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Abstract—In this paper, we study and present the design of

a framework to identify applications from raw network traces.

Framing the problem as an application classification problem,

we set up the framework to extract key features from packet

data and their temporal behavior. The feature generation, their

training using traditional machine learning models, and the

decision making are executed over a four- stage pipeline, to

yield the name of the application. Through an in-lab environment

experimentation using OpenWrt toolkit, RaspberryPi, and a set

of physical devices (generating network traffic), we evaluated on

average about 204K data points from the captured network packet

traces for six applications. Our results show that our method

is able to classify the applications with at least 90% accuracy.

Through micro-benchmarking, we also show the feasibility of

scaling the number of applications and running the tool in real-

time.

Index Terms—Network Traffic Classification, Application Clas-

sification, Feature Extraction, Software-Defined Network, Wireless

Network, Machine Learning

I. INTRODUCTION

Extensive research has been conducted on Network Traffic
Classification (NTC) since the late 2000s. The initial focus was
on developing innovative statistical tools to characterize broad
traffic classes and specific applications within each class. This
aimed to replace traditional methods such as light and Deep
Packet Inspection (DPI), including port-based and payload-
based classification. Seminal works like [1], [2] sparked the
first wave of approaches, employing classic Machine Learning
(ML) to classify services through basic feature engineering.
This wave culminated in straightforward yet effective “early
traffic classification” techniques, which used time series infor-
mation, such as the size, ports, and protocols, for decision-
making. Subsequently, the success of Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN) in
image recognition [3] led to a second wave of traffic classifica-
tion approaches utilizing Deep Learning (DL) techniques which
is not the emphasis on this paper.

While DL techniques achieve the best accuracy in traffic
classification, conventional ML algorithms still exhibit some
advantages over DL. First, conventional ML algorithms are
relatively lightweight and thus are able to achieve real-time
traffic classification. However, the computational complexity
of DL algorithms is high and this can pose difficulties in

achieving real-time performance in high-speed networks. Sec-
ond, DL techniques often require a large amount of labeled
data to achieve satisfactory accuracy. However, obtaining a
large labeled dataset is expensive and time-consuming [4].
Hence, our focus will be more on the first wave, as we believe
that a comprehensive set of features has not been thoroughly
considered and accurately analyzed thus far. Despite numerous
NTC works using ML, there remains uncertainty about which
features are more important than others.

Limitations of traditional NTC. Traditional Network Traf-
fic Classification (NTC) methods face limitations, primarily
relying on rule-based approaches to classify network ports,
packet payload, traffic statistics, and application behavior. Port-
based classification, associating specific port numbers with
applications, is increasingly unreliable due to the use of non-
standard or dynamically allocated ports [5]. Payload-based clas-
sification, effective for unique characteristics but ineffective for
encrypted traffic [6]. Statistics-based classification, while flex-
ible, demands extensive data and computational resources [7].
Behavior-based classification, focusing on unique application
behaviors, requires a deep understanding, resulting in high
implementation complexity [8].

Proposed approach. In this paper, we design, implement,
and evaluate an application classification system that leverages
machine learning. In addition, our methodology combines deep
packet inspection, recognizing the challenges in traditional
NTC, we advocate for a hybrid approach, particularly packet-
based, payload-based, statistical-based, and behavioral-based
methods, in a multi-level machine learning architecture. The
objective is to demonstrate the superiority of multidimensional
features over rule-based traditional NTC, emphasizing feature
importance. Our design targets to achieve high classification
accuracy with high computation efficiency, potentially scalable
and function real-time. using a hybrid approach for NTC.

In summary, the contributions of this paper are as follows:

(1) A unique four-phased architecture for application-centric
NTC, leveraging machine learning. The model includes feature
extraction, feature vector generation, and multi-level machine
learning, utilizing Naive Bayes Multinomial for coarse classi-
fication and Random Forest and Decision Tree for fine classi-
fication.

(2) We design and implement a software-defined wireless
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network (SDWN) using Open-Wrt [9], simulating a realis-
tic home/office programmable wireless network. Our SDWN
serves as a tool for generating, capturing, and managing traffic
for network traffic classification research, enhancing sandbox-
ing in network traffic studies.
(3) Our research introduces a hybrid NTC method combining
packet-based, payload-based, statistical-based, and behavioral-
based network features. This includes a blend of packet and
payload lengths, flow-level features, nominal parameters, and
statistical distributions. In addition, a comprehensive analysis
using diagrams (circle packing, and word cloud) to illustrate
application distinctions based on network flow, types, desti-
nation ports, protocols, DNS, TLS/SSL requests, and feature
importance.
(4) We contribute a rich dataset with over 204,000 data
points from experiments involving six applications. The dataset
includes popular services like YouTube, Spotify, WhatsApp,
Wyze IPcamera, Google Home, email, and web browsing. Three
additional applications (Amazon Prime, Castbox, and Discord)
are added for scalability evaluation.
(5) Our extensive experiment-based evaluation reports 90% to
100% accuracy on application-level classification across differ-
ent machine learning training data volumes and capture time
windows. The system exhibits consistent results for scalability
and real-time deployment settings.

