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Decoding a Cognitive Performance State From
Behavioral Data in the Presence

of Auditory Stimuli

Saman Khazaei , Graduate Student Member, IEEE, and Rose T. Faghih , Senior Member, IEEE

Abstract— Cognitive performance state is an unob-
served state that refers to the overall performance of
cognitive functions. Deriving an informative observation
vector as well as the adaptive model and decoder
would be essential in decoding the hidden performance.
We decode the performance from behavioral observation
data using the Bayesian state-space approach. Forming
an observation from the paired binary response with
the associated continuous reaction time may lead to an
overestimation of the performance, especially when an
incorrect response is accompanied by a fast reaction time.
We apply the marked point process (MPP) framework such
that the performance decoder takes the correct/incorrect
responses and the reaction time associated with correct
responses as an observation. We compare the MPP-
based performance with two other decoders in which the
pairs of binary and continuous signals are taken as the
observation; one decoder considers an autoregressive
(AR) model for the performance state, and the other
one employs an autoregressive-autoregressive conditional
heteroskedasticity (AR-ARCH) model which incorporates
the time-varying and adaptive innovation term within the
model. To evaluate decoders, we use the simulated data and
the n-back experimental data in the presence of multiple
music sessions. The Bayesian state-space approach is
a promising way to decode the performance state. With
respect to individual perspective, the estimated MPP-based
and ARCH-based performance states outperform the AR-
based estimation. Based on the aggregated data analysis,
the ARCH-based performance decoder outperforms the
other decoders. Performance decoders can be employed
in educational settings and smart workplaces to monitor
one’s performance and contribute to developing a feedback
controller in closed-loop architecture to improve cognitive
performance.
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I. INTRODUCTION

T
HE cognitive brain states are often unobserved internal

states that cannot be directly measured, and they should

be decoded from the encoded information. To do so, a brain

state decoder can be employed to provide an estimate of

the state given the available observation. The cognitive

performance decoder is a type of brain state decoder that

quantifies the overall performance of one’s cognitive functions.

Similar to the majority of cognitive variables, cognitive

performance state is dynamic, and clear-cut scores are not

able to reflect its dynamic [1], [2], [3]. There is a need for

continuous quantification of cognitive performance. In this

research, we are particularly interested in decoding the

performance state during the n-back task in the presence of

music. The n-back task mainly engages the working memory

as a cognitive function of interest. Working memory is one of

the basic cognitive functions with temporary storage that can

process the stored information [4], [5].

Recent frameworks in designing brain state decoders include

the Bayesian state-space methods as well as machine learning-

based (ML-based) approaches [2], [4], [6], [7], [8], [9], [9],

[10], [11], [12]. Most of the ML-based approaches depend

on input labels, training data, and classification of segments

of data [6], [7], [8]. Therefore, ML-based approaches may

encounter challenges in the absence of labels and training

data [13]. The Bayesian state-space approach is a statistical

framework developed on Bayesian principles, and it is able

to estimate a continuous state trajectory given the available

sequential observations and independent of training data.

A typical Bayesian state-space approach considers a linear

state model with time-invariant process noise (i.e., innovation

term) variance, and hidden state can be decoded from the

specified observation. The autoregressive (AR) model is

an example of such linear and time-invariant models that

is typically used in cognitive neuroscience to model the

performance state [9].

In the context of Bayesian state filtering, a wide range of

observations can be used to decode an unobserved internal

brain state within the state-space models. These observations

include but are not limited to invasive and non-invasive
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Fig. 1. An overview of decoding the cognitive performance
state from behavioral data during the n-back task. (A) A series of
stimuli is presented. (B) The behavioral data, including the sequence
of correct/incorrect responses (binary) and reaction time (continuous),
are collected. (C) The observation vector is formed based on various
combinations of correct/incorrect responses and reaction time. (D) The
performance state decoders take different observations and decode the
performance state according to their specific designs: the ARCH-based
decoder considers a time-varying process noise variance that follows
the ARCH structure, and the decoder takes the pairs of correct/incorrect
responses (binary) and reaction time (continuous); the BiCo-based
decoder considers a time-invariant noise variance and takes the pairs
of correct/incorrect responses (binary) and reaction time (continuous);
the MPP-based decoder considers a time-invariant noise variance and
takes the marked point process observation.

measurements such as neural recordings from the brain,

peripheral physiological signals, and behavioral data [1],

[3], [9], [10], [14], [15]. While the neural recordings and

physiological signals are the informative metrics of one’s brain

activity, collecting them requires advanced setups. On the

other hand, behavioral measurements are readily available

and can be collected in everyday life settings, and we can

assign different sets of behavioral observations to decode the

performance state. The subject’s binary sequence of correct

and incorrect responses is one of the common behavioral

observations that can be used in this paradigm [16], [17], [18].

Another informative behavioral signal that can be employed as

an observation is the continuous reaction time (i.e., response

time) [18], [19], [20]. In the field of cognitive neuroscience,

various forms of observation vectors have been developed

to decode the performance. Previously, the pairs of binary

responses and continuous reaction time observation (i.e., BiCo

observation) associated with the presented cognitive task have

been used. Particularly, in [9], the performance state was

decoded using the BiCo observation. One of the possible

concerns that can be raised when using BiCo type observation

is that the decoder can overestimate the performance when

a pair of extremely fast reaction time and an incorrect

response occurs. To address this concern, the marked point

process can be applied to form the behavioral observation.

The MPP framework is widely used in neuroscience to

relate the ensemble neural spiking activity (point process)

to any relevant covariates (mark) [21], [22], [23], [24].

For instance, in [15], the hidden arousal state is decoded

from the sequence of arousal-related neural impulses and

their corresponding amplitudes. Here, we consider an AR(1)

performance state and assign a new observation vector

consisting of correct/incorrect responses and the reaction times

associated with the sequence of correct responses (successful

trials), solely. Then, we decode the performance from the

sequence of responses as well as the reaction time associated

with successful trials.

