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ABSTRACT Electrodermal activity (EDA) shows a significant correlation with activation of the autonomic
nervous system (ANS) activation. Regular ambulatory monitoring via wearables and consequent inference of
ANS activation has a wide range of applications tracking mental health. The real-world implementation of a
closed-loop system to regulate one’s emotional state to improve their mental well-being requires an accurate
and reliable estimation of ANS activation in ambulatory settings. However, the presence of motion artifacts
in skin conductance (SC) data collected in ambulatory settings makes the analysis for such estimation
unreliable. We propose a multi-rate adaptive filtering scheme to reduce motion artifacts in SC data that
utilizes three-axis accelerometer data. We investigate four types of linear and nonlinear adaptive filters.
We use both simulated and experimental data to investigate the performance of adaptive filters. Furthermore,
we utilize the respiration signal to identify the probability of respiration-induced SC artifacts. Next, we use
a Bayesian filter-based deconvolution approach to identify SC responses (SCRs) induced by underlying
arousal events and deep breaths. Finally, we propose to use the respiration signal to separate the artifacts in SC
due to deep breaths. Our results show that linear finite impulse response least squares recursive filters perform
best among the four types of adaptive filters studied. We draw this conclusion by obtaining receiver operating
characteristics of event-related SCRs detection with deconvolution after artifact reduction with different
adaptive filters. Moreover, for all of our simulated and experimental datasets investigated in this study,
we observe that the recursive least-squares filter always provides stable results. Additionally, our results show
our ability to detect respiration-induced SCRs and the corresponding activation of ANS. The evaluation of
adaptive filters shows the potential to utilize reference signals for successful artifact modeling and reduction.
Effective artifact reduction will lead to reliable ANS activation monitoring and consequent robust implemen-
tation of a closed-loop wearable machine interface architecture to eventually improve one’s mental health.

INDEX TERMS Active noise reduction, adaptive filters, biomedical signal processing, wearable sensors,
electrodermal activity.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and The phrase ““electrodermal activity” (EDA) was introduced
approving it for publication was Carmen C. Y. Poon . in 1966 to designate any electrical activity that is electrically
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measurable from the skin [1], [2]. Since its first observation
in the 1880s [2], EDA has been widely used in physiology
and psychophysiology studies as the information it contains
has a relationship with the activation of the sympathetic
nervous system (SNS) [3], [4]. SNS—a part of the autonomic
nervous system (ANS)-is responsible for the fight-or-flight
response mechanism in response to a stimulus that the human
brain categorizes as a threat to survival. When such an
emotional stress stimulus is perceived, the brain stimulates
the sweat glands via ANS, depending on the psychological
and physiological demands. The subsequent secretion of salty
sweat glands increases skin conductance (SC)—a measure of
EDA-by increasing the number of electrical charge carrier
ions. SC measurements contain rich information on SNS
activation. Therefore, evaluating SC response (SCR) due to
ANS activation will lead to more effective monitoring of
emotional arousal fluctuations [5].

Efficient EDA analysis along with SNS activation infer-
ence have a wide range of applications, including detection
of major depression [6], pain detection [7], tracking of
cognitive stress [5], tracking of wakefulness [8], etc.
Furthermore, abnormal regulation of EDA appears to be
a reliable feature of depression and a potential marker of
suicidal risk measurement [9]. Azgomi et al. [10] proposed
a closed-loop wearable-machine interface architecture to
regulate emotional arousal that utilizes EDA as observation.
The proposed method comprises the identification of ANS
activation using EDA deconvolution [11], [12], [13], the
estimation of emotional stress [5], [14], [15], and finally
closing the loop [16] to maintain the corresponding emotional
state within the desired range. However, in ambulatory
settings, recordings can have artifacts due to motion or
other noise sources. For effective implementation of such
a closed-loop regulation scheme, artifact reduction is a
prerequisite.

The non-invasive nature of many biomedical sensors
has led to many measurement technologies for ambulatory
health monitoring. The most popular modality of biomed-
ical sensors that are currently being deployed in many
consumer devices along with wearable devices includes
cardiac sensors e.g. electrocardiogram (ECG) electrodes and
photoplethysmogram (PPG) optodes, skin temperature (SKT)
sensors, muscle activity sensors e.g. electromyogram (EMG)
electrodes, etc. [17], [18]. In addition, many low-power
inertial sensors, such as accelerometers, gyroscopes, and
magnetometers, are deployed in wearable devices to monitor
user activity [19]. In the past few decades, numerous research
efforts have led to the successful implementation of PPG
signal analysis for wearable implementation, with the goal of
continuous monitoring of cardiac health. This effort has led
to applications ranging from daily heart rate monitoring [20]
to efficient detection of atrial fibrillation to prevent heart
stroke [21]. As motion can corrupt PPG signal recordings,
to try to make day-to-day monitoring successful, many
researchers worked on the prerequisite signal processing
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pipelines for motion artifact removal [21]. In other contexts,
there are many studies proposing various signal processing
techniques to remove motion artifacts from other biomedical
signals such as ECG [22], [23], electroencephalogram (EEG)
[24], functional near-infrared spectroscopy (fNIRS), etc. The
motion artifact removal schemes are not only important for
deploying sensors in consumer devices, but also it has been
an important preprocessing pipeline for scientific research.
Among popular approaches, motion reference based on
inertial sensor measurements has been widely utilized to
monitor activity.
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FIGURE 1. An Overview of the Experimental Setup. (a) A participant
wearing respiration belt and the ECG leads; (b) and placements of SC
sensor, accelerometer and PPG sensor on participants non-dominant
hand.

