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Abstract—Goal: Poor arousal management may lead to
reduced cognitive performance. Specifying a model and
decoder to infer the cognitive arousal and performance
contributes to arousal regulation via non-invasive actuators
such as music. Methods: We employ a Bayesian filtering
approach within an expectation-maximization framework
to track the hidden states during the n-back task in the
presence of calming and exciting music. We decode the
arousal and performance states from the skin conductance
and behavioral signals, respectively. We derive an arousal-
performance model based on the Yerkes—Dodson law. We
design a performance-based arousal decoder by consider-
ing the corresponding performance and skin conductance
as the observation. Results: The quantified arousal and per-
formance are presented. The existence of Yerkes—Dodson
law can be interpreted from the arousal-performance rela-
tionship. Findings display higher matrices of performance
within the exciting music. Conclusions: The performance-
based arousal decoder has a better agreement with the
Yerkes—Dodson law. Our study can be implemented in de-
signing non-invasive closed-loop systems.

Index Terms—Affective computing, biomedical signal
processing, estimation, state-space methods.

Impact Statement—There is no dynamic approach to de-
code the arousal from the arousal-performance link. Our
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algorithm decodes the arousal using skin conductance as
well as cognitive performance.

l. INTRODUCTION

HE word cognition refers to “the mental action of acquir-
T ing knowledge and understanding through thought and
experience”, which emphasizes the dynamics of learning as
opposed to the participant’s previous knowledge [3]. Human
emotional status directly impacts the cognition [4]. Particularly,
arousal, which refers to an intensity level of human emotions,
can determine cognitive performance in performing a cogni-
tive task [5]. Cognitive tasks are those that require a person
to mentally process new information, retrieve that information
from memory, and use it at a later time [6]. The term cognitive
performance describes the overall performance of the cognitive
functions over a cognitive task. Human cognitive functions are
diverse and can be divided into two main branches, namely, basic
functions and higher-level cognitive functions. Basic cognitive
functions include attention, working memory (WM), and per-
ception, while higher-level cognitive functions consist of speech
and language, decision-making, and executive control [7]. In this
research, we investigate the underlying arousal and performance
state during the n-back task —which requires WM usage— in the
presence of music.

WM is a basic cognitive function that enables the temporary
storage and manipulation of information [8]. While working
memory, by itself, is a basic cognitive function, it would serve
as a core component of higher cognitive function, and several
cognitive tasks involve working memory usage [9]. Here, the
n-back task serves as a cognitive task of interest. The n-back
task mainly executes the working memory. Additionally, there
is evidence of executive control and attention involvement when
performing the n-back task [10]. A single block of an n-back
task includes sets of letters known as the stimulus. For each stim-
ulus, a participant is supposed to realize whether the presented
stimulus matches the nth previous one or not. The higher order
of “n” would result in a higher cognitive load of WM [11]. The
term cognitive load implies the occupied WM resources [12].

Human emotion has been modeled using different ap-
proaches. In one of the early and well-known models, emotion
has been demonstrated by Ekman and Friesen using 6 distinct
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categories: happiness, sadness, surprise, fear, anger, and disgust.
However, there was a lack of continuity in that paradigm [13],
[14]. A more advanced model has been developed by Russell
such that emotion can be recognized continuously using two
orthogonal axes—valence and arousal. The term arousal denotes
the intensity level of emotion associated with the sympathetic
nervous system, and valence has been related to the pleasantness
and unpleasantness of the emotion [5], [14]. The electrodermal
activity (EDA) can be considered as an informative index of
arousal [15]: The human autonomic nervous system is com-
posed of three main branches, namely, the sympathetic nervous
system, the parasympathetic nervous system, and the enteric
nervous system [16]. Sympathetic nerve fibers are responsible
for the innervation of sweat glands [17]. The variations in sweat
secretions can be measured from the skin. Therefore, the skin
conductance signal (a measure of EDA) can be applied as a
metric to monitor the arousal level [18].