II. RELATED WORKS

In this section, we discuss some works that focus on NTC
in wireless networks. Most of the related works in NTC are
about device identification and classification however some
works are somehow related to application classification. In the
following, we will discuss the most related works in which
they implemented the NTC using ML and DL methods using
different features.

In [10], Bezawada et al. introduces a technique for IoT device
behavioral fingerprinting, leveraging network traffic features
for device identification. An ML model, trained using these
features (i.e. TCP window size, entropy, and payload lengths),
can distinguish similar device types. The study [11] proposed
a context-aware traffic classification approach employing ML
classifiers to enhance WLAN power efficiency. The authors
captured real-time instances of some applications including
Skype, Google Hangouts, Facebook, Gmail, New Star Soccer,
and XiiaLive internet radio. They employed 6 features per
instance like receiving data rate, transmitting data rate, total
received kbytes, total transmitted Kbytes, total number of
received packets, and total number of transmitted packets. They
used different ML techniques to evaluate their work. Sivanathan
et al. in [12] proposed a 2-stage ML framework that utilizes
various network traffic characteristics to identify and classify
baseline behavior of IoT devices in their instrumented smart
environment. The broad range of traffic characteristics studied
includes activity patterns (e.g., distribution of volume/times
during active/sleep periods), and signaling (e.g., domain names
requested, server-side port numbers used and TLS handshake
exchanges). The statistical attributes used in this work consist
of activity cycles, port numbers, signaling patterns, and cipher

suites. In the paper [13], the authors leverage supervised ML
models for network traffic classification in a Software Defined
Networking-enabled Fiber-Wireless Internet of Things smart
environment. The approach improves network interoperability,
reliability, scalability, and facilitates enhanced resource alloca-
tion and network security. The paper [14] formulated a method
that transforms packet headers into time-series feature vectors,
and subsequently into pseudo-images, enabling the application
of CNN for traffic classification. Utilized features are source
port, destination port, the number of bytes in packet pay-
load, TCP window size, inter-arrival time and direction of the
packet. The paper [15] introduces a novel approach to classify
encrypted network traffic and identify applications, without
relying on deep packet inspection. The authors transform basic
flow telemetry data into intuitive FlowPic representations that
encapsulate timing and size attributes. These image-like finger-
prints of traffic patterns are then leveraged to train CNN models
for classification tasks. As for the features, they only consid-
ered packet size and arrival time of the packets. Evaluations
demonstrate high accuracy in categorizing encrypted VPN and
Tor traffic into browsing, chat, video and other flow types. In
[16], Camelo et al. introduce a spectrum-based approach for
traffic classification across the radio network stack, realized
via a Deep Learning-based classifier. About 140K samples
are gathered from six applications including Spotify, Tunein,
Gpodcast, Youtube, Netflix, and Twitch. The paper compares
the performance of a novel CNN and a RNN architecture for
traffic classification tasks.

Although the discussed related works utilized various ap-
proaches for NTC, none of them considered as diverse set of
features as we do. One of the boldest novelties of this work is
employing a hybrid NTC methods.

III. SYSTEM ARCHITECTURE DESIGN OVERVIEW

As illustrated in Fig. 1, we propose a four-phase system
design featuring a 2-level machine learning hierarchical archi-
tecture. The notion of such a design is to keep the architecture
modular while ensuring each stage acts as a filter to simplify
the problem or derive key parameters or features deliverable
to the next phase. At a high level, Phase 1 qualifies the Traffic
Analysis (section V) aspect followed by the Multi-level Machine
Learning (section VI) that compiles Phases 2, 3 and 4.

A. Phase-1 (Feature Extraction)
Packet capture (PCAP), also referred to as libpcap, serves

as an application programming interface (API) capturing live
network packet data spanning OSI model Layers 2-7. Fig. 2
illustrates a segment of the raw PCAP file captured in our setup
((section IV) provides a detailed discussion). The raw PCAP
data lacks sufficient information for traffic classification, as it
only reveals headers and a limited amount of encrypted/un-
encrypted payloads. Consequently, feature extraction is neces-
sary to isolate the specific features we require from the raw
PCAPs.

