undergraduate course in basic probability and 

statistics as well as a course in signals and systems. Some background in computer 

programming would also be necessary to implement the filters. A course in control 

systems, although not required, would be helpful as well. A reader merely intending 

to use the filters presented here, however, would not need this background but only 

require some basic proficiency with MATLAB. 

Point process state estimators have found a number of applications in fields 

related to physiology and medicine, some of which have been listed above. This
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is partly due to the prevalence of point processes phenomena in different types of 

physiological signals. Successful collaborative research has also resulted based on 

drawing connections between state-space estimation and physiology—connections 

that serve to bridge the gap between engineering and medicine. Our book is also 

intended to serve the non-engineering community. Thus, the practitioner who does 

not wish to delve into all the mathematical detail underlying filter design but merely 

wishes to apply the tools can also use the book. Precisely for this purpose, the 

book is accompanied by a MATLAB toolbox of code examples that cover the 

different filters. Brief descriptions of the code are also provided at the end of the 

main chapters. It is our expectation that the endocrinologist, psychologist, or other 

researcher who wishes to estimate latent physiological states underlying binary and 

continuous-valued measurements would thus benefit as well. 

Point processes are everywhere, if you look for them. Earthquakes, crime 

incidents, rainfall, disease infections, customer arrivals at a bank, and website 

visits can all be modeled using point processes. Therefore, the applicability of this 

book isn’t solely limited to physiology. Researchers in agriculture, epidemiology, 

climatology, etc. whose work involves point process phenomena can all find the 

book a helpful aid. 

The ever-increasing role of technology in our lives is undeniable. We rely 

on technology from everything to flying across continents to buying candy from 

a vending machine. It is not unlikely that the foreseeable future will involve 

an explosion of smart electronics everywhere. These networked devices will be 

connected to the cloud where more powerful analytical tools sift through the raw 

data. As with the case of latent variable estimation using state-space models, the 

merging between physical components and cyber analytics will seek to extract 

underlying or hidden patterns and information from the sensed data. The same 

scenario is also applicable to the human body. It is likely that the future will involve 

an increased adoption of bioelectric and biochemical sensors that will play a crucial 

role in our well-being. The sensed physiological signals will inevitably contain some 

point process data, all of which capture information regarding latent states within 

the human body and brain. Thus, with the aid of appropriate mathematical tools, 

some of which are covered in this book, a sensor-laden wristwatch in the future may 

be able to precisely tell you some of what’s happening inside your brain and your 

body—an idea that led to an Innovators Under 35 recognition by MIT Technology 

Review for one of the authors. 

It is our hope that this book will be of help to students, researchers, and 

practitioners alike. 

Colombo, Sri Lanka Dilranjan S. Wickramasuriya 

New York, NY, USA Rose T. Faghih
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Chapter 1 

Introduction 

The human body is an intricate network of multiple functioning sub-systems. Many 

unobserved processes quietly keep running within the body even while we remain 

largely unconscious of them. For decades, scientists have sought to understand how 

different physiological systems work and how they can be mathematically modeled. 

Mathematical models of biological systems provide key scientific insights and also 

help guide the development of technologies for treating disorders when proper 

functioning no longer occurs. One of the challenges encountered with physiological 

systems is that, in a number of instances, the quantities we are interested in are 

difficult to observe directly or remain completely inaccessible. This could be either 

because they are located deep within the body or simply because they are more 

abstract (e.g., emotion). Consider the heart, for instance. The left ventricle pumps 

out blood through the aorta to the rest of the body. Blood pressure inside the aorta 

(known as central aortic pressure) has been considered a useful predictor of the 

future risk of developing cardiovascular disease, perhaps even more useful than the 

conventional blood pressure measurements taken from the upper arm [1]. However, 

measuring blood pressure inside the aorta is difficult. Consequently, researchers 

have had to rely on developing mathematical models with which to estimate 

central aortic pressure using other peripheral measurements (e.g., [2]). The same 

could be said regarding the recovery of CRH (corticotropin-releasing hormone) 

secretion timings within the hypothalamus—a largely inaccessible structure deep 

within the brain—using cortisol measurements in the blood based on mathematical 

relationships [3]. Emotions could also be placed in this same category. They are 

difficult to measure because of their inherently abstract nature. Emotions, however, 

do cause changes in heart rate, sweating, and blood pressure that can be measured 

and with which someone’s feelings can be estimated. What we have described so 

far, in a sense, captures the big picture underlying this book. We have physiological 

quantities that are difficult to observe directly, we have measurements that are easier 

to acquire, and we have the ability to build mathematical models to estimate those 

inaccessible quantities. 

© The Author(s) 2024 
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2 1 Introduction

Let us now consider some examples where the quantities we are interested in 

are rather abstract. Consider a situation where new employees at an organization 

are being taught a new task to be performed at a computer. Let us assume that 

each employee has a cognitive “task learning” state. Suppose also that the training 

sessions are accompanied by short quizzes at the end of each section. If we were 

to record how the employees performed (e.g., how many answers they got correct 

and how much time they took), could we somehow determine this cognitive learning 

state, and see how it gradually changes over time? The answer indeed is yes, with the 

help of a mathematical model, we can estimate such a state and track an employee’s 

progress over time. We will, however, first need to build such a model that relates 

learning to quiz performance. As you can see, the basic idea of building models that 

relate difficult-to-access quantities to measurements that we can acquire more easily 

and then estimate those quantities is a powerful concept. In this book, we will see 

how state-space models can be used to relate physiological/behavioral variables to 

experimental measurements. 

State-space modeling is a mature field within controls engineering. In this book, 

we will address a specific subset of state-space models. Namely, we will consider 

a class of models where all or part of the observations are binary. You may wonder 

why binary observations are so important? In reality, a number of phenomena 

within the human body are binary in nature. For instance, the millions of neurons 

within our bodies function in a binary-like manner. When these neurons receive 

inputs, they either fire or they do not. The pumping action of the heart can also be 

seen as a binary mechanism. The heart is either in contraction and pumping out 

blood or it is not. The secretion of a number of pulsatile hormones can also be 

viewed in a similar manner. The glands responsible for pulsatile secretion are either 

secreting the hormone or not. In reality, a number of other binary phenomena exist 

and are often encountered in biomedical applications. Consequently, physiological 

state-space models involving binary-valued observations have found extensive 

applications across a number of fields including behavioral learning [4–9], position, 

and movement decoding based on neural spiking observations [10–17], anesthesia, 

and comatose state regulation [18–20], sleep studies [21], heart rate analysis 

[22, 23], and cognitive flexibility [9, 24]. In this book, we will see how some of 

these models can be built and how they can be used to estimate unobserved states of 

interest. 

1.1 Physiology, State-Space Models, and Estimation 

As we have just stated, many things happen inside the human body, even while 

we are largely unaware that they are occurring. Energy continues to be produced 

through the actions of hormones and biochemicals, changes in emotion occur 

within the brain, and mental concentration varies throughout the day depending 

on the task at hand. Despite the fact that they cannot be observed, these internal 

processes do give rise to changes in different physiological phenomena that can
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indeed be measured. For instance, while energy production cannot be observed 

directly, we can indeed measure the hormone concentrations in the blood that affect 

the production mechanisms. Similarly, we can also measure physiological changes 

that emotions cause (e.g., changes in heart rate). Concentration or cognitive load 

also cannot be observed, but we can measure how quickly someone is getting their 

work done and how accurately they are performing. Let us now consider how these 

state-space models relate unobserved quantities to observed measurements. 

Think of any control system such as a spring–mass–damper system or RLC 

circuit (Fig. 1.1). Typically, in such a system, we have several internal state variables 

and some sensor measurements. Not all the states can be observed directly. However, 

sensor readings can and do provide some information about them. By deriving 

mathematical relationships between the sensor readings and the internal states, we 

can develop tools that enable us to estimate the unobserved states over time. For 

instance, we may not be able to directly measure all the voltages and currents in 

a circuit, but we can use Kirchoff’s laws to derive relationships between what we 

cannot observe and what we do measure. Similarly, we may not be able to measure 

all the positions, velocities, or accelerations within a mechanical system, but we 

can derive similar relationships using Newton’s laws. Thus, a typical engineering 

system can be characterized via a state-space formulation as shown below (for the 

time-being, we will ignore any noise terms and non-linearities). 

.xk+1 = Axk + Buk. (1.1) 

yk = Cxk. (1.2) 

Here, .xk is a vector representing the internal states of the system, .yk is a vector 

representing the sensor measurements, .uk is an external input, and A, B, and C

are matrices. The state evolves with time following the mathematical relationship 

in (1.1). While we may be unable to observe .xk directly, we do have the sensor 

readings .yk that are related to it. The question is, can we now apply this formulation 

to the human body? In this case, .xk could be any of the unobserved quantities we 

Fig. 1.1 Some examples of engineering systems that can be modeled using state-space represen-

tations. The left sub-figure depicts a spring–mass–damper system, and the right sub-figure depicts 

an RLC circuit. We may not be able to directly observe all the states within each system, but we 

can build state-space models and use whatever measurements we have to estimate them
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just mentioned (e.g., energy production, emotion, or concentration) and .yk could be 

any related physiological measurement(s). 

In this book, we will make use of an approach known as expectation– 

maximization (EM) for estimating unobserved quantities using state-space models. 

In a very simple way, here is what the EM algorithm does when applied to state 

estimation. Look back at (1.1) and (1.2). Now assume that this formulation governs 

how emotional states (.xk) vary within the brain and how they give rise to changes 

in heart rate and sweat secretions (.yk) that can be measured. We do not know .xk for 

.k = 1, 2, . . . , K , and neither do we know A, B, or  C. We only have the recorded 

sensor measurements (features) .yk . First, we will assume some values for A, B, and 

C, i.e., we will begin by assuming that we know them. We will use this knowledge 

of A, B, and C to estimate .xk for .k = 1, 2, . . . , K . We now know .xk at every point 

in time. We will then use these .xk’s to come up with an estimate for A, B, and 

C. We will then use those new values of A, B, and C to calculate an even better 

estimate for .xk . The newest .xk will again be used to determine an even better A, B, 

and C. We will repeat these steps in turn until there is hardly any change in .xk , A, 

B, or  C. Our EM algorithm is said to have converged at this point. The step where 

.xk is estimated is known as the expectation-step or E-step and the step where A, B, 

and C are calculated is known as the maximization-step or M-step. For the purpose 

of this book, we will label the E-step as the state estimation step and the M-step as 

the parameter estimation step. What follows next is a basic description of what we 

do at these steps in slightly more detail. 

1.1.1 State Estimation Step 

As we have just stated, our EM algorithm consists of two steps: the state estimation 

step and the parameter estimation step. At the state estimation step we assume 

to know A, B, and C and try to estimate .xk for .k = 1, 2, . . . , K . We do this  

sequentially. Again, look back at (1.1) and (1.2). Suppose you are at time index 

k and you know what A, B, C, and .xk−1 are, could you come up with a guess 

for .xk? You can also assume that you know what the external input .uk is for 

.k = 1, 2, . . . , K . How would you do determine .xk? First, note that we can re-write 

the equations as 

.xk = Axk−1 + Buk−1. (1.3) 

yk = Cxk. (1.4) 

If you knew A, B, C, .xk−1, and .uk−1, and had to determine .xk just at time index 

k, you would encounter a small problem here. Do you see that .xk appears in both 

equations? You could simply plug-in the values of .xk−1 and .uk−1 into (1.3) and 

get a value for .xk . Since you are using the past values up to time index .(k − 1) to 

determine .xk , this could be called the predict step. You are done, right? Not quite. If
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you determine .xk solely based on (1.3), you would always be discounting the sensor 

measurement .yk in (1.4). This sensor measurement is also an important source of 

information about .xk . Therefore, at each time index k, we will first have the predict 

step where we make use of (1.3) to guess what .xk is, and then apply an update step, 

where we will make use of  .yk to improve the .xk value that we just predicted. The 

full state estimation step will therefore consist of a series of repeated predict, update, 

predict, update, .. . . steps for .k = 1, 2, . . . , K . At the end of the state estimation step, 

we will have a complete set of values for .xk . 

Dealing with uncertainty is a reality with any engineering system model. These 

uncertainties arise due to noise in our sensor measurements, models that are unable 

to fully account for actual physical systems and so on. We need to deal with this 

notion of uncertainty when designing state estimators. To do so, we will need some 

basic concepts in probability and statistics. What we have said so far regarding 

estimating .xk can be mathematically formulated in terms of two fundamental ideas 

in statistics: mean and variance. In reality, (1.3) and (1.4) should be 

.xk = Axk−1 + Buk−1 + ek. (1.5) 

yk = Cxk + vk, (1.6) 

where .ek is what we refer to as process noise and .vk is sensor noise. Therefore, when 

we “guess” what .xk is at the predict step, what we are really doing is determining the 

mean value of .xk given that we have observed all the data up to time index .(k − 1). 

There will also be a certain amount of uncertainty regarding this prediction for .xk . 

We quantify this uncertainty in terms of variance. Thus we need to determine the 

mean and variance of .xk at our predict step. But what happens after we observe .yk? 

Again, the idea is the same. Now that we have two sources of information regarding 

.xk (one based on the prediction from .xk−1 and .uk−1, and the other based on the 

sensor reading .yk), we will still be determining the mean and variance of .xk . So we  

need to calculate one mean and variance of .xk at the predict step, and another mean 

and variance of .xk at the update step. 

1.1.2 Parameter Estimation Step 

Recall that our EM algorithm iterates between the state estimation step and 

the parameter estimation step until convergence. Assume that we sequentially 

progressed through repeated predict, update, predict, update, .. . . steps for .k =

1, 2, . . . , K and determined a set of mean and variance (uncertainty) values for .xk . 

How could we use all of these mean and variance values to determine what A, B, 

and C are? Here is how we proceed. We first calculate the joint probability for all 

the .xk and .yk values. The best estimates for A, B, and C are the values that maximize 

this probability (or the log of this probability). Therefore, we need to maximize this 

probability with respect to A, B, and C. One simple way to determine the value at
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which a function is maximized is to take its derivative and solve for the location 

where it is 0. This is basically what we do to determine A, B, and C (in reality, we 

actually maximize the expected value or mean of the joint log probability of all the 

.xk and .yk values to determine A, B, and C). 

1.1.3 Algorithm Summary 

In summary, we have to calculate means and variances at the state estimation 

step and derivatives at the parameter estimation step. We will show how these 

equations are derived in a number of examples in the chapters that follow. The 

EM approach enables us to build powerful state estimators that can determine 

internal physiological quantities that are only accessible through a set of sensor 

measurements. 

What we have described so far is a very simple introduction to the EM algorithm 

as applied to state estimation. Moreover, for someone already familiar with state-

space models, the predict and update steps we have just described should also sound 

familiar. These are concepts that are found in Kalman filtering. The derivation of the 

Kalman filter equations is generally approached from the point of view of solving 

a set of simultaneous equations when new sensor measurements keep coming in. In 

this book, we will not approach the design of the filters through traditional recursive 

least squares minimization approaches involving matrix computations. Instead, we 

will proceed from a statistical viewpoint building up from the basics of mean and 

variance. Nevertheless, we will use the terminology of a filter when deriving the 

state estimation step equations. For reasons that will become clearer as we proceed, 

we can refer to these state estimators as Bayesian filters. 

1.2 Book Outline 

State-space models have been very useful in a number of physiological applications. 

In this book, we consider state-space models that give rise, fully or partially, to 

binary observations. We will begin our discussion of how to build Bayesian filters 

for physiological state estimation starting with the simplest cases. We will start by 

considering a scalar-valued state .xk that follows the simple random walk 

.xk = xk−1 + εk, (1.7) 

where .εk ∼ N (0, σ 2
ε ) is process noise. We will consider how to derive the state 

and parameter estimation step equations when .xk gives rise to a single binary 

observation .nk . We will next proceed to more complicated cases. For instance, one 

of the cases will be where we have a forgetting factor .ρ such that
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.xk = ρxk−1 + εk, (1.8) 

and .xk gives rise to both a binary observation .nk and a continuous observation .rk . 

An even more complicated case will involve an external input so that 

.xk = ρxk−1 + αIk + εk, (1.9) 

where .αIk is similar to the .Buk in (1.1), and .xk gives rise to a binary observation 

.nk and two continuous observations .rk and .sk . As we shall see, changes in the state 

equation primarily affect the predict step within the state estimation step. In contrast, 

changes in the observations mainly affect the update step. 

Note that we mentioned the observation of binary and continuous features. When 

introducing the concept of physiological state estimation for the first time, we used 

the formulation 

.yk = Cxk + vk (1.10) 

for the sensor measurements. In reality, this represents a very simple case, and 

the equations turn out to be similar to that of a Kalman filter. Sensor measure-

ments in biomedical experiments can take many forms. They can take the form 

of binary-valued observations, continuous-valued observations, and spiking-type 

observations, to name a few. For instance, we may need to estimate the learning 

state of a macaque monkey in a behavioral experiment based on whether the monkey 

gets the answers correct or incorrect in different trials (a binary observation), 

how quickly the monkey responds in each trial (a continuous observation), and 

how electrical activity from a specific neuron varies over the trials (a spiking-type 

observation). These types of measurements result in filter equations that are more 

complicated than in the case of a Kalman filter. We will rely heavily on Bayes’ rule 

to derive the mean and variance of .xk at the update step in each case. 

While the state estimation step relies primarily on mean and variance calcula-

tions, the parameter estimation step relies mainly on derivatives. At the parameter 

estimation step, we take the derivatives of the probability terms (or equivalently, of 

the log-likelihood terms) to determine the model parameters. For instance, if we use 

the state equation in (1.8), we will need to derive .ρ at the parameter estimation 

step. Moreover, we also need to determine the model parameters related to our 

observations. For instance, we may choose to model a continuous observation .rk
as 

.rk = γ0 + γ1xk + vk, (1.11) 

where .γ0 and .γ1 are constant coefficients and .vk ∼ N (0, σ 2
v ) is sensor noise. The 

three parameters .γ0, .γ1, and .σ 2
v all need to be determined at the parameter estimation 

step. We could thus divide the parameter estimation step derivations into two parts. 

First, there will be the derivations for model parameters in the state equation (e.g.,
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.ρ, .α, and .σ 2
ε ). And second, there will be the derivations corresponding to each of 

the observations (features). Choosing to include a continuous-valued observation 

in a state-space model will necessitate the determination of a certain set of model 

parameters. Adding a spiking-type observation necessitates a further set of model 

parameters. We will see examples of these in due course. 

Having laid some of the basic groundwork, we will next proceed with our tutorial 

discussion of how to derive the state and parameter estimation step equations for 

several different physiological state-space models. Shown below is a list of the state-

space models we will look at along with examples of where they have been applied: 

• State-space model with one binary observation: 

– Behavioral learning [4] 

– Sympathetic arousal estimation using skin conductance signals [25, 26] 

• State-space model with one binary and one continuous observation: 

– Behavioral learning [5] 

– Emotional valence estimation using electromyography (EMG) signals [27] 

– Seizure state estimation using scalp electroencephalography (EEG) signals 

[28] 

• State-space model with one binary and two continuous observations: 

– Sympathetic arousal estimation using skin conductance signals [29] 

– Energy state estimation using blood cortisol concentrations [30] 

• State-space model with one binary, two continuous, and a spiking-type observa-

tion: 

– Sympathetic arousal estimation using skin conductance and electrocardiogra-

phy (EKG) signals [31] 

• State-space model with one marked point process (MPP) observation: 

– Sympathetic arousal estimation using skin conductance signals [32] 

• State-space model with one MPP and one continuous observation: 

– Energy state estimation using blood cortisol concentrations [33] 

– Sympathetic arousal estimation using skin conductance signals [33] 

Wearable and smart healthcare technologies are likely to play a key role in the 

future [34, 35]. A number of the state-space models listed above have applicability to 

healthcare. For instance, patients suffering from emotional disorders, hormone dys-

regulation, or epileptic seizures could be fitted with wearable devices that implement 

some of the state-space models (and corresponding EM-based estimators) listed 

above for long-term care and monitoring. One of the advantages of the state-space 

framework is that it readily presents itself to the design of the closed-loop control 

necessary to correct deviation from healthy functioning. Consequently, state-space 

controllers can be designed to treat some of these disorders [36, 37]. Looking at the 

human body and brain from a control-theoretic perspective could also help design
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bio-inspired controllers that are similar to its already built-in feedback control loops 

[38, 39]. The applications, however, are not just limited to healthcare monitoring, 

determining hidden psychological and cognitive states also has applications in fields 

such as neuromarketing [40], smart homes [41], and smart workplaces [42]. 

Excursus—A Brief Sketch of How the Kalman Filter Equations Can be 

Derived 

Here we provide a brief sketch of how the Kalman filter equations can 

be derived. We will utilize an approach known as recursive least squares. 

The symbols used within this excursus are self-contained and should not be 

confused with the standard terminology that is used throughout the rest of this 

book. 

Suppose we have a column vector of unknowns .x and a column vector of 

measurements .y1 that are related to each other through 

.y1 = A1x + e1, (1.12) 

where .A1 is a matrix and .e1 ∼ N (0, �1) is noise (.�1 is the noise 

covariance matrix). In general, we may have more measurements than we 

have unknowns. Therefore, a solution to this system of equations is given by 

.x1 = (A
T

1�−1
1 A1)

−1AT�−1
1 y1, (1.13) 

where we have used  .x1 to denote that this solution is only based on the first 

set of measurements. Now suppose that we have another set of measurements 

.y2 such that 

.y2 = A2x + e2, (1.14) 

where .A2 is a matrix and .e2 ∼ N (0, �2). In theory, we could just concatenate 

all the values to form a single set of equations and solve for .x. However, this 

would result in a larger matrix inversion each time we get more data. Is there 

a better way? It turns out that we can use our previous solution .x1 to obtain a 

better estimate .x2 without having to solve everything again. If we assume that 

.e1 and .e2 are uncorrelated with each other, the least squares solution is given 

by 

.x2 =

[(

A1

A2

)T(

�1 0

0 �2

)−1(
A1

A2

)]−1(
A1

A2

)T(

�1 0

0 �2

)−1(
y1

y2

)T

. (1.15) 

=

[

(

A
T

1 
A
T

2

)

(

�−1 
1

0 

0 �−1 
2

)(

A1 

A2

)]−1
(

A
T

1 
A
T

2

)

(

�−1 
1

0 

0 �−1 
2

)(

y1 

y2

)T

.

(1.16) 

(continued)
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=
(

A
T

1
�−1
1

A1 + A
T

2
�−1
2

A2

)−1(

A
T

1
�−1
1

y1 + A
T

2
�−1
2

y2

)

. (1.17) 

Let us see how this simplifies. We will begin by defining the term .P1 =

(A
T

1�−1
1 A1)

−1. Now,  

.x1 = (A
T

1�−1
1 A1)

−1AT�−1
1 y1. (1.18) 

= P1A
T�−1 

1 y1. (1.19)

=⇒ P −1 
1 x1 = AT�−1 

1 y1 (1.20) 

based on (1.13). Substituting .P −1
1 for .A

T

1�−1
1 A1 and .P −1

1 x1 for .AT�−1
1 y1

in (1.17), we obtain 

.x2 =
(

P −1
1 + A

T

2�−1
2 A2

)−1(

P −1
1 x1 + A

T

2�−1
2 y2

)

. (1.21) 

We use the matrix inversion lemma to simplify this to 

.x2 =
[

P1 − P1A
T

2 (�2 + A2P1A
T

2 )−1A2P1

](

P −1
1 x1 + A

T

2�−1
2 y2

)

.

(1.22) 

We then perform the multiplication. 

.x2 =
[

P1 − P1A
T

2 (�2 + A2P1A
T

2 )−1A2P1

]

P −1
1 x1

+
[

P1 − P1A
T

2 (�2 + A2P1A
T

2 )−1A2P1

]

A
T

2�−1
2 y2. (1.23) 

For the time-being, we will ignore the terms on the right and make the 

substitution .K = P1A
T

2 (�2 +A2P1A
T

2 )−1 for the term on the left. Therefore, 

.x2 =
(

P1 − KA2P1

)

P −1
1 x1

+
[

P1 − P1A
T

2 (�2 + A2P1A
T

2 )−1A2P1

]

A
T

2�−1
2 y2. (1.24) 

x2 = P1P
−1 
1 x1 − KA2P1P

−1 
1 x1 

+
[

P1 − P1A
T

2 (�2 + A2P1A
T

2 )
−1A2P1

]

A
T

2�−1 
2 y2. (1.25) 

(continued)
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x2 = x1 − KA2x1 +
[

P1 − P1A
T

2 (�2 + A2P1A
T

2 )−1A2P1

]

A
T

2�−1
2 y2.

(1.26) 

When multiplying the terms on the right, we will define the term .Q = (�2 +

A2P1A
T

2 )−1. Making this substitution, we obtain 

.x2 = x1 − KA2x1 +
(

P1 − P1A
T

2QA2P1

)

A
T

2�−1
2 y2. (1.27) 

x2 = x1 − KA2x1 + P1A
T

2�−1 
2 y2 − P1A

T

2 QA2P1A
T

2�−1 
2 y2. (1.28) 

Here is where we will use a small trick. We will insert .QQ−1 into the third 

term and then simplify. 

.x2 = x1 − KA2x1 + P1A
T

2QQ−1�−1
2 y2 − P1A

T

2QA2P1A
T

2�−1
2 y2.

(1.29) 

= x1 − KA2x1 + P1A
T

2 Q(Q−1 − A2P1A
T

2 )�
−1 
2 y2. (1.30) 

Since .Q = (�2 +A2P1A
T

2 )−1, .Q−1 = �2 +A2P1A
T

2 . We will substitute this 

into (1.30) to obtain 

.x2 = x1 − KA2x1 + P1A
T

2Q(�2 + A2P1A
T

2 − A2P1A
T

2 )�−1
2 y2. (1.31) 

= x1 − KA2x1 + P1A
T

2 Q�2�
−1 
2 y2. (1.32) 

= x1 − KA2x1 + P1A
T

2 Qy2. (1.33) 

Note that .P1A
T

2Q = P1A
T

2 (�2 + A2P1A
T

2 )−1 = K . Therefore, 

.x2 = x1 − KA2x1 + Ky2. (1.34) 

= x1 + K(y2 − A2x1). (1.35) 

What does the final equation mean? We simply take our previous solution .x1, 

predict what .y2 will be by multiplying it with .A2, calculate the prediction 

error .y2 − A2x1, and apply this correction to .x1 based on the multiplication 

factor K . These equations, therefore, provide a convenient way to continually 

update .x when we keep receiving more and more data.
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Excursus—A Brief Sketch of How the EM Algorithm Works 

Here we will provide a brief overview of how the EM algorithm works in 

the kind of state estimation problems that we shall see. Assume that we have 

a set of sensor measurements .Y = {y1, y2, . . . , yK } and a set of unobserved 

states .X = {x1, x2, . . . , xK } that we need to estimate. We also have the model 

parameters .� that need to be determined. 

Let us begin by asking the question as to how we can determine .�. 

In general, we select .� such that it maximizes the probability .p(�|Y). 

Assuming that we do not have a particular preference for any of the .� values, 

we can use Bayes’ rule to instead select the .� that maximizes .p(Y|�). Now,  

.p(Y|�) =

∫

X

p(X ∩ Y|�)dX . (1.36) 

We do not know what the true .� is, but let us make a guess that it is .�̂. Let us 

now introduce the term .p(X |Y ∩ �̂) into (1.36). 

.p(Y|�) =

∫

X

p(X |Y ∩ �̂)

p(X |Y ∩ �̂)
p(X ∩ Y|�)dX . (1.37) 

=

∫

X

p(X |Y ∩ �̂)
p(X ∩ Y|�)

p(X |Y ∩ �̂)
dX . (1.38) 

Take a moment to look carefully at what the integral is doing. It is actually 

calculating the expected value of the fraction termwith respect to .p(X |Y∩�̂). 

Taking the log on both sides, we have 

. log
[

p(Y|�)
]

= log

[ ∫

X

p(X |Y ∩ �̂)
p(X ∩ Y|�)

p(X |Y ∩ �̂)
dX

]

. (1.39) 

Since .log(·) is a concave function, the following inequality holds true. 

. log
[

p(Y|�)
]

≥

∫

X

p(X |Y ∩ �̂) log

[

p(X ∩ Y|�)

p(X |Y ∩ �̂)

]

dX . (1.40) 

log
[

p(Y|�)
]

≥

∫

X

p(X |Y ∩ �̂) log
[

p(X ∩ Y|�)
]

dX

−

∫

X

p(X |Y ∩ �̂) log
[

p(X |Y ∩ �̂)
]

dX . (1.41) 

Recall that we set out to choose the .� that maximized .p(Y|�), or that 

equivalently maximized .log
[

p(Y|�)
]

. Typically, we would approach this 

(continued)
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maximization by calculating the derivative of the probability term with

respective to .�, set it to .0, and then solve. For instance, if we had a 

continuous-valued observation .rk in our state-space model, we would have 

to take the derivatives with respect to .γ0, .γ1, and .σ
2
v , set them each to 0, and 

solve. Look back at (1.41). Assume we were to calculate the derivative of the 

term on the right-hand side of the inequality with respective to .�. Do you 

see that the second term does not contain .�? In other words, the derivative 

would just treat the second term as a constant. If we had to determine .γ0, .γ1, 

and .σ 2
v , for instance, they would only be present in the first term when taking 

derivatives. We can, therefore, safely ignore the second term. This leads to 

an important conclusion. If we need to determine the model parameters .� by 

maximizing .log
[

p(Y|�)
]

, we only need to concentrate on maximizing 

.

∫

X

p(X |Y ∩ �̂) log
[

p(X ∩ Y|�)
]

dX . (1.42) 

We could equivalently write (1.42) as  

.E
X |Y∩�̂

[

log
[

p(X ∩ Y|�)
]

]

(1.43) 

since this is indeed an expected value. Do you now see the connection between 

what we have been discussing so far and the EM algorithm? In reality, what 

we are doing at the state estimation step is calculating .E[X |Y ∩ �̂]. At the  

parameter estimation step, we calculate the partial derivatives of the expected 

value of .log
[

p(X ∩ Y|�)
]

with respect to all of the model parameters. 

During the actual implementation of the EM algorithm, we keep alternating 

between the two steps until the model parameters converge. At this point, we 

have reached one of the localized maximum values of .E
X |Y∩�̂

[

log
[

p(X ∩

Y|�)
]

]

. 
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Chapter 2 

Some Useful Statistical Results 

The EM algorithms for state estimation that we consider in this book rely on basic 

concepts in statistics. In this chapter, we will review some results that will come 

in useful later on. Many of the concepts are introductory and only require a basic 

knowledge of probability and statistics. If you are already familiar with what is 

discussed here, feel free to skip ahead. 

2.1 Basic Concepts Related to Mean and Variance 

Shown below are some basic statistical results related to mean and variance that will 

be helpful when deriving the EM algorithm equations. 

Basic Statistical Results—Part A 

Given the random variables .Xk and .Zk , and the constant values .ρ and .α, the  

following results hold true for mean and variance. We use .E[·], .V (·), and 

.Cov(·) to denote the mean or expected value, the variance, and covariance, 

respectively. 

.E[Xk + Zk] = E[Xk] + E[Zk]. (2.1) 

E[Xk + α] = E[Xk] + α. (2.2) 

E[ρXk] = ρE[Xk]. (2.3) 

V (Xk + Zk) = V (Xk) + V (Zk) + 2Cov(Xk, Zk). (2.4) 
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V (Xk + α) = V (Xk). (2.5) 

V (ρXk) = ρ2V (Xk). (2.6) 

2.2 Basic Statistical Results Required for Deriving the 

Update Equations in the State Estimation Step 

We will also require two results based on Bayes’ rule and Gaussian distributions, 

respectively, when deriving the update equations in the state estimation step. The 

two results are shown below:

• Result 1: 

.P(A|B ∩ C) =
P(B|A ∩ C)P (A|C)

P (B|C)
.

We will consider the derivation of this result in two steps: 

– Step 1: 

.P(A|B ∩ C) =
P(A ∩ B ∩ C)

P (B ∩ C)
. (2.7) 

=
P(A ∩ B ∩ C)

P (B ∩ C)
×

P(C)

P (C)
. (2.8) 

=
P(A ∩ B ∩ C)

P (C)
×

1 

P(B∩C)
P (C)

. (2.9) 

=
P(A ∩ B|C)

P (B|C)
. (2.10) 

– Step 2: 

.P(A ∩ B|C) =
P(A ∩ B ∩ C)

P (C)
. (2.11) 

=
P(A ∩ B ∩ C)

P (C)
×

P(A ∩ C)

P (A ∩ C)
. (2.12) 

=
P(A ∩ B ∩ C)

P (A ∩ C)
×

P(A ∩ C)

P (C)
. (2.13) 

= P(B|A ∩ C)P (A|C). (2.14)
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We will substitute the result for .P(A ∩ B|C) in (2.14) and put it into (2.10) to  

obtain 

.P(A|B ∩ C) =
P(A ∩ B|C)

P (B|C)
=

P(B|A ∩ C)P (A|C)

P (B|C)
. (2.15) 

Basic Statistical Results—Part B 

Letting .A = Xk , .B = Yk , and .C = Y1:k−1, we can use the result just shown 

above to obtain 

.P(Xk|Y1:k) = P(Xk|Yk, Y1:k−1) =
P(Yk|Xk, Y1:k−1)P (Xk|Y1:k−1)

P (Yk|Y1:k−1)
.

(2.16) 

Recall that we split our state estimation into two steps: the predict step and 

the update step. At the predict step, we derive an estimate for .xk given that we 

have not yet observed the sensor reading .yk . This estimate is actually based on 

.P(Xk|Y1:k−1) since information only available until time index .(k−1) is used 

to derive it. At the update step, we improve the predict step estimate based on 

.P(Xk|Y1:k−1) to now include information from the new sensor measurement 

.yk , i.e., we make use of .yk to obtain a new estimate based on .P(Xk|Y1:k). The  

result in (2.16) will come in very useful at the update step.

• Result 2: 

The mean and variance of a Gaussian random variable can be obtained by 

taking the derivatives of the exponent term of its probability density function 

(PDF). 

Consider .X ∼ N (µ, σ 2). The PDF of X is given by 

.p(x) =
1

√
2πσ 2

eqx where q =
−(x − µ)2

2σ 2
. (2.17) 

To obtain the mean of X, we take the derivative of q and set it to 0 to determine 

where the maximum value occurs. 

.
dq

dx
=

−2(x − µ)

2σ 2
= 0. (2.18)

=⇒ x = µ. (2.19) 

Therefore, the mean value occurs at the location for x at which the derivative of 

the exponent term is equal to 0.
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We next consider the variance. The second derivative of q with respect to x is 

.
d2q

dx2
=

−1

σ 2
. (2.20) 

And therefore, the variance is given by 

. =⇒ σ 2 = −
(

d2q

dx2

)−1

. (2.21) 

Basic Statistical Results—Part C 

In all the derivations of the state estimation step update equations, we will 

assume that the density functions are approximately Gaussian. We will also 

make use of what we have just shown: (i) the mean value is given by the 

location at which the first derivative of the exponent term is equal to 0; (ii) 

the variance is given by the negative inverse of the second derivative of the 

exponent term. 

2.3 General Observations Related to Gaussian Random 

Variables 

In general, for a set of independent Gaussian random variables .Zi ∼ N (µi, σ
2
i ), 

the following holds true. 

.

∑

i

aiZi ∼ N

(

∑

i

aiµi,
∑

i

a2
i σ

2
i

)

, (2.22) 

where the .ai’s are constant terms. Also, adding a constant term to a Gaussian random 

variable will cause it to remain Gaussian but have a shifted mean and unchanged 

variance. This can be verified from first principles (change of variables formula). 

Basic Statistical Results—Part D 

In general, for a set of independent Gaussian random variables .Zi ∼
N (µi, σ

2
i ), 

.

∑

i

aiZi ∼ N

(

∑

i

aiµi,
∑

i

a2
i σ

2
i

)

. (2.23)
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Chapter 3 

State-Space Model with One Binary 
Observation 

In this chapter, we will consider a state-space model where a single state variable .xk

gives rise to binary observations. We will see how the state and parameter estimation 

equations are derived for this case. However, prior to deriving any of the equations, 

we will first look at two example scenarios where the need for such a model arises. 

We human beings learn. We start learning since the time we were born, and 

learning continues thereafter as a life-long process. How exactly do we learn? 

And how do animals learn? These are interesting problems that scientists have 

investigated for years. One of the problems that arises in learning experiments 

with animal models is determining when an animal is considered to have learned 

something. For instance, suppose that a macaque monkey needs to learn how to 

correctly identify a particular visual target shown on a computer screen. The monkey 

may receive a reward for every correct answer. Similarly, a rat may have to learn to 

how to recognize an audio cue to receive a reward in a maze (Fig. 3.1). How could 

we know that the animal has actually learned? This is an interesting question. We 

could, for instance, come up with heuristic rules such as stating that the animal 

has indeed learned when five consecutive correct answers (or some other number) 

are recorded. But could something more systematic be developed? This problem 

is what motivated the work in [4]. Here, learning was characterized using a state-

space model. Since correct and incorrect are the only possible trial outcomes, the 

observations are binary-valued. Moreover, rather than just deciding whether the 

animal has learned or not yet learned, the objective was to estimate a continuous 

learning state .xk based on the sequence of binary responses .nk . When learning 

has not yet occurred, more incorrect responses occur in the trials and .xk remains 
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Correct/incorrect 

responses 

Cogni�ve learning 

state 

Fig. 3.1 A rat in a T-maze experiment with binary-valued correct/incorrect responses. Binary-

valued correct/incorrect responses can be used to estimate the cognitive learning state of a rat 

based on its responses in successive trials. The model was used in [4] for this purpose where the 

rat had to learn to recognize which direction to proceed in based on an audio cue 

low. However, as the animal begins to learn, more correct responses occur and 

.xk increases. Thus it is possible to see how learning continuously progresses over 

successive trials. 

The second example relates to emotions and the nervous system. We primarily 

sweat to maintain internal body temperature. However, tiny bursts of sweat are also 

released in response to psychologically arousing stimuli. These variations in sweat 

secretions cause changes in the conductivity of the skin and can be picked up easily 

by skin conductance sensors. Since the sweat glands are innervated by nerve fibers 

belonging to the sympathetic branch of the autonomic nervous system [43], a skin 

conductance signal becomes a sensitive index of sympathetic arousal [44]. Now a 

skin conductance signal comprises a slow-varying tonic component on top of which 

a faster-varying phasic component is superimposed [45, 46]. The phasic component 

consists of what are known as skin conductance responses (SCRs). These SCRs 

have characteristic bi-exponential shapes. Each of these SCRs can be thought of as 

being produced by a single burst of neuroelectric activity to the sweat glands [47]. 

It is these phasic SCRs that give a skin conductance signal its “spikey” appearance 

(Fig. 3.2). A deconvolution algorithm can be used to recover the bursts of neural 

activity underlying a skin conductance signal [47–50]. Importantly, the occurrence 

of these neural impulses is related to a person’s arousal level. In particular, the higher 

the underlying sympathetic arousal, the higher the rate at which neural impulses 

to the sweat glands (or SCRs) occur [51]. Thus the same state-space model with 

binary observations based on neural impulses to the sweat glands was used in [26] 

to estimate sympathetic arousal. By tracking the occurrence of the impulses .nk , a  

person’s arousal state could be estimated over time.
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Fig. 3.2 A deconvolved skin conductance signal. A skin conductance signal comprises both a 

tonic and phasic component. The neural impulses underlying phasic variations can be extracted 

via deconvolution. The figure depicts a skin conductance signal (blue) and the sequence of neural 

impulses that underlie its phasic variations (red). From [32], used under Creative Commons CC-

BY license 

3.1 Deriving the Predict Equations in the State Estimation 

Step 

Let us now consider the state-space model itself. For simplicity, we will also not 

use upper case letters for the unknowns although they are indeed random variables. 

Instead, we will follow the more familiar notation for state-space control systems 

with lower case letters. Let us begin by assuming that .xk evolves with time following 

a random walk. 

.xk = xk−1 + εk, (3.1) 

where the process noise term .εk ∼ N (0, σ 2
ε ) is independent of any of the .xk values. 

For now, let us not think of (3.1) as being the state equation in a control system. 

Instead, let us just consider (3.1) purely as a relationship between three random 

variables. Supposing we only had this equation and had to determine .xk , what would 

be the best guess that we could come up with and how uncertain would we be about 

it? Our best estimate for .xk would be its mean, and the uncertainty associated with 

it would be its variance. We will use the basic formulas in (2.1)–(2.6) to determine 

the mean and variance of .xk . We will first derive the mean. 

.E[xk] = E[xk−1 + εk]. (3.2) 

= E[xk−1] + E[εk] using (2.1). (3.3)



24 3 State-Space Model with One Binary Observation

= E[xk−1] since E[εk] = 0. (3.4) 

∴ E[xk] = xk−1|k−1, (3.5) 

where we have used the notation .xk−1|k−1 to denote the expected value .E[xk−1]. In  

a typical state-space control system, .xk−1|k−1 represents the best estimate for .xk−1

given that we have observed all the sensor measurements up to time index .(k − 1). 

We will also use the notation .E[xk] = xk|k−1 to denote the mean state estimate at 

time index k, given that we have only observed the sensor readings until time index 

.(k − 1). 

Next we will derive the uncertainty or variance of .xk using the same basic 

formulas. 

.V (xk) = V (xk−1 + εk). (3.6) 

= V (xk−1) + V (εk) + 2Cov(xk−1, εk) using (2.4). (3.7) 

= V (xk−1) + V (εk) since εk is uncorrelated with any of the xk terms.

(3.8) 

∴ V (xk) = σ 2 
k−1|k−1 + σ 2 

ε , (3.9) 

where we have used the notation .σ 2
k−1|k−1 to denote the variance .V (xk−1). Again, in  

a typical state-space control system, .σ 2
k−1|k−1 represents the uncertainty or variance 

of .xk−1 given that we have observed all the sensor readings up to time index .(k−1). 

Just like in the case of the mean, we will use the notation .V (xk) = σ 2
k|k−1 to denote 

that this is the variance estimate at time index k, given that we have only observed 

the sensor readings until time index .(k − 1). Therefore, our predict equations in the 

state estimation step are 

.xk|k−1 = xk−1|k−1. (3.10) 

σ 2 
k|k−1 = σ 2 

k−1|k−1 + σ 2 
ε . (3.11) 

From our knowledge of Gaussian distributions in (2.23), we also know that .xk is 

Gaussian distributed since .xk−1 and .εk are Gaussian distributed and independent of 

each other. Since we have just derived the mean and variance of .xk , we can state that 

.p(xk|n1:k−1) =
1

√

2πσ 2
k|k−1

e

−(xk−xk|k−1)2

2σ2
k|k−1 , (3.12) 

where the conditioning on .n1:k−1 indicates that we have observed the sensor mea-

surements up to time index .(k − 1). What happens when we observe measurement 

.nk at time index k? We will see how our estimates .xk|k−1 and .σ 2
k|k−1 can be 

improved/updated once we observe .nk in the next section.
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When .xk evolves with time following .xk = xk−1 + εk , the predict equations 

in the state estimation step are 

.xk|k−1 = xk−1|k−1. (3.13) 

σ 2 
k|k−1 = σ 2 

k−1|k−1 + σ 2 
ε . (3.14) 

3.2 Deriving the Update Equations in the State Estimation 

Step 

The binary observations .nk that we consider here could be in the form of correct/in-

correct responses in a behavioral experiment, neural impulses in a skin conductance 

signal, hormone pulses, etc. Let us assume that .xk is related to the probability .pk

with which the binary events occur through 

.pk =
1

1 + e−(β0+xk)
, (3.15) 

where .β0 is a constant. Here, .pk = P(nk = 1) and .(1 − pk) = P(nk = 0). 

Equation (3.15) depicts what is known as a sigmoid relationship. Accordingly, the 

higher .xk is, the higher will be .pk . In other words, the higher .xk is, the higher the 

probability of 1’s occurring in the observations. 

At this point, we need to note an important result concerning the derivative of 

the sigmoid function. 

.
dpk

dxk

=
(−1)

[1 + e−(β0+xk)]2
× e−(β0+xk) × (−1). (3.16) 

=
1 

1 + e−(β0+xk)
×

[

e−(β0+xk)

1 + e−(β0+xk)

]

. (3.17) 

=
1 

1 + e−(β0+xk)
×

[

1 + e−(β0+xk) − 1 

1 + e−(β0+xk)

]

. (3.18) 

=
1 

1 + e−(β0+xk)
×

[

1 −
1 

1 + e−(β0+xk)

]

. (3.19) 

= pk(1 − pk). (3.20)
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Now the occurrence of .nk = 0 or .nk = 1 follows a Bernoulli distribution. 

Therefore, 

.p(nk|xk) = p
nk

k (1 − pk)
1−nk . (3.21) 

=

[

1 

1 + e−(β0+xk)

]nk
[

1 −
1 

1 + e−(β0+xk)

]1−nk

. (3.22) 

We will also utilize another useful result here. For a positive number a, .a = elog(a)

(this can be easily verified by taking the log value on both sides). We can use this to 

express .p(nk|xk) as shown below. 

.p(nk|xk) = p
nk

k (1 − pk)
1−nk . (3.23) 

= e
log

[

p
nk
k (1−pk)

1−nk

]

. (3.24) 

= e
log

[

p
nk
k

]

+log
[

(1−pk)
1−nk

]

. (3.25) 

= enk log(pk)+(1−nk) log(1−pk). (3.26) 

= e
nk log

(

pk
1−pk

)

+log(1−pk)
. (3.27) 

Now assume that we just observed .nk . What would be our best estimate of .xk given 

that we have observed .n1:k? In other words, what is .p(xk|n1:k), and how can we 

derive its mean and variance? We can use the result in (2.16) to determine what 

.p(xk|n1:k) is. 

.p(xk|n1:k) = p(xk|nk, n1:k−1) =
p(nk|xk, n1:k−1)p(xk|n1:k−1)

p(nk|n1:k−1)
. (3.28) 

Let us consider the terms in the numerator. Now .p(nk|xk, n1:k−1) = p(nk|xk) since 

we have an explicit relationship between .nk and .xk as shown in (3.15), which makes 

the additional conditioning on the history .n1:k−1 irrelevant. We know what .p(nk|xk)

is based on (3.26). We also know what .p(xk|n1:k−1) is based on (3.12). 