If a possible noise source reference is available, adaptive
filtering is one of the most desirable techniques for reducing
the noise from the target signal [25]. Adaptive filters have
been extensively studied to remove motion artifacts from var-
ious biomedical signals, including ECG [22], [23], PPG [26],
[27], EEG [28], [29], fNIRS [30]. LMS (Least Mean
Squares) filters are widely used in various biomedical signal
processing applications, including ECG denoising, EEG
signal enhancement [31], [32], [33]. These filters are known
for their simplicity and adaptability, making them suitable
candidates for motion artifact removal. RLS (Recursive Least
Squares) filters have been extensively explored in biomedical
signal processing due to their ability to adapt quickly to
changing signal conditions. They have found applications in
PPG noise cancellation [34], EEG noise cancellation [35],
highlighting their relevance in the context of biomedical
signal analysis. Volterra LMS and Volterra LMS filters are
less common than LMS and RLS in biomedical signal
processing, they have been employed in nonlinear system
identification and modeling [36]. They may find relevance
in signal analysis when dealing with nonlinear artifacts or
complex relationships within the signal. However, to the best
of our knowledge, there have not been studies that evaluate
adaptive filters for the removal of motion artifacts from
EDA utilizing reference information from inertial sensors.
Although EDA is one of the most potential candidates
for next-generation wearable health monitoring [37], the
amount of research conducted on EDA signals to obtain
information reliably is relatively limited compared to cardiac
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FIGURE 2. An Overview of Motion Artifact Reduction Algorithm: The above block diagram depicts multirate adaptive
filtering architecture for motion artifact reduction from SC recording with three channel accelerometer recordings as the
noise source reference. Figure shows how multi-channel noise reference stream is combined to a single stream via
upsampling and delaying before feeding into adaptive filter. On the other hand SC is decomposed into d[k] and ys¢; [k]
high pass and low pass filters respectively. The error between high frequency components d[k] and adaptive filter artifact
estimation z[k] is denoted as e[k] and is being fed back to the adaptive algorithm to update the adaptive filter coefficients.

signals. In particular, very little research has been carried
out to reduce the artifacts in EDA. There are a few studies
that investigate different methods for artifact detection,
including semi-supervised machine learning approaches [38]
and unsupervised machine learning approaches [39], [40].
Moreover, supervised machine learning-based [41], deep
auto-encoder-based [42], and wavelet-based heuristic [43]
techniques are investigated to correct artifacts. However,
those have not investigated noise reference information to
model the artifact. Whether the motion artifacts can be
represented as the linear or nonlinear transformation of a
noise source reference (such as the accelerometer recording),
and whether such transformation can be modeled with
adaptive filters, are yet to be investigated. Furthermore, some
of the fluctuations present in SC are related to respiration
and may not be directly related to ANS activation. In 2003,
Schneider et al. [44] reported evidence of misinterpretation of
experimental observations due to irregular respiration-related
SC activation. Hence, they proposed a rule-based approach
to identify such cases. Later in 2019, Lee et al. [45]
utilized a similar rule-based approach to detect and later
remove respiration-related noise from SC data based on the
PPG-derived respiration reference signal. However, a more
systematic approach is required to identify and isolate such
activations which can be referred to as respiration-induced
noise.

Therefore, in this study, we evaluate linear adaptive filters
as well as non-linear Volterra adaptive filters that take
the three accelerometers as the reference signal to model
the artifacts in a multi-rate manner as shown in Figure 2.
We utilize a publicly available dataset and simulated artifacts
to evaluate four types of adaptive filters. Furthermore,
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we perform experiments to induce motion artifacts during
SC data collection while recording motion information with
a three-axis accelerometer sensor. We evaluate the adaptive
filtering performance of removing motion artifacts utilizing
the experimental data. We also collect respiration reference
signals to identify respiration-induced noise.

In the following sections, we first discuss the materials and
methods which includes the experimentation for data collec-
tion, additional publicly available dataset description, mathe-
matical basis adaptive filters, linear/nonlinear/multirate adap-
tive filters, the deconvolution algorithm for EDA [46], and
proposed respiration removal technique. Finally, we present
the results, discussions on the results, and conclusions.

Il. MATERIALS AND METHODS

A. DATASETS

1) EXPERIMENTAL SETUP AND DATA COLLECTION

In this study, we designed and performed an experiment
to collect motion artifact-corrupted SC signals with two
noise references. The study was reviewed and approved
by the University of Houston Institutional Review Board
(STUDY00001078). We collected data from two participants,
with multiple trials for each participant. We specifically
recruited participants from the study team who possess
familiarity with all signals and sensors considered in
the experiment. Participants were aware of the difference
between the corrupted data of the motion artifact and the
clean data. In the first scenario of data collection, participants
were suggested to observe the SC signal that will be collected
and suggested to perform ‘hand waving’ as they want so
that some motion artifact is generated in the observed signal.
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FIGURE 3. Non-linear Artifact Reduction Result Example with Simulated Noise Source. Subplots from top to bottom show the artifact removal
performance with LMS filter, V2-LMS, RLS, V2-RLS filter with a single noise reference.