Hence, we leverage the benefits of our hybrid NTC
approachas we considered packet-based, payload-based,
statistical-based, and behavioral-based methods to extract the
relevant key features for application classification. Defining
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Fig. 1. Proposed system architecture for application classification using
network traces.

network flow as a “5-tuple”, encompassing the {IP source,
IP destination, source port, destination port, and protocol},
we check on each row in the DataFrame (‘df’), each
representing a network packet, and aggregate these packets into
flows. We extract four flow-based features: “Flow Duration”
(time difference between the first and last packet in a flow),
“Flow Length” (count of packets in a flow), “Flow Size”
(sum of lengths of all packets in a flow), and “Inter-Arrival
Time” (time difference between last packet of previous flow
and first packet of current flow). Next, we extract packet
attributes, such as “packet Length” and “Payload Length”.
As a behavioral-based approach, we consider four attributes
including “ports”, “protocols”, “DNS” and “TLS/SSL” queries.
These are non-numerical and are treated as discrete entities.
These nominal attributes are handled using a Bag of Words
method, which we refer to as a ‘Bag of Features’. The output
of nominal parameters will be used in Phase-2 (as bags of
features model) for coarse classification, while the output
of the continuous parameters will be utilized in Phase-3 for
statistical analysis.

Fig. 2. Raw PCAP file (Indicating the first four captured packets in a raw
format). Each row is a network traffic analysis entry.

B. Phase-2 (ML Level-1 [Coarse Classification])

The feature vector for ports, protocols, DNS queries, and
TLS/SSL queries are considered nominal, which means they
are not considered numeric values and are multi-valued. To
elaborate, ’ports’ represents a collection of destination ports
used by a single application throughout the duration of packet
capture. Our proposed system model operates on a two-tier
ML architecture. Initially, each nominal attribute is presented to
its corresponding level-1 classifier (Naive Bayes Multinomial)
in a bag-of-features format. This approach generates a matrix

wherein rows denote labeled instances and columns correspond
to unique features. This ‘M x N’ matrix (where ‘M’ is the total
number of instances and ‘N’ is the number of unique features)
underpins the second phase of our model. The output of this
classifier comprises a class of confidence for each attribute,
yielding both the predicted class and the prediction probability.
These four outputs are subsequently amalgamated with other
features and incorporated into the fourth phase of our system
model as an additional input for the level-2 classifiers.

C. Phase-3 (Statistical Distribution + Final Feature Vector)
During this phase, we employ statistical distribution metrics,

specifically the mean and standard deviation (std), for the six
features derived from Phase-1. Consequently, each feature will
now be represented by three distinct values: the raw value,
the mean, and the standard deviation. For generating the final
feature vector, we use the raw values for “Flow Duration”,
“Flow Length”, “Flow Size”, and “Inter Arrival Time (IAT)”
in addition to “packet length” and “payload length”. Following
this, statistical distribution parameters such as mean and stan-
dard deviation for each of these six features are incorporated
into the ‘df’. Subsequently, bags of feature confidences,
including “predicted class” and “Prediction probability” for
DNS, Port, Protocol, and TLS/SSL, are merged into the ‘df’.
Consequently, the consolidated feature vector used in this phase
comprises 26 columns.

D. Phase-4 (ML level-2 [Fine Classification])
This constitutes the final phase, where application classifica-

tion is accomplished. The consolidated feature vector serves as
the input for two ML classifier algorithms. Initially, the feature
vector is supplied to the Random Forest Classifier (RFC) [17],
generating an output consisting of both the confidence score and
the predicted class. As an alternative for comparison, we also
repeat the same methodology with the Decision Tree Classifier
(DTC) [18] and obtain the corresponding classification output.

IV. EXPERIMENTATION SETUP AND DATA CAPTURE

Before delving into traffic analysis and ML classification
details, we outline our empirical experimentation and data col-
lection process. Our methodical experiments aimed to generate
a valuable dataset for system development and performance
evaluation. For design purposes, we employed a small subset
of the dataset, reserving the majority for a fair evaluation. Our

design assumes that during each data capture window, only

one application from each device is considered, reflecting

the naturally sequential flow of network traffic into a router.

A. Experimental Setup
SDWN is a wireless network architecture enabling intel-

ligent and centralized control through software applications
for monitoring and management. It adopts a Software-Defined
Networking (SDN) paradigm, where the control plane is sep-
arated from the data plane, allowing centralized control and
programmability [19]. Our research applies this SDWN ap-
proach to a practical home/office wireless network topology,
integrating both IoT and non-IoT devices. This facilitates a
programmable control plane for dynamic network management,
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Fig. 3. Our software-defined wireless networking experimentation setup

laying the groundwork for exploring the convergence of SDWN
and network traffic monitoring. This integration provides the
context for our investigation into application identification.