We now need to determine the mean and variance of .p(xk|n1:k). To do so,  we  

will assume that it is approximately Gaussian distributed. Recall from the earlier 

results in (2.19) and (2.21) that the mean and variance of a Gaussian distribution 

can be derived from its exponent term alone. Therefore, we only need to consider 

the exponent of .p(xk|n1:k) and can ignore the other terms. We will therefore 

substitute the terms for .p(nk|xk) and .p(xk|n1:k−1) in (3.26) and (3.12), respectively, 

into (3.28). 

.p(xk|n1:k) ∝ p(nk|xk)p(xk|n1:k−1) ∝ enk log(pk)+(1−nk) log(1−pk) × e

−(xk−xk|k−1)2

2σ2
k|k−1 .

(3.29)
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Taking the log on both sides and labeling it as q, we have  

.q = log[p(xk|n1:k)] = nk log(pk) + (1 − nk) log(1 − pk)

−
(xk − xk|k−1)

2

2σ 2
k|k−1

+ constant. (3.30) 

This equation provides us the exponent of .p(xk|n1:k), which we will use to derive 

the mean and variance. We can obtain the mean by taking the first derivative of the 

exponent and then solving for the location where it is 0. Likewise the variance is 

given by the negative inverse of the second derivative. 

Let us first proceed with calculating the mean. We will make use of the formula 

for the derivative of .pk in (3.20). 

.
dq

dxk

= nk

1

pk

dpk

dxk

+ (1 − nk)
1

(1 − pk)

d

dx
(1 − pk) −

2(xk − xk|k−1)

2σ 2
k|k−1

= 0.

(3.31) 

nk

1 

pk

pk(1 − pk) − (1 − nk)
1 

(1 − pk)
pk(1 − pk) −

(xk − xk|k−1)

σ 2 
k|k−1 

= 0.

(3.32) 

nk(1 − pk) − (1 − nk)pk −
(xk − xk|k−1)

σ 2 
k|k−1 

= 0.

(3.33) 

nk − pk −
(xk − xk|k−1)

σ 2 
k|k−1 

= 0. (3.34) 

nk − pk =
(xk − xk|k−1)

σ 2 
k|k−1 

. (3.35) 

xk = xk|k−1 + σ 2 
k|k−1(nk − pk). (3.36) 

This equation gives us the mean of .xk , which is now our new best estimate given 

that we have observed all the data up to time index k. We will call this new mean 

.xk|k . It is an improvement over .xk|k−1, which did not include information from the 

latest observation. Since 

.pk =
1

1 + e−(β0+xk)
, (3.37) 

the .xk term appears on both sides of (3.36). Therefore, the equation has to be solved 

numerically (e.g., using Newton’s method). To make this dependency explicit, we 

will use the notation .pk|k and express the mean as
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.xk|k = xk|k−1 + σ 2
k|k−1(nk − pk|k). (3.38) 

We will next derive the variance. Now the first derivative of the exponent 

simplified to 

.
dq

dxk

= nk − pk −
(xk − xk|k−1)

σ 2
k|k−1

. (3.39) 

The second derivative yields 

.
d2q

dx2
k

= −pk(1 − pk) −
1

σ 2
k|k−1

. (3.40) 

Based on our knowledge of how variance can be derived from the exponent term 

in a Gaussian distribution, the uncertainty or variance associated with our new state 

estimate is 

.σ 2
k|k = −

(

d2q

dx2
k

)−1

=

[

1

σ 2
k|k−1

+ pk(1 − pk)

]−1

. (3.41) 

Again, we will make the dependence of .pk on .xk|k explicit and state 

.σ 2
k|k =

[

1

σ 2
k|k−1

+ pk|k(1 − pk|k)

]−1

. (3.42) 

When .xk gives rise to a single binary observation .nk , the update equations in 

the state estimation step are 

.xk|k = xk|k−1 + σ 2
k|k−1(nk − pk|k). (3.43) 

σ 2 
k|k =

[

1 

σ 2 
k|k−1 

+ pk|k(1 − pk|k)

]−1 

. (3.44) 

3.3 Smoothing in the State Estimation Step 

Although we previously stated that the state estimation step primarily consisted of 

the predict and update steps, in reality, there is a third step that we follow. The
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equations for this third step, however, do not vary much depending on the state-

space model and consequently do not require re-derivations every time we have a 

new model. In fact, as we shall see, there is only one case where we need to make 

changes to this third step. Now we first perform the predict, update, predict, update, 

.. . . steps in turn for .k = 1, 2, . . . , K to determine .xk at each point in time. After 

coming to the end, we reverse direction and obtain a set of smoothened mean and 

variance estimates. The equations for this backward smoother are 

.Ak Δ
σ 2

k|k

σ 2
k+1|k

. (3.45) 

xk|K = xk|k + Ak(xk+1|K − xk+1|k). (3.46) 

σ 2 
k|K = σ 2 

k|k + A2 
k(σ

2 
k+1|K − σ 2 

k+1|k). (3.47) 

The only change that occurs in these equations is if there is a forgetting factor .ρ in 

the state equation (e.g., .xk = ρxk−1 + εk). In this case, we would have 

.Ak Δ ρ
σ 2

k|k

σ 2
k+1|k

. (3.48) 

Since we reverse direction making use of all the data through .k = 1, 2, . . . , K to 

obtain the smoothened mean and variance estimates, we use the notation .xk|K and 

.σ 2
k|K to denote their values. These new estimates turn out to be smoother since we 

now determine .xk not just based on .k = 1, 2, . . . , k (what we have observed up to 

that point), but rather on .k = 1, 2, . . . , K (all what we have observed). 

We will also make a further observation. We need to note that .xk|K and .σ 2
k|K can 

be formally expressed as 

.xk|K = E[xk|n1:K ,Θ]. (3.49) 

σ 2 
k|K = V (xk|n1:K ,Θ), (3.50) 

where .Θ represents all the model parameters. In the case of our current state-space 

model, the only unknown model parameter is .σ 2
ε (and .β0, but we will assume that 

this is calculated differently). Why is the expected value conditioned on .Θ? Recall 

that the EM algorithm consists of the state and parameter estimation steps. At the 

state estimation step, we assume that we know all the model parameters and proceed 

with calculating .xk . Mathematically, we could express this knowledge of the model 

parameters in terms of conditioning on .Θ. In reality, we could also have expressed 

.xk|k−1 and .xk|k (and the variances) in a similar manner, i.e., 

.xk|k−1 = E[xk|n1:k−1,Θ]. (3.51) 

xk|k = E[xk|n1:k,Θ]. (3.52)



30 3 State-Space Model with One Binary Observation

Finally, we also need to note that we often require not only .E[xk|n1:K ,Θ], but  

also .E[x2
k |n1:K ,Θ] and .E[xkxk+1|n1:K ,Θ] when we move on to the parameter 

estimation step. Making use of the state-space covariance algorithm [52], these 

values turn out to be 

.E[x2
k |n1:K ,Θ] = Uk = x2

k|K + σ 2
k|K . (3.53) 

E[xkxk+1|n1:K ,Θ] = Uk,k+1 = xk|Kxk+1|K + Akσ
2 
k+1|K , (3.54) 

where we have defined the two new terms .Uk and .Uk,k+1. 

3.4 Deriving the Parameter Estimation Step Equations 

Recall our earliest discussion of the EM algorithm. To describe how it functioned, 

we assumed the simple state-space model 

.xk+1 = Axk + Buk. (3.55) 

yk = Cxk. (3.56) 

We stated that, at our state estimation step, we would assume that we knew A, B, and 

C and then determine the best estimates for .xk . The state estimation step consists of 

the predict step, the update step, and the smoothing step that we perform at then end. 

At the predict step, we make a prediction for .xk using the state equation based on 

the past history of values. At the update step, we improve this prediction by making 

use of the sensor reading .yk that we just observed. After proceeding through the 

predict, update, predict, update.. . . steps, we finally reverse direction and perform 

smoothing. We primarily make use of the ideas of mean and variance at the state 

estimation step. It is after performing the state estimation step that we proceed to 

the parameter estimation step where we make use of the .xk estimates and determine 

A, B, and C. We select A, B, and C to maximize a particular probability. This 

probability is the joint density of all our .xk and .yk values. We also stated that, in 

reality, it was not strictly the probability that we maximize, but rather the expected 

value or mean of its log. Do you now see why the state estimation step involved 

calculating the expected values of .xk? 

Let us now consider the joint probability term whose expected value of the log 

we need to maximize. It is 

.p(x1:K ∩ y1:K |Θ) = p(y1:K |x1:K ,Θ)p(x1:K |Θ). (3.57) 

Since we only observe a single binary variable, we have .yk = nk . Therefore, 

.p(x1:K ∩ n1:K |Θ) = p(n1:K |x1:K ,Θ)p(x1:K |Θ). (3.58)
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We will first consider .p(x1:K |Θ). What would be the total probability of all the .xk

values if we only knew the model parameters .Θ? In other words, if we had no sensor 

readings .nk , what would be the probability of our .xk values? To calculate this, we 

would only be able to make use of the state equation, but not the output equation. 

This probability is 

.p(x1:K |Θ) = p(x1|Θ) × p(x2|x1,Θ)

× p(x3|x1, x2,Θ) × . . . × p(xK |x1, x2, . . . , xK−1,Θ). (3.59) 

=

K
∏

k=1 

1
√

2πσ 2 
ε

e

−(xk−xk−1)2 

2σ2 ε . (3.60) 

Note that in the case of each term .xk , .xk−1 contains within it the history needed to 

get to it. Let us take the log of this value and label it .Q̃. 

.Q̃ =
−K

2
log

(

2πσ 2
ε

)

−

K
∑

k=1

(xk − xk−1)
2

2σ 2
ε

. (3.61) 

Now the only model parameter we need to determine is .σ 2
ε (ignoring .β0). It turns 

out that .σ 2
ε only shows up in this term involving .p(x1:K |Θ) and not in the term 

involving .p(n1:K |x1:K ,Θ). Let us now take the expected value of .Q̃ and label it Q. 

.Q =
−K

2
log

(

2πσ 2
ε

)

−

K
∑

k=1

E

[

(xk − xk−1)
2
]

2σ 2
ε

. (3.62) 

What do we need to do at the parameter estimation step to determine .σ 2
ε ? We simply  

need to take the derivative of Q with respect to .σ 2
ε , set it to 0, and solve. But the 

expected value we need should be calculated conditioned on knowing .Θ and having 

observed .n1:K (i.e., we need .E[xk|n1:K ,Θ]). Do you now see why we expressed 

.xk|K and .σ 2
k|K in the way that we did in (3.49) and (3.50)? 

3.4.1 Deriving the Process Noise Variance 

While it is possible to determine the starting state .x0 as a separate parameter, we 

follow one of the options in [4, 5] and set .x0 = x1. This permits some bias at the 

beginning. Therefore, 

.Q =
−K

2
log

(

2πσ 2
ε

)

−

K
∑

k=2

E

[

(xk − xk−1)
2
]

2σ 2
ε

. (3.63)
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We will follow this method of setting .x0 = x1 in all of our parameter estimation 

step derivations. We take the partial derivative of Q with respect to .σ 2
ε and  set it to  

0 to solve for the parameter estimation step update. 

.
∂Q

∂σ 2
ε

=
−K

2σ 2
ε

+
1

2σ 4
ε

K
∑

k=2

E

[

(xk − xk−1)
2
]

= 0. (3.64)

=⇒ σ 2 
ε =

1 

K

K
∑

k=2

{

E
[

x2 
k

]

− 2E
[

xkxk−1

]

+ E
[

x2 
k−1

]

}

. (3.65) 

=
1 

K

{ K
∑

k=2 

Uk − 2 

K−1
∑

k=1 

Uk,k+1 +

K−1
∑

k=1 

Uk

}

. (3.66) 

The parameter estimation step update for .σ 2
ε when .xk evolves with time 

following .xk = xk−1 + εk is 

.σ 2
ε =

1

K

{ K
∑

k=2

Uk − 2

K−1
∑

k=1

Uk,k+1 +

K−1
∑

k=1

Uk

}

. (3.67) 

3.5 MATLAB Examples 

In this book, we also provide a set of MATLAB code examples that implement the 

EM algorithms described in each chapter. The code examples are organized into the 

folder structure shown below: 

• one_bin\ 

sim\ 

data_one_bin.mat 

filter_one_bin.m 

expm\ 

expm_data_one_bin.mat 

expm_filter_one_bin.m 

• one_mpp\ 

sim\ 

data_one_mpp.mat
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filter_one_mpp.m 

expm\ 

expm_data_one_mpp.mat 

expm_filter_one_mpp.m 

• one_bin_two_cont\ 

.. . .

• one_mpp_one_cont\ 

.. . .

• .. . .

In the case of each state-space model, the corresponding “.m” file with the code 

is self-contained and no additional path variables have to be set up in MATLAB. 

The code is written in such a manner that the “.m” file can be run directly (it loads 

the necessary data from the corresponding “.mat” file). The code in the “sim\” and 

“expm\” folders correspond to examples running on simulated and experimental 

data, respectively. 

Estimating an unobserved state .xk from a single binary observation .nk gives rise 

to the simplest state-space model and EM algorithm equations. The state-space 

model with only .nk was originally developed in [4]. The code for running the 

examples for this model are in the “one_bin\sim” and “one_bin\expm” folders. The 

“one_bin\sim” folder contains the “filter_one_bin.m” and the “data_one_bin.mat” 

files. The “.m” file contains the code and the “.mat” file contains the data. We will 

use a similar naming style for all the code examples accompanying this book. 

The state-space model we considered in this chapter contained the term .β0 in .pk . 

However, we did not yet explain how it was calculated. In several studies involving 

behavioral learning experiments (e.g., [4]), .β0 was determined empirically instead 

of being estimated as a separate term at the parameter estimation step. Now 

.pk =
1

1 + e−(β0+xk)
=⇒ log

(

pk

1 − pk

)

= β0 + xk, (3.68) 

and if we assume that .xk ≈ 0 at the very beginning, we have 

.β0 ≈ log

(

p0

1 − p0

)

. (3.69) 

We can use this to calculate .β0 [4]. But what is .p0? In a typical learning experiment 

involving correct/incorrect responses, .p0 can be taken to be the probability of getting 

an answer correct prior to any learning taking place. For instance, if there are only 

two possible answers in each trial, then .p0 = 0.5. If there are four possible answers 

from which to choose, .p0 = 0.25. Similarly, in experiments involving the estimation 

of sympathetic arousal from skin conductance, .p0 can be taken to be the person’s
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baseline probability of neural impulse occurrence. If the experiment involves both 

relaxation and stress periods, this baseline can be approximated by the average 

probability of an impulse occurring in the whole data. 

Let us first consider a basic outline of the code itself. The code takes the binary 

inputs .nk for which we use the variable n. Only a few parameters need to be set in 

this particular code. One of the parameters is the baseline probability .p0 for which 

we use the variable base_prob. In general, we will set base_prob to the average 

probability of .nk = 1 occurring in the data. Recall that in the EM algorithm, we 

repeat the state estimation step and the parameter estimation step until the model 

parameters converge. In this code example, we use the variable tol to determine 

the tolerance level. Here we have set it to .10−6 (i.e., the EM algorithm continues 

to execute until there is no change in the model parameters to a precision level in 

the order of .10−6). The variable ve denotes the process noise variance. We also 

use x_pred, x_updt, and x_smth to denote .xk|k−1, .xk|k , and .xk|K , respectively. We 

also use v_pred, v_updt, and v_smth to denote the corresponding variances .σ 2
k|k−1, 

.σ 2
k|k , and .σ 2

k|K . Prior to performing all the computations, the model parameters need 

to be initialized at some values. Here we have initialized the process noise variance 

to .0.005 and set the initial value of the .xk to 0. 

base_prob = sum(n) / length(n); 
tol = 1e-6; % convergence criteria 

ve(1) = 0.005; 
x_smth(1) = 0; 
b0 = log(base_prob / (1 - base_prob)); 

At a given iteration of the EM algorithm, the code first proceeds in the forward 

direction from .k = 1, 2, . . . , K calculating both .xk|k−1 and .xk|k . 

x_pred(k) = x_updt(k - 1); 
v_pred(k) = v_updt(k - 1) + ve(m); 

x_updt(k) = get_state_update(x_pred(k), v_pred(k), b0, n(k)); 
p_updt(k) = 1 / (1 +  exp((-1) * (b0 + x_updt(k)))); 
v_updt(k) = 1 / ((1  /  v_pred(k)) + p_updt(k) * (1 - p_updt(k))); 

Here the mean state update .xk|k is calculated using the function shown below 

(Newton–Raphson method). 

function [y] = get_state_update(x_pred, v_pred, b0, n) 

M = 50; % maximum iterations 

it = zeros(1, M); 
func = zeros(1, M); 
df = zeros(1, M); 

it(1) = x_pred; 

for i = 1:(M - 1)  
func(i) = it(i) - x_pred - v_pred * (n - exp(b0 + it(i)) / 

(1 + exp(b0 + it(i))));
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df(i) = 1 + v_pred * exp(b0 + it(i)) / ((1 + exp(b0 + it(i 
)))  ̂ 2); 

it(i + 1) = it(i) - func(i) / df(i); 

if abs(it(i + 1) - it(i)) < 1e-14 
y = it(i + 1);  

return 
end 

end 

error(’Newton-Raphson failed to converge.’); 

end 

After proceeding in the forward direction, we reverse direction and proceed through 

.k = K, (K − 1), . . . , 1 to obtain the smoothened .xk|K and .σ 2
k|K values. In the code 

shown below, the variables W and CW denote .Uk and .Uk,k+1 in (3.53) and (3.54), 

respectively. 

x_smth(K) = x_updt(K); 
v_smth(K) = v_updt(K); 
W(K) = v_smth(K) + (x_smth(K) ^ 2); 

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end); 

for k = (K - 1):(-1):1 
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 1)); 
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) - v_pred(k 

+ 1));  

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1); 
W(k) = v_smth(k) + (x_smth(k) ^ 2); 

end 

After performing state estimation at a particular iteration, we then perform param-

eter estimation. The state estimation and the parameter estimation steps continue to 

be executed in turn until convergence. 

3.5.1 Application to Skin Conductance and Sympathetic 

Arousal 

Running both the simulated and experimental data examples produces the results 

shown in Fig. 3.3. The code running on simulated data implements the EM algorithm 

described in this chapter. The code running on experimental data, on the other hand, 

runs a slightly modified version closer to what was implemented in [25, 26] for  

estimating sympathetic arousal based on skin conductance. This version of the code 

additionally attempts to estimate the starting state .x0 as a separate model parameter. 

If this code is used to estimate sympathetic arousal based on skin conductance, 

the only input that is required is the sequence of .nk values (denoted by the variable
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n) that represents the presence or absence of neural impulses responsible for SCRs. 

Ideally, the sequence of neural impulses must be extracted by deconvolving the skin 

conductance data using a deconvolution procedure such as described in [47]. If, 

however, deconvolution of the skin conductance data is not possible, a simpler 

peak detection mechanism could be also used to provide these locations (peak 

detection was used in [25] and deconvolution was used in [26] for sympathetic 

arousal estimation). Also with the experimental data, and in several other examples 

that follow, we use the term “HAI” to denote “High Arousal Index” since many 

of our examples involve the estimation of sympathetic arousal from physiological 

data. The HAI is inspired by the “Ideal Observer Certainty” term in [4] and is an 

estimate of how much .pk is above a certain baseline. The HAI can also be calculated 

based on .xk exceeding an equivalent baseline since .pk is related to .xk . 

The right sub-figure in Fig. 3.3 provides an example of how sympathetic arousal 

varied for a particular subject engaged in an experiment involving different stressors. 

The experiment is described in [53]. The first three shaded backgrounds correspond 
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Fig. 3.3 State estimation based on observing one binary variable. The left sub-figure depicts 

estimation on simulated data, and the right sub-figure depicts the estimation of sympathetic arousal 

from skin conductance data. The sub-panels on the left, respectively, depict: (a) the binary event 

occurrences .nk ; (b) the probability of binary event occurrence .pk (blue) and its estimate (red); (c) 

the state .xk (blue) and its estimate (red); (d) the quantile–quantile (QQ) plot for the residual error of 

.xk . The sub-panels on the right, respectively, depict: (a) the skin conductance signal; (b) the neural 

impulses; (c) the arousal state .xk and its 95% confidence limits; (d) the probability of impulse 

occurrence and its 95% confidence limits; (e) the HAI (the regions above 90% and below 10% are 

shaded in red and green, respectively). The background colors on the right sub-figure correspond 

to the instruction period, a counting task, a color–word association task, relaxation, and watching 

a horror movie clip. From [32], used under Creative Commons CC-BY license
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Fig. 3.4 Driver stress estimation. The sub-panels, respectively, depict: (a) the skin conductance 

signal; (b) the neural impulses; (c) the arousal state .xk and its 95% confidence limits; (d) the  

probability of impulse occurrence and its 95% confidence limits; (e) the HAI (the regions above 

90% and below 10% are shaded in red and green, respectively). The background colors in turn 

denote rest, city driving, toll road, highway, toll road, city driving, toll road, highway, toll road, 

city driving, and rest. From [32], used under Creative Commons CC-BY license 

to a period of instructions followed by two cognitive tasks. Arousal remains high 

during this period. Arousal drops significantly during the relaxation period that 

follows and briefly increases at the beginning of the emotional stressor (horror 

movie) after that. Figure 3.4 also provides an additional example of how arousal



38 3 State-Space Model with One Binary Observation

varied in a driver stress experiment. The data come from the study described in [54]. 

In the experiment, each subject had to drive a vehicle along a set route comprising 

of city driving, toll roads, and highways. Figure 3.4 shows how sympathetic arousal 

varied during the different road conditions and the rest periods that preceded and 

followed the actual drive. 
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Chapter 4 

State-Space Model with One Binary 
and One Continuous Observation 

In this chapter, we will consider the case where .xk evolves with time following a 

slightly more complicated state equation and gives rise to both a binary observation 

.nk and a continuous observation .rk . Prior to looking into the equation derivations, 

however, as in the previous chapter, we will again first consider a few example 

scenarios where the need for such a model arises. 

In the previous chapter, we considered the estimation of a continuous-valued 

learning state .xk based on correct/incorrect responses in a sequence of experimental 

trials. Based on a state-space model consisting of .xk and the binary observations 

.nk , the cognitive learning state of an animal could be estimated over time [4]. Note, 

however, that it is not just the correct/incorrect responses that contain information 

regarding the animal’s learning state. How fast the animal responds also reflects 

changes in learning. For instance, as an animal gradually begins to learn to recognize 

a specific visual target, not only do the correct answers begin to occur more 

frequently, but the time taken to respond in each of the trials also starts decreasing 

(Fig. 4.1). Thus, a state-space model with both a binary observation .nk and a 

continuous observation .rk was developed in [5] to estimate learning. This was an 

improvement over the earlier model in [4]. 

This particular state-space model is not just limited to cognitive learning. It can 

also be adapted to other applications as well. Human emotion is typically accounted 

for along two different axes known as valence and arousal [55]. Valence denotes the 

pleasant–unpleasant nature of an emotion, while arousal denotes its corresponding 

activation or excitement. Emotional arousal is closely tied to the activation of the 

sympathetic nervous system [56, 57]. Changes in arousal can occur regardless of 

the valence of the emotion (i.e., arousal can be high when the emotion is negative, 
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Correct/incorrect responses 

Reac�on �mes 

Cogni�ve learning state 

Fig. 4.1 A monkey in a learning experiment with binary-valued correct/incorrect responses where 

reaction times are recorded. In a behavioral learning experiment, not only do the binary-valued 

correct/incorrect responses contain information regarding learning, but the time taken to respond in 

each trial also reflects changes in learning. The state-space model with correct/incorrect responses 

and reaction times was used in [5] to estimate a cognitive learning state in animal models 

as in the case of rage, or when it is positive, as in the case of excitement). As we 

saw in the earlier chapter, skin conductance is a sensitive index of arousal. Changes 

in emotional valence, on the other hand, often cause changes in facial expressions. 

Information regarding these facial expressions can be captured via EMG sensors 

attached to the face. The state-space model with one binary observation .nk and one 

continuous observation .rk was used in [27] for an emotional valence recognition 

application based on EMG signals. In [27], Yadav et al. extracted both a binary 

feature and a continuous feature based on EMG amplitudes and powers from data 

in an experiment where subjects watched a series of music videos meant to evoke 

different emotions. Based on the model, they were able to extract a continuous-

valued emotional valence state .xk over time. The same model was also used in [28] 

for detecting epileptic seizures. Here, the authors extracted a binary feature and 

a continuous feature from scalp EEG signals to detect the occurrence of epileptic 

seizures. Based on the features, a continuous-valued seizure severity state could 

be tracked over time. These examples serve to illustrate the possibility of using 

physiological state-space models for a wide variety of applications. 

4.1 Deriving the Predict Equations in the State Estimation 

Step 

Let us now consider the state-space model itself. Assume that .xk varies with time as 

.xk = ρxk−1 + εk, (4.1) 

where .ρ is a constant (forgetting factor) and .εk ∼ N (0, σ 2
ε ). As in the previous 

chapter, we will, for the time-being, ignore that this is part of state-space control 

system, and instead view the equation purely in terms of a relationship between
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three random variables. As before, we will also consider the derivation of the mean 

and variance of .xk using basic formulas. We first consider the mean. 

.E[xk] = E[ρxk−1 + εk]. (4.2) 

= E[ρxk−1] + E[εk] using (2.1). (4.3) 

= ρE[xk−1] + E[εk] using (2.3). (4.4) 

= ρE[xk−1] since E[εk] = 0. (4.5) 

∴ E[xk] = ρxk−1|k−1. (4.6) 

Next we consider the variance. 

.V (xk) = V (ρxk−1 + εk). (4.7) 

= V (ρxk−1) + V (εk) + 2Cov(ρxk−1, εk) using (2.4). (4.8) 

= V (ρxk−1) + V (εk) since εk is uncorrelated with any of the xk terms.

(4.9) 

= ρ2V (xk−1) + V (εk) using (2.6). (4.10) 

∴ V (xk) = ρ2σ 2 
k−1|k−1 + σ 2 

ε . (4.11) 

Now that we know the mean and variance of .xk , we can use the fact that it is also 

Gaussian distributed to state that 

.p(xk|n1:k−1, r1:k−1) =
1

√

2πσ 2
k|k−1

e

−(xk−xk|k−1)2

2σ2
k|k−1 . (4.12) 

When .xk evolves with time following .xk = ρxk−1 + εk , the predict equations 

in the state estimation step are 

.xk|k−1 = ρxk−1|k−1. (4.13) 

σ 2 
k|k−1 = ρ2σ 2 

k−1|k−1 + σ 2 
ε . (4.14) 

4.2 Deriving the Update Equations in the State Estimation 

Step 

In the current model, .xk gives rise to a continuous-valued observation .rk in addition 

to .nk . We shall assume that .xk is related to .rk through a linear relationship.



42 4 State-Space Model with One Binary and One Continuous Observation

.rk = γ0 + γ1xk + vk, (4.15) 

where .γ0 and .γ1 are constants and .vk ∼ N (0, σ 2
k ) is sensor noise. Our sensor 

readings .yk now consist of both .rk and .nk . What would be the best estimate of 

.xk once we have observed .yk? Just like in the previous chapter, we will make use of 

the result in (2.16) to derive this estimate. First, however, we need to note that 

.p(rk|xk) =
1

√

2πσ 2
v

e

−(rk−γ0−γ1xk)2

2σ2v . (4.16) 

This can be easily verified from (4.15). We are now ready to derive the best estimate 

(mean) for .xk and its uncertainty. We will need to make use of .p(rk|xk), .p(nk|xk), 

and .p(xk|n1:k−1, r1:k−1) to derive this estimate. Note that we now have an additional 

exponent term for .rk in .p(xk|n1:k, r1:k). Using  (2.16), we have 

.p(xk|n1:k, r1:k)

=
p(nk|xk, n1:k−1, r1:k−1)p(rk|xk, n1:k−1, r1:k−1)p(xk|n1:k−1, r1:k−1)

p(nk, rk|n1:k−1, r1:k−1)
.

(4.17) 

∝ p(nk|xk)p(rk|xk)p(xk|n1:k−1, r1:k−1). (4.18) 

∝ enk log(pk)+(1−nk) log(1−pk) × e

−(rk−γ0−γ1xk)2 

2σ2 v × e

−(xk−xk|k−1)2 

2σ2 
k|k−1 . (4.19) 

Taking the log on both sides, we have 

.q = nk log(pk) + (1 − nk) log(1 − pk) −
(rk − γ0 − γ1xk)

2

2σ 2
v

−
(xk − xk|k−1)

2

2σ 2
k|k−1

+ constant. (4.20) 

The mean and variance of .xk can now be derived by taking the first and second 

derivatives of q. Making use of (3.39), we have 

.
dq

dxk

= nk − pk +
γ1(rk − γ0 − γ1xk)

σ 2
v

−
(xk − xk|k−1)

σ 2
k|k−1

= 0. (4.21) 

We will use a small trick to solve for .xk in the equation above. We will add and 

subtract the term .γ1xk|k−1 in the term involving .rk .
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.nk − pk +
γ1(rk − γ0 − γ1xk + γ1xk|k−1 − γ1xk|k−1)

σ 2
v

=
(xk − xk|k−1)

σ 2
k|k−1

.

(4.22) 

nk − pk +
γ1(rk − γ0 − γ1xk|k−1)

σ 2 
v

−
γ 2 
1 

σ 2 
v

(xk − xk|k−1) =
(xk − xk|k−1)

σ 2 
k|k−1 

.

(4.23) 

nk − pk +
γ1(rk − γ0 − γ1xk|k−1)

σ 2 
v

= (xk − xk|k−1)

(

1 

σ 2 
k|k−1 

+
γ 2 
1 

σ 2 
v

)

.

(4.24) 

σ 2 
v (nk − pk) + γ1(rk − γ0 − γ1xk|k−1)

σ 2 
v

= (xk − xk|k−1)

(

σ 2 
v + γ 2 

1 σ
2 
k|k−1 

σ 2 
k|k−1σ

2 
v

)

.

(4.25) 

This yields the mean update 

.xk = xk|k−1 +
σ 2

k|k−1

γ 2
1 σ 2

k|k−1 + σ 2
v

[

σ 2
v (nk − pk) + γ1(rk − γ0 − γ1xk|k−1)

]

.

(4.26) 

Again, to clarify the explicit dependence of .pk on .xk and the fact that this is the 

estimate of .xk having observed .n1:k and .r1:k (the sensor readings up to time index 

k), we shall say 

.xk|k = xk|k−1 +
σ 2

k|k−1

γ 2
1 σ 2

k|k−1 + σ 2
v

[

σ 2
v (nk − pk|k) + γ1(rk − γ0 − γ1xk|k−1)

]

.

(4.27) 

We next take the second derivative of q similar to (3.40). This yields 

.
d2q

dx2
k

= −pk(1 − pk) −
γ 2
1

σ 2
v

−
1

σ 2
k|k−1

. (4.28) 

Based on (2.21), the uncertainty or variance associated with the new state estimate 

.xk|k , therefore, is 

.σ 2
k|k = −

(

d2q

dx2
k

)−1

=

[

1

σ 2
k|k−1

+ pk|k(1 − pk|k) +
γ 2
1

σ 2
v

]−1

. (4.29)
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When .xk gives rise to a binary observation .nk and a continuous observation 

.rk , the update equations in the state estimation step are 

.xk|k = xk|k−1 +
σ 2

k|k−1

γ 2
1 σ 2

k|k−1 + σ 2
v

[

σ 2
v (nk − pk|k) + γ1(rk − γ0 − γ1xk|k−1)

]

.

(4.30) 

σ 2 
k|k =

[

1 

σ 2 
k|k−1 

+ pk|k(1 − pk|k) +
γ 2 
1 

σ 2 
v

]−1 

. (4.31) 

4.3 Deriving the Parameter Estimation Step Equations 

In the previous chapter, we only needed to derive the update equation for the process 

noise variance .σ 2
ε at the parameter estimation step. In the current model, we have a 

few more parameters. Thus we will need to derive the update equations for .ρ, .γ0, 

.γ1, and .σ 2
v in addition to the update for .σ 2

ε . 

4.3.1 Deriving the Process Noise Variance 

The derivation of the process noise variance update is very similar to the earlier case 

in the preceding chapter. In fact, the only difference from (3.62) is that we will now 

have .ρxk−1 in the log-likelihood term instead of .xk−1. We shall label the required 

log-likelihood term .Q1. 

.Q1 =
−K

2
log

(

2πσ 2
ε

)

−

K
∑

k=2

E

[

(xk − ρxk−1)
2
]

2σ 2
ε

. (4.32) 

We take the partial derivative of .Q1 with respect to .σ 2
ε and set it to 0 to solve for the 

parameter estimation step update. 

.
∂Q1

∂σ 2
ε

=
−K

2σ 2
ε

+
1

2σ 4
ε

K
∑

k=2

E

[

(xk − ρxk−1

]

= 0. (4.33)

=⇒ σ 2 
ε =

1 

K

K
∑

k=2

{

E
[

x2 
k

]

− 2ρE
[

xkxk−1

]

+ ρ2
E

[

x2 
k−1

]

}

. (4.34)
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=
1 

K

{ K
∑

k=2 

Uk − 2ρ

K−1
∑

k=1 

Uk,k+1 + ρ2 
K−1
∑

k=1 

Uk

}

. (4.35) 

The parameter estimation step update for .σ 2
ε when .xk evolves with time 

following .xk = ρxk−1 + εk is 

.σ 2
ε =

1

K

{ K
∑

k=2

Uk − 2ρ

K−1
∑

k=1

Uk,k+1 + ρ2
K−1
∑

k=1

Uk

}

. (4.36) 

4.3.2 Deriving the Forgetting Factor 

We will take the partial derivative of .Q1 in (4.32) with respect to .ρ and  set it to 0 to  

solve for its parameter estimation step update. 

.
∂Q1

∂ρ
=

(−1)

2σ 2
ε

K
∑

k=2

E
[

− 2xk−1(xk − ρxk−1)
]

. (4.37)

=⇒ 0 = −

K
∑

k=2 

E
[

xkxk−1

]

+ ρ

K
∑

k=2 

E
[

x2 
k−1

]

. (4.38) 

= −

K−1
∑

k=1 

Uk,k+1 + ρ

K−1
∑

k=1 

Uk. (4.39) 

ρ =

K−1
∑

k=1 

Uk,k+1

[ K−1
∑

k=1 

Uk

]−1 

. (4.40) 

The parameter estimation step update for .ρ when .xk evolves with time 

following .xk = ρxk−1 + εk is 

.ρ =

K−1
∑

k=1

Uk,k+1

[ K−1
∑

k=1

Uk

]−1

. (4.41)
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4.3.3 Deriving the Constant Coefficient Terms 

We will next consider the model parameters that are related to .rk . Recall from (3.57) 

that we need to maximize the expected value of the log of the joint probability 

.p(x1:K ∩ y1:K |Θ) = p(y1:K |x1:K ,Θ)p(x1:K |Θ). (4.42) 

In the current state-space model, .yk comprises both .nk and .rk . The probability term 

containing .γ0, .γ1, and .σ 2
v is 

.p(r1:K |x1:K ,Θ) =

K
∏

k=1

1
√

2πσ 2
v

e

−(rk−γ0−γ1xk)2

2σ2v . (4.43) 

Let us first take the log of this term followed by the expected value. Labeling this as 

.Q2, we have  

.Q2 =
−K

2
log

(

2πσ 2
v

)

−

K
∑

k=1

E

[

(rk − γ0 − γ1xk)
2
]

2σ 2
v

. (4.44) 

To solve for .γ0 and .γ1, we have to take the partial derivatives of .Q2 with respect to 

.γ0 and .γ1, set them each to 0, and solve the resulting equations. We first take the 

partial derivative with respect to .γ0. 

.
∂Q2

∂γ0
=

1

2σ 2
v

K
∑

k=1

2E
[

rk − γ0 − γ1xk

]

= 0. (4.45)

=⇒ 0 =

K
∑

k=1 

rk − γ0K − γ1 

K
∑

k=1 

E
[

xk

]

. (4.46) 

=

K
∑

k=1 

rk − γ0K − γ1 

K
∑

k=1 

xk|K . (4.47) 

γ0K + γ1 

K
∑

k=1 

xk|K =

K
∑

k=1 

rk. (4.48) 

This provides one equation containing the two unknowns .γ0 and .γ1. We next take  

the partial derivative with respect to .γ1. 

.
∂Q2

∂γ1
=

1

2σ 2
v

K
∑

k=1

2E
[

xk(rk − γ0 − γ1xk)
]

= 0. (4.49)
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=⇒ 0 =

K
∑

k=1 

rkE
[

xk

]

− γ0 

K
∑

k=1 

E
[

xk

]

− γ1 

K
∑

k=1 

E
[

x2 
k

]

=

K
∑

k=1 

rkxk|K − γ0 

K
∑

k=1 

xk|K − γ1 

K
∑

k=1 

Uk. (4.50) 

γ0 

K
∑

k=1 

xk|K + γ1 

K
∑

k=1 

Uk =

K
∑

k=1 

rkxk|K . (4.51) 

This provides the second equation necessary to solve for .γ0 and .γ1. 

The parameter estimation step updates for .γ0 and .γ1 when we observe a 

continuous variable .rk = γ0 + γ1xk + vk are 

.

[

γ0

γ1

]

=

[

K
∑K

k=1 xk|K
∑K

k=1 xk|K

∑K
k=1 Uk

]−1[ ∑K
k=1 rk

∑K
k=1 rkxk|K

]

. (4.52) 

4.3.4 Deriving the Sensor Noise Variance 

The term .Q2 in (4.44) also contains the sensor noise variance .σ 2
v . 

.Q2 =
−K

2
log

(

2πσ 2
v

)

−

K
∑

k=1

E

[

(rk − γ0 − γ1xk)
2
]

2σ 2
v

. (4.53) 

We take its partial derivative with respect to .σ 2
v and  set it to 0 to solve  for .σ 2

v . 

.
∂Q2

∂σ 2
v

=
−K

2σ 2
v

+
1

2σ 4
v

K
∑

k=1

E

[

(rk − γ0 − γ1xk)
2
]

= 0. (4.54)

=⇒ σ 2 
v =

1 

K

K
∑

k=1 

E

[

(rk − γ0 − γ1xk)
2
]

=
1 

K

{ K
∑

k=1 

r2 k + Kγ 2 
0 + γ 2 

1 

K
∑

k=1 

E
[

x2 
k ] − 2γ0 

K
∑

k=1 

rk − 2γ1 

K
∑

k=1 

rkE
[

xk

]
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+ 2γ0γ1 

K
∑

k=1 

E
[

xk

]

}

=
1 

K

{ K
∑

k=1 

r2 k + Kγ 2 
0 + γ 2 

1 

K
∑

k=1 

Uk − 2γ0 

K
∑

k=1 

rk − 2γ1 

K
∑

k=1 

rkxk|K

+ 2γ0γ1 

K
∑

k=1 

xk|K

}

. (4.55) 

The parameter estimation step update for .σ 2
v when we observe a continuous 

variable .rk = γ0 + γ1xk + vk is 

.σ 2
v =

1

K

{ K
∑

k=1

r2k + Kγ 2
0 + γ 2

1

K
∑

k=1

Uk − 2γ0

K
∑

k=1

rk − 2γ1

K
∑

k=1

rkxk|K

+ 2γ0γ1

K
∑

k=1

xk|K

}

. (4.56) 

4.4 MATLAB Examples 

The MATLAB code examples for implementing the EM algorithm described in this 

chapter are provided in the following folders: 

• one_bin_one_cont\ 

sim\ 

data_one_bin_one_cont.mat 

filter_one_bin_one_cont.m 

expm\ 

expm_data_one_bin_two_cont.mat 

expm_filter_one_bin_one_cont.m 

Note that the code implements a slightly different version of what was discussed 

here in that the state equation does not contain .ρ. Code examples containing .ρ and 

.³Ik are provided in the following chapter for the case where one binary and two 

continuous observations are present in the state-space model. The current code can 

easily be modified if .ρ is to be included.
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The code for this particular state-space model is an extension of the earlier model. 

It takes in as input variables n and r that denote .nk and .rk , respectively. We use 

r0, r1, and vr for .γ0, .γ1, and .σ
2
v . Shown below is a part of the code where .´0 is 

calculated and the model parameters are initialized. 

base_prob = sum(n) / length(n); 
tol = 1e-8; % convergence criteria 

ve(1) = 0.005; 
x_smth(1) = 0; 
r0(1) = 0.1; 
r1(1) = r(1); 
vr(1) = 0.002; 
b0 = log(base_prob / (1 - base_prob)); 

Similar to the code examples in the preceding chapter, we also use x_pred, 

x_updt, and x_smth to denote .xk|k−1, .xk|k , and .xk|K , respectively. Similarly, 

v_pred, v_updt, and v_smth are used to denote the corresponding variances .σ 2
k|k−1, 

.σ 2
k|k , and .σ 2

k|K . Just like in the earlier case as well, the code first progresses through 

the time indices .k = 1, 2, . . . , K at the state estimation step. 

x_pred(k) = x_updt(k - 1); 
v_pred(k) = v_updt(k - 1) + ve(m); 

x_updt(k) = get_posterior_mode(x_pred(k), v_pred(k), r(k), r0(m), 
r1(m), vr(m), b0, n(k)); 

p_updt(k) = 1 / (1 +  exp((-1) * (b0 + x_updt(k)))); 
v_updt(k) = 1 / ((1  /  v_pred(k)) + ((r1(m) ^ 2) / vr(m)) + p_updt 

(k) * (1 - p_updt(k))); 

The update for .xk|k is calculated using the function shown below based on both 

.nk and .rk . 

function [y] = get_posterior_mode(x_pred, v_pred, z, r0, r1, vr, 
b0, n) 

M = 100; % maximum iterations 

it = zeros(1, M); 
f =  zeros(1, M); 
df = zeros(1, M); 

it(1) = x_pred; 

for i = 1:(M - 1)  
C = v_pred / ((r1 ^ 2) * v_pred + vr); 
f(i) = it(i) - x_pred - C * (r1 * (z - r0 - r1  * x_pred) 

+ vr  * (n - (1 / (1 +  exp((-1) * (b0 + it(i))))))); 
df(i) = 1 + C  * vr * exp(b0 + it(i)) / ((1 + exp(b0 + it(  

i)))  ̂ 2); 

it(i + 1) = it(i) - f(i) / df(i); 

if abs(it(i + 1) - it(i)) < 1e-14
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y = it(i + 1);  
return 

end 
end 

error(’Newton-Raphson failed to converge.’); 

end 

The smoothing step also remains the same (there would have been a change if .ρ

was included). 

x_smth(K) = x_updt(K); 
v_smth(K) = v_updt(K); 
W(K) = v_smth(K) + (x_smth(K) ^ 2); 

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end); 

for k = (K - 1):(-1):1 
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 1)); 
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) - v_pred(k 

+ 1));  

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1); 
W(k) = v_smth(k) + (x_smth(k) ^ 2); 

end 

The updates for .σ 2
ε , .γ0, .γ1, and .σ 2

v are calculated at the parameter estimation step. 

4.4.1 Application to EMG and Emotional Valence 

Running the simulated and experimental data code examples produces the results 

shown in Fig. 4.2. The experimental data example relates to emotional valence and 

EMG. Emotion can be accounted for along two different orthogonal axes known 

as valence and arousal [55]. Valence refers to the pleasant–unpleasant nature of an 

emotion. In [27], this state-space model with one binary and one continuous feature 

was used to estimate emotional valence using EMG signal features. The binary and 

continuous features were extracted based on the amplitudes and powers of the EMG 

signal. The data were collected as a part of the study described in [58] where subjects 

were shown a series of music videos to elicit different emotional responses.
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Fig. 4.2 State estimation based on observing one binary and one continuous variable. The left 

sub-figure depicts estimation on simulated data, and the right sub-figure depicts the estimation of 

emotional valence from EMG data. The sub-panels on the left, respectively, depict: (a) the binary 

event occurrences .nk ; (b) the continuous variable .rk (blue) and its estimate (red); (c) the probability 

of binary event occurrence .pk (blue) and its estimate (red); (d) the state .xk (blue) and its estimate 

(red); (e) the QQ plot for the residual error of .xk . The sub-panels on the right, respectively, depict: 

(a) the raw EMG signal; (b) the binary EMG feature .nk ; (c) the continuous EMG feature .rk (blue) 

and its estimate (red); (d) the probability of binary event occurrence; (e) the emotional valence 

state .xk . The shaded background colors on the right sub-figure correspond to music videos where 

subject-provided emotional valence ratings were high 
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Chapter 5 

State-Space Model with One Binary 
and Two Continuous Observations 

In this chapter, we will consider a more complicated form of the state equation—one 

that contains both a forgetting factor and an external input. We will also extend the 

earlier state-space model to the case where we now have one binary observation and 

two continuous observations. As before, however, we will first consider a scenario 

motivating the need for such a state-space model. 

Recall the example two chapters ago concerning the estimation of sympathetic 

arousal from skin conductance features. In reality, it is not just the rate of occurrence 

of neural impulses to the sweat glands that reflects changes in arousal. Other features 

in a skin conductance signal also contain arousal information. A skin conductance 

signal comprises a fast-varying phasic component superimposed on top of a slower-

varying tonic component. The phasic component consists of all the SCRs. The 

amplitudes of these SCRs (or equivalently, the amplitudes of the neural impulses 

that generated them), in addition to their occurrence, also reflect changes in arousal 

[59]. In particular, larger SCRs reflect greater sympathetic arousal. Additionally, 

the tonic level also contains information regarding general arousal [60]. Thus, there 

are three primary sources of information in a skin conductance signal that capture 

arousal levels: (i) the occurrence of SCRs (or equivalently the occurrence of the 

neural impulses that generated the SCRs); (ii) the amplitudes of the SCRs (or the 

amplitudes of the neural impulses); (iii) the tonic component. These three make 

up one binary feature and two amplitude (continuous) features. A state-space model 

based on these three features was developed in [29], for estimating arousal from skin 

conductance. Here, a transformed version of the SCR amplitudes was interpolated 

over to derive the first continuous variable, and the tonic component was considered 
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the second continuous variable. Different algorithms are available for separating out 

the tonic and phasic components in a skin conductance signal (e.g., [61, 62]). 

