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Abstract—Goal: Poor arousal management may lead to
reduced cognitive performance. Specifying a model and
decoder to infer the cognitive arousal and performance
contributes to arousal regulation via non-invasive actuators
such as music. Methods: We employ a Bayesian filtering
approach within an expectation-maximization framework
to track the hidden states during the n-back task in the
presence of calming and exciting music. We decode the
arousal and performance states from the skin conductance
and behavioral signals, respectively. We derive an arousal-
performance model based on the Yerkes—Dodson law. We
design a performance-based arousal decoder by consider-
ing the corresponding performance and skin conductance
as the observation. Results: The quantified arousal and per-
formance are presented. The existence of Yerkes—Dodson
law can be interpreted from the arousal-performance rela-
tionship. Findings display higher matrices of performance
within the exciting music. Conclusions: The performance-
based arousal decoder has a better agreement with the
Yerkes—Dodson law. Our study can be implemented in de-
signing non-invasive closed-loop systems.
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processing, estimation, state-space methods.
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algorithm decodes the arousal using skin conductance as
well as cognitive performance.

I. INTRODUCTION

T
HE word cognition refers to “the mental action of acquir-

ing knowledge and understanding through thought and

experience”, which emphasizes the dynamics of learning as

opposed to the participant’s previous knowledge [3]. Human

emotional status directly impacts the cognition [4]. Particularly,

arousal, which refers to an intensity level of human emotions,

can determine cognitive performance in performing a cogni-

tive task [5]. Cognitive tasks are those that require a person

to mentally process new information, retrieve that information

from memory, and use it at a later time [6]. The term cognitive

performance describes the overall performance of the cognitive

functions over a cognitive task. Human cognitive functions are

diverse and can be divided into two main branches, namely, basic

functions and higher-level cognitive functions. Basic cognitive

functions include attention, working memory (WM), and per-

ception, while higher-level cognitive functions consist of speech

and language, decision-making, and executive control [7]. In this

research, we investigate the underlying arousal and performance

state during the n-back task –which requires WM usage– in the

presence of music.

WM is a basic cognitive function that enables the temporary

storage and manipulation of information [8]. While working

memory, by itself, is a basic cognitive function, it would serve

as a core component of higher cognitive function, and several

cognitive tasks involve working memory usage [9]. Here, the

n-back task serves as a cognitive task of interest. The n-back

task mainly executes the working memory. Additionally, there

is evidence of executive control and attention involvement when

performing the n-back task [10]. A single block of an n-back

task includes sets of letters known as the stimulus. For each stim-

ulus, a participant is supposed to realize whether the presented

stimulus matches the nth previous one or not. The higher order

of “n” would result in a higher cognitive load of WM [11]. The

term cognitive load implies the occupied WM resources [12].

Human emotion has been modeled using different ap-

proaches. In one of the early and well-known models, emotion

has been demonstrated by Ekman and Friesen using 6 distinct
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categories: happiness, sadness, surprise, fear, anger, and disgust.

However, there was a lack of continuity in that paradigm [13],

[14]. A more advanced model has been developed by Russell

such that emotion can be recognized continuously using two

orthogonal axes—valence and arousal. The term arousal denotes

the intensity level of emotion associated with the sympathetic

nervous system, and valence has been related to the pleasantness

and unpleasantness of the emotion [5], [14]. The electrodermal

activity (EDA) can be considered as an informative index of

arousal [15]: The human autonomic nervous system is com-

posed of three main branches, namely, the sympathetic nervous

system, the parasympathetic nervous system, and the enteric

nervous system [16]. Sympathetic nerve fibers are responsible

for the innervation of sweat glands [17]. The variations in sweat

secretions can be measured from the skin. Therefore, the skin

conductance signal (a measure of EDA) can be applied as a

metric to monitor the arousal level [18].

The arousal and working memory association can depend

on multiple factors, such as underlying neurotransmitter pro-

duction, valence, working memory tasks, and personal charac-

teristics [9]. Based on the observed association between nore-

pinephrine – a type of neurotransmitter that is positively corre-

lated with arousal – and performance in working memory tasks,

it has been hypothesized that moderate levels of arousal can

improve working memory, while extreme levels of arousal may

impair working memory [19]. This hypothesis complies with

the Yerkes—Dodson law. The Yerkes—Dodson law – known

as an inverted-U law in psychology– explains that an extremely

low arousal level can lead to a lack of attention while extremely

high arousal may result in a distraction in which both cases

would prevent reaching the optimal cognitive performance [20].