The arousal and working memory association can depend
on multiple factors, such as underlying neurotransmitter pro-
duction, valence, working memory tasks, and personal charac-
teristics [9]. Based on the observed association between nore-
pinephrine — a type of neurotransmitter that is positively corre-
lated with arousal — and performance in working memory tasks,
it has been hypothesized that moderate levels of arousal can
improve working memory, while extreme levels of arousal may
impair working memory [19]. This hypothesis complies with
the Yerkes—Dodson law. The Yerkes—Dodson law — known
as an inverted-U law in psychology— explains that an extremely
low arousal level can lead to a lack of attention while extremely
high arousal may result in a distraction in which both cases
would prevent reaching the optimal cognitive performance [20].
To support this hypothesis, one may exclusively investigate the
n-back task as a working memory task of interest. Specifically,
to perform the n-back task, the focus of attention serves as an
essential factor. The focus of attention is mainly provided by at-
tentional capacity, which is the limited capacity system. Optimal
arousal can result in high attentional capacity, while excessively
high and low arousal levels lead to reductions in attentional
capacity, which follows the Yerkes—Dodson law [21], [22].

The inverted-U law offers us an opportunity to regulate arousal
such that it boosts cognitive performance. External non-invasive
interventions such as background music can be employed to
influence the mood or arousal level of an individual [23].
Particularly, the type of music can be an effective factor in
cognitive performance regulation and designing non-invasive
arousal actuators. Previous studies reveal that rock music may
reduce productivity in performing the n-back task, while no
music or listening to country or jazz music can enhance the
participant’s performance in the course of the n-back task [24].
Given the non-invasiveness, accessibility, daily music listening
time, and advances in music streaming platforms, the idea of
using music to impact cognitive states seems to be far-reaching
and worthy of consideration. Hence, we employ the collected
behavioral data and skin conductance signal throughout the
n-back tasks in the presence of two types of music selected
by the participants [25]. The music component was used to
mock the low and high arousing environment that can possibly
affect the performance. Hence, the participants were asked to

provide music with calming and exciting content, which are
mainly different in terms of arousal rather than valence [5].

The cognitive performance and arousal states are often pre-
sented as discrete measurements, such as discrete ratings pro-
vided by either subjects or observers. The discrete measure-
ment prevents us from continuous tracking of the arousal and
performance. Using the Bayesian filtering approach within an
expectation-maximization framework, we decode the continu-
ous performance and arousal state [14], [26].

The objectives of this study can be listed as decoding the
arousal and performance in the presence of music, presenting
performance indices within each music session as well as task
difficulty, evaluating the arousal-performance link, and develop-
ing a performance-based arousal decoder accordingly. To obtain
the sparse autonomic nervous system (ANS) activation from the
skin conductance, we perform a signal deconvolution [27]. To
estimate the arousal state from the recovered ANS activations,
we use a marked point process (MPP) filtering. To estimate
the latent cognitive performance state, we employ the sequence
of correct/incorrect responses and the reaction time at each
trial [28], [29]. In order to estimate performance-based arousal,
we consider the combination of skin conductance data and cog-
nitive performance as the effective observation. Particularly, we
utilize the arousal-related events derived from ANS activation
and the continuous performance to form the observation vector.
Thereafter, we decode the arousal using the proposed Bayesian
decoder.

Il. MATERIALS AND METHODS
A. Dataset

The experimental data used in this research was collected
under the approval of the Institutional Review Board at the
University of Houston, Houston, Texas, USA. The experiment
was originally conducted to investigate the viability of applying
music as a neurofeedback mechanism in the course of n-back
experiment [25]. Several behavioral data and physiological sig-
nals were recorded from 6 novice participants during the n-back
task in the presence of two sessions of calming and exciting
background music. The participants were asked to select the
music with calming and exciting content. The music was applied
to simulate the low and high arousing environment. Hence,
the selected content of music was supposed to be different in
terms of arousal rather than valence. According to Russel’s
emotion model, while calming music is pleasant and minimally
arousing, music with an exciting subject is pleasant and highly
arousing [5]. The calming background music was played in
the first session, and the exciting background music was pre-
sented during the second session. To avoid fatigue and minimize
learning impact on behavioral measurements, equal numbers
of 1-back and 3-back task blocks were randomly distributed
within two sessions of calming and exciting background music,
and instructions were provided at the beginning of each trial.
A total number of 32 task blocks were implemented (16 task
blocks within each session). Each task block was initialized
with the 5 seconds instruction period, followed by 22 trials,
with 0.5 seconds for displaying the letter. In addition to 0.5
seconds display time, the participant had 1.5 seconds to deliver
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Fig. 1. Summary of the experimental setup (n-back task). The 1-back
and 3-back task blocks were implemented within two sessions in the
presence of calming and exciting background music.