A further note is also worth mentioning here. Recall the .uk term in our discussion 

of state-space models at the beginning. Thus far, we have not yet considered a model 

where an external input also drives the state .xk . In reality, external circumstances and 

environmental inputs all affect the way we feel. The model in [29] included such 

an external input term .Ik . The model was evaluated on two experimental datasets, 

one of which involved a Pavlovian fear conditioning experiment. In typical fear 

conditioning experiments, a neutral cue is paired with an unpleasant stimulus such 

as a painful electric shock. Through repeated pairing, the neutral cue alone begins 

to elicit a physiological response that is typically seen for the unpleasant stimulus 

[63]. In fear conditioning experiments, the unpleasant stimulus could also take other 

forms such a blast of air to the throat, an aversive image, or a loud sound [64, 65]. 

In [29], the neutral cues along with the unpleasant shocks were modeled as binary-

valued indicator inputs .Ik that drove the sympathetic arousal state .xk . 

5.1 Deriving the Predict Equations in the State Estimation 

Step 

Let us now turn our attention to the state-space model itself and assume that .xk

evolves with time as 

.xk = ρxk−1 + αIk + εk, (5.1) 

where .α is a constant and .Ik is an external input. The other terms have their usual 

meanings. Let us again consider how we may derive the mean and variance using 

basic statistical formulas. Since we know what the external input is, we do not treat 

it as a random variable but rather as a constant term. We first consider the mean. 

.E[xk] = E[ρxk−1 + αIk + εk]. (5.2) 

= E[ρxk−1] + E[αIk] + E[εk] using (2.1). (5.3) 

= E[ρxk−1] + αIk + E[εk] using (2.2). (5.4) 

= ρE[xk−1] + αIk + E[εk] using (2.3). (5.5) 

= ρE[xk−1] + αIk since E[εk] = 0. (5.6) 

∴ E[xk] = ρxk−1|k−1 + αIk. (5.7) 

We next consider the variance. 

.V (xk) = V (ρxk−1 + αIk + εk). (5.8) 

= V (ρxk−1 + αIk) + V (εk) + 2Cov(ρxk−1 + αIk, εk) using (2.4).

(5.9)
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= V (ρxk−1 + αIk) + V (εk)

since εk is uncorrelated with any of the xk or Ik terms. (5.10) 

= V (ρxk−1) + V (εk) using (2.5). (5.11) 

= ρ2V (xk−1) + V (εk) using (2.6). (5.12) 

∴ V (xk) = ρ2σ 2 
k−1|k−1 + σ 2 

ε . (5.13) 

When .xk evolves with time following .xk = ρxk−1 + αIk + εk , the predict 

equations in the state estimation step are 

.xk|k−1 = ρxk−1|k−1 + αIk. (5.14) 

σ 2 
k|k−1 = ρ2σ 2 

k−1|k−1 + σ 2 
ε . (5.15) 

5.2 Deriving the Update Equations in the State Estimation 

Step 

In this state-space model, we include a second continuous variable .sk . Similar to .rk , 

we will assume that .sk too is linearly related to .xk as 

.sk = δ0 + δ1xk + wk, (5.16) 

where .δ0 and .δ1 are constants and .wk ∼ N (0, σ 2
w) is sensor noise. Similar to the 

case of .rk in (4.16), we also have 

.p(sk|xk) =
1

√

2πσ 2
w

e

−(sk−δ0−δ1xk)2

2σ2
w . (5.17) 

The procedure to derive the update equations in the state estimation step is now 

similar to what we have seen earlier. With .sk included, we have yet another exponent 

term in .p(xk|y1:k). Therefore, 

.p(xk|y1:k) ∝ p(nk|xk)p(rk|xk)p(sk|xk)p(xk|n1:k−1, r1:k−1, s1:k−1). (5.18) 

∝ enk log(pk)+(1−nk) log(1−pk) × e

−(rk−γ0−γ1xk)2 

2σ2 
v × e

−(sk−δ0−δ1xk)2 

2σ2 
w

× e

−(xk−xk|k−1)2 

2σ2 
k|k−1 . (5.19)
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Taking the log on both sides, we have 

.q = nk log(pk) + (1 − nk) log(1 − pk) −
(rk − γ0 − γ1xk)

2

2σ 2
v

−
(sk − δ0 − δ1xk)

2

2σ 2
w

−
(xk − xk|k−1)

2

2σ 2
k|k−1

+ constant. (5.20) 

Taking the first derivative of q and setting it to 0 yield 

.
dq

dxk

= nk − pk +
γ1(rk − γ0 − γ1xk)

σ 2
v

+
δ1(sk − δ0 − δ1xk)

σ 2
w

−
(xk − xk|k−1)

σ 2
k|k−1

= 0. (5.21) 

We used a trick in the previous chapter to solve for .xk . We added and subtracted 

.γ1xk|k−1 to the term containing .rk . We will do the same here. We will also add and 

subtract .δ1xk|k−1 to the term containing .sk . 

.
(xk − xk|k−1)

σ 2
k|k−1

= nk − pk +
γ1(rk − γ0 − γ1xk + γ1xk|k−1 − γ1xk|k−1)

σ 2
v

+
δ1(sk − δ0 − δ1xk + δ1xk|k−1 − δ1xk|k−1)

σ 2
w

. (5.22) 

= nk − pk +
γ1(rk − γ0 − γ1xk|k−1)

σ 2 
v

+
δ1(sk − δ0 − δ1xk|k−1)

σ 2 
w

−

(

γ 2 
1 

σ 2 
v

+
δ2 

1 

σ 2 
w

)

(xk − xk|k−1). (5.23) 

= nk − pk +
γ1(rk − γ0 − γ1xk|k−1)

σ 2 
v

+
δ1(sk − δ0 − δ1xk|k−1)

σ 2 
w

−

(

γ 2 
1 σ

2 
w + δ2 

1σ 2 
v

σ 2 
v σ 2 

w

)

(xk − xk|k−1). (5.24) 

Therefore, 

.
(xk − xk|k−1)

σ 2
k|k−1

+

(

γ 2
1 σ 2

w + δ2
1σ 2

v

σ 2
v σ 2

w

)

(xk − xk|k−1)

= nk − pk +
γ1(rk − γ0 − γ1xk|k−1)

σ 2
v

+
δ1(sk − δ0 − δ1xk|k−1)

σ 2
w

. (5.25)
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(xk − xk|k−1)

[

σ 2 
v σ 2 

w + σ 2 
k|k−1(γ

2 
1 σ

2 
w + δ2 

1σ 2 
v )

σ 2 
k|k−1σ

2 
v σ 2 

w

]

=
σ 2 

v σ 2 
w

σ 2 
v σ 2 

w

(nk − pk) +
γ1σ

2 
w(rk − γ0 − γ1xk|k−1)

σ 2 
v σ 2 

w

+
δ1σ

2 
v (sk − δ0 − δ1xk|k−1)

σ 2 
v σ 2 

w

. (5.26) 

This yields the state update 

.xk|k = xk|k−1 +
σ 2

k|k−1

σ 2
v σ 2

w + σ 2
k|k−1(γ

2
1 σ 2

w + δ2
1σ 2

v )

×

[

σ 2
v σ 2

w(nk − pk|k) + γ1σ
2
w(rk − γ0 − γ1xk|k−1)

+ δ1σ
2
v (sk − δ0 − δ1xk|k−1)

]

. (5.27) 

Likewise, the second derivative yields 

.
d2q

dx2
k

= −pk(1 − pk) −
γ 2

1

σ 2
v

−
δ2

1

σ 2
w

−
1

σ 2
k|k−1

. (5.28) 

And therefore, 

.σ 2
k|k =

[

1

σ 2
k|k−1

+ pk|k(1 − pk|k) +
γ 2

1

σ 2
v

+
δ2

1

σ 2
w

]−1

. (5.29) 

When .xk gives rise to a binary observation .nk and two continuous observa-

tions .rk and .sk , the update equations in the state estimation step are 

.xk|k = xk|k−1 +
σ 2

k|k−1

σ 2
v σ 2

w + σ 2
k|k−1(γ

2
1 σ 2

w + δ2
1σ 2

v )

×

[

σ 2
v σ 2

w(nk − pk|k) + γ1σ
2
w(rk − γ0 − γ1xk|k−1)

+ δ1σ
2
v (sk − δ0 − δ1xk|k−1)

]

. (5.30) 

σ 2 
k|k =

[

1 

σ 2 
k|k−1 

+ pk|k(1 − pk|k) +
γ 2 

1 

σ 2 
v

+
δ2 

1 

σ 2 
w

]−1 

. (5.31)
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5.3 Deriving the Parameter Estimation Step Equations 

In this state-space model, we have the parameters .α, .ρ, .γ0, .γ1, .δ0, .δ1, .σ 2
v , and .σ 2

w to 

determine. We have already seen how .γ0, .γ1, and .σ 2
v were derived in the previous 

chapter when we had .rk . We will not repeat those derivations here again. Instead, we 

will only consider the derivations related to the new model parameters or changes to 

the way that earlier model parameters were derived. We will use this same approach 

of not re-deriving previous equations in the chapters that follow as well. 

5.3.1 Deriving the Terms in the State Equation 

We now have both .ρ and .α in the state equation. To determine them at the parameter 

estimation step, we will take the partial derivatives of the log-likelihood term 

containing .ρ and .α. In this case, the term we are interested in is 

.Q1 =
1

2σ 2
ε

K
∑

k=1

E

[

(xk − ρxk−1 − αIk)
2
]

. (5.32) 

Again, we set .x0 = x1 to permit some bias at the beginning and ignore the 

relationship through .ρ for this boundary condition. Therefore, 

.Q1 =
1

2σ 2
ε

{ K
∑

k=2

E

[

(xk − ρxk−1 − αIk)
2
]

+ E

[

(αI1)
2
]

}

. (5.33) 

We will now take the partial derivatives of .Q1 with respect to .α and .ρ and set them 

to 0. Let us first begin with .α. 

.
∂Q1

∂α
=

1

2σ 2
ε

{ K
∑

k=2

E
[

− 2Ik(xk − ρxk−1 − αIk)
]

+ 2αI 2
1

}

= 0.

(5.34)

=⇒ 0 = −

K
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IkE
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]

+ ρ

K
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IkE
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=⇒ ρ

K
∑

k=2 

Ikxk−1|K + α

K
∑

k=1 

I 2 
k =

K
∑

k=2 

Ikxk|K . (5.36)
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We will next take the partial derivative of .Q1 with respect to .ρ. 

.
∂Q1

∂ρ
=

1

2σ 2
ε

K
∑

k=2

E
[
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= 0. (5.37)
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=⇒ ρ

K−1
∑

k=1 

Uk + α

K
∑

k=2 

Ikxk−1|K =

K−1
∑

k=1 

Uk,k+1. (5.39) 

We now have two equations with which to solve for .α and .ρ. 

The parameter estimation step updates for .ρ and .α when .xk evolves with time 

following .xk = ρxk−1 + αIk + εk are 

.

[

ρ

α

]

=

[ ∑K−1
k=1 Uk

∑K
k=2 Ikxk−1|K
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∑K
k=2 Ikxk|K

]

. (5.40) 

5.3.2 Deriving the Process Noise Variance 

We next consider the parameter estimation step update for the process noise variance 

.σ 2
ε . The log-likelihood term containing .σ 2

ε is 

.Q2 =
−K

2
log

(

2πσ 2
ε

)

−

K
∑

k=1

E

[
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2σ 2
ε

=
−K

2
log

(

2πσ 2
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∑

k=2

E

[

(xk − ρxk−1 − αIk)
2
]

2σ 2
ε

−
E

[

(αI1)
2
]

2σ 2
ε

. (5.41) 

We take the partial derivative of .Q2 with respect to .σ 2
ε and set it to 0 to solve for the 

parameter estimation step update.



60 5 State-Space Model with One Binary and Two Continuous Observations

.
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σ 2 
ε =

1 

K

K
∑

k=2

{

E
[

x2 
k

]

− 2ρE
[

xkxk−1

]

+ ρ2
E

[

x2 
k−1

]

− 2αIkE
[

xk

]

+ 2αρIkE
[

xk−1

]

}

+
α2 

K

K
∑

k=1 

I 2 
k

=
1 

K

{ K
∑

k=2 

Uk − 2ρ

K−1
∑

k=1 

Uk,k+1 + ρ2 
K−1
∑

k=1 

Uk − 2α

K
∑

k=2 

Ikxk|K

+ 2αρ

K
∑

k=2 

Ikxk−1|K + α2 
K

∑

k=1 

I 2 
k

}

. (5.43) 

The parameter estimation step update for .σ 2
ε when .xk evolves with time 

following .xk = ρxk−1 + αIk + εk is 

.σ 2
ε =

1

K

{ K
∑

k=2

Uk − 2ρ

K−1
∑

k=1
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+ 2αρ

K
∑

k=2
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K

∑
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I 2
k
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. (5.44) 

5.3.3 Deriving the Constant Coefficient Terms and the Sensor 

Noise Variance 

The procedure for deriving the constant coefficients .δ0 and .δ1 related to .sk is similar 

to what we have seen earlier for .γ0 and .γ1. The derivation of the sensor noise 

variance .σ 2
w is also similar to that for .σ 2

v . 

The parameter estimation step updates for .δ0, .δ1, and .σ 2
w when we observe a 

second continuous variable .sk = δ0 + δ1xk + wk are 

(continued)
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.
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K
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}

. (5.46) 

5.4 MATLAB Examples 

The code examples implementing the EM algorithm for the current state-space 

model are provided in the “one_bin_two_cont\sim” and “one_bin_two_cont\expm” 

folders. These two directories contain the following files:

• one_bin_two_cont\ 

sim\ 

data_one_bin_two_cont.mat 

filter_one_bin_two_cont.m 

data_one_bin_two_cont_no_extern_stim.mat 

filter_one_bin_two_cont_no_extern_stim.m 

expm\ 

expm_data_one_bin_two_cont.mat 

expm_filter_one_bin_two_cont.m 

expm_data_one_bin_two_cont_no_extern_stim.mat 

expm_filter_one_bin_two_cont_no_extern_stim.m 

For both simulated and experimental data, we have provided examples with and 

without .αIk (the external input). Results from running the code on a simulated 

example with .αIk included and on an experimental data example without .αIk are 

shown in Fig. 5.1. For simulated and experimental data containing .αIk , the “.m” files 

are named “filter_one_bin_two_cont.m” and “expm_filter_one_bin_two_cont.m,” 

respectively. The corresponding examples without .αIk have the “no_extern_stim” 

suffix added to them. 

In this case, the model takes in as inputs the variables n, r, and s that denote 

.nk , .rk , and .sk , respectively, for estimating .xk . Since there are three different 

observations, the code also has more parameters to initialize. In the code, the
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variables r0 and r1 are used for .γ0 and .γ1, respectively, and s0 and s1 are used for  

.δ0 and .δ1. The variables vr and vs denote the corresponding sensor noise variances 

.σ 2
v and .σ 2

w. Finally, ve, rho, and alpha denote the process noise variance .σ 2
ε , the  

forgetting factor .ρ, and the .α term related to .Ik , respectively. Shown below is a brief 

code snippet showing the parameter initialization. 

r0(1) = r(1); 
r1(1) = 0.5; 
s0(1) = s(1); 
s1(1) = 1; 
vr(1) = 0.05; 
vs(1) = 0.05; 
ve(1) = 0.05; 
rho(1) = 1; 
alpha(1) = 0.5; 

Also, base_prob (.p0) is still calculated based on the average probability of .nk =

1 occurring in the data. The other variables x_pred, x_updt, and x_smth for .xk|k−1, 

.xk|k , and .xk|K remain the same, as well as the corresponding v_pred, v_updt and 

v_smth variables for variance. There is a sequential progression in the code through 

.k = 1, 2, . . . , K and then through .k = K, (K−1), . . . , 1 at the state estimation step. 

The terms r0, r1, s0, s1, vr, vs, ve, rho, and alpha are calculated at the parameter 

estimation step. Shown below is a code snippet in the forward progression. 

x_pred(k) = rho(m) * x_updt(k - 1) + alpha(m) * I(k); 
v_pred(k) = (rho(m) ^ 2) * v_updt(k - 1) + ve(m); 

C(k) = v_pred(k) / (vr(m) * vs(m) + v_pred(k) * ((r1(m)  ̂ 2) * vs 
(m) + (s1(m)  ̂ 2) * vr(m))); 

x_updt(k) = get_posterior_mode(x_pred(k), C(k), r(k), r0(m), r1(m 
), b0(m), b1(m), vr(m), n(k), s(k), s0(m), s1(m), vs(m)); 

p_updt(k) = 1 / (1 +  exp((-1) * (b0(m) + b1(m) * x_updt(k)))); 
v_updt(k) = 1 / ((1  /  v_pred(k)) + ((r1(m)  ̂ 2) / vr(m)) + ((s1(m 

) ^ 2) / vs(m)) + (b1(m) ^ 2)  * p_updt(k) * (1 - p_updt(k))); 

The code where we proceed in the reverse direction at the state estimation step is 

shown below. While it is largely similar to what we saw in an earlier chapter, now 

the variable rho is also included. 

x_smth(K) = x_updt(K); 
v_smth(K) = v_updt(K); 
W(K) = v_smth(K) + (x_smth(K) ^ 2); 

A(1:(end - 1)) = rho(m) * v_updt(1:(end - 1)) ./ v_pred(2:end); 

for k = (K - 1):(-1):1 
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 1)); 
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) - v_pred(k 

+ 1));  

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1); 
W(k) = v_smth(k) + (x_smth(k) ^ 2); 

end
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Note that in the examples where an external input is absent, alpha is not calculated. 

The state estimation step and the parameter estimation step are performed in turn 

until convergence. 

5.4.1 Application to Skin Conductance and Sympathetic 

Arousal 

This state-space model with one binary and two continuous observations was used 

in [29] for estimating sympathetic arousal from skin conductance. In the model, 

the tonic component made up the continuous variable .sk . The other continuous 

variable .rk was derived somewhat differently. SCR amplitudes can have a skewed 

distribution which a log transformation can help correct. Therefore, the log of the 

SCR amplitudes was taken and interpolated over to generate .rk . 

A further point is to be noted with experimental data. The estimated state .xk

can occasionally overfit to one of the continuous variables [29]. Consequently, an 

additional constraint was applied to allow the parameters corresponding to .rk and .sk
(i.e., .γ0, .γ1, .σ 2

v , .δ0, .δ1, and .σ 2
w) to update only if the sensor noise variance estimates 

did not differ by more than a certain amount. Details of this can be found in [29]. 

This constraint prevented one of the sensor noise variance estimates from being 

driven down at the expense of the other (which takes place during overfitting). 

If the external inputs are unknown, the version of the code without .αIk can 

be used. The experimental results in Fig. 5.1 are from a case where .αIk is not 

considered. The data come from the stress experiment in [53] which we also 

considered two chapters ago. The portion of the experiment considered here consists 

of the cognitive stressors, relaxation, and the horror movie clip. The state estimates 

are high during the cognitive stressors and thereafter gradually diminish. However, 

the increase seen in the HAI at the beginning of the horror movie clip is quite 

significant. 

Data from the Pavlovian fear conditioning experiment in [66] are taken for  

the experimental code example containing the .αIk term. The results are shown 

in Fig. 5.2. The experiment is described in detail in [67, 68]. In a typical fear 

conditioning experiment, a neutral cue is paired with an unpleasant stimulus such 

as a painful electric shock. Through repeated pairing, a subject begins to display
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Fig. 5.1 State estimation based on observing one binary and two continuous variables. The left 

sub-figure depicts estimation on simulated data, and the right sub-figure depicts the estimation of 

sympathetic arousal from skin conductance data. The sub-panels on the left, respectively, depict: 

(a) the probability of binary event occurrence .pk (blue) and its estimate (red) (the green and black 

dots above at the top denote the presence or absence of binary events, respectively); (b) the first  

continuous variable .rk (blue) and its estimate (red); (c) the second continuous variable .sk (blue) 

and its estimate (red); (d) the state .xk (blue) and its estimate (red) (the cyan and black dots denote 

the presence or absence of external binary inputs, respectively); (e) the QQ plot for the residual 

error of .xk . The sub-panels on the right, respectively, depict: (a) the skin conductance signal (the 

green and black dots on top denote the presence or absence of SCRs, respectively); (b) the phasic-

derived variable .rk (green solid) and its estimate (dotted); (c) the tonic level .sk (pink solid) and 

its estimate (dotted); (d) the arousal state .xk and its 95% confidence limits; (e) the probability of 

SCR occurrence .pk and its 95% confidence limits; (f) the HAI (the regions above 90% and below 

10% are shaded in red and green, respectively). The background colors on the right sub-figure 

correspond to the instruction period, a counting task, a color–word association task, relaxation, 

and watching a horror movie clip. From [32], used under Creative Commons CC-BY license 

a response to the neutral cue alone. In the experiment in [66], two types of cues 

were used. One of the cues never preceded the electric shock. This is labeled the 

CS- cue. The second cue, labeled as CS+, preceded the shock 50% of the time. The 

code example sets .Ik = 1 at the locations of the neutral cues and the shocks. Other 

types of inputs may also be considered for .Ik . Figure 5.2 depicts the averages for 

the CS- trials, the CS+ trials that did not contain the electric shock, and the CS+ 

trials that did contain the shock. As seen in Fig. 5.2, for this particular subject, the 

CS+ with the shock elicited the highest skin conductance and sympathetic arousal 

responses. The CS- trials had the lowest skin conductance and arousal levels, and 

the CS+ without the shock had responses in-between these two.
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Fig. 5.2 State estimation in Pavlovian fear conditioning. The sub-panels, respectively, depict: (a) 

the skin conductance signal .zk ; (b) the phasic-derived variable (green solid) and its estimate 

(dashed); (c) the tonic level .sk (mauve solid) and its estimate (dashed); (d) the probability of 

SCR occurrence .pk (the cyan and black dots on top denote the presence or absence of SCRs, 

respectively); (e) the arousal state .xk (the green and black dots denote the presence or absence 

of external binary inputs, respectively); (f) the averages corresponding to different trials for skin 

conductance (CS.− —green, CS+ without the shock—mauve and CS+ with the shock—red); (g) 

the same averages for the arousal state .xk . © 2020 IEEE. Reprinted, with permission, from [29]
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Chapter 6 

State-Space Model with One Binary, Two 
Continuous, and a Spiking-Type 

Observation 

Spiking-type observations are occasionally recorded in experiments. For instance, 

neural spiking activity may be recorded from a macaque monkey engaged in a 

learning experiment or an EKG signal may be recorded from a human subject in 

an experiment. In such instances, we can model the spiking-type variable using 

a conditional intensity function (CIF). The CIF is similar to the rate parameter 

in a Poisson distribution but is more general. With spiking-type observations, we 

usually assume that our state variable .xk affects the rate of spiking through the CIF. 

Now we need to estimate .xk at each time index k. In the case of a spiking-type 

variable, we typically observe the spiking over a short interval corresponding to 

time index k. For instance, in the case of a macaque monkey performing a behavioral 

learning task, we may observe neural spiking over a period of several hundred 

milliseconds corresponding to each trial k. Each trial duration is then divided into 

smaller bins indexed over j . Since the spiking-type variables are binary, we assign 

either .mk,j = 0 or .mk,j = 1 within the interval k for each of the smaller time 

bins j based on spike occurrence. Shown below is an example CIF .λk,j used in an 

experiment where a monkey’s learning state was estimated from measurements that 

included neural spiking [6]. 

.λk,j = eθ0+ψxk+
∑S

s=1 θsmk,j−s . (6.1) 

In general, the specific form of the CIF depends on the type of application. In this 

chapter, we will derive the state and parameter estimation step equations for a model 

where a spiking-type variable characterized by a general CIF .λk,j is observed along 
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with one binary and two continuous variables. We will, however, first consider the 

need for such a state-space model. 

In the preceding chapter, we looked at a state-space model for estimating 

sympathetic arousal based on one binary and two continuous skin conductance 

observations. The occurrence of SCRs made up the binary observation .nk . The  

continuous observations comprised of a transformed version of the SCR peaks 

and the tonic level. In reality, the sympathetic nervous system affects a number 

of organs, not just the skin. We can go to any one of these organs to extract 

features to estimate arousal. However, not all these organs (or the corresponding 

physiological signals) are conveniently accessible. The heart is one organ affected 

by sympathetic activation for which the corresponding signals can be measured 

easily (e.g., using an EKG). Now sympathetic drive is known to increase heart rate 

and the force of ventricular contraction [69]. The heart, however, is innervated by 

both sympathetic and parasympathetic fibers and also has its own pacing mechanism 

[70]. Consequently, a precise extraction of the sympathetic activation component 

from an EKG signal is a challenge. In [31], a state-space model based on three 

skin conductance features (the features just referred to) and EKG signals modeled 

as spiking observations was used to estimate sympathetic arousal. Here, the model 

assumed that increased sympathetic arousal caused EKG inter-beat intervals (known 

as RR-intervals) to decrease (i.e., caused heart rate to increase). The CIF was based 

on the history-dependent inverse Gaussian (HDIG) probability density function for 

RR-intervals [71, 72]. The state-space model could be used for wearable healthcare 

applications (Fig. 6.1). Post-traumatic stress disorder (PTSD), for instance, is known 

to involve symptoms of hyperarousal [73], while major depression is known 

to involve low levels of arousal [74]. Thus, a wearable device based on skin 

` 

Sympathe�c 

arousal state 

Skin conductance 

sensor 

EKG sensor 

patches 

Fig. 6.1 A wearable sensing system for decoding sympathetic arousal. The sweat glands are 

innervated by sympathetic nerve fibers, and the heart is innervated by both sympathetic and 

parasympathetic fibers. This information from skin conductance and heart rate can be used to 

estimate sympathetic arousal. From [26], used under Creative Commons CC-BY license
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conductance and heart rate measurements for monitoring arousal could be used to 

help care for such patients. 

We also make another notable observation here. The phenomena occurring within 

the human body and brain are rather complex. Thus, it is likely that no single type 

of physiological signal or feature captures all the necessary information regarding 

latent physiological states. If, for instance, both emotional valence and arousal are 

to be decoded, features from a number of signals could be considered [58, 75–78]. 

Signals such as EMG [27, 79–82], heart rate [83–87], respiration [88–92], and blood 

flow signals within the brain (functional near infrared spectroscopy) [93–97] all  

contain information regarding phenomena such as emotion and cognitive effort. 

6.1 Deriving the Predict Equations in the State Estimation 

Step 

We have already considered three different cases for the state equation: (i) the simple 

random walk; (ii) the random walk with a forgetting factor .ρ; (iii) the random walk 

with a forgetting factor .ρ and an external input .Ik . You would have noticed by now 

that changes to the state equation primarily affect the predict equations in the state 

estimation step and not the update equations. The three cases we have considered 

thus far cover most of the applications that are encountered in typical physiological 

state estimation problems. In the current state-space model, we will assume that 

.xk evolves with time following one of the state equations we have already seen. 

Thus no new predict step equations have to be derived. These signals could be used 

for wearable healthcare applications. A study of how different external stimuli also 

affect emotion could lead to novel neuromarketing strategies as well [98]. 

6.2 Deriving the Update Equations in the State Estimation 

Step 

When dealing with a spiking-type observation, we first split our observation interval 

at time index k into smaller segments and index these smaller bins as .j =

1, 2, . . . , J . The joint probability of the spikes over the J observation bins is then 

[99] 

.p(mk,1,mk,2, . . . , mk,J |xk) = e
∑J

j=1 log(λk,j Δ)mk,j −λk,j Δ
. (6.2) 

Recall from (5.18) that when we had one binary and two continuous observations, 

the posterior density was 

.p(xk|y1:k) ∝ p(nk|xk)p(rk|xk)p(sk|xk)p(xk|n1:k−1, r1:k−1, s1:k−1). (6.3)
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Now that we have the spiking-type observation, we will include .p(mk,1,mk,2, . . . ,

.mk,J |xk) in .p(xk|y1:k) as well. Therefore, 

.p(xk|y1:k) ∝ enk log(pk)+(1−nk) log(1−pk) × e

−(rk−γ0−γ1xk)2

2σ2
v × e

−(sk−δ0−δ1xk)2

2σ2
w

× e
∑J

j=1 log(λk,j Δ)mk,j −λk,j Δ
× e

−(xk−xk|k−1)2

2σ2
k|k−1 . (6.4) 

The procedure for deriving the update equations is again similar to what we have 

seen thus far. As before, we will take the first derivative of the exponent term, set 

it to 0, and solve for .xk to obtain the mean. We will then take the second derivative 

to obtain the uncertainty or variance associated with the estimate. Taking the log of 

the posterior density and setting the first partial derivative to 0 yield 

.
dq

dxk

=
−(xk − xk|k−1)

σ 2
k|k−1

+ (nk − pk) +
γ1(rk − γ0 − γ1xk)

σ 2
v

+
δ1(sk − δ0 − δ1xk)

σ 2
w

+

J
∑

j=1

1

λk,j

dλk,j

dxk

(mk,j − λk,jΔ) = 0. (6.5) 

Solving for .xk is now similar to what we saw in the earlier chapter. We simply 

need to add and subtract .γ1xk|k−1 and .δ1xk|k−1 from the terms containing .rk and .sk , 

respectively. The second partial derivative is 

.
d2q

dx2
k

=
−1

σ 2
k|k−1

−
dpk

dxk

−
γ 2

1

σ 2
v

−
δ2

1

σ 2
w

+
d

dxk

[ J
∑

j=1

1

λk,j

dλk,j

dxk

(mk,j − λk,jΔ)

]

=
−1

σ 2
k|k−1

− pk(1 − pk) −
γ 2

1

σ 2
v

−
δ2

1

σ 2
w

+

J
∑

j=1

[

1

λk,j

d2λk,j

dx2
k

(mk,j − λk,jΔ) −
mk,j

λ2
k,j |k

(

dλk,j

dxk

)2]

. (6.6) 

Thus the updates for .xk|k and .σ 2
k|k turn out to be 

.xk|k = xk|k−1 +
σ 2

k|k−1

σ 2
v σ 2

w + σ 2
k|k−1(γ

2
1 σ 2

w + δ2
1σ 2

v )

[

σ 2
v σ 2

w(nk − pk|k)

+ γ1σ
2
w(rk − γ0 − γ1xk|k−1) + δ1σ

2
v (sk − δ0 − δ1xk|k−1)

+ σ 2
v σ 2

w

J
∑

j=1

1

λk,j |k

dλk,j |k

dxk

(mk,j − λk,j |kΔ)

]

. (6.7)
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σ 2 
k|k =

{

1 

σ 2 
k|k−1 

+ pk|k(1 − pk|k) +
γ 2 

1 

σ 2 
v

+
δ2 

1 

σ 2 
w

−

J
∑

j=1

[

1 

λk,j |k

d2λk,j |k

dx2 
k

(mk,j − λk,j |kΔ) −
mk,j

λ2 
k,j |k

(

dλk,j |k

dxk

)2]}−1 

. (6.8) 

Note that the equations may simplify further depending on the specific form of the 

CIF. Here we have provided the derivations for the general case. 

When .xk gives rise to a binary observation .nk , two continuous observations 

.rk and .sk and a spiking-type observation .mk,j characterized by the CIF .λk,j , 

the update equations in the state estimation step are 

.xk|k = xk|k−1 +
σ 2

k|k−1

σ 2
v σ 2

w + σ 2
k|k−1(γ

2
1 σ 2

w + δ2
1σ 2

v )

[

σ 2
v σ 2

w(nk − pk|k)

+ γ1σ
2
w(rk − γ0 − γ1xk|k−1) + δ1σ

2
v (sk − δ0 − δ1xk|k−1)

+ σ 2
v σ 2

w

J
∑

j=1

1

λk,j |k

dλk,j |k

dxk

(mk,j − λk,j |kΔ)

]

. (6.9) 

σ 2 
k|k =

{

1 

σ 2 
k|k−1 

+ pk|k(1 − pk|k) +
γ 2 

1 

σ 2 
v

+
δ2 

1 

σ 2 
w

−

J
∑

j=1

[

1 

λk,j |k

d2λk,j |k

dx2 
k

(mk,j − λk,j |kΔ) −
mk,j

λ2 
k,j |k

(

dλk,j |k

dxk

)2]}−1 

. (6.10) 

6.3 Deriving the Parameter Estimation Step Equations 

The state-space model we consider here is an extension of what we considered in 

the previous chapter that contained one binary and two continuous observations. 

Therefore, the only new parameter estimation step equations we need to derive are 

for the spiking-type variable.
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6.3.1 Deriving the Coefficients Within a CIF 

A CIF can take different forms depending on the type of application. For instance, 

when neural spiking data are involved, .log(λk,j ) may be expressed as a linear sum 

of history-dependent terms and .xk as in (6.1). If this is the case, we would have 

to determine .ψ and the .θs’s at the parameter estimation step. When heartbeats 

are modeled as a spiking-type variable, the CIF involves an inverse Gaussian 

distribution and could be related to .xk through its mean [31]. Thus, the terms to 

be derived at the parameter estimation step when a spiking-type variable is present 

are application-specific. In general, due to the rather complicated nature of a CIF, 

the parameter estimation step updates do not have neat closed-form expressions. 

Instead, the parameters have to be chosen to maximize the expected log-likelihood 

.Q =

K
∑

k=1

J
∑

j=1

E

[

log(λk,jΔ)mk,j − λk,jΔ
]

. (6.11) 

The form of Q can be deduced from (6.2). The trick to maximizing Q is to perform 

a Taylor expansion around the mean .xk|K = E[xk] for each of the summed terms. 

Therefore, when the expected value is finally calculated, we will end up with terms 

like .E[xk − xk|K ] and .E[(xk − xk|K)2] in the expansion. Now 

.E[xk − xk|K ] = E[xk] − xk|K based on (2.2). (6.12) 

= xk|K − xk|K = 0, (6.13) 

and .E[(xk − xk|K)2] is the variance .σ 2
k|K . These two facts will greatly help simplify 

the calculation of Q. 

Let us now perform the Taylor expansion around .xk|K [6]. The summed term 

within the expected value simplifies to 

. log(λk,jΔ)mk,j − λk,jΔ ≈ log(λk,j |KΔ)mk,j − λk,j |KΔ

+
1

λk,j |K

∂λk,j |K

∂xk

(mk,j − λk,j |KΔ)(xk − xk|K)

+
1

2

[

1

λk,j |K

∂2λk,j |K

∂x2
k

(mk,j − λk,j |KΔ)

−
mk,j

λ2
k,j |K

(

∂λk,j |K

∂xk

)2]

(xk − xk|K)2. (6.14) 

Taking the expected value, we have 

.E
[

log(λk,jΔ)mk,j − λk,j |KΔ
]

≈ log(λk,j |KΔ)mk,j − λk,j |KΔ



6.3 Deriving the Parameter Estimation Step Equations 73

+
1 

λk,j |K

∂λk,j |K

∂xk

(mk,j − λk,j |KΔ)E
[

xk − xk|K

]

+
1 

2

[

1 

λk,j |K

∂2λk,j |K

∂x2 
k

(mk,j − λk,j |KΔ)

−
mk,j

λ2 
k,j |K

(

∂λk,j |K

∂xk

)2]

× E
[

xk − xk|K

]2 
. (6.15) 

Note the terms .E[xk − xk|K ] and .E[(xk − xk|K)2] in the expression above. The first 

of these is 0, and the second is the variance .σ 2
k|K . Therefore, 

.E
[

log(λk,jΔ)mk,j − λk,j |KΔ
]

≈ log(λk,j |KΔ)mk,j − λk,j |KΔ + 0

+
1

2

[

1

λk,j |K

∂2λk,j |K

∂x2
k

(mk,j − λk,j |KΔ)

−
mk,j

λ2
k,j |K

(

∂λk,j |K

∂xk

)2]

σ 2
k|K . (6.16) 

Consequently, Q approximately simplifies to 

.Q ≈

K
∑

k=1

J
∑

j=1

log(λk,j |KΔ)mk,j − λk,j |KΔ

+
1

2

[

1

λk,j |K

∂2λk,j |K

∂x2
k

(mk,j − λk,j |KΔ) −
mk,j

λ2
k,j |K

(

∂λk,j |K

∂xk

)2]

σ 2
k|K .

(6.17) 

In general, Q will have to be maximized with respect to the model parameters in the 

CIF using numerical methods. 

The parameter estimation step updates for the terms in a CIF .λk,j when we 

observe a spiking-type variable .mk,j are chosen to maximize 

.Q ≈

K
∑

k=1

J
∑

j=1

log(λk,j |KΔ)mk,j − λk,j |KΔ

(continued)
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+
1 

2

[

1 

λk,j |K

∂2λk,j |K

∂x2 
k

(mk,j − λk,j |KΔ) −
mk,j

λ2 
k,j |K

(

∂λk,j |K

∂xk

)2]

σ 2 
k|K .

(6.18) 

6.4 MATLAB Examples 

MATLAB code examples for simulated and experimental data for the state-space 

model with one binary, two continuous, and one spiking-type observation are 

provided in the folders shown below:

• one_bin_two_cont_one_spk 

sim\ 

data_one_bin_two_cont_one_spk.mat 

filter_one_bin_two_cont_one_spk.m 

expm\ 

expm_data_one_bin_two_cont_one_spk.mat 

expm_filter_one_bin_two_cont_one_spk.m 

6.4.1 Application to Skin Conductance, Heart Rate and 

Sympathetic Arousal 

The state-space model described in this chapter was used in [31] to estimate 

sympathetic arousal from skin conductance and heart rate measurements. The skin 

conductance observations are the same three that were used in [29] (discussed in the 

previous chapter). Thus, the only new observation added here relates to heart rate 

for which some additional discussion is necessary. 

The code examples estimate arousal from the four observations related to skin 

conductance and heart rate. The R-peaks in the EKG signals are taken to form the 

spiking observations. If L consecutive R-peaks occur at times .ul within .(0, T ] such 

that .0 < u1 < u2 < . . . < uL ≤ T , and .hl = ul − ul−1 is the lth RR-interval, the 

HDIG density function for the RR-intervals at .t > ul is 

.g(t |ul) =

√

θq+1

2π(t − ul)3
exp

{

−θq+1[t − ul − μ]2

2μ2(t − ul)

}

, (6.19)
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where q is the model order, .θq+1 is related to the variance, and the mean is 

.μ = θ0 +

q
∑

i=1

θihl−i+1 + ηxk, (6.20) 

where .η is a coefficient to be determined. Accordingly, a change in sympathetic 

arousal .xk causes the mean of the HDIG density function to shift (i.e., heart rate 

speeds up or slows down depending on the arousal level). The CIF .λk,j is 

.λk,j Δ
g(tk,j |uk,j )

1 −
∫ tk,j

uk,j
g(z|uk,j )dz

, (6.21) 

where .uk,j is the time of occurrence of the last R-peak prior to .tk,j . The CIF  

.λk,j is calculated every .Δ = 5 ms [23, 71]. Since skin conductance is typically 

analyzed at 4 Hz (.ts = 250 ms), there are .250/5 = 50 smaller observation bins j

for heart rate at each time index k. Due to computational complexity, the .θi’s were 

estimated separately in an offline manner using maximum likelihood. Now the work 

by Barbieri et al. [71] was one of the earliest to perform point process analysis of 

EKG RR-intervals using the HDIG density function.1 The EM algorithm in [31] 

was executed for several different values of .η, and the best one was selected based 

on a maximization of the log-likelihood term in (6.17). Note also that since the 

experimental code example involves skin conductance and heart rate with .Δ = 5

ms bins, the heart rate observations need to be provided to the code in a manner 

similar to that contained in the .mat file. 

The other aspects of the code and the variable names are similar to what 

was described in earlier chapters. Running the code examples on simulated and 

experimental data yields the results shown in Fig. 6.2. The experimental data results 

are from the Pavlovian fear conditioning experiment in [100]. As shown in the  

figure, the CS+ trials with the electric shock have the highest average responses, 

while the CS- trials have the lowest average responses for the subject considered. 

The CS+ trials without the shock have an intermediate response.

1 The code for calculating the .θi ’s for a series of RR-interval measurements via maximum 

likelihood is provided at http://users.neurostat.mit.edu/barbieri/pphrv. 

http://users.neurostat.mit.edu/barbieri/pphrv
http://users.neurostat.mit.edu/barbieri/pphrv
http://users.neurostat.mit.edu/barbieri/pphrv
http://users.neurostat.mit.edu/barbieri/pphrv
http://users.neurostat.mit.edu/barbieri/pphrv
http://users.neurostat.mit.edu/barbieri/pphrv
http://users.neurostat.mit.edu/barbieri/pphrv
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Fig. 6.2 State estimation based on observing one binary, two continuous, and one spiking-type 

variable. The left sub-figure depicts estimation on simulated data, and the right sub-figure depicts 

the estimation of sympathetic arousal from skin conductance and heart rate data. The sub-panels 

on the left, respectively, depict: (a) the probability of binary event occurrence .pk (blue) and its 

estimate (red) (the green and black dots above at the top denote the presence or absence of binary 

events, respectively); (b) the first continuous variable .rk (blue) and its estimate (red); (c) the second 

continuous variable .sk (blue) and its estimate (red); (d) the state .xk (blue) and its estimate (red) 

(the cyan and black dots denote the presence or absence of external binary inputs, respectively); 

(e) the simulated RR-interval sequence (orange) and the fit to the HDIG mean; (f) the QQ plot for 

the residual error of .xk . The sub-panels on the right, respectively, depict: (a) the skin conductance 

signal .zk ; (b) the probability of SCR occurrence .pk (the green and black dots on top denote the 

presence or absence of SCRs, respectively); (c) the phasic-derived variable (green solid) and its 

estimate (dotted); (d) the tonic level .sk (pink solid) and its estimate (dotted); (e) the arousal state .xk

(the cyan and black dots denote the presence or absence of external binary inputs, respectively); (f) 

the RR-interval sequence (orange) and the fit to the HDIG mean; (g) the averages corresponding to 

different trials for skin conductance (CS.− —green, CS+ without the shock—mauve and CS+ with 

the shock—red); (h) the same averages for the state. From [31], used under Creative Commons 

CC-BY license 
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Chapter 7 

State-Space Model with One Marked 
Point Process (MPP) Observation 

Thus far we have considered binary observations and continuous observations in our 

state-space models. With binary observations, we do not consider the magnitudes of 

the binary-valued events (since each is just a 0 or a 1) but are merely interested in 

the event occurrences. Consequently, we can treat the spiking-type observations in 

the earlier chapter as binary-valued as well. There too, our concern was primarily 

with the occurrence of the cardiac contractions and the accompanying spikes in an 

EKG signal, but not the actual amplitudes of the spikes. But what happens when 

we observe a point process that is not just a sequence of zeros and ones but rather 

is a sequence of zeros and real-valued amplitudes? Such a point process forms a 

marked point process (MPP). These are encountered frequently in physiological 

state estimation applications as well. For instance, the sequence of neural impulses 

underlying a skin conductance signal forms an MPP (Fig. 3.2). So do pulsatile 

hormone secretory events. In this chapter, we will learn how to derive the state 

and parameter estimation step equations when the state-space model contains MPP 

observations. 

In this chapter also, we will begin by considering a motivating example. Now we 

can build many models ranging from simple to complex to account for physiological 

phenomena. Any mathematical abstraction of a real-world system will have some 

imperfections to it and will not be able to fully account for all of the data. 

Occasionally, in engineering systems, we will encounter cases where a simpler 

model performs better than a more complex model. The estimation of sympathetic 

arousal from skin conductance is one such case. The state-space model with one 

binary and two continuous observations is quite complex [29]. However, despite its 

complexity, it is somewhat imperfect in that it interpolates over a log-transformed 
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version of the SCR amplitudes. A more natural way to account for phasic skin 

conductance variations is to model the underlying neural impulses as an MPP [32]. 

This eliminates the need for two continuous variables and is simpler. 

A further algorithmic detail is also worth noting here. Mathematical models 

of real-world systems will always have some limitations. The limitations may be 

in the model itself or have to do with issues that arise during computation. This 

book focuses on the estimation of unobserved physiological quantities that are 

related (fully or partially) to point process observations. Occasionally, when we 

have both binary and continuous variables involved, the EM algorithm can have 

a tendency to converge to locations where there is a near-perfect fit to one of the 

continuous variables (i.e., overfitting occurs). The state-space model with one binary 

and two continuous observations has this tendency to overfit on experimental data. 

Consequently, additional constraints have to be put in place to control it [29]. This 

issue can also occur in the model with one binary and one continuous observation. 

The use of the MPP framework circumvents the need to have a continuous variable 

and thus avoids the need for external overfitting control. Thus the simpler MPP state-

space model for estimating arousal based on skin conductance performed quite well 

in comparison to others [32]. 

7.1 Deriving the Update Equations in the State Estimation 

Step 

In this chapter also, we will assume that .xk evolves with time following one of the 

state equations we have already seen. Thus no new predict step equations have to be 

derived. 

Recall from (3.21) that the PDF of a single (Bernoulli-distributed) binary 

observation .nk is 

.p(nk|xk) = p
nk

k (1 − pk)
1−nk . (7.1) 

This same density function can be written as 

.p(nk|xk) =
{

1 − pk if nk = 0

pk if nk = 1.
(7.2) 

In reality, we could derive our state estimation step update equations based on (7.2) 

as well. For instance, if we observed .nk = 0 at time index k, the posterior density 

would be 

.p(xk|n1:k) ∝ enk log(pk)+(1−nk) log(1−pk) × e

−(xk−xk|k−1)2

2σ2
k|k−1 =elog(1−pk) × e

−(xk−xk|k−1)2

2σ2
k|k−1 ,

(7.3)
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where we have substituted .nk = 0 into the exponent of the first term. We could next 

take the first and second derivatives of the exponent to obtain the corresponding 

state estimation step update equations for .xk|k and .σ 2
k|k . We could also do the same 

for .nk = 1. In the case of .nk = 1, we would have 

.p(xk|n1:k) ∝ enk log(pk)+(1−nk) log(1−pk) × e

−(xk−xk|k−1)2

2σ2
k|k−1 = elog(pk) × e

−(xk−xk|k−1)2

2σ2
k|k−1 .

