®

Check for
updates

Marabou 2.0: A Versatile Formal
Analyzer of Neural Networks

Haoze Wu'®) | Omri Isac?, Aleksandar Zelji¢!, Teruhiro Tagomori®3,

Matthew Daggitt*, Wen Kokke®, Idan Refaeli?, Guy Amir?, Kyle Julian®,
Shahaf Bassan?, Pei Huang!, Ori Lahav?, Min Wu', Min Zhang5,
Ekaterina Komendantskaya*, Guy Katz?, and Clark Barrett!

CAV 1 Stanford University, Stanford, USA CAV
Artifact haozewu@stanford.edu Artifact
EMETNN 2 The Hebrew University of Jerusalem, Jerusalem, Israel Evaluation
* 3 NRI Secure, Palo Alto, USA * *
4 Heriot-Watt University, Edinburgh, UK
® University of Strathclyde, Glasgow, UK
6 Bast China Normal University, Shanghai, China

Abstract. This paper serves as a comprehensive system description of
version 2.0 of the Marabou framework for formal analysis of neural net-
works. We discuss the tool’s architectural design and highlight the major
features and components introduced since its initial release.

1 Introduction

With the increasing pervasiveness of deep neural networks (DNNs), the formal
analysis of DNNs has become a burgeoning research field within the formal
methods community. Multiple DNN reasoners have been proposed in the past
few years, including a-3-CROWN [56,65,69], ERAN [45-47], Marabou [32], MN-
BaB [16], NNV [35,51], nnenum [4], VeriNet [24,25], and many others.

We focus here on the Marabou [32] tool, which has been used by the research
community in a wide range of formal DNN reasoning applications (e.g., [9,12,17,
18,22,26,34,37,49,54,64,66], inter alia). Initially, Marabou was introduced as a
from-scratch re-implementation of the Reluplex [31] decision procedure, with a
native linear programming engine and limited support for DNN-level reasoning.
Over the years, fundamental changes have been made to the tool, not only from
an algorithmic perspective but also to its engineering and implementation.

This paper introduces version 2.0 of Marabou. Compared to its predeces-
sor, Marabou 2.0: (i) employs a new build/test system; (ii) has an optimized
core system architecture; (iii) runs an improved decision procedure and abstract
interpretation techniques; (iv) handles a wider range of activation functions;(v)
supports proof production; (vi) supports additional input formats; and (vii) con-
tains a more powerful Python API. Due to these changes, the original system
description [32] no longer gives an accurate account of the tool’s current capa-
bilities. Our goal in this paper is to close this gap and provide a comprehensive

© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14682, pp. 249-264, 2024.
https://doi.org/10.1007/978-3-031-65630-9_13

https://doi.org/10.5281/zenodo.11116016
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65630-9_13&domain=pdf
https://doi.org/10.1007/978-3-031-65630-9_13

250 H. Wu et al.

Back End
Front End Multi-thread Manager | CEGAR Solver |
Python API | CLI Engine
Ct+ APT SMT Solver
Preprocessor | SMT Core |

Linear Solving Engine

Input Query
/ Network-level Reasoner _

Bounds

q Abstract Interpretations
(In)equations | | (MI)LP Interface |

Piecewise-linear Constraints

Non-linear Constraints

Context-dependent
Data Structures

Proof Module

Fig. 1. High-level overview of Marabou 2.0’s system architecture.

description of the current Marabou system. We highlight the major features
introduced since the initial version, describe a few of its many recent uses, and
report on its performance, as demonstrated by the VNN-COMP’23 results and
additional runtime comparisons against an early version of Marabou.

2 Architecture and Core Components

In this section, we discuss the core components of Marabou 2.0. An overview of
its system architecture is given in Fig. 1. At a high level, Marabou performs satis-
fiability checking on a set of linear and non-linear constraints, supplied through
one of the front-end interfaces. The constraints typically represent a verifica-
tion query over a neural network and are stored in an InputQuery object. We
distinguish variable bounds from other linear constraints, and piecewise-linear
constraints (which can be reduced to linear constraints via case analysis) from
more general, non-linear constraints.

Variables are represented as consecutive indices starting from 0. (In)equations
are represented as Equation objects. Piecewise-linear constraints are represented
by objects of classes that inherit from the PiecewiseLinearConstraint abstract
class. The abstract class defines the key interface methods that are implemented
in each sub-class. This way, all piecewise-linear constraints are handled uni-
formly in the back end. Similarly, each other type of non-linear constraint is
implemented as a sub-class of the new NonlinearConstraint abstract class. Ini-
tially, Marabou only supported the ReLU and Max constraints. In Marabou 2.0,
over ten types of non-linear constraints (listed in the extended version of the
paper [61]) are supported.

Marabou 2.0 251

2.1 Engine

The centerpiece of Marabou is called the Engine, which reasons about the satisfi-
ability of the input query. The engine consists of several components: the Prepro-
cessor, which performs rewrites and simplifications; the Network-level Reasoner,
which maintains the network architecture and performs all analyses that require
this knowledge; the SMT Solver, which houses complete decision procedures for
sets of linear and piecewise-linear constraints; and the (MI)LP Interface, which
manages interactions with external (MI)LP solvers for certain optional solving
modes as explained below.