To support this hypothesis, one may exclusively investigate the

n-back task as a working memory task of interest. Specifically,

to perform the n-back task, the focus of attention serves as an

essential factor. The focus of attention is mainly provided by at-

tentional capacity, which is the limited capacity system. Optimal

arousal can result in high attentional capacity, while excessively

high and low arousal levels lead to reductions in attentional

capacity, which follows the Yerkes—Dodson law [21], [22].

The inverted-U law offers us an opportunity to regulate arousal

such that it boosts cognitive performance. External non-invasive

interventions such as background music can be employed to

influence the mood or arousal level of an individual [23].

Particularly, the type of music can be an effective factor in

cognitive performance regulation and designing non-invasive

arousal actuators. Previous studies reveal that rock music may

reduce productivity in performing the n-back task, while no

music or listening to country or jazz music can enhance the

participant’s performance in the course of the n-back task [24].

Given the non-invasiveness, accessibility, daily music listening

time, and advances in music streaming platforms, the idea of

using music to impact cognitive states seems to be far-reaching

and worthy of consideration. Hence, we employ the collected

behavioral data and skin conductance signal throughout the

n-back tasks in the presence of two types of music selected

by the participants [25]. The music component was used to

mock the low and high arousing environment that can possibly

affect the performance. Hence, the participants were asked to

provide music with calming and exciting content, which are

mainly different in terms of arousal rather than valence [5].

The cognitive performance and arousal states are often pre-

sented as discrete measurements, such as discrete ratings pro-

vided by either subjects or observers. The discrete measure-

ment prevents us from continuous tracking of the arousal and

performance. Using the Bayesian filtering approach within an

expectation-maximization framework, we decode the continu-

ous performance and arousal state [14], [26].

The objectives of this study can be listed as decoding the

arousal and performance in the presence of music, presenting

performance indices within each music session as well as task

difficulty, evaluating the arousal-performance link, and develop-

ing a performance-based arousal decoder accordingly. To obtain

the sparse autonomic nervous system (ANS) activation from the

skin conductance, we perform a signal deconvolution [27]. To

estimate the arousal state from the recovered ANS activations,

we use a marked point process (MPP) filtering. To estimate

the latent cognitive performance state, we employ the sequence

of correct/incorrect responses and the reaction time at each

trial [28], [29]. In order to estimate performance-based arousal,

we consider the combination of skin conductance data and cog-

nitive performance as the effective observation. Particularly, we

utilize the arousal-related events derived from ANS activation

and the continuous performance to form the observation vector.

Thereafter, we decode the arousal using the proposed Bayesian

decoder.

II. MATERIALS AND METHODS

A. Dataset

The experimental data used in this research was collected

under the approval of the Institutional Review Board at the

University of Houston, Houston, Texas, USA. The experiment

was originally conducted to investigate the viability of applying

music as a neurofeedback mechanism in the course of n-back

experiment [25]. Several behavioral data and physiological sig-

nals were recorded from 6 novice participants during the n-back

task in the presence of two sessions of calming and exciting

background music. The participants were asked to select the

music with calming and exciting content. The music was applied

to simulate the low and high arousing environment. Hence,

the selected content of music was supposed to be different in

terms of arousal rather than valence. According to Russel’s

emotion model, while calming music is pleasant and minimally

arousing, music with an exciting subject is pleasant and highly

arousing [5]. The calming background music was played in

the first session, and the exciting background music was pre-

sented during the second session. To avoid fatigue and minimize

learning impact on behavioral measurements, equal numbers

of 1-back and 3-back task blocks were randomly distributed

within two sessions of calming and exciting background music,

and instructions were provided at the beginning of each trial.