In the second scenario, participants were suggested to do
‘in place jogging’ while also observing the recorded signal
in real-time to make sure the data are motion-corrupted
because of their movement. The point of the tasks is to
generate motion artifacts generated from natural movement
while asking the user to observe the data so that the motion is
intense enough to generate motion artifacts. Data collection
was carried out with the Biopac MP160 system. We measure
the SC signal between the proximal phalanx of the index
finger and the ring finger for the nondominant hand. For
measuring data from the fingers, we used two Shimmer
reusable SC electrodes. We have also attached a Biopac SC
wet electrode to the thenar eminence and the hypothenar
eminence for the collection of SC data. Both dry and wet
electrodes are then attached to Biopac BioNomadix wireless
BN-PPGED amplifiers/transmitters with BN-EDA-LEAD2
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leads. For motion reference collection, we placed the Biopac
TSD109C3 three-axis accelerometer on the SC electrode
placed at the ring finger. Customization of the TSD109C3
accelerometer is performed to be able to use two Biopac
BN-GONIO wireless transmitters for three-axis acceleration
data acquisition. Customization is carried out by Biopac Inc;
Biopac used their two-channel wireless transmitters to inter-
face two channels of accelerometer data, and the remaining
channel was interfaced with another wireless transmitter’s
one channel. Furthermore, a PPG sensor has been placed
on the distal phalanx of the ring finger in the nondominant
hand. Additionally, we collect the three lead ECG signals and
the respiration signal with the Biopac BioNomadix wireless
BN-RSPEC amplifier/transmitter. We recorded all signals at
a 2 kHz sampling frequency. Figure 1 shows a brief overview
of the placement of the sensors.
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FIGURE 4. Inference Performance of ANS Activation After Deconvolution Algorithm After Artifact Removal with Different Filters. (a) Example of
deconvolution (top to bottom sub-plots depict raw signals in red with reconstructed signal in black, tonic component, phasic component and identified
ANS activations, respectively), (b) receiver operating characteristic (ROC) curves of detection performance of event related SC responses after reducing
artifacts with different approaches, and (c) area under the curves (AUC) for ROCs.

2) SIMULATED DATA

In addition to the experimental dataset that we collected,
we also generated and analyzed a simulated dataset. This was
done by taking the publicly available experimental dataset
of SCRs to loud sounds [47] and adding known simulated
artifacts to it. Bach et al. [4] designed this experiment to
model event-related SCRs. The dataset includes SC data
measurement from the thenar/hypothenar of the nondominant
hand, the middle phalanx of the dominant second and third
finger, and the medial plantar surface of the nondominant foot
for each of the 26 participants. Here, we only utilize the SC
recordings from the thenar/hypothenar of the non-dominant
hand of all the participants for single-channel analysis. The
details of the experiments and the dataset are provided in [4].

B. ADAPTIVE FILTERS
1) WIENER FILTER

We briefly discuss the basics of adaptive filters that we use to
evaluate artifact removal performance. In this study, we limit
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our scope to the adaptive filters finite impulse response (FIR).
First, we describe the ideal case of filtering, and then we
derive different adaptive filters with appropriate assumptions
for practical implementation. The ideal case is known as
Wiener Filter (WF). A WF has two inputs, a desired signal
d[k] and a noise reference signal n[k'] [25]. Here, we extend
our assumption that d[k] and n[k’] can have different
sampling frequencies for multirate formulation. Furthermore,
we extend our assumption here that the sampling frequency
of the noise source n[k’] is higher than the desired signal
d[k]. Let the sampling frequencies be F; and F),, respectively.
We also assume that the sampling ratio M = F,/F; is an
integer. If the filter at k' is defined with the vector w[k ] where
wlk, k'] is the k"™ element in the filter at the k™™ time step, then
the filter output z[k] can be written as

2[k] = wik]" x[k],

where x[k] = [n[Mk — L + 1] n[Mk — L 4 2] --- n[Mk —
11 n[Mk]1". Here, L is the length of the FIR filter. The error
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FIGURE 5. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC recording From
Participant 1, Trial 5, During In-Place Jogging. The first left panel depicts raw (artifact corrupted) and cleaned (artifact reduced) SC data.
The first right panel shows the corresponding power spectrum density. The next three panels show three accelerometer channel recordings
on the left and their corresponding power spectrum density on the right.

vector can be represented as

elk] = d[k] — z[k]. ey

The objective function for the WF algorithm is usually
derived from the mean square error (MSE), which is
represented as

Ty = E{(e*[k])}
= E{(d[k] — z[k]) " (d[k] — z[k])}
= E{(d*[k]} — 2w[k] E{d[k]x[k]}
+ wik] TE{x[k]x[k] T }wlk])

= E{(d’[k])} — 2w[k] " p[k] + wlk]  R[kIw[k], (2)

where pl[k], and R[k] represent the cross-correlation
E{d[k]x[k]} and the autocorrelation of E{x[k]"x[k]},
respectively. For WF, w[k], p[k], and R[k] are considered
constant for all k£ time points with the assumption that d[k]
and x[k] are jointly wide-sense stationary (WSS). Therefore,
the sample index k can be removed for the case of WF and
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can be written as w, p, and R. To minimize MSE, we need
to find the minima of the function in (2). Therefore, we take
the derivative with respect to w and set it to zero to obtain the
optimal filter coefficient vector w,.

Vidyw = —2p + 2Rw = 0

= w, =R !p. (3)

However, in practical settings, R and p are not known.
Therefore, some approximation or good estimates of R and p
are required. Mostly, different approximations of these leads
to different types of adaptive filters, which we will discuss in
later sections.

2) LEAST MEAN SQUARES (LMS) ADAPTIVE FILTER
At the kM step of least mean square (LMS) filter, the
approximations are carried out as

RIk] = x[k1x[k] T,
plkl = dlk]x[k].
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We plug these approximations into (2) to obtain the
approximation of MSE for the k™ sample as

Julk] = d?[k] — 2w[k1plk] + wik] " R[kIw[k].