(7.4) 

Finally, we could express the update step equations for the two different cases based 

on an if-else condition. This would be of the form 

if .nk = 0, 

.xk|k = . . . . (7.5) 

σ 2 
k|k = . . . (7.6) 

if .nk = 1, 

.xk|k = . . . . (7.7) 

σ 2 
k|k = . . . . (7.8) 

In the case of an MPP where we have non-zero amplitudes only at the instances 

where point process events occur, the density function for the observations is 

.p(nk∩rk|xk)=











1 − pk = elog(1−pk) if nk = 0

pk
1√
2πσ 2

v

e

−(rk−γ0−γ1xk)2

2σ2v = elog(pk) 1√
2πσ 2

v

e

−(rk−γ0−γ1xk)2

2σ2v if nk = 1,

(7.9) 

where the point process event amplitudes (i.e., the marks) .rk are assumed to be 

linearly related to .xk through .rk = γ0 + γ1xk + vk , where .vk ∼ N (0, σ 2
v ) is sensor 

noise. 

Let us now proceed with calculating the update step equations for the two cases 

where .nk = 0 and .nk = 1. First consider .nk = 0. Based on (7.9), the posterior 

density is 

.p(xk|y1:k) ∝ p(nk ∩ rk|xk)p(xk|n1:k−1, r1:k−1) ∝ elog(1−pk) × e

−(xk−xk|k−1)2

2σ2
k|k−1 .

(7.10) 

We can now take the log, take its derivative, and set it to 0 to solve for the mean. 

This yields
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.
dq1

dxk

=−
1

(1 − pk)
pk(1 − pk) −

2(xk − xk|k−1)

2σ 2
k|k−1

=0. (7.11)

=⇒
(xk − xk|k−1)

σ 2 
k|k−1 

=−pk. (7.12) 

xk =xk|k−1+σ 2 
k|k−1(−pk). (7.13) 

xk =xk|k−1+σ 2 
k|k−1(nk−pk) since nk = 0. (7.14) 

Interestingly, this is the same as (3.38) where we only had one binary observation 

.nk in the state-space model. Let us now calculate the variance by taking the second 

derivative. 

.
d2q1

dx2
k

=
−1

σ 2
k|k−1

− pk(1 − pk). (7.15) 

Again, interestingly, this turns out to be the same as (3.40) where we only had one 

binary observation. Therefore, when a point process event does not occur (i.e., when 

.nk = 0), our state estimation step update equations are similar to the case where we 

only had one binary observation in the state-space model. 

We will next consider the case when .nk = 1. Note that we will then have the .rk
amplitude term as well. Based on (7.9), the posterior is now 

.p(xk|y1:k) ∝ elog(pk) × e

−(rk−γ0−γ1xk)2

2σ2v × e

−(xk−xk|k−1)2

2σ2
k|k−1 . (7.16) 

Taking the log and proceeding to take the first derivative, we have 

.
dq2

dxk

=
1

pk

pk(1 − pk) +
γ1(rk − γ0 − γ1xk)

σ 2
v

−
(xk − xk|k−1)

σ 2
k|k−1

= 0. (7.17) 

Since .nk = 1, we will replace .(1 − pk) with .(nk − pk). Therefore, 

.
dq2

dxk

= (nk − pk) +
γ1(rk − γ0 − γ1xk)

σ 2
v

−
(xk − xk|k−1)

σ 2
k|k−1

= 0. (7.18) 

This is the same as (4.21) where we had both a binary variable and a continuous 

variable in the state-space model. Therefore, based on (4.26), the mean update for 

.xk is 

.xk = xk|k−1 +
σ 2

k|k−1

γ 2
1 σ 2

k|k−1 + σ 2
v

[

σ 2
v (nk − pk) + γ1(rk − γ0 − γ1xk|k−1)

]

.

(7.19)
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Also, when we take the second derivative, we end up with 

.
d2q1

dx2
k

= −pk(1 − pk) −
γ 2
1

σ 2
v

−
1

σ 2
k|k−1

(7.20) 

just like (4.28). 

This provides an interesting insight. In the case of an MPP, the state estimation 

step update equations switch between those where one binary variable was observed 

and where both a binary variable and a continuous variable were observed. This 

switching occurs depending on whether .nk = 0 or .nk = 1. 

When .xk gives rise to MPP observations comprising of the pairs .(nk, rk), the  

update equations in the state estimation step are 

if .nk = 0, 

.xk|k = xk|k−1 + σ 2
k|k−1(nk − pk|k). (7.21) 

σ 2 
k|k =

[

1 

σ 2 
k|k−1 

+ pk|k(1 − pk|k)

]−1 

(7.22) 

if .nk = 1, 

.xk|k = xk|k−1 +
σ 2

k|k−1

γ 2
1 σ 2

k|k−1 + σ 2
v

[

σ 2
v (nk − pk|k) + γ1(rk − γ0 − γ1xk|k−1)

]

.

(7.23) 

σ 2 
k|k =

[

1 

σ 2 
k|k−1 

+ pk|k(1 − pk|k) +
γ 2 
1 

σ 2 
v

]−1 

. (7.24) 

7.2 Deriving the Parameter Estimation Step Equations 

The only changes that occur at the parameter estimation step relate to .γ0, .γ1, and 

.σ 2
v . Parameter estimates for other variables such as the process noise variance .σ 2

ε do 

not change.
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7.2.1 Deriving the Constant Coefficient Terms 

Recall from (4.43) that when we observed one binary variable and one continuous 

variable, the probability term containing .γ0, .γ1, and .σ
2
v required at the parameter 

estimation step was 

.p(r1:K |x1:K ,Θ) =
K
∏

k=1

1
√

2πσ 2
v

e

−(rk−γ0−γ1xk)2

2σ2v . (7.25) 

Notice that the product is over .k = 1, 2, . . . , K . This is when we observed a non-

zero .rk at each point in time. When we observe an MPP variable as modeled in (7.9), 

.rk shows up only at the time indices where .nk = 1. Let us assume that the point 

process events occur at time indices .K̃ ⊆ {1, 2, . . . , K}. Therefore, in the case of 
an MPP, the probability term we are interested in at the M-step will be 

.

∏

k∈K̃

1
√

2πσ 2
v

e

−(rk−γ0−γ1xk)2

2σ2v , (7.26) 

where the product is only over the specific indices .K̃ rather than everywhere. The 

corresponding log-likelihood term is therefore 

.Q =
−|K̃|
2

log
(

2πσ 2
v

)

−
∑

k∈K̃

E

[

(rk − γ0 − γ1xk)
2
]

2σ 2
v

. (7.27) 

We can now proceed by taking the partial derivatives with respect to .γ0, .γ1, and .σ 2
v , 

setting them to 0 and solving. This yields 

.

∑

k∈K̃

rk = γ0|K̃| + γ1
∑

k∈K̃

xk|K . (7.28)

∑

k∈K̃

rkxk|K = γ0
∑

k∈K̃

xk|K + γ1
∑

k∈K̃

Uk. (7.29) 

σ 2 
v =

1 

|K̃|

{

∑

k∈K̃

r2 k + |K̃|γ 2 
0 + γ 2 

1

∑

k∈K̃

Uk − 2γ0
∑

k∈K̃

rk

− 2γ1
∑

k∈K̃

rkxk|K + 2γ0γ1
∑

k∈K̃

xk|K

}

. (7.30) 

Note that all three equations shown above are similar to the case where a continuous 

variable was always present. Now, however, the summations are only over .K̃ . Thus
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the parameter estimation step updates for .γ0, .γ1, and .σ 2
v are very similar to what we 

have seen before. 

The parameter estimation step updates for .γ0, .γ1 and .σ 2
v when we observe an 

MPP variable with the amplitudes modeled as .rk = γ0 + γ1xk + vk are 

.

[

γ0

γ1

]

=
[

|K̃|
∑

k∈K̃
xk|K

∑

k∈K̃
xk|K

∑

k∈K̃
Uk

]−1[ ∑

k∈K̃
rk

∑

k∈K̃
rkxk|K

]

. (7.31) 

σ 2 
v =

1 

|K̃|

{

∑

k∈K̃

r2 k + |K̃|γ 2 
0 + γ 2 

1

∑

k∈K̃

Uk − 2γ0
∑

k∈K̃

rk − 2γ1
∑

k∈K̃

rkxk|K

+ 2γ0γ1
∑

k∈K̃

xk|K

}

. (7.32) 

7.3 MATLAB Examples 

The MATLAB code examples for estimating .xk from a set of MPP observations are 

provided in the following folders: 

• one_mpp 

sim\ 

data_one_mpp.mat 

filter_one_mpp.m 

expm\ 

expm_data_one_mpp.mat 

expm_filter_one_mpp.m 

The code examples estimate .xk based on the inputs .nk and .rk denoted by the 

variables n and r. A few differences are to be noted in this code compared to the 

previous examples. In the previous MATLAB examples, we had the predict, update, 

predict, update, etc. steps executed repeatedly for .k = 1, 2, . . . , K . However, when 

we have MPP observations, we have two different filter update equations depending 

on the value of .nk . The  .rk amplitudes are only taken into account when .nk = 1. 

Therefore, the state estimation step contains the following:
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x_updt(k) = get_posterior_mode(x_pred(k), v_pred(k), r(k), r0(m), 
r1(m), vr(m), b0, n(k)); 

p_updt(k) = 1 / (1 +  exp((-1) * (b0 + x_updt(k)))); 

if (n(k) == 0)  
v_updt(k) = 1 / ((1  /  v_pred(k)) + p_updt(k) * (1 - p_updt(k))) 

; 
elseif (n(k) == 1) 

v_updt(k) = 1 / ((1  /  v_pred(k)) + ((r1(m) ^ 2) / vr(m)) + 
p_updt(k) * (1 - p_updt(k))); 

end 

The state update, also based on an if-else depending on the value of .nk , is calculated 

using the get_posterior_mode(...) function shown below: 

function [y] = get_posterior_mode(x_pred, v_pred, z, r0, r1, vr, 
b0, n) 

M = 100; % maximum iterations 
y =  NaN; 

it = zeros(1, M); 
f =  zeros(1, M); 
df = zeros(1, M); 

it(1) = x_pred; 

for i = 1:(M - 1)  
if (n == 0) 

C = v_pred; 
f(i) = it(i) - x_pred - C * (n - exp(b0 + it(i)) / (1 

+ exp(b0 + it(i)))); 
df(i) = 1 + C  * exp(b0 + it(i)) / (1 +  exp(b0 + it(i) 

)) ^ 2;  
elseif (n == 1) 

C = v_pred / ((r1 ^ 2) * v_pred + vr); 
f(i) = it(i) - x_pred - C * (r1 * (z - r0 - r1 * 

x_pred) + vr * (n - (1 / (1 +  exp((-1) * (b0 + it(i))))))); 
df(i) = 1 + C  * vr * exp(b0 + it(i)) / ((1 + exp(b0 + 

it(i)))  ̂ 2); 
end 

it(i + 1) = it(i) - f(i) / df(i); 

if abs(it(i + 1) - it(i)) < 1e-14  
y = it(i + 1);  
return 

end 
end 

error(’Newton-Raphson failed to converge.’); 

end
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The other variables used in the code largely remain the same. For instance, we 

still use x_pred, x_updt, and x_smth to denote .xk|k−1, .xk|k , and .xk|K , respectively, 

and v_pred, v_updt and v_smth to denote the corresponding variances .σ 2
k|k−1, .σ

2
k|k

and .σ 2
k|K . 

7.3.1 Application to Skin Conductance and Sympathetic 

Arousal 

As stated earlier, the sequence of neural impulses underlying the phasic variations in 

a skin conductance signal forms an MPP. This sequence of impulses is extracted via 

deconvolution. In the code example, the input (i.e., the deconvolved neural impulse 

train) is provided through the variables n and r. The variable r(k) has a non-

zero amplitude whenever n(k) is equal to 1. The r(k) amplitudes are not taken 

into account when n(k) is 0. Running the MATLAB examples on simulated and 

experimental data produces the results shown in Fig. 7.1. The filter was used in [32] 

for estimating sympathetic arousal from deconvolved skin conductance data. The 
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Fig. 7.1 State estimation based on observing one MPP variable. The left sub-figure depicts the 

estimation on simulated data and the right sub-figure depicts the estimation of sympathetic 

arousal from skin conductance data. The sub-panels on the left, respectively, depict (a) the MPP 

observations (blue) and the estimated .rk (red), (b) the point process event occurrence probability 

.pk (blue) and its estimate (red), (c) the state .xk (blue) and its estimate (red), and (d) the QQ plot for 

the residual error of .xk . The sub-panels on the right, respectively, depict (a) the skin conductance 

signal, (b) the neural impulses underlying phasic variations, (c) the arousal state .xk and its 95% 

confidence limits, (d) the probability of impulse occurrence .pk and its 95% confidence limits, and 

(e) the HAI (the regions above 90% and below 10% are shaded in red and green, respectively). The 

background colors on the right sub-figure correspond to the instruction period, a counting task, a 

color-word association task, relaxation, and watching a horror movie clip. From [32], used under 

Creative Commons CC-BY license
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Fig. 7.2 Driver stress estimation. The sub-panels, respectively, depict (a) the skin conductance 

signal, (b) the neural impulses, (c) the arousal state .xk and its 95% confidence limits, (d) the  

probability of impulse occurrence and its 95% confidence limits, and (e) the HAI (the regions 

above 90% and below 10% are shaded in red and green, respectively). The background colors in 

turn denote rest, city driving, toll road, highway, toll road, city driving, toll road, highway, toll 

road, city driving, and rest. From [32], used under Creative Commons CC-BY license 

results on experimental data shown in the figure are based on the study described 

in [53] (seen in the earlier chapters as well). The study involved different types of 

stressors interspersed by periods of relaxation. The results of using the same code 

on the driver stress data in [54] for a particular subject are shown in Fig. 7.2.
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Chapter 8 

State-Space Model with One MPP and 
One Continuous Observation 

In this chapter, we will derive the EM algorithm equations for a state-space model 

having an MPP and a continuous-valued variable as its observations. Before looking 

at the state-space model itself and the equation derivations, we will again first 

consider a scenario for where the need for such a model arises. We stated earlier that 

the human body is comprised of multiple internal sub-systems that are networked 

with one another. The sub-systems perform specialized functions and all work in 

unison to maintain life. Now multiple functions within the body are regulated by 

the endocrine system. The endocrine system governs the secretion of a number of 

hormones that act on different target cells in the body. These hormones largely serve 

as messengers and help coordinate activities between sub-systems within the body. 

Functions that hormones are involved in include metabolism, the regulation of blood 

glucose and appetite, and playing a role in the body’s immune and stress responses, 

to name a few [101]. 

The secretory mechanism is pulsatile in the case of a number of hormones. 

Cortisol is one such example [38]. One of the major functions of cortisol is to 

raise blood glucose levels in response to external stressors [102, 103]. When the 

brain interprets sensory inputs as requiring cortisol secretion, the hypothalamus 

begins to secrete the hormone CRH (corticotropin-releasing hormone). CRH in 

turn causes the secretion of ACTH (adrenocorticotropic hormone) from the anterior 

pituitary. Finally, ACTH causes the secretion of cortisol from the adrenal glands 

[104]. The secretion of cortisol from the adrenal glands has a negative feedback 

effect suppressing the further secretion of CRH and ACTH [105, 106]. Between 15 

and 22 cortisol secretory events typically occur each day in a healthy adult [38, 107]. 

When cortisol is secreted into the bloodstream, a large percentage of it remains 
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bound [108]. It is the unbound cortisol in the blood that remains physiologically 

active [109]. This active cortisol aids in energy production at the liver [110, 111]. 

Since the cortisol concentration in the blood is a continuous variable and its pulsatile 

secretion forms an MPP, a state-space model for estimating the energy production 

level related to it should incorporate these types of observations. Similar to the case 

of skin conductance, a deconvolution procedure can be used to extract the pulsatile 

profile underlying a series of blood cortisol measurements [107]. Deconvolution 

also typically yields the infusion and clearance rates necessary to reconstruct a 

minute-by-minute profile of the cortisol concentration in the blood. Figure 8.1 shows 

a deconvolved cortisol profile [113]. 

Alternately, the same MPP plus continuous variable formulation can also 

be applied to skin conductance. Recall that skin conductance contains both a 

fast-varying phasic component and a slow-varying tonic component. The phasic 

component consists of a series of SCRs that are generated by neural impulses. 

These neural impulses form an MPP. The tonic component, which also reflects 

sympathetic arousal information, is a continuous observation [60]. Consequently, 

the state-space model with an MPP and a continuous observation can also be 

applied to the case of skin conductance. Unlike the case where we had one binary 

observation and two continuous observations to estimate sympathetic arousal from 

the same information, the formulation with the MPP and the continuous observation 

conforms more intuitively to the data itself. 
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Fig. 8.1 A deconvolved cortisol profile. Cortisol is secreted in pulses and between 15 and 

22 secretory events occur each day in a healthy adult. The figure depicts the blood cortisol 

measurements taken at 10 min intervals (blue), the reconstructed blood cortisol concentrations 

at a 1 min resolution (black), and the pulsatile secretions (red). From [112], used under Creative 

Commons CC-BY license
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8.1 Deriving the Update Equations in the State Estimation 

Step 

Here again we will assume that .xk varies with time following one of the state 

equations we have already seen. Therefore, no new predict step equations need to 

be derived. 

We made an interesting observation in the previous chapter when deriving 

the update step equations for the case where .xk gives rise to MPP observations. 

We observed that the update equations switched between those where one binary 

variable was observed and where both a binary variable and a continuous variable 

were observed. We will now consider the case where we observe an MPP variable 

along with a continuous variable. As in (7.9), the density function for our MPP is 

still 

.p(nk∩ rk|xk)=











1 − pk = elog(1−pk) if nk = 0

pk
1√
2πσ 2

v

e

−(rk−γ0−γ1xk)2

2σ2v = elog(pk) 1√
2πσ 2

v

e

−(rk−γ0−γ1xk)2

2σ2v if nk = 1,

(8.1) 

where .nk and .rk denote the occurrence of the point process events and the mark 

amplitudes, respectively. In addition to the MPP, we will now assume that we also 

observe a continuous variable .sk where 

.sk = δ0 + δ1xk + wk, (8.2) 

and .δ0, .δ1, and .wk have their usual meanings. We observe .sk at every point in time. 

Let us now proceed with deriving the mean and variance for the case when .nk = 0. 

The posterior density in this case is 

.p(xk|y1:k) ∝ elog(1−pk) × e

−(sk−δ0−δ1xk)2

2σ2w × e

−(xk−xk|k−1)2

2σ2
k|k−1 . (8.3) 

Taking the log on both sides, we have 

.q1 = log(1 − pk) −
(sk − δ0 − δ1xk)

2

2σ 2
w

−
(xk − xk|k−1)

2

2σ 2
k|k−1

+ constant. (8.4) 

We will next take the first and second derivatives of .q1 to obtain the mean and 

variance. 

.
dq1

dxk

= −
1

(1 − pk)
pk(1 − pk) +

δ1(sk − δ0 − δ1xk)

σ 2
w

−
(xk − xk|k−1)

σ 2
k|k−1

= 0.

(8.5)
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=⇒ 0 = −pk +
δ1(sk − δ0 − δ1xk)

σ 2 
w

−
(xk − xk|k−1)

σ 2 
k|k−1 

. (8.6) 

Since .nk = 0, we can rewrite .−pk as .(nk − pk). Therefore, 

.nk − pk +
δ1(sk − δ0 − δ1xk)

σ 2
w

=
(xk − xk|k−1)

σ 2
k|k−1

. (8.7) 

But this is identical to (4.21) with .sk , .δ0, and .δ1 appearing in the equation instead of 

.rk , .γ0, and .γ1. Therefore, similar to (4.26), the update for the mean is 

.xk = xk|k−1 +
σ 2

k|k−1

δ21σ
2
k|k−1 + σ 2

w

[

σ 2
w(nk − pk) + δ1(sk − δ0 − δ1xk|k−1)

]

. (8.8) 

We next take the second derivative of .q1. 

.
d2q1

dx2
k

= −pk(1 − pk) −
δ21

σ 2
w

−
1

σ 2
k|k−1

. (8.9) 

This also happens to be identical to (4.28) but with .δ1 and .σ 2
w instead of .γ1 and .σ 2

v . 

Therefore, similar to (4.29), the variance update is 

.σ 2
k|k = −

(

d2q1

dx2
k

)−1

=
[

1

σ 2
k|k−1

+ pk|k(1 − pk|k) +
δ21

σ 2
w

]−1

. (8.10) 

This is interesting. When we observe both an MPP variable and a continuous 

variable and .nk = 0, the update equations are identical to the case where one binary 

variable and one continuous variable were observed. 

We will next consider the case where .nk = 1 and a non-zero mark .rk exists. In 

this case, the posterior density is 

.p(xk|y1:k) ∝ elog(pk) × e

−(rk−γ0−γ1xk)2

2σ2v × e

−(sk−δ0−δ1xk)2

2σ2w × e

−(xk−xk|k−1)2

2σ2
k|k−1 . (8.11) 

Taking the log value and proceeding to take the first derivative, we have 

.
dq2

dxk

=
1

pk

pk(1−pk)+
γ1(rk−γ0−γ1xk)

σ 2
v

+
δ1(sk − δ0 − δ1xk)

σ 2
w

−
(xk − xk|k−1)

σ 2
k|k−1

.

(8.12) 

= 1 − pk +
γ1(rk − γ0 − γ1xk)

σ 2 
v

+
δ1(sk − δ0 − δ1xk)

σ 2 
w

−
(xk − xk|k−1)

σ 2 
k|k−1 

.

(8.13)



8.1 Deriving the Update Equations in the State Estimation Step 93

Setting this to 0 and replacing .(1 − pk) with .(nk − pk) since .nk = 1, we have  

.
dq2

dxk

= nk − pk +
γ1(rk − γ0 − γ1xk)

σ 2
v

+
δ1(sk − δ0 − δ1xk)

σ 2
w

−
(xk − xk|k−1)

σ 2
k|k−1

= 0.

(8.14) 

But this is identical to (5.21) where we observed one binary variable and two 

continuous variables. The second derivative of .q2 yields 

.
d2q2

dx2
k

= −pk(1 − pk) −
γ 2
1

σ 2
v

−
δ21

σ 2
w

−
1

σ 2
k|k−1

, (8.15) 

which is the same as (5.28). Therefore, in the case where we observe an MPP 

variable along with a continuous variable and .nk = 1, our update equations in the 

state estimation step are identical to those where we have one binary variable and 

two continuous variables. 

When .xk gives rise to MPP observations comprising of the pairs .(nk, rk) and 

a continuous observation .sk , the update equations in the state estimation step 

are 

if .nk = 0, 

.xk = xk|k−1 +
σ 2

k|k−1

γ 2
1 σ 2

k|k−1 + σ 2
w

[

σ 2
w(nk − pk) + γ1(sk − δ0 − δ1xk|k−1)

]

.

(8.16) 

σ 2 
k|k =

[

1 

σ 2 
k|k−1 

+ pk|k(1 − pk|k) +
δ2 1 

σ 2 
w

]−1 

(8.17) 

if .nk = 1, 

.xk|k = xk|k−1 +
σ 2

k|k−1

σ 2
v σ 2

w + σ 2
k|k−1(γ

2
1 σ 2

w + δ21σ
2
v )

[

σ 2
v σ 2

w(nk − pk|k)

+ γ1σ
2
w(rk − γ0 − γ1xk|k−1) + δ1σ

2
v (sk − δ0 − δ1xk|k−1)

]

. (8.18) 

σ 2 
k|k =

[

1 

σ 2 
k|k−1 

+ pk|k(1 − pk|k) +
γ 2 
1 

σ 2 
v

+
δ2 1 

σ 2 
w

]−1 

. (8.19)
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8.2 Deriving the Parameter Estimation Step Equations 

The derivation of the parameter estimation step updates is similar to what we 

have seen thus far. The updates for the parameters .γ0, .γ1, and .σ
2
v related to .rk

are calculated based on the subset of values .K̃ corresponding to where .nk = 1. 

The parameters .δ0, .δ1, and .σ
2
w corresponding to .sk are calculated based on all the 

observations. 

8.3 MATLAB Examples 

The MATLAB code examples are contained in the folders shown below: 

• one_mpp_one_cont 

sim\ 

data_one_mpp_one_cont.mat 

filter_one_mpp_one_cont.m 

expm\ 

expm_data_one_mpp_one_cont.mat 

expm_filter_one_mpp_one_cont.m 

The code itself is quite similar to what we have seen before in earlier examples. It 

takes in the inputs .nk , .rk , and .sk denoted by the variables n, r, and s to estimate .xk . 

We progress through the repeated predict, update, predict, update, etc. steps with 

.xk|k and .σ 2
k|k being estimated using different equations based on .nk . The variable 

names are also largely similar to what we have seen earlier. 

8.3.1 Application to Cortisol and Energy 

Recall the discussion regarding cortisol at the beginning of this chapter. Cortisol is 

secreted in pulses and between 15 and 22 of them are secreted by a healthy adult 

each day. The pulsatile hormone profile forms an MPP. In addition, the amount 

of unbound cortisol in the blood is biologically active and contributes to energy 

production. Thus, the observations for estimating the latent cortisol-related energy 

production state form an MPP and a continuous-valued variable. The cortisol inputs 

are provided to the code using the variables n, r, and s. The variables n and r 

denote the MPP observations .nk and .rk . The pulsatile secretions forming the MPP 

at a resolution of 1 min will need to be extracted via deconvolution (e.g., using [107, 

113, 114]). The cortisol infusion and clearance rates yielded by the deconvolution 

algorithm are used to generate .sk .
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Running the code examples for this particular state-space model produces the 

results in Fig. 8.2. The code running on experimental data for this model contains 

a notable difference. In general, when a continuous-valued observation is present, 

the state estimate can tend to overfit to it. In the experimental code example, the 

parameter estimation step updates for .δ0, .δ1, and .σ 2
w (the three parameters related to 

.sk) have been adjusted so that only a small step is taken in the direction of the next 

predicted values at a time. A second change has also been made in that the sensor 

noise variance .σ 2
w is initialized at a larger value and the same three parameters .δ0, 

.δ1, and .σ
2
w are only permitted to update until .σ 2

w reaches a threshold. These two 

changes greatly help reduce the overfitting to .sk . 
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Fig. 8.2 State estimation based on observing one MPP and one continuous variable. The left sub-

figure depicts the estimation on simulated data and the right sub-figure depicts the estimation 

of energy from blood cortisol data. The sub-panels on the left, respectively, depict (a) the MPP 

observations (blue) and the estimated .rk (red), (b) the point process event occurrence probability 

.pk (blue) and its estimate (red), (c) the continuous-valued variable .sk (blue) and its estimate (red), 

(d) the state .xk (blue) and its estimate (red), and (e) the QQ plot for the residual error of .xk . The  

sub-panels on the right, respectively, depict (a) the deconvolved cortisol pulses (blue) and the fit 

to .rk (red), (b) the reconstructed blood cortisol profile .sk (orange) and its estimate (red), (c) the  

probability of pulse occurrence .pk and its 95% confidence limits, and (d) the energy state .xk and 

its 95% confidence limits. From [33], used under Creative Commons CC-BY license
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Chapter 9 

Additional Models and Derivations 

Much of what we have described in the preceding chapters provides the basic tools 

necessary to build physiological state-space estimators. In this chapter, we will 

briefly review some additional concepts in state-space estimation, a non-traditional 

method of estimation, and some supplementary models. These may help serve as 

pointers if extensions are to be built to the models already described. 

9.1 State-Space Model with a Time-Varying Process Noise 

Variance Based on a GARCH(p, q) Framework 

Thus far, we have not considered time-varying model parameters. In reality, the 

human body is not static. Instead it undergoes changes from time to time (e.g., 

due to disease conditions, adaptation to new environments). In this section, we will 

consider a state equation of the form 

.xk = xk−1 + εk (9.1) 

where .εk ∼ N (0, σ 2
ε,k). Note that the process noise variance now depends on 

the time index k. Here we will use concepts from the Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) framework to model .εk . In a general 

GARCH(p, q) framework, we take 

.εk = hkνk, (9.2) 
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where .νk ∼ N (0, 1) and 

.h2k = α0 +

q
∑

i=1

αiε
2
k−i +

p
∑

j=1

βjh
2
k−j , (9.3) 

where the .αi’s and .βj ’s are coefficients to be determined. Now, conditioned on 

having observed all the sensor readings up to time index .(k − 1), we have  

.E[εk] = E[hkvk] = hkE[vk] = hk × 0 = 0 (9.4) 

and 

.σ 2
ε,k = V (εk) = V (hkνk) = h2kV (νk) = h2k × 1 = α0 +

q
∑

i=1

αiε
2
k−i +

p
∑

j=1

βjh
2
k−j .

(9.5) 

As is evident from (9.5), the variance of .εk depends on k. If a GARCH(p, q) model 

is used for the process noise term in the random walk, the predict equations in the 

state estimation step change to 

.xk|k−1 = xk−1|k−1. (9.6) 

σ 2 
k|k−1 = σ 2 

k−1|k−1 + σ 2 
ε,k = σ 2 

k−1|k−1 + α0 +

q
∑

i=1 

αiε
2 
k−i +

p
∑

j=1 

βjh
2 
k−j . (9.7) 

The update equations in the state estimation step remain unchanged. Note also that 

the calculation of .σ 2
k|k−1 requires the previous process noise terms. In general, these 

will have to be calculated based on successive differences between the .xk and .xk−1

estimates. 

Moreover,  we  would also have  .(p + q + 1) additional GARCH terms (the .αi’s 

and .βj ’s) to determine at the parameter estimation step. These terms would have to 

be chosen to maximize the log-likelihood 

.Q =
(−1)

2

K
∑

k=1

E

[

log(2πσ 2
ε,k) +

(xk − xk−1)
2

σ 2
ε,k

]

. (9.8) 

=
(−1)

2 

K
∑

k=1 

E

{

log

[

2π

(

α0 +

q
∑

i=1 

αiε
2 
k−i +

p
∑

j=1 

βjh
2 
k−j

)]

+
(xk − xk−1)

2 

α0 +
∑q

i=1 αiε
2 
k−i +

∑p

j=1 βjh
2 
k−j

}

. (9.9)
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The maximization of Q with respect to the GARCH terms is rather complicated. 

Choosing a GARCH(1, 1) model for .εk simplifies the computations somewhat. 

Additionally, note the recursive form contained within Q. For each value of k, we  

have terms of the form .h2k−j which contain within them further .h2 terms. In general, 

computing Q is challenging unless further simplifying assumptions are made. 

When .xk evolves with time following .xk = xk−1 + εk , where .εk is modeled 

using a GARCH(p, q) framework, the predict equations in the state estimation 

step are 

.xk|k−1 = xk−1|k−1. (9.10) 

σ 2 
k|k−1 = σ 2 

k−1|k−1 + α0 +

q
∑

i=1 

αiε
2 
k−i +

p
∑

j=1 

βjh
2 
k−j . (9.11) 

The parameter estimation step updates for the .(p + q + 1) GARCH terms are 

chosen to maximize 

.
(−1)

2

K
∑

k=1

E

{

log

[

2π

(

α0 +

q
∑

i=1

αiε
2
k−i +

p
∑

j=1

βjh
2
k−j

)]

+
(xk − xk−1)

2

α0 +
∑q

i=1 αiε
2
k−i +

∑p

j=1 βjh
2
k−j

}

. (9.12) 

9.2 Deriving the Parameter Estimation Step Equations for 

Terms Related to a Binary Observation 

Thus far, we have only considered cases where the probability of binary event 

occurrence .pk is of the form 

.pk =
1

1 + e−(β0+xk)
. (9.13) 

We have also thus far only estimated .β0 empirically (e.g., based on the average 

probability of point process event occurrence). Occasionally, however, we will find 

it helpful to model .pk as 

.pk =
1

1 + e−(β0+β1xk)
(9.14)
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and determine .β0 and .β1 at the parameter estimation step. If we wish to do so, we 

will need to consider the probability term that needs to be maximized at this step. 

Based on (3.27), this probability term is 

.

K
∏

k=1

e
nk log

(

pk
1−pk

)

+log(1−pk) =

K
∏

k=1

e
nk(β0+β1xk)+log

(

1

1+eβ0+β1xk

)

. (9.15) 

This yields the expected log-likelihood 

.Q =

K
∑

k=1

E

[

nk(β0 + β1xk) − log
(

1 + eβ0+β1xk
)

]

. (9.16) 

As in the case of determining the parameter updates for the terms in a CIF, this 

expected value is also somewhat complicated. Again, the trick is to perform a Taylor 

expansion around the mean .E[xk] = xk|K for each of the individual log terms. After 

performing this expansion, we end up with terms like .E[xk − xk|K ] and .E[(xk −
xk|K)2] which greatly simplify our calculations. 

Let us begin by performing a Taylor expansion of the log term around .xk|K [6]. 

. log
(

1 + eβ0+β1xk
)

≈ log
(

1 + eβ0+β1xk|K
)

+ β1pk|K(xk − xk|K)

+
β2
1

2
pk|K(1 − pk|K)(xk − xk|K)2. (9.17) 

Note the terms .(xk − xk|K) and .(xk − xk|K)2 in the expansion. Taking the expected 

value on both sides, 

.E

[

log
(

1 + eβ0+β1xk
)

]

≈ log
(

1 + eβ0+β1xk|K
)

+ β1pk|KE
[

xk − xk|K

]

+
β2
1

2
pk|K(1 − pk|K)E

[

(xk − xk|K )2
]

. (9.18) 

= log
(

1 + eβ0+β1xk|K
)

+ 0 +
β2 
1 

2 
pk|K(1 − pk|K)σ 2 

k|K .

(9.19) 

Therefore, 

.Q ≈

K
∑

k=1

[

nk(β0 + β1xk|K) − log
(

1 + eβ0+β1xk|K
)

−
β2
1

2
pk|K(1 − pk|K)σ 2

k|K

]

.

(9.20)
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Now, 

.
∂pk|K

∂β0
=

∂

∂β0

[

1

1 + e−(β0+β1xk|K )

]

=
(−1)

[

1 + e−(β0+β1xk|K )
]2

×
[

− e−(β0+β1xk|K )
]

= pk|K(1 − pk|K). (9.21) 

And similarly, 

.
∂pk|K

∂β1
= pk|K(1 − pk|K)xk|K . (9.22) 

Taking the partial derivative of Q with respect to .β0, we have  

.
∂Q

∂β0
=

K
∑

k=1

{

nk −
eβ0+β1xk|K

(

1 + eβ0+β1xk|K
) −

β2
1σ

2
k|K

2

∂

∂β0

[

pk|K(1 − pk|K)
]

}

. (9.23) 

=

K
∑

k=1

{

nk − pk|K −
β2 
1σ

2 
k|K

2 

∂

∂β0

[

pk|K(1 − pk|K)
]

}

. (9.24) 

=

K
∑

k=1

[

nk − pk|K −
β2 
1σ

2 
k|K

2 
(1 − pk|K)(1 − 2pk|K)pk|K

]

. (9.25) 

And similarly for .β1, we have  

.
∂Q

∂β1
=

K
∑

k=1

[

nkxk|K −xk|Kpk|K −
β1σ

2
k|K

2
pk|K(1−pk|K )

[

2 + β1xk|K(1 − 2pk|K)
]

]

.

(9.26) 

By setting 

.
∂Q

∂β0
= 0. (9.27) 

∂Q

∂β1 
= 0, (9.28) 

we obtain two simultaneous equations with which to solve for .β0 and .β1. Note also  

that the use of .β0 and .β1 in .pk causes changes to the filter update equations for .xk|k

and .σ 2
k|k .
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The parameter estimation step updates for .β0 and .β1 when we observe a 

binary variable .nk are obtained by solving 

.

K
∑

k=1

[

nk − pk|K −
β2
1σ

2
k|K

2
(1 − pk|K)(1 − 2pk|K)pk|K

]

= 0. (9.29) 

K
∑

k=1

[

nkxk|K − xk|Kpk|K −
β1σ

2 
k|K

2 
pk|K(1 − pk|K)

[

2 + β1xk|K(1 − 2pk|K)
]

]

= 0. (9.30) 

9.3 Extending Estimation to a Vector-Valued State 

We have also thus far only considered cases where a single state .xk gives rise to 

different observations. In a number of applications, we will encounter the need to 

estimate a vector-valued state .xk . For instance, we may need to estimate the position 

of a small animal on a 2D plane from neural spiking observations or may need to 

estimate different aspects of emotion from physiological signal features. We have a 

multi-dimensional .xk in each of these cases. 

Let us first consider the predict equations in the state estimation step. Assume 

that we have a state .xk that varies with time following 

.xk = Axk−1 + Buk + ek, (9.31) 

where A and B are matrices and .ek ∼ N (0,Σ) is the process noise. The basic 

statistical results related to mean and variance in (2.1)–(2.6) simply generalize to 

the vector case. Thus, the predict equations in the state estimation step become 

.xk|k−1 = Axk−1|k−1 + Buk. (9.32) 

Σk|k−1 = AΣk−1|k−1A
T + Σ, (9.33) 

where the covariance (uncertainty) .Σ of .xk is now a matrix. 

Recall also how we derived the update equations in the state estimation step. 

We calculated the terms that appeared in posterior .p(xk|y1:k) and made a Gaussian 

approximation to it in order to derive the mean and variance updates .xk|k and .σ 2
k|k . 

In all of the scalar cases, the log posterior density had the form
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.qs = f (xk) −
(xk − xk|k−1)

2

2σ 2
k|k−1

+ constant, (9.34) 

where .f (xk) was some function of .xk . This function could take on different forms 

depending on whether binary, continuous, or spiking-type observations (or different 

combinations of them) were present. In each of the cases, the mean and variance 

were derived based on the first and second derivatives of .qs . 

There are two different ways for calculating the update step equations in the 

vector case. 

• The first is the traditional approach outlined in [10]. Here, the result that holds 

for the 1D case is simply extended to the vector case. Regardless of the types of 

observations (features) that are present in the state-space model, the log posterior 

is of the form 

.qv = f (xk) −
1

2
(xk − xk|k−1)

TΣ−1
k|k−1(xk − xk|k−1) + constant. (9.35) 

The manner in which the updates .xk|k and .Σk|k are calculated, however, is quite 

similar. We simply take the first vector derivative of .qv and solve for where it 

is .0 to obtain .xk|k . We next take the Hessian of .qv comprising all the second 

derivatives and take its negative inverse to obtain .Σk|k . 

• The second approach is slightly different [115]. Note that, based on making a 

Gaussian approximation to the log posterior, we can write 

. −
1

2
(xk−xk|k)

TΣ−1
k|k (xk−xk|k) = f (xk)−

1

2
(xk−xk|k−1)

TΣ−1
k|k−1(xk−xk|k−1)

+ constant. (9.36) 

Let us take the first vector derivative with respect to .xk on both sides. This yields 

. − Σ−1
k|k (xk − xk|k) =

∂f (xk)

∂xk

− Σ−1
k|k−1(xk − xk|k−1). (9.37) 

Let us now evaluate this expression at .xk = xk|k−1. Do you see that if we 

substitute .xk = xk|k−1 in the above expression, the second term on the right 

simply goes away? Therefore, we end up with 

. − Σ−1
k|k (xk|k−1 − xk|k) =

∂f (xk)

∂xk

∣

∣

∣

∣

xk|k−1

. (9.38)

=⇒ xk|k = xk|k−1 + Σk|k
∂f (xk)

∂xk

∣

∣

∣

∣

xk|k−1 

. (9.39)
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This yields the mean state update for .xk|k . How do we derive the covariance 

matrix .Σk|k? We simply take the vector derivative of (9.37) again. Note that in 

this case, . ∂
2

∂x2k
is a matrix of all the second derivative terms. Thus, we obtain 

.Σ−1
k|k = −

∂2f (xk)

∂x2k
+ Σ−1

k|k−1. (9.40)

=⇒ Σk|k =

[

−
∂2f (xk)

∂x2 k
+ Σ−1 

k|k−1

]−1 

. (9.41) 

9.4 The Use of Machine Learning Methods for State 

Estimation 

Machine learning approaches can also be used for state estimation (e.g., [116, 117]). 

In these methods, neural networks or other techniques are utilized to learn a 

particular state-space model and infer the unobserved state(s) from a dataset. In this 

section, we will briefly describe how the neural network approach in [116] is used  

for estimation. In [116], Krishnan et al. considered the general Gaussian state-space 

model 

.xk ∼ N (fµx (xk−1), fσ 2
x
(xk−1)). (9.42) 

yk ∼ Π(fy(xk)), (9.43) 

where .yk represents the observations. Both the state equation and the output 

equation are learned using two separate neural networks (for simplicity, we group 

both of them together under the title “state-space neural network”—SSNN). A 

separate recurrent neural network (RNN) is used to estimate .xk . Taking .ψ and .φ

to denote the parameters of the state-space model and the RNN, respectively, the 

networks are trained by maximizing 

.Q̃ =

K
∑

k=1

Eqφ(xk |→y)

[

logpψ (yk|xk)
]

− KL(qφ(x1|→y)||pψ (x1))

−

K
∑

k=2

Eqφ(xk−1|→y)

[

KL(qφ(xk|xk−1, →y)||pψ (xk|xk−1))
]

, (9.44) 

where .pψ (·) and .qφ(·) denote density functions [116]. The actual training is 

performed within the algorithm as a minimization of the negative term which we 

label .QML. Analogous to the state-space EM algorithms we have seen so far, in
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this neural network approach, the SSNN replaces the explicit state-space model, the 

RNN replaces the Bayesian filter, and the weights of the neural networks replace the 

model parameters. The objective, however, is still to estimate .xk from observations 

such as .nk , .rk , and .sk . Since neural networks are used to learn the state-space model, 

more complicated state transitions and input-output relationships are permitted. One 

of the drawbacks, however, is that a certain degree of interpretability is lost. 

Similarities also exist between the terms in .QML and the log-likelihood terms 

we have seen thus far. For instance, when a binary variable .nk is present among the 

observations .yk , .QML contains the summation 

. −
∑

[

nk log
( 1

1 + e−fn(xk)

)

+ (1 − nk) log
(

1 −
1

1 + e−fn(xk)

)]

. (9.45) 

Take a moment to look back at how (3.15) and (3.26) fit in with this summation. 

In this case, however, .fn(·) is learned by the SSNN (in our other approaches, we 
explicitly modeled the relationship between .xk and .pk using a sigmoid). Similarly, 

if a continuous-valued variable .sk is present in .yk , there is the summation 

.

∑ 1

2
log

[

2πfσ 2
s
(xk)

]

+

[

sk − fµs (xk)
]2

2fσ 2
s
(xk)

, (9.46) 

where .fµs (·) and .fσ 2
s
(·) represent mean and variance functions learned by the 

SSNN. Again, recall that we had a very similar term at the parameter estimation 

step for a continuous variable .sk . 

One of the primary advantages of the neural network approach in [116] is that  

we no longer need to derive all the EM algorithm equations when new observations 

are added. This is a notable drawback with the traditional EM approach. Moreover, 

we can also modify the objective function to 

.(1 − ρ)QML + ρ
∑

(xk − lk)
2, (9.47) 

where .lk is an external influence and .0 ≤ ρ ≤ 1. This provides the option to perform 

state estimation while permitting an external influence (e.g., domain knowledge or 

subject-provided labels) to affect .xk . 

9.5 Additional MATLAB Code Examples 

In this section we briefly describe the two state-space models in [118] and [30] 

for which the MATLAB code examples are provided. The equation derivations for 

these two models require no significant new knowledge. The first of these incor-

porates one binary observation from skin conductance and one EKG spiking-type 

observation. The second incorporates one binary observation and two continuous
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observations. It is almost identical to the model with the same observations 

described in an earlier chapter but has a circadian rhythm term as .Ik . The derivation 

of the state and parameter estimation equations is similar to what we have seen 

before. 

9.5.1 State-Space Model with One Binary and One 

Spiking-Type Observation 

The MATLAB code example for the state-space model with one binary and one 

spiking-type observation is provided in the “one_bin_one_spk” folder. The model is 

described in [118] and attempts to estimate sympathetic arousal from binary-valued 

SCRs and EKG R-peaks (the RR-intervals are modeled using an HDIG-based CIF). 

The results are shown in Fig. 9.1. The data come from the study described in [119] 

where subjects had to perform office work-like tasks under different conditions. In 

the first condition, the subjects were permitted to take as much time as they liked. 

The other two conditions involved e-mail interruptions and time constraints. Based 

on the results reported in [118], it appeared that task uncertainty (i.e., how new the 

task is) seemed to have generated the highest sympathetic arousal responses for the 

subject considered. 

9.5.2 State-Space Model with One Binary and Two Continuous 

Observations with a Circadian Input in the State 

Equation 

Cortisol is known to exhibit circadian variation [120, 121]. Typically, cortisol 

concentrations in the blood begin to rise early morning during late stages of sleep. 

Peak values are reached shortly after awakening. Later in the day, cortisol levels 

tend to drop toward bedtime and usually reach their lowest values in the middle of 

the night [122, 123]. In [30], a circadian .Ik term was assumed to drive .xk so that it 

evolved with time following 

.xk = ρxk−1 + Ik + εk, (9.48) 

where 

.Ik =

2
∑

i=1

ai sin
(2πik

1440

)

+ bi cos
(2πik

1440

)

. (9.49) 

The model also considered the upper and lower envelopes of the blood cortisol 

concentrations as the two continuous variables .rk and .sk . The pulsatile secretions
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Fig. 9.1 State estimation based on observing one binary and one spiking-type variable. The sub-

panels, respectively, depict (a) the skin conductance signal .zk (the green and black dots on top 

depict the presence or the absence of SCRs, respectively), (b) the RR-interval sequence (orange) 

and the fit to the HDIG mean (red), (c) the probability of SCR occurrence .pk and its 95% 

confidence limits, (d) the arousal state .xk and its 95% confidence limits, and (e) the HAI (the 

regions above 90% and below 10% are shaded in red and green, respectively). © 2019 IEEE. 