A total number of 32 task blocks were implemented (16 task

blocks within each session). Each task block was initialized

with the 5 seconds instruction period, followed by 22 trials,

with 0.5 seconds for displaying the letter. In addition to 0.5

seconds display time, the participant had 1.5 seconds to deliver
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Fig. 1. Summary of the experimental setup (n-back task). The 1-back
and 3-back task blocks were implemented within two sessions in the
presence of calming and exciting background music.

the response and press a Chronos Keypad button to determine

whether the presented letter was the same as the the nth previous

letter (pressing the target button) or it was mismatched (pressing

non-target button). Therefore, the total stimulus time at each task

block was 49 seconds. In total, a participant performed 704 trials

(i.e., 2 sessions × 16 task blocks × 22 trials). At the end of each

task, a 10 seconds relaxation segment was contrived. After 8

blocks (halfway mark for each session), a 20 seconds relaxation

section was implemented, and between the sessions, there was

a 2-minute relaxation break. During the data collection process,

the participants were asked to engage in the task and avoid un-

necessary movements. The only required movement was related

to pressing either the target button or the non-target button on

the Chronos Keypad. The recorded behavioral data comprised

of reaction time and sequence of correct/incorrect responses.

A summary of the employed cognitive task is presented in

Fig. 1.

The collected physiological data included functional near-

infrared spectroscopy (fNIRS), electrocardiogram (ECG), res-

piration, skin surface temperature, electrodermal activity (EDA),

photoplethysmography (PPG), electromyogram (EMG), and fa-

cial expression. In this study, we use the recorded behavioral

data as well as EDA measurements. The electrodermal activity

(EDA) recordings used in this study have been collected from

have been collected from the MP160 BioPac system with a

sampling frequency of 2 KHz. The system sensors were placed

over the digitus quartus manus and digitus medius manus of

the participant’s non-dominant hand. The experiment is ex-

plained comprehensively in the supplementary information and

in [25].

B. Inference of Brain Activation From Skin
Conductance Measurements

In order to infer the neural impulse train from the raw skin

conductance signal, an appropriate deconvolution method needs

to be employed. Applying a coordinate descent approach we

recover the sparse arousal events due to ANS activation [30],

[31]. A detailed description of the approach can be found in the

supplementary materials.

C. A Marked Point Process State-Space Model for
Arousal

Similar to [14], we assume a random walk model for the

hidden arousal state x̂j such that

x̂j = x̂j−1 + εj , (1)

where εj ∼ N (0, σ2
ε ) is the process noise and j stands for the

time index. Following the marked point process filtering ap-

proach in [14], we consider Bernoulli distribution for the arousal

events nj , with probability mass function a
nj

j (1− aj)
1−nj such

that P (nj = 1) = aj . We relate x̂j to aj by applying a sigmoid

transform similar to [26]. Thus,

aj =
1

1 + e−(x̂j+β)
, (2)

where ³ is a constant that can be derived from ³ ≈ log( a0

1−a0
)

and a0 is the average probability of observing an impulse during

the experiment. Similar to [14], continuous-valued amplitude rj
of each neural impulse may be represented as

rj = ˆ́0 + ˆ́1x̂j + vj , (3)

where rj is the amplitude of the observed impulse, vj ∼
N (0, σ2

v) presents the sensor noise, ˆ́0 and ˆ́1 are the unknown

parameters to be determined. Consequently, the joint density

function for the observed neural stimuli is

p(nj ∩ rj |x̂j) =

⎧

⎪

«

⎪

¬

1− aj if nj = 0

aj
1√
2πσ2

v

e

−(rj−γ̂0−γ̂1x̂j)
2

2σ2
v if nj = 1

. (4)

The derivation of a marked point process state-space decoder

for arousal is described in the supplementary materials.

D. A State-Space Model for Performance

Inspired by the proposed state-space model in [28], we con-

sider an autoregressive model for the cognitive performance

state.

zk = ρzk−1 + wk, (5)

where zk is a hidden performance state, wk ∼ N (0, σ2
w) stands

for the process noise, ρ is the unknown coefficient, and k is the

trial number during the experiment.

Similar to [28], we form the observation model by specifying

one binary observation (correct/incorrect response at kth trial)

and one continuous observation (reaction time of the corre-

sponding response). The Bernoulli probability model is assumed

for the binary responses with the probability mass function of
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TABLE I
AROUSAL-PERFORMANCE REGRESSION MODEL RESULTS

pmk

k (1− pk)
1−mk . Applying sigmoid transform we may express

the pk in terms of zk such that

pk =
1

1 + e−(zk+μ)
. (6)

The constant term μ can be determined from μ ≈ log( p0

1−p0
)

where p0 is the average probability of having a correct response.