the response and press a Chronos Keypad button to determine
whether the presented letter was the same as the the nth previous
letter (pressing the target button) or it was mismatched (pressing
non-target button). Therefore, the total stimulus time at each task
block was 49 seconds. In total, a participant performed 704 trials
(i.e., 2 sessions x 16 task blocks x 22 trials). At the end of each
task, a 10 seconds relaxation segment was contrived. After 8
blocks (halfway mark for each session), a 20 seconds relaxation
section was implemented, and between the sessions, there was
a 2-minute relaxation break. During the data collection process,
the participants were asked to engage in the task and avoid un-
necessary movements. The only required movement was related
to pressing either the target button or the non-target button on
the Chronos Keypad. The recorded behavioral data comprised
of reaction time and sequence of correct/incorrect responses.
A summary of the employed cognitive task is presented in
Fig. 1.

The collected physiological data included functional near-
infrared spectroscopy (fNIRS), electrocardiogram (ECG), res-
piration, skin surface temperature, electrodermal activity (EDA),
photoplethysmography (PPG), electromyogram (EMG), and fa-
cial expression. In this study, we use the recorded behavioral
data as well as EDA measurements. The electrodermal activity
(EDA) recordings used in this study have been collected from
have been collected from the MP160 BioPac system with a
sampling frequency of 2 KHz. The system sensors were placed
over the digitus quartus manus and digitus medius manus of
the participant’s non-dominant hand. The experiment is ex-
plained comprehensively in the supplementary information and
in [25].

B. Inference of Brain Activation From Skin
Conductance Measurements

In order to infer the neural impulse train from the raw skin
conductance signal, an appropriate deconvolution method needs
to be employed. Applying a coordinate descent approach we
recover the sparse arousal events due to ANS activation [30],
[31]. A detailed description of the approach can be found in the
supplementary materials.

C. A Marked Point Process State-Space Model for
Arousal

Similar to [14], we assume a random walk model for the
hidden arousal state £; such that

T =11 +e, )

where €; ~ A(0,02) is the process noise and j stands for the
time index. Following the marked point process filtering ap-
proach in [14], we consider Bernoulli distribution for the arousal
events n;, with probability mass function a}” (1 —a;j)'~" such
that P(n; = 1) = a;. We relate Z; to a; by applying a sigmoid
transform similar to [26]. Thus,

1

G @

a;

where 3 is a constant that can be derived from 3 ~ log(7%2-)
and a is the average probability of observing an impulse during
the experiment. Similar to [14], continuous-valued amplitude r;

of each neural impulse may be represented as
T =% + N + vy, (3)

where 7, is the amplitude of the observed impulse, v; ~
N(0, 02) presents the sensor noise, 4o and 4; are the unknown
parameters to be determined. Consequently, the joint density
function for the observed neural stimuli is

]. — CLj lf nj = 0
p(n; Nrjld;) = ) (rj S0 #? )]
e 295 ifn; =1

s

7/ 2mo?
The derivation of a marked point process state-space decoder
for arousal is described in the supplementary materials.

D. A State-Space Model for Performance

Inspired by the proposed state-space model in [28], we con-
sider an autoregressive model for the cognitive performance
state.

2 = p2g-1 + W, (5)

where 2y, is a hidden performance state, wy, ~ N(0, 02)) stands
for the process noise, p is the unknown coefficient, and k is the
trial number during the experiment.

Similar to [28], we form the observation model by specifying
one binary observation (correct/incorrect response at k‘" trial)
and one continuous observation (reaction time of the corre-
sponding response). The Bernoulli probability model is assumed
for the binary responses with the probability mass function of



630

IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, VOL. 5, 2024

TABLE |
AROUSAL-PERFORMANCE REGRESSION MODEL RESULTS
p-value
Participant | A4 A A3
1 3.14¢-05 0.0197 0.0048
2 4.13e-09 2.04e-25 5.71e-06
3 1.20e-07 0.10985 0.0001
4 5.89¢e-45 0.0594 8.34e-25
5 3.53e-18 0.0110 4.13e-08
6 291e-18 0.0455 1.7e-10

Pt (1 — py)'~™*. Applying sigmoid transform we may express
the py; in terms of z; such that

- 1
14 e Gt

Pk (6)

The constant term ;. can be determined from p ~ 1og(%)
where py is the average probability of having a correct response.
The reaction time 75 can be related to the performance state

using:
(N

where 0, ~ A(0, a§), and [}, is the log of reaction time at each
trial.