We insert these approximations into (2) to obtain the
approximation of MSE, J,,. Using this, the filter update
equation for the k™ time stamp is as

wlk + 1] = wik] — a Vi dylk], 4)

where « corresponds to the step size. After simplification, the
final equation becomes

wlk + 1] = wlk] 4+ ae[k]x[k]. 5)

3) RECURSIVE LEAST SQUARE (RLS) ADAPTIVE FILTER
At k™ step of recursive least square (RLS) filter, the
approximations are carried out as

k
Rik) =" y*xfilxlil T,
i=0

k
Pkl =D y*Pdkx [k,
i=0
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where y is called the forgetting factor and is selected between
0 <y < 1. If wesety = 0, then the corresponding RLS
filters are the same as the LMS filter. We insert (2) to obtain
the approximate MSE, J,,,.

Julk] = d?[k] — 2w[k1p[k] + wik] " R[kIw[k].

We set the derivative Vw[k]jw[k] = 0 and find that the filter
update equation for k™ is as,

wlk] = R~ [k]p[k]. (©6)

However, this equation is computationally expensive. An iter-
ative update can be performed using the weights calculated in
the last step. After simplification, the update equation can be
written as follows [25],

wlk + 1] = wlk] + e[k]Splk]lx[k], @)
where
Y [k] = Splk — 1]x[k],

Ykl
K= —
Plk] gyl

— 1 T
Splkl = 5 [ Solk — 11— wIkIg1K)" | .
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4) SECOND ORDER VOLTERRA ADAPTIVE FILTERS (LMS
AND RLS)

inverse of an estimate of the input signal power; x(0) =

w(0) = [0 0---0], and evaluate.
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To obtain an n'" order Volterra LMS/RLS filter, we simply
populate the reference signal vector with the nonlinear terms
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first right panel shows the corresponding power spectrum density. The next three panels show three accelerometer channel recordings on

the left and their corresponding power spectrum density on the right.

for each iteration and update the length of the adaptive filter
coefficient vector accordingly. For example, for the 2" order
case, the reference signal is

x[k] = [xLlk]" awik]T17

where, xp [k]=[n[Mk — L + 1] n[Mk—L+2] ---
T
).

n[Mk11",
xNLIk] = vec(x [k]xL[k]

Here, ‘vec’ denotes the matrix-to-vector conversion opera-
tion. Now the corresponding adaptive filter length is L' =
L + L2, i.e., there are L’ numbers of elements in the vector
w(k] for each time step. All other steps of the adaptive filter
are the same as in the linear cases. We define V2 — LMS and
V2 — RLS to refer to 2™ order Volterra RLS and LMS filter.

C. ARTIFACT REDUCTION FROM SC SIGNAL WITH
ACCELEROMETER NOISE REFERENCE

A part of the artifact contamination on SC signal is related
to the movement of the sensors. Motion information can
be recorded in many different forms. One of the popular
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ways is to utilize a three-axis accelerometer to measure
the acceleration. A three-axis accelerometer records data
for three different axes. Therefore, we have three different
noise reference channels corresponding to three axes. For
the discretized recordings, we combine the sample stream
from these three signals into one discretized sample stream.
Now, the new stream has a frequency that is three times the
sampling frequency for the single channel. We perform an
adaptive filter in the recorded SC signal, while considering
the accelerometer recording as the noise reference. The SC
signal, denoted as ysc(t), contains a DC component and
some very low frequency components acting as a baseline.
We remove these baseline low frequency components so that
the mean value of the desired signal is zero. We consider
the desired signal as the high pass version of the recorded
raw SC signal. We perform low pass filter on the raw
SC signal to obtain the slow varying component yscr ().
Then we subtract the low pass filtered signal from the
raw signal to obtain the high pass filtered SC signal,
which is our desired signal d[k]. The noise reference
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nlk] = [ni[k =L+ 1] nalk =L+ 1] n3lk =L+ 1] ni[k —
L+2] mlk—L+2] n3[k—L+2] --- nilk] nalk] n3lk]]
and set F, = 3 x Fy to perform the multi-resolution
linear/nonlinear adaptive filtering. Here F,, corresponds to the
sampling frequency of the combined noise reference, n;[k]
represent the k™ sample of the accelerometer recording for
the i channel representing a spatial axis, Vi € {1, 2, 3}.
Before, combining all the accelerometer data into one noise
vector, we perform a third order moving median filtering to
remove any spike or outlier noise that has been observed
in some of the accelerometer channel data. This noise does
not represent motion artifacts and could be related to the
internal electronics of the accelerometer. We perform the
motion artifact removal on the signal at 100 Hz sampling
frequency for ysc[k]. Figure 2 shows an overview of the
motion artifact removal scheme. If each channel of noise
reference is uncorrelated then, it is trivial to show that
this implementation is equivalent to multi-reference adaptive
filters [48]. In a cascaded multi-reference filter, in every
stage, the goal is to orthogonalize the error with respect to
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the corresponding noise reference vector. The later stage is
then trained on the error from the previous stage same way.
Therefore, the final error is orthogonal to all the reference
vectors. In the proposed, architecture we represent this in a
multi-rate formulation, where we find the final orthogonal
residual error simultaneously for each of all noise references.

