
Safe and Reliable Training

of Learning-Based Aerospace Controllers

Udayan Mandal

Center for AI Safety

Stanford University

Stanford, USA

udayanm@stanford.edu

Guy Amir

School of CS & Engineering

The Hebrew University of Jerusalem

Jerusalem, Israel

guyam@cs.huji.ac.il

Haoze Wu

Center for AI Safety

Stanford University

Stanford, USA

haozewu@stanford.edu

Ieva Daukantas

Department of Computer Science

IT University of Copenhagen

Copenhagen, Denmark

daukantas@itu.dk

Fletcher Lee Newell

Center for AI Safety

Stanford University

Stanford, USA

flnewell@stanford.edu

Umberto Ravaioli

Google

Mountain View, USA

uravaioli@google.com

Baoluo Meng

GE Aerospace Research

Niskayuna, USA

baoluo.meng@ge.com

Michael Durling

GE Aerospace Research

Niskayuna, USA

durling@ge.com

Kerianne Hobbs

Air Force Research Laboratory

US Air Force

Dayton, USA

kerianne.hobbs@afrl.af.mil

Milan Ganai

Department of Computer Science

Stanford University

Stanford, USA

mganai@stanford.edu

Tobey Shim

Department of Data Science

Stanford University

Stanford, USA

tshim24@stanford.edu

Guy Katz

School of CS & Engineering

The Hebrew University of Jerusalem

Jerusalem, Israel

guykatz@cs.huji.ac.il

Clark Barrett

Center for AI Safety

Stanford University

Stanford, USA

barrett@stanford.edu

Abstract—In recent years, deep reinforcement learning (DRL)
approaches have generated highly successful controllers for a
myriad of complex domains. However, the opaque nature of
these models limits their applicability in aerospace systems and
sasfety-critical domains, in which a single mistake can have dire
consequences. In this paper, we present novel advancements in
both the training and verification of DRL controllers, which
can help ensure their safe behavior. We showcase a design-for-
verification approach utilizing k-induction and demonstrate its use
in verifying liveness properties. In addition, we also give a brief
overview of neural Lyapunov Barrier certificates and summarize
their capabilities on a case study. Finally, we describe several
other novel reachability-based approaches which, despite failing to
provide guarantees of interest, could be effective for verification
of other DRL systems, and could be of further interest to the
community.

Index Terms—AI Safety, Deep Reinforcement Learning, Formal
Verification, Deep Neural Network Verification

I. INTRODUCTION

Deep reinforcement learning (DRL) has gained significant

popularity in recent years, reaching state-of-the-art performance

in various domains. One such domain is aerospace systems, in

which DRL models are under consideration for replacing years-

old software by learning to efficiently control airborne platforms

and spacecraft. However, although they perform well empiri-

cally, DRL systems have an opaque decision-making process,

making them challenging to reason about. More importantly,

this opacity raises critical questions about safety and security

(e.g., How can we ensure that the spacecraft will never violate

a velocity constraint? Will it always reach its destination?)

which are difficult to answer. These reliability concerns are a

significant obstacle to deploying DRL controllers in real-world

systems, where even a single mistake cannot be tolerated.

To cope with this urgent need, a myriad of DRL training

techniques have been put forth in recent years to enhance

the performance of such systems. However, these current ap-

proaches suffer from two main drawbacks: (i) they are usually

not geared towards improving safety and reliability (which

is key in aerospace systems); and (ii) they are heuristic in

nature and do not afford any formal guarantees. At the same

time, the formal methods community has been developing

methods for formally and rigorously assessing the reliability

of DRL systems. However, although such methods are useful

for identifying whether a system is safe, they are typically not

incorporated into the DRL training process, but are rather used

only afterwards.

In this work, we begin bridging this gap by proposing a novel

design-for-verification approach that can be incorporated during

the DRL training process. Our approach both modifies the

training loop to be more verification-friendly and also utilizes

formal verification (in our case, k-induction), to ensure the

correctness of the training. We also report a summary of our

recent efforts to use Neural Lyapunov Barrier certificates [26]

to generate DRL agents that not only perform well on large

batches of data, but also meet rigorous correctness criteria as

measured by state-of-the-art verification tools.

Finally, we introduce additional novel reachability-based ap-

proaches for providing safety and liveness guarantees about a

DRL system. These approaches are derived from prior work

on backward-tube reachability, forward-tube reachability, and

abstraction-based reachability methods. Moreover, these ap-

proaches all follow a similar paradigm: the reachable space

covered by all possible paths from the starting state space is

over-approximated using a verification engine, and safety and20
24

 A
IA

A
DA

TC
/IE

EE
 4

3r
d

Di
gi

ta
l A

vi
on

ics
 S

ys
te

m
s C

on
fe

re
nc

e
(D

AS
C)

 |
 9

79
-8

-3
50

3-
49

61
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

OI
: 1

0.
11

09
/D

AS
C6

20
30

.2
02

4.
10

74
94

99

Authorized licensed use limited to: Stanford University Libraries. Downloaded on April 24,2025 at 18:49:31 UTC from IEEE Xplore. Restrictions apply.

liveness properties are checked over this over-approximated

state space.

To demonstrate the usefulness of our approaches, we apply

them to a benchmark satellite-control model developed in

collaboration with industry partners (GE Aerospace Research

and the U.S. Air Force). We demonstrate that liveness can be

verified using our k-induction approach. Additionally, as a point

of comparison, we showcase that the certificate-based approach

is indeed able to generate a controller that provably behaves

safely. Notably, the problem setting and controller complexity

are beyond that acheived in previous work on formally verified

controllers.

The other reachability-based methods fail on this benchmark.

However, we believe that these failed attempts: (i) demonstrate

the merits of our successful approaches in handling complex,

nontrivial properties; (ii) can be of value to the community, by

shedding light on vulnerabilities of alternate methods; and (iii)

could be potentially successful when applied over different DRL

systems.

We view this work as an important step towards the safe and

reliable deployment of DRL controllers in real-world systems,

especially in the complex domain of avionics. We additionally

hope that our work will further motivate additional research

in neural network verification, DRL safety, and specifically,

their role in the important domain of DRL-controlled aerospace

systems.

The rest of the paper is organized as follows. In Sec. II,

we cover background on deep learning, DRL, and verification,

and we also introduce Neural Lyapunov Barrier functions. In

Sec. III, we introduce our benchmark problem, a 2D spacecraft

docking challenge. We subsequently introduce our k-induction

technique in Sec. IV, and we present alternative verification

approaches in Sec. V. 1 Finally, we conclude in Sec. VI.

II. PRELIMINARIES AND RELATED WORK

A. Safety and Liveness

In this paper, we are interested in obtaining DRL controllers

that satisfy safety and liveness properties [2] in discrete-time

settings.

Safety. In a sequence satisfying a safety property, a bad state

is never reached. For the set of system states X , let Ä ⊆ X ∗ be

the set of potential system trajectories. We say a trajectory ³

satisfies safety property P1 if and only if each state in ³ satisfies

property P1. More formally:

∀³ ∶ ³ ∈ Ä.∀x ∈ ³. x ⊧ P1. (1)

Finite-length trajectories terminating in a “bad” state (where P1

does not hold) constitute the set of trajectories in violation of

the safety property.

Liveness. On the other hand, a liveness property indicates a

good state is eventually reached. A liveness property P2 is

satisfied by trajectory ³ if and only if there exists a state x

in ³ where P2 holds. Defining Ä∞ as the set of infinite-length

trajectories, we formally specify liveness property P2 as:

∀³ ∶ ³ ∈ Ä∞. #x ∈ ³. x ⊧ P2. (2)

1Code for these approaches is available at:
github.com/NeuralNetworkVerification/artifact-dasc-docking

Infinite-length trajectories which contain no “good” states (i.e.,

no states where P2 holds) constitute the set of trajectories in

violation of the liveness property.

