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Decoding a Cognitive Performance State From
Behavioral Data in the Presence
of Auditory Stimuli
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Abstract— Cognitive performance state is an unob-
served state that refers to the overall performance of
cognitive functions. Deriving an informative observation
vector as well as the adaptive model and decoder
would be essential in decoding the hidden performance.
We decode the performance from behavioral observation
data using the Bayesian state-space approach. Forming
an observation from the paired binary response with
the associated continuous reaction time may lead to an
overestimation of the performance, especially when an
incorrect response is accompanied by a fast reaction time.
We apply the marked point process (MPP) framework such
that the performance decoder takes the correct/incorrect
responses and the reaction time associated with correct
responses as an observation. We compare the MPP-
based performance with two other decoders in which the
pairs of binary and continuous signals are taken as the
observation; one decoder considers an autoregressive
(AR) model for the performance state, and the other
one employs an autoregressive-autoregressive conditional
heteroskedasticity (AR-ARCH) model which incorporates
the time-varying and adaptive innovation term within the
model. To evaluate decoders, we use the simulated data and
the n-back experimental data in the presence of multiple
music sessions. The Bayesian state-space approach is
a promising way to decode the performance state. With
respect to individual perspective, the estimated MPP-based
and ARCH-based performance states outperform the AR-
based estimation. Based on the aggregated data analysis,
the ARCH-based performance decoder outperforms the
other decoders. Performance decoders can be employed
in educational settings and smart workplaces to monitor
one’s performance and contribute to developing a feedback
controller in closed-loop architecture to improve cognitive
performance.

Received 25 March 2024; revised 25 October 2024; accepted
2 November 2024. Date of publication 11 November 2024; date of
current version 10 December 2024. This work was supported in part by
NSF CAREER: MINDWATCH: Multimodal Intelligent Noninvasive brain
state Decoder for Wearable AdapTive Closed-loop arcHitectures under
Grant 1942585/2226123 and in part by New York University (NYU) start-
up funds. (Rose T. Faghih served as the senior author.) (Corresponding
author: Rose T. Faghih.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted
by the Institutional Review Board (IRB) at the University of Houston,
TX, USA.

The authors are with the Department of Biomedical Engineering, New
York University, New York, NY 10010 USA (e-mail: rffaghih@nyu.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNSRE.2024.3495704, provided by the authors.

Digital Object Identifier 10.1109/TNSRE.2024.3495704

Index Terms— Bayesian inference, music, cognitive
performance, state-space estimation.

[. INTRODUCTION

HE cognitive brain states are often unobserved internal
T states that cannot be directly measured, and they should
be decoded from the encoded information. To do so, a brain
state decoder can be employed to provide an estimate of
the state given the available observation. The cognitive
performance decoder is a type of brain state decoder that
quantifies the overall performance of one’s cognitive functions.
Similar to the majority of cognitive variables, cognitive
performance state is dynamic, and clear-cut scores are not
able to reflect its dynamic [1], [2], [3]. There is a need for
continuous quantification of cognitive performance. In this
research, we are particularly interested in decoding the
performance state during the n-back task in the presence of
music. The n-back task mainly engages the working memory
as a cognitive function of interest. Working memory is one of
the basic cognitive functions with temporary storage that can
process the stored information [4], [5].

Recent frameworks in designing brain state decoders include
the Bayesian state-space methods as well as machine learning-
based (ML-based) approaches [2], [4], [6], [7], [8], [9], [9],
[10], [11], [12]. Most of the ML-based approaches depend
on input labels, training data, and classification of segments
of data [6], [7], [8]. Therefore, ML-based approaches may
encounter challenges in the absence of labels and training
data [13]. The Bayesian state-space approach is a statistical
framework developed on Bayesian principles, and it is able
to estimate a continuous state trajectory given the available
sequential observations and independent of training data.
A typical Bayesian state-space approach considers a linear
state model with time-invariant process noise (i.e., innovation
term) variance, and hidden state can be decoded from the
specified observation. The autoregressive (AR) model is
an example of such linear and time-invariant models that
is typically used in cognitive neuroscience to model the
performance state [9].

In the context of Bayesian state filtering, a wide range of
observations can be used to decode an unobserved internal
brain state within the state-space models. These observations
include but are not limited to invasive and non-invasive
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Fig. 1. An overview of decoding the cognitive performance
state from behavioral data during the n-back task. (A) A series of
stimuli is presented. (B) The behavioral data, including the sequence
of correct/incorrect responses (binary) and reaction time (continuous),
are collected. (C) The observation vector is formed based on various
combinations of correct/incorrect responses and reaction time. (D) The
performance state decoders take different observations and decode the
performance state according to their specific designs: the ARCH-based
decoder considers a time-varying process noise variance that follows
the ARCH structure, and the decoder takes the pairs of correct/incorrect
responses (binary) and reaction time (continuous); the BiCo-based
decoder considers a time-invariant noise variance and takes the pairs
of correct/incorrect responses (binary) and reaction time (continuous);
the MPP-based decoder considers a time-invariant noise variance and
takes the marked point process observation.

measurements such as neural recordings from the brain,
peripheral physiological signals, and behavioral data [1],
[3], [9], [10], [14], [15]. While the neural recordings and
physiological signals are the informative metrics of one’s brain
activity, collecting them requires advanced setups. On the
other hand, behavioral measurements are readily available
and can be collected in everyday life settings, and we can
assign different sets of behavioral observations to decode the
performance state. The subject’s binary sequence of correct
and incorrect responses is one of the common behavioral
observations that can be used in this paradigm [16], [17], [18].
Another informative behavioral signal that can be employed as
an observation is the continuous reaction time (i.e., response
time) [18], [19], [20]. In the field of cognitive neuroscience,
various forms of observation vectors have been developed
to decode the performance. Previously, the pairs of binary
responses and continuous reaction time observation (i.e., BiCo
observation) associated with the presented cognitive task have
been used. Particularly, in [9], the performance state was
decoded using the BiCo observation. One of the possible
concerns that can be raised when using BiCo type observation
is that the decoder can overestimate the performance when
a pair of extremely fast reaction time and an incorrect
response occurs. To address this concern, the marked point
process can be applied to form the behavioral observation.
The MPP framework is widely used in neuroscience to
relate the ensemble neural spiking activity (point process)
to any relevant covariates (mark) [21], [22], [23], [24].
For instance, in [15], the hidden arousal state is decoded
from the sequence of arousal-related neural impulses and
their corresponding amplitudes. Here, we consider an AR(1)
performance state and assign a new observation vector
consisting of correct/incorrect responses and the reaction times
associated with the sequence of correct responses (successful
trials), solely. Then, we decode the performance from the
sequence of responses as well as the reaction time associated
with successful trials.