Two additional modules are built on top of the Engine. The Multi-thread
Manager spawns multiple Engine instances to take advantage of multiple pro-
cessors. The CEGAR Solver performs incremental linearization [13,62] for non-
linear constraints that cannot be precisely handled by the SMT Solver.

Preprocessor. Every verification query first goes through multiple prepro-
cessing passes, which normalize, simplify, and rewrite the query. One new nor-
malizing pass introduces auxiliary variables and entailed linear constraints for
each of the piecewise-linear constraints, so that case splits on the piecewise-
linear constraints can be represented as bound updates and consequently do not
require adding new equations.! This accelerates the underlying Simplex engine,
as explained in the SMT Solver section below. Another significant preprocess-
ing pass involves iterative bound propagation over all constraints. In this pro-
cess, piecewise linear constraints might collapse into linear constraints and be
removed. This pass was present in Marabou 1.0, but could become a runtime
bottleneck; whereas Marabou 2.0 employs a data structure optimization that
leads to a ~60x speed up. Finally, the preprocessor merges any variables dis-
covered to be equal to each other and also eliminates any constant variables.
This results in updates to the variable indices, and therefore a mapping from old
indices to new ones needs to be maintained for retrieving satisfying assignments.

SMT Solver. The SMT Solver module implements a sound and complete, lazy-
DPLL(T)-based procedure for deciding the satisfiability of a set of linear and
piecewise-linear constraints. It performs case analysis on the piecewise-linear con-
straints and, at each search state, employs a specialized procedure to iteratively
search for an assignment satisfying both the linear and non-linear constraints.
Presently, the DeepSol procedure [58] has replaced the Reluplex proce-
dure [31,32] as Marabou’s default procedure to run at each search state.
The former provably converges to a satisfying assignment (if it exists) and
empirically consistently outperforms the latter. DeepSol extends the canonical

! For example, for a piece-wise linear constraint y = max(x1,x2), we would introduce
ci:y—x1 =a1Na1 > 0Ny —x2 = azx ANaz > 0, where a1 and az are fresh
variables. This way, case splits on this constraint can be represented as c2 : a1 <0
and c3 : az < 0, respectively. This preprocessing pass preserves satisfiability because
the original constraint is equisatisfiable to ¢1 A (c2 V ¢3).

252 H. Wu et al.

sum-of-infeasibilities method in convex optimization [10], which determines the
satisfiability of a set of linear constraints by minimizing a cost function that
represents the total violation of the constraints by the current assignment. The
constraints are satisfiable if and only if the optimal value is 0. Similarly, Deep-
Sol formulates a cost function that represents the total violation of the current
piecewise-linear constraints and uses a convex solver to stochastically minimize
the cost function with respect to the convex relaxation of the current constraints.
In addition, DeepSol also informs the branching heuristics of the SMT Core,
which performs a case split on the piecewise-linear constraint with the largest
impact (measured by the pseudocost metric [58]) on the cost function. The Deep-
Sol procedure is implemented for all supported piecewise-linear activation func-
tions. The convex solver can be instantiated either with the native Simplex
engine or with an external LP solver via the (MI)LP interface (detailed below).
The latter can be more efficient but requires the use of external commercial
solvers.

One optimization in Marabou 2.0’s Simplex engine is that once the tableau
has been initialized, it avoids introducing any new equations — a costly oper-
ation that requires re-computing the tableau from scratch. This is achieved by
implementing case-splitting and backtracking as updates on variable bounds (as
mentioned above), which only requires minimal updates to the tableau state.
By our measure, this optimization reduces the runtime of the Simplex engine
by over 50%. Moreover, the memory footprint of the solver is also drastically
decreased, as the SMT Core no longer needs to save the entire tableau state
during case-splitting (to be restored during backtracking).

Network-Level Reasoner. Over the past few years, numerous papers (e.g.,
[41,46,55,68,70], inter alia) have proposed abstract interpretation techniques
that rely on network-level reasoning (e.g., propagating the input bounds layer by
layer to tighten output bounds). These analyses can be viewed as a stand-alone,
incomplete DNN verification procedure, or as in-processing bound tightening
passes for the SMT Solver. Marabou 2.0 features a brand new NetworkLevelRea-
soner class that supports this type of analysis. The class maintains the neural
network topology as a directed acyclic graph, where each node is a Layer object.
The Layer class records key information such as weights, source layers, and
mappings between neuron indices and variable indices. Currently, seven differ-
ent analyses are implemented:[i] 1.interval bound propagation [20]; 2. symbolic
bound propagation [55]; 3. DeepPoly/CROWN analysis [46,70]; 4. LP-based
bound tightening [50]; 5. Forward-backward analysis [59]; 6.MILP-based bound
tightening [50]; and 7. iterative propagation [57]. Analyses 2-7 are implemented
in a parallelizable manner, and analyses 4-7 require calls to an external LP
solver. By default, the DeepPoly/CROWN analysis is performed. The Network-
level Reasoner tightly interleaves with the SMT Solver: the network-level reason-
ing is executed any time a new search state is reached (with the most up-to-date
variable bounds), and the derived bound tightenings are immediately fed back
to the search procedure.

Marabou 2.0 253

It is noteworthy that the user does not have to explicitly provide the neu-
ral network topology to enable network-level reasoning. Instead, the network
architecture is automatically inferred from the given set of linear and non-linear
constraints, via the constructNetworkLevelReasoner method in the InputQuery
class. The Network-level Reasoner is only initialized if such inference is success-
ful. Apart from the abstract interpretation passes, the Network-level Reasoner
can also evaluate concrete inputs. This is used to implement the LP-based bound
tightening optimization introduced by the NNV tool [51].