The reaction time τk can be related to the performance state

using:

lk = log(τk) = α0 + α1zk + δk, (7)

where δk ∼ N (0, σ2
δ ), and lk is the log of reaction time at each

trial.

The performance state decoder’s equations can be found in

the supplementary materials.

E. Performance as a Function of Arousal

By utilizing both decoded arousal (x̂j) and performance states

(zk), we define an arousal-performance function inspired by the

inverted-U law [1], [20]:

Yk = λ̂1X
2
k + λ̂2Xk + λ̂3 + ek, (8)

where Yk presents the standard score of the performance state

at each n-back trial and Xk stands for the standard score of the

average arousal—derived from marked point process filter—

at each n-back trial. Thus, the observed data points consist of

(X,Y ); ek is assumed to follow a white noise structure, ek ∼
N (0, σ2

e) and, λ̂1, λ̂2, and λ̂3 are the unknown parameters that

can be determined by robust fitting with bisquare weighting. It

is not advised to use the ordinary least-squares method since

the data points here consist of different layers from multiple

different trials. Instead, a robust fitting with bisquare weights

can be employed using a MATLAB function (fitlm).

F. A Performance-Based Arousal State-Space Model

According to Table I, the p-values for the linear term λ̂2 are

high for most of the participants which display that the statistical

significance of λ̂2 is considerably low compared to λ̂1 and λ̂3.

Based on the inverted quadratic relationship between arousal and

performance and by ignoring the linear term λ̂2, we may modify

the arousal state observation model based on the performance.

Considering the arousal level at each trial, the state follows the

previous random walk model such that

x̃k = x̃k−1 + uk, (9)

where x̃k stands for the performance-based arousal at kth trial

and uk ∼ N (0, σ2
u) is the process noise. Similar to the proposed

marked point process approach, we specify a Bernoulli distribu-

tion for ñk at each trial where ñk stands for the arousal events

at each trials (average of neural impulses over each trial). Note

that each trial takes 2 seconds and we might have more than

one impulse at each trial; however, it does not affect our arousal

events’ vector Ñ = {ñ1, ñ2, . . ., ñk} since the hidden state is

defined based on trials. Hence, ñk only takes 0 or 1 to indicate

the arousal events in particular period. We relate the state x̃k to

the probability of arousal events occurrence φ at trial k as before

φk =
1

1 + e−(x̃k+q0)
, (10)

where q0 is a constant that can be derived from q0 ≈ log( φ0

1−φ0
)

and φ0 is the average probability of having the arousal event.

Additionally, the observation model contains the continuous

value of performance state zk and, continuous-valued arousal

event’s amplitude r̃k. Hence,

zk = λ̃1x̃
2
k + λ̃0 + ψk, (11)

where λ̃1 and λ̃0 are the unknown parameters, and

r̃k = ˜́0 + ˜́1x̃k + ζk, (12)

where, r̃k stands for the average value of neural impulses at each

trial. Also, ˜́0 and, ˜́1 are the unknown parameters. Similarly,

ψk ∼ N (0, σ2
ψ) and ζk ∼ N (0, σ2

ζ ) are assumed to be Gaussian.

The joint density function for the occurred arousal event is

p(ñk ∩ r̃k|x̃k) =

⎧

«

¬

1− φk if ñk = 0

φk
1√
2πσ2

ζ

e

−(r̃k−γ̃0−γ̃1x̃k)2

2σ2
ζ if ñk = 1

.

(13)

G. A Performance-Based Arousal Decoder

We derive a decoder based on the performance-based

arousal model. The unknown parameters vector would be θ̃ =
{σ2

u, λ̃1, λ̃0, σ
2
ψ, ˜́0, ˜́1, σ

2
ζ}, and we apply the EM algorithm to

jointly estimate x̃k and θ̃.

1) E-Step: The E-step consists two subsections namely, for-

ward filtering and backward smoothing. Based upon the observa-

tion R̃K = {(ñ1, r̃1, z1), . . ., (ñk, r̃k, zk)} up to time K, E-step

equations can be formulated.