As depicted in Fig. 3, we used Seeed reRouter CM4
1432 [20], a Raspberry Pi Based Mini Router with OpenWrt
operating system as a programmable control plane. The base
hardware is a Raspberry pi 4. We transformed the TP-Link
router into a dummy Wide Area Network (WAN) switch
responsible solely for handling the data plane, while the control
plane of our system was established on the OpenWrt device.
The WAN interface of the TP-Link wireless router is linked
to the public Internet through our organization’s preconfigured
network. OpenWrt is connected to the Local Area Network
(LAN) ports of the router. The LAN subnet connecting the TP-
Link router and OpenWrt is configured as 192.168.1.0/30. In
this subnet, which uses a subnet mask of 30 (255.255.255.252),
the maximum number of hosts is two, which suits our scenario.
For the management plane to provide us with a console, we
connected a Raspberry Pi 4.0 to the LAN port of the OpenWrt
device. The internal network subnet is set as 192.168.2.0/24.
Using a subnet mask of 29 (255.255.255.240), which provides
us with enough hosts per subnet to accommodate the number
of end nodes on the LAN, connected to this network. The
Raspberry Pi provides us with both the graphical user interface
(GUI) of OpenWrt, known as LuCi [21], and SSH access to
the OpenWrt device with root privileges. Through the LuCi
web interface, we configured the initial IEEE 802.11 WiFi
network settings on OpenWrt. Additionally, on the LAN side,
we connected six wireless devices to the OpenWrt access point:
a Windows laptop, two Android phones, one Android tablet,
one IP camera, and one Google Home device acting as our
data plane.

Applications were chosen based on popularity and relevance
to modern internet services to mimic a mixed IoT/non-IoT en-
vironment. The laptop runs browsing and email traffic, Android
phones are used for WhatsApp calls, a tablet runs Spotify for
audio streaming, a Wyze IP camera streams video, and a Google

Home device focuses on audio streaming. The IP camera and
Google Home are categorized as IoT devices. Discord, Castbox,
and Amazon Prime are also considered, for evaluating the
scalability of our solution.

B. Network Flow and Data Capture

A network flow starts from any end node that generates
the traffic and sends it to the OpenWrt (acts as an Access
Point (AP)). OpenWrt forwards it to the router and thus to the
internet. For example, an Android tablet with the IP address
192.168.2.200 sends packets to OpenWrt (192.168.2.1), which
are then forwarded to 192.168.1.1, and subsequently to Spotify
server’s public IP on the internet.

For network traffic capture, we utilized the tcpdump tool
[22] on our controller, which saves the data in the PCAP format

The sample command executed on OpenWrt is
"tcpdump -vvv -n -i wlan0 -G 600 -U -s 0".
Here, the ‘-vvv’ verbose command enhances packet information
retrieval. Each ‘v’ progressively magnifies detail. For example,
one ‘v’ provides the TTL, ID, total length, and options in an IP
packet, and three ‘v’s offer even more detailed data. The ‘-n’
option avoids converting host addresses to names, mitigating
potential delays and packet loss during captures. The ‘-i
wlan0’ specifies the listening interface, the wireless LAN
interface of OpenWrt (192.168.2.1), and ‘-G 600’ constrains
the capture duration to 600 seconds. The ‘-s 0’ option sets
the packet capture size in bytes, with a size of 0 signifying
full packet capture. After the capture, we use the WireShark
Packet Analyzer [23] tool to transform the packet capture data
from PCAP to easier-to-handle CSV format. The dataset is
an aggregation of packet captures from several rounds of data
collection.

V. TRAFFIC ANALYSIS

The objective of this stage is feature extraction, that is, to
discern the varying behaviors of individual applications over
time, unravel any underlying patterns, behaviors, or signatures
that could be identified as unique characteristics inherent to
specific applications. Applications typically make distinctive
DNS requests, and identifying this patterns can help track the
application. Destination ports, although not entirely reliable as
they are variable, still are valuable, as different applications of-
ten use specific ports associated with their communication pro-
tocols. Protocols themselves are highly indicative of application
types, given their close alignment with application functional-
ities. Lastly, the TLS/SSL handshake (authentication/security)
components offer insight into the applications initiating secure
connections, such as the Client Key Exchange, Change Cipher
Spec, and Encrypted Handshake Message. Despite potential
obfuscation and encryption challenges, combining these key
features enhances our classification capabilities.
Protocols. Protocols can be key application defining fac-
tors [24]. TCP and UDP, the main transport layer protocols, are
the most common and recurring in our dataset. TCP ensures
reliable data delivery, typically for web browsing and email
services, while UDP supports real-time communication [25],
used by applications like WhatsApp or IP Cameras. Application
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B. Ports Circle PackingA. Protocols Circle Packing

Fig. 4. Most used/cited Ports and Protocols per application represented in circle pack (better read in color - digital or print)

A. TLS/SSL Queries Word Cloud

GoogleHome Spotify Web-mail WhatsApp Wyze IPCamera Youtube

B. DNS Queries Word Cloud

Fig. 5. Most used/cited DNS and TLS/SSL queries per application represented as a word cloud (better read in color - digital or print)

layer protocols like HTTP, DNS, and TLS/SSL (observed as
TLSv1.2 and TLSv1.3 in the dataset) are common across
most applications, while others like QUIC might be used by
applications like YouTube and Spotify for improved streaming
efficiency [26]. Protocols like STUN indicate real-time commu-
nication or streaming use, as seen in IP Cameras and WhatsApp.
Proprietary protocols, such as TPLINK-SMARTHOME/JSON,
signify specific device use, and others like EAPOL and DHCP,
linked more to the network connection process, can still offer
useful context. Fig. 4-A uses a circle packing algorithm to il-
lustrate the most frequently used protocols for each application,
with unique bubble colors for each application and annotations
for specific protocols and their usage frequencies.