(MI)LP Interface. Marabou can now optionally be configured to invoke the
Gurobi Optimizer [23], a state-of-the-art Mixed Integer Linear Programming
(MILP) solver. The GurobiWrapper class contains methods to construct a MILP
problem and invoke the solver. The MILPFEncoder class is in charge of encod-
ing the current set of linear and non-linear constraints as (MI)LP constraints.
Piecewise-linear constraints can either be encoded precisely, or replaced with
a convex relaxation, resulting in a linear program. For other non-linear con-
straints, only the latter option is available. The (MI)LP interface presently has
three usages in the code base. Two have already been mentioned, i.e., in some
of the abstract interpretation passes and optionally in the DeepSol procedure.
Additionally, when Marabou is compiled with Gurobi, a —-milp mode is avail-
able, in which the Engine performs preprocessing and abstract interpretation
passes, and then directly encodes the verification problem as a MILP problem
to be solved by Gurobi. The mode is motivated by the observation that the
performance of Gurobi and the SMT Solver can be complementary [48,58].

Multi-thread Manager. Parallelization is an important way to improve verifi-
cation efficiency. Marabou supports two modes of parallelization, both managed
by the new MultiThreadManager class: the split-and-conquer mode [57] and the
portfolio mode. In the split-and-conquer mode, the original query is dynami-
cally partitioned and re-partitioned into independent sub-queries, to be handled
by idle workers. The partitioning strategy is implemented as a sub-class of the
QueryDivider abstract class. Currently, two strategies are available: one parti-
tions the intervals of the input variables; the other splits on piecewise linear
constraints. By default, the former is used only when the input dimension is
less than or equal to ten. In the portfolio mode, each worker solves the same
query with a different random seed, which takes advantage of the stochastic
nature of the DeepSol procedure. Developing an interface to define richer kinds
of portfolios is work in progress.

CEGAR Solver. While the DNN verification community has by and large
focused on piecewise-linear activation functions, other classes of non-linear con-
nections exist and are commonly used for certain architectures [27,53]. Apart
from introducing support for non-linear constraints in the Preprocessor and the
Network-level Reasoner, the latest Marabou version also incorporates a counter-
example guided abstraction refinement (CEGAR) solving mode [62], based on

254 H. Wu et al.

incremental linearization [13] to enable more precise reasoning about non-linear
constraints that are not piecewise linear. Currently, the CEGAR solver only
supports Sigmoid and Tanh, but the module can be extended to handle other
activation functions.

2.2 Context-Dependent Data-Structures

When performing a case split or backtracking to a previous search state, the
SMT Core needs to save or restore information such as variable bounds and
the phase status of each piecewise-linear constraint (e.g., is a ReLU currently
active, inactive, or unfixed). To efficiently support these operations, Marabou
2.0 uses the notion of a context level (borrowed from the CVC4 SMT solver [6]),
and stores the aforementioned information in context-dependent data structures.
These data structures behave similarly to their standard counterparts, except
that they are associated with a context level and automatically save and restore
their state as the context increases or decreases. This major refactoring has
greatly simplified the implementation of saving and restoring solver states and
is an important milestone in an ongoing effort to integrate a full-blown Conflict-
Driven Clause-Learning (CDCL) mechanism into Marabou.

2.3 Proof Module

A proof module has recently been introduced into Marabou, enabling it to
optionally produce proof certificates after an unsatisfiable (UNSAT) [29] result.
This is common practice in the SAT and SMT communities and is aimed at
ensuring solver reliability. Marabou produces proof certificates based on a con-
structive variant of the Farkas lemma [52], which ensures the existence of a proof
vector that witnesses the unsatisfiability of a linear program. Specifically, the
proof wvector corresponds to a linear equation that is violated by the variable
bounds [29]. The full certificate of UNSAT is comprised of a proof tree, whose
nodes represent the search states explored during the solving. Each node may
contain a list of lemmas that are used as additional constraints in its descen-
dent nodes; and each leaf node contains the proof vector for the unsatisfiability
of the corresponding sub-query. The lemmas encapsulate some of the variable
bounds, newly derived by the piecewiese-linear constraints of the query, and
require their own witnesses (i.e., proof vectors). The BoundEzplainer class is
responsible for constructing all proof vectors, for updating them during execu-
tion, and for appending them to the node. The proof tree itself is implemented
using the UnsatCertificateNode class.

When the solver is run in proof-production mode, the Proof module closely
tracks the steps of the SMT Solver module and constructs the proof tree on the
fly: new nodes are added to the tree whenever a case split is performed; and a
new proof vector is generated whenever a lemma is learned or UNSAT is derived
for a sub-query. If the Engine concludes that the entire query is UNSAT, a proof
checker (implemented as an instance of the Checker class) will be triggered
to certify the proof tree. It does so by traversing the tree and certifying the

Marabou 2.0 255

Q = Marabou.read_onnx("model.onnx") Q = Marabou.read_onnx("model.onnx")
X, Y = Q.inputVars[0], Q.outputVars[0] X, Y = Q.inputVars[0], Q.outputVars[0]
Q.setLowerBound (X[0], 0.1) Q.addConstraint (Var (X[0]) >= 0.1)
Q.addInequality([Y[0], Y[1]], [1, -0.5], 0) Q.addConstraint(Var(Y[0]) <= 0.5 * Var(Y[1]))
Q.solve() Q.solve()

(a) The base Python API (b) The “Pythonic” API

Fig. 2. Two ways to define the same verification query through the Python API.

correctness of the lemmas and the unsatisfiability of the leaf nodes. A formally
verified and precise proof-checker is currently under development [14]. Note that,
currently, proof production mode is only compatible with a subset of the features
supported by Marabou. Adding support for the remaining features (e.g., for the
parallel solving mode) is an ongoing endeavor.