The cognitive performance state can be drastically affected

by internal and external variables such as environmental

changes and emotional status [2], [4], [25]. Thus, an adaptive

and time-varying performance state in the presence of

non-linearity should be considered to resemble real-world

settings. Although the AR model presents a pretty decent

estimation outcome, it mostly assumes a time-invariant process

noise variance within a linear model. The autoregressive

Conditional heteroskedasticity (ARCH) framework has been

widely applied for analyzing volatility in financial time

series [26]. The term volatility in financial returns refers to the

degree and rate of variation over a period of time [27], [28].

Particularly, the ARCH framework expresses the conditional

variance of a time series as a function of past residuals,

which enables the model to capture the time-varying nature

of the volatility. The ARCH framework can be implemented

within the state-space model to ensure the time-variability

of the model. The Bayesian state-space methods are often

employed within an expectation-maximization (EM) algorithm

to estimate the hidden state and recover the unknown model

parameter [15], [29], [30], [31], [32]. Including the ARCH

framework within the state-space model induces the non-

linearity, which prevents us from having a closed-form solution

at the expectation step (E-step) [33]. A particle filter can be

seen as a particular case of a Bayesian filter that is developed

to cope with non-linear and non-Gaussian systems [34].

To handle the non-linear model structure and approximate

an expected value of a function, an appropriate particle filter

(PF) can be used [4]. Following the originally developed

framework in [4], we model the performance state using

the AR-ARCH state-space representation, and we employ the

particle filtering to decode the performance state from the

binary and continuous observation in the presence of non-

linear and time-varying process noise variance.

Here, following the approach presented in [2] and [9],

we first decode the performance state from one binary and one

continuous (i.e., BiCo) observation using the AR state model.

Thereafter, we develop a new performance state model to

decode the performance from the MPP-type observation. Then,

to induce the time-varying process noise variance, we follow

the proposed method in [4], and we model the performance

state using the AR-ARCH state-space representation. Then,

we decode the ARCH-based performance using the sequence

of responses and reaction time [4]. Hence, two types of

decoders use a pair of binary and continuous observations,

and one of them relies on the MPP observation. Fig. 1

depicts an overview of the presented cognitive performance

decoders in this research. We demonstrate our findings on

simulated and experimental datasets, followed by a discussion.

Finally, we summarize our findings and draw a conclusion

accordingly.

II. METHODS

A. Data

We investigate two datasets collected at the University of

Houston [25], [35]. The experiments were designed to study

the feasibility of employing safe intervention (i.e., music).
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Particularly, using music, high and low arousing environments

were simulated to modulate the cognitive brain states. The

informed consent from all participants/subjects was obtained,

and the behavioral and physiological signals were recorded

during a working memory task called the n-back task while

different types of background music were used. To preserve

the personalized nature of the intervention, the applied music

was provided by the individuals. The n-back task involves

working memory usage, and subjects are presented with a

series of stimuli such that they need to recall the nth previous

one and determine whether the current stimulus is the same as

the nth previous one or not. We use the recorded behavioral

signals, which include the sequence of correct and incorrect

responses as well as the response time of individuals. The

individuals who performed the n-back task in dataset 1 are

noted as “participants”, while individuals who performed

the n-back task in dataset 2 are stated as “subjects”. The

list of participants IDs and subject IDs are available in the

supplementary information.

1) Dataset 1: The experimental procedures in the experi-

ment were approved by the institutional review board (IRB)

at the University of Houston, TX, USA (STUDY00002013)

[35]. The total number of 6 participants (participants 1 to

6) performed an equal number of 1-back and 3-back task

blocks within two music sessions. The calming background

music was used throughout the first session, while the exciting

background music was played during the second session.

A total number of 16 task blocks were presented at each

session, and the 1-back and 3-back blocks were equally

and randomly distributed. Each task block was initiated with

5 seconds of instruction followed by 22 trials in which a

letter was displayed for 0.5 seconds, and a plus sign was

provided for 1.5 seconds (2 seconds trial window). Hence, the

participants had two seconds to respond. At the end of each

block, the participant had a 10 seconds resting time. Also, a

20 seconds resting segment was contrived in the middle of

each session (at the end of the 8th task block). A detailed

description of the experiment is available in [35].

2) Dataset 2: The original study includes 2 sets of n-back

experiments in the presence of safe interventions such as

music, coffee, and perfume [25]. The complete dataset is

publicly available through the PhysioNet database [36]. The

experimental procedures in the original study were approved

by the IRB at the University of Houston, TX, USA (STUDY

00002490). In this study, we only consider the first set of the

experiment that incorporates the music intervention. A total

number of 17 subjects participated in the experiment while

seven subjects were excluded from the original study due

to measurement errors and artifacts [25]. Hence, 10 subjects

(subjects A1 to A10) are studied. An equivalent number of

1-back and 3-back task blocks were randomly distributed

within 4 sessions: The first session was presented with no

background music; the second session included the calming

music; the exciting music was played within the third session,

and a newly generated relaxing music was provided in the

last session (fourth session). The generated relaxing music

was produced based on the subject’s preference and using

deep learning neural networks. Each session included 16 task

blocks, each of which had 5 seconds of instruction followed

by 22 trials. Each trial consisted of 0.5 seconds of stimulus

presentation, along with a 1.5 seconds plus sign. Thus, subjects

could deliver their response in 2 seconds trial window. At the

end of each task block, 10 seconds resting section was

provided, and 20 seconds resting section in the middle of each

session was implemented. A subject performed a total number

of 1408 trials (i.e., 4 sessions × 16 task blocks × 22 trials).

A comprehensive description of the experiment is provided

in [25].

B. State-Space Framework

The state-space framework is a common approach in

control theory to present the unobserved state of interest [15].

In this research, the state of interest is the hidden cognitive

performance. Once the state-space model for cognitive

performance is specified, we wish to estimate the unobserved

performance state. To do so, the available observation vector

is employed, and the hidden state can be decoded through

different methods. In this research, we decode the performance

state by considering three different frameworks:
• AR(1) state model (time-invariant process noise variance)

given one binary and one continuous observation (BiCo-

based decoder) [9].

• AR(1) state model (time-invariant process noise variance)

based on MPP observation (MPP-based decoder).