Ports. Destination ports can provide insights into the nature
of the applications generating the traffic [27]. The Internet
Assigned Numbers Authority (IANA) categorizes destination
port numbers into three ranges: well-known ports (0-1023), reg-
istered ports (1024-49151), and dynamic/private ports (49152-
65535). Well-known ports are associated with common pro-
tocols such as HTTP (port 80) and FTP (ports 20 and 21),

registered ports are reserved for specific services, often used
by proprietary software, and dynamic/private ports are chosen
at run-time by client applications, presenting a classification
challenge due to their variability across sessions. Despite
the overlapping usage, especially with modern applications’
preference for ports like 80 and 443, distinct patterns can
often be discerned. These patterns are typically based on the
frequency, timing, and correlation of destination port usage
with other network features. A well-structured understanding
of destination ports can significantly enhances the effectiveness
of traffic classification. Fig. 4-B uses a circle packing algorithm
to represent the most frequently used destination ports for each
application in our dataset, with distinct bubble colors for each
application and annotations indicating specific destination ports
and their usage counts.

DNS Queries. DNS queries serve as an integral part of NTC,
revealing discernible patterns indicative of application activities.
These queries translate human-friendly domain names into IP
addresses that devices use to communicate, thereby providing
insights into which services or servers an application is in-
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teracting with. The uniqueness and relative counts of these
DNS queries can be significantly telling of an application’s
nature and behavior [28]. The nature, frequency, and sequence
of these DNS query types can further illuminate the activity
pattern of an application, aiding in the classification process.
Thus, despite being a lower-level network feature, DNS queries
present a highly informative dimension for network traffic
classification, enabling a granular understanding of application
behavior. We utilize Regular Expression (RegExr) [29] to
extract domain names embedded within packet payloads. This
method provides a mechanism to identify patterns within the
chaotic text presented in the information column of the PCAP
data. Regular expressions aid in discerning these patterns,
effectively enabling the isolation and extraction of the requisite
domain names. Fig. 5-A presents a word cloud illustrating the
frequency of DNS queries associated with different applications
in our dataset.

TLS/SSL Queries. Transport Layer Security (TLS) and its
predecessor, Secure Sockets Layer (SSL), are cryptographic
protocols designed to provide secure communication over a
network [30]. As part of NTC, the analysis of TLS/SSL
queries found in the payload of network packets can offer
valuable insights into the unique activity patterns of applications
[31]. We extracted these queries from PCAP packets that
use TLSv1.2, TLSv1.3, or SSL. For instance, string patterns
like “Client Key Exchange, Change Cipher Spec, Encrypted
Handshake Message” are retrieved from the unstructured info
column using regular expressions. These extracted TLS/SSL
queries represent a series of actions performed during the secure
communication process, as identified in TLS/SSL handshake
protocol. For instance, “Client Key Exchange” refers to the
stage where the client is establishing a secure connection with
the server. “Change Cipher Spec” indicates that all future
communication will be encrypted, and “Encrypted Handshake
Message” represents the finalization of this secure connection.
The frequency, order, and the specific type of these queries
can be telling of the application’s behavior and communication
pattern. Thus, despite the encrypted nature of these protocols,
the process flow revealed by these queries offers another level
of granularity in application characterization, thereby bolstering
the overall network traffic classification process. Fig. 5-B
presents a word cloud illustrating the frequency of TLS/SSL
queries for applications in our dataset.

VI. MULTI-LEVEL MACHINE LEARNING APPROACH

After feature extraction from the raw PCAP in Phase-1 (see
Fig. 2), we now have two types of features, nominal and
continuous. The nominal parameters (ports, protocols, DNS
and TLS/SSL queries) are collectively considered in the form
of bags of features and feed into the ML-Level1 for coarse
classification. The output of the ML-Level1 is input to ML-
level2 along with the raw values of the continuous attributes,
and their statistical mean and standard deviation values, as a 26-
column feature vector (see Fig. 6). This stage delivers the fine
classification output with prediction class and the associated
confidence probability.

Fig. 6. Combined 26-column feature vector (Indicating our hybrid NTC
approach. Each row is a network traffic analysis entry. Each of the 26 columns
is our derived feature.