The cognitive performance state can be drastically affected
by internal and external variables such as environmental
changes and emotional status [2], [4], [25]. Thus, an adaptive
and time-varying performance state in the presence of
non-linearity should be considered to resemble real-world
settings. Although the AR model presents a pretty decent
estimation outcome, it mostly assumes a time-invariant process
noise variance within a linear model. The autoregressive
Conditional heteroskedasticity (ARCH) framework has been
widely applied for analyzing volatility in financial time
series [26]. The term volatility in financial returns refers to the
degree and rate of variation over a period of time [27], [28].
Particularly, the ARCH framework expresses the conditional
variance of a time series as a function of past residuals,
which enables the model to capture the time-varying nature
of the volatility. The ARCH framework can be implemented
within the state-space model to ensure the time-variability
of the model. The Bayesian state-space methods are often
employed within an expectation-maximization (EM) algorithm
to estimate the hidden state and recover the unknown model
parameter [15], [29], [30], [31], [32]. Including the ARCH
framework within the state-space model induces the non-
linearity, which prevents us from having a closed-form solution
at the expectation step (E-step) [33]. A particle filter can be
seen as a particular case of a Bayesian filter that is developed
to cope with non-linear and non-Gaussian systems [34].
To handle the non-linear model structure and approximate
an expected value of a function, an appropriate particle filter
(PF) can be used [4]. Following the originally developed
framework in [4], we model the performance state using
the AR-ARCH state-space representation, and we employ the
particle filtering to decode the performance state from the
binary and continuous observation in the presence of non-
linear and time-varying process noise variance.

Here, following the approach presented in [2] and [9],
we first decode the performance state from one binary and one
continuous (i.e., BiCo) observation using the AR state model.
Thereafter, we develop a new performance state model to
decode the performance from the MPP-type observation. Then,
to induce the time-varying process noise variance, we follow
the proposed method in [4], and we model the performance
state using the AR-ARCH state-space representation. Then,
we decode the ARCH-based performance using the sequence
of responses and reaction time [4]. Hence, two types of
decoders use a pair of binary and continuous observations,
and one of them relies on the MPP observation. Fig. 1
depicts an overview of the presented cognitive performance
decoders in this research. We demonstrate our findings on
simulated and experimental datasets, followed by a discussion.
Finally, we summarize our findings and draw a conclusion
accordingly.

[I. METHODS
A. Data
We investigate two datasets collected at the University of
Houston [25], [35]. The experiments were designed to study
the feasibility of employing safe intervention (i.e., music).
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Particularly, using music, high and low arousing environments
were simulated to modulate the cognitive brain states. The
informed consent from all participants/subjects was obtained,
and the behavioral and physiological signals were recorded
during a working memory task called the n-back task while
different types of background music were used. To preserve
the personalized nature of the intervention, the applied music
was provided by the individuals. The n-back task involves
working memory usage, and subjects are presented with a
series of stimuli such that they need to recall the n’" previous
one and determine whether the current stimulus is the same as
the n'" previous one or not. We use the recorded behavioral
signals, which include the sequence of correct and incorrect
responses as well as the response time of individuals. The
individuals who performed the n-back task in dataset 1 are
noted as “participants”, while individuals who performed
the n-back task in dataset 2 are stated as “subjects”. The
list of participants IDs and subject IDs are available in the
supplementary information.

1) Dataset 1: The experimental procedures in the experi-
ment were approved by the institutional review board (IRB)
at the University of Houston, TX, USA (STUDY00002013)
[35]. The total number of 6 participants (participants 1 to
6) performed an equal number of 1-back and 3-back task
blocks within two music sessions. The calming background
music was used throughout the first session, while the exciting
background music was played during the second session.
A total number of 16 task blocks were presented at each
session, and the 1-back and 3-back blocks were equally
and randomly distributed. Each task block was initiated with
5 seconds of instruction followed by 22 trials in which a
letter was displayed for 0.5 seconds, and a plus sign was
provided for 1.5 seconds (2 seconds trial window). Hence, the
participants had two seconds to respond. At the end of each
block, the participant had a 10 seconds resting time. Also, a
20 seconds resting segment was contrived in the middle of
each session (at the end of the 8" task block). A detailed
description of the experiment is available in [35].

2) Dataset 2: The original study includes 2 sets of n-back
experiments in the presence of safe interventions such as
music, coffee, and perfume [25]. The complete dataset is
publicly available through the PhysioNet database [36]. The
experimental procedures in the original study were approved
by the IRB at the University of Houston, TX, USA (STUDY
00002490). In this study, we only consider the first set of the
experiment that incorporates the music intervention. A total
number of 17 subjects participated in the experiment while
seven subjects were excluded from the original study due
to measurement errors and artifacts [25]. Hence, 10 subjects
(subjects Al to A10) are studied. An equivalent number of
I-back and 3-back task blocks were randomly distributed
within 4 sessions: The first session was presented with no
background music; the second session included the calming
music; the exciting music was played within the third session,
and a newly generated relaxing music was provided in the
last session (fourth session). The generated relaxing music
was produced based on the subject’s preference and using

deep learning neural networks. Each session included 16 task
blocks, each of which had 5 seconds of instruction followed
by 22 trials. Each trial consisted of 0.5 seconds of stimulus
presentation, along with a 1.5 seconds plus sign. Thus, subjects
could deliver their response in 2 seconds trial window. At the
end of each task block, 10 seconds resting section was
provided, and 20 seconds resting section in the middle of each
session was implemented. A subject performed a total number
of 1408 trials (i.e., 4 sessions x 16 task blocks x 22 trials).
A comprehensive description of the experiment is provided
in [25].