2.4 Front End

Marabou provides interfaces to prepare input queries and invoke the back-end
solver in multiple ways. The Marabou executable can be run on the command
line, taking in network/property/query files in supported formats. The Python
and C++ APIs support this functionality as well, but also contain methods to
add arbitrary linear and (supported) non-linear constraints. In addition, a layer
on top of the Python API was added to Marabou 2.0 which allows users to
define constraints in a more Pythonic manner, resulting in more succinct code.
For example, suppose one wants to check whether the first output of a network
(stored in the ONNX format) can be less than or equal to half of its second
output, when the first input is greater than or equal to 0.1. Figure 2a shows
how to perform this check with the base Python API, while Fig. 2b exhibits the
“Pythonic” API.

Typically, a query consists of the encoding of (one or several) neural networks
and the encoding of a property on the network(s). To encode a neural network,
the user has two options: 1) pass in a neural network file to be parsed by one of
the neural network parsers; or 2) manually add constraints to encode the neu-
ral network. The main network format for Marabou 2.0 is now ONNX, towards
which the neural network verification community is converging. The NNet for-
mat and the Tensorflow protobuf format are still supported but will likely be
phased out in the long run. To encode the property on top of the neural network
encoding, the user can 1) pass in a property file to be parsed by one of the prop-
erty parsers; or 2) manually encode the property. Currently Marabou has two
property parsers, one for a native property file format [32], and a new one for
the VNN-LIB format, supporting the standardization effort of the community.

In addition to the aforementioned network and property file formats,
Marabou also supports a native query file format that describes a set of lin-
ear and non-linear constraints. This can be dumped/parsed from all interfaces.

256 H. Wu et al.

2.5 Availability, License, and Installation

Marabou is available under the permissive modified BSD open-source license,
and runs on Linux and macOS machines. The tool can be built from scratch
using CMake. Marabou is now also available on The Python Package Index
(PyPI) and can be installed through pip. The latest version of Marabou is avail-
able at: https://github.com/NeuralNetwork Verification/Marabou. The artifact
associated with this tool description is archived on Zenodo [60].

3 Highlighted Features and Applications

In terms of performance, Marabou is on par with state-of-the-art verification
tools. In the latest VNN-COMP [11], Marabou won the second place overall,
and scored the highest among all CPU-based verifiers. We summarize the main
results in the extended version of the paper [61]. In this section, we focus on
the usability aspect of Marabou, and highlight some of its recent applications
— as well as the features that make them possible. We believe this diverse set
of use cases (as well as the relevant scripts in the artifact [60]) serve as valuable
examples, which will inspire new ways to apply the solver. More use cases can
be found in the extended version of the paper [61]. A runtime evaluation of
Marabou 2.0 against an early version appears in Sect. 4.

Verifying the Decima Job Scheduler. Recently, Graph Neural Networks
(GNNs) have been used to schedule jobs over multi-user, distributed-computing
clusters, achieving state-of-the-art job completion time [38]. However, concerns
remain over whether GNN-based solutions satisfy expected cost-critical proper-
ties beyond performance. Marabou has been used to verify a well-known fair-
ness property called strategy-proofness [59] for a high-profile, state-of-the-art
GNN-based scheduler called Decima [38]. The verified property states that “a
user cannot get their job scheduled earlier by misrepresenting their resource
requirement.” While it is challenging to represent a GNN directly in ONNX [21],
Marabou’s Python API makes it possible to manually encode Decima and the
specification as a set of linear and non-linear constraints. From these constraints,
the Network-level Reasoner is able to automatically infer a feed-forward structure
with residual connections and then use it for the purpose of abstract interpre-
tation. Notably, Marabou was able to handle the original Decima architecture,
proving that the property holds on the vast majority of the examined job profiles
but can indeed be violated in some cases.

Formal XAI. Despite their prevalence, DNNs are considered “black boxes”,
uninterpretable to humans. FEzplainable AI (XAI) aims to understand DNN
decisions to enhance trust. Most XAI methods are heuristic-based and lack for-
mal correctness guarantees [36,43,44], which can be problematic for critical,
regulation-heavy systems. Recent work showed that Marabou can be utilized as

https://github.com/NeuralNetworkVerification/Marabou

Marabou 2.0 257

a sub-routine in procedures designed for producing formal and provable expla-
nations for DNNs [7,8,26,37,63]. For instance, it can be used in constructing
formal abductive explanations [8,28], which are subsets of input features that
are, by themselves, provably sufficient for determining the DNN’s output. This
approach has been successfully applied to large DNNs in the domains of com-
puter vision [8,63], NLP [37], and DRL robotic navigation [7]. These studies
highlight the potential of Marabou in tasks that go beyond formal verification.