Coarse Classification We realize that our Bags of Features
are nominal, i.e., not considered numeric values, and are
multi-valued. To elaborate, ’ports’ represent a collection of
destination ports used by a single application throughout the
duration of packet capture. For example, when capturing
packets from YouTube, we might encounter a set such as
{"50422":12801, "52800":1876}. This set represents
destination port numbers with 12,801 occurrences of port
number 50422 and 1,876 occurrences of port 52800. In terms
of the ’Protocols’ attribute, considering Google Home packet
capture as an example, we might generate a set such as
{"UDP":1090, "AJP13":324}. This represents the pro-
tocols used, with 1,090 occurrences for the UDP protocol and
324 occurrences of the AJP13 protocol. Similar multi-valued
sets arise for DNS and TLS/SSL queries. In [32] researchers
have shown that A normative Bayesian model for classification
(NBMC) is effective in text classification scenarios where there
are many unique words, and thus we employ NBMC for coarse
classification using the bag of nominal features. The output
of this classifier comprises a class of confidence for each
attribute, yielding both the predicted class and the prediction
probability. During the learning phase, the classifier analyzes
the distribution of words. Let us take the Bag of Protocols
as an example. The classifier calculates the likelihood of each
protocol name appearing given a certain class. This is computed
using the formula represented in (1) [12]:

P (vi|tj) =
1 +

PI
p=1

PT
v=1 mp,tj ,v ·K(v, vi)

T +
PT

q=1

PI
p=1 mp,tj ,vq

(1)

where, considering Bag of Protocols for Youtube as an example,
vi is the i-th unique term in the training dataset (e.g., STUN).
ti is the j-th target class (i.e. YouTube). I is the total number
of instances, and T is the total number of unique terms. mp,tj ,v

is the number of occurrences of term v in the p-th instance of
target class tj . K(a, b) is the Kronecker delta function, which
is 1 if a = b and 0 otherwise.

During the testing phase, the classifier calculates the follow-
ing probability denoted in (2) [33] for all possible target classes:
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P (tj |Vtest) = P (tj) ·
TY

i=1

[P (vi|tj)]
PT

v=1 ntest,v·K(v,vi) (2)

where, V test is a set represented by
{v1 : n1

test, v2 : n2
test, . . . , vT : nT

test, ni
test} is the occurrence

number of individual unique term vi in a given test instance,
and P (tj) is the presence probability of a target class tj in the
whole training dataset (i.e., number of tj training instances
divided by total number of all training instances).
Fine Classification. As the coarse classification attributes are
not linearly separable and the outputs of ML-level1 are nominal
values, we use ML-Level2 to perform finer resolution classifi-
cation. We employ two types of classifiers (any one is good,
but include both to compare and evaluate), a random forest
classifier (RFC) and a decision tree classifier (DTC). For the
RFC configuration, the parameter "n_estimators" deter-
mines the number of decision trees used. While a larger number
can enhance the model’s performance, it can also increase
computational demands and risk overfitting [34]. After cross-
validation and tuning, we determined that three trees provided
an adequate balance between computational cost and model
performance. The decision to use both RFC and DTC in our
system model comparison stems from several factors. Firstly,
we evaluate complexity against accuracy; by comparing a DTC
with an RFC, a single DTC to an RFC can reveal how increas-
ing model complexity from one to three trees impacts accuracy.
Secondly, we consider the trade-off between interpretability
and performance. DTC provides superior interpretability while
RFCs typically deliver better performance, thus comparison
helps to optimize for transparency and efficiency. Thirdly, the
comparison aids in assessing robustness against noise, outliers,
and over fitting, where RFCs generally outperform due to
their ensemble nature [35]. Lastly, both models yield feature-
importance results, allowing us to determine the most influential
features in each algorithm.

VII. EVALUATIONS AND RESULTS

In order to assess the performance of our model and identify
potential bottlenecks, we first present the end-to-end evaluation
of the system performance, followed by a microbenchmark.
The key results present the classifier’s performance for datasets
collected across multiple trials and time-windows (10 minutes,
5 minutes, 2 minutes, 90 seconds, and 60 seconds). In the coarse
classification, we evaluate the performance of the NBMC in the
context of Bags of Features. The fine classification examines
the performance of the RFC and DTC Classifiers for end-to-
end comprehensive application classification. We analyzed the
quality of the model’s predictions using accuracy, precision,
recall, and F1-Score. In the microbenchmark, we add three
applications (a total of 9 applications) in the experiment and
reevaluate the entire system to test for scalability. The motiva-
tion is to examine the system’s response to new applications and
provide a design tutorial on how easily the system can scale.
We also discuss computational complexity in the key results
and microbenchmark.
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Fig. 7. Coarse Classification Performance results - Top Left Plot: Accuracy
- Top Right Plot: Precision - Bottom Left Plot: Recall - Bottom Right Plot:
F1-Score. X axis is PCAP data capture time window.