B. DNNs, DNN Verification, and Dynamical Systems.

Deep Learning. Deep neural networks (DNNs) consist of

layers of neurons that perform some (usually nonlinear) trans-

formation of the input [38]. In this paper, we investigate deep

reinforcement learning (DRL), where we train a DNN to obtain

a policy, which maps states to actions that control a system [54].

DNN Verification. Given (i) a trained DNN (e.g., a DRL agent)

N ; (ii) a pre-condition P on the DNN’s inputs, limiting the

input assignments; and (iii) a post-condition Q on the DNN’s

outputs, the goal of DNN verification is to determine whether

the property P (x) → Q(N(x)) holds for any neural network

input x. In many DNN verifiers (a.k.a., verification engines),

this task is equivalently reduced to determining the satisfiability

of the formula P (x)'¬Q(N(x)). If the formula is satisfiable

(SAT), then there is an input that satisfies the pre-condition

and violates the post-condition, which means the property is

violated. On the other hand, if the formula is unsatisfiable

(UNSAT), then the property holds. It has been shown [49] that

verification of piece-wise-linear DNNs is NP-complete. In re-

cent years, the formal methods community has put forth various

techniques for verifying and improving DNN reliability [1],

[5], [6], [9], [13], [17], [23], [70]. These techniques include

SMT-based methods [8], [45], [50], [52], optimization-based

methods [15], [30], [55], [68], methods based on abstraction-

refinement [10], [22], [31], [32], [58], [59], [65], methods based

on shielding [24], [51], [63], and more.

Discrete-Time Dynamical Systems. We consider discrete-

time dynamical systems, particularly systems whose trajectories

satisfy the equation:

xt+1 = f(xt, ut), (3)

in which the transition function f takes as inputs the current

state xt ∈ X and a control ut ∈ U and produces as output the

subsequent state xt+1. To control these systems, we employ

a policy Ã ∶ X → U that takes in a state x ∈ X and

outputs a control action u = Ã(x). In DRL, the controller

Ã is realized by a trained DNN agent. These learning-based

controllers have proven to be effective in many real-world

settings including robotics [26], biomedical systems [28], and

energy management [44], due to their expressive power and

ability to generalize to unseen, complex environments [67].

C. Control Lyapunov Barrier Functions

The problem of verifying safety and liveness properties in

a dynamical system can be solved by finding a function V ∶

X ↦ R with certain properties. Control theory identifies two

fundamental types of functions [53].

Lyapunov Functions. Lyapunov functions, a.k.a., Control

Lyapunov functions, capture the energy level at a particular

state: over time, energy is dissipated along a trajectory until

the system attains zero-energy equilibrium [41]. Lyapunov

functions can guarantee asymptotic stability, which ensures

the system eventually converges to some goal state (thereby

Authorized licensed use limited to: Stanford University Libraries. Downloaded on April 24,2025 at 18:49:31 UTC from IEEE Xplore. Restrictions apply.

satisfying a liveness property). Lyapunov functions must be (i)

equal to 0 at equilibrium, (ii) strictly positive at all other states;

and (iii) monotonically decreasing [18], [19], [36].

Barrier Functions. Barrier functions [4], a.k.a., Control Bar-

rier Functions, guarantee that a system never enters an unsafe

region (i.e., a “bad” state) in the state space. This is achieved by

setting the function value to be above some threshold for unsafe

states and then verifying that the system can never transition

to a state where the function is above the threshold [3], [12],

[72]. Previous work [60], [61], [69], [75] demonstrates how to

obtain Barrier functions for various safety-critical tasks such

as pedestrian avoidance, neural radiance field-based obstacle

navigation [57], and multi-agent control.

Control Lyapunov Barrier Functions. Often, it is necessary

to ensure both safety and liveness properties simultaneously.

In such cases, we can employ a Control Lyapunov Barrier

Function (CLBF), which integrates the properties and guaran-

tees of both Control Lyapunov functions and Control Barrier

functions [27]. CLBFs can solve reach-while-avoid tasks [29],

which we discuss next.

Reach-while-Avoid Tasks. The goal of Reach-while-Avoid

(RWA) tasks is to find a controller Ã for a dynamical system

such that every trajectory {x1, x2...} produced under this con-

troller (i) never enters an unsafe (“bad”) state; and (ii) eventually

enters a goal (“good”) region or state. We can formally define

the problem as:

Definition 1 (Reach-while-Avoid Task).

Input: A dynamical system with a set of initial states

XI ⊆ X , a set of goal states XG ⊆ X , and a set of unsafe

states XU ⊆ X , where XI ∩XU = ∅ and XG ∩XU = ∅

Output: A controller Ã such that for every trajectory Ä =

{x1, x2...} satisfying x1 ∈ XI :

1) Reach: # t ∈ N. xt ∈ XG

2) Avoid: ∀ t ∈ N. xt /∈ XU

Some solutions for RWA tasks rely on control theoretic

principles. The approach in [27] trains Lyapunov and Bar-

rier certificates to solve RWA tasks. Hamilton-Jacobi (HJ)

reachability-based methods [11]) have also been employed to

solve RWA tasks [34], [43], [66]. Safe DRL is closely connected

to RWA, with its goal being to maximize cumulative rewards

while minimizing costs along a trajectory [14]. It has been

solved with both Lyapunov/Barrier methods [20], [73] and HJ

reachability methods [35], [74].

D. Other Verification Approaches

Reachability Analysis. Reachability analysis methods aim to

define and compute the set of final reachable states and then

verify that this set (i) does not include any bad states, and (ii) is

contained within the goal region. Reachability methods include

forward-tube and backward-tube verification [40], which either

propagate states forward from the starting set or backward from

the goal set. Other related work in reachability analysis includes

hybrid system verifiers [46], growing the set of reachable states

over a discrete action space [48], approximating reachable

states during forward and backward reachability [39], and

reformulating the dynamics of a system for easier reachability

verification [37].

Bounded Model Checking and k-induction. Bounded model

checking uses a symbolic analysis over k copies of a system

to check whether a bad state is reachable in k or fewer steps

from the starting set of states. k-induction is similar, except that

it starts from an arbitrary state and can thus be used to prove

that a bad state is never reached. Bounded model checking has

been explored in the WhiRL tool [33] using the neural network

verifier Marabou [50], [71]. [64] implements another tool for

checking adversarial cases and coverage using bounded model

checking for artificial neural networks. WhiRL 2.0 [7] adds k-

induction capabilities to WhiRL.

Design-for-Verification. Design-for-verification broadly en-

compasses any method which aims to modify the design and

training process to make verification easier. The Trainify frame-

work [47] uses a CEGAR-based approach to grow an easily

verifiable state space by repeatedly retraining the DRL system.

[25] motivates an optimized DRL training approach to reduce

the number of safety violations, easing formal verification. This

approach was also implemented in Marabou [50], [71].

III. 2D DOCKING PROBLEM

We adopt as a motivating case study benchmark the 2D

docking problem presented in [62]. The goal is to train a DRL

controller to safely navigate a deputy spacecraft to a chief

spacecraft within two-dimensional space. The reference frame

is defined such that the chief spacecraft is always at the origin

(0,0). The state of the deputy spacecraft is x = [x, y, ẋ, ẏ],
where (x, y) are the position of the spacecraft and (ẋ, ẏ) are

the respective directional velocities.