D. BAYESIANEDA FOR DECONVOLUTION OF SC
RESPONSE

For obtaining the ANS from the SC signal, we take
a deconvolution approach provided in [46]. We use the
following three-dimensional linearized state-space model to
describe the SC fluctuations from [46],

1
§51(1) = ——s1(0) + u(?), (sweat production)
Tr

. ns1(1) 1
s(t) = s1(t) — —s2(2), (pore collapse)
T )
1— t 1
§3(t) = wsl(t) — —s3(t) (slow re-absorption)
T T4
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FIGURE 11. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording from
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where s1(t), s2(¢), and s3() states respectively represent the
amount of sweat in the sweat ducts, the fraction of sweat in
the ducts that are electrically conducted to the surface due
to the open pore, and the fraction of sweat that is diffused
in the corneum. The parameters 7, and 75 represent the
faster decay time due to fast re-absorption and the slow
decay time related to slow elimination (due to the cumulative
effect of re-absorption, diffusion in the deeper corneum and
evaporation), respectively. The parameter 7, denotes the rise
time of the SC. System input u(f) represents the activation
of ANS. To keep the definition simple, we assume that ANS
activation occurs during the integer multiple of the sampling
period. Let T be the sampling period. With the sparsity
assumption as in [3], i.e. the number of activation events
is very small compared to the number of samples in SC,
we represent the activation of ANS as u(t) = ZkK: L ulk]é(t—
kTs) where ulk] is the amplitude of the impulse during the
activation of ANS at time kTy; here, u[k] is zero if there
is no impulse in the stimuli. Here, we set the parameter
n = 0.5 similarly to [46]. We represent the continuous
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state-space model as

5(t) = Acs(t) + Beu(r),
vsc(t) = Ces(t) + v(1),

where, s(1) = [51(1) $2(1) 5300 ],
-+ 0 0 1

Ac=| +Z —tip ,B.=|0],
+2 o -1 0

C. = [0 11 ], The phasic and tonic components of SC can
be represented as follows.

)’p(t) = Cc,ps(t) + Vp(t)v

ys(t) = Ce55(t) + vs(1),

where, Cc, = [010], Ccy = [00 1]. The discretized
state-space model is as follows,

slk]l = Agslk — 11+ Baulk], (8
ysClk] = Cyslk] + v[k]. 9
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Participant 1, Trial 4 During, Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact reduced) SC data. The
first right panel shows the corresponding power spectrum density. The next three panels show three accelerometer channel recordings on
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where s[k], y[k] € R, ulk], v[k] denote the state vector,
observation, ANS activation, and measurement error in the
discrete domain. The vectoru = [u[1] u[2] ulKNT
represents the ANS activation over the duration of the SC
data. Here, A; = ATy, By = fOTS AT=PB . dp, and
C, = C.. We further define the tonic and phasic components.
Here, Ty represents the sampling frequency. With this dis-
crete state-space representation, we perform deconvolution
using the scalable iterative reweighted Bayesian filtering-
based expectation-maximization (EM) approach, called
BayesianEDA [46], to identify u[k], Vk € {1,2,3,...,K},
i.e., the discretized version of u(t) as well as the physiological
system parameters. The deconvolution is performed with
a downsampled version of the noise-reduced signal with a
sampling frequency of 4 Hz.

E. ISOLATING RESPIRATION-INDUCED SC ACTIVATION

Unlike the motion artifact in EDA, respiration-induced
artifacts are more complex, i.e., mapping from deep breath
respiration signal to the corresponding EDA response (which
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has a specific characteristic shape) is highly non-linear and
not suitable to be modeled with adaptive filters. When
someone takes a deep breath, there is a SC response that
looks exactly the same as SC responses. However, if one
knows at what time the deep breath happens, these responses
can be easily isolated via deconvolution of SC data. More
specifically, deep breath induces SC activation which can
be isolated from the other SC activation. To isolate the
respiration-induced activation of the SC, deep breaths must
be detected, as mainly deep breaths are responsible for such
SC responses. We consider two aspects of respiration for
the detection of deep breaths. Firstly, deep breathing takes
a bit longer. Second, deep breath generates higher stress on
the respiration belt, i.e. the corresponding recorded voltage
from the transducer will have a higher amplitude. We only
considered respiration signals that are not motion-corrupted
based on visual inspection.

First, we perform a continuous wavelet transform of
the respiration signal. From all the wavelet coefficients,
we keep those related to the 0.05 — 0.25 Hz frequency
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FIGURE 13. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording From
Participant 1, Trial 5, During Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact reduced) SC data. The
first right panel shows the corresponding power spectrum density. The next three panels show three accelerometer channel recordings on

the left and their corresponding power spectrum density on the right.

components and perform an inverse wavelet transform to
obtain the reconstructed respiration signal. One should note
that the band pass filtering with FIR/IIR filter should also
serve the purpose. In this way, we remove any potential
high-frequency components related to normal breathing [49]
and noise along with any potential DC component related to
the baseline shift because of movement in the respiration belt.
As the next step, we detect the breathing amplitude variation
over time. Then we perform moving average filtering with
a window size of 5 seconds on the absolute value of the
respiration signal. Here, the window size is selected to be
around the maximum length of a normal breath, which
is about 5 seconds. We tried with different size of the
window from O to 20 with 2 seconds increment, by visual
inspection, a 5 seconds window seemed reasonable to us
in terms of detecting high stress in the belt. The moving
average of the absolute value of the respiration signal will
be higher where the respiration belt stress is higher. We use
the ‘movmean’ function of MATLAB [50]. Then we obtain
a moving standard deviation of the moving mean signal with
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a window of 30 seconds and take the sample-wise ratio of
the moving mean signal and the moving standard deviation
signal. This ratio standardizes the signal according to the
30-second window. Standardization accounts for different
levels of fluctuations related to variable belt tightness levels.
Variability in the belt tightness levels of the transducer belt
may originate from changes in the participant’s pose or
changes in the belt position during the experiment. Next,
we subtract the mean from the ratio signal and multiply it
by 3. Finally, we perform a sigmoid transformation to map the
signal between 0 and 1 to represent the probability. We define
this probability as p1[k].

Second, we perform peak detection on the wavelet-
reconstructed respiration signal and peak detection on the
negative of it. For peak detection, we use ‘findpeaks’
from MATLAB with default settings [50]. We take both
amplitude and locations of the peaks from the reconstructed
and negative reconstructed signals to perform a spline
interpolation. Then we obtained a moving standard deviation
of the interpolated signal with a window of 90 seconds.
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FIGURE 14. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording from
Participant 1, Trial 6, During Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact reduced) SC data. The
first right panel shows the corresponding power spectrum density. The next three panels show three accelerometer channel recordings on

the left and their corresponding power spectrum density on the right.