A. Classification Results

Coarse Classification using NBMC. The training data utilized
in our evaluations are compiled from eight ‘df’s. These
frames are extracted from different rounds of data collection
captured in PCAPs, with varied durations such as 10 minutes,
5 minutes, 2 minutes, 90 seconds, 60 seconds, 30 seconds,
20 seconds, and 10 seconds. The input data is presented
in two columns, namely ’source’ and ’feature’. Collectively,
the training set for this evaluation is about 20 minutes and
comprises 140,353 data points for the bag of protocols, 106,142
for ports, 1,989 for DNS, and 20,435 for TLS/SSL. The
reason for the discrepancy in data point length stems from the
intrinsic nature of these parameters. For instance, the frequency
of DNS or TLS/SSL queries appearing in PCAP is notably
less than that of protocols or ports. Fig. 7 illustrates the
coarse classification performance of our model across four
metrics: accuracy, precision, recall, and F1-score in different
plots. Each line on the plot represents a different attribute:
DNS (green, circle indicator), ports (orange, triangle), protocols
(pink, diamond), and TLS/SSL (blue, rectangle). DNS shows
the best performance at 90 percent, initially at the 10-min
mark, then gradually decreasing until 2 min and stabilizing
thereafter. Ports maintain around 85 percent up to the 2 min
mark, then dip to 70 percent. Protocols remain stable across all
intervals at 71 percent. TLS/SSL begins promisingly with 83
percent accuracy at the 10 min mark, stabilizing from the 5-min
interval. However, its F1-score consistently stays around 61. It’s
evident that the performance breakpoint occurs at the 2-min
interval, yet our four features still exhibit satisfactory results
up to the 1-min mark. This indicates that capturing network
traces for 1 min window our model still maintains a coarse
classification performance above 60 percent. It’s important to
note that perfect results at ML-Level 1 are not our primary aim,
however, this stage provides a foundation and probability of the
coarse class identification for the next finer classification stage.
That is the rationale behind proposing multi-level ML model,
as the first one alone never reaches the optimum results.
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Fig. 8. Fine Classification Performance results for RFC - Top Left Plot:
Accuracy - Top Right Plot: Precision - Bottom Left Plot: Recall - Bottom
Right Plot: F1-Score. X axis is PCAP data capture time window.

Fine Classification using RFC. The training data for this
evaluation are uniquely allocated to each trial. For instance,
when testing the results for a 10-minute period, the same 10-
minute dataset serves as both test and train data by varying
the proportions (percentage split) of train and test data. We
incorporate three variations of test:train data split: 95:5 %,
99:1 %, and 99.9:0.01%. The quantity of data points varies
for each trial due to differences in the capture time windows
of PCAPs. The number of data points ranges from 145,209 in
a 10-minute interval to 27217 for a 120-second interval, and to
3332 for a 10-second interval. As expected, the quantity of data
points diminishes as the PCAP duration decreases. For the RFC
configuration, the parameter "n_estimators" determines
the number of decision trees used. While a larger number can
enhance the model’s performance, it can also increase computa-
tional demands and risk overfitting. After cross-validation and
tuning, we determined that three trees provided an adequate
balance between computational cost and model performance.
As depicted in Fig. 8, the fine classification performance of
our model using RFC shows accuracy, precision, recall, and
F1-score in four distinct plots. Each line on the plot represents
a different test data size: 95 percent (green, circle indicator),
99 percent (orange, triangle), and 99.9 percent (pink, diamond).
The results show that fine classification using RFC delivers
perfect scores across all metrics for all time intervals, even at
1 min, when using 95 percent of the data for testing. With a
99 percent test data split, we retain perfect scores for the 10
and 5 min intervals, and even though there’s a slight decrease
from the 2 min mark, we still achieve over 90 percent accuracy
at the 1 min interval. However, with a 99.9:0.01 % split,
satisfactory results are only seen at the 10 min interval, with a
significant decrease for the 1.5 and 1 min intervals. In summary,
using a 95 percent test data split assures perfect classification.
However, we also can observe that our system can sustain upto
90% accuracy at 99:1 % data split, even with 1 min network
traces capture. This means that it is possible to execute the

classification of applications using our system in real-time

within a 1 minute time buffer window.
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Fig. 9. Fine Classification Performance results for DTC - Top Left Plot:
Accuracy - Top Right Plot: Precision - Bottom Left Plot: Recall - Bottom
Right Plot: F1-Score. X axis is PCAP data capture time window.