A. Dynamics

The system dynamics are defined according to the linearly-

approximate Clohessy-Wiltshire relative orbital motion equa-

tions in a non-inertial Hill’s reference frame [21], [42]. The

control input to the system is u = [Fx, Fy], where Fx and Fy

are the thrust forces applied to the deputy spacecraft in the x

and y directions. We follow [62], setting the deputy spacecraft

mass to m = 12 kg and the mean motion to n = 0.001027 rad/s.

The continuous time state dynamics of the system are given by

the following differential equations:

ẋ = [ẋ, ẏ, ẍ, ÿ] (4)

ẍ = 2nẏ + 3n2x +
Fx

m
(5)

ÿ = −2nẋ +
Fy

m
(6)

Integration using a discrete time step T yields a closed-form

next-state function. Given a state x = [x, y, ẋ, ẏ] and control in-

puts u = [Fx, Fy], the spacecraft’s next state x
′

i = [x′, y′, ẋ′, ẏ′]
after an elapsed time T is:

Authorized licensed use limited to: Stanford University Libraries. Downloaded on April 24,2025 at 18:49:31 UTC from IEEE Xplore. Restrictions apply.

x′ = (2ẏ
n
+ 4x +

Fx

mn2
) + (2Fy

mn
) + (− Fx

mn2
−
2ẏ

n
− 3x)

⋅ cos (nT) + (−2Fy

mn2
+
ẋ

n
) sin (nT)

(7)

y′ = (−2ẋ
n
+ y +

4Fy

mn2
) + (−2Fx

mn
− 3ẏ − 6nx)T + −

3Fy

2m
t2

+ (− 4Fy

mn2
+
2ẋ

n
) cos (nT) + (2Fx

mn2
+
4ẏ

n
+ 6x)

⋅ sin (nT)
(8)

ẋ′ = (2Fx

mn
) + (−2Fy

mn
+ x) cos (nT) + (Fx

mn
+ 2ẏ

+ 3nx) sin (nT)
(9)

ẏ′ = (−2Fx

mn
− 3ẏ − 6nx) + (−3Fy

m
)T + (2Fx

mn
+ 4ẏ

+ 6nx) cos (nT) + (4Fy

mn
− 2ẋ) sin (nT)

(10)

B. Liveness —– Docking Region

The problem as given in [62] defines a docking region which

is a circle of radius 0.5 meters centered at the origin. The goal

is for the deputy spacecraft to eventually enter this region. To

simplify the verification query, it is easier to use linear bounds

for the goal region, so we use a square centered at the origin

with sides parallel to the axes of length 0.7 meters (note that

this square fits inside the docking region of [62]). Formally, our

liveness condition is:

∀³ ∶ ³ ∈ Ä∞. #t. ∣³t.x∣ ≤ 0.35 ' ∣³t.y∣ ≤ 0.35, (11)

where ³t is the state at time t in trajectory ³, and ³t.x and

³t.y are the x and y components of ³t.

C. Safety — Velocity Threshold

To minimize the risk to both spacecraft, a safety constraint

is imposed on the magnitude of the velocity of the deputy

spacecraft. The constraint depends on the distance from the

deputy. Formally, [62] requires the following state invariant:√
ẋ2 + ẏ2 ≤ 0.2 + 2n

√
x2 + y2 (12)

We therefore define the unsafe region to be the negation of (12).

Again, we desire to instead use a linear constraint in order

to be compatible with our formal tools. We use the Euclidean

norm approximation of [16], which approximates the norm

by projecting it onto vectors in all different directions and

taking the one with the maximum magnitude. We use the two

inequalities:

max
i∈[1,ndirections]

(u1 ⋅ cos(2(i − 1)Ã
ndirections

) + u2

⋅ sin(2(i − 1)Ã
ndirections

)) ≤
√

u2

1
+ u2

2

(13)

and

1

cos(Ã/ndirections) max
i∈[1,ndirections]

(u1 ⋅ cos(2(i − 1)Ã
ndirections

)

+u2 ⋅ sin(2(i − 1)Ã
ndirections

)) ≥
√

u2

1
+ u2

2
,

(14)

where ndirections is a positive integer. Larger values of

ndirections yield more precise approximations. We can simplify

this by noting that:
√

u2

1
+ u2

2
=

√∣u1∣2 + ∣u2∣2,
and then focusing our search only on vectors in the first

quadrant. Assuming ndirections is a multiple of 4, we get:

under(u1, u2) = max
i∈[1,ndirections/4+1]

(∣u1∣ ⋅ cos(2(i − 1)Ã
ndirections

)

+ ∣u2∣ ⋅ sin(2(i − 1)Ã
ndirections

))
≤

√
u2

1
+ u2

2

(15)

and

over(u1, u2) = 1

cos(Ã/ndirections) max
i∈[1,ndirections/4+1]

(∣u1∣

⋅ cos(2(i − 1)Ã
ndirections

) + ∣u2∣ ⋅ sin(2(i − 1)Ã
ndirections

))
≥

√
u2

1
+ u2

2
.

(16)

Using these constraints, we can over-approximate the unsafe

region as

over(ẋt, ẏt) > 0.2 + 2n ⋅ under(xt, yt). (17)

This is a piece-wise linear constraint. Moreover, both the

absolute value function and the maximum function can be easily

encoded in neural network verification tools such as Marabou.

In our experiments, we use ndirections = 400.

D. DNN Setup

As in [62], we use Ray RLib’s Proximal Policy Optimization

(PPO) reinforcement learning algorithm to learn the system

dynamics, but we make four important alterations to improve

downstream verification, part of our design for verification

scheme.

1) Scenario Regions: To improve performance near the

docking region, we reduce the docking distance during training

from 0.5 meters to 0.25 meters. We also simplify the problem

by reducing the initial position of the deputy spacecraft from a

radius of 150 meters to only 5 meters. Scaling back up to larger

initial positions is part of an ongoing research effort.

2) Speed Observations: We limit the observations of the

agent to its x and y positions and respective ẋ and ẏ velocities,

eliminating the agent’s observations of its current speed and

the distance-dependent velocity constraint described in Equation

12. This makes it less likely that irregular trajectories will be

learned because of observations of the safety constraint. As a

result, liveness verification becomes easier.

3) Distance Reward: We keep the rewards relating to success

or failure, the safety constraint, and delta-v as presented in [62],

but we alter the distance change reward to use the L1 norm of

the position of the deputy — i.e., the Manhattan distance from

the deputy to the chief, rather than the nonlinear L2 norm. This

is to match the induction invariant described in Section IV. To

account for the new distance metric and previously-described

Authorized licensed use limited to: Stanford University Libraries. Downloaded on April 24,2025 at 18:49:31 UTC from IEEE Xplore. Restrictions apply.

smaller initial distances, we developed a novel reward function

for distance change:

Rdnew

t = 2 (e−a1d
m

t − e−a1d
m

t−1) + 2 (e−a2d
m

t − e−a2d
m

t−1) , (18)

where dmi = ∣xi∣ + ∣xi∣, a1 = ln(2)
5

, and a2 =
ln(2)
0.5

.

4) Model Architecture: Our DRL controller should be suf-

ficiently small to keep verification time reasonable and suffi-

ciently large to be able to learn the necessary behavior. We

found that reducing the hidden layer widths from 256 neurons

to 20 neurons, while maintaining two hidden layers, acheives a

good balance between verification time and expressive power.

Also, we swap the tanh activation functions for ReLU activation

functions since ReLU is supported by most neural network

verification tools (such as Marabou).