Predict:

x̃k|k−1 = x̃k−1|k−1, (14)

σ̃2
k|k−1 = σ̃2

k−1|k−1 + σ̃2
u, (15)

Update:



KHAZAEI et al.: BAYESIAN INFERENCE OF HIDDEN COGNITIVE PERFORMANCE AND AROUSAL STATES IN PRESENCE OF MUSIC 631

if ñk = 0

x̃k|k = σ̃2
k|k−1

£

¤

¥
(ñk − φk|k) (16)

+

(

2λ̃1x̃k|k)(zk − λ̃0 − λ̃1x̃
2
k|k

)

σ2
ψ

§

¨

©
+ x̃k|k−1,

σ̃2
k|k =

[

φk|k(1− φk|k) +
1

σ̃2
k|k−1

− 1

σ2
ψ

[

2λ̃1(zk − λ̃0 − λ̃1x̃
2
k|k)− (2λ̃1x̃k|k)

2

]

]−1

.

(17)

if ñk = 1

x̃k|k = σ̃2
k|k−1

£

¤

¥
(ñk − φk|k) +

˜́1(r̃k − ˜́0 − ˜́1x̃k|k)

σ2
ζ

(18)

+

(

2λ̃1x̃k|k)(zk − λ̃0 − λ̃1x̃
2
k|k

)

σ2
ψ

§

¨

©
+ x̃k|k−1,

σ̃2
k|k =

[

φk|k(1− φk|k) +
1

σ̃2
k|k−1

+
˜́21
σ2
ζ

− 1

σ2
ψ

[

2λ̃1(zk − λ̃0 − λ̃1x̃
2
k|k)− (2λ̃1x̃k|k)

2

]

]−1

.

(19)

In order to solve for x̃k|k, we have utilized a MATLAB function

called fzero which solves for the roots of non-linear equations.

In order to acquire the smoothed state x̃k|K and smoothed

variance σ̃2
k|K , we reverse the direction:

Ãk =
σ̃2
k|K

σ̃2
k+1|k

, (20)

x̃k|K = x̃k|k + Ãk(x̃k+1|K − x̃k+1|k), (21)

σ̃2
k|K = σ̃2

k|k + Ã2
k(σ̃

2
k+1|K − σ̃2

k+1|k). (22)

By utilizing the proposed approach in [14] and [26], we derive

the expected values of x̃2
k, and x̃kx̃k−1 as

E[x̃2
k] = x̃2

k|K + σ̃2
k|K , (23)

E[x̃k+1x̃k] = x̃k+1|K x̃k|K + Ãkσ̃
2
k+1|K . (24)

Since we consider a quadratic function to relate the arousal

to performance, we first derive an expression for E[x̃4
k].

E[x̃4
k] = E[(x̃2

k)
2]

=
(

E[x̃2
k]
)2

+ var(x̃2
k). (25)

For approximating the last term (var(x̃2
k)) in (25), similar

to [32], we employ the second order Taylor series such that

var(x̃2
k) ≈ 4 (E[(x̃k)])

2
σ̃2
k|k + 2

(

σ̃2
k|k

)2

. (26)

Therefore,

E[x̃4
k] ≈

(

E[x̃2
k]
)2

+ 4 (E[(x̃k)])
2
σ̃2
k|k + 2

(

σ̃2
k|k

)2

. (27)

2) M-Step: We denote the location of the trials where arousal

events occurred at K̃ = {k|ñk = 1}. Based on the E-step re-

sults, we can form a log-likelihood function Q3, and find the

unknown parameters θ̃ = {σ2
u, λ̃1, λ̃0, σ

2
ψ, ˜́0, ˜́1, σ

2
ζ} such that

θ̃ maximizes Q3.

Q3 =
K
∑

k=1

E[ñk(q0 + x̃k)− log(1 + eq0+x̃k)]

+
−K̃

2
log(2πσ2

ζ )−
∑

k∈K̃

E

[

(r̃k − ˜́0 − ˜́1x̃k)
2

]

2σ2
ζ

+
−K

2
log(2πσ2

ψ)−
K
∑

k=1

E

[

(zk − λ̃0 − λ̃1x̃
2
k)

2

]

2σ2
ψ

+
−K

2
log(2πσ2

u)−
K
∑

k=1

E

[

(x̃k − x̃k)
2

]

2σ2
u

. (28)

The algorithm iterates between the E-step and the M-step until

the convergence.