B. State-Space Framework

The state-space framework is a common approach in
control theory to present the unobserved state of interest [15].
In this research, the state of interest is the hidden cognitive
performance. Once the state-space model for cognitive
performance is specified, we wish to estimate the unobserved
performance state. To do so, the available observation vector
is employed, and the hidden state can be decoded through
different methods. In this research, we decode the performance
state by considering three different frameworks:

o AR(1) state model (time-invariant process noise variance)
given one binary and one continuous observation (BiCo-
based decoder) [9].

« AR(1) state model (time-invariant process noise variance)
based on MPP observation (MPP-based decoder).

o AR(1)-ARCH(1) state model (time-variant process noise
variance) given one binary and one continuous observa-
tion (ARCH-based decoder) [4].

Fig. 1 presents an overview of the presented cognitive

performance decoders in this research.

C. Performance State Estimation in Presence of a
Time-Invariant Process Noise Variance — One Binary
and One Continuous Observation

First, the unobserved performance state is modeled based
on the presence of time-invariant process noise variance [2],
[4], [9]. Hence, the following AR is employed to present the
hidden performance state (z;):

zj =2j-1t¢€j, (1)

where €; ~ N(0,02).

Once the performance state model is specified, the
observation vector may be identified to estimate the hidden
performance state. Similar to [4], [9], and [18], the sequence
of responses (7 ;) and reaction times (¢;) are considered as the
available observations.

The binary responses is assumed to follow the Bernoulli
distribution. The p; = P(m; = 1) can be related to
performance state employing the logit transformation [4], [9],
[18]:

1
- 1+ e (utz)’

pj 2
where the constant © may be found by considering z; ~ 0.

Hence, u = log(5 f(;,o) where po stands for the baseline
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probability [9]. The baseline probability can be derived from
the average probability of an correct response occurrence
during the entire experiment.

Similar to [9], the log of reaction time can be linearly related
to the state as

rj =log(tj) = yo + yizj + vj, 3

where v; ~ N0, avz) stands for the observation noise, and
Y0, Y1, and 03 are the unknown parameters to be determined.

Thus, based on the observation vector Y’/ = {(ny,r),
(n2,r2),...,(ny,ry)}, the performance state (z;) and
unknown model parameters 6, = {062, Y0, yl,avz} can be
decoded by employing the EM algorithm. More information
on the decoder equations can be found in the supplementary
information and in [4] and [9].

D. Performance State Estimation in Presence of a
Time-Invariant Process Noise Variance — A Marked
Point Process Observation

1) State-Space Model in Presence of a Time-Invariant
Process Noise Variance — A Marked Point Process Observation:
Here, while we follow the mentioned AR model to present
the performance state, we use different observation vector to
estimate the hidden performance state (z;). Hence, the hidden
performance state (z;) is presented using the following AR
model:

Zj =2j-11E€; “4)

Inspired by [15], the observation vector can take a marked
point process (MPP) form such that the log of reaction time
presents the marked for the observed point process where the
correct response is presented (i.€., n; = 1). Let us indicate
the correct response indices by J = Jjlnj = 1}. Hence, the
marked observation can be represented as [15]:

Ujej =Y+ 112 +vj, &)

where the continuous observation value (u; = log(t;)) is
considered only when the correct response exists (i.e., j € J).
Please recall that we assume the Bernoulli distribution for
the binary responses (p; = P(n; = 1)). The joint density
function for the observed correct response is

l—pj ifnj =0
p(njNujlzj) = 1

pj‘/27r0v2€

2
—wj—=y—r1z;)

203

ifn;=1

(6)

Similar to [15], we can apply an expectation-maximization
approach to estimate the hidden state z; and unknown
parameters 6, = {062, Y05 V1, avz}, simultaneously.

2) State-Space Decoder in Presence of a Time-Invariant
Process Noise Variance — A Marked Point Process Observation:
The MPP-based decoders have been used to decode the
arousal from the MPP-type observation [15]. Similarly,
we apply an EM framework to determine the unknown model
parameters 6, = {63, Y0, V1, 03}, and estimate the continuous
performance state z; at the same time.

E-Step:
The E-step equations are presented as:
Predict:

Zjlj—1 = Zj—1]j—1s (7
2 2 2
Ojlj—1 = Oj—1j-1 T 9> ®)

Update:
if nj =0
2
Zjlj = 2jlj-1+ 051 = pjij)s )
-1
» [ 1
“jlj—[—z +ij(1—ij)] : (10)
Ijli-1
ifn; =1
2
Cc.— il
J = )
Yioj ol

(1)

zjlj = zjlj-1+C;j [Uf(nj = Pjlj) (12)

+yi(u; —yo— Vle|j1)],

2 1 vi -
0jj = |:02— +pjiid = pjj)+ ;] .
jli-1 v
Employing numerical solvers such as Newton-Raphson,
we may solve for zj;.
By reversing the direction, the smoother can be imple-
mented, and the sets of smoothed states and variance can be
found:

13)

2
o% .
B; = 2JIJ ) (14)
fo .
JH11j
2jl0 = 2jlj + Bj(zj+110 = 2j+11)s (15)
o2 =02+ B0t — 07 (16)
JI =2l J\ i+ 7
M-Step:
The expected values of z?, and z;z; 1 can be written as
2 2 2
E[Zj]ZZjlj +Gj|]’ (17)
E[Zj+12j]=Zj+1qu|/+Bj0j2+1u. (18)