Reprinted, with permission, from [118] 

formed the binary variable .nk . The inclusion of each continuous variable neces-

sitates the determination of three model parameters (two governing the linear fit 

and the third being the sensor noise variance). In addition, the state-space model 

in [30] also estimated .β0 and .β1 in .pk . There are also six more parameters in the
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Fig. 9.2 State estimation based on observing one binary and two continuous variables with a 

circadian input in the state equation. The sub-panels, respectively, depict (a) the cortisol profile (the 

green and black dots on top denote the presence or the absence of pulsatile secretions respectively), 

(b) the first cortisol concentration envelope .rk (green solid) and its estimate (dashed), (c) the second 

cortisol concentration envelope .sk (mauve solid) and its estimate (dashed), (d) the probability 

of pulse occurrence .pk , and  (e) the energy state .xk . © 2019 IEEE. Reprinted, with permission, 

from [30] 

state equation: .ρ, .a1, .a2, .b1, .b2, and .σ
2
ε . To ease computational complexity, the 

EM algorithm in [30] treated the four parameters related to the circadian rhythm 

(.a1, .a2, .b1, and .b2) somewhat differently. Thus, while all the parameters were 

updated at the parameter estimation step, .a1, .a2, .b1, and .b2 were excluded from the 

convergence criteria. The results are shown in Fig. 9.2. Here, the data were simulated
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for a hypothetical patient suffering from a type of hypercortisolism (Cushing’s 

disease) based on the parameters in [124]. Cushing’s disease involves excess cortisol 

secretion into the bloodstream and may be caused by tumors or prolonged drug use 

[125]. Symptoms of Cushing’s disease involve a range of physical and psychological 

symptoms including insomnia and fatigue [126–128]. The resulting cortisol-related 

energy state estimates do not have the usual circadian-like patterns seen for a healthy 

subject. This may partially account for why Cushing’s patients experience daytime 

bouts of fatigue and nighttime sleeping difficulties. 
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Chapter 10 

MATLAB Code Examples 

10.1 State-space Model with One Binary Observation 

10.1.1 Simulated Data Example 

load(’data_one_bin.mat’); 

K =  length(n); 

M = 2e4; 
ve = zeros(1, M); % process noise variance 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth = zeros(1, K); 
v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

base_prob = sum(n) / length(n); 
tol = 1e-6; % convergence criteria 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

ve(1) = 0.005; 
x_smth(1) = 0; 
b0 = log(base_prob / (1 - base_prob)); 
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for m = 1:M  

for k = 1:K  

if (k == 1) % boundary condition 
x_pred(k) = x_smth(1); 
v_pred(k) = ve(m) + ve(m); 

else 
x_pred(k) = x_updt(k - 1); 
v_pred(k) = v_updt(k - 1) + ve(m); 

end 

x_updt(k) = get_state_update(x_pred(k), v_pred(k), b0, n( 
k)); 

p_updt(k) = 1 / (1  +  exp((-1) * (b0 + x_updt(k)))); 
v_updt(k) = 1 / ((1  /  v_pred(k)) + p_updt(k) * (1 -

p_updt(k))); 
end 

x_smth(K) = x_updt(K); 
v_smth(K) = v_updt(K); 
W(K) = v_smth(K) + (x_smth(K) ^ 2); 

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end); 

for k = (K - 1):(-1):1 
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 

1)); 
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1)); 

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1); 
W(k) = v_smth(k) + (x_smth(k) ^ 2); 

end 

if (m < M)  

ve(m + 1) = (sum(W(2:end)) + sum(W(1:(end - 1))) - 2  * 
sum(CW)) / K; 

mean_dev = mean(abs(ve(m + 1) - ve(m))); 

if mean_dev < tol 
fprintf(’m = %d\nx0 = %.18f\nve = %.18f\n\n’, m,  

x_smth(1), ve(m)); 
fprintf(’Converged at m = %d\n\n’, m);  
break; 

else 
fprintf(’m = %d\nx0 = %.18f\nve = %.18f\n\n’, m,  

x_smth(1), ve(m + 1)); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K);
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x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth(2:end) =  zeros(1, K - 1); % x_smth(1) 
needed for next iteration 

v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

end 
end 

end 

p_smth = 1 ./ (1 + exp((-1) * (b0 + x_smth))); 

figure; 
subplot(411); 
stem(n, ’fill’, ’color’, [0 0.75 0]); 
ylim([0 1.25]); 
ylabel(’(a) n_{k}’); 
grid; title(’Estimation with Simulated Data’); 

subplot(412); 
hold on; 
plot(p, ’b’); 
plot(p_smth, ’r-.’, ’linewidth’, 1.25); 
ylabel(’(b) p_{k}’); 
grid; 

subplot(413); 
hold on; 
plot(x, ’b’); 
plot(x_smth, ’r-.’, ’linewidth’, 1.25); 
ylabel(’(c) x_{k}’); xlabel(’time index’); 
grid; 

subplot(414); 
qqplot(x - x_smth); 
title(’QQ Plot - State Estimate’, ’FontWeight’, ’Normal’); 
ylabel(’(d) input quantiles’); 
xlabel(’standard normal quantiles’); 
grid; 

function [y] = get_state_update(x_pred, v_pred, b0, n) 

M = 50; % maximum iterations 

it = zeros(1, M); 
func = zeros(1, M);
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df = zeros(1, M); 

it(1) = x_pred; 

for i = 1:(M - 1)  
func(i) = it(i) - x_pred - v_pred * (n - exp(b0 + it(i)) / 

(1 + exp(b0 + it(i)))); 
df(i) = 1 + v_pred * exp(b0 + it(i)) / ((1 + exp(b0 + it(i 

)))  ̂ 2); 
it(i + 1) = it(i) - func(i) / df(i); 

if abs(it(i + 1) - it(i)) < 1e-14 
y = it(i + 1);  

return 
end 

end 

error(’Newton-Raphson failed to converge.’); 

end 

10.1.2 Experimental Data Example 

load(’expm_data_one_bin.mat’); 

K =  length(u); 
n =  zeros(1, K); 

pt = find(u > 0);  
n(pt) = 1; 

M = 2e4; 
ve = zeros(1, M); % process noise variance 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth = zeros(1, K); 
v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

base_prob = sum(n) / length(n); 
tol = 1e-8; % convergence criteria 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K);
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ve(1) = 0.005; 
x_smth(1) = 0; 
b0 = log(base_prob / (1 - base_prob)); 

for m = 1:M  

for k = 1:K  

if (k == 1) % boundary condition 
x_pred(k) = x_smth(1); 
v_pred(k) = ve(m) + ve(m); 

else 
x_pred(k) = x_updt(k - 1); 
v_pred(k) = v_updt(k - 1) + ve(m); 

end 

x_updt(k) = get_state_update(x_pred(k), v_pred(k), b0, n( 
k)); 

p_updt(k) = 1 / (1  +  exp((-1) * (b0 + x_updt(k)))); 
v_updt(k) = 1 / ((1  /  v_pred(k)) + p_updt(k) * (1 -

p_updt(k))); 
end 

x_smth(K) = x_updt(K); 
v_smth(K) = v_updt(K); 
W(K) = v_smth(K) + (x_smth(K) ^ 2); 

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end); 
x0_prev = x_smth(1); 

for k = (K - 1):(-1):1 
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 

1)); 
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1)); 

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1); 
W(k) = v_smth(k) + (x_smth(k) ^ 2); 

end 

if (m < M)  

ve(m + 1) = (sum(W(2:end)) + sum(W(1:(end - 1))) - 2  * 
sum(CW) + 0.5 * W(1)) / (K + 1); 

x0 = x_smth(1) / 2; 

if (abs(ve(m + 1) - ve(m)) < tol) && (abs(x0 - x0_prev) < 
tol) 

fprintf(’m = %d\nx0 = %.18f\nve = %.18f\n\n’, m,  
x_smth(1), ve(m)); 

fprintf(’Converged at m = %d\n\n’, m);  
break;
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else 
fprintf(’m = %d\nx0 = %.18f\nve = %.18f\n\n’, m,  

x_smth(1), ve(m + 1)); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth(2:end) =  zeros(1, K - 1); % x_smth(1) 
needed for next iteration 

x_smth(1) = x0; 
v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

end 
end 

end 

p_smth = 1 ./ (1 + exp((-1) * (b0 + x_smth))); 

lcl_x = norminv(0.025, x_smth, sqrt(v_smth)); 
ucl_x = norminv(0.975, x_smth, sqrt(v_smth)); 

certainty = 1 - normcdf(prctile(x_smth, 50) * ones(1, length( 
x_smth)), x_smth, sqrt(v_smth)); 

lcl_p = zeros(1, K); 
ucl_p = zeros(1, K); 

disp(’Calculating the pk confidence limits... (this can take time 
due to the resolution)’); 

for k = 1:K  
[lcl_p(k), ucl_p(k)] = get_pk_conf_lims(v_smth(k), b0, x_smth 
(k)); 

end 
disp(’Finished calculating the pk confidence limits.’); 

fs = 4;  
t = (0:(K - 1)) / fs; 
tr = ((K - 1):(-1):0) / fs; 

u_plot = NaN * ones(1, K); 
u_plot(pt) = u(pt); 

subplot(511); 
hold on; 
plot(ty, y, ’k’, ’linewidth’, 1.25);
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ylabel({’(a) skin cond.’, ’(\mu S)’}); 
set(gca,’xticklabel’, []); ylim([0 3]); 
title(’State Estimation with Experimental Data’); xlim([0 ty(end) 

]); 
grid; 
yl = ylim; 

patch([xp(1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

subplot(512); 
stem(t, u_plot, ’fill’, ’k’, ’markersize’, 3);  
ylabel(’(b) n_{k}, r_{k}’); grid; xlim([0 t(end)]); ylim([0 15]); 
yl = ylim; set(gca,’xticklabel’, []); 

patch([xp(1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

subplot(513); 
hold on; 
plot(t, x_smth, ’b’, ’linewidth’, 1.25); 
fill([t, tr], [lcl_x fliplr(ucl_x)], ’c’, ’EdgeColor’, ’none’, ’ 

FaceAlpha’, 0.5); 
ylabel(’(c) state (x_{k})’); ylim([-10 5]); 
set(gca,’xticklabel’, []); xlim([0 t(end)]); 
grid; yl = ylim; 

patch([xp(1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);
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subplot(514); 
hold on; 
plot(t, p_smth, ’r’, ’linewidth’, 1.5); 
fill([t, tr], [lcl_p fliplr(ucl_p)], [1, 0, (127 / 255)], ’ 

EdgeColor’, ’none’, ’FaceAlpha’, 0.3); 
ylim([0 0.15]); 
ylabel(’(d) probability (p_{k})’); 
set(gca,’xticklabel’, []); xlim([0 t(end)]); 
grid; yl = ylim; 

patch([xp(1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

subplot(515); 
hold on; 
v1 = [0 0.9; t(end) 0.9; t(end) 1; 0 1];  
c1 = [1 (220 / 255) (220 / 255); 1 (220 / 255) (220 / 255); 1 0 

0; 1 0 0]; 
faces1 = [1 2 3 4];  

patch(’Faces’, faces1, ’Vertices’, v1,  ’FaceVertexCData’, c1, ’ 
FaceColor’, ’interp’, ... 
’EdgeColor’, ’none’, ’FaceAlpha’, 0.7); 

v2 = [0 0; t(end) 0; t(end) 0.1; 0 0.1]; 
c2 = [0 0.8 0; 0 0.8 0; (204 / 255) 1 (204 / 255); (204 / 255) 1 

(204 / 255)]; 
faces2 = [1 2 3 4];  

patch(’Faces’, faces2, ’Vertices’, v2,  ’FaceVertexCData’, c2, ’ 
FaceColor’, ’interp’, ... 
’EdgeColor’, ’none’, ’FaceAlpha’, 0.7); 

plot(t, certainty, ’color’, [(138 / 255) (43 / 255) (226 / 255)], 
’linewidth’, 1.5); grid; 

ylabel(’(d) HAI’); xlabel(’time (s)’); xlim([0 t(end)]); 

function [y] = get_state_update(x_pred, v_pred, b0, n) 

M = 50; % maximum iterations 

it = zeros(1, M); 
func = zeros(1, M); 
df = zeros(1, M); 

it(1) = x_pred;
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for i = 1:(M - 1)  
func(i) = it(i) - x_pred - v_pred * (n - exp(b0 + it(i)) / 

(1 + exp(b0 + it(i)))); 
df(i) = 1 + v_pred * exp(b0 + it(i)) / ((1 + exp(b0 + it(i 

)))  ̂ 2); 
it(i + 1) = it(i) - func(i) / df(i); 

if abs(it(i + 1) - it(i)) < 1e-14 
y = it(i + 1);  

return 
end 

end 

error(’Newton-Raphson failed to converge.’); 

end 

function [lcl, ucl] = get_pk_conf_lims(v, b0, x) 

p = (1e-6:1e-6:1); 

fp = cumtrapz(p, 1 ./ (sqrt(2 * pi * v) * p .* (1 - p)) .* 
... 

exp(((-1) / (2 * v))* (log(p ./ ((1 - p) * exp(b0))) - x) 
.^ 2)); 

n =  find(fp <= 0.975); 
m =  find(fp < 0.025); 

ucl = p(n(end)); 
lcl = p(m(end)); 

end 

10.2 State-space Model with One Binary and One 

Continuous Observation 

10.2.1 Simulated Data Example 

load(’data_one_bin_one_cont.mat’); 

K =  length(n); 

pt = find(n > 0);  

M = 5e4; 
ve = zeros(1, M); % process noise variance 
r0 = zeros(1, M); % linear model coefficients (continuous 

variable)
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r1 = zeros(1, M); % linear model coefficients (continuous 
variable) 

vr = zeros(1, M); % sensor noise variance (continuous variable) 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth = zeros(1, K); 
v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

base_prob = sum(n) / length(n); 
tol = 1e-8; % convergence criteria 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

ve(1) = 0.005; 
x_smth(1) = 0; 
r0(1) = 0.1; 
r1(1) = r(1); 
vr(1) = 0.002; 
b0 = log(base_prob / (1 - base_prob)); 

for m = 1:M  

for k = 1:K  

if (k == 1) 
x_pred(k) = x_smth(1); 
v_pred(k) = ve(m) + ve(m); 

else 
x_pred(k) = x_updt(k - 1); 
v_pred(k) = v_updt(k - 1) + ve(m); 

end 
x_updt(k) = get_posterior_mode(x_pred(k), v_pred(k), r(k) 

, r0(m), r1(m), vr(m), b0, n(k)); 
p_updt(k) = 1 / (1  +  exp((-1) * (b0 + x_updt(k)))); 
v_updt(k) = 1 / ((1  /  v_pred(k)) + ((r1(m) ^ 2) / vr(m)) 

+ p_updt(k) * (1 - p_updt(k))); 
end 

x_smth(K) = x_updt(K); 
v_smth(K) = v_updt(K); 
W(K) = v_smth(K) + (x_smth(K) ^ 2); 

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end);
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for k = (K - 1):(-1):1 
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 

1)); 
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1)); 

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1); 
W(k) = v_smth(k) + (x_smth(k) ^ 2); 

end 

if (m < M)  

R = get_linear_parameters(x_smth, W, r); 

r0(m + 1) = R(1, 1); 
r1(m + 1) = R(2, 1); 
vr(m + 1) = get_maximum_variance(r, r0(m + 1), r1(m + 1), 

W, x_smth); 

ve(m + 1) = (sum(W(2:end)) + sum(W(1:(end - 1))) - 2  * 
sum(CW)) / K; 

mean_dev = mean(abs([ve(m + 1) r0(m + 1) r1(m + 1) vr(m +  
1)] - [ve(m) r0(m) r1(m) vr(m)])); 

if mean_dev < tol 
fprintf(’m = %d\nx0 = %.18f\n\nr0 = %.18f\nr1 = %.18f 

\nvr = %.18f\nve = %.18f\n\n’, m, x_smth(1), r0(m), r1(m), vr 
(m), ve(m)); 

fprintf(’Converged at m = %d\n\n’, m);  
break; 

else 
fprintf(’m = %d\nx0 = %.18f\n\nr0 = %.18f\nr1 = %.18f 

\nvr = %.18f\nve = %.18f\n\n’, m, x_smth(1), r0(m + 1), r1(m 
+ 1), vr(m + 1), ve(m + 1)); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth(2:end) =  zeros(1, K - 1); % x_smth(1) 
needed for next iteration 

v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

end 
end
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end 

p_updt = 1 ./ (1 + exp((-1) * (b0 + x_updt))); 
p_smth = 1 ./ (1 + exp((-1) * (b0 + x_smth))); 
r_smth = r0(m) + r1(m) * x_smth; 

figure; 
subplot(511); 
stem(n, ’fill’, ’color’, [0 0.75 0]); 
ylim([0 1.25]); 
ylabel(’(a) n_{k}’); 
grid; title(’Estimation with Simulated Data’); 

subplot(512); 
hold on; 
plot(r, ’b’); 
plot(r_smth, ’r-.’, ’linewidth’, 1.5); 
ylabel(’(b) r_{k}’); 
grid; 

subplot(513); 
hold on; 
plot(p, ’b’); 
plot(p_smth, ’r-.’, ’linewidth’, 1.5); 
ylabel(’(c) p_{k}’); 
grid; 

subplot(514); 
hold on; 
plot(x, ’b’); 
plot(x_smth, ’r-.’, ’linewidth’, 1.5); 
ylabel(’(d) x_{k}’); 
xlabel(’time index’); 
grid; 

subplot(515); 
qqplot(x - x_smth); 
title(’QQ Plot - State Estimate’, ’FontWeight’, ’Normal’); 
ylabel(’(e) input quantiles’); 
xlabel(’standard normal quantiles’); 
grid; 

function [y] = get_posterior_mode(x_pred, v_pred, z, r0, r1, vr, 
b0, n) 

M = 100; % maximum iterations 

it = zeros(1, M); 
f =  zeros(1, M); 
df = zeros(1, M); 

it(1) = x_pred; 

for i = 1:(M - 1)
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C = v_pred / ((r1 ^ 2) * v_pred + vr); 
f(i) = it(i) - x_pred - C * (r1 * (z - r0 - r1  * x_pred) 

+ vr  * (n - (1 / (1 +  exp((-1) * (b0 + it(i))))))); 
df(i) = 1 + C  * vr * exp(b0 + it(i)) / ((1 + exp(b0 + it(  

i)))  ̂ 2); 

it(i + 1) = it(i) - f(i) / df(i); 

if abs(it(i + 1) - it(i)) < 1e-14  
y = it(i + 1);  
return 

end 
end 

error(’Newton-Raphson failed to converge.’); 

end 

function y = get_maximum_variance(z, r0, r1, W, x_smth) 

K =  length(x_smth); 

y = (z  * z’ + K  * (r0 ^ 2) + (r1 ^ 2)  * sum(W) ...
- 2  * r0 * sum(z) - 2  * r1 * dot(x_smth, z) + 2 * 

r0 * r1 * sum(x_smth)) / K; 
end 

function y = get_linear_parameters(x_smth, W, z) 

K =  length(x_smth); 

y = [K  sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .* 
x_smth)]; 

end 

10.2.2 Experimental Data Example 

load(’expm_data_one_bin_one_cont.mat’); 

K =  length(n); 

pt = find(n > 0);  

M = 5e4; 
ve = zeros(1, M); % process noise variance 
r0 = zeros(1, M); % linear model coefficients (continuous 

variable) 
r1 = zeros(1, M); % linear model coefficients (continuous 

variable) 
vr = zeros(1, M); % sensor noise variance (continuous variable)
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x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth = zeros(1, K); 
v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

base_prob = sum(n) / length(n); 
tol = 1e-8; % convergence criteria 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

ve(1) = 0.005; 
x_smth(1) = 0; 
r0(1) = 0.1; 
r1(1) = r(1); 
vr(1) = 0.002; 
b0 = log(base_prob / (1 - base_prob)); 

for m = 1:M  

for k = 1:K  

if (k == 1) 
x_pred(k) = x_smth(1); 
v_pred(k) = ve(m) + ve(m); 

else 
x_pred(k) = x_updt(k - 1); 
v_pred(k) = v_updt(k - 1) + ve(m); 

end 
x_updt(k) = get_posterior_mode(x_pred(k), v_pred(k), r(k) 

, r0(m), r1(m), vr(m), b0, n(k)); 
p_updt(k) = 1 / (1  +  exp((-1) * (b0 + x_updt(k)))); 
v_updt(k) = 1 / ((1  /  v_pred(k)) + ((r1(m) ^ 2) / vr(m)) 

+ p_updt(k) * (1 - p_updt(k))); 
end 

x_smth(K) = x_updt(K); 
v_smth(K) = v_updt(K); 
W(K) = v_smth(K) + (x_smth(K) ^ 2); 

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end); 

for k = (K - 1):(-1):1 
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 

1));
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v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -
v_pred(k + 1)); 

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1); 
W(k) = v_smth(k) + (x_smth(k) ^ 2); 

end 

if (m < M)  

R = get_linear_parameters(x_smth, W, r); 

r0(m + 1) = R(1, 1); 
r1(m + 1) = R(2, 1); 
vr(m + 1) = get_maximum_variance(r, r0(m + 1), r1(m + 1), 

W, x_smth); 

ve(m + 1) = (sum(W(2:end)) + sum(W(1:(end - 1))) - 2  * 
sum(CW)) / K; 

mean_dev = mean(abs([ve(m + 1) r0(m + 1) r1(m + 1) vr(m +  
1)] - [ve(m) r0(m) r1(m) vr(m)])); 

if mean_dev < tol 
fprintf(’m = %d\nx0 = %.18f\n\nr0 = %.18f\nr1 = %.18f 

\nvr = %.18f\nve = %.18f\n\n’, m, x_smth(1), r0(m), r1(m), vr 
(m), ve(m)); 

fprintf(’Converged at m = %d\n\n’, m);  
break; 

else 
fprintf(’m = %d\nx0 = %.18f\n\nr0 = %.18f\nr1 = %.18f 

\nvr = %.18f\nve = %.18f\n\n’, m, x_smth(1), r0(m + 1), r1(m 
+ 1), vr(m + 1), ve(m + 1)); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth(2:end) =  zeros(1, K - 1); % x_smth(1) 
needed for next iteration 

v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

end 
end 

end 

p_updt = 1 ./ (1 + exp((-1) * (b0 + x_updt)));
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p_smth = 1 ./ (1 + exp((-1) * (b0 + x_smth))); 
r_smth = r0(m) + r1(m) * x_smth; 
n_plot = NaN * ones(1, K); 
n_plot(n > 0) = 1; 

figure; 

subplot(511); 
hold on; 
plot(t, y, ’k’, ’linewidth’, 1.5); 
patch(xp, yp, [192, 192, 192] / 255, ’EdgeColor’, ’none’, ’ 

FaceAlpha’, 0.3); 
grid; 
ylabel(’(a) z_{k}’); title(’State Estimation with Experimental 

Data’); 
set(gca,’xticklabel’, []); ylim([(min(y) - 1e2) (max(y) + 1e2)]); 

subplot(512); 
stem(t, n_plot, ’fill’, ’color’, [0 0.75 0]); 
patch(xp, yp * 1.25, [192, 192, 192] / 255, ’EdgeColor’, ’none’, 

’FaceAlpha’, 0.3); 
ylim([0 1.25]); 
ylabel(’(b) n_{k}’); 
grid; set(gca,’xticklabel’, []); 

subplot(513); 
hold on; 
plot(t, r, ’b’); 
plot(t, r_smth, ’r’, ’linewidth’, 1.5); 
patch(xp, yp, [192, 192, 192] / 255, ’EdgeColor’, ’none’, ’ 

FaceAlpha’, 0.3); 
ylabel(’(c) r_{k}’); 
grid; set(gca,’xticklabel’, []); 

subplot(514); 
hold on; 
plot(t, p_smth, ’color’, [(204 / 255), 0, (102 / 255)], ’ 

linewidth’, 1.25); 
patch(xp, yp * 0.5, [192, 192, 192] / 255, ’EdgeColor’, ’none’, ’ 

FaceAlpha’, 0.3); 
ylabel(’(d) p_{k}’); 
grid; set(gca,’xticklabel’, []); 

subplot(515); 
hold on; 
plot(t, x_smth, ’color’, [(153 / 255), 0, (153 / 255)], ’ 

linewidth’, 1.25); 
yl = ylim; 
ypx = yp; 
ypx(yp == 0) = yl(1); 
ypx(yp == 1) = yl(2); 
patch(xp, ypx, [192, 192, 192] / 255, ’EdgeColor’, ’none’, ’ 

FaceAlpha’, 0.3); 
ylabel(’(e) x_{k}’);
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xlabel(’time (min)’); 
grid; ylim([(min(x_smth) - 2) inf]); 

function [y] = get_posterior_mode(x_pred, v_pred, z, r0, r1, vr, 
b0, n) 

M = 100; % maximum iterations 

it = zeros(1, M); 
f =  zeros(1, M); 
df = zeros(1, M); 

it(1) = x_pred; 

for i = 1:(M - 1)  
C = v_pred / ((r1 ^ 2) * v_pred + vr); 
f(i) = it(i) - x_pred - C * (r1 * (z - r0 - r1  * x_pred) 

+ vr  * (n - (1 / (1 +  exp((-1) * (b0 + it(i))))))); 
df(i) = 1 + C  * vr * exp(b0 + it(i)) / ((1 + exp(b0 + it(  

i)))  ̂ 2); 

it(i + 1) = it(i) - f(i) / df(i); 

if abs(it(i + 1) - it(i)) < 1e-14  
y = it(i + 1);  
return 

end 
end 

error(’Newton-Raphson failed to converge.’); 

end 

function y = get_maximum_variance(z, r0, r1, W, x_smth) 

K =  length(x_smth); 

y = (z  * z’ + K  * (r0 ^ 2) + (r1 ^ 2)  * sum(W) ...
- 2  * r0 * sum(z) - 2  * r1 * dot(x_smth, z) + 2 * 

r0 * r1 * sum(x_smth)) / K; 
end 

function y = get_linear_parameters(x_smth, W, z) 

K =  length(x_smth); 

y = [K  sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .* 
x_smth)]; 

end



128 10 MATLAB Code Examples

10.3 State-space Model with One Binary and Two 

Continuous Observations 

10.3.1 Simulated Data Example (αIk Excluded) 

load(’data_one_bin_two_cont_no_extern_stim.mat’); 

base_prob = sum(n) / length(n); 

%% parameters 

M = 1e6; % maximum iterations 
m = 1;  
tol = 1e-8; % convergence criteria 

b0 = zeros(1, M); % binary GLM model 
b1 = zeros(1, M); 

r0 = zeros(1, M); % continuous model 
r1 = zeros(1, M); 
vr = zeros(1, M); % continuous model noise variance (1) 

s0 = zeros(1, M); % continuous model 
s1 = zeros(1, M); 
vs = zeros(1, M); % continuous model noise variance (2) 

ve = zeros(1, M); % process noise variance 
rho = zeros(1, M); % random walk forgetting factor 

K =  length(n); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth = zeros(1, K); 
v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

%% initial guesses 

b0(1) = log(base_prob / (1 - base_prob)); 
b1(1) = 1;
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r0(1) = r(1); % guess it’s the first value of r 
r1(1) = 0.5; 
s0(1) = s(1); 
s1(1) = 1; 
vr(1) = 0.05; 
vs(1) = 0.05; 
ve(1) = 0.05; 
rho(1) = 1; 

%% main function 

for m = 1:M  

for k = 1:K  

if (k == 1) 
x_pred(k) = x_smth(1); 
v_pred(k) = ve(m) + ve(m); 

else 
x_pred(k) = rho(m) * x_updt(k - 1); 
v_pred(k) = (rho(m) ^ 2) * v_updt(k - 1) + ve(m); 

end 

C(k) = v_pred(k) / (vr(m) * vs(m) + v_pred(k) * ((r1(m) ^ 
2) * vs(m) + (s1(m) ^ 2) * vr(m))); 

x_updt(k) = get_posterior_mode(x_pred(k), C(k), r(k), r0( 
m), r1(m), b0(m), b1(m), vr(m), n(k), s(k), s0(m), s1(m), vs( 
m)); 

p_updt(k) = 1 / (1  +  exp((-1) * (b0(m) + b1(m) * x_updt(k 
)))); 

v_updt(k) = 1 / ((1  /  v_pred(k)) + ((r1(m) ^ 2) / vr(m)) 
+ ((s1(m) ^ 2) / vs(m))  + (b1(m) ^ 2)  * p_updt(k) * (1 -
p_updt(k))); 
end 

x_smth(K) = x_updt(K); 
v_smth(K) = v_updt(K); 
W(K) = v_smth(K) + (x_smth(K) ^ 2); 

A(1:(end - 1)) = rho(m) * v_updt(1:(end - 1)) ./ v_pred(2:end 
); 

for k = (K - 1):(-1):1 
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 

1)); 
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1)); 

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1); 
W(k) = v_smth(k) + (x_smth(k) ^ 2); 

end 

prev = [r0(m) r1(m) ve(m) vr(m) rho(m) s0(m) s1(m) vs(m)];
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R = get_linear_parameters(x_smth, W, r, K); 
S = get_linear_parameters(x_smth, W, s, K); 

b0(m + 1) =  log(base_prob / (1 - base_prob)); 
b1(m + 1) = 1;  

rho(m + 1) =  sum(CW) / sum(W(1:end - 1));  

ve(m + 1) = (sum(W(2:end)) + (rho(m + 1)  ̂ 2) * sum(W(1:(end
- 1))) - 2  * rho(m + 1)  * sum(CW)) / K; 

r0(m + 1) = R(1, 1); 
r1(m + 1) = R(2, 1); 

s0(m + 1) = S(1, 1); 
s1(m + 1) = S(2, 1); 

vr(m + 1) = get_maximum_variance(r, r0(m + 1), r1(m + 1), W, 
x_smth, K); 
vs(m + 1) = get_maximum_variance(s, s0(m + 1), s1(m + 1), W, 
x_smth, K); 

next = [r0(m + 1) r1(m + 1) ve(m + 1) vr(m + 1) rho(m + 1) s0 
(m + 1) s1(m  + 1) vs(m +1)];  

mean_dev = mean(abs(next - prev)); 

if mean_dev < tol 
fprintf(’Converged at m = %d\n\n’, m);  
break; 

else 
fprintf(’m = %d\nr0 = %.18f\nr1 = %.18f\nvr = %.18f\n\ns0 

= %.18f\ns1 = %.18f\nvs = %.18f\n\nve = %.18f\nrho = %.18f\n 
\n’, ... 

m + 1, r0(m + 1), r1(m + 1), vr(m + 1), s0(m + 1), s1(m + 
1), vs(m + 1), ve(m + 1), rho(m + 1)); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth(2:end) =  zeros(1, K - 1); % x_smth(1) needed 
for next iteration 

v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K);
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end 
end 

%% calculate confidence limits 

p_smth = 1 ./ (1 + exp((-1) * (b0(m) + b1(m) * x_smth))); % mode 
, lower and upper confidence limits for binary distribution 

r_smth = r0(m) + r1(m) * x_smth; 
s_smth = s0(m) + s1(m) * x_smth; 

%% plot graphs 

figure; 

subplot(511); 
hold on; 
plot(p, ’b’); 
plot(p_smth, ’r-.’, ’linewidth’, 1);  grid; 
plot(find(n == 0) - 1, 1.4 * max(p) * ones(length(find(n == 0))), 

’ks’, ’MarkerFaceColor’, ’k’, ’MarkerSize’, 4);  
plot(find(n == 1) - 1, 1.4 * max(p) * ones(length(find(n == 1))), 

’gs’, ’MarkerFaceColor’, ’g’, ’MarkerSize’, 4);  
ylabel(’(a) p_{k}’); ylim([0 0.18]); 
title(’State Estimation with Simulated Data’); 

subplot(512); 
hold on; 
plot(r, ’b’); 
plot(r_smth, ’r-.’, ’linewidth’, 1.25); grid; 
ylabel(’(b) r_{k}’); 

subplot(513); 
hold on; 
plot(s, ’b’); 
plot(s_smth, ’r-.’, ’linewidth’, 1.25); grid; 
ylabel(’(c) s_{k}’); 

subplot(514); 
hold on; 
plot(x, ’b’); 
plot(x_smth, ’r-.’, ’linewidth’, 1.25); grid; 
ylabel(’(d) x_{k}’); xlabel(’time index’); 

subplot(515); 
qqplot(x - x_smth); 
title(’QQ Plot - State Estimate’, ’FontWeight’, ’Normal’); 
ylabel(’(e) input quantiles’); 
xlabel(’standard normal quantiles’); 
grid; 

%% supplementary functions 

function y = get_posterior_mode(x_pred, C, r, r0, r1, b0, b1, vr, 
n, s, s0, s1, vs)
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M = 200; % maximum iterations 

it = zeros(1, M); 
f =  zeros(1, M); 
df = zeros(1, M); 

it(1) = x_pred; 

for i = 1:(M - 1)  
f(i) = it(i) - x_pred - C * (r1 * vs * (r - r0 - r1  * 

x_pred) + s1 * vr * (s - s0 - s1  * x_pred) + ... 
vr * vs * b1 * (n - (1 / (1 +  exp((-1) * (b0 + b1  * 

it(i))))))); 
df(i) = 1 + C  * vr * vs * (b1 ^ 2) * exp(b0 + b1  * it(i)) 

/ ((1 + exp(b0 + b1  * it(i)))  ̂ 2); 
it(i + 1) = it(i) - f(i) / df(i); 

if abs(it(i + 1) - it(i)) < 1e-14  
y = it(i + 1);  
return; 

end 
end 

error(’Newton-Raphson failed to converge.’); 

end 

function y = get_maximum_variance(z, r0, r1, W, x_smth, K) 

y = (z  * z’ + K  * (r0 ^ 2) + (r1 ^ 2)  * sum(W) ...
- 2  * r0 * sum(z) - 2  * r1 * dot(x_smth, z) + 2 * 

r0 * r1 * sum(x_smth)) / K; 

end 

function y = get_linear_parameters(x_smth, W, z, K) 

y = [K  sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .* 
x_smth)]; 

end 

10.3.2 Simulated Data Example 

load(’data_one_bin_two_cont.mat’); 

base_prob = sum(n) / length(n); 

%% parameters 

M = 1e6; % maximum iterations
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m = 1;  
tol = 1e-8; % convergence criteria 

b0 = zeros(1, M); % binary GLM model 
b1 = zeros(1, M); 

r0 = zeros(1, M); % continuous model 
r1 = zeros(1, M); 
vr = zeros(1, M); % continuous model noise variance (1) 

s0 = zeros(1, M); % continuous model 
s1 = zeros(1, M); 
vs = zeros(1, M); % continuous model noise variance (2) 

ve = zeros(1, M); % process noise variance 
rho = zeros(1, M); % random walk forgetting factor 
alpha = zeros(1, M); % external input gain parameter 

K =  length(n); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth = zeros(1, K); 
v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

%% initial guesses 

b0(1) = log(base_prob / (1 - base_prob)); 
b1(1) = 1; 
r0(1) = r(1); % guess it’s the first value of r 
r1(1) = 0.5; 
s0(1) = s(1); 
s1(1) = 1; 
vr(1) = 0.05; 
vs(1) = 0.05; 
ve(1) = 0.05; 
rho(1) = 1; 
alpha(1) = 0.5; 

%% main function 

for m = 1:M
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for k = 1:K  

if (k == 1) 
x_pred(k) = x_smth(1); 
v_pred(k) = ve(m) + ve(m); 

else 
x_pred(k) = rho(m) * x_updt(k - 1) + alpha(m) * I(k); 
v_pred(k) = (rho(m) ^ 2) * v_updt(k - 1) + ve(m); 

end 

C(k) = v_pred(k) / (vr(m) * vs(m) + v_pred(k) * ((r1(m) ^ 
2) * vs(m) + (s1(m) ^ 2) * vr(m))); 

x_updt(k) = get_posterior_mode(x_pred(k), C(k), r(k), r0( 
m), r1(m), b0(m), b1(m), vr(m), n(k), s(k), s0(m), s1(m), vs( 
m)); 

p_updt(k) = 1 / (1  +  exp((-1) * (b0(m) + b1(m) * x_updt(k 
)))); 

v_updt(k) = 1 / ((1  /  v_pred(k)) + ((r1(m) ^ 2) / vr(m)) 
+ ((s1(m) ^ 2) / vs(m))  + (b1(m) ^ 2)  * p_updt(k) * (1 -
p_updt(k))); 
end 

x_smth(K) = x_updt(K); 
v_smth(K) = v_updt(K); 
W(K) = v_smth(K) + (x_smth(K) ^ 2); 

A(1:(end - 1)) = rho(m) * v_updt(1:(end - 1)) ./ v_pred(2:end 
); 

for k = (K - 1):(-1):1 
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 

1)); 
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1)); 

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1); 
W(k) = v_smth(k) + (x_smth(k) ^ 2); 

end 

prev = [alpha(m) r0(m) r1(m) ve(m) vr(m) rho(m) s0(m) s1(m) 
vs(m)]; 

R = get_linear_parameters(x_smth, W, r, K); 
S = get_linear_parameters(x_smth, W, s, K); 

Q = [sum(W(1:end - 1)) (I(2:end) * x_smth(1:(end - 1))’); ... 
(I(2:end) * x_smth(1:(end - 1))’) (I * I’)] \ [sum(CW); ( 

I(2:end) * x_smth(2:end)’)]; 

b0(m + 1) =  log(base_prob / (1 - base_prob)); 
b1(m + 1) = 1;  

rho(m + 1) = Q(1, 1);
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alpha(m + 1) = Q(2, 1); 

ve(m + 1) = (sum(W(2:end)) + (rho(m + 1)  ̂ 2) * sum(W(1:(end
- 1))) - 2  * rho(m + 1) * sum(CW) - ... 

2 * alpha(m + 1) * (I(2:end) * x_smth(2:end)’) + 2  * 
alpha(m + 1) * rho(m + 1) * (I(2:end) * x_smth(1:(end - 1))’) 
+ ... 

(alpha(m + 1) ^ 2) * (I * I’)) / K; 

r0(m + 1) = R(1, 1); 
r1(m + 1) = R(2, 1); 

s0(m + 1) = S(1, 1); 
s1(m + 1) = S(2, 1); 

vr(m + 1) = get_maximum_variance(r, r0(m + 1), r1(m + 1), W, 
x_smth, K); 
vs(m + 1) = get_maximum_variance(s, s0(m + 1), s1(m + 1), W, 
x_smth, K); 

next = [alpha(m + 1) r0(m + 1) r1(m + 1) ve(m + 1) vr(m + 1) 
rho(m  + 1) s0(m + 1) s1(m + 1) vs(m +1)];  

mean_dev = mean(abs(next - prev)); 

if mean_dev < tol 
fprintf(’Converged at m = %d\n\n’, m);  
break; 

else 
fprintf(’m = %d\nr0 = %.18f\nr1 = %.18f\nvr = %.18f\n\ns0 

= %.18f\ns1 = %.18f\nvs = %.18f\n\nve = %.18f\nrho = %.18f\ 
nalpha = %.18f\n\n’, ... 

m + 1, r0(m + 1), r1(m + 1), vr(m + 1), s0(m + 1), s1(m + 
1), vs(m + 1), ve(m + 1), rho(m + 1), alpha(m + 1)); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth(2:end) =  zeros(1, K - 1); % x_smth(1) needed 
for next iteration 

v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

end 
end
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%% calculate confidence limits 

p_smth = 1 ./ (1 + exp((-1) * (b0(m) + b1(m) * x_smth))); % mode 
, lower and upper confidence limits for binary distribution 

r_smth = r0(m) + r1(m) * x_smth; 
s_smth = s0(m) + s1(m) * x_smth; 

%% plot graphs 

figure; 
subplot(511); 
hold on; 
plot(p, ’b’); 
plot(p_smth, ’r-.’, ’linewidth’, 1.25); grid; 
plot(find(n == 0) - 1, 1.2 * max(p_smth) * ones(length(find(n == 

0))), ’ks’, ’MarkerFaceColor’, ’k’, ’MarkerSize’, 4);  
plot(find(n == 1) - 1, 1.2 * max(p_smth) * ones(length(find(n == 

1))), ’gs’, ’MarkerFaceColor’, ’g’, ’MarkerSize’, 4);  
ylabel(’(a) p_{k}’); ylim([0 0.17]); 
title(’State Estimation with Simulated Data’); 

subplot(512); 
hold on; 
plot(r, ’b’); 
plot(r_smth, ’r-.’, ’linewidth’, 1.25); grid; 
ylabel(’(b) r_{k}’); 

subplot(513); 
hold on; 
plot(s, ’b’); 
plot(s_smth, ’r-.’, ’linewidth’, 1.25); grid; 
ylabel(’(c) s_{k}’); 

subplot(514); 
hold on; 
plot(x, ’b’); 
plot(x_smth, ’r-.’, ’linewidth’, 1.25); grid; 
plot(find(I == 0) - 1, (-8) * ones(length(find(I == 0))), ’ks’, ’ 

MarkerFaceColor’, ’k’, ’MarkerSize’, 4);  
plot(find(I == 1) - 1, (-8) * ones(length(find(I == 1))), ’cs’, ’ 

MarkerFaceColor’, ’c’, ’MarkerSize’, 4);  
ylabel(’(d) x_{k}’); xlabel(’time index’); 

subplot(515); 
qqplot(x - x_smth); 
title(’QQ Plot - State Estimate’, ’FontWeight’, ’Normal’); 
ylabel(’(e) input quantiles’); 
xlabel(’standard normal quantiles’); 
grid; 

%% supplementary functions 

function y = get_posterior_mode(x_pred, C, r, r0, r1, b0, b1, vr, 
n, s, s0, s1, vs)



10.3 State-space Model with One Binary and Two Continuous Observations 137

M = 200; % maximum iterations 

it = zeros(1, M); 
f =  zeros(1, M); 
df = zeros(1, M); 

it(1) = x_pred; 

for i = 1:(M - 1)  
f(i) = it(i) - x_pred - C * (r1 * vs * (r - r0 - r1  * 

x_pred) + s1 * vr * (s - s0 - s1  * x_pred) + ... 
vr * vs * b1 * (n - (1 / (1 +  exp((-1) * (b0 + b1  * 

it(i))))))); 
df(i) = 1 + C  * vr * vs * (b1 ^ 2) * exp(b0 + b1  * it(i)) 

/ ((1 + exp(b0 + b1  * it(i)))  ̂ 2); 
it(i + 1) = it(i) - f(i) / df(i); 

if abs(it(i + 1) - it(i)) < 1e-14  
y = it(i + 1);  
return; 

end 
end 

error(’Newton-Raphson failed to converge.’); 

end 

function y = get_maximum_variance(z, r0, r1, W, x_smth, K) 

y = (z  * z’ + K  * (r0 ^ 2) + (r1 ^ 2)  * sum(W) ...
- 2  * r0 * sum(z) - 2  * r1 * dot(x_smth, z) + 2 * 

r0 * r1 * sum(x_smth)) / K; 

end 

function y = get_linear_parameters(x_smth, W, z, K) 

y = [K  sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .* 
x_smth)]; 

end 

10.3.3 Experimental Data Example (αIk Excluded) 

load(’expm_data_one_bin_two_cont_no_extern_stim.mat’); 

min_scr_thresh = 0.015; 
min_scr_prom = min_scr_thresh; 
fs = 2;  

t = (0:(length(phasic) - 1)) / fs;
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ph = phasic; 
tn = tonic; 
x_orig = y; 

[pks, locs] = findpeaks(ph, ’MinPeakHeight’, min_scr_thresh, ’ 
MinPeakProminence’, min_scr_prom); 

r =  interp1([1 locs length(ph)], log([ph(1) pks ph(end)]), 1: 
length(ph), ’cubic’); 

s = tn; 
n =  zeros(1, length(r)); 
I =  zeros(1, length(r)); 
n(locs) = 1; 

base_prob = sum(n) / length(n); 

std_s = std(s); 
std_r = std(r); 

s = s / std_s; 
r = r / std_r; 

%% parameters 

M = 5e5; % maximum iterations 
tol = 1e-8; % convergence criteria 

b0 = zeros(1, M); % binary GLM model 
b1 = zeros(1, M); 

r0 = zeros(1, M); % continuous model 
r1 = zeros(1, M); 
vr = zeros(1, M); % continuous model noise variance (1) 

s0 = zeros(1, M); % continuous model 
s1 = zeros(1, M); 
vs = zeros(1, M); % continuous model noise variance (2) 

ve = zeros(1, M); % process noise variance 
rho = zeros(1, M); % random walk forgetting factor 

K =  length(n); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth = zeros(1, K); 
v_smth = zeros(1, K); 

p_updt = zeros(1, K);
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A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

%% initial guesses 

b0(1) = log(base_prob / (1 - base_prob)); 
b1(1) = 1; 
r0(1) = r(1); % guess it’s the first value of r 
r1(1) = 1; 
s0(1) = s(1); 
s1(1) = 1; 
vr(1) = 0.05; 
vs(1) = 0.05; 
ve(1) = 0.05; 
rho(1) = 1; 

%% main function 

for m = 1:M  

for k = 1:K  

if (k == 1) 
x_pred(k) = x_smth(1); 
v_pred(k) = ve(m) + ve(m); 

else 
x_pred(k) = rho(m) * x_updt(k - 1); 
v_pred(k) = (rho(m) ^ 2) * v_updt(k - 1) + ve(m); 

end 

C(k) = v_pred(k) / (vr(m) * vs(m) + v_pred(k) * ((r1(m) ^ 
2) * vs(m) + (s1(m) ^ 2) * vr(m))); 

x_updt(k) = get_posterior_mode(x_pred(k), C(k), r(k), r0( 
m), r1(m), b0(m), b1(m), vr(m), n(k), s(k), s0(m), s1(m), vs( 
m)); 

p_updt(k) = 1 / (1  +  exp((-1) * (b0(m) + b1(m) * x_updt(k 
)))); 

v_updt(k) = 1 / ((1  /  v_pred(k)) + ((r1(m) ^ 2) / vr(m)) 
+ ((s1(m) ^ 2) / vs(m))  + (b1(m) ^ 2)  * p_updt(k) * (1 -
p_updt(k))); 
end 

x_smth(K) = x_updt(K); 
v_smth(K) = v_updt(K); 
W(K) = v_smth(K) + (x_smth(K) ^ 2); 

A(1:(end - 1)) = rho(m) * v_updt(1:(end - 1)) ./ v_pred(2:end 
); 

for k = (K - 1):(-1):1
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x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 
1)); 

v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -
v_pred(k + 1)); 

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1); 
W(k) = v_smth(k) + (x_smth(k) ^ 2); 

end 

if (m < M)  

R = get_linear_parameters(x_smth, W, r, K); 
S = get_linear_parameters(x_smth, W, s, K); 

b0(m + 1) = log(base_prob / (1 - base_prob)); 
b1(m + 1) = 1; 

rho(m + 1) =  sum(CW) / sum(W(1:end - 1));  

ve(m + 1) = (sum(W(2:end)) + (rho(m + 1) ^ 2) * sum(W(1:( 
end - 1))) - 2  * rho(m + 1) * sum(CW)) / K; 

if (abs(get_maximum_variance(r, R(1, 1), R(2, 1), W, 
x_smth, K) - get_maximum_variance(s, S(1, 1), S(2, 1), W, 
x_smth, K)) > 0.1) % overfitting check 

r0(m + 1) = r0(m); 
r1(m + 1) = r1(m); 

s0(m + 1) = s0(m); 
s1(m + 1) = s1(m); 

vr(m + 1) = vr(m); 
vs(m + 1) = vs(m); 

mean_dev = mean(abs([ve(m + 1) rho(m + 1)] - [ve(m) 
rho(m)])); 

else 
r0(m + 1) = R(1, 1); 
r1(m + 1) = R(2, 1); 

s0(m + 1) = S(1, 1); 
s1(m + 1) = S(2, 1); 

vr(m + 1) = get_maximum_variance(r, r0(m + 1), r1(m + 
1), W, x_smth, K); 

vs(m + 1) = get_maximum_variance(s, s0(m + 1), s1(m + 
1), W, x_smth, K); 

mean_dev = mean(abs([r0(m + 1) r1(m + 1) ve(m  + 1) vr  
(m + 1) rho(m + 1) s0(m  + 1) s1(m + 1) vs(m + 1)] - ...  