• AR(1)-ARCH(1) state model (time-variant process noise

variance) given one binary and one continuous observa-

tion (ARCH-based decoder) [4].
Fig. 1 presents an overview of the presented cognitive

performance decoders in this research.

C. Performance State Estimation in Presence of a

Time-Invariant Process Noise Variance – One Binary

and One Continuous Observation

First, the unobserved performance state is modeled based

on the presence of time-invariant process noise variance [2],

[4], [9]. Hence, the following AR is employed to present the

hidden performance state (z j ):

z j = z j−1 + ϵ j , (1)

where ϵ j ∼ N (0, Ã 2
ϵ ).

Once the performance state model is specified, the

observation vector may be identified to estimate the hidden

performance state. Similar to [4], [9], and [18], the sequence

of responses (n j ) and reaction times (t j ) are considered as the

available observations.

The binary responses is assumed to follow the Bernoulli

distribution. The p j = P(n j = 1) can be related to

performance state employing the logit transformation [4], [9],

[18]:

p j =
1

1 + e−(µ+z j )
, (2)

where the constant µ may be found by considering z j ≈ 0.

Hence, µ = log(
p0

1−p0
) where p0 stands for the baseline



KHAZAEI AND FAGHIH: DECODING A COGNITIVE PERFORMANCE STATE FROM BEHAVIORAL DATA 4273

probability [9]. The baseline probability can be derived from

the average probability of an correct response occurrence

during the entire experiment.

Similar to [9], the log of reaction time can be linearly related

to the state as

r j = log(t j ) = µ0 + µ1z j + v j , (3)

where v j ∼ N (0, Ã 2
v ) stands for the observation noise, and

µ0, µ1, and Ã 2
v are the unknown parameters to be determined.

Thus, based on the observation vector Y J = {(n1, r1),

(n2, r2), . . . , (n J , rJ )}, the performance state (z j ) and

unknown model parameters ¹p = {Ã 2
ϵ , µ0, µ1, Ã

2
v } can be

decoded by employing the EM algorithm. More information

on the decoder equations can be found in the supplementary

information and in [4] and [9].

D. Performance State Estimation in Presence of a

Time-Invariant Process Noise Variance – A Marked

Point Process Observation

1) State-Space Model in Presence of a Time-Invariant

Process Noise Variance – A Marked Point Process Observation:

Here, while we follow the mentioned AR model to present

the performance state, we use different observation vector to

estimate the hidden performance state (z j ). Hence, the hidden

performance state (z j ) is presented using the following AR

model:

z j = z j−1 + ϵ j (4)

Inspired by [15], the observation vector can take a marked

point process (MPP) form such that the log of reaction time

presents the marked for the observed point process where the

correct response is presented (i.e., n j = 1). Let us indicate

the correct response indices by J̃ = { j |n j = 1}. Hence, the

marked observation can be represented as [15]:

u
j∈ J̃

= µ0 + µ1z j + v j , (5)

where the continuous observation value
(

u j = log(t j )
)

is

considered only when the correct response exists (i.e., j ∈ J̃ ).

Please recall that we assume the Bernoulli distribution for

the binary responses
(

p j = P(n j = 1)
)

. The joint density

function for the observed correct response is

p(n j ∩ u j |z j ) =











1 − p j if n j = 0

p j

1
√

2ÃÃ 2
v

e

−(u j −µ0−µ1z j )
2

2Ã2
v if n j = 1

.

(6)

Similar to [15], we can apply an expectation-maximization

approach to estimate the hidden state z j and unknown

parameters ¹p = {Ã 2
ϵ , µ0, µ1, Ã

2
v }, simultaneously.

2) State-Space Decoder in Presence of a Time-Invariant

Process Noise Variance – A Marked Point Process Observation:

The MPP-based decoders have been used to decode the

arousal from the MPP-type observation [15]. Similarly,

we apply an EM framework to determine the unknown model

parameters ¹p = {Ã 2
ϵ , µ0, µ1, Ã

2
v }, and estimate the continuous

performance state z j at the same time.

E-Step:

The E-step equations are presented as:

Predict:

z j | j−1 = z j−1| j−1, (7)

Ã 2
j | j−1 = Ã 2

j−1| j−1 + Ã 2
ϵ , (8)

Update:

if n j = 0

z j | j = z j | j−1 + Ã 2
j | j−1(n j − p j | j ), (9)

Ã 2
j | j =

[

1

Ã 2
j | j−1

+ p j | j (1 − p j | j )

]−1

, (10)

if n j = 1

C j =
Ã 2

j | j−1

µ 2
1 Ã 2

j | j−1 + Ã 2
v

, (11)

z j | j = z j | j−1 + C j

[

Ã 2
v (n j − p j | j ) (12)

+ µ1(u j − µ0 − µ1z j | j−1)

]

,

Ã 2
j | j =

[

1

Ã 2
j | j−1

+ p j | j (1 − p j | j ) +
µ 2

1

Ã 2
v

]−1

. (13)

Employing numerical solvers such as Newton-Raphson,

we may solve for z j | j .

By reversing the direction, the smoother can be imple-

mented, and the sets of smoothed states and variance can be

found:

B j =
Ã 2

j | j

Ã 2
j+1| j

, (14)

z j |J = z j | j + B j (z j+1|J − z j+1| j ), (15)

Ã 2
j |J = Ã 2

j | j + B2
j (Ã

2
j+1|J − Ã 2

j+1| j ). (16)

M-Step:

The expected values of z2
j , and z j z j−1 can be written as

E[z2
j ] = z2

j |J + Ã 2
j |J , (17)

E[z j+1z j ] = z j+1|J z j |J + B jÃ
2
j+1|J . (18)

The expected value of log-likelihood function Q can take

the following form:

Q =

J
∑

j=1

E[n j (µ + z j ) − log(1 + eµ+z j )]

+
−∥ J̃∥

2
log(2ÃÃ 2

v ) −
∑

j∈ J̃

E

[

(u j − µ0 − µ1z j )
2

]

2Ã 2
v

+
−J

2
log(2ÃÃ 2

ϵ ) −

J
∑

j=1

E

[

(z j − z j−1)
2

]

2Ã 2
ϵ

, (19)

where ∥ J̃∥ denotes the length of J̃ , and the unknown

parameters are estimated such that they maximize Q. The

iteration will persist between the E-step and the M-step until

meeting the convergence criteria.
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E. Performance State Estimation in Presence of a

Time-Variant Process Noise Variance – One Binary and

One Continuous Observation

1) State-Space Model in Presence of a Time-Varying Pro-

cess Noise Variance: To induce the non-linearity, we imple-

ment the ARCH noise [4]. Hence, the performance state model

follows the AR-ARCH structure in which the process noise

variance is time-variant [4]. The AR(1)-ARCH(1) model for

the hidden performance state (z j ) can be shown as

z j = z j−1 + ϵ j , (20)

where ϵ j ∼ N (0, h2
j ) is a process noise.