The expected value of log-likelihood function Q can take
the following form:

J

0= ZE[H,;'(M +z;) —log(1 + e* i)
j=1

E[
—|IJ
+ % log(2nov2) — E

(wj—vo— 7/12;)2}

2 2
jer %
_J ) 7 E|:(Zj_Zj—l)2i|
+710g(27[0'6)—j21T

; 19)

where ||f || denotes the length of J, and the unknown
parameters are estimated such that they maximize Q. The
iteration will persist between the E-step and the M-step until
meeting the convergence criteria.
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E. Performance State Estimation in Presence of a
Time-Variant Process Noise Variance — One Binary and
One Continuous Observation

1) State-Space Model in Presence of a Time-Varying Pro-
cess Noise Variance: To induce the non-linearity, we imple-
ment the ARCH noise [4]. Hence, the performance state model
follows the AR-ARCH structure in which the process noise
variance is time-variant [4]. The AR(1)-ARCH(1) model for
the hidden performance state (z;) can be shown as

Zj =2j-1 1€,
where €; ~ N(O, hz.) is a process noise.

In the ARCH(1) model the noise term can be presented as
(21)
where h% = oo + alejz._l, and it stands for the time-varying
conditional variance. The terms oo and «; are the ARCH
model parameters in which ¢p > 0 and 0 < o] < 1 are
the constraints [26].

Considering the binary response (n;) and the log of reaction
time (r; = log(¢;)) as the available observations, we wish to
estimate the unobserved performance in the presence of a time-
varying process noise variance. Following [2], [4], and [9],
the performance state can be related to the probability of

Pj
I—p;

(20)

€j =hjwj,

having correct response using log

= u+z =
pj = m
performance state via r; = logt; = yp + y12; + v;.

2) State-Space Decoder in Presence of a Time-Varying Pro-
cess Noise Variance: In this paradigm, the observed vector is
Y7 ={(n1,r), 2, r), ..., (ns,ry)}, and we aim to estimate
the performance state z; and the unknown model parameters
0, = {»o. yl,ovz,ao,al}. We apply the EM framework to
estimate the hidden state and recover the model parameters
at the same time. However, in this case, deriving the expected
value of the log-likelihood function would be a concern
to be addressed. The log-likelihood function takes the non-
linear form such that finding a closed form solution becomes
challenging [33]. Therefore, an effective approximation is
required. Inspired by [4] and [33], we use a particle filter for
the AR-ARCH model to decode the hidden performance.

E-Step:

The developed particle filter in [4] enables us to estimate the
performance state z; in the presence of a time-varying process
noise variance. Following the proposed approach in [4], the
algorithm implementation is described below.

o Step 1: Generate K number of particles with an arbitrary

initial mean state value zZo and initial state variance ag.

o Step 2: Proceed from j — 1 to j and draw particles z j (k)

based on the conditional state mean (Z;) and conditional
variance (01.2) derived from the Bayes’ rule:

o} (k) + h5 (k)

Vi (o,?l (k) + hf(k)) + o}

X |:av2(nj — ﬁj(k))
14

+ l(rj - - m%/—l(k))] +2j-1(k),

the reaction time is expressed in terms of

Zk) =

(22)

1

2(k) = [—
A PP

y21"!
+ ﬁj(k)(l - ﬁj(k)) + 0—12:| , (23)

v

2
oy + Otl(ﬁj—l(k) - fj—z(k)) :

By inserting pj(k) = [1 + e_(’“LZf(k))]_l in (22), the
term Z ; (k) would appear on both sides of (22), and z; (k)
can be derived using numerical approaches. Given the
Zj(k) and ojz(k), the particles can be generated from

2ik)y ~N z,»(k),a}(k)).

o Step 3: Assign the importance weight w;(k) to each
sample Z;(k). The weight density function can be
specified based on the problem of interest. Similar to [4]

and [33], the optimal importance weight w; can be
derived from

N(Yj 125(K), 0} )N (2" ®:21®. hi(k))

where h?(k) =

k) _
w;” =

N(% K 750, a}ac))
4

w®

o Step 4: Normalize the weights w®; = W
J
[4], [37], and perform the resampling to avoid the
particle degeneracy. As described in [38], the effective

. . . _ 1
sample size can be approximated: Nz = —Zk:mw§ o

Considering K /2 as the threshold, if N < K/2, the
systematic resampling can be performed [39], [40].

o Step 5: At j = J, we reverse the direction and to
improve the estimation by deriving a set of smoothed
state z;j(k) and equally smoothed weights w;(k) = 1/K
[4]. We consider p(Z;(k — 1)|Z;(k)) as the distribution
of interest, and smooth the state solely based on
the dynamics of the system to avoid the potential
overfiting [41].

M-Step:

During the M-step, model parameters can be determined
such that they maximize the expected value of our log-
likelihood function. We approximate the expected value of
the log-likelihood by using the particles and their weights
[4], [33], [42]. Hence, E[Q(zj,0)] ~ &+ 3K | Q(z,-(k),e),
where the log-likelihood function (Q) is presented as

J
0=>" [nj(ﬁ +z;) — log(l +e”“f)]
j=1
rj —vo—nzj)?
201}2

J

—J
+ 7log(sz) ->
j=1
—J 1 J (zi —2zi )2
+ - log(2m) — Z[ L]

2 o Lo +aizj-1 = 2j-2)?

+ log (ao +or(zj-1— Zj_z)z)}. (25)
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We recover a set of parameters 6, = {yp, yl,ag,ozo, o}
that maximizes the E[Q] [4]. A detailed description of
the parameter estimation in M-step is provided in the
supplementary information. Following the proposed overfitting
control technique in [13], we update the unknown parameters
progressively and consider the early-stopping to bypass the
potential overfitting. Let us indicate the model parameters
associated with the reaction time by 6, = {yo, y1, avz}; we
update those parameters at the m!” iteration as:

9(m+1) — Qr(m-&-l) + /\|:0(m+1) _ 9(m)i|’ (26)

r,updt r,pred r
where 0 < A <1 is a hyper-parameter to be set based on the
dataset, and Qr(j":gcll) refers to the initially recovered parameters
(available in the supplementary information). Also, we set the
early-stopping criteria such that if af,’lfpmdfl) < oithreshold, the
iteration stops; the oithresho]d is a hyper-parameter that can be
fine-tuned accordingly [13]. The algorithm iterates between
E-step and M-step until the convergence.