Analyzing Learning-Based Robotic Systems. Deep Reinforcement Learn-
ing has extensive application in robotic planning and control. Marabou has
been applied in these settings to analyze different safety and liveness proper-
ties [2,3,15,54]. For example, Amir et al. [2] used Marabou to detect infinite
loops in a real-world robotic navigation platform. This was achieved by query-
ing whether there exists a state to which the robot will always return within a
finite number of steps k, effectively entering an infinite loop. A multi-step prop-
erty like this can be conveniently encoded in Marabou, by (i) encoding & copies
of the control policy; (ii) for each time-step ¢, encoding the system transition as
constraints over the current state (input to the policy at t), the decided action
(output of the policy at t), and the next state (input to the policy at ¢ + 1);
and (iii) encoding the “loop” constraint that the initial state (¢1) is equal to
the final state (¢). From this set of constraints, the Network-level Reasoner can
infer the structure of and perform abstract interpretations over a concatenated
network, where the input is the initial state and the output is the final state.
Moreover, due to the low input dimension, the split-and-conquer mode in the
Multi-thread Manager can be used to perform input-splitting, effectively search-
ing for such loops in independent input regions in parallel. Notably, Marabou
can detect loops in the system for agents trained using state-of-the-art RL algo-
rithms, in cases where gradient/optimization-based approaches fail to find any.
Loops detected this way have also been observed in the real world [1].

Proof Production for the ACAS-Xu Benchmarks. A well-studied set of
benchmarks in DNN verification derives from an implementation of the ACAS-
Xu airborne system for collision avoidance [30]. Using Marabou, we were able
to produce certificates of unsatisfiability for these benchmarks for the first time.
Marabou was able to produce certificates for 113 out of the 180 tested bench-
marks, with only mild overhead incurred by proof generation and certification.
The proof certificates contained over 1.46 million proof-tree leaves, of which more
than 99.99% were certified by the native proof checker, while the remaining were
certified by a trusted SMT solver. Additional details are provided in [29].

Specifications on Neural Activation Patterns. Properties of hidden neu-
rons garner increasing interest [67], as they shed light on the internal decision-
making process of the neural network. Gopinath et al. [19] observed that for

258 H. Wu et al.

a fixed neural network, certain neuron activation patterns (NAPs) empirically
entail a fixed prediction. More recently, Geng et al. [18] formally verified (using
Marabou) the aforementioned property, along with a variety of other properties
related to NAPs. Specifications related to NAPs can be conveniently encoded in
Marabou. For example, specifying that a certain ReLU is activated amounts to
setting the lower bound of the variable corresponding to the ReLU input to 0,
using the general constraint-encoding methods in the Python/C++ API. Con-
straints on internal neurons, as with other constraints, can be propagated by the
Preprocessor and Network-level Reasoner to tighten bounds.

Robustness Against Semantically Meaningful Perturbations. Consider-
ing specifications of perception networks, there is an ongoing effort in the verifi-
cation community to go beyond adversarial robustness [5,33,39,40,62]. Marabou
has been used to verify robustness against semantically meaningful perturbations
that can be analytically defined/abstracted as linear constraints on the neural
network inputs (e.g., brightness, uniform haze) [42]. More recently, Marabou has
also been successfully applied in a neural symbolic approach, where the correct
network behavior is defined with respect to that of another network [62,64]. For
example, Wu et al. [62] considered the specification that an image classifier’s pre-
diction does not change with respect to outputs of an image generative model
trained to capture a complex distribution shift (e.g., change in weather condi-
tion). A property like this can be conveniently defined in Marabou by loading
the classifier and the generator through the Python API and adding the relevant
constraints on/between their input and output variables.

4 Runtime Evaluation

10x "2x -
We measure the performance 1000.0 — A
. . Application
improvement in Marabou 2.0 by AL
. Loops
comparing it against an early DeepCert
. . . NAP
Marabou version (git commit 100.0 Verix

1c1c66), which can handle ReLU
and Max constraints and sup-
ports symbolic bound propaga-
tion [55]. We collected four bench-
mark sets from the applications
described in Section 3: Alter- 0
nating Loop [2], DeepCert [42],
NAP [18,19], and VeriX [63].
There are 745 instances in total.
Details about the benchmarks can 01 1.R/Iarabou1(()(.:(;mmit mgs 6) 1000.0
be found in the extended version

of the paper [61]. Fig. 3. Runtime performance of Marabou 2.0

Figure 3 compares the runtime ,n4 an early version of Marabou on four appli-
of the two Marabou versions on all cations supported by both versions.

10.0

Marabou 2.0

Marabou 2.0 259

the benchmarks with a 1h CPU timeout. Each configuration was given 1 core
and 8GB of memory. Note that Marabou 2.0 was not configured with exter-
nal solvers in this experiment. We see that Marabou 2.0 is significantly more
efficient for a vast majority of the instances. Upon closer examination, an at-
least 2x speed-up is achieved on 428 instances and an at-least 10x speed-up
is achieved on 263 instances. Moreover, Marabou 2.0 is also significantly more
memory efficient, with a median peak usage of 57MB (versus 604MB with the
old version). Solvers’performance on individual benchmarks is reported in the
extended version of the paper [61].