III. RESULTS

The collected behavioral data at each session and type of n-

back task can be found in Fig. 2. Mainly, the number of correct

responses and the average reaction times for all participants can

be found in Fig. 2. The blue bars correspond to a calming session,

and the red bars correspond to an exciting session. The dark

intense bars indicate the 3-back data, and the brighter ones stand

for the 1-back task.

Fig. 3 presents the distribution of the performance state while

different types of music were presented.

The estimated arousal state based on the MPP type observa-

tion for all participants are available in the supplementary infor-

mation. Furthermore, we depict the distribution of average MPP-

based arousal state within trials with respect to each tasks dif-

ficulty (supplementary information). We find the point-biserial

correlation coefficients between the task difficulty and arousal by

considering the task difficulty as dichotomous variable and the

average arousal state within the trials as the continuous variable.

In turn, the point-biserial correlation coefficients for participants

1 to 6 are 0.0603, -0.0268, 0.0166, 0.0150, -0.0206, and 0.0405,

respectively.

In Fig. 4, we investigate the link between the estimated arousal

from the MPP filter and the estimated performance. The blue

and red points are associated with the 1-back and 3-back tasks,
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Fig. 2. Number of correct responses and reaction time with respect to
the type music and task for all participants. The top sub-panel presents
the number of correct responses with respect to each session and
n-back task block. The bottom sub-panel displays the average reaction
times (the bars), and the error bars show the data within the first and
third quartiles with respect to each session and n-back task block.
The blue and red colors present the calming and exciting sessions,
respectively. The darker colors with more intensity stand for the 3-back
task blocks and the brighter ones present the 1-back task blocks.

Fig. 3. Distribution of performance state within different tasks and
types of music. Each sub-figure shows the box plot of the performance
state.

Fig. 4. Arousal-performance diagram within the whole experiment.
The x-axis represents the standard score of the estimated arousal de-
rived from the marked point process estimator, and the y-axis stands for
the standard score of the performance states. The red and blue data
points show the observed pairs of arousal and performance withing the
3-back trials and 1-back trials, respectively. The black curve presents
the fitted model.

respectively. The data points can form an inverted-U shape for

all participants with different coefficients. The p-values of the

model parameters are provided in Table I. We can observe that

the p-values for λ̂1 are statistically significant for all participants,

while the coefficient λ̂2 is not statistically significant.

We represent the performance-based arousal estimator results

for participants 1 and 6 in Fig. 5. The first two subplots at

each column present the observed performance and the average

of arousal events at each trial, which together comprise the

decoder observation. The third and fourth subplots show the

estimated arousal state and the probability of observing arousal

events, respectively. To study the personalized trajectories of

arousal, we formulate a high arousal index (HAI) to generalize

the estimated arousal level of participants (x̃k) [14]. The HAI

can be calculated from p(x̃k > xthreshold), where the threshold

has been set to the median of the state values. It indicates

the probability that a binary event occurs more than just by

chance over the experiment. The performance-based arousal

state estimation results for other participants can be found in

the supplementary materials.

In Fig. 6, we compare the arousal-performance link derived

from the performance-based arousal state and the estimated

arousal from the MPP decoder.

According to the proposed models, we simulate sets of in-

ternal states (Fig. 7). The subplots of Fig. 7 present simu-

lated arousal events with their amplitudes and reconstructed

r̃k, simulated performance state and reconstructed one, simu-

lated arousal state (ground truth) and estimated one, simulated

probability of observing an arousal event and estimated one, the

quantile-quantile (QQ) plot of arousal state residual error, and

the arousal-performance link, in turns. The R-squared value for

the estimated arousal state is 0.8541.

IV. DISCUSSION

In most of the affective studies, the absence of ground truth re-

sulted in implicit evaluation and validation of estimated arousal.

An instance of such implicit evaluation would be using experi-

ment information such as presented emotional stimuli to evaluate
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Fig. 5. Arousal state estimation from performance-based decoder for two participants. The sub-panels of the figure at each column depict: The
performance state signal (zk); The average of the deconvolved neural impulses during trials –arousal events– (r̃k); The estimated state (x̃k) and its
95% confidence limits; The probability of impulse occurrence (φk); The high arousal index. The background colors in each sub-panel depict: The
1-back task during the calming session (light green); The 3-back task during the calming session (dark green); The 1-back task during the exciting
session (light red); The 3-back task during the exciting session (dark red).