IV. USING k-INDUCTION FOR LIVENESS GUARANTEES

In this section, we present an approach for scalably verifying

a liveness property for the 2D docking problem presented

in Section III using k-induction. We describe the conceptual

approach, the experimental framework, and the results.

A. Proving Liveness by k-induction

In order to apply k-induction, we must find a way to reduce

a liveness property to a k-inductive property. Typically, this

is done by finding a ranking function, a function with a

well-founded co-domain, which can be shown to always be

decreasing by k-induction.

For the spacecraft, an obvious choice for a ranking function

is the distance from the deputy to the chief. In order to make

the function easier to reason about, we use a linear proxy

function for the actual distance, namely the Manhattan distance.

Unfortunately, it is not the case that this measure always

decreases, as the spacecraft may move away from the target.

Thus, we instead propose a property that ensures the space-

craft eventually starts moving towards the target. The property

is expressed as a logical disjunction: after k steps, either the

Manhattan distance decreases or the magnitude of the velocity

decreases. Again, we approximate the velocity magnitude by the

L1 norm, the sum of the absolute values of ẋ and ẏ. Formally,

if the current state is (x0, y0, ẋ0, ẏ0) and the future state after

k steps is (x′, y′, ẋ′, ẏ′), we must show:

(∣x′∣+ ∣y′∣)–(∣x0∣+ ∣y0∣) < –ϵ ⋁ (∣ẋ′∣+ ∣ẏ′∣)–(∣ẋ0∣+ ∣ẏ0∣) < –ϵ,
(19)

where ϵ is some positive value.

Proposition 1. If property (19) holds (for some k) for every

state, then eventually the spacecraft will be moving towards the

goal (i.e., the L1 norm of the position will decrease).

Proof. Suppose that from some starting state, (x0, y0, ẋ0, ẏ0),
the spacecraft follows a trajectory that never moves towards

the goal in the sense that the L1 norm never decreases. Let

(xi, yi, ẋi, ẏi) be the state after i time steps. This means that

for all i, ∣xi∣ + ∣yi∣ ≤ ∣xi+1∣ + ∣yi+1∣. Let Vi = ∣ẋi∣ + ∣ẏi∣. By (19),

we know that for each Vi, there must be some k, such that

Vi+k − Vi < −ϵ. Thus, for any n, we can construct a sequence

Vj0 , Vj1 , Vj2 , . . . Vjn such that j0 = 0 and Vji − Vji+1 > ϵ. If we

then take n > V0/ϵ, we get that Vjn < 0, which is impossible.

Algorithm. We verify (19) using Algorithm 1. We gradually

increase k until the property holds, a maximum of k = kmax is

reached, or a timeout is exceeded.

Algorithm 1: Algorithm for k-induction.

Require: Bounds on state components x0, y0, ẋ0, ẏ0, values

for kmin, kmax

Ensure: If result = UNSAT, then property (19) holds for all

states within the defined bounds.

1: for each k ∈ [kmin, kmax] do

2: Verify the negation of the distilled property:

¬

⎛⎜⎜⎝

(∣x′∣ + ∣y′∣)–(∣x0∣ + ∣y0∣) < –ϵ
⋁
(∣ẋ′∣ + ∣ẏ′∣)–(∣ẋ0∣ + ∣ẏ0∣) < –ϵ)

⎞⎟⎟⎠
3: if UNSAT then

4: result = [UNSAT, k]

5: break;

6: else

7: result = [SAT, k, counterexample k-step trajectory].

8: end if

9: end for

10: return result

Input bounds for the state space can be chosen according

to the problem specification. It is also important to note that

different kmin and kmax values can be chosen. In practice, in

order to make the verification more tractable, we first split the

state space into subregions, then call the algorithm on each

subregion. For each subregion of the state space, we explore

values of k from kmin to kmax. For each k, a neural network

verifier is invoked to check if the negation of the property holds

after k steps. There are three possible results of the algorithm.

1) If the negation of the property is satisfiable for each k, the

algorithm returns SAT along with a counter-example.

2) If the negation of the property is unsatisfiable for some k,

this means that the property holds for that value of k. In

this case, the algorithm returns UNSAT together with the

value of k for which unsatisfiability was determined. In

this case, verification of the region is complete.

3) If a predefined timeout is exceeded, the algorithm termi-

nates and a timeout result is returned.

Experimental Setup. We use Marabou for the neural

network verification step. We set the following parameters

for Marabou: “verbosity=0, timeoutInSeconds=5000, num-

Workers=10, tighteningStrategy=“sbt”, solveWithMILP=True”.

Marabou also requires a back-end linear programming engine.

We use Gurobi 9.5.

We start with positional bounds of ∣x∣, ∣y∣ ∈ [−25,25] and

velocity bounds of ẋ, ẏ ∈ [−0.2,0.2]). We initially divide these

into 25 subregions by focusing on 5×5 regions in the positional

space. A subregion is further subdivided if Algorithm 1 times

out. We set kmin to 1, kmax to 20, and use a timeout of 1.4

hours for each loop iteration (i.e., 30 hours if all values of k

time out).

Results. We end up with 71 subregions. For each subregion,

Algorithm 1 returns UNSAT. The minimum returned value for

Authorized licensed use limited to: Stanford University Libraries. Downloaded on April 24,2025 at 18:49:31 UTC from IEEE Xplore. Restrictions apply.

(a) Initial neural network.

(b) Retrained neural network.

Fig. 1: Design for Verification: An initial controller trajectory

compared to a final controller trajectory, with the same initial

state. The final controller has a more direct trajectory which is

more conducive to verification via k-induction.

k is 1, the maximum is 12, the average is 5, and the median is

3.

Notably, regions close to the goal region are more difficult:

they require more subregions and take longer, whereas regions

more distant can sometimes be verified without utilizing addi-

tional subregions. The minimum runtime (in seconds) for any

subregion is 0.02, the maximum is 4295.86, the average is

193.62, and the median is 1.76.

As a sanity check, we validated our results experimentally

by running a simulation framework. Starting from randomly

sampled points in the state space, we confirmed that the k-

inductive property holds on the trajectory starting at each point.

These checks also succeeded.

Discussion. Initially, we applied our approach to the neural

network controller described in [62]. The original network

topology (two hidden layers with 256 nodes each) resulted

in lengthy verification times. Moreover, for many regions, the

verification failed: we discovered counter-examples for all tested

values of k.

Figure 1a shows an example counterexample

trajectory from the original neural network. The starting

state is [x = 0.5347935396499356, y = 0.51, ẋ =

0.00038615766226848813, ẏ = 0.00038615766226848813].
The controller moves steadily away from the goal, and only

after many steps turns the spacecraft around to move towards

the goal.

Such trajectories provided motivation for the design changes

mentioned in Section III-D. In particular, the changes to the

reward function strongly incentivize the controller to move

towards the goal region. Figure 1b shows the trajectory using

the verified controller, starting from the same starting state.

Note how the spacecraft moves nearly directly towards the goal

region.

The successful verification of (19) is not sufficient to establish

that the deputy eventually reaches the chief. We would need to

establish a second property, namely that once the spacecraft

is moving towards its goal, it always gets closer (by at least

some ϵ) within k steps. Let xi, yi be the position i steps from

some starting position (x0, y0). This can be formalized with the

property:

(∣x1∣ + ∣y1∣)–(∣x0∣ + ∣y0∣) < 0 Ô⇒
#k. (∣xk ∣ + ∣yk ∣)–(∣x0∣ + ∣y0∣) < –ϵ. (20)

Formally verifying this property is left to future work.