Fine classification using DTC. Fig. 9 reveals that fine clas-
sification with DTC exhibits similar trends with both 95 and
99 percent test splits. With a 99.9 percent split, results mirror
RFC for the first two intervals, but then drop sharply to
approximately 60 percent at the 2-min interval, further declining
to around 40 percent for accuracy and recall, and 20 percent for
precision and F1-score in the last two intervals. Overall, DTC
matches RFC’s performance at the 10 and 5-min intervals, even
surpassing RFC at the 2-min interval with a 99 percent test split.
However, performance drops significantly beyond this point.
DTC remains a valid option considering a 95 or 99 percent test
data split.
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Fig. 10. Mircrobenchmark for Scalability - Left Plot: Coarse Classification -
Middle Plot: Fine Classification RFC - Right Plot: Fine Classification DTC

B. Microbenchmark

Scalability test. We add three more applications to our experi-
ments and collect PCAP data considering those as a part of our
networking experiment environment. Additional training data
(considering the new applications) for coarse classification is
gathered from a 30-minute capture, yielding 212,716 data points
for a bag of protocols, 162,833 for ports, 2,638 for DNS, and
30,797 for TLS/SSL. Fig. 10 presents system performance for
coarse and fine classifications for a 5-minute evaluation interval.
Observing Fig. 10 (left), trends for DNS, port, protocol, and
TLS/SSL mirror those from our key results, albeit with a
minor decrease (around 5 percent) for each metric. Despite
this, results remain satisfactory, all exceeding 60 percent, and
confirming that the system performance remains consistent at
Phase-1 even when more applications are added. In Fig. 10
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Fig. 11. Microbenchmark - SHAP feature importance for RFC (left) and DTC
(right). Each color corresponds to a specific application. For instance, in RFC
(left) figure, the feature “DNS predicted class” primarily contributes to the
classification of “web-mail”, followed by “YouTube”, and then “WhatsApp”,
among others.

(center), compared to the fine classification using RFC, reveals
only minor variations except for the system performance with a
95 percent test data split, which is perfect. Using a 99 percent
test data split gives us a near-perfect performance of 98 percent,
compared to the prior perfect score. This slight decrease can be
considered almost negligible. The behavior of the 99.9 percent
test data size parallels that in the key results, with a minor re-
duction (less than 5 percent). In Fig. 10 (right), concerning fine
classification using DTC, reveals a consistent trend only for the
95 percent test data split, showing perfect system performance.
However, the 99 percent test data split performance lags slightly
behind RFC and there’s a significant drop when considering the
99.9 percent test data split, with precision dipping to about 80
percent, which isn’t satisfactory. In summary of the scalability
test, our results with nine applications are fairly consistent
with that of six applications, demonstrating system stability and
scalability. The system remains robust with a 95 percent test
data split, yielding perfect classification confidence.
Feature importance. Fig. 11 shows the SHAP (SHapley Addi-
tive exPlanations) feature importance when using RFC vs DTC
for our fine classification. SHAP attributes the contribution (im-
portance) of each feature to the prediction for each sample [36].
The displayed feature importance underscores the effectiveness
of our proposed hybrid NTC and multi-layered ML system
for fine classification. The plot reveals the influence of both
nominal and continuous features. Our ’Bags of Features’ ap-
proach, applied in coarse classification, has significantly aided
in accurate classification, as demonstrated by importance of
features such as “DNS predicted class”, “TLS/SSL prediction
probability”, “Protocol predicted class”, etc. Furthermore, sta-
tistical distribution from packet-level, payload-level, and flow-
level (analytical features), as seen in “packet length mean”,
“payload length std”, “flow size std”, “flow length mean”, “IAT
std” (interarrival time), also contribute significantly. We infer
that the distribution of the flow and packet features were more
helpful than their raw values.

VIII. CONCLUSION

In this paper, we introduced and assessed a novel application
classification system using a software-defined wireless network
experimentation approach. Our four-phased system architecture
seamlessly integrated a hybrid network traffic classification
approach with a multi-level machine learning method. Our
analysis uncovered distinctive patterns and behaviors for each

application, particularly emphasizing nominal parameters like
ports, protocols, DNS, and TLS/SSL queries. Feature selection
from a diverse set of packet-based, payload-based, statistical-
based, and behavioral-based attributes, resulted in successful
classification and provided insights into feature importance.
Our extensive evaluation demonstrated exceptional performance
for both coarse and fine classifications across various PCAP
data capture volumes and time windows. Notably, our model
achieved near-perfect application classification accuracy with
just a 1-minute data capture, utilizing only 5 percent of the
data for training. System scalability was confirmed with the
addition of three more applications, and key features influencing
classification were highlighted through SHAP analysis. As fu-
ture work, we plan to assess the system’s performance through
a microbenchmark focused on in-app service identification,
addressing the unique challenges posed by applications like
WhatsApp. While acknowledging our contribution isn’t the first
to apply ML models to network traces, our approach offers
a distinctive perspective on the significance of each network
feature in application classification. This underscores the im-
portance of selecting the right tools and features, advocating
for thoughtful problem-solving rather than blindly following
trends.
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