In the ARCH(1) model the noise term can be presented as

ϵ j = h jw j , (21)

where h2
j = ³0 + ³1ϵ

2
j−1, and it stands for the time-varying

conditional variance. The terms ³0 and ³1 are the ARCH

model parameters in which ³0 > 0 and 0 f ³1 < 1 are

the constraints [26].

Considering the binary response (n j ) and the log of reaction

time (r j = log(t j )) as the available observations, we wish to

estimate the unobserved performance in the presence of a time-

varying process noise variance. Following [2], [4], and [9],

the performance state can be related to the probability of

having correct response using log

(

p j

1−p j

)

= µ + z j ⇒

p j = 1

1+e
−(µ+z j )

; the reaction time is expressed in terms of

performance state via r j = log t j = µ0 + µ1z j + v j .

2) State-Space Decoder in Presence of a Time-Varying Pro-

cess Noise Variance: In this paradigm, the observed vector is

Y J = {(n1, r1), (n2, r2), . . . , (n J , rJ )}, and we aim to estimate

the performance state z j and the unknown model parameters

¹p = {µ0, µ1, Ã
2
v , ³0, ³1}. We apply the EM framework to

estimate the hidden state and recover the model parameters

at the same time. However, in this case, deriving the expected

value of the log-likelihood function would be a concern

to be addressed. The log-likelihood function takes the non-

linear form such that finding a closed form solution becomes

challenging [33]. Therefore, an effective approximation is

required. Inspired by [4] and [33], we use a particle filter for

the AR-ARCH model to decode the hidden performance.

E-Step:

The developed particle filter in [4] enables us to estimate the

performance state z j in the presence of a time-varying process

noise variance. Following the proposed approach in [4], the

algorithm implementation is described below.
• Step 1: Generate K number of particles with an arbitrary

initial mean state value z̄0 and initial state variance Ã 2
0 .

• Step 2: Proceed from j − 1 to j and draw particles ẑ j (k)

based on the conditional state mean (z̄ j ) and conditional

variance (Ã 2
j ) derived from the Bayes’ rule:

z̄ j (k) =
Ã 2

j−1(k) + h2
j (k)

µ 2
1

(

Ã 2
j−1(k) + h2

j (k)

)

+ Ã 2
v

×

[

Ã 2
v

(

n j − p̄ j (k)

)

+ µ1

(

r j − µ0 − µ1 ẑ j−1(k)

)]

+ ẑ j−1(k), (22)

Ã 2
j (k) =

[

1

Ã 2
j−1(k) + h2

j (k)

+ p̄ j (k)

(

1 − p̄ j (k)

)

+
µ 2

1

Ã 2
v

]−1

, (23)

where h2
j (k) = ³0 + ³1

(

ẑ j−1(k) − ẑ j−2(k)

)2

.

By inserting p̄ j (k) =
[

1 + e−(µ+z̄ j (k))
]−1

in (22), the

term z̄ j (k) would appear on both sides of (22), and z̄ j (k)

can be derived using numerical approaches. Given the

z̄ j (k) and Ã 2
j (k), the particles can be generated from

ẑ j (k) ∼ N

(

z̄ j (k), Ã 2
j (k)

)

.

• Step 3: Assign the importance weight w j (k) to each

sample ẑ j (k). The weight density function can be

specified based on the problem of interest. Similar to [4]

and [33], the optimal importance weight w j can be

derived from

w
(k)
j =

N

(

Y j ; ẑ j (k), Ã 2
v

)

N

(

ẑ j (k); ẑ j−1(k), h2
j (k)

)

N

(

ẑ j (k); z̄ j (k), Ã 2
j (k)

) .

(24)

• Step 4: Normalize the weights w(k)
j =

w
(k)
j

6w
(1:K )
j

[4], [37], and perform the resampling to avoid the

particle degeneracy. As described in [38], the effective

sample size can be approximated: Ness = 1

6k=1:K w2
j (k)

.

Considering K/2 as the threshold, if Ness < K/2, the

systematic resampling can be performed [39], [40].

• Step 5: At j = J , we reverse the direction and to

improve the estimation by deriving a set of smoothed

state z̃ j (k) and equally smoothed weights w̃ j (k) = 1/K

[4]. We consider p(z̃ j (k − 1)|ẑ j (k)) as the distribution

of interest, and smooth the state solely based on

the dynamics of the system to avoid the potential

overfiting [41].
M-Step:

During the M-step, model parameters can be determined

such that they maximize the expected value of our log-

likelihood function. We approximate the expected value of

the log-likelihood by using the particles and their weights

[4], [33], [42]. Hence, E[Q(z j , ¹)] ≈ 1
K

∑K
k=1 Q

(

z̃ j (k), ¹

)

,

where the log-likelihood function (Q) is presented as

Q =

J
∑

j=1

[

n j (´ + z j ) − log(1 + e´+z j )

]

+
−J

2
log(2ÃÃ 2

v ) −

J
∑

j=1

(r j − µ0 − µ1z j )
2

2Ã 2
v

+
−J

2
log(2Ã) −

1

2

J
∑

j=1

[

(z j − z j−1)
2

³0 + ³1(z j−1 − z j−2)2

+ log

(

³0 + ³1(z j−1 − z j−2)
2

)]