Once the hidden performance state (z;) is decoded, we can
derive a generalized and person-specific index of performance
called high performance index (HPI). Particularly, given the
differences in human brain structure and variation in cognitive
abilities from one individual to another [43], an individual’s
baseline can be considered, and HPI can be derived from
p(z; > threshold), where the threshold is indicative of the
cognitive performance baseline. The threshold can be set to
the median of state [15]. This type of index is between zero
and one, and it is inspired by the introduced term called
observer certainty level in [1]. It can reflect the probability
that an event (e.g., correct response) occurs more than just
by chance in a behavioral learning experiment [15]. The
HPI can be used to reduce the inter-subject variability and
evaluate the performance estimates among the participant pool.
Also, the probability of observing a correct response (p;)
can be derived by plugging the estimated performance state
in p; = T Another performance metric that can be
found from the decoder’s output would be the reconstructed
input observation (e.g., binary correct responses or continuous
reaction time) by plugging the estimated state and parameters
in the observation model equations such that the reconstructed
signal can be compared with the observed signal to evaluate
the goodness of fit.

F. Data Simulation

To further evaluate the decoders, a set of data can be
simulated based on the previously developed framework
in [4]. Particularly, we simulate the hidden state using
the AR process with time-varying process noise variance,
a continuous observation signal using a linear function in (3),
and the probability of observing a binary event using the
logit transformation [15], and the sequence of events can
be simulated where an event will occur at index j if p; >
baseline probability.

[1l. RESULTS

In the context of cognitive brain states, the absence
of continuous ground truth leads to challenges in the

TABLE |
THE COEFFICIENT OF DETERMINATION (Rz) VALUES FOR THE
ESTIMATED STATE AND PROBABILITY IN THE SIMULATED STUDY

R2
Variable ARCH-based MPP-based BiCo-based
2z 0.8599 0.8486 0.7316
D; 0.8464 0.8257 0.8698

decoder’s evaluation process [13]. One may address the
issue by implicitly evaluating the available cues. As an
instance of such implicit evaluations, different types of n-
back tasks and music interventions exist to be considered.
Also, according to the observations equations in (3), the
reconstructed observation can be derived by inserting the
estimated state and parameters in Yo + 12, and the goodness
of fit with respect to the actual observation may help us in
evaluating the decoder’s outcome. Furthermore, a simulation
study can provide valuable information regarding the decoder’s
performance [13]. We evaluate the estimated performance
using simulated data as well as two different experimental
datasets.

A. Simulated Data

To evaluate the ARCH-based, MPP-based, and BiCo-based
performance decoders, we use a set of simulated data. Mainly,
we simulate the reaction time, a sequence of binary responses,
and the performance state. To simulate the data, we set
the parameters according to the findings from experimental
data in [4]. The sub-figures of Fig. 2 present the state
estimation results for ARCH-based, MPP-based, and BiCo-
based performance decoders. The left sub-figure is related to
the ARCH-based performance decoder, the middle sub-figure
demonstrates the MPP-based decoder’s outcome, and the right
sub-figure depicts the BiCo-based decoder result. Sub-panels,
from top to bottom, present (1) the applied observation and
reconstructed one, (2) the simulated sequence of incorrect
response, (3) the simulated state and estimated one, (4) the
simulated probability and estimated one, and (5) the HPI,
respectively. The reconstructed continuous observation in the
first sub-panel is shown using the black signal, and the actual
one is presented in red. The simulated signals (ground truth)
are shown in red in the third and fourth sub-panels, and the
estimated variables are presented in blue. Table I presents the
coefficient of determination (Rz) values for the estimated state
(z;) and probability (p;) in the simulated study. The higher
R? value stands for a better alignment.

B. Experimental Data

1) Individual Data: Two unique datasets are presented
to evaluate each filter based on the experimental data.
Considering ARCH-based decoder, the performance state
estimation results for one participant/subject from each dataset
are illustrated in Fig. 3, where sub-figure (A) depicts the
results associated with dataset 1 [4], and sub-figure (B) is
linked to dataset 2. Similarly, the MPP-based and BiCo-
based decoders’ findings on both datasets are presented in
sub-figures (A) and (B) of Fig. 4 and Fig. 5, respectively. In



4276

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

(A)

ARCH-based Performance Decoder (Simulate

)

'

(1) Continuous
observation (|
Observation (u)

(2) Incorrect
responses
(2) Incorrect
responses

o 00 20 a0 400

(3) Performance
state (z)

(3) Performance
state (7)

(3) Performance
state (z.)

(B)

>~ MPP-based Performance Decoder (Simulat

©

BiCo-based Performance Decoder (Simulat:

(1) Observation (;)

00 %0

70 80 %00

(2) Incorrect
responses

b ==

B
600

60 700 80 900 o 00 20 30 40 50

1

(4) Probabilty (p,)

(4) Probability (p.)

(5) HPI
(5) HPI

(4) Probabilty (p,)

(5) HPI

Fig. 2. State estimation with simulated data using ARCH-based, MPP-based, and BiCo-based decoders. (A) The left sub-figure presents
the ARCH-based decoder findings on the simulated data. (B) The middle sub-figure shows the MPP-based decoder findings on the simulated data.
(C) The right sub-figure shows the BiCo-based decoder findings on the simulated data. Within each sub-figure, the sub-panels respectively depict:
(1) the simulated observation based on reaction time (red) and the reconstructed one (black); (2) the sequence of simulated incorrect response (blue
vertical lines);(3) the simulated (red) and estimated (blue) state; (4) the probability of observing a correct response p; and its estimate; (5) the HPI.