[r0(m) r1(m) ve(m) vr(m) rho(m) s0(m) s1(m) vs(m) 
])); 

end
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if mean_dev < tol 
fprintf(’Converged at m = %d\n\n’, m);  
break; 

else 
fprintf(’m = %d\nb0 = %.18f\nb1 = %.18f\n\nr0 = %.18f 

\nr1 = %.18f\nvr = %.18f\n\ns0 = %.18f\ns1 = %.18f\nvs = %.18 
f\n\nve = %.18f\nrho = %.18f\n\n’, ... 

m + 1, b0(m  + 1),  b1(m + 1),  r0(m + 1),  r1(m + 1),  vr  
(m + 1), s0(m + 1), s1(m + 1), vs(m + 1), ve(m + 1), rho(m + 
1)); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth(2:end) =  zeros(1, K - 1); % x_smth(1) 
needed for next iteration 

v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

end 
end 

end 

%% calculate confidence limits 

p_smth = 1 ./ (1 + exp((-1) * (b0(m) + b1(m) * x_smth))); % mode 
, lower and upper confidence limits for binary distribution 

r_smth = exp(std_r * (r0(m) + r1(m) * x_smth)); 

s_smth = (s0(m) + s1(m) * x_smth) * std_s; 

lcl_x = norminv(0.025, x_smth, sqrt(v_smth)); 
ucl_x = norminv(0.975, x_smth, sqrt(v_smth)); 

lcl_p = zeros(1, K); 
ucl_p = zeros(1, K); 

for k = 1:K  
[lcl_p(k), ucl_p(k)] = get_pk_conf_lims(v_smth(k), b0(m), 
x_smth(k)); 

end 

certainty = 1 - normcdf(prctile(x_smth, 50) * ones(1, length( 
x_smth)), x_smth, sqrt(v_smth)); 

%% plot graphs
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disp(’Plotting...’); 

xp_fs_plot = 4; 

index = (0:(K - 1)); 
t_index = index / fs; 
r_index = ((K - 1):(-1):0) / fs; 
transp = 0.3; 

subplot(611); 
hold on; 
plot(t_index, x_orig, ’k’, ’linewidth’, 1.25); 
plot(find(n == 0) / fs, 3.7 * ones(length(find(n == 0))), ’ks’, ’ 

MarkerFaceColor’, ’k’, ’MarkerSize’, 5);  
plot(find(n == 1) / fs, 3.7 * ones(length(find(n == 1))), ’gs’, ’ 

MarkerFaceColor’, ’g’, ’MarkerSize’, 5);  
ylim([0 4]); yl = ylim; 

patch([xp(1), xp(2), xp(2), xp(1)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(2), xp(3), xp(3), xp(2)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(3), xp(4), xp(4), xp(3)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’ 
none’); 

patch([xp(4), xp(5), xp(5), xp(4)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(5), xp(6), xp(6), xp(5)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

ylabel({’(a) skin cond.’, ’(\mu S)’}); grid; xlim([0 (xp(6) / 
xp_fs_plot)]); 

set(gca,’xticklabel’, []); 
title(’State Estimation with Experimental Data’); 

subplot(612); 
hold on; 

plot(t_index, r_smth, ’:’, ’color’, [0 0.3 0], ’linewidth’, 1.5); 
plot(t_index, exp(r * std_r), ’color’, [0 0.9 0], ’linewidth’, 

1.5); 
grid; 

xlim([0 (xp(6) / xp_fs_plot)]); 
ylim([(min([exp(r * std_r) r_smth]) - 0.25) (0.25 + max([exp(r * 

std_r) r_smth]))]); yl = ylim; 

patch([xp(1), xp(2), xp(2), xp(1)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(2), xp(3), xp(3), xp(2)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(3), xp(4), xp(4), xp(3)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’ 
none’);
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patch([xp(4), xp(5), xp(5), xp(4)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(5), xp(6), xp(6), xp(5)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

set(gca,’xticklabel’, []); 
ylabel(’(b) phasic’); 

subplot(613); 
hold on; 

plot(t_index, s_smth, ’:’, ’color’, [0.5 (25 / 255) (66 / 255)], 
’linewidth’, 1.5); 

plot(t_index, s * std_s, ’color’, [1 0.5 (179 / 255)], ’linewidth 
’, 1.5); grid; 

xlim([0 (xp(6) / xp_fs_plot)]); 
ylim([(min([(s * std_s) s_smth]) - 0.25) (0.25 + max([(s * std_s) 

s_smth]))]); yl = ylim; 

patch([xp(1), xp(2), xp(2), xp(1)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(2), xp(3), xp(3), xp(2)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(3), xp(4), xp(4), xp(3)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’ 
none’); 

patch([xp(4), xp(5), xp(5), xp(4)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(5), xp(6), xp(6), xp(5)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

set(gca,’xticklabel’, []); 
ylabel(’(c) tonic’); 

subplot(614); 
hold on; 
plot(t_index, x_smth, ’color’, ’b’, ’linewidth’, 1.25); grid; 
fill([t_index, r_index], [lcl_x fliplr(ucl_x)], ’c’, ’EdgeColor’, 

’none’, ’FaceAlpha’, 0.5); 
ylim([(min(x_smth) - 0.25) (0.25 + max(x_smth))]); yl = ylim; 

patch([xp(1), xp(2), xp(2), xp(1)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(2), xp(3), xp(3), xp(2)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(3), xp(4), xp(4), xp(3)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’ 
none’); 

patch([xp(4), xp(5), xp(5), xp(4)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(5), xp(6), xp(6), xp(5)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);
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xlim([0 (xp(6) / xp_fs_plot)]); 

set(gca,’xticklabel’, []); 
ylabel(’(d) state (x_{k})’); 

subplot(615); 
hold on; 
plot(t_index, p_smth, ’r’, ’linewidth’, 1.5); grid; 
fill([t_index, r_index], [lcl_p fliplr(ucl_p)], [1, 0, (127 / 

255)], ’EdgeColor’, ’none’, ’FaceAlpha’, 0.3); 

xlim([0 (xp(6) / xp_fs_plot)]); 
ylim([0 (max(p_smth) * 1.5)]); yl = ylim; 

patch([xp(1), xp(2), xp(2), xp(1)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(2), xp(3), xp(3), xp(2)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(3), xp(4), xp(4), xp(3)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’ 
none’); 

patch([xp(4), xp(5), xp(5), xp(4)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(5), xp(6), xp(6), xp(5)] / xp_fs_plot, [yl(1) yl(1) yl 
(2) yl(2)], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

set(gca,’xticklabel’,[]); 
ylabel({’(e) probability’, ’(p_{k})’}, ’FontSize’, 11); 

subplot(616); 
hold on; 
v1 = [0 0.9; t(end) 0.9; t(end) 1; 0 1];  
c1 = [1 (220 / 255) (220 / 255); 1 (220 / 255) (220 / 255); 1 0 

0; 1 0 0]; 
faces1 = [1 2 3 4];  

patch(’Faces’, faces1, ’Vertices’, v1,  ’FaceVertexCData’, c1, ’ 
FaceColor’, ’interp’, ... 
’EdgeColor’, ’none’, ’FaceAlpha’, 0.7); 

v2 = [0 0; t(end) 0; t(end) 0.1; 0 0.1]; 
c2 = [0 0.8 0; 0 0.8 0; (204 / 255) 1 (204 / 255); (204 / 255) 1 

(204 / 255)]; 
faces2 = [1 2 3 4];  

patch(’Faces’, faces2, ’Vertices’, v2,  ’FaceVertexCData’, c2, ’ 
FaceColor’, ’interp’, ... 
’EdgeColor’, ’none’, ’FaceAlpha’, 0.7); 

plot(t, certainty, ’color’, [(138 / 255) (43 / 255) (226 / 255)], 
’linewidth’, 1.5); grid; 

xlim([0 (xp(6) / xp_fs_plot)]); 

xlabel(’time (s)’);
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ylabel(’(f) HAI’); 

%% supplementary functions 

function y = get_posterior_mode(x_pred, C, r, r0, r1, b0, b1, vr, 
n, s, s0, s1, vs) 

M = 200; % maximum iterations 

it = zeros(1, M); 
f =  zeros(1, M); 
df = zeros(1, M); 

it(1) = x_pred; 

for i = 1:(M - 1)  
f(i) = it(i) - x_pred - C * (r1 * vs * (r - r0 - r1  * 

x_pred) + s1 * vr * (s - s0 - s1  * x_pred) + ... 
vr * vs * b1 * (n - (1 / (1 +  exp((-1) * (b0 + b1  * 

it(i))))))); 
df(i) = 1 + C  * vr * vs * (b1 ^ 2) * exp(b0 + b1  * it(i)) 

/ ((1 + exp(b0 + b1  * it(i)))  ̂ 2); 
it(i + 1) = it(i) - f(i) / df(i); 

if abs(it(i + 1) - it(i)) < 1e-14  
y = it(i + 1);  
return; 

end 
end 

error(’Newton-Raphson failed to converge.’); 

end 

function [lcl, ucl] = get_pk_conf_lims(v, b0, x) 

p = (1e-4:1e-4:1); 

fp = cumtrapz(p, 1 ./ (sqrt(2 * pi * v) * p .* (1 - p)) .* 
... 

exp(((-1) / (2 * v))* (log(p ./ ((1 - p) * exp(b0))) - x) 
.^ 2)); 

n =  find(fp <= 0.975); 
m =  find(fp < 0.025); 

ucl = p(n(end)); 
lcl = p(m(end)); 

end 

function y = get_maximum_variance(z, r0, r1, W, x_smth, K) 

y = (z  * z’ + K  * (r0 ^ 2) + (r1 ^ 2)  * sum(W) ...
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- 2  * r0 * sum(z) - 2  * r1 * dot(x_smth, z) + 2 * 
r0 * r1 * sum(x_smth)) / K; 

end 

function y = get_linear_parameters(x_smth, W, z, K) 

y = [K  sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .* 
x_smth)]; 

end 

10.3.4 Experimental Data Example 

load(’expm_data_one_bin_two_cont.mat’); 

min_scr_thresh = 0.015; 
min_scr_prom = min_scr_thresh; 
fs = 4;  
epoch = 10; 

subj = 1; 

stim = s_data.aug_stim; 
ph = s_data.ph; 
tn = s_data.tn; 

[pks, locs] = findpeaks(ph, ’MinPeakHeight’, min_scr_thresh, ’ 
MinPeakProminence’, min_scr_prom); 

r =  interp1([1 locs length(ph)], log([ph(find(ph > 0, 1)) pks ph( 
end)]), 1:length(ph), ’cubic’); 

s = tn; 
n =  zeros(1, length(r)); 
I =  zeros(1, length(r)); 

n(locs) = 1; 
I(stim) = 1; 

std_s = std(s); 
std_r = std(r); 

s = s / std_s; 
r = r / std_r; 

%% parameters 

M = 5e5; % maximum iterations 
tol = 1e-8; % convergence criteria 

b0 = zeros(1, M); % binary GLM model 
b1 = zeros(1, M);
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r0 = zeros(1, M); % continuous model 
r1 = zeros(1, M); 
vr = zeros(1, M); % continuous model noise variance (1) 

s0 = zeros(1, M); % continuous model 
s1 = zeros(1, M); 
vs = zeros(1, M); % continuous model noise variance (2) 

ve = zeros(1, M); % process noise variance 
rho = zeros(1, M); % random walk forgetting factor 
alpha = zeros(1, M); % input gain parameter 

K =  length(n); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth = zeros(1, K); 
v_smth = zeros(1, K); 

p_updt = zeros(1, K); 
p_smth = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

%% initial guesses 

base_prob = sum(n) / length(n); 
b0(1) = log(base_prob / (1 - base_prob)); 
b1(1) = 1; 
r0(1) = r(1); % guess it’s the first value of r 
r1(1) = 1; 
s0(1) = s(1); 
s1(1) = 1; 
vr(1) = 0.05; 
vs(1) = 0.05; 
ve(1) = 0.05; 
rho(1) = 1; 
alpha(1) = 0.5; 

%% main function 

for m = 1:M  

for k = 1:K  

if (k == 1)
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x_pred(k) = x_smth(1); 
v_pred(k) = ve(m) + ve(m); 

else 
x_pred(k) = rho(m) * x_updt(k - 1) + alpha(m) * I(k); 
v_pred(k) = (rho(m) ^ 2) * v_updt(k - 1) + ve(m); 

end 

C(k) = v_pred(k) / (vr(m) * vs(m) + v_pred(k) * ((r1(m) ^ 
2) * vs(m) + (s1(m) ^ 2) * vr(m))); 

x_updt(k) = get_posterior_mode(x_pred(k), C(k), r(k), r0( 
m), r1(m), b0(m), b1(m), vr(m), n(k), s(k), s0(m), s1(m), vs( 
m)); 

p_updt(k) = 1 / (1  +  exp((-1) * (b0(m) + b1(m) * x_updt(k 
)))); 

v_updt(k) = 1 / ((1  /  v_pred(k)) + ((r1(m) ^ 2) / vr(m)) 
+ ((s1(m) ^ 2) / vs(m))  + (b1(m) ^ 2)  * p_updt(k) * (1 -
p_updt(k))); 
end 

x_smth(K) = x_updt(K); 
v_smth(K) = v_updt(K); 
W(K) = v_smth(K) + (x_smth(K) ^ 2); 

A(1:(end - 1)) = rho(m) * v_updt(1:(end - 1)) ./ v_pred(2:end 
); 

for k = (K - 1):(-1):1 
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 

1)); 
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1)); 

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1); 
W(k) = v_smth(k) + (x_smth(k) ^ 2); 

end 

if (m < M)  

R = get_linear_parameters(x_smth, W, r, K); 
S = get_linear_parameters(x_smth, W, s, K); 

Q = [sum(W(1:end - 1)) (I(2:end) * x_smth(1:(end - 1))’); 
... 

(I(2:end) * x_smth(1:(end - 1))’) (I * I’)] \ [sum(CW 
); (I(2:end) * x_smth(2:end)’)]; 

b0(m + 1) = log(base_prob / (1 - base_prob)); 
b1(m + 1) = 1; 

rho(m + 1) = Q(1, 1); 

if (Q(2, 1) < 0) 
alpha(m + 1) = alpha(m);
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else 
alpha(m + 1) = Q(2, 1); 

end 

ve(m + 1) = (sum(W(2:end)) + (rho(m + 1) ^ 2) * sum(W(1:( 
end - 1))) - 2  * rho(m + 1) * sum(CW) - ... 

2 * alpha(m + 1) * (I(2:end) * x_smth(2:end)’) + 2  * 
alpha(m + 1) * rho(m + 1) * (I(2:end) * x_smth(1:(end - 1))’) 
+ ... 

(alpha(m + 1) ^ 2) * (I * I’)) / K; 

if (abs(get_maximum_variance(r, R(1, 1), R(2, 1), W, 
x_smth, K) - get_maximum_variance(s, S(1, 1), S(2, 1), W, 
x_smth, K)) > 0.1) % overfitting check 

r0(m + 1) = r0(m); 
r1(m + 1) = r1(m); 

s0(m + 1) = s0(m); 
s1(m + 1) = s1(m); 

vr(m + 1) = vr(m); 
vs(m + 1) = vs(m); 

mean_dev = mean(abs([ve(m + 1) rho(m + 1) alpha(m + 
1)] - [ve(m) rho(m) alpha(m)])); 

else 
r0(m + 1) = R(1, 1); 
r1(m + 1) = R(2, 1); 

s0(m + 1) = S(1, 1); 
s1(m + 1) = S(2, 1); 

vr(m + 1) = get_maximum_variance(r, r0(m + 1), r1(m + 
1), W, x_smth, K); 

vs(m + 1) = get_maximum_variance(s, s0(m + 1), s1(m + 
1), W, x_smth, K); 

mean_dev = mean(abs([r0(m + 1) r1(m + 1) ve(m  + 1) vr  
(m + 1) rho(m + 1) alpha(m + 1) s0(m + 1) s1(m + 1) vs(m + 1) 
] - ... 

[r0(m) r1(m) ve(m) vr(m) rho(m) alpha(m) s0(m) s1 
(m) vs(m)])); 

end 

if mean_dev < tol 
fprintf(’Converged at m = %d\n\n’, m);  
break; 

else 
fprintf(’m = %d\nb0 = %.18f\nb1 = %.18f\n\nr0 = %.18f 

\nr1 = %.18f\nvr = %.18f\n\ns0 = %.18f\ns1 = %.18f\nvs = %.18 
f\n\nve = %.18f\nrho = %.18f\nalpha = %.18f\n\n’, ... 

m + 1, b0(m  + 1),  b1(m + 1),  r0(m + 1),  r1(m + 1),  vr  
(m + 1), s0(m + 1), s1(m + 1), vs(m + 1), ve(m + 1), rho(m + 
1), alpha(m + 1));
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x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth(2:end) =  zeros(1, K - 1); % x_smth(1) 
needed for next iteration 

v_smth = zeros(1, K); 

p_updt = zeros(1, K); 
p_smth = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

end 
end 

end 

%% calculate confidence limits 

fp_mode = 1 ./ (1 + exp((-1) * (b0(m) + b1(m) * x_smth))); % 
mode, lower and upper confidence limits for binary 
distribution 

lcl_fp = zeros(1, K); 
ucl_fp = zeros(1, K); 

r_smth = exp((r0(m) + r1(m) * x_smth) * std_r); 
s_smth = (s0(m) + s1(m) * x_smth) * std_s; 

skn_avg = get_trial_averages(s_data, x_smth, epoch, fs, ’skn’); 
x_avg = get_trial_averages(s_data, x_smth, epoch, fs, ’x_smth’); 

t_epoch = ((-1):(1 / fs):(epoch - 1 - (1 / fs)));  
tr_epoch = ((epoch - 1 - (1 / fs)):(-1 / fs):(-1)); 

%% plot graphs 
disp(’Plotting...(you may need to press the Enter key again)’); 

index = (0:(K - 1)); 
t_index = index / fs; 
r_index = ((K - 1):(-1):0); % reverse index 
transp = 0.3; 

subplot(611); 
plot(t_index, s_data.x, ’color’, [(102 / 255) 0 (204 / 255)]); 
ylabel(’(a) z_{k}’); grid; xlim([0 t_index(end)]); 
set(gca,’xticklabel’, []); 
ylim([(min(s_data.x) - 0.1) (max(s_data.x) + 0.1)]); 
title(’State Estimation with Experimental Data’);
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subplot(612); 
hold on; 
plot(find(n == 0) / fs, max(fp_mode) * 1.3 * ones(length(find(n 

== 0))), ’ks’, ’MarkerFaceColor’, ’k’, ’MarkerSize’, 3);  
plot(find(n == 1) / fs, max(fp_mode) * 1.3 * ones(length(find(n 

== 1))), ’gs’, ’MarkerFaceColor’, ’g’, ’MarkerSize’, 3);  
plot(t_index, fp_mode, ’r’); 

ylabel(’(b) p_{k}’); 
xlim([0 t_index(end)]); ylim([0 (max(fp_mode) * 1.5)]); grid; 
set(gca,’xticklabel’, []); 

subplot(613); 
hold on; 
plot(t_index, r_smth, ’:’, ’color’, [0 0.3 0], ’linewidth’, 1.5); 
plot(t_index, exp(r * std_r), ’color’, [0 0.9 0]); 

ylabel(’(c) e^{r_{k}}’); grid; 
xlim([0 t_index(end)]); 
set(gca,’xticklabel’, []); 

subplot(614); 
hold on; 
plot(t_index, s_smth, ’:’, ’color’, [0.5 (25 / 255) (66 / 255)], 

’linewidth’, 1.5); 
plot(t_index, s * std_s, ’color’, [1 0.5 (179 / 255)]); 

ylabel(’(d) s_{k}’); 
xlim([0 t_index(end)]); grid; 
set(gca,’xticklabel’, []); 

subplot(615); 
hold on; 
plot(t_index, x_smth, ’color’, ’b’); 
plot(find(I == 0) / fs, (min(x_smth) - 0.5) * ones(length(find(I 

== 0))), ’ks’, ’MarkerFaceColor’, ’k’, ’MarkerSize’, 3);  
plot(find(I == 1) / fs, (min(x_smth) - 0.5) * ones(length(find(I 

== 1))), ’cs’, ’MarkerFaceColor’, ’c’, ’MarkerSize’, 3);  

ylabel(’(e) x_{k}’); ylim([(min(x_smth) - 1) (max(x_smth) + 1)]); 
xlim([0 t_index(end)]); grid; xlabel(’Time (s)’); 

subplot(6, 2, 11); 
hold on; 
plot(t_epoch, skn_avg(1, :), ’r’, ’linewidth’, 1.5); 
fill([t_epoch, tr_epoch], [skn_avg(2, :) fliplr(skn_avg(3, :))], 

’r’, ’EdgeColor’, ’none’, ’FaceAlpha’, 0.2); 

plot(t_epoch, skn_avg(4, :), ’m’, ’linewidth’, 1.5); 
fill([t_epoch, tr_epoch], [skn_avg(5, :) fliplr(skn_avg(6, :))], 

’m’, ’EdgeColor’, ’none’, ’FaceAlpha’, 0.2); 

plot(t_epoch, skn_avg(7, :), ’color’, [0 0.8 0], ’linewidth’, 
1.5);
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fill([t_epoch, tr_epoch], [skn_avg(8, :) fliplr(skn_avg(9, :))], 
’g’, ’EdgeColor’, ’none’, ’FaceAlpha’, 0.2); 

xlim([t_epoch(1) t_epoch(end)]); 
ylim([(min(min(skn_avg)) - 0.5) (max(max(skn_avg)) + 0.5)]); 

grid; 
xlabel(’Time (s)’); ylabel(’(f) z_{k}’); 

subplot(6, 2, 12); 
hold on; 
plot(t_epoch, x_avg(1, :), ’r’, ’linewidth’, 1.5); 
fill([t_epoch, tr_epoch], [x_avg(2, :) fliplr(x_avg(3, :))], ’r’, 

’EdgeColor’, ’none’, ’FaceAlpha’, 0.2); 

plot(t_epoch, x_avg(4, :), ’m’, ’linewidth’, 1.5); 
fill([t_epoch, tr_epoch], [x_avg(5, :) fliplr(x_avg(6, :))], ’m’, 

’EdgeColor’, ’none’, ’FaceAlpha’, 0.2); 

plot(t_epoch, x_avg(7, :), ’color’, [0 0.8 0], ’linewidth’, 1.5); 
fill([t_epoch, tr_epoch], [x_avg(8, :) fliplr(x_avg(9, :))], ’g’, 

’EdgeColor’, ’none’, ’FaceAlpha’, 0.2); 
xlim([t_epoch(1) t_epoch(end)]); 
ylim([(min(min(x_avg)) - 0.2) (max(max(x_avg)) + 0.2)]); 

grid; 
xlabel(’time (s)’); ylabel(’(g) x_{k}’); 

%% supplementary functions 

function y = get_posterior_mode(x_pred, C, r, r0, r1, b0, b1, vr, 
n, s, s0, s1, vs) 

M = 200; % maximum iterations 

it = zeros(1, M); 
f =  zeros(1, M); 
df = zeros(1, M); 

it(1) = x_pred; 

for i = 1:(M - 1)  
f(i) = it(i) - x_pred - C * (r1 * vs * (r - r0 - r1  * 

x_pred) + s1 * vr * (s - s0 - s1  * x_pred) + ... 
vr * vs * b1 * (n - (1 / (1 +  exp((-1) * (b0 + b1  * 

it(i))))))); 
df(i) = 1 + C  * vr * vs * (b1 ^ 2) * exp(b0 + b1  * it(i)) 

/ ((1 + exp(b0 + b1  * it(i)))  ̂ 2); 
it(i + 1) = it(i) - f(i) / df(i); 

if abs(it(i + 1) - it(i)) < 1e-14  
y = it(i + 1);  
return; 

end
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end 

error(’Newton-Raphson failed to converge.’); 

end 

function y = get_maximum_variance(z, r0, r1, W, x_smth, K) 

y = (z  * z’ + K  * (r0 ^ 2) + (r1 ^ 2)  * sum(W) ...
- 2  * r0 * sum(z) - 2  * r1 * dot(x_smth, z) + 2 * 

r0 * r1 * sum(x_smth)) / K; 

end 

function y = get_linear_parameters(x_smth, W, z, K) 

y = [K  sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .* 
x_smth)]; 

end 

function y = get_trial_averages(s, x_smth, epoch, fs, option) 

y =  zeros(9, epoch * fs); 

csm_ep = zeros(length(s.csm), epoch * fs); 
csp_us_ep = zeros(length(s.csp_us), epoch * fs); 
csp_nus_ep = zeros(length(s.csp_nus), epoch * fs); 

csm = s.csm; 
csp_us = s.csp_us; 
csp_nus = s.csp_nus; 

if strcmp(option, ’x_smth’) 

for j = 1:length(csm) 
csm_ep(j, :) = x_smth((s.stim(csm(j)) - fs ):(s.stim( 

csm(j)) + 9 * fs - 1));  
end 

for j = 1:length(csp_us) 
csp_us_ep(j, :) = x_smth((s.stim(csp_us(j)) - fs):(s. 

stim(csp_us(j)) + 9 * fs - 1));  
end 

for j = 1:length(csp_nus) 
csp_nus_ep(j, :) = x_smth((s.stim(csp_nus(j)) - fs):( 

s.stim(csp_nus(j)) + 9 * fs - 1));  
end 

elseif strcmp(option, ’skn’) 

for j = 1:length(csm)
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csm_ep(j, :) = s.x((s.stim(csm(j)) - fs ):(s.stim(csm 
(j)) + 9 * fs - 1));  

end 

for j = 1:length(csp_us) 
csp_us_ep(j, :) = s.x((s.stim(csp_us(j)) - fs):(s. 

stim(csp_us(j)) + 9 * fs - 1));  
end 

for j = 1:length(csp_nus) 
csp_nus_ep(j, :) = s.x((s.stim(csp_nus(j)) - fs):(s. 

stim(csp_nus(j)) + 9 * fs - 1));  
end 

end 

y(1, :) = mean(csp_us_ep); 
y(2, :) = mean(csp_us_ep) + tinv(0.975, length(csp_us) - 1) * 
std(csp_us_ep) / sqrt(length(csp_us)); 

y(3, :) = mean(csp_us_ep) + tinv(0.025, length(csp_us) - 1) * 
std(csp_us_ep) / sqrt(length(csp_us)); 

y(4, :) = mean(csp_nus_ep); 
y(5, :) = mean(csp_nus_ep) + tinv(0.975, length(csp_nus) - 1) 

* std(csp_nus_ep) / sqrt(length(csp_nus)); 
y(6, :) = mean(csp_nus_ep) + tinv(0.025, length(csp_nus) - 1) 

* std(csp_nus_ep) / sqrt(length(csp_nus)); 

y(7, :) = mean(csm_ep); 
y(8, :) = mean(csm_ep) + tinv(0.975, length(csm) - 1) * std( 
csm_ep) / sqrt(length(csm)); 
y(9, :) = mean(csm_ep) + tinv(0.025, length(csm) - 1) * std( 
csm_ep) / sqrt(length(csm)); 

end 

10.4 State-space Model with One Binary, Two Continuous 

and a Spiking-Type Observation 

10.4.1 Simulated Data Example 

load(’data_one_bin_two_cont_one_spk.mat’); 

delta = 0.005; 

%% parameters 

M = 5e5; % maximum iterations 
tol = 1e-5; % convergence criteria
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b0 = zeros(1, M); % binary GLM model 
b1 = zeros(1, M); 

r0 = zeros(1, M); % continuous model 
r1 = zeros(1, M); 
vr = zeros(1, M); % continuous model noise variance (1) 

s0 = zeros(1, M); % continuous model 
s1 = zeros(1, M); 
vs = zeros(1, M); % continuous model noise variance (2) 

ve = zeros(1, M); % process noise variance 
rho = zeros(1, M); % random walk fogetting factor 
alpha = zeros(1, M); % input gain parameter 

K =  length(n); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth = zeros(1, K); 
v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

rpeaks = zeros(1, K * 50); 
rpeaks(round(rpeak_locs / delta)) = 1; 
rpeaks = reshape(rpeaks, [50, K])’; 

exception_counter = 0; 

%% initial guesses 

base_prob = sum(n) / length(n); 
b0(1) = log(base_prob / (1 - base_prob)); 
b1(1) = 1; 

r0(1) = 0.27154; 
r1(1) = 0.5057; 
vr(1) = 0.00187; 

s0(1) = -0.73899; 
s1(1) = 0.25324; 
vs(1) = 0.00302; 

ve(1) = 0.01883;
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rho(1) = 0.99411; 
alpha(1) = 0.00818; 

theta = theta’; 

eta = -0.001; 

%% main function 

for m = 1:M  

for k = 1:K  

if (k == 1) 
x_pred(k) = x_smth(1); 
v_pred(k) = ve(m) + ve(m); 

else 
x_pred(k) = rho(m) * x_updt(k - 1) + alpha(m) * I(k); 
v_pred(k) = (rho(m) ^ 2) * v_updt(k - 1) + ve(m); 

end 

C(k) = v_pred(k) / (vr(m) * vs(m) + v_pred(k) * ((r1(m) ^ 
2) * vs(m) + (s1(m) ^ 2) * vr(m))); 

try % numerical issues can occur due to the integrals 
[temp1, temp2] = get_posterior_mode(x_pred(k), C(k), 

r(k), r0(m), r1(m), b0(m), b1(m), vr(m), n(k), s(k), s0(m), 
s1(m), vs(m), ... 

rpeaks(k, :), ul(k, :), delta, w(k, :, :), theta 
’, eta); 

x_updt(k) = temp1; 

p_updt(k) = 1 / (1 + exp((-1) * (b0(m) + b1(m) * 
x_updt(k)))); 

v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr( 
m)) + ((s1(m) ^ 2) / vs(m)) + (b1(m) ^ 2)  * p_updt(k) * (1 -
p_updt(k)) - temp2); 

catch 
x_updt(k) = x_pred(k); 
v_updt(k) = v_pred(k); 
exception_counter = exception_counter + 1; 

end 

if (mod(k, 100) == 0) 
fprintf(’%d ’, k);  

end 

if (mod(k, 2500) == 0) 
fprintf(’\n’); 

end 
end 

x_smth(K) = x_updt(K); 
v_smth(K) = v_updt(K);
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W(K) = v_smth(K) + (x_smth(K) ^ 2); 

A(1:(end - 1)) = rho(m) * v_updt(1:(end - 1)) ./ v_pred(2:end 
); 

for k = (K - 1):(-1):1 
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 

1)); 
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1)); 

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1); 
W(k) = v_smth(k) + (x_smth(k) ^ 2); 

end 

if (m < M)  

R = get_linear_parameters(x_smth, W, r, K); 
S = get_linear_parameters(x_smth, W, s, K); 

Q = [sum(W(1:end - 1)) (I(2:end) * x_smth(1:(end - 1))’); 
... 

(I(2:end) * x_smth(1:(end - 1))’) (I * I’)] \ [sum(CW 
); (I(2:end) * x_smth(2:end)’)]; 

b0(m + 1) = log(base_prob / (1 - base_prob)); 
b1(m + 1) = 1; 

rho(m + 1) = Q(1, 1); 

if (Q(2, 1) < 0) % in case this happens (generally 
only needed with experimental data) 

alpha(m + 1) = alpha(m); 
else 

alpha(m + 1) = Q(2, 1); 
end 

ve(m + 1) = (sum(W(2:end)) + (rho(m + 1) ^ 2) * sum(W(1:( 
end - 1))) - 2  * rho(m + 1) * sum(CW) - ... 

2 * alpha(m + 1) * (I(2:end) * x_smth(2:end)’) + 2  * 
alpha(m + 1) * rho(m + 1) * (I(2:end) * x_smth(1:(end - 1))’) 
+ ... 

(alpha(m + 1) ^ 2) * (I * I’)) / K; 

r0(m + 1) = R(1, 1); 
r1(m + 1) = R(2, 1); 

s0(m + 1) = S(1, 1); 
s1(m + 1) = S(2, 1); 

vr(m + 1) = get_maximum_variance(r, r0(m + 1), r1(m + 1), 
W, x_smth, K); 

vs(m + 1) = get_maximum_variance(s, s0(m + 1), s1(m + 1), 
W, x_smth, K);
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mean_dev = mean(abs([b0(m + 1) b1(m + 1) r0(m + 1) r1(m  
+ 1) ve(m + 1) vr(m + 1) rho(m + 1) alpha(m + 1) s0(m + 1) s1 
(m + 1) vs(m  + 1)] - ...  

[b0(m) b1(m) r0(m) r1(m) ve(m) vr(m) rho(m) alpha(m) 
s0(m) s1(m) vs(m)])); 

if mean_dev < tol 
fprintf(’\n\nConverged at m = %d\n\n’, m);  
break; 

else 
fprintf(’m = %d\nb0 = %.18f\nb1 = %.18f\n\nr0 = %.18f 

\nr1 = %.18f\nvr = %.18f\n\ns0 = %.18f\ns1 = %.18f\nvs = %.18 
f\n\nve = %.18f\nrho = %.18f\nalpha = %.18f\n\ndev = %.18f\n\ 
n’, ... 

m + 1, b0(m  + 1),  b1(m + 1),  r0(m + 1),  r1(m + 1),  vr  
(m + 1), s0(m + 1), s1(m + 1), vs(m + 1), ve(m + 1), rho(m + 
1), alpha(m + 1), mean_dev); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth(2:end) =  zeros(1, K - 1); % x_smth(1) 
needed for next iteration 

v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

end 
end 

end 

%% calculate confidence limits 

p_smth = 1 ./ (1 + exp((-1) * (b0(m) + b1(m) * x_smth))); 
r_smth = r0(m) + r1(m) * x_smth; 
s_smth = s0(m) + s1(m) * x_smth; 

lambda = zeros(K, 50); 
mean_rr = zeros(K, 50); 

for i = 1:K  
for j = 1:50 

w1 = [squeeze(w(i, j, :))’ [eta x_smth(i)]]; 
if (f(theta’, ul(i, j), w1) > 1e-18) 

lambda(i, j) = fetch_lambda(theta’, ul(i, j), w1); 
end
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mean_rr(i, j) = mu(theta’, w1); 
end 

end 

lambda_start_index = find(reshape(rpeaks’, 1, numel(rpeaks)), 1); 
lambda = reshape(lambda’, 1, numel(lambda)); 

ll = get_log_likelihood(eta, rpeaks, ul, delta, w, theta’, x_smth 
, v_smth); 

ll_final = sum(nansum(ll)); 

%% plot graphs 

figure; 

mean_rr = reshape(mean_rr’, 1, numel(mean_rr)); 
rri = diff(rpeak_locs); 
rr_times = rpeak_locs(2:end); 

index = (0:(K - 1)); 
fs_hyp = 4; 
t_index = index / fs_hyp; 
r_index = ((K - 1):(-1):0); % reverse index 
transp = 0.3; 

subplot(611); 
hold on; 
plot(t_index, p, ’b’); grid; 
plot(t_index, p_smth, ’r’); 
plot((find(n == 0) - 1) / fs_hyp, 1.2 * max(p) * ones(length(find 

(n == 0))), ’ks’, ’MarkerFaceColor’, ’k’, ’MarkerSize’, 4);  
plot((find(n == 1) - 1) / fs_hyp, 1.2 * max(p) * ones(length(find 

(n == 1))), ’gs’, ’MarkerFaceColor’, ’g’, ’MarkerSize’, 4);  
ylabel(’(a) p_{k}’); ylim([0 0.25]); 
title(’State Estimation with Simulated Data’); 

subplot(612); 
hold on; 
plot(t_index, r, ’b’); grid; 
plot(t_index, r_smth, ’r’); 
ylabel(’(b) r_{k}’); 

subplot(613); 
hold on; 
plot(t_index, s, ’b’); grid; 
plot(t_index, s_smth, ’r’); 
ylabel(’(c) s_{k}’); 

subplot(614); 
hold on; 
plot(t_index, x, ’b’); grid; 
plot(t_index, x_smth, ’r’); 
plot((find(I == 0) - 1) / fs_hyp, (-8) * ones(length(find(I == 0) 

)), ’ks’, ’MarkerFaceColor’, ’k’, ’MarkerSize’, 4);
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plot((find(I == 1) - 1) / fs_hyp, (-8) * ones(length(find(I == 1) 
)), ’cs’, ’MarkerFaceColor’, ’c’, ’MarkerSize’, 4);  

ylabel(’(d) x_{k}’); 

subplot(615); 
hold on; 
plot(rr_times, rri, ’o’, ’Color’, [1, 0.5, 0.25], ’ 

MarkerFaceColor’, [1, 0.5, 0.25], ’MarkerSize’, 2);  grid; 
mu_start_index = round(rpeak_locs(2) / delta); 
plot(((0:(length(mean_rr(mu_start_index:end)) - 1))  * delta), 

mean_rr(mu_start_index:end), ’b’); 
ylabel(’(e) rr_{i}’); xlim([0 t_index(end)]); xlabel(’time (s)’); 

subplot(616); 
qqplot(x_smth - x); grid; 
title(’QQ Plot - State Estimate’, ’FontWeight’, ’normal’); 
ylabel(’(f) input quantiles’); 
xlabel(’standard normal quantiles’); 

figure; 
get_ks_plot(rpeak_locs, lambda(lambda_start_index:end), delta, 1) 

; 
ylabel({’Theoretical’, ’Quantiles’}); xlabel(’Empirical Quantiles 

’); 
title(’KS Plot’); 

%% supplementary functions 

function [y, H2] = get_posterior_mode(x_pred, C, r, r0, r1, b0, 
b1, vr, n, s, s0, s1, vs, rpeaks, ul, delta, w_all, theta, 
eta) 

M = 200; % maximum iterations 

it = zeros(1, M); 
func = zeros(1, M); 
df = zeros(1, M); 

it(1) = x_pred; 

for i = 1:(M - 1)  

H1 = zeros(1, 50); 
H2 = zeros(1, 50); 

for j = 1:50 % 5 ms -> 0.25 s (4 Hz for skin 
conductance) 

w = [squeeze(w_all(1, j, :))’ [eta it(i)]]; 

if (f(theta, ul(j), w) > 1e-18) % 
lambda = fetch_lambda(theta, ul(j), w); 
dl_dx = dlambda_dx(theta, ul(j), w);
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H1(j) = dl_dx * (rpeaks(j) - lambda * delta) / 
lambda; 

H2(j) = d2lambda_dx2(theta, ul(j), w) * (rpeaks(j 
) - lambda * delta) / lambda - rpeaks(j) * (dl_dx ^ 2) / ( 
lambda ^ 2); 

end 
end 

H1 = sum(H1); 
H2 = sum(H2); 

func(i) = it(i) - x_pred - C * (r1 * vs * (r - r0 - r1  * 
x_pred) + s1 * vr * (s - s0 - s1  * x_pred) + ... 

vr * vs * b1 * (n - (1 / (1 +  exp((-1) * (b0 + b1  * 
it(i)))))) + vr * vs * H1); 

df(i) = 1 + C  * vr * vs * ((b1 ^ 2) * exp(b0 + b1  * it(i) 
) / ((1 + exp(b0 + b1  * it(i)))  ̂ 2) - H2); 

it(i + 1) = it(i) - func(i) / df(i); 

if abs(it(i + 1) - it(i)) < 1e-14  
y = it(i + 1);  
return; 

end 
end 

error(’Newton-Raphson failed to converge.’); 

end 

function y = get_maximum_variance(z, r0, r1, W, x_smth, K) 

y = (z  * z’ + K  * (r0 ^ 2) + (r1 ^ 2)  * sum(W) ...
- 2  * r0 * sum(z) - 2  * r1 * dot(x_smth, z) + 2 * 

r0 * r1 * sum(x_smth)) / K; 

end 

function y = get_linear_parameters(x_smth, W, z, K) 

y = [K  sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .* 
x_smth)]; 

end 

function [y] = f(theta, t, w) 

y =  sqrt(theta(end) ./ (2  * pi * (t .^ 3))) .* ... 
exp((theta(end) * ((t - mu(theta, w)) .^ 2)) ./ ... 
((-2) * (mu(theta, w) ^ 2) * t)); 

end 

function [y] = intf(theta, t, w)
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y = integral(@(t)f(theta, t, w), 0, t); 

end 

function [y] = mu(theta, w) 

eta = w(end - 1);  
x = w(end); 
p =  length(theta) - 2; 

y = theta(1) + theta(2:(2 + p - 1))  * w(1:p)’ + eta * x; 

end 

function [y] = fetch_lambda(theta, t, w) 

cdf = intf(theta, t, w); 
y = f(theta, t, w) ./ (1 - cdf); 

if (cdf > 1) % numerical issue 
y = 0;  

end 

end 

function [y] = df_dmu(theta, t, w) 

y = (theta(end) / (mu(theta, w)  ̂ 3)) * (f(theta, t, w) .* (t
- mu(theta, w))); 

end 

function [y] = df_dx(theta, t, w) 

eta = w(end - 1);  
y = df_dmu(theta, t, w) .* eta; 

end 

function [y] = intdf_dx(theta, t, w) 

y = integral(@(t)df_dx(theta, t, w), 0, t); 

end 

function [y] = dlambda_dx(theta, t, w) 

cdf = intf(theta, t, w); 

if (cdf > 1) % numerical issue 
y = 0;  

else 
y = ((1 - cdf) .* df_dx(theta, t, w) + ...
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f(theta, t, w) .* intdf_dx(theta, t, w)) ./ ((1 - cdf 
) .^ 2);  
end 

end 

function [y] = d2f_dmu2(theta, t, w) 

y = theta(end) * (df_dmu(theta, t, w) .* ((t - mu(theta, w)) 
/ (mu(theta, w) ^ 3)) + ... 

f(theta, t, w) .* ((2 * mu(theta, w) - 3 * t) / (mu(theta 
, w) ^ 4)));  

end 

function [y] = d2f_dx2(theta, t, w) 

eta = w(end - 1);  
y = d2f_dmu2(theta, t, w) .* (eta ^ 2); 

end 

function [y] = intd2f_dx2(theta, t, w) 

y = integral(@(t)d2f_dx2(theta, t, w), 0, t); 

end 

function [y] = d2lambda_dx2(theta, t, w) 

y = (2  * dlambda_dx(theta, t, w) * (1 - intf(theta, t, w)) * 
intdf_dx(theta, t, w) + ... 

d2f_dx2(theta, t, w) * (1 - intf(theta, t, w)) + ... 
f(theta, t, w) * intd2f_dx2(theta, t, w)) / ((1 - intf( 

theta, t, w))  ̂ 2); 

end 

function [y] = get_log_likelihood(eta, rpeaks, ul, delta, w_all, 
theta, x, v) 

K =  length(x); 
y =  zeros(K, 50); 

for k = 1:K  
for j = 1:50 

w = [squeeze(w_all(k, j, :))’ [eta x(k)]]; 

if (f(theta, ul(k, j), w) > 1e-18) 

lambda = fetch_lambda(theta, ul(k, j), w); 
dl_dx = dlambda_dx(theta, ul(k, j), w); 
d2l_dx2 = d2lambda_dx2(theta, ul(k, j), w); 
nkj = rpeaks(k, j);
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y(k, j) = nkj * log(delta * lambda) - delta * 
lambda + ... 