. (25)
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We recover a set of parameters ¹p = {µ0, µ1, Ã
2
v , ³0, ³1}

that maximizes the E[Q] [4]. A detailed description of

the parameter estimation in M-step is provided in the

supplementary information. Following the proposed overfitting

control technique in [13], we update the unknown parameters

progressively and consider the early-stopping to bypass the

potential overfitting. Let us indicate the model parameters

associated with the reaction time by ¹r = {µ0, µ1, Ã
2
v }; we

update those parameters at the mth iteration as:

¹
(m+1)
r,updt = ¹ (m+1)

r + λ

[

¹
(m+1)
r,pred − ¹ (m)

r

]

, (26)

where 0 < λ f 1 is a hyper-parameter to be set based on the

dataset, and ¹
(m+1)
r,pred refers to the initially recovered parameters

(available in the supplementary information). Also, we set the

early-stopping criteria such that if Ã
2,(m+1)
v,updt f Ã 2

v,threshold, the

iteration stops; the Ã 2
v,threshold is a hyper-parameter that can be

fine-tuned accordingly [13]. The algorithm iterates between

E-step and M-step until the convergence.

Once the hidden performance state (z j ) is decoded, we can

derive a generalized and person-specific index of performance

called high performance index (HPI). Particularly, given the

differences in human brain structure and variation in cognitive

abilities from one individual to another [43], an individual’s

baseline can be considered, and HPI can be derived from

p(z j > threshold), where the threshold is indicative of the

cognitive performance baseline. The threshold can be set to

the median of state [15]. This type of index is between zero

and one, and it is inspired by the introduced term called

observer certainty level in [1]. It can reflect the probability

that an event (e.g., correct response) occurs more than just

by chance in a behavioral learning experiment [15]. The

HPI can be used to reduce the inter-subject variability and

evaluate the performance estimates among the participant pool.

Also, the probability of observing a correct response (p j )

can be derived by plugging the estimated performance state

in p j = 1

1+e
−(µ+z j )

. Another performance metric that can be

found from the decoder’s output would be the reconstructed

input observation (e.g., binary correct responses or continuous

reaction time) by plugging the estimated state and parameters

in the observation model equations such that the reconstructed

signal can be compared with the observed signal to evaluate

the goodness of fit.

F. Data Simulation

To further evaluate the decoders, a set of data can be

simulated based on the previously developed framework

in [4]. Particularly, we simulate the hidden state using

the AR process with time-varying process noise variance,

a continuous observation signal using a linear function in (3),

and the probability of observing a binary event using the

logit transformation [15], and the sequence of events can

be simulated where an event will occur at index j if p j g

baseline probability.

III. RESULTS

In the context of cognitive brain states, the absence

of continuous ground truth leads to challenges in the

TABLE I

THE COEFFICIENT OF DETERMINATION (R2 ) VALUES FOR THE

ESTIMATED STATE AND PROBABILITY IN THE SIMULATED STUDY

decoder’s evaluation process [13]. One may address the

issue by implicitly evaluating the available cues. As an

instance of such implicit evaluations, different types of n-

back tasks and music interventions exist to be considered.

Also, according to the observations equations in (3), the

reconstructed observation can be derived by inserting the

estimated state and parameters in µ0 +µ1z j , and the goodness

of fit with respect to the actual observation may help us in

evaluating the decoder’s outcome. Furthermore, a simulation

study can provide valuable information regarding the decoder’s

performance [13]. We evaluate the estimated performance

using simulated data as well as two different experimental

datasets.

A. Simulated Data

To evaluate the ARCH-based, MPP-based, and BiCo-based

performance decoders, we use a set of simulated data. Mainly,

we simulate the reaction time, a sequence of binary responses,

and the performance state. To simulate the data, we set

the parameters according to the findings from experimental

data in [4]. The sub-figures of Fig. 2 present the state

estimation results for ARCH-based, MPP-based, and BiCo-

based performance decoders. The left sub-figure is related to

the ARCH-based performance decoder, the middle sub-figure

demonstrates the MPP-based decoder’s outcome, and the right

sub-figure depicts the BiCo-based decoder result. Sub-panels,

from top to bottom, present (1) the applied observation and

reconstructed one, (2) the simulated sequence of incorrect

response, (3) the simulated state and estimated one, (4) the

simulated probability and estimated one, and (5) the HPI,

respectively. The reconstructed continuous observation in the

first sub-panel is shown using the black signal, and the actual

one is presented in red. The simulated signals (ground truth)

are shown in red in the third and fourth sub-panels, and the

estimated variables are presented in blue. Table I presents the

coefficient of determination (R2) values for the estimated state

(z j ) and probability (p j ) in the simulated study. The higher

R2 value stands for a better alignment.

B. Experimental Data

1) Individual Data: Two unique datasets are presented

to evaluate each filter based on the experimental data.

Considering ARCH-based decoder, the performance state

estimation results for one participant/subject from each dataset

are illustrated in Fig. 3, where sub-figure (A) depicts the

results associated with dataset 1 [4], and sub-figure (B) is

linked to dataset 2. Similarly, the MPP-based and BiCo-

based decoders’ findings on both datasets are presented in

sub-figures (A) and (B) of Fig. 4 and Fig. 5, respectively. In
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Fig. 2. State estimation with simulated data using ARCH-based, MPP-based, and BiCo-based decoders. (A) The left sub-figure presents
the ARCH-based decoder findings on the simulated data. (B) The middle sub-figure shows the MPP-based decoder findings on the simulated data.
(C) The right sub-figure shows the BiCo-based decoder findings on the simulated data. Within each sub-figure, the sub-panels respectively depict:
(1) the simulated observation based on reaction time (red) and the reconstructed one (black); (2) the sequence of simulated incorrect response (blue
vertical lines);(3) the simulated (red) and estimated (blue) state; (4) the probability of observing a correct response pj and its estimate; (5) the HPI.