TABLE I
THE COEFFICIENT OF DETERMINATION (Rz) VALUES FOR THE FITTED
OBSERVATIONS WITH RESPECT TO EXPERIMENTAL DATA

R? - Dataset 1
Participant BiCo-based MPP-based ARCH-
ID f‘j ﬁj based f‘j
1 0.3720 0.4419 0.8314
2 0.1279 0.0312 0.7665
3 0.0913 0.0082 0.8532
4 0.1523 0.1198 0.7740
5 0.2700 0.2171 0.7743
6 0.1695 0.0420 0.8076
R? - Dataset 2

Subject ID BiCo-based MPP-based ARCH-

f‘j ’&j based fj
Al 0.0320 0.0321 0.8447
A2 0.2116 0.2205 0.7898
A3 0.4859 0.5430 0.7847
A4 0.2050 0.2886 0.9141
AS 0.5071 0.6170 0.7833
A6 0.4166 0.6429 0.8889
A7 0.0261 0.0504 0.8073
A8 0.4199 0.5264 0.8512
A9 0.4414 0.5080 0.7986
Al0 0.3116 0.2894 0.7541

each sub-figure of Fig. 3 to Fig. 5, the sub-panels present:
(1) the applied observation (r; or u;) and its reconstructed
signal (black curve); (2) the incorrect responses during the
experiment; (3) the decoded performance state during the
experiment; (4) the estimated probability of observing a
correct response; (5) the calculated HPI. The corresponding
green and red background colors in sub-figure (A) of Fig. 3 to
Fig. 5 refer to calming and exciting sessions, respectively; the
corresponding cyan, green, red, and yellow background colors
in sub-figure (B) of Fig. 3 to Fig. 5, in turn, indicate sessions
with no music, relaxing music, exciting music, and the relaxing
generated music. For Fig. 3 to Fig. 5, the milder background

colors stand for the 1-back task blocks, and the more intense
background colors indicate the 3-back task blocks. The
outcome of decoders for other participants/subjects is in the
supplementary information.

In order to evaluate the status of the estimated states, the
coefficient of determination (R?) value for the reconstructed
continuous observation, and the receiver operating characteris-
tic curve (ROC curve) for the classified correct responses are
considered: In Table II, the R? values for each decoder are
shown. Note that to calculate the R> for the reconstructed
observation in the MPP-based decoder (u je 7)» we only
consider data points of J={jln j = 1}. Additionally, we aim
to classify the correct responses from the estimated probability
p;j in each decoder. To do so, we classify successful trials from
Pj > Pthreshold, Where the range of threshold values is set
between 0.01 and 0.99. This wide range of thresholds enables
us to contemplate people with various cognitive baselines.
Fig. 6 displays the ROC curves associated with the classified
correct responses for one participant/subject of each dataset.
The area under the curve (AUC) values for participant 1 in
dataset 1 are 0.87 for the ARCH-based decoder (red curve),
0.63 for the MPP-based decoder (black curve), and 0.70 for
the BiCo-based decoder (blue curve) estimates. The AUC
values for subject A10 estimates are 0.68 for the ARCH-based
decoder (red curve), 0.70 for the MPP-based decoder (black
curve), and 0.64 for the BiCo-based decoder (blue curve). The
high AUC value implies a reliable classification performance.
The ROC curves for all the studied participants/subjects can
be found in the supplementary information.

One of the aims of incorporating the ARCH structure
process noise is to capture the surrounding impacts (e.g.,
auditory stimuli) on the performance state. Hence, we rep-
resent a session-wise perspective of the findings on one
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Fig. 3. The ARCH-based performance state estimation for the example individuals during the n-back experiments in datasets 1 and 2.
The sub-figures from left to right present: (A) the ARCH-based performance estimates of dataset 1 [4]; (B) the ARCH-based performance estimates
of dataset 2. Within each sub-figure, the sub-panels respectively present: (1) The continuous value of the applied observation (red) and its fit
(black); (2) the sequence of incorrect responses (blue vertical line); (3) estimated performance z; (blue) and its 95% confidence limits (blue); (4)
the estimated probability p; (blue); (5) the HPI (blue). In regard to background colors in sub-figure (A): the green background color indicates a
calming music session, and the red background color represents an exciting music session. In regard to background colors in sub-figure (B): the
cyan background color corresponds to the no music session; the green background color stands for the relaxing music session; the red background
color indicates the exciting music session; and the yellow background color refers to the generated relaxing music session. The milder background
colors stand for the 1-back task blocks, and the more intense background colors indicate the 3-back task blocks.

subject from dataset 2. Fig. 7 present the ARCH-based
decoder variables in a session-wise manner. The sub-panels
of the figure depict the performance state (z;), process noise
variance (h?), process noise term (€;), [?—norm of process
noise variance, and frequency spectrum of process noise
variance, respectively. The bottom sub-panel of Fig. 7 displays
the frequency spectrum of process noise variance during
the no music (black curve), relaxing music (blue curve),
exciting music (red curve), and generated relaxing music
(yellow curve) sessions. The cyan, green, red, and yellow
background colors in Fig. 7, in turn, refer to the no music,
relaxing music, exciting music, and relaxing generated music
sessions. In Fig. 7, the milder background colors indicate
the 1-back task blocks, and the more intense background
colors present the 3-back task blocks. Such session-wise
perspective of variables for all the studied participants/subjects
from both datasets are presented in the supplementary
information.

2) Aggregated Data: To evaluate the performance of
decoders in the context of aggregated data, we should be
cautious and address the potential inter-subject variability.
To do so, since the HPI is calculated based on the subject’s

baseline, it may be considered as a normalized index of
performance that can be used in an aggregated perspective, in
which we analyze a vector of data that includes performance
metrics from multiple subjects. More specifically, we evaluate
the correlation between the mean HPI and the average of
observed performance metrics (i.e., reaction time and correct
response) among the participants/subjects of dataset 1 and 2
(Fig.8 and Fig.9).