Fig. 6. Arousal-performance diagram comparison. In each pair of
arousal-performance diagrams, the left sub-panel displays the arousal-
performance data points constructed from the performance-based
arousal estimator; The right subplot demonstrates the standard score
of data points derived from the marked point process arousal estimator
and performance state decoder. The blue curves show the fitted model
for the corresponding data points (red).

the decoder’s outcome [33]. In this study, the experiment was

designed with two types of task blocks (i.e., 1-back and 3-back

tasks) and two different background music. We evaluate and

discuss the decoded arousal and performance state with respect

to each session and each type of task. Particularly, since the

high cognitive load can reduce cognitive performance, we would

expect to see lower performance levels in 1-back trials compared

to 3-back trials in the decoded performance [34]. Furthermore,

due to the exciting content of the selected music in the second

session, the participant may experience a higher level of arousal

within the second session compared to the first session, and the

decoded arousal state may be evaluated accordingly [25], [35],

[36].

The collected behavioral data that is used as an observation

to decode the performance is presented in Fig. 2; the decoded

performance is demonstrated in Fig. 3. Apart from Participant

2, the higher number of correct responses, as well as the faster

reaction time, can be seen within the second session. These

higher performance metrics in the second session are aligned

with the decoded performance state. Also, the low performance

during the 3-back and high performance during the 1-back

task blocks are noticeable in both the decoded performance

and the recorded behavioral data. Overall, there is a decent

agreement between the estimated performance state and the

observed performance metrics. Considering the variation of

performance metrics within the sessions, we may notice that the

performance variation from calming to exciting in 3-back task

blocks is higher than the 1-back ones. One possible explanation

for the observed behavior is that participants already perform

well enough within the 1-back tasks to the point that no consid-

erable difference can be made by changing the condition [37].

This is aligned with the findings in [38], where participants

performed near ceiling level at 1-back regardless of the applied

training.

In general, our findings present higher performance matrices

associated with the exciting session for five out of six partic-

ipants. One may argue that the improved performance is an

indication of the arousal establishment within the desired range

using music. However, other factors such as, the learning effect,

the nature of the task, and the participant’s baseline can be

involved which hinder us from drawing any definite conclusion.

Particularly, it should be noted that the exciting session was im-

plemented as the second session; it is possible that the participant

outperformed in the second session due to learning the task [39].

Hence, while it might be viable to impact the performance via

personalized music, further studies are needed to make any solid

judgment on the impact of music on performance. Specifically,

including a control group in this context can provide a better

insight into the impact of music as well as the presence of

learning.

It is worth highlighting participant 2 as the only participant

that presents a lower performance within the second session.

This may indicate that the exciting component of music does not

improve this person’s performance. Perhaps the exciting music

makes the person excessively aroused while the person’s ideal

arousal level is located within the lower arousal range. Another

interpretation from the observed trend would be the absence of

plausible learning. Looking into the arousal-performance link

for participant 2, Table I and Fig. 4 reveal a relatively strong

linear component in the arousal-performance relationship. Com-

monly, the linear arousal-performance link can be expected
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Fig. 7. Performance-based arousal state estimation on simulated
data. The sub-panels of the figure depict, in turns: Simulated arousal
events with their amplitudes (black impulses) and reconstructed r̃k
(blue); Simulated performance state (red dots) and reconstructed one
(blue); Simulated arousal state as ground truth (red) and estimated state
(blue); Simulated probability of observing an arousal event (red) and
estimated one (blue); The quantile-quantile (QQ) plot of arousal state
residual error; The arousal-performance link such that the simulated
data points are shown by red dots and the estimated ones are presented
by blue dots.

when a person does not experience high enough arousal [40].

However, for participant 2, we have a different scenario in which

the presence of high performance in the low arousal range and the

absence of high performance in the high arousal range region is

seen. A linear model can describe the arousal-performance link

in such cases where either the rise or decay of the performance

is presented solely. Nevertheless, if the rise or decay occurs

exponentially, the exponential model also can be a good fit.