B. An Alternative Approach using Polar Coordinates

Before moving to the Manhattan distance, we explored an

alternative approach using polar coordinates, which allows the

L2 norm to be used directly in the invariant while maintaining

linearity. More specifically, if r is the distance to the origin and

¹ is the angle from the x-axis, then we can write the equivalent

of property (19) as:

r′ − r < −ϵ (ṙ′ − ṙ < −ϵ. (21)

Note how much simpler property 21 is compared with prop-

erty (19). However, there remain two challenges: training a polar

controller and converting the dynamics to polar coordinates.

Training a controller for the polar system is not straight-

forward; it requires complex parameter changes, for example,

adjusting the learning rate, observation vector order, and the

length and normalization constants. However, these challenges

are ultimately solvable, and we were able to train a network that

takes polar coordinate inputs. The output is still Fx and Fy , as

we did not envision changing the physical spacecraft system.

The second challenge proved more difficult. We needed a way

to calculuate new values of r and ¹, given current values of r,

¹, ṙ, and ¹̇, as well as Fx and Fy . We did not find closed-form

solutions in the literature for the Clohessy–Wiltshire Equations

utilizing polar coordinates. We thus converted equations (7)

through (10) to polar coordinates using the standard conversion

equations:

x = r cos ¹, y = r sin ¹, r =
√
x2 + y2, ¹ = tan−1

y

x
(22)

We encoded the derivation of the equations directly in Python,

which allowed us to confirm in simulation that our polar neural

network had behavior similar to that of the original model.

However, attempting formal verification with the new dynamics

proved difficult. The new dynamics are highly non-linear. We

attempted to use the OVERT tool2 for the purpose of linearizing

r and ¹. However, the results were too complex and ultimately

unsuccessful. It was at this point that we decided to instead use

the L1 norm and revert to standard rectangular coordinates.

We report this effort here in order to highlight both the

potential benefits and pitfalls of using a different coordinate

2https://github.com/sisl/OVERT.jl

Authorized licensed use limited to: Stanford University Libraries. Downloaded on April 24,2025 at 18:49:31 UTC from IEEE Xplore. Restrictions apply.

representation. If the dynamics had been more tractable in polar

space, this would have been an attractive direction.

V. ALTERNATE VERIFICATION APPROACHES

While exploring the k-induction approaches described above,

we concurrently explored an alternative approach using Neural

Lyapunov Barrier certificates. The results of that effort represent

the most complete verification results we have obtained to date

and are reported in [56]. Here, for convenience, we review that

approach at a high level and present some details not reported

there. We also discuss several reachability-based approaches,

which we also applied to the 2D docking problem, but which

were, ultimately, unsuccessful.

A. RWA Certificates

Definition 2. A function V ∶ X ↦ R is an RWA certificate

for the task defined in Definition 1 if there exist some ³ >

´ ≥ µ and ϵ > 0, such that the following constraints are

satisfied.

∀x ∈ X . V (x) ≥ µ (23)

∀x ∈ XI . V (x) ≤ ´ (24)

∀x ∈ X 8XG. V (x) ≤ ´ → V (x) − V (f(x,Ã(x))) ≥ ϵ
(25)

∀x ∈ XU . V (x) ≥ ³ (26)

Any tuple of values (³,´, ϵ, µ) for which these conditions hold

is called a witness for the certificate.3 RWA certificates provide

the following guarantee.

Lemma 1. If V is an RWA certificate for a dynamical system

with witness (³,´, ϵ, µ), then for every trajectory Ä starting

from a state x ∈ X 8XG such that V (x) ≤ ´, Ä will eventually

contain a state in XG without ever passing through a state in

XU .

We use reinforcement learning to jointly train neural networks

for both the controller and the corresponding RWA certificate.

RWA Training Loss. The training objective for RWA certifi-

cates is described below:

Os = cs ∑
i ∣xi∈XI

ReLU(¶1 + V (xi) − ´)
3i ∣xi∈XI

1
(27)

Od = cd ∑
i ∣xi∈X8(XU∪XG),V (xi)<β

ReLU(¶2 + ϵ + V (x′i) − V (xi))
3i ∣xi∈X8(XU∪XG),V (xi)<β 1

(28)

Ou = cu ∑
i ∣xi∈XU

ReLU(¶3 − V (xi) + ³)
3i ∣xi∈XU

1
(29)

O = Os +Od +Ou (30)

Equation (27) penalizes deviations from constraint (24),

Equation (28) penalizes deviations from constraint (25), and

Equation (29) penalizes deviations from constraint (26). We

incorporate parameters ¶1 > 0, ¶2 > 0, and ¶3 > 0, which can

3These constraints are similar to those in [29] but are specific to discrete-
time systems and do not place constraints on a compact safe set, opting to use
an unsafe set instead.

be used to tune how strongly the certificate over-approximates

adherence to each constraint. Similarly, constants cs, cd, cu can

be used to tune the relative weight of the two objectives. The

final training objective O in (30) is what the optimizer seeks to

minimize, by using stochastic gradient descent (SGD) or other

optimization techniques.

µ lower bound. It is important to note that the RWA

training objective does not explicitly penalize deviations from

Equation (23). Instead, because V is implemented as a neural

network using floating-point arithmetic, it has only a finite

number of possible inputs and outputs, so Equation (23) must

hold for some µ. In practice, we can use Marabou to find µ

by doing a linear search for the minimum value of V : we

simply set µ to some initial value, say ³, then repeatedly check

#x. V (x) < µ, updating µ with the new value each time the

query is satisfiable, and repeat until the query is unsastisfiable.

Sampling from XU and X8XG. While XI is typically defined

as having both upper and lower bounds on state variables, this

is not the case for XU , which often has only lower bounds on

state variables (this is the case, for example, for the 2D docking

problem defined in Section III).

However, during training, we do impose an upper bound

on the states sampled from XU . Specifically, if the controller

operates over n-dimensional states x = [x1, x2, .., xn], we

sample points satisfying the following constraints:

(x1 > p1) ((x2 > p2) (... ((xn > pn) (31)

(x1 < p1 + µ1) ' (x2 < p2 + µ2) ' ... ' (xn < pn + µn) (32)

Here, 31 represents the (given) lower bounds on the unsafe

region XU , and µ1, ..., µn are chosen to be strictly greater than

0.

A similar issue arises when sampling from X 8XG. This can

often be solved simply by sampling instead from X8(XG∪XU),
as the lower bounds on variables in XU then create upper bounds

for the sampling step.

Masking out XU . For objective 28, if x′i lies in XU , we

replace the actual value of V (x′i) with ³. This is because we

learn correct functional behaviors of XU through objective 29

regardless, and thus using the actual value of V (x′i) would lead

to unnecessary training effort and excessive penalties.

Certificate Warmup. To improve training, the objective is

used to train the certificate V alone for a few iterations, after

which training includes both the certificate and the controller.

This is done to avoid erratic training of the controller when V

has random weights.

RWA Verification. In order to obtain formal guarantees, we

use Marabou to formally verify the constraints in Definition 2.

Verification of RWA constraints is generally straightforward, but

we have to similarly bound XU and X 8XG to verify constraints

26 and 25 respectively. Instead of using X 8 XG as the input

space for 25, we use instead X 8(XG∪XU), which provides the

same guarantees. Moreover, instead of using XU as the input

space for 26, we use the bounded space, call it X S
U , used for

data sampling. To ensure this provides the same guarantees,

we check that no states beyond the upper bound of X S
U are

reachable.

Authorized licensed use limited to: Stanford University Libraries. Downloaded on April 24,2025 at 18:49:31 UTC from IEEE Xplore. Restrictions apply.