Findings on dataset 1 present that the Pearson correlation
coefficient of average correct response and HPI associated with
the ARCH-based, MPP-based, and BiCo-based decoders are
r, = 0.7060, r, = 0.2620, and r, = 0.4747, respectively.
Considering the correlation between the reaction time and
decoded HPI via ARCH-based, MPP-based, and BiCo-based
decoders, the correlation coefficients are r,;, = —0.7821,
rrr = —0.2716, and r,; = —0.4837.

A similar analysis is performed on dataset 2, and the
Pearson correlation coefficients between the average correct
response and HPI derived from ARCH-based, MPP-based, and
BiCo-based decoders are r, = 0.3842, r, = 0.3308, and
r, = 0.2740, respectively. Considering the correlation between
the reaction time and decoded HPI via ARCH-based, MPP-
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The MPP-based performance state estimation for the example individuals during the n-back experiments in datasets 1 and 2.

The sub-figures from left to right present: (A) the MPP-based performance estimates of dataset 1; (B) the MPP-based performance estimates of
dataset 2. Within each sub-figure, the sub-panels respectively present: (1) The MPP value of the applied observation (red) and its fit (black); (2)
the sequence of incorrect responses (blue vertical line); (3) estimated performance z; (blue) and its 95% confidence limits (blue); (4) the estimated
probability p; (blue); (5) the HPI (blue). In regard to background colors in sub-figure (A): the green background color indicates a calming music
session, and the red background color represents an exciting music session. In regard to background colors in sub-figure (B): the cyan background
color corresponds to the no music session; the green background color stands for the relaxing music session; the red background color indicates
the exciting music session; and the yellow background color refers to the generated relaxing music session. The milder background colors stand for
the 1-back task blocks, and the more intense background colors indicate the 3-back task blocks.

based, and BiCo-based decoders, the correlation coefficients
are r; = —0.8257, r,y = —0.6617, and r,; = —0.6479.

IV. DISCUSSION

The main aim of this research is to decode cognitive
performance from behavioral data. The absence of ground
truth in this paradigm can turn the decoder’s evaluation process
to a challenging step. One way to cope with this challenge is to
interpret the findings based on the available observations and
cues. We evaluate the ARCH-based, MPP-based, and BiCo-
based decoders in the context of experimental setups as well as
simulation study. The studied experiments include the n-back
task as a cognitive task of interest, and incorporate different
personalized music interventions.

The results of the simulated study for ARCH-based and
MPP-based decoders present a decent agreement between
the simulated variables and the estimated ones (Fig. 2).
Specifically, the R?> measurements for both ARCH-based and
MPP-based decoded performance states are higher than 0.80.
While we simulated a dataset based on the previous findings

in [4], simulating a performance state with a different dynamic
is possible using the unique baseline probability (pg) [15].

Considering Fig. 3, the first noticeable property is the
noisy estimates of the ARCH-based decoder, while the other
decoders in Fig. 4 and Fig. 5 present the smooth estimates.
We implement a time-varying process noise variance to
preserve the encoded environmental information within the
noise. However, there would be a trade-off between having
a noisy measure of a state and the smooth one. While the
ARCH-based model can store the information within the
process noise, this non-linear model can introduce additional
noise. The other possible reason is that the reaction time
dynamic, as one of the applied observations, is fast time-
varying, and the particle filtering approach is highly prone
to overfit to the dynamic of reaction time. Also, we can
observe the range of decoded performance varies between
each decoder, which arises from the decoder’s nature. Hence,
to compare the estimated performance derived from each
decoder, we can rely on the HPI, which is the generalized
form of performance estimates.
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Fig. 5. The BiCo-based performance state estimation for the example individuals during the n-back experiments in datasets 1 and 2.
The sub-figures from left to right present: (A) the BiCo-based performance estimates of dataset 1 [9]; (B) the BiCo-based performance estimates
of dataset 2 [25]. Within each sub-figure, the sub-panels respectively present: (1) The continuous value of the applied observation (red) and its
fit (black); (2) the sequence of incorrect responses (blue vertical line); (3) estimated performance z; (blue) and its 95% confidence limits (blue);
(4) the estimated probability p; (blue); (5) the HPI (blue). In regard to background colors in sub-figure (A): the green background color indicates a
calming music session, and the red background color represents an exciting music session. In regard to background colors in sub-figure (B): the
cyan background color corresponds to the no music session; the green background color stands for the relaxing music session; the red background
color indicates the exciting music session; and the yellow background color refers to the generated relaxing music session. The milder background
colors stand for the 1-back task blocks, and the more intense background colors indicate the 3-back task blocks.

The variance of the decoded performance using the ARCH-
based decoder is high, while this is not the case in the other
evaluated decoders. This implies that the ARCH coefficient
o1 maintains a high value, which increases the recovered
time-varying process noise variance and leads to a better
fit of reconstructed observation (the first subplot of Fig. 3).
However, in the other decoders, the performance state model
does not count for the time-varying property of the process
noise variance. Table. II presents the R? for the fitted r; =
Y0 + v1z; based on the estimated states where the R? values
associated with the ARCH-based decoder are drastically
higher than the other decoders. While such goodness of fit
arises from the higher degree of freedom that the ARCH
model induces, there should be a specific protocol to avoid
overfitting [4]. To do so, we follow a proposed approach
in [13], and we update the recovered model parameters
progressively. Additionally, in the backward smoothing step,
we set the weights based on the state transition and avoid
relying on the observation data. Using the overfitting control
technique, we find that while the R? value for the fitted

observation is lower than the reported one in [4], we still
maintain a high goodness of fit (Table. II).

According to the ROC curves in Fig. 6, the ARCH-based
decoder outperforms in classifying the correct responses
associated with this particular participant from dataset 1.
However, the right sub-panel of Fig. 6 presents that the MPP-
based decoder posits a higher AUC value for a studied subject
from dataset 2. This can inspire us to develop an AR-ARCH
model and decoder that only takes the MPP-type observation.