Finally, we take the sample-wise ratio of the interpolated
signal and the moving standard deviation signal. This ratio
standardizes the signal based on the 90-second window
and accounts for high levels of fluctuations with different
tightness levels of the transducer belt because of changes in
the participant’s pose. Finally, we multiply the ratio signal
by 10 and perform a sigmoid transformation to map the
signal between O to 1 to represent probability. We define this
probability as py[k]. We multiply these two probabilities to
obtain one probability signal representing the probability of a
deep breath. Let us denote this probability by p[k]. Therefore,
we can write p[k] = pi[k]p2[k]. We obtain the probability
with 100 Hz sampling frequency and then down-sample in
order to match the deconvolution results.

After deconvolution with the BayesianEDA algorithm
to obtain ANS activation, we define respiration-induced
activation as u[k]p[k] and direct activation of ANS as u[k](1—
plk]). Here, the deconvolution with BayesianEDA algorithm
is performed at 4 Hz. Therefore, p[k] was downsampled

68222

at the same sampling frequency to obtain u[k]p[k] and
ulk](1 — plk]).

F. INVESTIGATE ADAPTIVE FILTERS WITH KNOWN
SIMULATED NOISE

The objective of the simulated study is to have an idea
of the performance of four different adaptive filters in the
removal of artifacts from SC data. For the simulated study,
we first generate a reference noise signal and then perform a
non-linear transformation to add it to the raw signals from
the publicly available dataset in [47]. The noise reference
is generated by summation of a sine wave and a square
wave where the amplitude and the frequencies are randomly
varied. Square wave-type artifacts are representation of
sensor saturation effect. On the other hand, sign wave is
representative of rthythmic motions due to movements such
as running or jogging. The reason of using these two types
of signal along with Gaussian noise is the effort towards
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FIGURE 15. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording from

Participant 2, Trial 1, During Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact reduced) SC data. The
first right panel shows the corresponding power spectrum density. The next three panels show three accelerometer channel recordings on
the left and their corresponding power spectrum density on the right.

motion artifacts closer to reality. For the simulation purpose,
we vary the amplitude of the waves that are sampled from
a Gaussian distribution every second with the mean of 20%
of the standard deviation of the corresponding SC recording.
On the other hand, the standard deviation of the random
amplitude has been selected to be 5% of the standard
deviation of the corresponding SC recording amplitudes.
Similarly, for the frequencies, we sampled every 0.5 seconds
randomly from a Gaussian distribution of mean 1 Hz and
variance 0.25 Hz. We also add zero mean Gaussian noise
with a standard deviation of 0.2. The sampling frequency for
discretization is selected as 100 Hz, which is the same as the
sampling frequency of the dataset. We utilize the following
transformation for simulating the artifact-corrupted SC signal
as follows,

ysclkl = yB-[k] + (h s m[k] + c1(n[k])* + ca(n[k])>.
(10)

where / is a filter representing the transformation of the
noise. We generate it first by drawing 50 samples from
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zero-mean Gaussian distributed number to create a vector
h, then scale it by dividing it by its norm to find the filter,
ie.,h= ”}f’ﬁ Furthermore, ¢ and c¢; are randomly sampled
from Gaussian distributed random variables with a standard
deviation of 0.1 and 0.01. Here, y?c represents the SC signals
from the publicly available datasets. k denotes the k™ sample.
We successfully utilized the artifact removal with the adaptive
filter with parameters « = 0.02 and A = 0.999995. These
values were selected by trial and error and visual inspection
of the results for all the data corresponding to 26 participants
in [47].

Ill. RESULTS

A. SIMULATION RESULTS

Figure 3 shows the results of the LMS, V2-LMS, RLS,
and V2-RLS filtering. The visual depiction shows that the
adaptive filters can remove most of the simulated noise.
The result also shows a qualitative illustration that RLS and
V2-RLS are performing better in terms of their ability to
follow the ground truth. Moreover, results from RLS and
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FIGURE 16. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording from
Participant 2, Trial 2, During Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact reduced) SC data. The
first right panel shows the corresponding power spectrum density. The next three panels show three accelerometer channel recordings on

the left and their corresponding power spectrum density on the right.

V2-RLS filters were always stable while LMS and V2-LMS
filters became unstable for 5 participants and could not be
used for further analysis.

Using stable adaptive filtering results, we deconvolve the
artifact-reduced SC signal to perform deconvolution with
BayesianEDA algorithm [46]. Figure 4-(a) shows an example
deconvolution result showing the inferred activation of ANS
from the artifact-reduced signal. Furthermore, we use the
estimated activation of ANS u(f) to distinguish between
event-related SCRs and non-event-related SCRs. Here, the
events are loud sound events. First, we label all nonzero
elements in estimated u[k] Vk as positive if they are within
5 seconds after the participant heard a loud sound event,
and other impulses as negative. We consider the values of
non-zero elements to be the only feature for the classification
within the participants to investigate the receiver operating
characteristic (ROC) [51], [52]. Figure 4-(b) shows the ROCs
obtained from the filtered signal from the FIR lowpass
filter with 0.5 Hz cutoff, LMS adaptive filter, RLS adaptive
filter, and V2-RLS adaptive filter. Figure 4-(c) shows the
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corresponding area under the curve (AUC) of the ROCs. The
results show that the RLS-filtered signals yield the highest
AUC (= 0.738).