TABLE II

THE COEFFICIENT OF DETERMINATION (R2 ) VALUES FOR THE FITTED

OBSERVATIONS WITH RESPECT TO EXPERIMENTAL DATA

each sub-figure of Fig. 3 to Fig. 5, the sub-panels present:

(1) the applied observation (r j or u j ) and its reconstructed

signal (black curve); (2) the incorrect responses during the

experiment; (3) the decoded performance state during the

experiment; (4) the estimated probability of observing a

correct response; (5) the calculated HPI. The corresponding

green and red background colors in sub-figure (A) of Fig. 3 to

Fig. 5 refer to calming and exciting sessions, respectively; the

corresponding cyan, green, red, and yellow background colors

in sub-figure (B) of Fig. 3 to Fig. 5, in turn, indicate sessions

with no music, relaxing music, exciting music, and the relaxing

generated music. For Fig. 3 to Fig. 5, the milder background

colors stand for the 1-back task blocks, and the more intense

background colors indicate the 3-back task blocks. The

outcome of decoders for other participants/subjects is in the

supplementary information.

In order to evaluate the status of the estimated states, the

coefficient of determination (R2) value for the reconstructed

continuous observation, and the receiver operating characteris-

tic curve (ROC curve) for the classified correct responses are

considered: In Table II, the R2 values for each decoder are

shown. Note that to calculate the R2 for the reconstructed

observation in the MPP-based decoder (u
j∈ J̃

), we only

consider data points of J̃ = { j |n j = 1}. Additionally, we aim

to classify the correct responses from the estimated probability

p j in each decoder. To do so, we classify successful trials from

p j > pthreshold, where the range of threshold values is set

between 0.01 and 0.99. This wide range of thresholds enables

us to contemplate people with various cognitive baselines.

Fig. 6 displays the ROC curves associated with the classified

correct responses for one participant/subject of each dataset.

The area under the curve (AUC) values for participant 1 in

dataset 1 are 0.87 for the ARCH-based decoder (red curve),

0.63 for the MPP-based decoder (black curve), and 0.70 for

the BiCo-based decoder (blue curve) estimates. The AUC

values for subject A10 estimates are 0.68 for the ARCH-based

decoder (red curve), 0.70 for the MPP-based decoder (black

curve), and 0.64 for the BiCo-based decoder (blue curve). The

high AUC value implies a reliable classification performance.

The ROC curves for all the studied participants/subjects can

be found in the supplementary information.

One of the aims of incorporating the ARCH structure

process noise is to capture the surrounding impacts (e.g.,

auditory stimuli) on the performance state. Hence, we rep-

resent a session-wise perspective of the findings on one
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Fig. 3. The ARCH-based performance state estimation for the example individuals during the n-back experiments in datasets 1 and 2.
The sub-figures from left to right present: (A) the ARCH-based performance estimates of dataset 1 [4]; (B) the ARCH-based performance estimates
of dataset 2. Within each sub-figure, the sub-panels respectively present: (1) The continuous value of the applied observation (red) and its fit
(black); (2) the sequence of incorrect responses (blue vertical line); (3) estimated performance zj (blue) and its 95% confidence limits (blue); (4)
the estimated probability pj (blue); (5) the HPI (blue). In regard to background colors in sub-figure (A): the green background color indicates a
calming music session, and the red background color represents an exciting music session. In regard to background colors in sub-figure (B): the
cyan background color corresponds to the no music session; the green background color stands for the relaxing music session; the red background
color indicates the exciting music session; and the yellow background color refers to the generated relaxing music session. The milder background
colors stand for the 1-back task blocks, and the more intense background colors indicate the 3-back task blocks.

subject from dataset 2. Fig. 7 present the ARCH-based

decoder variables in a session-wise manner. The sub-panels

of the figure depict the performance state (z j ), process noise

variance (h2
j ), process noise term (ϵ j ), l2−norm of process

noise variance, and frequency spectrum of process noise

variance, respectively. The bottom sub-panel of Fig. 7 displays

the frequency spectrum of process noise variance during

the no music (black curve), relaxing music (blue curve),

exciting music (red curve), and generated relaxing music

(yellow curve) sessions. The cyan, green, red, and yellow

background colors in Fig. 7, in turn, refer to the no music,

relaxing music, exciting music, and relaxing generated music

sessions. In Fig. 7, the milder background colors indicate

the 1-back task blocks, and the more intense background

colors present the 3-back task blocks. Such session-wise

perspective of variables for all the studied participants/subjects

from both datasets are presented in the supplementary

information.

2) Aggregated Data: To evaluate the performance of

decoders in the context of aggregated data, we should be

cautious and address the potential inter-subject variability.

To do so, since the HPI is calculated based on the subject’s

baseline, it may be considered as a normalized index of

performance that can be used in an aggregated perspective, in

which we analyze a vector of data that includes performance

metrics from multiple subjects. More specifically, we evaluate

the correlation between the mean HPI and the average of

observed performance metrics (i.e., reaction time and correct

response) among the participants/subjects of dataset 1 and 2

(Fig.8 and Fig.9).

Findings on dataset 1 present that the Pearson correlation

coefficient of average correct response and HPI associated with

the ARCH-based, MPP-based, and BiCo-based decoders are

rn = 0.7060, rn = 0.2620, and rn = 0.4747, respectively.

Considering the correlation between the reaction time and

decoded HPI via ARCH-based, MPP-based, and BiCo-based

decoders, the correlation coefficients are rr t = −0.7821,

rr t = −0.2716, and rr t = −0.4837.

A similar analysis is performed on dataset 2, and the

Pearson correlation coefficients between the average correct

response and HPI derived from ARCH-based, MPP-based, and

BiCo-based decoders are rn = 0.3842, rn = 0.3308, and

rn = 0.2740, respectively. Considering the correlation between

the reaction time and decoded HPI via ARCH-based, MPP-
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Fig. 4. The MPP-based performance state estimation for the example individuals during the n-back experiments in datasets 1 and 2.
The sub-figures from left to right present: (A) the MPP-based performance estimates of dataset 1; (B) the MPP-based performance estimates of
dataset 2. Within each sub-figure, the sub-panels respectively present: (1) The MPP value of the applied observation (red) and its fit (black); (2)
the sequence of incorrect responses (blue vertical line); (3) estimated performance zj (blue) and its 95% confidence limits (blue); (4) the estimated
probability pj (blue); (5) the HPI (blue). In regard to background colors in sub-figure (A): the green background color indicates a calming music
session, and the red background color represents an exciting music session. In regard to background colors in sub-figure (B): the cyan background
color corresponds to the no music session; the green background color stands for the relaxing music session; the red background color indicates
the exciting music session; and the yellow background color refers to the generated relaxing music session. The milder background colors stand for
the 1-back task blocks, and the more intense background colors indicate the 3-back task blocks.

based, and BiCo-based decoders, the correlation coefficients

are rr t = −0.8257, rr t = −0.6617, and rr t = −0.6479.