Instead of encoding verification as a single property passed to

the DNN verifier, verification is partitioned into muliple queries.

This is done by paritioning the input space in the original

property into equally sized smaller state spaces, over which the

same property is checked. This helps avoid unreasonably long

verification times that can occur with a large monolithic query.

Retraining. If any of the RWA verification checks return

counterexamples, these are used to augment the training data

set, and then training is done again. This process repeats until no

more counterexamples are found. We weight counterexamples

more heavily in the objective function 30 (compared to points

in the initial training dataset) in order to focus the training on

removing the counterexamples.

Results and Analysis. As shown in prior work in [56], RWA

certificates can provide liveness and safety guarantees for the

2D spacecraft docking problem defined in Section III. More

details and a pointer to the code can be found in [56].

B. Reachability Analysis Approaches

In this subsection, we discuss approaches based on reacha-

bility analysis. While these approaches were ultimately unsuc-

cessful on the case study problem outlined in section III, we

still mention them here, as the reasons for their failure may be

of interest, and they may be useful on other problems.

Forward-tube and Backward-tube Reachability. Forward-

tube and backward-tube reachability attempt to generate a path

over abstract state spaces (i.e., sets of states) from the starting

state space to the goal state space. At each step along the

abstract path, we check that every state in the abstract state

set meets any safety guarantees.

In forward-tube reachability, a starting set of states X 0

F and

step size k is defined. Then, a set of states X 1

F is constructed

such that all states reachable from X 0

F in k steps are contained

within X 1

F . This process is continued, and additional sets of

states X i+1
F are constructed, each with the property that they

contain the states reachable from X i
F in k steps. If at some

point, the constructed set is a subset of the goal region, then

the liveness property is ensured. However, it can be very chal-

lenging to find a sequence of sets of states X i
F that eventually

lead to a subset of the goal region. This was the case for the

spacecraft example.

On the other hand, in backward-tube reachability, we start

with X 0

B set equal to the goal states and define a step size

k. Then, a set of states X 1

B is constructed such that all states

reachable from X 1

B in k steps are contained within X 0

B . Again,

this process can be repeated until the set of states includes the

initial states. A difficulty with this approach is computing a

sufficiently large previous set of states at each step.

Grid Reachability. Grid reachability is a process which first

partitions a bounded subset of the state space into cells, then

computes a directed graph where each cell is a vertex, and each

directed edge (a, b) denotes that vertex b is reachable from

vertex a in k steps, for a specific k, as shown in Fig. 2. The

goal is to show that for all paths constructed from cells in the

defined initial state space, a goal region reachable. However, to

ensure liveness, it is also necessary to show that the graph has

Fig. 2: Grid reachability, with a cell navigating towards the

docking region (in green)

Algorithm 2: APPLYING GRID REACHABILITY

1 Let IS be the input space

2 Let k be the step size

3 Divide IS into cells C = c0, c1, ..., cn
4 Let vertices V = C

5 Initialize edge set E to be the empty set

6 i = 0

7 for i ≤ n do

8 Denote set of adjacent cells to ci as Cr

9 Add ci to Cr if self-cycles are possible

10 for cr ∈ Cr do

11 if cr is reachable from ci in k steps then

12 Add directed edge (ci, cr) to E

13 i = i + 1

14 Let G ∶= (V,E)
15 Check for cycles in G

16 if G is acyclic then

17 Determine cells Cs with no paths leaving input

space

18 return Cs as cells meeting liveness property

no cycles and that it is not possible to reach any cells beyond

the partitioned state space.

We applied this technique to the spacecraft example. A

challenge is preventing self-cycles in the graph. One strategy

for doing this is to construct cells where at least one velocity

component never changes sign. It is easy to see that for such

cells, the spacecraft cannot remain in the cell forever, so we

can ignore self-loops on such cells. For cells containing a

velocity sign-change, we use a very narrow velocity range,

narrow enough to ensure that the spacecraft leaves the range in k

steps. It is also desirable to limit the number of cells reachable

from a given cell, to avoid the need to do many reachability

checks. This can be ensured by making the cells large enough

that it is impossible to cross more than one cell in a single set

of k steps.

Analysis of Grid Reachability. We applied grid reachability to

a state space with x, y ∈ [−10,10] and ẋ, ẏ ∈ [−1.6,1.6] using

Algorithm 2. A binary search was conducted using Marabou to

determine cell bounds such that cells could only reach adjacent

cells. The step size k was chosen to be 1.

We found a variety of cycles of increasing lengths, even

as cells were divided further in an attempt to refine the grid

Authorized licensed use limited to: Stanford University Libraries. Downloaded on April 24,2025 at 18:49:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Spurious trajectory with grid reachability

abstraction. Moreover, we found that all cells had paths leaving

the input space. We showcase one such trajectory of cells with

this behavior in Fig. 3. In this trajectory, we see that for the

first three steps, the velocity component ranges are negative,

thereby guiding the spacecraft towards the goal region, but there

is a path from cell 3 to cell 4 that induces a positive velocity

component, allowing the path to diverge.

Ultimately, the grid abstraction does not lend itself well to

the liveness task because such spurious paths are difficult to rule

out. While further refinement of the grid approach is possible

and could eventually yield a workable approach, we determined

that the complexity and difficulty were too high, and abandoned

it in favor of the certificate approach mentioned earlier.

VI. CONCLUSION

We have presented methods for verifying safety and liveness

properties for DRL systems using k-induction, Neural Lyapunov

Barrier Certificates, and reachability analysis. We explore their

effectiveness on a 2D spacecraft docking problem posed in

previous work. For this problem, we show how a k-induction

based approach can be used alongside a design-for-verification

training scheme to provide liveness guarantees. We also discuss

how Neural Lyapunov Barrier Certificates can be used to

provide both liveness and safety guarantees. While reachability

analysis ultimately did not provide any formal guarantees, we

discuss the approach and its limitations. In future work, we plan

to explore scaling these methods to more complex and realistic

control systems.

VII. ACKNOWLEDGEMENTS

This work was supported by AFOSR (FA9550-22-1-0227),

the Stanford CURIS program, the NSF-BSF program (NSF:

1814369, BSF: 2017662), and the Stanford Center for AI Safety.

The work of Amir was further supported by a scholarship

from the Clore Israel Foundation. We thank Thomas Henzinger

(ISTA), Chuchu Fan (MIT), and Songyuan Zhang (MIT) for

useful conversations and advice, which contributed to the suc-

cess of this project.

REFERENCES

[1] P. Alamdari, G. Avni, T. Henzinger, and A. Lukina. Formal Methods
with a Touch of Magic. In Proc. 20th Int. Conf. on Formal Methods in

Computer-Aided Design (FMCAD), pages 138–147, 2020.
[2] B. Alpern and F. Schneider. Recognizing safety and liveness. Distributed

Computing, 2:117–126, 09 1987.
[3] A. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control barrier function

based quadratic programs for safety critical systems. Trans. on Automatic

Control, 2017.
[4] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and

P. Tabuada. Control barrier functions: Theory and applications. In
European Control Conf., 2019.

[5] G. Amir, D. Corsi, R. Yerushalmi, L. Marzari, D. Harel, A. Farinelli, and
G. Katz. Verifying Learning-Based Robotic Navigation Systems. In Proc.

29th Int. Conf. on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS), pages 607–627, 2023.

[6] G. Amir, O. Maayan, T. Zelazny, G. Katz, and M. Schapira. Verifying
Generalization in Deep Learning. In Proc. 35th Int. Conf. on Computer

Aided Verification (CAV), pages 438–455, 2023.