B. EXPERIMENTAL RESULTS

We applied all four types of adaptive filters on the experimen-
tal data with different settings; however, only the RLS filter
provided stable results while learning. Therefore, we present
only results from the RLS filter for the experimental study.
The SC and three-axis accelerometer signals are resampled to
100 Hz. Based on the adaptive filtering scheme in Figure 2,
the desired signal has a sampling frequency of 100 Hz,
and the noise reference has a sampling frequency of 300 Hz.
The adaptive filter length is also L = 300 to consider a
1 second window. For the forgetting factor, we first tested
the value that has been used for the simulated data. Based
on the results, we relaxed the forgetting factor to allow the
filter to re-adjust itself for newer data well. Through trial
and error, A = 0.999 seemed to work well for our study.
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FIGURE 17. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording
from Participant 2, Trial 3, During Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact
reduced) SC data. The first right panel shows the corresponding power spectrum density. The next three panels show three
accelerometer channel recordings on the left and their corresponding power spectrum density on the right.

Figure 5 shows an example adaptive filtering result utilizing
the RLS adaptive filter. Figure 5 also shows that some of
the peaks that are seen in the captured motion information
power spectrum density of the accelerometer are also can
be seen in the raw experimental power spectrum density of
the SC signal. RLS adaptive filter could successfully remove
those peaks. Figure 5, also depicts that there is a significant
amount of energy reduction in the power spectrum density.
Additional results for all participants are provided in the
Appendix. Figure 6 shows some zoomed-in segments from all
trials of Participants 1 and 2. The figure provides a qualitative
illustration of RLS adaptive filters’ ability to reduce artifacts
utilizing accelerometer information.

Additionally, we try to identify SCR activation related
to the deep breaths. We only utilize the respiration signal
for Trial 1-5 for Participant 1. Because other respiration
signals seemed to be heavily corrupted with artifacts reducing
artifacts in respiration signals is out of the scope of this
study. First, we successfully detected deep respirations
based on the method described in Section II-E. Figure 7
represents the results of the deep breath detection. Next,
we deconvolve the motion artifact-reduced SC signals and
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identify the respiration-induced SC activation based on the
estimated probability p[k]. Figure 8 shows the results of
the identification of respiration-induced activation for SCR
generation.

IV. DISCUSSION

In this study, we first investigated four different adaptive filter
candidates with simulated data and evaluated their perfor-
mance based on the identification of ANS performance from
the artifact-reduced signals. Then we perform experiments to
collect motion artifact corrupted SC data along with motion
reference signal (accelerometer sensor data and respiration
signal). Then we evaluate performance artifact removal
performance of the linear-RLS filter from experimental data.
Finally, we propose a method for identifying and separating
respiration-induced artifacts from ANS activation utilizing
Bayesian filter-based deconvolution algorithm. From the
simulated study with publicly available experimental SC
data [47], we can see that the RLS filter performs better
than other filters in terms of retaining information about
event-related responses so that detection of such events is
detected. Moreover, the linear RLS filter is the most stable
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FIGURE 18. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording
from Participant 2, Trial 4, During Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact
reduced) SC data. The first right panel shows the corresponding power spectrum density. The next three panels show three
accelerometer channel recordings on the left and their corresponding power spectrum density on the right.

one. Although we have considered some nonlinearity in
the noise reference transformation, the RLS filter was able
to model the transformation with a time-varying piecewise
linear fashion. However, LMS, V2-LMS and V2-LMS filters
suffer from instability and the high number of parameters
required to update each step compared to the number
of observations used during gradient calculation. Further
analysis with deconvolution on artifact-reduced SC data and
consequent loud-sound detection confirms that the RLS filter
is reasonably improving the detection ability of event-related
activations for SCR generation.

From the analysis of our experimental study, we see that
only the RLS filter was able to achieve stability in terms
of reducing the motion artifact. However, none of the other
filters was able to achieve stable results. The power spectrum
density change also confirms that there is a significant
reduction in the spectrum peaks that are generated by motion.
We observe some peaks in the accelerometer power spectrum.
The similarities are also seen in the power spectrum of
raw SC data denoting the artifacts. After artifact removal,
these spectrum peaks are not visible anymore. In Figure 6,
we also see that how different types of artifacts are reduced.
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In some cases, we have seen that the RLS filter output
becomes more noisy than the input. These scenarios suggest
significant changes in the transformation system between the
accelerometer data to artifact generation. The RLS filter takes
some time to learn the new system and inaccuracy in the
reduction can be seen during this learning phase.

Furthermore, we see that a simple rule-based algorithm
combined with BayesianEDA [46] can lead to the successful
identification of the deep-breath and deep-breath-induced
SCR responses. In this way, direct ANS activation can
be isolated from respiration-induced activation. Thus, the
respiration-induced alteration of SC data can be ignored
in some applications of autonomic arousal estimation by
modifying the state-space formulations in [5], [14], [15],
and [53]. However, we have considered some intuitive
rule-based algorithm for deep breath detection.

For this study, we have generated simulated noise with
some arbitrary settings. Therefore, it might not be capturing
the whole space of artifact corruption. However, it allows
us to obtain an idea of how different adaptive filters might
perform in real-world settings. For the experimental data,
we have suggested the participants look the screen and try

VOLUME 12, 2024



M. R. Amin et al.: SCR Artifact Reduction

IEEE Access

Participant 2, Trial 5 (In Place-Jogging)

Skin Conductance

raw
— — —cleaned |
.

0 50 100 150 200 250 300

Time (seconds)

Accelerometer Channel 1

-200 :

ADC
Measurement

Time (seconds)

Accelerometer Channel 2
100 T T T T T

- -100 f !

-200

ADC
Measurement
(a.u.)