Despite the subtle difference between the estimated
performance in an MPP-based decoder and a BiCo-based
one, the difference can play a crucial role, and BiCo-
based may encounter overestimation of performance. As the
apparent instance of such cases in sub-figure (A) of Fig. 5,
in block numbers 24 (trials 528-550) and 30 (trials 572-
594), the baselines of continuous observation (r;) are low
while the population of incorrect responses is relatively dense;
this can lead to overestimation of the performance state
by overfitting to the continuous observation and dedicating
less importance to the incorrectness of responses in BiCo-
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based filter. Implementing the MPP-based observation can
overcome this issue by ignoring the low baselines of r; when
incorrect responses occur and imposing more weights on the
correct/incorrect responses. A similar outcome can be seen
in Fig. 4 and Fig. 5, where at the beginning of the 53"
block (trials 1166-1188), consecutive incorrect responses as
well as fast reaction time are presented, and the MPP-based
performance state has the local minimum at the start of the
block (sub-figure (B) of Fig. 4), while the BiCo-based decoder
presents a relatively low variation of state in the entire block
(sub-figure (B) of Fig. 5).

Fig. 7 is displayed to evaluate the capability of the ARCH
model to capture the environmental impacts. In these session-
wise views, we aim to distinguish the applied auditory stimuli.
Particularly, considering the pick value of ||h3||2 and the

frequency spectrum of process noise variance, there is a clear
separation between the no music session (black curve in the
bottom subplot) and other sessions. By visual inspection,
we can see that the noise and noise variance at each session
have a particular structure that can be applied toward the
change point detection. However, the main scope of this study
is dedicated to the decoder design paradigm, and the offered
ARCH-based model can be investigated deeply in this context.

Fig. 8 and Fig. 9 are presented to evaluate the overall
performance of each decoder, given the aggregated data of all
participants/subjects in each dataset. Specifically, we use the
average HPI and evaluate the association of the HPI with the
available performance metrics such as average correct response
and reaction time. The high positive correlation between the
average HPI and the average correct response signal can be
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Fig. 9. Average performance indices within all the subjects of experiment 2. The sub-panels, from top to bottom, presents (1) the percentage
of average correct response among the subjects, (2) the average of reaction times among the subjects, (3) the average of decoded HPI from
ARCH-based decoder among the subjects, (4) the average of decoded HPI from MPP-based decoder among the subjects, and (5) the average of
HPI from BiCo-based decoder among the subjects. The cyan background color corresponds to the no music session; the green background color
stands for the relaxing music session; the red background color indicates the exciting music session; and the yellow background color refers to the
generated relaxing music session. The milder background colors stand for the 1-back task blocks, and the more intense background colors indicate
the 3-back task blocks.

interpreted as an indicator of reliable estimation, and the high fit of derived ARCH-based HPI and applied performance
negative association between the average HPI and the average metrics (i.e., average correct response and reaction time)
reaction time may be deduced as an index of a reasonable fit. in both datasets. Considering the aggregated data lens, one
The derived Pearson correlation coefficients present a better may interpret that the ARCH-based decoder outperforms the
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MPP-based and BiCo-based decoder. However, it should be
noted that an individual perspective should be considered in
parallel. Specifically, one of the objectives of these hidden
brain state decoders would be their implementation within the
personalized automated closed-loop brain-machine interfaces
that could potentially regulate the brain state according to the
individual’s attributes [25], [44].

V. CONCLUSION

The brain state decoder is an essential element of the
closed-loop systems in understanding the impact of stimuli
on the brain dynamic. Particularly, the cognitive performance
state is an unobserved variable that can be affected by
several internal and external factors. To closely resemble the
dynamic of cognitive performance and decode the hidden
state, a performance state model and decoder should be
employed to quantify the performance from the available sets
of observations.

In this research, we focus on the cognitive performance
of individuals who were performing the n-back tasks in the
presence of different types of music, and we study multiple
types of decoders. We first study a presented performance
decoder in [9], and present the findings accordingly. Inspired
by the proposed framework in [15] for the hidden arousal state,
we consider the MPP observation to decode the performance
state. Particularly, the MPP-based decoder takes account of
the reaction time when a correct response occurs. Thus,
it only considers a reaction time associated with the correct
response regardless of how fast an individual reacts within
the incorrect trials. Then, to account for the environmental
impacts on performance, we employ the developed ARCH-
based decoder in [4]. Inducing the time-varying and non-linear
process noise variance enables the model to be adaptable and
encode the information within the process noise. However, the
ARCH model introduces a higher degree of freedom, which
may increase the likelihood of overfitting. If the tendency of
overfitting is observed, the early-stopping approach can be one
of the possible solutions to be considered.

According to the presented results on two studied datasets,
we may conclude that the ARCH-based and MPP-based
decoders outperform the BiCo-based one. It should be noted
that considering the individual perspective and comparing the
ARCH-based and MPP-based decoders together, we are not
able to make such a solid judgment. However, the aggregated
data view depicts a better performance of the ARCH-based
decoder. Also, it should be noted that the MPP-based decoder
shows a better performance compared to the BiCo-based
decoder, and this can pave the way for a new avenue of decoder
design procedures in which the ARCH noise structure can be
considered in the modeling step, and the MPP-type observation
can be assigned to the decoder (i.e., ARCH-MPP decoder).
Hence, developing an ARCH-MPP decoder can be listed as a
future direction of this research.

Our findings on both simulated and experimental data
present the feasibility of performance decoder implementation
within the closed-loop neural architecture. This architecture
enables us to monitor and regulate the unobserved brain

states. Monitoring cognitive performance in a non-invasive
manner can assist us in characterizing the interaction between
affective brain states, identifying the factors that maximize the
performance, and designing a safe neurofeedback mechanism
to reach optimal performance [2], [25].
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