[7] G. Amir, M. Schapira, and G. Katz. Towards Scalable Verification of Deep
Reinforcement Learning. In Proc. 21st Int. Conf. on Formal Methods in

Computer-Aided Design (FMCAD), pages 193–203, 2021.

[8] G. Amir, H. Wu, C. Barrett, and G. Katz. An SMT-Based Approach for
Verifying Binarized Neural Networks. In Proc. 27th Int. Conf. on Tools

and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 203–222, 2021.

[9] G. Amir, T. Zelazny, G. Katz, and M. Schapira. Verification-Aided Deep
Ensemble Selection. In Proc. 22nd Int. Conf. on Formal Methods in

Computer-Aided Design (FMCAD), pages 27–37, 2022.

[10] G. Anderson, S. Pailoor, I. Dillig, and S. Chaudhuri. Optimization
and Abstraction: a Synergistic Approach for Analyzing Neural Network
Robustness. In Proc. 40th ACM SIGPLAN Conf. on Programming

Languages Design and Implementations (PLDI), pages 731–744, 2019.

[11] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin. Hamilton-Jacobi
reachability: A brief overview and recent advances. In Conf. on Decision

and Control, 2017.

[12] G. Basile and G. Marro. Controlled and conditioned invariant subspaces
in linear system theory. Journal of Optimization Theory and Applications,
3:306–315, 1969.

[13] S. Bassan, G. Amir, D. Corsi, I. Refaeli, and G. Katz. Formally Explaining
Neural Networks within Reactive Systems. In Proc. 23rd Int. Conf.

on Formal Methods in Computer-Aided Design (FMCAD), pages 10–22,
2023.

[14] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and
A. P. Schoellig. Safe learning in robotics: From learning-based control
to safe reinforcement learning. Annual Review of Control, Robotics, and

Autonomous Systems, 5:411–444, 2022.

[15] R. Bunel, I. Turkaslan, P. Torr, P. Kohli, and P. Mudigonda. A Unified
View of Piecewise Linear Neural Network Verification. In Proc. 32nd

Conf. on Neural Information Processing Systems (NeurIPS), pages 4795–
4804, 2018.

[16] J.-T. Camino, C. Artigues, L. Houssin, and S. Mourgues. Linearization
of euclidean norm dependent inequalities applied to multibeam satellites
design. Computational Optimization and Applications, 73:679–705, 2019.

[17] M. Casadio, E. Komendantskaya, M. Daggitt, W. Kokke, G. Katz,
G. Amir, and I. Refaeli. Neural Network Robustness as a Verification
Property: A Principled Case Study. In Proc. 34th Int. Conf. on Computer

Aided Verification (CAV), pages 219–231, 2022.

[18] Y.-C. Chang and S. Gao. Stabilizing neural control using self-learned
almost lyapunov critics. 2021 IEEE International Conference on Robotics

and Automation (ICRA), pages 1803–1809, 2021.

[19] Y.-C. Chang, N. Roohi, and S. Gao. Neural lyapunov control. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[20] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh. A
lyapunov-based approach to safe reinforcement learning. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems 31, pages
8092–8101. Curran Associates, Inc., 2018.

[21] W. Clohessy and R. Wiltshire. Terminal guidance system for satellite
rendezvous. Journal of the aerospace sciences, 27(9):653–658, 1960.

[22] E. Cohen, Y. Elboher, C. Barrett, and G. Katz. Tighter Abstract Queries
in Neural Network Verification. In Proc. 24th Int. Conf. on Logic for

Programming, Artificial Intelligence and Reasoning (LPAR), 2023.

[23] D. Corsi, G. Amir, G. Katz, and A. Farinelli. Analyzing Adversarial
Inputs in Deep Reinforcement Learning, 2024. Technical Report. https:
//arxiv.org/abs/2402.05284.

[24] D. Corsi, G. Amir, A. Rodriguez, C. Sanchez, G. Katz, and R. Fox.
Verification-Guided Shielding for Deep Reinforcement Learning, 2024.
Technical Report. http://arxiv.org/abs/2406.06507.

[25] D. Corsi, E. Marchesini, A. Farinelli, and P. Fiorini. Formal verification for
safe deep reinforcement learning in trajectory generation. In 2020 Fourth

IEEE International Conference on Robotic Computing (IRC), pages 352–
359, 2020.

[26] C. Dawson, S. Gao, and C. Fan. Safe control with learned certificates: A
survey of neural lyapunov, barrier, and contraction methods for robotics
and control. IEEE Transactions on Robotics, 2023.

[27] C. Dawson, Z. Qin, S. Gao, and C. Fan. Safe nonlinear control
using robust neural lyapunov-barrier functions. In Conference on Robot

Learning, pages 1724–1735. PMLR, 2022.

Authorized licensed use limited to: Stanford University Libraries. Downloaded on April 24,2025 at 18:49:31 UTC from IEEE Xplore. Restrictions apply.

[28] J. L. C. B. de Farias and W. M. Bessa. Intelligent control with artificial
neural networks for automated insulin delivery systems. Bioengineering,
9(11):664, 2022.

[29] A. Edwards, A. Peruffo, and A. Abate. A general verification framework
for dynamical and control models via certificate synthesis, 2023.

[30] R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neural
Networks. In Proc. 15th Int. Symp. on Automated Technology for

Verification and Analysis (ATVA), pages 269–286, 2017.

[31] Y. Elboher, E. Cohen, and G. Katz. Neural Network Verification using
Residual Reasoning. In Proc. 20th Int. Conf. on Software Engineering

and Formal Methods (SEFM), pages 173–189, 2022.

[32] Y. Elboher, J. Gottschlich, and G. Katz. An Abstraction-Based Framework
for Neural Network Verification. In Proc. 32nd Int. Conf. on Computer

Aided Verification (CAV), pages 43–65, 2020.

[33] T. Eliyahu, Y. Kazak, G. Katz, and M. Schapira. Verifying learning-
augmented systems. Proceedings of the 2021 ACM SIGCOMM 2021

Conference, 2021.

[34] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry. Reach-avoid problems
with time-varying dynamics, targets and constraints. In Proceedings of the

18th international conference on hybrid systems: computation and control,
pages 11–20, 2015.

[35] M. Ganai, Z. Gong, C. Yu, S. L. Herbert, and S. Gao. Iterative
reachability estimation for safe reinforcement learning. In Advances in

Neural Information Processing Systems, 2023.

[36] M. Ganai, C. Hirayama, Y.-C. Chang, and S. Gao. Learning stabilization
control from observations by learning lyapunov-like proxy models. 2023

IEEE International Conference on Robotics and Automation (ICRA), pages
2913–2920, 2023.

[37] O. Gates, M. Newton, and K. Gatsis. Scalable forward reachability
analysis of multi-agent systems with neural network controllers, 2023.

[38] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016.

[39] S. Govindaraju and D. Dill. Verification by approximate forward and
backward reachability. In 1998 IEEE/ACM International Conference

on Computer-Aided Design. Digest of Technical Papers (IEEE Cat.

No.98CB36287), pages 366–370, 1998.

[40] A. Gupta and I. Hwang. Safety verification of model based reinforcement
learning controllers, 2020.

[41] W. Haddad and V. Chellaboina. Nonlinear dynamical systems and control:
A lyapunov-based approach. Nonlinear Dynamical Systems and Control:

A Lyapunov-Based Approach, 01 2008.

[42] G. W. Hill. Researches in the lunar theory. American journal of

Mathematics, 1(1):5–26, 1878.

[43] K.-C. Hsu, V. Rubies-Royo, C. J. Tomlin, and J. F. Fisac. Safety
and liveness guarantees through reach-avoid reinforcement learning. In
Proceedings of Robotics: Science and Systems, Virtual, 7 2021.