5 Conclusion and Next Steps

We have summarized the current state of Marabou, a maturing formal analyzer
for neural-network-enabled systems that is under active development. In its cur-
rent form, Marabou is a versatile and user-friendly toolkit suitable for a wide
range of formal analysis tasks. Moving forward, we plan to improve Marabou in
several dimensions. Currently, we are actively integrating a CDCL mechanism in
the SMT Solver module. Given that many applications involve repeated invoca-
tion of the solver on similar queries, we also plan to support incremental solving
in the style of pushing and popping constraints, leveraging the newly introduced
context-dependent data structures. In addition, adding GPU support (in the
Network-level Reasoner) and handling other types of non-linear constraints are
also on the development agenda for Marabou.

Acknowledgment. The work of Wu, Zelji¢, Tagomori, Huang and Wu was par-
tially supported by the NSF (grant number 2211505), by the BSF (grant number
2020250), a Ford Alliance Project (199909), the Stanford Center for Al Safety, and
the Stanford Institute for Human-Centered Artificial Intelligence (HAI). The work
of Daggit, Kokke and Komendantskaya was partially supported by the EPSRC grant
EP/T026952/1, AISEC: Al Secure and Explainable by Construction. The work of Isac,
Refaeli, Amir, Bassan, Lahav and Katz was partially funded by the ISF (grant number
3420/21), by the BSF (grant numbers 2021769 and 2020250), and by the European
Union (ERC,VeriDel,, 101112713). Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or the
European Research Council Executive Agency. Neither the European Union nor the
granting authority can be held responsible for them. The work of Zhang was partially
supported by the NSFC (grant number 62161146001).

References

1. Amir, G., et al.: Verifying Learning-Based Robotic Navigation Systems: Supple-
mentary Video (2022). https://youtu.be/QIZqOgxLkAE

2. Amir, G., et al.: Verifying learning-based robotic navigation systems. In: Proceed-
ings of the 29th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), pp. 607-627 (2023)

https://youtu.be/QIZqOgxLkAE

260

10.

11.

12.

13.

14.

15.

16.

17.

18.

H. Wu et al.

Amir, G., Schapira, M., Katz, G.: Towards scalable verification of deep reinforce-
ment learning. In: Proceedings of the 21st International Conference on Formal
Methods in Computer-Aided Design (FMCAD), pp. 193-203 (2021)

Bak, S., Tran, H.D., Hobbs, K., Johnson, T.T.: Improved geometric path enumera-
tion for verifying ReLU neural networks. In: International Conference on Computer
Aided Verification, pp. 66-96. Springer (2020)

Balunovic, M., Baader, M., Singh, G., Gehr, T., Vechev, M.: Certifying geometric
robustness of neural networks. Adv. Neural Inf. Process. Syst. 32 (2019)

Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171-177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_14

Bassan, S., Amir, G., Corsi, D., Refaeli, I., Katz, G.: Formally explaining neu-
ral networks within reactive systems. In: Proceedings of the 23rd International
Conference on Formal Methods in Computer-Aided Design (FMCAD), pp. 1022
(2023)

Bassan, S., Katz, G.: Towards formal XAI: formally approximate minimal expla-
nations of neural networks. In: Proceedings of the 29th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
pp. 187-207 (2023)

Bauer-Marquart, F., Boetius, D., Leue, S., Schilling, C.: SpecRepair: counter-
example guided safety repair of deep neural networks. In: Legunsen, O., Rosu, G.
(eds.) Model checking software: 28th International Symposium, SPIN 2022, Virtual
Event, May 21, 2022, Proceedings, pp. 79-96. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-15077-7_5

Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press
(2004)

Brix, C., Bak, S., Liu, C., Johnson, T.T.: The fourth international verification
of neural networks competition (VNN-COMP 2023): summary and results. arXiv
preprint arXiv:2312.16760 (2023)

Christakis, M., et al.: Automated safety verification of programs invoking neural
networks. In: International Conference on Computer Aided Verification, pp. 201—
224. Springer (2021)

Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental lin-
earization for satisfiability and verification modulo nnlinear arithmetic and tran-
scendental functions. ACM Trans. Computat. Logic 19(3), 1-52 (2018)
Desmartin, R., Isac, O., Passmore, G., Stark, K., Komendantskaya, E., Katz, G.:
Towards a certified proof checker for deep neural network verification. In: Proceed-
ings of the 33rd International Symposium on Logic-Based Program Synthesis and
Transformation (LOPSTR), pp. 198-209 (2023)

Eliyahu, T., Kazak, Y., Katz, G., Schapira, M.: Verifying learning-augmented sys-
tems. In: Proceedings of the Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication (SIGCOMM), pp. 305-318 (2021)

Ferrari, C., Mueller, M.N., Jovanovié¢, N., Vechev, M.: Complete verification via
multi-neuron relaxation guided branch-and-bound. In: International Conference on
Learning Representations (2022)

Funk, N., Baumann, D., Berenz, V., Trimpe, S.: Learning event-triggered control
from data through joint optimization. IFAC J. Syst. Control 16 (2021)

Geng, C., Le, N., Xu, X., Wang, Z., Gurfinkel, A., Si, X.: Towards reliable neural
specifications. In: International Conference on Machine Learning, pp. 11196-11212.
PMLR (2023)

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-031-15077-7_5
https://doi.org/10.1007/978-3-031-15077-7_5
http://arxiv.org/abs/2312.16760