The performance state decoder’s equations can be found in
the supplementary materials.

Iy = log(m) = ap + 12k + Ok,

E. Performance as a Function of Arousal

By utilizing both decoded arousal (#;) and performance states
(21), we define an arousal-performance function inspired by the
inverted-U law [1], [20]:

Vi = M XZ 4 Ao Xy + Az + ek, (®)

where Y}, presents the standard score of the performance state
at each n-back trial and X, stands for the standard score of the
average arousal—derived from marked point process filter—
at each n-back trial. Thus, the observed data points consist of
(X,Y); e is assumed to follow a white noise structure, e ~
N(0,02) and, X1, Ao, and A3 are the unknown parameters that
can be determined by robust fitting with bisquare weighting. It
is not advised to use the ordinary least-squares method since
the data points here consist of different layers from multiple
different trials. Instead, a robust fitting with bisquare weights
can be employed using a MATLAB function (fitlm).

F. A Performance-Based Arousal State-Space Model

According to Table I, the p-values for the linear term A, are
high for most of the participants which display that the statistical
significance of Ao is considerably low compared to A1 and As.
Based on the inverted quadratic relationship between arousal and
performance and by ignoring the linear term Ao, We may modify
the arousal state observation model based on the performance.
Considering the arousal level at each trial, the state follows the

previous random walk model such that

T = Tp—1 + Up, )
where 7, stands for the performance-based arousal at k*" trial
and uy, ~ N0, 02) is the process noise. Similar to the proposed
marked point process approach, we specify a Bernoulli distribu-
tion for 7, at each trial where 75, stands for the arousal events
at each trials (average of neural impulses over each trial). Note
that each trial takes 2 seconds and we might have more than
one impulse at each trial; however, it does not affect our arousal
events’ vector N = {71, 7y, ..., 7} since the hidden state is
defined based on trials. Hence, 7, only takes O or 1 to indicate
the arousal events in particular period. We relate the state z, to
the probability of arousal events occurrence ¢ at trial k as before

1
o= T @ (10
where ¢ is a constant that can be derived from ¢y = log( 1?3)0 )

and ¢y is the average probability of having the arousal event.

Additionally, the observation model contains the continuous
value of performance state z; and, continuous-valued arousal
event’s amplitude 7. Hence,

2k = MTE 4 Ao + g, (11)
where 11 and 10 are the unknown parameters, and
Tk =0 + Tk + Ck, (12)

where, 7, stands for the average value of neural impulses at each
trial. Also, 7y and, 47 are the unknown parameters. Similarly,
Pr ~ N(0,07) and (. ~ N(0, 07) are assumed to be Gaussian.
The joint density function for the occurred arousal event is

1— ¢ if ng =0
7 Folrs) = — (k=0 -F1)?
p(ng NTE|TK) = —r .
( %) bk 21 e 20 ifng,=1
77(7'(
(13)

G. A Performance-Based Arousal Decoder

We derive a decoder based on the performance-based
arousal model. The unknown parameters vector would be 6 =
{02, 11, Ao, 03), Yo, 1, czg} and we apply the EM algorithm to
jointly estimate Z; and 6.

1) E-Step: The E-step consists two subsections namely, for-
ward filtering and backward smoothing. Based upon the observa-

tion R = {(f, 71, 21), . . ., (g, &, 21,) } up to time K, E-step
equations can be formulated.
Predict:
Tpie-1= Th-1k-1, (14)
~2 ~2 ~2
Oklk—1 = Oj—1jk—1 T Ous (15)

Update:
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ifng =0

Trre = G | (e — duje) (16)

(25»1:%k|k.)(zk — 5\0 — 11%%%)
+ 2
Ty

+ Thp-1,

1

Thp = [¢kk(1 — k) + =3
k|k—1

—1
1 [, N S
- 0-72 |:2)»1(Zk — )\.0 — lei‘k) — (2)\1$kk)2:|‘| .
P
(17)
iy, =1
. . N Y1 (Fx — Fo — Y1Tk|k)
T = Ul%|k—1 (T — D) + 2 | (18)
¢
(211%1@)(% — o — 113%%%) i
3 + Thlk-1,
Ty
1 &
~92 1
Tre = |Prp(l = Gpp) + =— + =3
| [ O.lz\k'—l o¢