[44] T. Huang, S. Gao, and L. Xie. A neural lyapunov approach to transient
stability assessment of power electronics-interfaced networked microgrids.
IEEE transactions on smart grid, 13(1):106–118, 2021.

[45] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification
of Deep Neural Networks. In Proc. 29th Int. Conf. on Computer Aided

Verification (CAV), pages 3–29, 2017.

[46] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee. Verisig: verifying
safety properties of hybrid systems with neural network controllers, 2018.

[47] P. Jin, J. Tian, D. Zhi, X. Wen, and M. Zhang. Trainify: A cegar-driven
training and verification framework for safe deep reinforcement learning.
In Computer Aided Verification: 34th International Conference, CAV 2022,

Haifa, Israel, August 7–10, 2022, Proceedings, Part I, page 193–218,
Berlin, Heidelberg, 2022. Springer-Verlag.

[48] K. D. Julian and M. J. Kochenderfer. A reachability method for verifying
dynamical systems with deep neural network controllers, 2019.

[49] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An
Efficient SMT Solver for Verifying Deep Neural Networks. In Proc. 29th

Int. Conf. on Computer Aided Verification (CAV), pages 97–117, 2017.

[50] G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljić, D. Dill, M. Kochenderfer, and C. Barrett.
The Marabou Framework for Verification and Analysis of Deep Neural
Networks. In Proc. 31st Int. Conf. on Computer Aided Verification (CAV),
pages 443–452, 2019.

[51] B. Könighofer, F. Lorber, N. Jansen, and R. Bloem. Shield Synthesis
for Reinforcement Learning. In Proc. Int. Symposium on Leveraging

Applications of Formal Methods, Verification and Validation (ISoLA),
pages 290–306, 2020.

[52] L. Kuper, G. Katz, J. Gottschlich, K. Julian, C. Barrett, and M. Kochen-
derfer. Toward Scalable Verification for Safety-Critical Deep Networks,
2018. Technical Report. https://arxiv.org/abs/1801.05950.

[53] B. Li, S. Wen, Z. Yan, G. Wen, and T. Huang. A survey on the control
lyapunov function and control barrier function for nonlinear-affine control
systems. IEEE/CAA Journal of Automatica Sinica, 10(3):584–602, 2023.

[54] Y. Li. Deep Reinforcement Learning: An Overview, 2017. Technical
Report. http://arxiv.org/abs/1701.07274.

[55] A. Lomuscio and L. Maganti. An Approach to Reachability Analysis
for Feed-Forward ReLU Neural Networks, 2017. Technical Report. http:
//arxiv.org/abs/1706.07351.

[56] U. Mandal, G. Amir, H. Wu, I. Daukantas, F. Newell, U. Ravaioli,
B. Meng, M. Durling, M. Ganai, T. Shim, G. Katz, and C. Barrett.
Formally Verifying Deep Reinforcement Learning Controllers with Lya-
punov Barrier Certificates. In Proc. 24th Int. Conf. on Formal Methods

in Computer-Aided Design (FMCAD), 2024.
[57] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,

and R. Ng. Nerf: Representing scenes as neural radiance fields for view
synthesis. Communications of the ACM, 65(1):99–106, 2021.

[58] M. Ostrovsky, C. Barrett, and G. Katz. An Abstraction-Refinement
Approach to Verifying Convolutional Neural Networks. In Proc. 20th.

Int. Symposium on Automated Technology for Verification and Analysis

(ATVA), pages 391–396, 2022.
[59] P. Prabhakar and Z. Afzal. Abstraction Based Output Range Analysis

for Neural Networks, 2020. Technical Report. https://arxiv.org/abs/2007.
09527.

[60] Z. Qin, T.-W. Weng, and S. Gao. Quantifying safety of learning-based
self-driving control using almost-barrier functions. In 2022 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages
12903–12910. IEEE, 2022.

[61] Z. Qin, K. Zhang, Y. Chen, J. Chen, and C. Fan. Learning safe multi-agent
control with decentralized neural barrier certificates. In ICLR, 2021.

[62] U. J. Ravaioli, J. Cunningham, J. McCarroll, V. Gangal, K. Dunlap, and
K. L. Hobbs. Safe reinforcement learning benchmark environments for
aerospace control systems. In 2022 IEEE Aerospace Conference (AERO),
pages 1–20. IEEE, 2022.

[63] A. Rodriguez, G. Amir, D. Corsi, C. Sanchez, and G. Katz. Shield
Synthesis for LTL Modulo Theories, 2024. Technical Report. http:
//arxiv.org/abs/2406.04184.

[64] L. H. Sena, I. V. Bessa, M. R. Gadelha, L. C. Cordeiro, and E. Mota.
Incremental bounded model checking of artificial neural networks in cuda.
In 2019 IX Brazilian Symposium on Computing Systems Engineering

(SBESC), pages 1–8, 2019.
[65] G. Singh, T. Gehr, M. Puschel, and M. Vechev. An Abstract Domain for

Certifying Neural Networks. In Proc. 46th ACM SIGPLAN Symposium

on Principles of Programming Languages (POPL), 2019.
[66] O. So and C. Fan. Solving stabilize-avoid optimal control via epigraph

form and deep reinforcement learning. In Proceedings of Robotics:

Science and Systems, 2023.
[67] V. Talpaert, I. Sobh, B. R. Kiran, P. Mannion, S. Yogamani, A. El-Sallab,

and P. Perez. Exploring applications of deep reinforcement learning for
real-world autonomous driving systems, 2019.

[68] V. Tjeng, K. Xiao, and R. Tedrake. Evaluating Robustness of Neural
Networks with Mixed Integer Programming. In Proc. 7th Int. Conf. on

Learning Representations (ICLR), 2019.
[69] M. Tong, C. Dawson, and C. Fan. Enforcing safety for vision-based

controllers via control barrier functions and neural radiance fields. In
2023 IEEE International Conference on Robotics and Automation (ICRA),
pages 10511–10517. IEEE, 2023.

[70] M. Usman, D. Gopinath, Y. Sun, Y. Noller, and C. Pǎsǎreanu. NNrepair:
Constraint-based Repair of Neural Network Classifiers, 2021. Technical
Report. http://arxiv.org/abs/2103.12535.

[71] H. Wu, O. Isac, A. Zeljić, T. Tagomori, M. Daggitt, W. Kokke, I. Refaeli,
G. Amir, K. Julian, S. Bassan, et al. Marabou 2.0: A Versatile Formal
Analyzer of Neural Networks. In Proc. 36th Int. Conf. on Computer Aided

Verification (CAV), 2024.
[72] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames. Robustness of control

barrier functions for safety critical control. Int. Federation of Automatic

Control, 2015.
[73] Y. Yang, Y. Jiang, Y. Liu, J. Chen, and S. E. Li. Model-free safe

reinforcement learning through neural barrier certificate. IEEE Robotics

and Automation Letters, 2023.
[74] D. Yu, H. Ma, S. Li, and J. Chen. Reachability constrained reinforcement

learning. In International Conference on Machine Learning, pages 25636–
25655. PMLR, 2022.

[75] H. Yu, C. Hirayama, C. Yu, S. Herbert, and S. Gao. Sequential neural
barriers for scalable dynamic obstacle avoidance. In 2023 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages
11241–11248. IEEE, 2023.

Authorized licensed use limited to: Stanford University Libraries. Downloaded on April 24,2025 at 18:49:31 UTC from IEEE Xplore. Restrictions apply.