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Marabou 2.0 261

Gopinath, D., Converse, H., Pasareanu, C., Taly, A.: Property inference for deep
neural networks. In: 2019 34th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 797-809. IEEE (2019)

Gowal, S., et al.: On the effectiveness of interval bound popagation for training
verifiably robust models. arXiv preprint arXiv:1810.12715 (2018)

Graph Neural Networks support in ONNX (2022). https://github.com/microsoft/
onnxruntime/issues/12103

Guidotti, D., Leofante, F., Pulina, L., Tacchella, A.: Verification of neural nNet-
works: enhancing scalability through pruning. In: European Conference on Artifi-
cial Intelligence, pp. 2505-2512. IOS Press (2020)

Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023). https://
www.gurobi.com

Henriksen, P., Lomuscio, A.: DEEPSPLIT: an eEfficient splitting method for neural
network verification via indirect effect analysis. In: International Joint Conference
on Artificial Intelligence, pp. 2549-2555. ijcai.org (2021)

Henriksen, P., Lomuscio, A.R.: Efficient neural network verification via adaptive
refinement and adversarial search. In: Giacomo, G.D., et al. (eds.) European Con-
ference on Artificial Intelligence, vol. 325, pp. 2513-2520. IOS Press (2020)
Huang, X., Marques-Silva, J.: From robustness to explainability and back again.
arXiv preprint arXiv:2306.03048 (2023)

Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-
image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.)
ECCV 2018. LNCS, vol. 11207, pp. 179-196. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01219-9_11

Ignatiev, A., Narodytska, N., Marques-Silva, J.: Abduction-based explanations for
machine learning models. In: AAATI Conference on Artificial Intelligence, vol. 33,
pp. 1511-1519. AAAT Press (2019)

Isac, O., Barrett, C., Zhang, M., Katz, G.: Neural network verification with proof
production. In: Proceedings of the 22nd International Conference on Formal Meth-
ods in Computer-Aided Design (FMCAD), pp. 38-48 (2022)

Julian, K., Kochenderfer, M., Owen, M.: Deep neural network compression for
aircraft collision avoidance systems. J. Guid. Control. Dyn. 42(3), 598-608 (2019)
Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kuncak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97-117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9_5

Katz, G., et al.: The Marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443-452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26
Katz, S.M., Corso, A.L., Strong, C.A., Kochenderfer, M.J.: Verification of image-
based neural network controllers using generative models. J. Aerosp. Inf. Syst.
19(9), 574-584 (2022)

Liu, C., Cofer, D., Osipychev, D. Verifying an aircraft collision avoidance neural
network with Marabou. In: Rozier, K.Y., Chaudhuri, S. (eds.) NFM 2023. LNCS,
pp- 79-85. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33170-1_5
Lopez, D.M., Choi, S.W., Tran, H.-D., Johnson, T.T.: NNV 2.0: the neural network
verification tool. In: Enea, C., Lal, A. (eds.) CAV 2023, pp. 397-412. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-37703-7_19

Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
Adv. Neural Inf. Process. Syst. 30 (2017)

http://arxiv.org/abs/1810.12715
https://github.com/microsoft/onnxruntime/issues/12103
https://github.com/microsoft/onnxruntime/issues/12103
https://www.gurobi.com
https://www.gurobi.com
http://arxiv.org/abs/2306.03048
https://doi.org/10.1007/978-3-030-01219-9_11
https://doi.org/10.1007/978-3-030-01219-9_11
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-031-33170-1_5
https://doi.org/10.1007/978-3-031-37703-7_19

262

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

H. Wu et al.

Malfa, E.L., Michelmore, R., Zbrzezny, A.M., Paoletti, N., Kwiatkowska, M.: On
guaranteed optimal robust explanations for NLP models. In: International Joint
Conference on Artificial Intelligence, pp. 2658-2665. ijcai.org (2021)

Matheson, R.: Al system optimally allocates workloads across thousands of servers
to cut costs, save energy. Tech Xplore (2019). https://techxplore.com/news/2019-
08-ai-optimally-allocates-workloads-thousands.html

Mirman, M., Hégele, A., Bielik, P., Gehr, T., Vechev, M.: Robustness certification
with generative models. In: ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, pp. 1141-1154 (2021)

Mohapatra, J., Weng, T.W., Chen, P.Y., Liu, S., Daniel, L.: Towards verifying
robustness of neural networks against a family of semantic perturbations. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 244—
252 (2020)

Miiller, M.N., Makarchuk, G., Singh, G., Piischel, M., Vechev, M.: Prima: general
and precise neural network certification via scalable convex hull approximations.
Proc. ACM Program. Lang. 6(POPL), 1-33 (2022)

Paterson, C., et al.: DeepCert: verification of contextually relevant robustness for
neural network image classifiers. In: Habli, I., Sujan, M., Bitsch, F. (eds.) SAFE-
COMP 2021. LNCS, pp. 3-17. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-83903-1_5

Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? Explaining the pre-
dictions of any classifier. In: ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 1135-1144 (2016)

Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic
explanations. In: AAAI Conference on Artificial Intelligence, vol. 32, pp. 1527-
1535. AAAI Press (2018)

Singh, G., Ganvir, R., Piischel, M., Vechev, M.: Beyond the single neuron convex
barrier for neural network certification. Adv. Neural. Inf. Process. Syst. 32, 15098—
15109 (2019)

Singh, G., Gehr, T., Piischel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3(POPL), 1-30 (2019)