-1
1 |- * s T
- % |:2)\1(Zk — Ao — )\1$i‘k) — (2A1xk|k)2” .
(19)
In order to solve for ,;,, we have utilized a MATLAB function
called fzero which solves for the roots of non-linear equations.
In order to acquire the smoothed state Ty and smoothed

variance 0'2k| K>, we reverse the direction:

~2
~ UkK
Ay = 5 20)
Tk+1lk
Erie = T + Ak (@1 — Frgan)s 21
Gk = e T AR(GR a1k — Fryap)- (22)

By utilizing the proposed approach in [14] and [26], we derive
the expected values of 77, and Z1,7_1 as
E[#}] = T}k + Ghic, (23)

E[#k11%4] = Frp1xTrixc + AkGh - (24)

Since we consider a quadratic function to relate the arousal
to performance, we first derive an expression for E[Z}].

E[7}] = E[(37)]

= (E[#2])” + var (). (25)

For approximating the last term (var(#%)) in (25), similar
to [32], we employ the second order Taylor series such that

9 2
var(i}) ~ 4 (Bl(@)))* 67, + 2 (5, (26)
Therefore,
Eli) ~ (E7)” + 4 @) o +2 (03,) - @D

2) M-Step: We denote the location of the trials where arousal
events occurred at X' = {k|f, = 1}. Based on the E-step re-
sults, we can form a log-likelihood function ()3, and find the
unknown parameters 6 = {02, A1, Ao, 012/), 30471, O'g} such that

6 maximizes ()s.

K
Qs = Y _Eliig(qo + &) — log(1 + e®+)]
k=1

i E
+ - 10g(27'('0’?) — Z -

keK

(Fe — Yo — N1Zk)?

2
20<
E (Zk — 5\,0 — 5»1.%%)2

K X
- 2 L J
+ 5 log(27ay,) — kgl 203

E|(Zx — :Ek)Q}

M=

-K
+ — log(2ma?) — (28)

2
202

>
Il

1

The algorithm iterates between the E-step and the M-step until
the convergence.

lll. RESULTS

The collected behavioral data at each session and type of n-
back task can be found in Fig. 2. Mainly, the number of correct
responses and the average reaction times for all participants can
be found in Fig. 2. The blue bars correspond to a calming session,
and the red bars correspond to an exciting session. The dark
intense bars indicate the 3-back data, and the brighter ones stand
for the 1-back task.

Fig. 3 presents the distribution of the performance state while
different types of music were presented.

The estimated arousal state based on the MPP type observa-
tion for all participants are available in the supplementary infor-
mation. Furthermore, we depict the distribution of average MPP-
based arousal state within trials with respect to each tasks dif-
ficulty (supplementary information). We find the point-biserial
correlation coefficients between the task difficulty and arousal by
considering the task difficulty as dichotomous variable and the
average arousal state within the trials as the continuous variable.
In turn, the point-biserial correlation coefficients for participants
1 to 6 are 0.0603, -0.0268, 0.0166, 0.0150, -0.0206, and 0.0405,
respectively.

InFig. 4, we investigate the link between the estimated arousal
from the MPP filter and the estimated performance. The blue
and red points are associated with the 1-back and 3-back tasks,
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Fig. 2. Number of correct responses and reaction time with respect to
the type music and task for all participants. The top sub-panel presents
the number of correct responses with respect to each session and
n-back task block. The bottom sub-panel displays the average reaction
times (the bars), and the error bars show the data within the first and
third quartiles with respect to each session and n-back task block.
The blue and red colors present the calming and exciting sessions,
respectively. The darker colors with more intensity stand for the 3-back
task blocks and the brighter ones present the 1-back task blocks.
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Fig. 4. Arousal-performance diagram within the whole experiment.
The x-axis represents the standard score of the estimated arousal de-
rived from the marked point process estimator, and the y-axis stands for
the standard score of the performance states. The red and blue data
points show the observed pairs of arousal and performance withing the
3-back trials and 1-back trials, respectively. The black curve presents
the fitted model.

respectively. The data points can form an inverted-U shape for
all participants with different coefficients. The p-values of the
model parameters are provided in Table I. We can observe that
the p-values for A1 are statistically significant for all participants,
while the coefficient A5 is not statistically significant.