Time (seconds)

Accelerometer Channel 3

ADC
Measurement

0 50 100 150 200 250 300
Time (seconds)

I I I I
0 50 100 150 200 250 300

0 50 100 150 200 250 300

Skin Conductance

107 1(;0 1(;' 102
Fequency (Hz)
Accelerometer Channel 1

107 10° 10’ 102
Fequency (Hz)
Accelerometer Channel 2

107 1(;0 1(;‘ 102
Fequency (Hz)
Accelerometer Channel 3

50 -

Power (dB

0 | |
107! 10° 10" 102

Fequency (Hz)

FIGURE 19. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording from
Participant 2, Trial 5, During Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact reduced) SC data. The
first right panel shows the corresponding power spectrum density. The next three panels show three accelerometer channel recordings on

the left and their corresponding power spectrum density on the right.

to generate artifacts by hand waving and in-place jogging
with multiple trials which might be slightly different than
the reality. However, this experimental dataset is a stepping
stone to evaluate motion artifact-contaminated data and
corresponding artifact reduction algorithms. In the future,
we plan to perform more experiments with different scenarios
and different activities such that the dataset approximately
represents the real-world motion artifact space. For this
investigation, the experimental part has been beneficial to
evaluate adaptive filters in a qualitative manner. One possible
future experiment can be performing physical activities
during a loud sound event experiment [47]. Another future
direction is to perform experiments by placing sensors and
noise references from different skin locations such as the
wrist.

As mentioned in both the experimental and simulated
study results, there have been many cases of unstable results.
RLS filter seemed to be more stable for the selected value
for both the simulated and the experimental data. LMS
and V2-LMS have shown instability for some examples of
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simulated data (5 out of 26 participants) and have always
been unstable for the experimental dataset. V2-RLS also
showed unstable results only for the experimental dataset. For
unstable results, the coefficients of the adaptive filter values
explode to infinity. To handle stability, we plan to utilize
techniques such as regularization in the cost function similar
to [54]. Another possible future direction to handle instability
is to use techniques such as leaky LMS/RLS algorithms
[55], [56].

We have only utilized accelerometer data for the noise ref-
erence. We observe that the accelerometer data-based noise
is noise reference is helping to reduce a significant amount of
artifacts. However, we only placed an accelerometer on one of
the electrodes while the motion artifact could be a resultant
of motion on both the electrodes on both hands. Therefore,
an additional accelerometer sensor on the other electrode can
potentially improve the results. Moreover, accelerometers are
not good at capturing some types of motion information.
For example, if someone bends their finger resulting in
some pressure on the electrodes will lead to a magnitude
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FIGURE 20. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording from
Participant 2, Trial 6, During Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact reduced) SC data. The
first right panel shows the corresponding power spectrum density. The next three panels show three accelerometer channel recordings on

the left and their corresponding power spectrum density on the right.

artifact that might not be captured in the accelerometer
reading. Moreover, the orientation of the hand might also
lead to a change in the sensor placement. Therefore, more
noise reference sensors such as gyroscopes, magnetometers,
and pressure sensors should be investigated in a systematic
manner.

From results we can see that RLS filter is reasonably
performing in terms of reducing motion artifact. As RLS
filters are updated at each time step, the resulting filters act
as a piecewise linear transformation of the noise reference
x[k] such that the error signal e[k] is minimized. Thus, the
non-linearity that has been introduced by the RLS filter might
not be enough. On the other hand, the volterra-series-based
nonlinearity requires huge number of coefficients, which
might lead to over-fitting and instability. One potential future
direction of this study is to investigate neural networks [57]
or adaptive filters based on functional links [58] to better
realize the nonlinear transformation with a lower number of
coefficients.
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Finally, to assess the effectiveness of the proposed
denoising approach, a quantitative evaluation of the noise
removal effect is needed where a noiseless ground-truth
reference is a must. However, with the current experimental
setup obtaining ground truth SC data as well as motion artifact
contamination is impossible. The only way to achieve this is
to provide a known emotional stimulus such as a loud sound
and see how well the SC response due to the stimulus is
detected after and before motion artifact removal, similar to
our simulated study. Furthermore, the proposed approaches
would have to be validated by means of a representative
series of human tests. Therefore, we plan to experiment in
the future similar to a loud sound experiment, in the presence
of a motion artifact.

V. CONCLUSION

In this study, we have investigated linear and nonlinear
adaptive filters in terms of artifact reduction performance.
We have utilized BayesianEDA algorithm to deconvolve the
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SC data to identify the activations. We utilized simulated
data utilizing publicly available datasets as well as the
experimental study in order to quantitatively and qualitatively
investigate different filters. Our investigation shows that RLS
filter performed best based on our experimental dataset.
We further show that deep breath detection and BayesianEDA
algorithm can be utilized to identify the deep breath-induced
activations and corresponding SCRs. In this study, to show the
feasibility of reducing respiration-induced artifacts in SCR,
we collected a small experimental dataset and developed
the proposed algorithm as a first step for moving toward
the real-world use of SCR in tracking cognitive arousal
and mental well-being. In the future, we plan to develop
an improved deep breath detection algorithm (specifically,
those responsible for the SCR generation in SC data) by
collecting a large dataset and utilizing a data-driven machine
learning approach. In conclusion, this study is an important
step towards the implementation of SC signal-based ANS
activation detection [11], [12], [13], [46], arousal estima-
tion [5], [14], [15], [53], and the corresponding control design
for an effective mobile brain-machine interface architecture
for emotional stress management [16], [59], [60], [61].

APPENDIX A

ADDITIONAL RESULTS

Additional figures showing the motion artifact removal
performance for all the experimental data collected from two
participants.
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