(d2l_dx2 * (nkj - lambda * delta) / lambda -
nkj * (dl_dx ^ 2) / (lambda ^ 2)) * v(k) * 0.5; 

end 

end 
end 

end 

10.4.2 Experimental Data Example 

load(’expm_data_one_bin_two_cont_one_spk.mat’); 

delta = 0.005; 
min_scr_thresh = 0.015; 
min_scr_prom = min_scr_thresh; 
fs = 4;  
epoch = 10; 

stim = s_data.aug_stim; 
ph = s_data.ph; 
tn = s_data.tn; 
rpeaks = s_data.rpeaks; 
ul = s_data.ul; 

[pks, locs] = findpeaks(ph, ’MinPeakHeight’, min_scr_thresh, ’ 
MinPeakProminence’, min_scr_prom); 

r =  interp1([1 locs length(ph)], log([ph(find(ph > 0, 1)) pks ph( 
end)]), 1:length(s_data.ph), ’cubic’); 

s = tn; 
n =  zeros(1, length(r)); 
I =  zeros(1, length(r)); 

n(locs) = 1; 
I(stim) = 1; 

std_s = std(s); 
std_r = std(r); 

s = s / std_s; 
r = r / std_r; 

%% parameters 

M = 5e5; % maximum iterations 
tol = 1e-6; % convergence criteria 

b0 = zeros(1, M); % binary GLM model 
b1 = zeros(1, M);
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r0 = zeros(1, M); % continuous GLM model 
r1 = zeros(1, M); 
vr = zeros(1, M); % continuous GLM model noise variance (1) 

s0 = zeros(1, M); % continuous GLM 
s1 = zeros(1, M); 
vs = zeros(1, M); % continuous GLM model noise variance (2) 

ve = zeros(1, M); % process noise variance 
rho = zeros(1, M); % random walk correlation 
alpha = zeros(1, M); % input gain parameter 

K =  length(n); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth = zeros(1, K); 
v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

exception_counter = 0; 

%% initial guesses 

base_prob = sum(n) / length(n); 
b0(1) = log(base_prob / (1 - base_prob)); 
b1(1) = 1; 
r0(1) = r(1); % guess it’s the first value of r 
r1(1) = 1; 
s0(1) = s(1); 
s1(1) = 1; 
vr(1) = 0.05; 
vs(1) = 0.05; 
ve(1) = 0.05; 
rho(1) = 1; 
alpha(1) = 0.5; 

theta = s_data.theta; 

eta = -0.001; 

%% main function
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for m = 1:M  

for k = 1:K  

if (k == 1) 
x_pred(k) = x_smth(1); 
v_pred(k) = ve(m) + ve(m); 

else 
x_pred(k) = rho(m) * x_updt(k - 1) + alpha(m) * I(k); 
v_pred(k) = (rho(m) ^ 2) * v_updt(k - 1) + ve(m); 

end 

C(k) = v_pred(k) / (vr(m) * vs(m) + v_pred(k) * ((r1(m) ^ 
2) * vs(m) + (s1(m) ^ 2) * vr(m))); 

try % numerical issues can occur due to the integrals 
[temp1, temp2] = get_posterior_mode(x_pred(k), C(k), 

r(k), r0(m), r1(m), b0(m), b1(m), vr(m), n(k), s(k), s0(m), 
s1(m), vs(m), ... 

rpeaks(k, :), ul(k, :), delta, s_data.w(k, :, :), 
theta’, eta); 

x_updt(k) = temp1; 

p_updt(k) = 1 / (1 + exp((-1) * (b0(m) + b1(m) * 
x_updt(k)))); 

v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr( 
m)) + ((s1(m) ^ 2) / vs(m)) + (b1(m) ^ 2)  * p_updt(k) * (1 -
p_updt(k)) - temp2); 

catch 
x_updt(k) = x_pred(k); 
v_updt(k) = v_pred(k); 
exception_counter = exception_counter + 1; 

end 

if (mod(k, 100) == 0) 
fprintf(’%d ’, k);  

end 

if (mod(k, 2500) == 0) 
fprintf(’\n’); 

end 
end 

x_smth(K) = x_updt(K); 
v_smth(K) = v_updt(K); 
W(K) = v_smth(K) + (x_smth(K) ^ 2); 

A(1:(end - 1)) = rho(m) * v_updt(1:(end - 1)) ./ v_pred(2:end 
); 

for k = (K - 1):(-1):1 
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 

1));
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v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -
v_pred(k + 1)); 

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1); 
W(k) = v_smth(k) + (x_smth(k) ^ 2); 

end 

if (m < M)  

R = get_linear_parameters(x_smth, W, r, K); 
S = get_linear_parameters(x_smth, W, s, K); 

Q = [sum(W(1:end - 1)) (I(2:end) * x_smth(1:(end - 1))’); 
... 

(I(2:end) * x_smth(1:(end - 1))’) (I * I’)] \ [sum(CW 
); (I(2:end) * x_smth(2:end)’)]; 

bb = fsolve(@(b) binary_parameter_derivatives(b, n, 
x_smth, v_smth), [-5 1], optimset(’Display’,’off’)); 

b0(m + 1) = bb(1); 
b1(m + 1) = bb(2); 

rho(m + 1) = Q(1, 1); 

if (Q(2, 1) < 0) % check in case this happens 
alpha(m + 1) = alpha(m); 

else 
alpha(m + 1) = Q(2, 1); 

end 

ve(m + 1) = (sum(W(2:end)) + (rho(m + 1) ^ 2) * sum(W(1:( 
end - 1))) - 2  * rho(m + 1) * sum(CW) - ... 

2 * alpha(m + 1) * (I(2:end) * x_smth(2:end)’) + 2  * 
alpha(m + 1) * rho(m + 1) * (I(2:end) * x_smth(1:(end - 1))’) 
+ ... 

(alpha(m + 1) ^ 2) * (I * I’)) / K; 

if (abs(get_maximum_variance(r, R(1, 1), R(2, 1), W, 
x_smth, K) - get_maximum_variance(s, S(1, 1), S(2, 1), W, 
x_smth, K)) > 0.1) % terminate once overfitting is detected 

break; 
else 

r0(m + 1) = R(1, 1); 
r1(m + 1) = R(2, 1); 

s0(m + 1) = S(1, 1); 
s1(m + 1) = S(2, 1); 

vr(m + 1) = get_maximum_variance(r, r0(m + 1), r1(m + 
1), W, x_smth, K); 

vs(m + 1) = get_maximum_variance(s, s0(m + 1), s1(m + 
1), W, x_smth, K); 

end
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mean_dev = mean(abs([b0(m + 1) b1(m + 1) r0(m + 1) r1(m  
+ 1) ve(m + 1) vr(m + 1) rho(m + 1) alpha(m + 1) s0(m + 1) s1 
(m + 1) vs(m  + 1)] - ...  

[b0(m) b1(m) r0(m) r1(m) ve(m) vr(m) rho(m) alpha(m) 
s0(m) s1(m) vs(m)])); 

if mean_dev < tol 
fprintf(’Converged at m = %d\n\n’, m);  
break; 

else 
fprintf(’m = %d\nb0 = %.18f\nb1 = %.18f\n\nr0 = %.18f 

\nr1 = %.18f\nvr = %.18f\n\ns0 = %.18f\ns1 = %.18f\nvs = %.18 
f\n\nve = %.18f\nrho = %.18f\nalpha = %.18f\n\ndev = %.18f\n\ 
n’, ... 

m + 1, b0(m  + 1),  b1(m + 1),  r0(m + 1),  r1(m + 1),  vr  
(m + 1), s0(m + 1), s1(m + 1), vs(m + 1), ve(m + 1), rho(m + 
1), alpha(m + 1), mean_dev); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth(2:end) =  zeros(1, K - 1); % x_smth(1) 
needed for next iteration 

v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

end 
end 

end 

%% calculate confidence limits 

p_smth = 1 ./ (1 + exp((-1) * (b0(m) + b1(m) * x_smth))); 
lcl_fp = zeros(1, K); 
ucl_fp = zeros(1, K); 

r_smth = exp((r0(m) + r1(m) * x_smth) * std_r); 
s_smth = (s0(m) + s1(m) * x_smth) * std_s; 

skn_avg = get_trial_averages(s_data, x_smth, epoch, fs, ’skn’); 
x_avg = get_trial_averages(s_data, x_smth, epoch, fs, ’x_smth’); 

t_epoch = ((-1):(1 / fs):(epoch - 1 - (1 / fs)));  
tr_epoch = ((epoch - 1 - (1 / fs)):(-1 / fs):(-1));
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fprintf(’Plotting\n’); 

lambda = zeros(K, 50); 
mean_rr = zeros(K, 50); 

for i = 1:K  
for j = 1:50 

w = [squeeze(s_data.w(i, j, :))’ [eta x_smth(i)]]; 
if (f(theta’, ul(i, j), w) > 1e-18) 

lambda(i, j) = fetch_lambda(theta’, ul(i, j), w); 
end 
mean_rr(i, j) = mu(theta’, w); 

end 
end 

lambda_start_index = find(reshape(s_data.rpeaks’, 1, numel(s_data 
.rpeaks)), 1); 

lambda = reshape(lambda’, 1, numel(lambda)); 

ll = get_log_likelihood(eta, rpeaks, ul, delta, s_data.w, theta’, 
x_smth, v_smth); 

ll_final = sum(nansum(ll)); 

%% plot graphs 

mean_rr = reshape(mean_rr’, 1, numel(mean_rr)); 
rri = diff(s_data.rpeak_locs); 
rr_times = s_data.rpeak_locs(2:end); 

index = (0:(K - 1)); 
t_index = index / fs; 
r_index = ((K - 1):(-1):0); 
transp = 0.3; 

subplot(711); 
plot(t_index, s_data.x, ’color’, [(102 / 255) 0 (204 / 255)]); 
ylabel(’(a) z_{k}’); grid; xlim([0 t_index(end)]); 
set(gca,’xticklabel’, []); 
ylim([(min(s_data.x) - 0.1) (max(s_data.x) + 0.1)]); 
title(’State Estimation with Experimental Data’); 

subplot(712); 
hold on; 
plot(find(n == 0) / fs, max(p_smth) * 1.3 * ones(length(find(n == 

0))), ’ks’, ’MarkerFaceColor’, ’k’, ’MarkerSize’, 3); 
plot(find(n == 1) / fs, max(p_smth) * 1.3 * ones(length(find(n == 

1))), ’gs’, ’MarkerFaceColor’, ’g’, ’MarkerSize’, 3); 
plot(t_index, p_smth, ’r’); 

ylabel(’(b) p_{k}’); 
xlim([0 t_index(end)]); ylim([0 (max(p_smth) * 1.5)]); grid; 
set(gca,’xticklabel’, []); 

subplot(713);
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hold on; 
plot(t_index, r_smth, ’:’, ’color’, [0 0.3 0], ’linewidth’, 1.5); 
plot(t_index, exp(r * std_r), ’color’, [0 0.9 0]); 

ylabel(’(c) e^{r_{k}}’); grid; 
xlim([0 t_index(end)]); 
set(gca,’xticklabel’, []); 

subplot(714); 
hold on; 
plot(t_index, s_smth, ’:’, ’color’, [0.5 (25 / 255) (66 / 255)], 

’linewidth’, 1.5); 
plot(t_index, s * std_s, ’color’, [1 0.5 (179 / 255)]); 

ylabel(’(d) s_{k}’); 
xlim([0 t_index(end)]); grid; 
set(gca,’xticklabel’, []); 

subplot(715); 
hold on; 
plot(t_index, x_smth, ’color’, ’b’); 
plot(find(I == 0) / fs, (min(x_smth) - 0.5) * ones(length(find(I 

== 0))), ’ks’, ’MarkerFaceColor’, ’k’, ’MarkerSize’, 3);  
plot(find(I == 1) / fs, (min(x_smth) - 0.5) * ones(length(find(I 

== 1))), ’cs’, ’MarkerFaceColor’, ’c’, ’MarkerSize’, 3);  

ylabel(’(e) x_{k}’); ylim([(min(x_smth) - 1) (max(x_smth) + 1)]); 
xlim([0 t_index(end)]); grid; set(gca,’xticklabel’, []); 

subplot(716); 
hold on; 
plot(rr_times / 60, rri, ’o’, ’Color’, [1, 0.5, 0.25], ’ 

MarkerFaceColor’, [1, 0.5, 0.25], ’MarkerSize’, 3);  grid; 
mu_start_index = round(s_data.rpeak_locs(2) / delta); 
plot(((0:(length(mean_rr(mu_start_index:end)) - 1))  * delta) / 

60, mean_rr(mu_start_index:end), ’b’); 
ylabel(’(f) rr_{i}’); xlim([0 t_index(end)] / 60); xlabel(’time ( 

min)’); 

subplot(7, 2, 13); 
hold on; 

plot(t_epoch, skn_avg(7, :), ’color’, [0 0.8 0], ’linewidth’, 
1.5); 

fill([t_epoch, tr_epoch], [skn_avg(8, :) fliplr(skn_avg(9, :))], 
’g’, ’EdgeColor’, ’none’, ’FaceAlpha’, 0.2); 

plot(t_epoch, skn_avg(4, :), ’m’, ’linewidth’, 1.5); 
fill([t_epoch, tr_epoch], [skn_avg(5, :) fliplr(skn_avg(6, :))], 

’m’, ’EdgeColor’, ’none’, ’FaceAlpha’, 0.2); 

plot(t_epoch, skn_avg(1, :), ’r’, ’linewidth’, 1.5); 
fill([t_epoch, tr_epoch], [skn_avg(2, :) fliplr(skn_avg(3, :))], 

’r’, ’EdgeColor’, ’none’, ’FaceAlpha’, 0.2);
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xlim([t_epoch(1) t_epoch(end)]); 

grid; 
xlabel(’time (s)’); ylabel(’(g) z_{k}’); 

subplot(7, 2, 14); 
hold on; 

plot(t_epoch, x_avg(7, :), ’color’, [0 0.8 0], ’linewidth’, 1.5); 
fill([t_epoch, tr_epoch], [x_avg(8, :) fliplr(x_avg(9, :))], ’g’, 

’EdgeColor’, ’none’, ’FaceAlpha’, 0.2); 

plot(t_epoch, x_avg(4, :), ’m’, ’linewidth’, 1.5); 
fill([t_epoch, tr_epoch], [x_avg(5, :) fliplr(x_avg(6, :))], ’m’, 

’EdgeColor’, ’none’, ’FaceAlpha’, 0.2); 

plot(t_epoch, x_avg(1, :), ’r’, ’linewidth’, 1.5); 
fill([t_epoch, tr_epoch], [x_avg(2, :) fliplr(x_avg(3, :))], ’r’, 

’EdgeColor’, ’none’, ’FaceAlpha’, 0.2); 

xlim([t_epoch(1) t_epoch(end)]); 

grid; 
xlabel(’time (s)’); ylabel(’(h) x_{k}’); 

figure; 
get_ks_plot(s_data.rpeak_locs, lambda(lambda_start_index:end), 

delta, 1); 

%% supplementary functions 

function [y, H2] = get_posterior_mode(x_pred, C, r, r0, r1, b0, 
b1, vr, n, s, s0, s1, vs, rpeaks, ul, delta, w_all, theta, 
eta) 

M = 200; % maximum iterations 

it = zeros(1, M); 
func = zeros(1, M); 
df = zeros(1, M); 

it(1) = x_pred; 

for i = 1:(M - 1)  

H1 = zeros(1, 50); 
H2 = zeros(1, 50); 

for j = 1:50 % 5 ms -> 0.25 s (4 Hz for skin 
conductance) 

w = [squeeze(w_all(1, j, :))’ [eta it(i)]]; 

if (f(theta, ul(j), w) > 1e-18) %



172 10 MATLAB Code Examples

lambda = fetch_lambda(theta, ul(j), w); 
dl_dx = dlambda_dx(theta, ul(j), w); 

H1(j) = dl_dx * (rpeaks(j) - lambda * delta) / 
lambda; 

H2(j) = d2lambda_dx2(theta, ul(j), w) * (rpeaks(j 
) - lambda * delta) / lambda - rpeaks(j) * (dl_dx ^ 2) / ( 
lambda ^ 2); 

end 
end 

H1 = sum(H1); 
H2 = sum(H2); 

func(i) = it(i) - x_pred - C * (r1 * vs * (r - r0 - r1  * 
x_pred) + s1 * vr * (s - s0 - s1  * x_pred) + ... 

vr * vs * b1 * (n - (1 / (1 +  exp((-1) * (b0 + b1  * 
it(i)))))) + vr * vs * H1); 

df(i) = 1 + C  * vr * vs * ((b1 ^ 2) * exp(b0 + b1  * it(i) 
) / ((1 + exp(b0 + b1  * it(i)))  ̂ 2) - H2); 

it(i + 1) = it(i) - func(i) / df(i); 

if abs(it(i + 1) - it(i)) < 1e-14  
y = it(i + 1);  
return; 

end 
end 

error(’Newton-Raphson failed to converge.’); 

end 

function y = binary_parameter_derivatives(b, n, x_smth, v_smth) 

y =  zeros(1, 2); 
K =  length(n); 

b0 = b(1); 
b1 = b(2); 
p =  zeros(1, K); 

for k = 1:K  
p(k) = 1 / (1 + exp((-1) * (b0 + b1  * x_smth(k)))); 
y(1) = y(1) + n(k) - p(k) - 0.5 * v_smth(k) * (b1 ^ 2) * 

p(k) * (1 - p(k)) * (1 - 2  * p(k)); 
y(2) = y(2) + n(k) * x_smth(k) - x_smth(k) * p(k) - 0.5 * 

v_smth(k) * b1 * p(k) * (1 - p(k)) * (2 + x_smth(k) * b1 * 
(1 - 2  * p(k))); 
end 

end 

function y = get_maximum_variance(z, r0, r1, W, x_smth, K)
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y = (z  * z’ + K  * (r0 ^ 2) + (r1 ^ 2)  * sum(W) ...
- 2  * r0 * sum(z) - 2  * r1 * dot(x_smth, z) + 2 * 

r0 * r1 * sum(x_smth)) / K; 

end 

function y = get_linear_parameters(x_smth, W, z, K) 

y = [K  sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .* 
x_smth)]; 

end 

function y = get_trial_averages(s, x_smth, epoch, fs, option) 

y =  zeros(9, epoch * fs); 

csm_ep = zeros(length(s.csm), epoch * fs); 
csp_us_ep = zeros(length(s.csp_us), epoch * fs); 
csp_nus_ep = zeros(length(s.csp_nus), epoch * fs); 

csm = s.csm; 
csp_us = s.csp_us; 
csp_nus = s.csp_nus; 

if strcmp(option, ’x_smth’) 

for j = 1:length(csm) 
csm_ep(j, :) = x_smth((s.stim(csm(j)) - fs ):(s.stim( 

csm(j)) + 9 * fs - 1));  
end 

for j = 1:length(csp_us) 
csp_us_ep(j, :) = x_smth((s.stim(csp_us(j)) - fs):(s. 

stim(csp_us(j)) + 9 * fs - 1));  
end 

for j = 1:length(csp_nus) 
csp_nus_ep(j, :) = x_smth((s.stim(csp_nus(j)) - fs):( 

s.stim(csp_nus(j)) + 9 * fs - 1));  
end 

elseif strcmp(option, ’skn’) 

for j = 1:length(csm) 
csm_ep(j, :) = s.x((s.stim(csm(j)) - fs ):(s.stim(csm 

(j)) + 9 * fs - 1));  
end 

for j = 1:length(csp_us) 
csp_us_ep(j, :) = s.x((s.stim(csp_us(j)) - fs):(s. 

stim(csp_us(j)) + 9 * fs - 1));  
end
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for j = 1:length(csp_nus) 
csp_nus_ep(j, :) = s.x((s.stim(csp_nus(j)) - fs):(s. 

stim(csp_nus(j)) + 9 * fs - 1));  
end 

end 

y(1, :) = mean(csp_us_ep); 
y(2, :) = mean(csp_us_ep) + tinv(0.975, length(csp_us) - 1) * 
std(csp_us_ep) / sqrt(length(csp_us)); 

y(3, :) = mean(csp_us_ep) + tinv(0.025, length(csp_us) - 1) * 
std(csp_us_ep) / sqrt(length(csp_us)); 

y(4, :) = mean(csp_nus_ep); 
y(5, :) = mean(csp_nus_ep) + tinv(0.975, length(csp_nus) - 1) 

* std(csp_nus_ep) / sqrt(length(csp_nus)); 
y(6, :) = mean(csp_nus_ep) + tinv(0.025, length(csp_nus) - 1) 

* std(csp_nus_ep) / sqrt(length(csp_nus)); 

y(7, :) = mean(csm_ep); 
y(8, :) = mean(csm_ep) + tinv(0.975, length(csm) - 1) * std( 
csm_ep) / sqrt(length(csm)); 
y(9, :) = mean(csm_ep) + tinv(0.025, length(csm) - 1) * std( 
csm_ep) / sqrt(length(csm)); 

end 

function [y] = f(theta, t, w) 

y =  sqrt(theta(end) ./ (2  * pi * (t .^ 3))) .* ... 
exp((theta(end) * ((t - mu(theta, w)) .^ 2)) ./ ... 
((-2) * (mu(theta, w) ^ 2) * t)); 

end 

function [y] = intf(theta, t, w) 

y = integral(@(t)f(theta, t, w), 0, t); 

end 

function [y] = mu(theta, w) 

eta = w(end - 1);  
x = w(end); 
p =  length(theta) - 2; 

y = theta(1) + theta(2:(2 + p - 1))  * w(1:p)’ + eta * x; 

end 

function [y] = fetch_lambda(theta, t, w)



10.4 State-space Model with One Binary, Two Continuous and a Spiking-Type. . . 175

cdf = intf(theta, t, w); 
y = f(theta, t, w) ./ (1 - cdf); 

if (cdf > 1) % numerical issue 
y = 0;  

end 

end 

function [y] = df_dmu(theta, t, w) 

y = (theta(end) / (mu(theta, w)  ̂ 3)) * (f(theta, t, w) .* (t
- mu(theta, w))); 

end 

function [y] = df_dx(theta, t, w) 

eta = w(end - 1);  
y = df_dmu(theta, t, w) .* eta; 

end 

function [y] = intdf_dx(theta, t, w) 

y = integral(@(t)df_dx(theta, t, w), 0, t); 

end 

function [y] = dlambda_dx(theta, t, w) 

cdf = intf(theta, t, w); 

if (cdf > 1) % numerical issue 
y = 0;  

else 
y = ((1 - cdf) .* df_dx(theta, t, w) + ... 

f(theta, t, w) .* intdf_dx(theta, t, w)) ./ ((1 - cdf 
) .^ 2);  
end 

end 

function [y] = d2f_dmu2(theta, t, w) 

y = theta(end) * (df_dmu(theta, t, w) .* ((t - mu(theta, w)) 
/ (mu(theta, w) ^ 3)) + ... 

f(theta, t, w) .* ((2 * mu(theta, w) - 3 * t) / (mu(theta 
, w) ^ 4)));  

end 

function [y] = d2f_dx2(theta, t, w) 

eta = w(end - 1);
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y = d2f_dmu2(theta, t, w) .* (eta ^ 2); 

end 

function [y] = intd2f_dx2(theta, t, w) 

y = integral(@(t)d2f_dx2(theta, t, w), 0, t); 

end 

function [y] = d2lambda_dx2(theta, t, w) 

y = (2  * dlambda_dx(theta, t, w) * (1 - intf(theta, t, w)) * 
intdf_dx(theta, t, w) + ... 

d2f_dx2(theta, t, w) * (1 - intf(theta, t, w)) + ... 
f(theta, t, w) * intd2f_dx2(theta, t, w)) / ((1 - intf( 

theta, t, w))  ̂ 2); 

end 

function [y] = get_log_likelihood(eta, rpeaks, ul, delta, w_all, 
theta, x, v) 

K =  length(x); 
y =  zeros(K, 50); 

for k = 1:K  
for j = 1:50 

w = [squeeze(w_all(k, j, :))’ [eta x(k)]]; 

if (f(theta, ul(k, j), w) > 1e-18) 

lambda = fetch_lambda(theta, ul(k, j), w); 
dl_dx = dlambda_dx(theta, ul(k, j), w); 
d2l_dx2 = d2lambda_dx2(theta, ul(k, j), w); 
nkj = rpeaks(k, j); 

y(k, j) = nkj * log(delta * lambda) - delta * 
lambda + ... 

(d2l_dx2 * (nkj - lambda * delta) / lambda -
nkj * (dl_dx ^ 2) / (lambda ^ 2)) * v(k) * 0.5; 

end 

end 
end 

end
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10.5 State-space Model with One MPP Observation 

10.5.1 Simulated Data Example 

load(’data_one_mpp.mat’); 

K =  length(n); 

pt = find(n > 0);  

M = 5e4; 
ve = zeros(1, M); % process noise variance 
r0 = zeros(1, M); % linear model coefficients (continuous 

variable) 
r1 = zeros(1, M); % linear model coefficients (continuous 

variable) 
vr = zeros(1, M); % sensor noise variance (continuous variable) 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth = zeros(1, K); 
v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

base_prob = sum(n) / length(n); 
tol = 1e-8; % convergence criteria 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

ve(1) = 0.005; 
x_smth(1) = 0; 
r0(1) = 0.003; 
r1(1) = 0.001; 
vr(1) = 0.002; 
b0 = log(base_prob / (1 - base_prob)); 

for m = 1:M  

for k = 1:K  

if (k == 1) 
x_pred(k) = x_smth(1); 
v_pred(k) = ve(m) + ve(m); 

else
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x_pred(k) = x_updt(k - 1); 
v_pred(k) = v_updt(k - 1) + ve(m); 

end 
x_updt(k) = get_posterior_mode(x_pred(k), v_pred(k), r(k) 

, r0(m), r1(m), vr(m), b0, n(k)); 
p_updt(k) = 1 / (1  +  exp((-1) * (b0 + x_updt(k)))); 

if (n(k) == 0) 
v_updt(k) = 1 / ((1 / v_pred(k)) + p_updt(k) * (1 -

p_updt(k))); 
elseif (n(k) == 1) 

v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr( 
m)) + p_updt(k) * (1 - p_updt(k))); 

end 
end 

x_smth(K) = x_updt(K); 
v_smth(K) = v_updt(K); 
W(K) = v_smth(K) + (x_smth(K) ^ 2); 

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end); 

for k = (K - 1):(-1):1 
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 

1)); 
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1)); 

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1); 
W(k) = v_smth(k) + (x_smth(k) ^ 2); 

end 

if (m < M)  

R = get_linear_parameters(x_smth, W, r, pt); 

r0(m + 1) = R(1, 1); 
r1(m + 1) = R(2, 1); 
vr(m + 1) = get_maximum_variance(r, r0(m + 1), r1(m + 1), 

W, x_smth, pt); 

ve(m + 1) = (sum(W(2:end)) + sum(W(1:(end - 1))) - 2  * 
sum(CW)) / K; 

mean_dev = mean(abs([ve(m + 1) r0(m + 1) r1(m + 1) vr(m +  
1)] - [ve(m) r0(m) r1(m) vr(m)])); 

if mean_dev < tol 
fprintf(’m = %d\nx0 = %.18f\n\nr0 = %.18f\nr1 = %.18f 

\nvr = %.18f\nve = %.18f\n\n’, m, x_smth(1), r0(m), r1(m), vr 
(m), ve(m)); 

fprintf(’Converged at m = %d\n\n’, m);  
break; 

else
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fprintf(’m = %d\nx0 = %.18f\n\nr0 = %.18f\nr1 = %.18f 
\nvr = %.18f\nve = %.18f\n\n’, m, x_smth(1), r0(m + 1), r1(m 
+ 1), vr(m + 1), ve(m + 1)); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth(2:end) =  zeros(1, K - 1); % x_smth(1) 
needed for next iteration 

v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

end 
end 

end 

p_updt = 1 ./ (1 + exp((-1) * (b0 + x_updt))); 
p_smth = 1 ./ (1 + exp((-1) * (b0 + x_smth))); 
r_smth = r0(m) + r1(m) * x_smth; 

r_plot = NaN * ones(1, K); 
r_plot(pt) = r(pt); 

figure; 
subplot(411); 
hold on; 
stem(r_plot, ’fill’, ’color’, ’b’, ’markersize’, 4); 
plot(r_smth, ’r-.’, ’linewidth’, 1.5); 
ylabel(’(a) n_{k}, r_{k}’); 
title(’Estimation with Simulated Data’); 
grid; 

subplot(412); 
hold on; 
plot(p, ’b’); 
plot(p_smth, ’r-.’, ’linewidth’, 1.5); 
ylabel(’(b) p_{k}’); 
grid; 

subplot(413); 
hold on; 
plot(x, ’b’); 
plot(x_smth, ’r-.’, ’linewidth’, 1.5); 
ylabel(’(c) x_{k}’); 
xlabel(’time index’); 
grid;
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subplot(414); 
qqplot(x - x_smth); 
title(’QQ Plot - State Estimate’, ’FontWeight’, ’Normal’); 
ylabel(’(d) input quantiles’); 
xlabel(’standard normal quantiles’); 
grid; 

function [y] = get_posterior_mode(x_pred, v_pred, z, r0, r1, vr, 
b0, n) 

M = 100; % maximum iterations 
y =  NaN; 

it = zeros(1, M); 
f =  zeros(1, M); 
df = zeros(1, M); 

it(1) = x_pred; 

for i = 1:(M - 1)  
if (n == 0) 

C = v_pred; 
f(i) = it(i) - x_pred - C * (n - exp(b0 + it(i)) / (1 

+ exp(b0 + it(i)))); 
df(i) = 1 + C  * exp(b0 + it(i)) / (1 +  exp(b0 + it(i) 

)) ^ 2;  
elseif (n == 1) 

C = v_pred / ((r1 ^ 2) * v_pred + vr); 
f(i) = it(i) - x_pred - C * (r1 * (z - r0 - r1 * 

x_pred) + vr * (n - (1 / (1 +  exp((-1) * (b0 + it(i))))))); 
df(i) = 1 + C  * vr * exp(b0 + it(i)) / ((1 + exp(b0 + 

it(i)))  ̂ 2); 
end 

it(i + 1) = it(i) - f(i) / df(i); 

if abs(it(i + 1) - it(i)) < 1e-14  
y = it(i + 1);  
return 

end 
end 

error(’Newton-Raphson failed to converge.’); 

end 

function y = get_maximum_variance(z, r0, r1, W, x_smth, pt) 

x_smth = x_smth(pt); 
W = W(pt); 
z = z(pt); 
K =  length(pt);
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y = (z  * z’ + K  * (r0 ^ 2) + (r1 ^ 2)  * sum(W) ...
- 2  * r0 * sum(z) - 2  * r1 * dot(x_smth, z) + 2 * 

r0 * r1 * sum(x_smth)) / K; 
end 

function y = get_linear_parameters(x_smth, W, z, pt) 

x_smth = x_smth(pt); 
W = W(pt); 
z = z(pt); 
K =  length(pt); 

y = [K  sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .* 
x_smth)]; 

end 

10.5.2 Experimental Data Example 

load(’expm_data_one_mpp.mat’); 

K =  length(u); 
n =  zeros(1, K); 

pt = find(u > 0);  
n(pt) = 1; 
r = u;  

M = 5e4; 
ve = zeros(1, M); % process noise variance 
r0 = zeros(1, M); % linear model coefficients (continuous 

variable) 
r1 = zeros(1, M); % linear model coefficients (continuous 

variable) 
vr = zeros(1, M); % sensor noise variance (continuous variable) 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth = zeros(1, K); 
v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

base_prob = sum(n) / length(n); 
tol = 1e-8; % convergence criteria 

A =  zeros(1, K); 
W =  zeros(1, K);
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CW = zeros(1, K); 
C =  zeros(1, K); 

ve(1) = 0.005; 
x_smth(1) = 0; 
r0(1) = 0.003; 
r1(1) = 0.001; 
vr(1) = 0.002; 
b0 = log(base_prob / (1 - base_prob)); 

for m = 1:M  

for k = 1:K  

if (k == 1) 
x_pred(k) = x_smth(1); 
v_pred(k) = ve(m) + ve(m); 

else 
x_pred(k) = x_updt(k - 1); 
v_pred(k) = v_updt(k - 1) + ve(m); 

end 
x_updt(k) = get_posterior_mode(x_pred(k), v_pred(k), r(k) 

, r0(m), r1(m), vr(m), b0, n(k)); 
p_updt(k) = 1 / (1  +  exp((-1) * (b0 + x_updt(k)))); 

if (n(k) == 0) 
v_updt(k) = 1 / ((1 / v_pred(k)) + p_updt(k) * (1 -

p_updt(k))); 
elseif (n(k) == 1) 

v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr( 
m)) + p_updt(k) * (1 - p_updt(k))); 

end 
end 

x_smth(K) = x_updt(K); 
v_smth(K) = v_updt(K); 
W(K) = v_smth(K) + (x_smth(K) ^ 2); 

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end); 

for k = (K - 1):(-1):1 
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 

1)); 
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1)); 

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1); 
W(k) = v_smth(k) + (x_smth(k) ^ 2); 

end 

if (m < M)  

R = get_linear_parameters(x_smth, W, r, pt);
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if R(2, 1) > 0 
r0(m + 1) = R(1, 1); 
r1(m + 1) = R(2, 1); 
vr(m + 1) = get_maximum_variance(r, r0(m + 1), r1(m + 

1), W, x_smth, pt); 
else % a check with experimental data (in case this 

happens) 
fprintf(’m = %d\nx0 = %.18f\n\nr0 = %.18f\nr1 = %.18f 

\nvr = %.18f\nve = %.18f\n\n’, m, x_smth(1), r0(m), r1(m), vr 
(m), ve(m)); 

fprintf(’Converged at m = %d\n\n’, m);  
break; 

end 

ve(m + 1) = (sum(W(2:end)) + sum(W(1:(end - 1))) - 2  * 
sum(CW)) / K; 

mean_dev = mean(abs([ve(m + 1) r0(m + 1) r1(m + 1) vr(m +  
1)] - [ve(m) r0(m) r1(m) vr(m)])); 

if mean_dev < tol 
fprintf(’m = %d\nx0 = %.18f\n\nr0 = %.18f\nr1 = %.18f 

\nvr = %.18f\nve = %.18f\n\n’, m, x_smth(1), r0(m), r1(m), vr 
(m), ve(m)); 

fprintf(’Converged at m = %d\n\n’, m);  
break; 

else 
fprintf(’m = %d\nx0 = %.18f\n\nr0 = %.18f\nr1 = %.18f 

\nvr = %.18f\nve = %.18f\n\n’, m, x_smth(1), r0(m + 1), r1(m 
+ 1), vr(m + 1), ve(m + 1)); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth(2:end) =  zeros(1, K - 1); % x_smth(1) 
needed for next iteration 

v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

end 
end 

end 

p_smth = 1 ./ (1 + exp((-1) * (b0 + x_smth))); 
r_smth = r0(m) + r1(m) * x_smth;



184 10 MATLAB Code Examples

lcl_x = norminv(0.025, x_smth, sqrt(v_smth)); 
ucl_x = norminv(0.975, x_smth, sqrt(v_smth)); 

certainty = 1 - normcdf(prctile(x_smth, 50) * ones(1, length( 
x_smth)), x_smth, sqrt(v_smth)); 

lcl_p = zeros(1, K); 
ucl_p = zeros(1, K); 

for k = 1:K  
[lcl_p(k), ucl_p(k)] = get_pk_conf_lims(v_smth(k), b0, x_smth 
(k)); 

end 

fs = 4;  
t = (0:(K - 1)) / fs; 
tr = ((K - 1):(-1):0) / fs; 

u_plot = NaN * ones(1, K); 
u_plot(pt) = r(pt); 

subplot(511); 
hold on; 
plot(ty, y, ’k’, ’linewidth’, 1.25); 
ylabel({’(a) skin cond.’, ’(\mu S)’}); 
set(gca,’xticklabel’, []); ylim([0 3]); 
title(’State Estimation with Experimental Data’); xlim([0 ty(end) 

]); 
grid; 
yl = ylim; 

patch([xp(1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

subplot(512); 
stem(t, u_plot, ’fill’, ’k’, ’markersize’, 3);  
ylabel(’(b) n_{k}, r_{k}’); grid; xlim([0 t(end)]); ylim([0 15]); 
yl = ylim; set(gca,’xticklabel’, []); 

patch([xp(1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’);
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patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

subplot(513); 
hold on; 
plot(t, x_smth, ’b’, ’linewidth’, 1.25); 
fill([t, tr], [lcl_x fliplr(ucl_x)], ’c’, ’EdgeColor’, ’none’, ’ 

FaceAlpha’, 0.5); 
ylabel(’(c) state (x_{k})’); 
set(gca,’xticklabel’, []); xlim([0 t(end)]); 
grid; yl = ylim; 

patch([xp(1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

subplot(514); 
hold on; 
plot(t, p_smth, ’r’, ’linewidth’, 1.5); 
fill([t, tr], [lcl_p fliplr(ucl_p)], [1, 0, (127 / 255)], ’ 

EdgeColor’, ’none’, ’FaceAlpha’, 0.3); 
ylim([0 0.15]); 
ylabel(’(d) probability (p_{k})’); 
set(gca,’xticklabel’, []); xlim([0 t(end)]); 
grid; yl = ylim; 

patch([xp(1), xp(2), xp(2), xp(1)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’r’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(2), xp(3), xp(3), xp(2)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’g’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(3), xp(4), xp(4), xp(3)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], [1 0.647059 0], ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(4), xp(5), xp(5), xp(4)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’b’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

patch([xp(5), xp(6), xp(6), xp(5)] / fs, [yl(1) yl(1) yl(2) yl(2) 
], ’y’, ’FaceAlpha’, 0.2, ’EdgeColor’, ’none’); 

subplot(515); 
hold on; 
v1 = [0 0.9; t(end) 0.9; t(end) 1; 0 1];  
c1 = [1 (220 / 255) (220 / 255); 1 (220 / 255) (220 / 255); 1 0 

0; 1 0 0]; 
faces1 = [1 2 3 4];
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patch(’Faces’, faces1, ’Vertices’, v1,  ’FaceVertexCData’, c1, ’ 
FaceColor’, ’interp’, ... 
’EdgeColor’, ’none’, ’FaceAlpha’, 0.7); 

v2 = [0 0; t(end) 0; t(end) 0.1; 0 0.1]; 
c2 = [0 0.8 0; 0 0.8 0; (204 / 255) 1 (204 / 255); (204 / 255) 1 

(204 / 255)]; 
faces2 = [1 2 3 4];  

patch(’Faces’, faces2, ’Vertices’, v2,  ’FaceVertexCData’, c2, ’ 
FaceColor’, ’interp’, ... 
’EdgeColor’, ’none’, ’FaceAlpha’, 0.7); 

plot(t, certainty, ’color’, [(138 / 255) (43 / 255) (226 / 255)], 
’linewidth’, 1.5); grid; 

ylabel(’(d) HAI’); xlabel(’time (s)’); xlim([0 t(end)]); 

function [y] = get_posterior_mode(x_pred, v_pred, z, r0, r1, vr, 
b0, n) 

M = 100; % maximum iterations 

it = zeros(1, M); 
f =  zeros(1, M); 
df = zeros(1, M); 

it(1) = x_pred; 

for i = 1:(M - 1)  
if (n == 0) 

C = v_pred; 
f(i) = it(i) - x_pred - C * (n - exp(b0 + it(i)) / (1 

+ exp(b0 + it(i)))); 
df(i) = 1 + C  * exp(b0 + it(i)) / (1 +  exp(b0 + it(i) 

)) ^ 2;  
elseif (n == 1) 

C = v_pred / ((r1 ^ 2) * v_pred + vr); 
f(i) = it(i) - x_pred - C * (r1 * (z - r0 - r1 * 

x_pred) + vr * (n - (1 / (1 +  exp((-1) * (b0 + it(i))))))); 
df(i) = 1 + C  * vr * exp(b0 + it(i)) / ((1 + exp(b0 + 

it(i)))  ̂ 2); 
end 

it(i + 1) = it(i) - f(i) / df(i); 

if abs(it(i + 1) - it(i)) < 1e-14  
y = it(i + 1);  
return 

end 
end 

error(’Newton-Raphson failed to converge.’);
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end 

function y = get_maximum_variance(z, r0, r1, W, x_smth, pt) 

x_smth = x_smth(pt); 
W = W(pt); 
z = z(pt); 
K =  length(pt); 

y = (z  * z’ + K  * (r0 ^ 2) + (r1 ^ 2)  * sum(W) ...
- 2  * r0 * sum(z) - 2  * r1 * dot(x_smth, z) + 2 * 

r0 * r1 * sum(x_smth)) / K; 
end 

function y = get_linear_parameters(x_smth, W, z, pt) 

x_smth = x_smth(pt); 
W = W(pt); 
z = z(pt); 
K =  length(pt); 

y = [K  sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .* 
x_smth)]; 

end 

function [lcl, ucl] = get_pk_conf_lims(v, b0, x) 

p = (1e-4:1e-4:1); 

fp = cumtrapz(p, 1 ./ (sqrt(2 * pi * v) * p .* (1 - p)) .* 
... 

exp(((-1) / (2 * v))* (log(p ./ ((1 - p) * exp(b0))) - x) 
.^ 2)); 

n =  find(fp <= 0.975); 
m =  find(fp < 0.025); 

ucl = p(n(end)); 
lcl = p(m(end)); 

end
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10.6 State-space Model with One MPP and One Continuous 

Observation 

10.6.1 Simulated Data Example 

load(’data_one_mpp_one_cont.mat’); 

base_prob = sum(n) / length(n); 
pt = find(n > 0);  

%% parameters 

M = 1e6; % maximum iterations 
m = 1;  
tol = 1e-8; % convergence criteria 

r0 = zeros(1, M); % continuous model 
r1 = zeros(1, M); 
vr = zeros(1, M); % continuous model noise variance (1) 

s0 = zeros(1, M); % continuous model 
s1 = zeros(1, M); 
vs = zeros(1, M); % continuous model noise variance (2) 

ve = zeros(1, M); % process noise variance 
K =  length(n); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth = zeros(1, K); 
v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

%% initial guesses 

b0 = log(base_prob / (1 - base_prob)); 
r0(1) = r(1); % guess it’s the first value of r 
r1(1) = 0.5; 
s0(1) = s(1); 
s1(1) = 1; 
vr(1) = 0.05;
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vs(1) = 0.05; 
ve(1) = 0.05; 

%% main function 

for m = 1:M  

for k = 1:K  

if (k == 1) 
x_pred(k) = x_smth(1); 
v_pred(k) = ve(m) + ve(m); 

else 
x_pred(k) = x_updt(k - 1); 
v_pred(k) = v_updt(k - 1) + ve(m); 

end 

x_updt(k) = get_posterior_mode(x_pred(k), v_pred(k), r(k) 
, r0(m), r1(m), b0, vr(m), n(k), s(k), s0(m), s1(m), vs(m)); 

p_updt(k) = 1 / (1  +  exp((-1) * (b0 + x_updt(k)))); 

if (n(k) == 0) 
v_updt(k) = 1 / ((1 / v_pred(k)) + ((s1(m) ^ 2) / vs( 

m)) + p_updt(k) * (1 - p_updt(k))); 
elseif (n(k) == 1) 

v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr( 
m)) + ((s1(m) ^ 2) / vs(m)) + p_updt(k) * (1 - p_updt(k))); 

end 
end 

x_smth(K) = x_updt(K); 
v_smth(K) = v_updt(K); 
W(K) = v_smth(K) + (x_smth(K) ^ 2); 

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end); 

for k = (K - 1):(-1):1 
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 

1)); 
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1)); 

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1); 
W(k) = v_smth(k) + (x_smth(k) ^ 2); 

end 

prev = [r0(m) r1(m) ve(m) vr(m) s0(m) s1(m) vs(m)]; 

R = get_linear_parameters_for_mpp(x_smth, W, r, pt); 
S = get_linear_parameters(x_smth, W, s, K); 

ve(m + 1) = (sum(W(2:end)) + sum(W(1:(end - 1))) - 2  * sum(CW 
)) / K;
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r0(m + 1) = R(1, 1); 
r1(m + 1) = R(2, 1); 

s0(m + 1) = S(1, 1); 
s1(m + 1) = S(2, 1); 

vr(m + 1) = get_maximum_variance_for_mpp(r, r0(m + 1), r1(m + 
1), W, x_smth, pt); 

vs(m + 1) = get_maximum_variance(s, s0(m + 1), s1(m + 1), W, 
x_smth, K); 

next = [r0(m + 1) r1(m + 1) ve(m + 1) vr(m + 1) s0(m + 1) s1( 
m + 1) vs(m +1)];  

mean_dev = mean(abs(next - prev)); 

if mean_dev < tol 
fprintf(’Converged at m = %d\n\n’, m);  
break; 

else 
fprintf(’m = %d\nr0 = %.18f\nr1 = %.18f\nvr = %.18f\n\ns0 

= %.18f\ns1 = %.18f\nvs = %.18f\n\nve = %.18f\n\n’, ... 
m + 1, r0(m + 1), r1(m + 1), vr(m + 1), s0(m + 1), s1(m + 

1), vs(m + 1),  ve(m + 1));  

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth(2:end) =  zeros(1, K - 1); % x_smth(1) needed 
for next iteration 

v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

end 
end 

%% calculate confidence limits 

p_smth = 1 ./ (1 + exp((-1) * (b0 + x_smth))); % mode, lower and 
upper confidence limits for binary distribution 

r_smth = r0(m) + r1(m) * x_smth; 
s_smth = s0(m) + s1(m) * x_smth; 

r_plot = NaN * ones(1, K); 
r_plot(pt) = r(pt);
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%% plot graphs 

subplot(511); 
hold on; 
stem(r_plot, ’fill’, ’color’, ’b’, ’markersize’, 4); 
plot(r_smth, ’r-.’, ’linewidth’, 1.25); 
ylabel(’(a) n_{k}, r_{k}’); 
title(’Estimation with Simulated Data’); 
grid; 

subplot(512); 
hold on; 
plot(p, ’b’); 
plot(p_smth, ’r-.’, ’linewidth’, 1.25); 
ylabel(’(b) p_{k}’); 
grid; 

subplot(513); 
hold on; 
plot(s, ’b’); 
plot(s_smth, ’r-.’, ’linewidth’, 1.25); grid; 
ylabel(’(c) s_{k}’); 

subplot(514); 
hold on; 
plot(x, ’b’); 
plot(x_smth, ’r-.’, ’linewidth’, 1.25); grid; 
ylabel(’(d) x_{k}’); xlabel(’time index’); 

subplot(515); 
qqplot(x - x_smth); 
title(’QQ Plot - State Estimate’, ’FontWeight’, ’Normal’); 
ylabel(’(e) input quantiles’); 
xlabel(’standard normal quantiles’); 
grid; 

%% supplementary functions 

function y = get_posterior_mode(x_pred, v_pred, r, r0, r1, b0, vr 
, n, s, s0,  s1, vs)  