We represent the performance-based arousal estimator results
for participants 1 and 6 in Fig. 5. The first two subplots at
each column present the observed performance and the average
of arousal events at each trial, which together comprise the
decoder observation. The third and fourth subplots show the
estimated arousal state and the probability of observing arousal
events, respectively. To study the personalized trajectories of
arousal, we formulate a high arousal index (HAI) to generalize
the estimated arousal level of participants (23) [14]. The HAI
can be calculated from p(Zy > Zhreshold), Where the threshold
has been set to the median of the state values. It indicates
the probability that a binary event occurs more than just by
chance over the experiment. The performance-based arousal
state estimation results for other participants can be found in
the supplementary materials.

In Fig. 6, we compare the arousal-performance link derived
from the performance-based arousal state and the estimated
arousal from the MPP decoder.

According to the proposed models, we simulate sets of in-
ternal states (Fig. 7). The subplots of Fig. 7 present simu-
lated arousal events with their amplitudes and reconstructed
Tk, simulated performance state and reconstructed one, simu-
lated arousal state (ground truth) and estimated one, simulated
probability of observing an arousal event and estimated one, the
quantile-quantile (QQ) plot of arousal state residual error, and
the arousal-performance link, in turns. The R-squared value for
the estimated arousal state is 0.8541.

IV. DIScuUsSION

In most of the affective studies, the absence of ground truth re-
sulted in implicit evaluation and validation of estimated arousal.
An instance of such implicit evaluation would be using experi-
ment information such as presented emotional stimuli to evaluate
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the decoder’s outcome [33]. In this study, the experiment was
designed with two types of task blocks (i.e., 1-back and 3-back
tasks) and two different background music. We evaluate and
discuss the decoded arousal and performance state with respect
to each session and each type of task. Particularly, since the
high cognitive load can reduce cognitive performance, we would
expect to see lower performance levels in 1-back trials compared
to 3-back trials in the decoded performance [34]. Furthermore,
due to the exciting content of the selected music in the second
session, the participant may experience a higher level of arousal
within the second session compared to the first session, and the
decoded arousal state may be evaluated accordingly [25], [35],
[36].

The collected behavioral data that is used as an observation
to decode the performance is presented in Fig. 2; the decoded
performance is demonstrated in Fig. 3. Apart from Participant
2, the higher number of correct responses, as well as the faster
reaction time, can be seen within the second session. These
higher performance metrics in the second session are aligned
with the decoded performance state. Also, the low performance
during the 3-back and high performance during the 1-back
task blocks are noticeable in both the decoded performance

and the recorded behavioral data. Overall, there is a decent
agreement between the estimated performance state and the
observed performance metrics. Considering the variation of
performance metrics within the sessions, we may notice that the
performance variation from calming to exciting in 3-back task
blocks is higher than the 1-back ones. One possible explanation
for the observed behavior is that participants already perform
well enough within the 1-back tasks to the point that no consid-
erable difference can be made by changing the condition [37].
This is aligned with the findings in [38], where participants
performed near ceiling level at 1-back regardless of the applied
training.

In general, our findings present higher performance matrices
associated with the exciting session for five out of six partic-
ipants. One may argue that the improved performance is an
indication of the arousal establishment within the desired range
using music. However, other factors such as, the learning effect,
the nature of the task, and the participant’s baseline can be
involved which hinder us from drawing any definite conclusion.
Particularly, it should be noted that the exciting session was im-
plemented as the second session; it is possible that the participant
outperformed in the second session due to learning the task [39].
Hence, while it might be viable to impact the performance via
personalized music, further studies are needed to make any solid
judgment on the impact of music on performance. Specifically,
including a control group in this context can provide a better
insight into the impact of music as well as the presence of
learning.

It is worth highlighting participant 2 as the only participant
that presents a lower performance within the second session.
This may indicate that the exciting component of music does not
improve this person’s performance. Perhaps the exciting music
makes the person excessively aroused while the person’s ideal
arousal level is located within the lower arousal range. Another
interpretation from the observed trend would be the absence of
plausible learning. Looking into the arousal-performance link
for participant 2, Table I and Fig. 4 reveal a relatively strong
linear component in the arousal-performance relationship. Com-
monly, the linear arousal-performance link can be expected
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Simulation study
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when a person does not experience high enough arousal [40].
However, for participant 2, we have a different scenario in which
the presence of high performance in the low arousal range and the
absence of high performance in the high arousal range region is
seen. A linear model can describe the arousal-performance link
in such cases where either the rise or decay of the performance
is presented solely. Nevertheless, if the rise or decay occurs
exponentially, the exponential model also can be a good fit.