In this research, to avoid the potential reduced statistical

power [41], we consider all the data collected during the ex-

periment to perform the regression analysis and identify the

presence of Yerkes-Dodson law. One may interpret the presence

of Yerkes-Dodson law from the presented analysis. One crucial

point that needs to be addressed is the extent to which the

task difficulty and distribution impact the underlying arousal

and, subsequently, the observed arousal-performance link. The

point-biserial correlation coefficients do not reveal a significant

association between the n-back task difficulty and the arousal,

which agrees with the findings in [42]. However, we should

keep in mind that in this research, the arousal state is derived

from the skin conductance signal, and employing other phys-

iological signals as an arousal index may produce a different

outcome, in which task difficulty plays a confounding role

[42], [43].

The participants were asked to provide calming and exciting

music with no quantification or rating of the elicited emotion.

In particular, the applied music was meant to have a person-

specific impact rather than equal emotion elicitation across the

whole sample size. Hence, we should be cautious in generalizing

the findings. Instead, we may investigate the results with an

individualized viewpoint. Thus, we use the participant’s baseline

to present person-specific metrics of arousal and performance

(i.e., HAI and HPI), which can be found in the supplementary

information.

While the applied personalized music mimics the personal-

ized closed-loop architecture, it can induce the impact of famil-

iarity on arousal and performance. One possible way to reduce

the effect of music familiarity and preserve the personalized

nature of the music intervention is to employ new generative

deep-learning models and produce new music based on the

participant’s preferences person [44].

Using the performance-based arousal decoder, we can obtain

the arousal level corresponding to the performance of each trial

(Fig. 5). The performance-based arousal decoder can benefit

from having a performance as one of the observations. Specif-

ically, for participant 6, in spite of the few observed ANS

activations during the exciting session, the higher baseline of

performance in the exciting session would prevent an exces-

sive drop of arousal. As it can be seen in Fig. 6, the arousal-

performance links derived from the performance-based model

(Fig. 5) tend to maintain the inverted quadratic shape and follow

the inverted-U law. Additionally, since we are using both be-

havioral data and skin conductance signal for the performance-

based arousal decoder, the results would be less affected by the

possible artifacts from the skin conductance signal recording,

solely.

The simulation study illustrates a decent performance of the

proposed decoder. Specifically, the R-squared value and QQ plot

display an agreement between the decoded state trajectory and

the ground truth. While the Bayesian state-space approach is

a powerful estimation tool, there are cases that might suffer

from the overfitting issue [33]. This simulation study (first

two subplots of Fig. 7) demonstrates that the estimates do not

overfit to either the provided MPP observation or the continuous

observation.

V. CONCLUSION

In the studied n-back experiment, two types of music were

presented to investigate the potential of developing a safe neuro-

feedback via music. Using a state-space modeling approach, we
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decode cognitive arousal and performance states of participants.

To obtain a better insight into the arousal and performance

relationship, we evaluate the plausible Yerkes—Dodson law

via regression analysis. The existence of Yerkes—Dodson law

would be one possible interpretation from the observed results

while the small sample size and a lack of a control group would

hinder us from establishing a definitive conclusion.

Our study would shed light on the primary idea of enhancing

cognitive performance and shifting one’s arousal using music.

It might be feasible to impact the arousal and performance

via music [45]. However, it should be highlighted that several

factors, such as the learning effect, the nature of the task, the

participant’s baseline, and the type of applied music, can impact

the outcome. Hence, a more comprehensive experiment with a

larger sample size, control group, shuffled cognitive tasks, and

various types of music would be helpful for having a settled

resolution on the music’s effect on arousal and performance.

We design a performance-based arousal decoder that esti-

mates the arousal level of individuals based on their perfor-

mance. This type of decoder conforms to the Yerkes—Dodson

law. The ultimate goal of this performance-based arousal de-

coder is to be implemented within safe closed-loop systems,

and the proposed decoder can be further investigated in differ-

ent behavioral experiments [46], [47], [48]. In the future, we

aim to test decoders in different experiments and quantify the

arousal and performance in various environments. Also, given

the developed performance-based arousal decoder, informative

signals such as pupil size can be used in parallel with the skin

conductance signal to decode the hidden arousal and evaluate

the performance of the decoder [49].

Supplementary Materials: Additional figures, details of the

methods, and further discussion are provided in supplementary

materials.
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