Singh, G., Gehr, T., Piischel, M., Vechev, M.: Boosting robustness certification of
neural networks. In: International Conference on Learning Representations (2019)
Strong, C., et al.: Global optimization of objective functions represented by ReLLU
networks. J. Mach. Learn. 112(10), 3685-3712 (2021)

Sun, Y., Usman, M., Gopinath, D., Pasareanu, C.S.: VPN: verification of poison-
ing in neural networks. In: Isac, O., Ivanov, R., Katz, G., Narodytska, N., Nenzi,
L. (eds.) Software Verification and Formal Methods for ML-Enabled Autonomous
Systems: 5th International Workshop, FoOMLAS 2022, and 15th International Work-
shop, NSV 2022, Haifa, 31 July—1 August, and 11 August 2022, Proceedings, pp.
3-14. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21222-2_1
Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: International Conference on Learning Represen-
tations (2019)

Tran, H.D., et al.: NNV: the neural network verification tool for deep neural net-
works and learning-enabled cyber-physical systems. In: International Conference
on Computer Aided Verification, pp. 3—-17. Springer (2020)

Vanderbei, R.: Linear programming: foundations and extensions. J. Oper. Res. Soc.
(1998)

Vaswani, A., et al.: Attention is all nou need. Adv. Neural Inf. Process. Syst. 30
(2017)

https://techxplore.com/news/2019-08-ai-optimally-allocates-workloads-thousands.html
https://techxplore.com/news/2019-08-ai-optimally-allocates-workloads-thousands.html
https://doi.org/10.1007/978-3-030-83903-1_5
https://doi.org/10.1007/978-3-030-83903-1_5
https://doi.org/10.1007/978-3-031-21222-2_1

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Marabou 2.0 263

Vinzent, M., Sharma, S., Hoffmann, J.: Neural policy safety verification via pred-
icate abstraction: CEGAR. In: AAAI Conference on Artificial Intelligence, pp.
15188-15196. AAAI Press (2023)

Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. Adv. Neural. Inf. Process. Syst. 31, 6369-6379 (2018)

Wang, S., et al.: Beta-crown: efficient bound propagation with per-neuron split
constraints for neural network robustness verification. Adv. Neural. Inf. Process.
Syst. 34, 2990929921 (2021)

Wu, H., et al.: Parallelization techniques for verifying neural networks. In: Proceed-
ings of the 20th International Conference on Formal Methods in Computer-Aided
Design (FMCAD), pp. 128-137 (2020)

Wu, H., Zeljié¢, A., Katz, G., Barrett, C.: Efficient neural network analysis with sum-
of-infeasibilities. In: Proceedings of the 28th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pp. 143-163
(2022)

Wu, H., Barrett, C., Sharif, M., Narodytska, N., Singh, G.: Scalable verification of
GNN-based job schedulers. Proc. ACM Program. Lang. 6(OOPSLA), 1036-1065
(2022)

Wu, H., et al.: Artifact for Marabou 2.0: a versatile formal analyzer of neural
networks (2022). https://doi.org/10.5281/zenodo.11116016

Wu, H., et al.: Marabou 2.0: a versatile formal analyzer of neural networks. arXiv
preprint arXiv:2401.14461 (2024)

Wu, H., et al.: Toward certified robustness against real-world distribution shifts.
In: IEEE Conference on Secure and Trustworthy Machine Learning, pp. 537-553.
IEEE (2023)

Wu, M., Wu, H., Barrett, C.: VeriX: towards verified explainability of deep neural
networks. Adv. Neural Inf. Process. Syst. (2022)

Xie, X., Kersting, K., Neider, D.: Neuro-symbolic verification of deep neural net-
works. In: International Joint Conferences on Artificial Intelligence, pp. 3622-3628.
ijcai.org (2022)

Xu, K., et al.: Automatic perturbation analysis for scalable certified robustness
and beyond. Adv. Neural. Inf. Process. Syst. 33, 1129-1141 (2020)

Yerushalmi, R.: Enhancing deep reinforcement learning with executable specifica-
tions. In: International Conference on Software Engineering, pp. 213-217. IEEE
(2023)

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding neural
networks through deep visualization. arXiv preprint arXiv:1506.06579 (2015)
Zelazny, T., Wu, H., Barrett, C., Katz, G.: On reducing over-approximation errors
for neural network verification. In: Proceedings of the 22nd International Confer-
ence on Formal Methods in Computer-Aided Design (FMCAD), pp. 17-26 (2022)
Zhang, H., et al.: General cutting planes for bound-propagation-based neural net-
work verification. Adv. Neural. Inf. Process. Syst. 35, 1656-1670 (2022)

Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural net-
work robustness certification with general activation functions. Adv. Neural. Inf.
Process. Syst. 31, 4944-4953 (2018)

https://doi.org/10.5281/zenodo.11116016
http://arxiv.org/abs/2401.14461
http://arxiv.org/abs/1506.06579

264 H. Wu et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Marabou 2.0: A Versatile Formal Analyzer of Neural Networks
	1 Introduction
	2 Architecture and Core Components
	2.1 Engine
	2.2 Context-Dependent Data-Structures
	2.3 Proof Module
	2.4 Front End
	2.5 Availability, License, and Installation

	3 Highlighted Features and Applications
	4 Runtime Evaluation
	5 Conclusion and Next Steps
	References