M = 200; % maximum iterations 

it = zeros(1, M); 
f =  zeros(1, M); 
df = zeros(1, M); 

it(1) = x_pred; 

for i = 1:(M - 1)  

if (n == 0) 
C = v_pred / ((s1 ^ 2) * v_pred + vs);
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f(i) = it(i) - x_pred - C * (s1 * (s - s0 - s1 * 
x_pred) + vs * (n - (1 / (1 +  exp((-1) * (b0 + it(i))))))); 

df(i) = 1 + C  * vs * exp(b0 + it(i)) / ((1 + exp(b0 + 
it(i)))  ̂ 2); 

elseif (n == 1) 
C = v_pred / (vr * vs + v_pred * ((r1 ^ 2) * vs + (s1  

^ 2)  * vr)); 
f(i) = it(i) - x_pred - C * (r1 * vs * (r - r0 - r1  * 

x_pred) + s1 * vr * (s - s0 - s1 * x_pred) + ... 
vr * vs * (n - (1 / (1 +  exp((-1) * (b0 + it(i))) 

)))); 
df(i) = 1 + C  * vr * vs * exp(b0 + it(i)) / ((1 + exp 

(b0 + it(i)))  ̂ 2); 
end 

it(i + 1) = it(i) - f(i) / df(i); 

if abs(it(i + 1) - it(i)) < 1e-14  
y = it(i + 1);  
return; 

end 
end 

error(’Newton-Raphson failed to converge.’); 

end 

function y = get_maximum_variance(z, r0, r1, W, x_smth, K) 

y = (z  * z’ + K  * (r0 ^ 2) + (r1 ^ 2)  * sum(W) ...
- 2  * r0 * sum(z) - 2  * r1 * dot(x_smth, z) + 2 * 

r0 * r1 * sum(x_smth)) / K; 

end 

function y = get_linear_parameters(x_smth, W, z, K) 

y = [K  sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .* 
x_smth)]; 

end 

function y = get_maximum_variance_for_mpp(z, r0, r1, W, x_smth, 
pt) 

x_smth = x_smth(pt); 
W = W(pt); 
z = z(pt); 
K =  length(pt); 

y = (z  * z’ + K  * (r0 ^ 2) + (r1 ^ 2)  * sum(W) ...
- 2  * r0 * sum(z) - 2  * r1 * dot(x_smth, z) + 2 * 

r0 * r1 * sum(x_smth)) / K; 
end
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function y = get_linear_parameters_for_mpp(x_smth, W, z, pt) 

x_smth = x_smth(pt); 
W = W(pt); 
z = z(pt); 
K =  length(pt); 

y = [K  sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .* 
x_smth)]; 

end 

10.6.2 Experimental Data Example 

load(’expm_data_one_mpp_one_cont.mat’); 

subj = 1; 
T = 1450; 
n =  zeros(1, T); 
r =  zeros(1, T); 

pt = find(u > 0);  
n(pt) = 1; 
r(pt) = u(pt); 
s = y;  

base_prob = sum(n) / length(n); 
pt = find(n > 0);  

%% parameters 

M = 1e6; % maximum iterations 
m = 1;  
tol = 1e-8; % convergence criteria 

b0 = zeros(1, M); 
b1 = zeros(1, M); 

r0 = zeros(1, M); % continuous model 
r1 = zeros(1, M); 
vr = zeros(1, M); % continuous model noise variance (1) 

s0 = zeros(1, M); % continuous model 
s1 = zeros(1, M); 
vs = zeros(1, M); % continuous model noise variance (2) 

ve = zeros(1, M); % process noise variance 
K =  length(n); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K);
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x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth = zeros(1, K); 
v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

%% initial guesses 

b0(1) = log(base_prob / (1 - base_prob)); 
b1(1) = 1; 
r0(1) = prctile(r(pt), 50); 
r1(1) = 0.5; 
s0(1) = s(1); 
s1(1) = 1; 
vr(1) = 0.05; 
vs(1) = 1 * var(s); % 1  * var(s) 
ve(1) = 0.05; 
lambda = 0.01; % 0.01 

%% main function 

for m = 1:M  

for k = 1:K  

if (k == 1) 
x_pred(k) = x_smth(1); 
v_pred(k) = ve(m) + ve(m); 

else 
x_pred(k) = x_updt(k - 1); 
v_pred(k) = v_updt(k - 1) + ve(m); 

end 

x_updt(k) = get_posterior_mode(x_pred(k), v_pred(k), r(k) 
, r0(m), r1(m), b0(m), b1(m), vr(m), n(k), s(k), s0(m), s1(m) 
, vs(m)); 

p_updt(k) = 1 / (1  +  exp((-1) * (b0(m) + b1(m) * x_updt(k 
)))); 

if (n(k) == 0) 
v_updt(k) = 1 / ((1 / v_pred(k)) + ((s1(m) ^ 2) / vs( 

m)) + (b1(m)  ̂ 2) * p_updt(k) * (1 - p_updt(k))); 
elseif (n(k) == 1) 

v_updt(k) = 1 / ((1 / v_pred(k)) + ((r1(m) ^ 2) / vr( 
m)) + ((s1(m) ^ 2) / vs(m)) + (b1(m) ^ 2)  * p_updt(k) * (1 -
p_updt(k)));
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end 
end 

x_smth(K) = x_updt(K); 
v_smth(K) = v_updt(K); 
W(K) = v_smth(K) + (x_smth(K) ^ 2); 

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end); 

for k = (K - 1):(-1):1 
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 

1)); 
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1)); 

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1); 
W(k) = v_smth(k) + (x_smth(k) ^ 2); 

end 

R = get_linear_parameters_for_mpp(x_smth, W, r, pt); 
S = get_linear_parameters(x_smth, W, s, K); 

prev = [r0(m) r1(m) ve(m) vr(m) s0(m) s1(m) vs(m) b0(m) b1(m) 
]; 

ve(m + 1) = (sum(W(2:end)) + sum(W(1:(end - 1))) - 2  * sum(CW 
)) / K;  

bb = fsolve(@(b) binary_parameter_derivatives(b, n, x_smth, 
v_smth), [-5 1], optimset(’Display’,’off’)); 

b0(m + 1) = bb(1);  
b1(m + 1) = bb(2);  

r0(m + 1) = R(1, 1); 
r1(m + 1) = R(2, 1); 
vr(m + 1) = get_maximum_variance_for_mpp(r, r0(m + 1), r1(m + 
1), W, x_smth, pt); 

if ((vs(m) + lambda * (get_maximum_variance(s, s0(m), s1(m), 
W, x_smth, K) - vs(m))) > 0.75 * var(s)) % EM algorithm 
intentionally modified slightly for overfitting control 

s0(m + 1) = s0(m) + lambda * (S(1, 1) - s0(m)); 
s1(m + 1) = s1(m) + lambda * (S(2, 1) - s1(m)); 
vs(m + 1) = vs(m) + lambda * (get_maximum_variance(s, s0( 

m), s1(m), W, x_smth, K) - vs(m)); 
else 

s0(m + 1) = s0(m); 
s1(m + 1) = s1(m); 
vs(m + 1) = vs(m); 

end 

next = [r0(m + 1) r1(m + 1) ve(m + 1) vr(m + 1) s0(m + 1) s1( 
m + 1) vs(m + 1) b0(m  + 1) b1(m + 1)];
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mean_dev = mean(abs(next - prev)); 

if (b1(m + 1) < 0) || (r1(m + 1) < 0) % if this happens 
with experimental data 

fprintf(’Iterations halted at m = %d\n\n’, m);  
break; 

end 

if mean_dev < tol 
fprintf(’Converged at m = %d\n\n’, m);  
break; 

else 
fprintf(’m = %d\nr0 = %.18f\nr1 = %.18f\nvr = %.18f\n\ns0 

= %.18f\ns1 = %.18f\nvs = %.18f\n\nb0 = %.18f\nb1 = %.18f\n\ 
nve = %.18f\n\n’, ... 

m + 1, r0(m + 1), r1(m + 1), vr(m + 1), s0(m + 1), s1(m + 
1), vs(m + 1),  b0(m + 1),  b1(m + 1),  ve(m + 1));  

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth(2:end) =  zeros(1, K - 1); % x_smth(1) needed 
for next iteration 

v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

end 
end 

%% calculate confidence limits 

p_smth = 1 ./ (1 + exp((-1) * (b0(m) + b1(m) * x_smth))); % mode 
, lower and upper confidence limits for binary distribution 

r_smth = r0(m) + r1(m) * x_smth; 
s_smth = s0(m) + s1(m) * x_smth; 

lcl_x = norminv(0.025, x_smth, sqrt(v_smth)); 
ucl_x = norminv(0.975, x_smth, sqrt(v_smth)); 

lcl_p = zeros(1, K); 
ucl_p = zeros(1, K); 

for k = 1:K  
[lcl_p(k), ucl_p(k)] = get_pk_conf_lims(v_smth(k), b0(m), b1( 
m), x_smth(k));
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end 

r_plot = NaN * ones(1, K); 
r_plot(pt) = r(pt); 

%% plot graphs 

t = (1:K); 
tr = (K:(-1):1); 
xtick_pos = 1:(4 * 60):1450; 
xtick_labels = {’9 AM’, ’1 PM’, ’5 PM’, ’9 PM’, ’1 AM’, ’5 AM’, ’ 

9 AM’}; 

subplot(411); 
hold on; 
stem(t, r_plot, ’fill’, ’color’, ’b’, ’markersize’, 4);  
plot(t, r_smth, ’r-.’, ’linewidth’, 1.25); 
ylabel(’(a) n_{k}, r_{k}’); ylim([-inf (max([r_plot, r_smth]) + 

2.5)]); 
grid; xlim([0, K]); set(gca, ’xtick’, xtick_pos); 
set(gca, ’xticklabel’, []); 
title(’State Estimation with Experimental Data’); 

subplot(412); 
hold on; 
plot(t, s, ’color’, [1 (128 / 255) 0], ’linewidth’, 1.25); grid; 
plot(t, s_smth, ’r-.’, ’linewidth’, 1.25); 
ylim([0 (max([s, s_smth]) + 2.5)]); 
ylabel(’(b) s_{k}’); set(gca, ’xtick’, xtick_pos); 
xlim([0, K]); set(gca, ’xticklabel’, []); 

subplot(413); 
hold on; 
col = [0 (176 / 255) (80 / 255)]; 
fill([t, tr], [lcl_p fliplr(ucl_p)], [(54 / 255) (208 / 255) (80 

/ 255)], ’EdgeColor’, ’none’, ’FaceAlpha’, 0.3); 
plot(t, p_smth, ’color’, [(54 / 255) (150 / 255) (80 / 255)], ’ 

linewidth’, 1.25); grid; 
ylabel(’(c) p_{k}’); set(gca, ’xtick’, xtick_pos); ylim([0 (max( 

ucl_p) + 0.0075)]); 
xlim([0, K]); set(gca, ’xticklabel’, []); 

subplot(414); 
hold on; 
fill([t, tr], [lcl_x fliplr(ucl_x)], [(102 / 255) 0 (204 / 255)], 

’EdgeColor’, ’none’, ’FaceAlpha’, 0.3); 
plot(t, x_smth, ’color’, [(102 / 255) 0 (150 / 255)], ’linewidth’ 

, 1.25); 
grid; xlim([0, K]); ylim([(min(lcl_x) - 1) (max(ucl_x) + 1)]); 
set(gca, ’xtick’, xtick_pos); 
set(gca, ’xticklabel’, xtick_labels); 
ylabel(’(d) x_{k}’); xlabel(’time’);
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function y = get_posterior_mode(x_pred, v_pred, r, r0, r1, b0, b1 
, vr, n, s, s0, s1, vs) 

M = 200; % maximum iterations 

it = zeros(1, M); 
f =  zeros(1, M); 
df = zeros(1, M); 

it(1) = x_pred; 

for i = 1:(M - 1)  

if (n == 0) 
C = v_pred / ((s1 ^ 2) * v_pred + vs); 
f(i) = it(i) - x_pred - C * (s1 * (s - s0 - s1 * 

x_pred) + vs * b1 * (n - (1 / (1 +  exp((-1) * (b0 + b1  * it(i 
))))))); 

df(i) = 1 + C  * vs * (b1 ^ 2)  * exp(b0 + b1  * it(i)) 
/ ((1 + exp(b0 + b1  * it(i)))  ̂ 2); 

elseif (n == 1) 
C = v_pred / (vr * vs + v_pred * ((r1 ^ 2) * vs + (s1  

^ 2)  * vr)); 
f(i) = it(i) - x_pred - C * (r1 * vs * (r - r0 - r1  * 

x_pred) + s1 * vr * (s - s0 - s1 * x_pred) + ... 
vr * vs * b1 * (n - (1 / (1 +  exp((-1) * (b0 + b1  

* it(i))))))); 
df(i) = 1 + C  * vr * vs * (b1 ^ 2)  * exp(b0 + b1 * it 

(i)) / ((1 + exp(b0 + b1 * it(i)))  ̂ 2); 
end 

it(i + 1) = it(i) - f(i) / df(i); 

if abs(it(i + 1) - it(i)) < 1e-14  
y = it(i + 1);  
return; 

end 
end 

error(’Newton-Raphson failed to converge.’); 

end 

function [lcl, ucl] = get_pk_conf_lims(v, b0, b1, x) 

p = (1e-4:1e-4:1); 

fp = cumtrapz(p, 1 ./ (sqrt(2 * pi * v) * b1 * p .* (1 - p))  
.* ... 

exp(((-1) / (2 * v))* ((1 / b1) * log(p ./ ((1 - p) * exp 
(b0))) - x) .^ 2));  

n =  find(fp <= 0.975); 
m =  find(fp < 0.025);
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ucl = p(n(end)); 
lcl = p(m(end)); 

end 

function y = get_maximum_variance_for_mpp(z, r0, r1, W, x_smth, 
pt) 

x_smth = x_smth(pt); 
W = W(pt); 
z = z(pt); 
K =  length(pt); 

y = (z  * z’ + K  * (r0 ^ 2) + (r1 ^ 2)  * sum(W) ...
- 2  * r0 * sum(z) - 2  * r1 * dot(x_smth, z) + 2 * 

r0 * r1 * sum(x_smth)) / K; 
end 

function y = get_maximum_variance(z, r0, r1, W, x_smth, K) 

y = (z  * z’ + K  * (r0 ^ 2) + (r1 ^ 2)  * sum(W) ...
- 2  * r0 * sum(z) - 2  * r1 * dot(x_smth, z) + 2 * 

r0 * r1 * sum(x_smth)) / K; 
end 

function y = get_linear_parameters_for_mpp(x_smth, W, z, pt) 

x_smth = x_smth(pt); 
W = W(pt); 
z = z(pt); 
K =  length(pt); 

y = [K  sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .* 
x_smth)]; 

end 

function y = get_linear_parameters(x_smth, W, z, K) 

y = [K  sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .* 
x_smth)]; 

end 

function y = binary_parameter_derivatives(b, n, x_smth, v_smth) 

y =  zeros(1, 2); 
K =  length(n); 

b0 = b(1); 
b1 = b(2); 
p =  zeros(1, K); 

for k = 1:K
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p(k) = 1 / (1 + exp((-1) * (b0 + b1  * x_smth(k)))); 
y(1) = y(1) + n(k) - p(k) - 0.5 * v_smth(k) * (b1 ^ 2) * 

p(k) * (1 - p(k)) * (1 - 2  * p(k)); 
y(2) = y(2) + n(k) * x_smth(k) - x_smth(k) * p(k) - 0.5 * 

v_smth(k) * b1 * p(k) * (1 - p(k)) * (2 + x_smth(k) * b1 * 
(1 - 2  * p(k))); 
end 

end 

10.7 State-space Model with One Binary and One 

Spiking-type Observation 

10.7.1 Experimental Data Example 

load(’expm_data_one_bin_one_spk.mat’); 

fs = 4;  
delta = 0.005; 

min_peak_height = 0.1; 
min_peak_promn = 0.1; 
min_peak_dist = fs; 

ph = s.ph; 
tn = s.tn; 

rpeaks = s.rpeaks; 
ul = s.ul; 
w = s.w; 
theta = s.theta; 

[pks, locs] = findpeaks(ph, ’MinPeakHeight’, min_peak_height, ’ 
MinPeakProminence’, ... 
min_peak_promn, ’MinPeakDistance’, min_peak_dist); 

n =  zeros(1, length(ph)); 
n(locs) = 1; 

K =  length(n); 
M = 2e4; 
ve = zeros(1, M); % process noise variance 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth = zeros(1, K);
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v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

tpc = 289; % total (SCR) peak count 
tsl = 34182; % total signal length 

base_prob = tpc / tsl; 
b0 = log(base_prob / (1 - base_prob)); 
tol = 5e-8; % convergence criteria 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

x_smth(1) = 0.44201528159733; 
ve(1) = 1.24111644606324e-4; 

eta = -0.00004; 

exception_counter = 0; 

for m = 1:M  

for k = 1:K  

if (k == 1) 
x_pred(k) = x_smth(1); 
v_pred(k) = ve(m) + ve(m); 

else 
x_pred(k) = x_updt(k - 1); 
v_pred(k) = v_updt(k - 1) + ve(m); 

end 

C(k) = v_pred(k); 

try % numerical issues can occur due to the integrals 
[x_updt(k), H2] = get_posterior_mode(x_pred(k), C(k), 

b0, n(k), rpeaks(k, :), ul(k, :), delta, s.w(k, :, :), theta 
’, eta); 

p_updt(k) = 1 / (1 + exp((-1) * (b0 + x_updt(k)))); 
v_updt(k) = 1 / ((1 / v_pred(k)) + p_updt(k) * (1 -

p_updt(k)) - H2); 
catch 

exception_counter = exception_counter + 1; 
x_updt(k) = x_pred(k); 
v_updt(k) = v_pred(k); 

end 

if (mod(k, 100) == 0) 
fprintf(’%d ’, k);  

end
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if (mod(k, 2500) == 0) 
fprintf(’\n’); 

end 

end 

x_smth(K) = x_updt(K); 
v_smth(K) = v_updt(K); 
W(K) = v_smth(K) + (x_smth(K) ^ 2); 

A(1:(end - 1)) = v_updt(1:(end - 1)) ./ v_pred(2:end); 

for k = (K - 1):(-1):1 
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 

1)); 
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1)); 

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1); 
W(k) = v_smth(k) + (x_smth(k) ^ 2); 

end 

if (m < M)  

ve(m + 1) = (sum(W(2:end)) + sum(W(1:(end - 1))) - 2  * 
sum(CW)) / K; 

mean_dev = mean(abs(ve(m + 1) - ve(m))); 

if mean_dev < tol 
fprintf(’m = %d\nx0 = %.18f\nve = %.18f\n\n’, m,  

x_smth(1), ve(m)); 
fprintf(’Converged at m = %d\n\n’, m);  
break; 

else 
fprintf(’m = %d\nx0 = %.18f\nve = %.18f\n\n’, m,  

x_smth(1), ve(m + 1)); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth(2:end) =  zeros(1, K - 1); % x_smth(1) 
needed for next iteration 

v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

end
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end 
end 

p_updt = 1 ./ (1 + exp((-1) * (b0 + x_updt))); 
p_smth = 1 ./ (1 + exp((-1) * (b0 + x_smth))); 

t = (0:(K - 1)) / (fs * 60); 
tr = ((K - 1):(-1):0) / (fs * 60); 

lcl_x = norminv(0.025, x_smth, sqrt(v_smth)); 
ucl_x = norminv(0.975, x_smth, sqrt(v_smth)); 

lcl_p = zeros(1, K); 
ucl_p = zeros(1, K); 

for k = 1:K  
[lcl_p(k), ucl_p(k)] = get_pk_conf_lims(v_smth(k), b0, x_smth 
(k)); 

end 

certainty = get_certainty_curve(v_smth, b0, x_smth, base_prob); 

lambda = zeros(K, 50); 
mean_rr = zeros(K, 50); 

for k = 1:K  
for j = 1:50 

w = [squeeze(s.w(k, j, :))’ [eta x_smth(k)]]; 
if (f(theta’, ul(k, j), w) > 1e-18) 

lambda(k, j) = fetch_lambda(theta’, ul(k, j), w); 
end 
mean_rr(k, j) = mu(theta’, w); 

end 
end 

lambda_start_index = find(reshape(rpeaks’, 1, numel(rpeaks)), 1); 
lambda = reshape(lambda’, 1, numel(lambda)); 
get_ks_plot(find(reshape(rpeaks’, 1, numel(rpeaks))) * delta, 

lambda(lambda_start_index:end), delta, 1); 

ll = get_log_likelihood(eta, rpeaks, ul, delta, s.w, theta’, 
x_smth, v_smth); 

ll_final = sum(nansum(ll)); 
mean_rr = reshape(mean_rr’, 1, numel(mean_rr)); 

rri = diff(s.rpeak_locs); 
rr_times = s.rpeak_locs(2:end) / 60; 

state_ylim = [(min(lcl_x) - 0.1) (max(ucl_x) + 0.1)]; 
rr_ylim = [(prctile(rri, 1) - 0.05) (prctile(rri, 99) + 0.05)]; 
prob_ylim = [(min(lcl_p) - 0.0005) (max(ucl_p(3:end)) + 0.0005)]; 

figure; 
subplot(611);
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hold on; 
plot(t, s.x, ’color’, [(102 / 255) 0 (204 / 255)]); grid; 
set(gca,’xticklabel’, []); 
ylabel(’(a) z_{k}’); xlim([0 t(end)]); ylim([4 22]); title(’State 

Estimation with Experimental Data’); 

subplot(612); 
n_plot = NaN * ones(1, K); 
n_plot(n > 0) = 1; 
stem(t, n_plot, ’fill’, ’color’, [1, 0, 1], ’markersize’, 2); 
xlim([0 t(end)]); ylim([0 1.25]); 
set(gca,’xticklabel’, []); 
ylabel(’(b) n_{k}’); grid; 

subplot(613); 
hold on; 
plot(t, x_smth, ’b’, ’linewidth’, 1.25); grid; 
set(gca,’xticklabel’, []); 
fill([t, tr], [lcl_x fliplr(ucl_x)], ’c’, ’EdgeColor’, ’none’, ’ 

FaceAlpha’, 0.2); 
ylabel(’(c) x_{k}’); xlim([0 t(end)]); ylim(state_ylim); 

subplot(614); 
hold on; 
plot(t, p_smth, ’color’, [(102 / 255), 0, (51 / 255)], ’linewidth 

’, 1.25); grid; 
set(gca,’xticklabel’, []); 
fill([t, tr], [lcl_p fliplr(ucl_p)], [1, 0, (127 / 255)], ’ 

EdgeColor’, ’none’, ’FaceAlpha’, 0.2); 
ylabel(’(d) p_{k}’); xlim([0 t(end)]); ylim([0.0012 0.0388]); 
plot([0, t(end)], [base_prob, base_prob], ’k--’, ’linewidth’, 

1.25); 

subplot(615); 
hold on; 
plot(rr_times, rri, ’o’, ’col’, [1, 0.5, 0.25], ... 

’MarkerFaceColor’, [1, 0.5, 0.25], ’MarkerSize’, 2);  grid; 
set(gca,’xticklabel’, []); 
mu_start_index = round(s.rpeak_locs(2) / delta); 
plot(((0:(length(mean_rr(mu_start_index:end)) - 1))  * delta) / 

60, mean_rr(mu_start_index:end), ’b’); 
ylabel(’(e) rr_{i}’); xlim([0 t(end)]); ylim(rr_ylim); 

subplot(616); 
hold on; 

v1 = [0 0.9; t(end) 0.9; t(end) 1; 0 1];  
c1 = [1 (220 / 255) (220 / 255); 1 (220 / 255) (220 / 255); 1 0 

0; 1 0 0]; 
faces1 = [1 2 3 4];  

patch(’Faces’, faces1, ’Vertices’, v1,  ’FaceVertexCData’, c1, ’ 
FaceColor’, ’interp’, ... 
’EdgeColor’, ’none’, ’FaceAlpha’, 0.7);
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v2 = [0 0; t(end) 0; t(end) 0.1; 0 0.1]; 
c2 = [0 0.8 0; 0 0.8 0; (204 / 255) 1 (204 / 255); (204 / 255) 1 

(204 / 255)]; 
faces2 = [1 2 3 4];  

patch(’Faces’, faces2, ’Vertices’, v2,  ’FaceVertexCData’, c2, ’ 
FaceColor’, ’interp’, ... 
’EdgeColor’, ’none’, ’FaceAlpha’, 0.7); 

plot(t, certainty, ’b’, ’linewidth’, 1.25); grid; xlim([0 t(end) 
]); 

ylabel(’(f) HAI’); xlabel(’time (min)’); ylim([0 1]); 

function [y, H2] = get_posterior_mode(x_pred, C, b0, n, rpeaks, 
ul, delta, w_all, theta, eta) 

M = 40; % maximum iterations 

it = zeros(1, M); 
func = zeros(1, M); 
df = zeros(1, M); 

it(1) = x_pred; 

for i = 1:(M - 1)  

H1 = zeros(1, 50); 
H2 = zeros(1, 50); 

for j = 1:50 
w = [squeeze(w_all(1, j, :))’ [eta it(i)]]; 

if (f(theta, ul(j), w) > 1e-18) % 
lambda = fetch_lambda(theta, ul(j), w); 
dl_dx = dlambda_dx(theta, ul(j), w); 

H1(j) = dl_dx * (rpeaks(j) - lambda * delta) / 
lambda; 

H2(j) = d2lambda_dx2(theta, ul(j), w) * (rpeaks(j 
) - lambda * delta) / lambda - rpeaks(j) * (dl_dx ^ 2) / ( 
lambda ^ 2); 

end 
end 

H1 = sum(H1); 
H2 = sum(H2); 

func(i) = it(i) - x_pred - C * (n - exp(b0 + it(i)) / (1 +  
exp(b0 + it(i))) + H1);  

df(i) = 1 + C  * (exp(b0 + it(i)) / (1 + exp(b0 + it(i))) ^ 
2 - H2);  

it(i + 1) = it(i) - func(i) / df(i);
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if abs(it(i + 1) - it(i)) < 1e-14 
y = it(i + 1);  

return 
end 

end 

error(’Newton-Raphson failed to converge.’); 

end 

function [y] = f(theta, t, w) 

y =  sqrt(theta(end) ./ (2  * pi * (t .^ 3))) .* ... 
exp((theta(end) * ((t - mu(theta, w)) .^ 2)) ./ ... 
((-2) * (mu(theta, w) ^ 2) * t)); 

end 

function [y] = intf(theta, t, w) 

y = integral(@(t)f(theta, t, w), 0, t); 

end 

function [y] = mu(theta, w) 

eta = w(end - 1);  
x = w(end); 
y = theta(1) + w(1:3) * theta(2:4)’ + eta * x; 

end 

function [y] = fetch_lambda(theta, t, w) 

cdf = intf(theta, t, w); 
y = f(theta, t, w) ./ (1 - cdf); 

if (cdf > 1) % numerical issue 
y = 0;  

end 

end 

function [y] = df_dmu(theta, t, w) 

y = (theta(end) / (mu(theta, w)  ̂ 3)) * (f(theta, t, w) .* (t
- mu(theta, w))); 

end 

function [y] = df_dx(theta, t, w) 

eta = w(end - 1);  
y = df_dmu(theta, t, w) .* eta;
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end 

function [y] = intdf_dx(theta, t, w) 

y = integral(@(t)df_dx(theta, t, w), 0, t); 

end 

function [y] = dlambda_dx(theta, t, w) 

cdf = intf(theta, t, w); 

if (cdf > 1) % numerical issue 
y = 0;  

else 
y = ((1 - cdf) .* df_dx(theta, t, w) + ... 

f(theta, t, w) .* intdf_dx(theta, t, w)) ./ ((1 - cdf 
) .^ 2);  
end 

end 

function [y] = d2f_dmu2(theta, t, w) 

y = theta(end) * (df_dmu(theta, t, w) .* ((t - mu(theta, w)) 
/ (mu(theta, w) ^ 3)) + ... 

f(theta, t, w) .* ((2 * mu(theta, w) - 3 * t) / (mu(theta 
, w) ^ 4)));  

end 

function [y] = d2f_dx2(theta, t, w) 

eta = w(end - 1);  
y = d2f_dmu2(theta, t, w) .* (eta ^ 2); 

end 

function [y] = intd2f_dx2(theta, t, w) 

y = integral(@(t)d2f_dx2(theta, t, w), 0, t); 

end 

function [y] = d2lambda_dx2(theta, t, w) 

y = (2  * dlambda_dx(theta, t, w) * (1 - intf(theta, t, w)) * 
intdf_dx(theta, t, w) + ... 

d2f_dx2(theta, t, w) * (1 - intf(theta, t, w)) + ... 
f(theta, t, w) * intd2f_dx2(theta, t, w)) / ((1 - intf( 

theta, t, w))  ̂ 2); 

end
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function [y] = get_log_likelihood(eta, rpeaks, ul, delta, w_all, 
theta, x, v) 

K =  length(x); 
y =  zeros(K, 50); 

for k = 1:K  
for j = 1:50 

w = [squeeze(w_all(k, j, :))’ [eta x(k)]]; 

if (f(theta, ul(k, j), w) > 1e-18) 

lambda = fetch_lambda(theta, ul(k, j), w); 
dl_dx = dlambda_dx(theta, ul(k, j), w); 
d2l_dx2 = d2lambda_dx2(theta, ul(k, j), w); 
nkj = rpeaks(k, j); 

value = nkj * log(delta * lambda) - delta * 
lambda + ... 

(d2l_dx2 * (nkj - lambda * delta) / lambda -
nkj * (dl_dx ^ 2) / (lambda ^ 2)) * v(k) * 0.5; 

if ~isnan(value) 
y(k, j) = value; 

end 
end 

end 
end 

end 

function [lcl, ucl] = get_pk_conf_lims(v, b0, x) 

p = (1e-4:1e-4:1); 

fp = cumtrapz(p, 1 ./ (sqrt(2 * pi * v) * p .* (1 - p)) .* 
... 

exp(((-1) / (2 * v))* (log(p ./ ((1 - p) * exp(b0))) - x) 
.^ 2)); 

n =  find(fp <= 0.975); 
m =  find(fp < 0.025); 

ucl = p(n(end)); 
lcl = p(m(end)); 

end 

function certainty = get_certainty_curve(vK, mu, xK, chance_prob) 

p = (1e-4:1e-4:1); 
[~, i] = min(abs(p - chance_prob)); 
certainty = zeros(1, length(vK)); 

for j = 1:length(vK)
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fp = cumtrapz(p, 1 ./ (sqrt(2 * pi * vK(j)) * p .* (1 - p  
)) .* ... 

exp(((-1) / (2 * vK(j)))* (log(p ./ ((1 - p) * exp(mu 
))) - xK(j)) .^ 2)); 

certainty(1, j) = 1 - fp(i);  
end 

end 

10.8 State-space Model with One Binary and Two 

Continuous Observations with a Circadian Input in the 

State Equation 

10.8.1 Experimental Data Example 

ndays = 5; 
T = 1440; 
N = ndays * T; 
t = (1:N); 

load(’expm_data_one_bin_two_cont_circadian.mat’); 

std_r = std(r); 
std_s = std(s); 

r = r / std_r; 
s = s / std_s; 

base_prob = sum(n) / length(n); 

M = 2e6; 
ve = zeros(1, M); % process noise variance 
rho = zeros(1, M); 
b0 = zeros(1, M); 
b1 = zeros(1, M); 

r0 = zeros(1, M); 
r1 = zeros(1, M); 
vr = zeros(1, M); 

s0 = zeros(1, M); 
s1 = zeros(1, M); 
vs = zeros(1, M); 

K =  length(n); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K);
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x_smth = zeros(1, K); 
v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

tol = 1e-8; % convergence criteria 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

ve(1) = 0.005; 
rho(1) = 0.98; 

b0(1) = log(base_prob / (1 - base_prob)); 
b1(1) = 0.9; 

r0(1) = r(1); 
r1(1) = 1; 
vr(1) = 0.005; 

s0(1) = s(1); 
s1(1) = 1; 
vs(1) = 0.005; 

for m = 1:M  

for k = 1:K  

if (k == 1) 
x_pred(k) = x_smth(1) + I(k); 
v_pred(k) = ve(m) + ve(m); 

else 
x_pred(k) = rho(m) * x_updt(k - 1) + I(k); 
v_pred(k) = (rho(m) ^ 2) * v_updt(k - 1) + ve(m); 

end 

C(k) = v_pred(k) / (vr(m) * vs(m) + v_pred(k) * ((r1(m) ^ 
2) * vs(m) + (s1(m) ^ 2) * vr(m))); 

x_updt(k) = get_posterior_mode(x_pred(k), C(k), r(k), r0( 
m), r1(m), b0(m), b1(m), vr(m), n(k), s(k), s0(m), s1(m), vs( 
m)); 

p_updt(k) = 1 / (1  +  exp((-1) * (b0(m) + b1(m) * x_updt(k 
)))); 

v_updt(k) = 1 / ((1  /  v_pred(k)) + ((r1(m) ^ 2) / vr(m)) 
+ ((s1(m) ^ 2) / vs(m))  + (b1(m) ^ 2)  * p_updt(k) * (1 -
p_updt(k))); 

end 

x_smth(K) = x_updt(K);
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v_smth(K) = v_updt(K); 
W(K) = v_smth(K) + (x_smth(K) ^ 2); 

A(1:(end - 1)) = rho(m) * v_updt(1:(end - 1)) ./ v_pred(2:end 
); 

for k = (K - 1):(-1):1 
x_smth(k) = x_updt(k) + A(k) * (x_smth(k + 1) - x_pred(k + 

1)); 
v_smth(k) = v_updt(k) + (A(k) ^ 2) * (v_smth(k + 1) -

v_pred(k + 1)); 

CW(k) = A(k) * v_smth(k + 1) + x_smth(k) * x_smth(k + 1); 
W(k) = v_smth(k) + (x_smth(k) ^ 2); 

end 

if (m < M)  

rho(m + 1) =  sum(CW) / sum(W(1:end - 1));  

next_ve = (sum(W(2:end)) + (rho(m + 1)  ̂ 2) * sum(W(1:( 
end - 1))) - 2  * rho(m + 1) * sum(CW) - ... 

2 * (I(2:end) * x_smth(2:end)’) + 2  * rho(m + 1)  * (I 
(2:end) * x_smth(1:(end - 1))’) + ...  

(I * I’)) / K; 

if (next_ve > 0) % check - in case this happens with 
experimental data 

ve(m + 1) = next_ve; 
else 

ve(m + 1) = ve(m); 
end 

bb = fsolve(@(b) binary_parameter_derivatives(b, n, 
x_smth, v_smth), [-5 1], optimset(’Display’,’off’)); 

if (bb(2) > 0) % check - in case this happens with 
experimental data 

b0(m + 1) = bb(1); 
b1(m + 1) = bb(2); 

else 
b0(m + 1) = b0(m); 
b1(m + 1) = b1(m); 

end 

a = fminsearch(@(a) circadian_parameters(a, rho(m + 1), 
x_smth, t, T), a, optimset(’Display’, ’off’)); 

I = rhythm(a, T, t); 

R = get_linear_parameters(x_smth, W, r, K); 
S = get_linear_parameters(x_smth, W, s, K); 

next_vr = get_continuous_variable_variance_update(r, R(1, 
1), R(2, 1), W, x_smth, K);
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next_vs = get_continuous_variable_variance_update(s, S(1, 
1), S(2, 1), W, x_smth, K); 

if (abs(next_vr - next_vs) > 0.01) % overfitting control 
with experimental data 

r0(m + 1) = r0(m); 
r1(m + 1) = r1(m); 

s0(m + 1) = s0(m); 
s1(m + 1) = s1(m); 

vr(m + 1) = vr(m); 
vs(m + 1) = vs(m); 

else 
r0(m + 1) = R(1, 1); 
r1(m + 1) = R(2, 1); 

s0(m + 1) = S(1, 1); 
s1(m + 1) = S(2, 1); 

vr(m + 1) = next_vr; 
vs(m + 1) = next_vs; 

end 

mean_dev = mean(abs([ve(m + 1) rho(m + 1) r0(m + 1) r1(m  
+ 1) vr(m + 1) s0(m + 1) s1(m + 1) vs(m  + 1) b1(m + 1) b0(m  +  
1)] - ... 

[ve(m) rho(m) r0(m) r1(m) vr(m) s0(m) s1(m) vs(m) b1( 
m) b0(m)])); 

if mean_dev < tol 
fprintf(’m = %d\nx0 = %.18f\nve = %.18f\nrho = %.18f\ 

n\nr0 = %.18f\nr1 = %.18f\nvr = %.18f\ns0 = %.18f\ns1 = %.18f 
\nvs = %.18f\n\nb0 = %.18f\nb1 = %.18f\n\n’, ... 

m, x_smth(1), ve(m), rho(m), r0(m), r1(m), vr(m), 
s0(m), s1(m), vs(m), b0(m), b1(m)); 

fprintf(’Converged at m = %d\n\n’, m);  
break; 

else 
fprintf(’m = %d\nx0 = %.18f\nve = %.18f\nrho = %.18f\ 

n\nr0 = %.18f\nr1 = %.18f\nvr = %.18f\n\ns0 = %.18f\ns1 = 
%.18f\nvs = %.18f\n\nb0 = %.18f\nb1 = %.18f\n\n’, m, ... 

x_smth(1), ve(m + 1), rho(m + 1), r0(m + 1), r1(m 
+ 1),  vr(m + 1),  s0(m + 1),  s1(m + 1),  vs(m + 1),  b0(m + 1),  
b1(m + 1)); 

x_pred = zeros(1, K); 
v_pred = zeros(1, K); 

x_updt = zeros(1, K); 
v_updt = zeros(1, K); 

x_smth(2:end) =  zeros(1, K - 1); % x_smth(1) 
needed for next iteration
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v_smth = zeros(1, K); 

p_updt = zeros(1, K); 

A =  zeros(1, K); 
W =  zeros(1, K); 
CW = zeros(1, K); 
C =  zeros(1, K); 

end 
end 

end 

p_smth = 1 ./ (1 + exp((-1) * (b0(m) + b1(m) * x_smth))); 
r_smth = (r0(m) + r1(m) * x_smth) * std_r; 
s_smth = (s0(m) + s1(m) * x_smth) * std_s; 

index = (0:(K - 1)); 
t_index = index / (60 * 24); 
r_index = ((K - 1):(-1):0); % reverse index 
transp = 0.3; 

subplot(611); 
hold on; 
plot(t_index, y, ’color’, [(102 / 255) 0 (204 / 255)]); grid; 
ylabel(’(a) z_{k}’); 
title(’State Estimation with Experimental Data’); 
xlim([0 t_index(end)]); ylim([0 (1.1 * max(y))]); 
set(gca,’xticklabel’, []); 

subplot(612); 
n_plot = NaN * ones(1, K); 
n_plot(n > 0) = 1; 
stem(t_index, n_plot, ’fill’, ’color’, [1, 69 / 255, 0], ’ 

markersize’, 2); 
xlim([0 t_index(end)]); ylim([0 1.25]); 
set(gca,’xticklabel’, []); 
ylabel(’(b) n_{k}’); grid; 

subplot(613); 
hold on; 
plot(t_index, p_smth, ’r’, ’linewidth’, 1.5); ylim([(0.98 * min( 

p_smth)) (1.08 * max(p_smth))]); 
ylabel(’(c) p_{k}’); grid; 
xlim([0 t_index(end)]); 
set(gca,’xticklabel’, []); 

subplot(614); 
hold on; 
plot(t_index, r_smth, ’--’, ’color’, [0 0.3 0], ’linewidth’, 2);  
plot(t_index, r * std_r, ’color’, [0 0.9 0]); grid; 
xlim([0 t_index(end)]); ylabel(’(d) r_{k}’); 
set(gca,’xticklabel’, []); 

subplot(615);
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hold on; 
plot(t_index, s_smth, ’--’, ’color’, [0.5 (25 / 255) (66 / 255)], 

’linewidth’, 2);  
plot(t_index, s * std_s, ’color’, [1 0.5 (179 / 255)]); grid; 
xlim([0 t_index(end)]); ylabel(’(e) s_{k}’); 
set(gca,’xticklabel’, []); 

subplot(616); 
hold on; 
plot(t_index, x_smth, ’b’, ’linewidth’, 1.5); 
ylabel(’(f) x_{k}’); 
xlim([0 t_index(end)]); ylim([(min(x_smth) - 1) (max(x_smth) + 1) 

]); 
grid; 

xticks(0:0.5:4.5); xticklabels({’0000’, ’1200’, ’0000’, ’1200’, ’ 
0000’, ’1200’, ’0000’, ’1200’, ’0000’, ’1200’}); 

xlabel(’time (24h clock)’); 

function y = get_posterior_mode(x_pred, C, r, r0, r1, b0, b1, vr, 
n, s, s0, s1, vs) 

M = 200; % maximum iterations 

it = zeros(1, M); 
f =  zeros(1, M); 
df = zeros(1, M); 

it(1) = x_pred; 

for i = 1:(M - 1)  
f(i) = it(i) - x_pred - C * (r1 * vs * (r - r0 - r1  * 

x_pred) + s1 * vr * (s - s0 - s1  * x_pred) + ... 
vr * vs * b1 * (n - (1 / (1 +  exp((-1) * (b0 + b1  * 

it(i))))))); 
df(i) = 1 + C  * vr * vs * (b1 ^ 2) * exp(b0 + b1  * it(i)) 

/ ((1 + exp(b0 + b1  * it(i)))  ̂ 2); 
it(i + 1) = it(i) - f(i) / df(i); 

if abs(it(i + 1) - it(i)) < 1e-14  
y = it(i + 1);  
return; 

end 
end 

error(’Newton-Raphson failed to converge.’); 

end 

function y = binary_parameter_derivatives(b, n, x_smth, v_smth) 

y =  zeros(1, 2); 
K =  length(n);
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b0 = b(1); 
b1 = b(2); 
p =  zeros(1, K); 

for k = 1:K  
p(k) = 1 / (1 + exp((-1) * (b0 + b1  * x_smth(k)))); 
y(1) = y(1) + n(k) - p(k) - 0.5 * v_smth(k) * (b1 ^ 2) * 

p(k) * (1 - p(k)) * (1 - 2  * p(k)); 
y(2) = y(2) + n(k) * x_smth(k) - x_smth(k) * p(k) - 0.5 * 

v_smth(k) * b1 * p(k) * (1 - p(k)) * (2 + x_smth(k) * b1 * 
(1 - 2  * p(k))); 
end 

end 

function y = get_linear_parameters(x_smth, W, z, K) 

y = [K  sum(x_smth); sum(x_smth) sum(W)] \ [sum(z); sum(z .* 
x_smth)]; 

end 

function y = get_continuous_variable_variance_update(z, r0, r1, W 
, x_smth, K) 

y = (z  * z’ + K  * (r0 ^ 2) + (r1 ^ 2)  * sum(W) ...
- 2  * r0 * sum(z) - 2  * r1 * dot(x_smth, z) + 2 * r0 

* r1 * sum(x_smth)) / K; 

end 

function y = circadian_parameters(a, rho, x_smth, t, T) 

I = rhythm(a, T, t); 
y = (I  * I’) - 2  * (I(2:end) * x_smth(2:end)’) + 2  * rho * (I 
(2:end) * x_smth(1:(end - 1))’); 

end 

function y = rhythm(a, T, t) % the a0 is ignored 
y = 0 + a(2)  * sin(2 * pi * t / T) + a(3) * cos(2 * pi * t /  
T) + ... 

a(4) * sin(2 * pi * t / (T / 2)) + a(5) * cos(2 * pi * t 
/ (T / 2));  

end
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Chapter 11 

List of Supplementary MATLAB 
Functions 

All the MATLAB code examples accompanying this book can be run directly. The 

examples are self-contained and do not require additional path variables being set 

up. The following is a partial list of the supplementary MATLAB functions that are 

called at various stages by the state estimators. 

• get_linear_parameters (.. . .) 

Calculates the updates for the constant coefficients (e.g., .γ0 and .γ1) for a  

continuous variable (e.g., .rk). If this function is present in a MATLAB example 

where there is an MPP, but not a continuous variable, then it calculates the 

constant coefficients based on the MPP amplitudes.

• get_maximum_variance (.. . .) or get_continuous_variable_variance_update (.. . .) 

Calculates the sensor noise variance update (e.g., .σ 2
v ) for a continuous variable 

(e.g., .rk). If this function is present in a MATLAB example where there is an 

MPP, but not a continuous variable, then it calculates the sensor noise variance 

based on the MPP amplitudes.

• get_linear_parameters_for_mpp (.. . .) 

Calculates the updates for the constant coefficients (e.g., .γ0 and .γ1) for a  

series of MPP amplitudes (e.g., .rk). This function is used to calculate the updates 

corresponding to an MPP when a continuous variable is also present.

• get_maximum_variance_for_mpp (.. . .) 

Calculates the sensor noise variance update (e.g., .σ 2
v ) for a series of MPP 

amplitudes. This function is used to calculate the update corresponding to an 

MPP when a continuous variable is also present.

• get_posterior_mode (.. . .) or get_state_update (.. . .) 

Calculates the update .xk|k based on the Newton–Raphson method

• get_pk_conf_lims (.. . .) 

Calculates the confidence limits for the probability of binary event occurrence 

.pk

• get_certainty_curve (.. . .) 
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Calculates the HAI value based on the probability of binary event occurrence 

.pk exceeding a baseline value

• rhythm (.. . .) 

Calculates the cortisol-related circadian term .Ik in the state equation

• circadian_parameters (.. . .) 

Calculates the log-likelihood term to be optimized when estimating the 

(cortisol-related) circadian rhythm terms in the state equation

• get_log_likelihood (.. . .) 

Calculates the log-likelihood of the term involving the CIF

• get_ks_plot(.. . .) 

Calculates the Kolmogorov–Smirnov (KS) plot for assessing the goodness of 

fit of a CIF to point process observations

• Other functions related to a CIF 

Functions such as fetch_lambda (.. . .), dlambda_dx (.. . .), f (.. . .), and mu (.. . .) 

are all supplementary functions that calculate various components or derivatives 

related to an HDIG-based CIF 
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