IV. DISCUSSION

The main aim of this research is to decode cognitive

performance from behavioral data. The absence of ground

truth in this paradigm can turn the decoder’s evaluation process

to a challenging step. One way to cope with this challenge is to

interpret the findings based on the available observations and

cues. We evaluate the ARCH-based, MPP-based, and BiCo-

based decoders in the context of experimental setups as well as

simulation study. The studied experiments include the n-back

task as a cognitive task of interest, and incorporate different

personalized music interventions.

The results of the simulated study for ARCH-based and

MPP-based decoders present a decent agreement between

the simulated variables and the estimated ones (Fig. 2).

Specifically, the R2 measurements for both ARCH-based and

MPP-based decoded performance states are higher than 0.80.

While we simulated a dataset based on the previous findings

in [4], simulating a performance state with a different dynamic

is possible using the unique baseline probability (p0) [15].

Considering Fig. 3, the first noticeable property is the

noisy estimates of the ARCH-based decoder, while the other

decoders in Fig. 4 and Fig. 5 present the smooth estimates.

We implement a time-varying process noise variance to

preserve the encoded environmental information within the

noise. However, there would be a trade-off between having

a noisy measure of a state and the smooth one. While the

ARCH-based model can store the information within the

process noise, this non-linear model can introduce additional

noise. The other possible reason is that the reaction time

dynamic, as one of the applied observations, is fast time-

varying, and the particle filtering approach is highly prone

to overfit to the dynamic of reaction time. Also, we can

observe the range of decoded performance varies between

each decoder, which arises from the decoder’s nature. Hence,

to compare the estimated performance derived from each

decoder, we can rely on the HPI, which is the generalized

form of performance estimates.
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Fig. 5. The BiCo-based performance state estimation for the example individuals during the n-back experiments in datasets 1 and 2.
The sub-figures from left to right present: (A) the BiCo-based performance estimates of dataset 1 [9]; (B) the BiCo-based performance estimates
of dataset 2 [25]. Within each sub-figure, the sub-panels respectively present: (1) The continuous value of the applied observation (red) and its
fit (black); (2) the sequence of incorrect responses (blue vertical line); (3) estimated performance zj (blue) and its 95% confidence limits (blue);
(4) the estimated probability pj (blue); (5) the HPI (blue). In regard to background colors in sub-figure (A): the green background color indicates a
calming music session, and the red background color represents an exciting music session. In regard to background colors in sub-figure (B): the
cyan background color corresponds to the no music session; the green background color stands for the relaxing music session; the red background
color indicates the exciting music session; and the yellow background color refers to the generated relaxing music session. The milder background
colors stand for the 1-back task blocks, and the more intense background colors indicate the 3-back task blocks.

The variance of the decoded performance using the ARCH-

based decoder is high, while this is not the case in the other

evaluated decoders. This implies that the ARCH coefficient

³1 maintains a high value, which increases the recovered

time-varying process noise variance and leads to a better

fit of reconstructed observation (the first subplot of Fig. 3).

However, in the other decoders, the performance state model

does not count for the time-varying property of the process

noise variance. Table. II presents the R2 for the fitted r j =

µ0 + µ1z j based on the estimated states where the R2 values

associated with the ARCH-based decoder are drastically

higher than the other decoders. While such goodness of fit

arises from the higher degree of freedom that the ARCH

model induces, there should be a specific protocol to avoid

overfitting [4]. To do so, we follow a proposed approach

in [13], and we update the recovered model parameters

progressively. Additionally, in the backward smoothing step,

we set the weights based on the state transition and avoid

relying on the observation data. Using the overfitting control

technique, we find that while the R2 value for the fitted

observation is lower than the reported one in [4], we still

maintain a high goodness of fit (Table. II).

According to the ROC curves in Fig. 6, the ARCH-based

decoder outperforms in classifying the correct responses

associated with this particular participant from dataset 1.

However, the right sub-panel of Fig. 6 presents that the MPP-

based decoder posits a higher AUC value for a studied subject

from dataset 2. This can inspire us to develop an AR-ARCH

model and decoder that only takes the MPP-type observation.

Despite the subtle difference between the estimated

performance in an MPP-based decoder and a BiCo-based

one, the difference can play a crucial role, and BiCo-

based may encounter overestimation of performance. As the

apparent instance of such cases in sub-figure (A) of Fig. 5,

in block numbers 24 (trials 528-550) and 30 (trials 572-

594), the baselines of continuous observation (r j ) are low

while the population of incorrect responses is relatively dense;

this can lead to overestimation of the performance state

by overfitting to the continuous observation and dedicating

less importance to the incorrectness of responses in BiCo-
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Fig. 6. The receiver operating characteristic (ROC) curve for the classified correct response by estimated probabilities within each
decoder. The sub-figures from left to right present: (A) The ROC curve related to the classified correct response for a participant in dataset 1. (B)
The ROC curve related to the classified correct response for a subject in dataset 2.