In this research, to avoid the potential reduced statistical
power [41], we consider all the data collected during the ex-
periment to perform the regression analysis and identify the
presence of Yerkes-Dodson law. One may interpret the presence
of Yerkes-Dodson law from the presented analysis. One crucial
point that needs to be addressed is the extent to which the

task difficulty and distribution impact the underlying arousal
and, subsequently, the observed arousal-performance link. The
point-biserial correlation coefficients do not reveal a significant
association between the n-back task difficulty and the arousal,
which agrees with the findings in [42]. However, we should
keep in mind that in this research, the arousal state is derived
from the skin conductance signal, and employing other phys-
iological signals as an arousal index may produce a different
outcome, in which task difficulty plays a confounding role
[42], [43].

The participants were asked to provide calming and exciting
music with no quantification or rating of the elicited emotion.
In particular, the applied music was meant to have a person-
specific impact rather than equal emotion elicitation across the
whole sample size. Hence, we should be cautious in generalizing
the findings. Instead, we may investigate the results with an
individualized viewpoint. Thus, we use the participant’s baseline
to present person-specific metrics of arousal and performance
(i.e., HAI and HPI), which can be found in the supplementary
information.

While the applied personalized music mimics the personal-
ized closed-loop architecture, it can induce the impact of famil-
iarity on arousal and performance. One possible way to reduce
the effect of music familiarity and preserve the personalized
nature of the music intervention is to employ new generative
deep-learning models and produce new music based on the
participant’s preferences person [44].

Using the performance-based arousal decoder, we can obtain
the arousal level corresponding to the performance of each trial
(Fig. 5). The performance-based arousal decoder can benefit
from having a performance as one of the observations. Specif-
ically, for participant 6, in spite of the few observed ANS
activations during the exciting session, the higher baseline of
performance in the exciting session would prevent an exces-
sive drop of arousal. As it can be seen in Fig. 6, the arousal-
performance links derived from the performance-based model
(Fig. 5) tend to maintain the inverted quadratic shape and follow
the inverted-U law. Additionally, since we are using both be-
havioral data and skin conductance signal for the performance-
based arousal decoder, the results would be less affected by the
possible artifacts from the skin conductance signal recording,
solely.

The simulation study illustrates a decent performance of the
proposed decoder. Specifically, the R-squared value and QQ plot
display an agreement between the decoded state trajectory and
the ground truth. While the Bayesian state-space approach is
a powerful estimation tool, there are cases that might suffer
from the overfitting issue [33]. This simulation study (first
two subplots of Fig. 7) demonstrates that the estimates do not
overfit to either the provided MPP observation or the continuous
observation.

V. CONCLUSION

In the studied n-back experiment, two types of music were
presented to investigate the potential of developing a safe neuro-
feedback via music. Using a state-space modeling approach, we
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decode cognitive arousal and performance states of participants.
To obtain a better insight into the arousal and performance
relationship, we evaluate the plausible Yerkes—Dodson law
via regression analysis. The existence of Yerkes—Dodson law
would be one possible interpretation from the observed results
while the small sample size and a lack of a control group would
hinder us from establishing a definitive conclusion.

Our study would shed light on the primary idea of enhancing
cognitive performance and shifting one’s arousal using music.
It might be feasible to impact the arousal and performance
via music [45]. However, it should be highlighted that several
factors, such as the learning effect, the nature of the task, the
participant’s baseline, and the type of applied music, can impact
the outcome. Hence, a more comprehensive experiment with a
larger sample size, control group, shuffled cognitive tasks, and
various types of music would be helpful for having a settled
resolution on the music’s effect on arousal and performance.

We design a performance-based arousal decoder that esti-
mates the arousal level of individuals based on their perfor-
mance. This type of decoder conforms to the Yerkes—Dodson
law. The ultimate goal of this performance-based arousal de-
coder is to be implemented within safe closed-loop systems,
and the proposed decoder can be further investigated in differ-
ent behavioral experiments [46], [47], [48]. In the future, we
aim to test decoders in different experiments and quantify the
arousal and performance in various environments. Also, given
the developed performance-based arousal decoder, informative
signals such as pupil size can be used in parallel with the skin
conductance signal to decode the hidden arousal and evaluate
the performance of the decoder [49].

Supplementary Materials: Additional figures, details of the
methods, and further discussion are provided in supplementary
materials.
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