Fig. 7. Session-wise representation of ARCH-based decoder properties for one subject in dataset 2. The sub-panels from top to bottom
present: (1) The estimated performance state (zj ) at each session; (2) the recovered process noise variance (h2

j
) at each session; (3) the recovered

process noise (ϵj ) at each session; (4) the l2−norm of process noise variance at each session, and (5) the frequency spectrum of process noise
variance for all sessions. The cyan, green, red, and yellow background colors represent no music, relaxing music, exciting music, and generated
relaxing music sessions, respectively. The black, blue, red, and yellow curves at the bottom sub-panel are associated with no music, relaxing music,
exciting music, and generated relaxing music sessions, respectively. The milder background colors stand for the 1-back task blocks, and the more
intense background colors indicate the 3-back task blocks.

based filter. Implementing the MPP-based observation can

overcome this issue by ignoring the low baselines of r j when

incorrect responses occur and imposing more weights on the

correct/incorrect responses. A similar outcome can be seen

in Fig. 4 and Fig. 5, where at the beginning of the 53th

block (trials 1166-1188), consecutive incorrect responses as

well as fast reaction time are presented, and the MPP-based

performance state has the local minimum at the start of the

block (sub-figure (B) of Fig. 4), while the BiCo-based decoder

presents a relatively low variation of state in the entire block

(sub-figure (B) of Fig. 5).

Fig. 7 is displayed to evaluate the capability of the ARCH

model to capture the environmental impacts. In these session-

wise views, we aim to distinguish the applied auditory stimuli.

Particularly, considering the pick value of ||h2
j ||2 and the

frequency spectrum of process noise variance, there is a clear

separation between the no music session (black curve in the

bottom subplot) and other sessions. By visual inspection,

we can see that the noise and noise variance at each session

have a particular structure that can be applied toward the

change point detection. However, the main scope of this study

is dedicated to the decoder design paradigm, and the offered

ARCH-based model can be investigated deeply in this context.

Fig. 8 and Fig. 9 are presented to evaluate the overall

performance of each decoder, given the aggregated data of all

participants/subjects in each dataset. Specifically, we use the

average HPI and evaluate the association of the HPI with the

available performance metrics such as average correct response

and reaction time. The high positive correlation between the

average HPI and the average correct response signal can be
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Fig. 8. Average performance indices within all the participants of experiment 1. The sub-panels, from top to bottom, presents (1) the
percentage of average correct response among the participants, (2) the average of reaction times among the participants, (3) the average of
decoded HPI from ARCH-based decoder among the participants, (4) the average of decoded HPI from MPP-based decoder among the participants,
and (5) the average of HPI from BiCo-based decoder among the participants. The green background color indicates a calming music session, and
the red background color represents an exciting music session. The milder background colors stand for the 1-back task blocks, and the more intense
background colors indicate the 3-back task blocks.

Fig. 9. Average performance indices within all the subjects of experiment 2. The sub-panels, from top to bottom, presents (1) the percentage
of average correct response among the subjects, (2) the average of reaction times among the subjects, (3) the average of decoded HPI from
ARCH-based decoder among the subjects, (4) the average of decoded HPI from MPP-based decoder among the subjects, and (5) the average of
HPI from BiCo-based decoder among the subjects. The cyan background color corresponds to the no music session; the green background color
stands for the relaxing music session; the red background color indicates the exciting music session; and the yellow background color refers to the
generated relaxing music session. The milder background colors stand for the 1-back task blocks, and the more intense background colors indicate
the 3-back task blocks.

interpreted as an indicator of reliable estimation, and the high

negative association between the average HPI and the average

reaction time may be deduced as an index of a reasonable fit.

The derived Pearson correlation coefficients present a better

fit of derived ARCH-based HPI and applied performance

metrics (i.e., average correct response and reaction time)

in both datasets. Considering the aggregated data lens, one

may interpret that the ARCH-based decoder outperforms the
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MPP-based and BiCo-based decoder. However, it should be

noted that an individual perspective should be considered in

parallel. Specifically, one of the objectives of these hidden

brain state decoders would be their implementation within the

personalized automated closed-loop brain-machine interfaces

that could potentially regulate the brain state according to the

individual’s attributes [25], [44].

V. CONCLUSION

The brain state decoder is an essential element of the

closed-loop systems in understanding the impact of stimuli

on the brain dynamic. Particularly, the cognitive performance

state is an unobserved variable that can be affected by

several internal and external factors. To closely resemble the

dynamic of cognitive performance and decode the hidden

state, a performance state model and decoder should be

employed to quantify the performance from the available sets

of observations.

In this research, we focus on the cognitive performance

of individuals who were performing the n-back tasks in the

presence of different types of music, and we study multiple

types of decoders. We first study a presented performance

decoder in [9], and present the findings accordingly. Inspired

by the proposed framework in [15] for the hidden arousal state,

we consider the MPP observation to decode the performance

state. Particularly, the MPP-based decoder takes account of

the reaction time when a correct response occurs. Thus,

it only considers a reaction time associated with the correct

response regardless of how fast an individual reacts within

the incorrect trials. Then, to account for the environmental

impacts on performance, we employ the developed ARCH-

based decoder in [4]. Inducing the time-varying and non-linear

process noise variance enables the model to be adaptable and

encode the information within the process noise. However, the

ARCH model introduces a higher degree of freedom, which

may increase the likelihood of overfitting. If the tendency of

overfitting is observed, the early-stopping approach can be one

of the possible solutions to be considered.

According to the presented results on two studied datasets,

we may conclude that the ARCH-based and MPP-based

decoders outperform the BiCo-based one. It should be noted

that considering the individual perspective and comparing the

ARCH-based and MPP-based decoders together, we are not

able to make such a solid judgment. However, the aggregated

data view depicts a better performance of the ARCH-based

decoder. Also, it should be noted that the MPP-based decoder

shows a better performance compared to the BiCo-based

decoder, and this can pave the way for a new avenue of decoder

design procedures in which the ARCH noise structure can be

considered in the modeling step, and the MPP-type observation

can be assigned to the decoder (i.e., ARCH-MPP decoder).

Hence, developing an ARCH-MPP decoder can be listed as a

future direction of this research.

Our findings on both simulated and experimental data

present the feasibility of performance decoder implementation

within the closed-loop neural architecture. This architecture

enables us to monitor and regulate the unobserved brain

states. Monitoring cognitive performance in a non-invasive

manner can assist us in characterizing the interaction between

affective brain states, identifying the factors that maximize the

performance, and designing a safe neurofeedback mechanism

to reach optimal performance [2], [25].
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