
IEEE Engineering in Medicine and Biology Society Section

Received 5 November 2023, accepted 2 April 2024, date of publication 25 April 2024, date of current version 21 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3393515

Skin Conductance Response Artifact Reduction:
Leveraging Accelerometer Noise Reference
and Deep Breath Detection

MD. RAFIUL AMIN 1, (Member, IEEE), SAMIUL ALAM1,
SAMAN KHAZAEI1,2, (Student Member, IEEE), HAMID FEKRI AZGOMI1,3,

AND ROSE T. FAGHIH 1,2, (Senior Member, IEEE)
1Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004, USA
2Department of Biomedical Engineering, New York University, New York, NY 10012, USA
3Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA 94143, USA

Corresponding author: Rose T. Faghih (rfaghih@nyu.edu)

This work was supported in part by NSF-CAREER: MINDWATCH: Multimodal Intelligent Noninvasive brain state Decoder for

Wearable AdapTive Closed-Loop arcHitectures under Grant 1942585/2226123, and in part by the CRII: CPS: Wearable-Machine

Interface Architectures under Grant 1755780 and New York University Faculty Startup Fund.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols

was granted by the University of Houston Institutional Review Board under Grant STUDY00001078.

ABSTRACT Electrodermal activity (EDA) shows a significant correlation with activation of the autonomic

nervous system (ANS) activation. Regular ambulatory monitoring via wearables and consequent inference of

ANS activation has a wide range of applications tracking mental health. The real-world implementation of a

closed-loop system to regulate one’s emotional state to improve their mental well-being requires an accurate

and reliable estimation of ANS activation in ambulatory settings. However, the presence of motion artifacts

in skin conductance (SC) data collected in ambulatory settings makes the analysis for such estimation

unreliable. We propose a multi-rate adaptive filtering scheme to reduce motion artifacts in SC data that

utilizes three-axis accelerometer data. We investigate four types of linear and nonlinear adaptive filters.

We use both simulated and experimental data to investigate the performance of adaptive filters. Furthermore,

we utilize the respiration signal to identify the probability of respiration-induced SC artifacts. Next, we use

a Bayesian filter-based deconvolution approach to identify SC responses (SCRs) induced by underlying

arousal events and deep breaths. Finally, we propose to use the respiration signal to separate the artifacts in SC

due to deep breaths. Our results show that linear finite impulse response least squares recursive filters perform

best among the four types of adaptive filters studied.We draw this conclusion by obtaining receiver operating

characteristics of event-related SCRs detection with deconvolution after artifact reduction with different

adaptive filters. Moreover, for all of our simulated and experimental datasets investigated in this study,

we observe that the recursive least-squares filter always provides stable results. Additionally, our results show

our ability to detect respiration-induced SCRs and the corresponding activation of ANS. The evaluation of

adaptive filters shows the potential to utilize reference signals for successful artifact modeling and reduction.

Effective artifact reduction will lead to reliable ANS activation monitoring and consequent robust implemen-

tation of a closed-loop wearable machine interface architecture to eventually improve one’s mental health.

INDEX TERMS Active noise reduction, adaptive filters, biomedical signal processing, wearable sensors,

electrodermal activity.

The associate editor coordinating the review of this manuscript and

approving it for publication was Carmen C. Y. Poon .

I. INTRODUCTION

The phrase ‘‘electrodermal activity’’ (EDA) was introduced

in 1966 to designate any electrical activity that is electrically
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measurable from the skin [1], [2]. Since its first observation

in the 1880s [2], EDA has been widely used in physiology

and psychophysiology studies as the information it contains

has a relationship with the activation of the sympathetic

nervous system (SNS) [3], [4]. SNS–a part of the autonomic

nervous system (ANS)–is responsible for the fight-or-flight

response mechanism in response to a stimulus that the human

brain categorizes as a threat to survival. When such an

emotional stress stimulus is perceived, the brain stimulates

the sweat glands via ANS, depending on the psychological

and physiological demands. The subsequent secretion of salty

sweat glands increases skin conductance (SC)–a measure of

EDA–by increasing the number of electrical charge carrier

ions. SC measurements contain rich information on SNS

activation. Therefore, evaluating SC response (SCR) due to

ANS activation will lead to more effective monitoring of

emotional arousal fluctuations [5].

Efficient EDA analysis along with SNS activation infer-

ence have a wide range of applications, including detection

of major depression [6], pain detection [7], tracking of

cognitive stress [5], tracking of wakefulness [8], etc.

Furthermore, abnormal regulation of EDA appears to be

a reliable feature of depression and a potential marker of

suicidal risk measurement [9]. Azgomi et al. [10] proposed

a closed-loop wearable-machine interface architecture to

regulate emotional arousal that utilizes EDA as observation.

The proposed method comprises the identification of ANS

activation using EDA deconvolution [11], [12], [13], the

estimation of emotional stress [5], [14], [15], and finally

closing the loop [16] tomaintain the corresponding emotional

state within the desired range. However, in ambulatory

settings, recordings can have artifacts due to motion or

other noise sources. For effective implementation of such

a closed-loop regulation scheme, artifact reduction is a

prerequisite.

The non-invasive nature of many biomedical sensors

has led to many measurement technologies for ambulatory

health monitoring. The most popular modality of biomed-

ical sensors that are currently being deployed in many

consumer devices along with wearable devices includes

cardiac sensors e.g. electrocardiogram (ECG) electrodes and

photoplethysmogram (PPG) optodes, skin temperature (SKT)

sensors, muscle activity sensors e.g. electromyogram (EMG)

electrodes, etc. [17], [18]. In addition, many low-power

inertial sensors, such as accelerometers, gyroscopes, and

magnetometers, are deployed in wearable devices to monitor

user activity [19]. In the past few decades, numerous research

efforts have led to the successful implementation of PPG

signal analysis for wearable implementation, with the goal of

continuous monitoring of cardiac health. This effort has led

to applications ranging from daily heart rate monitoring [20]

to efficient detection of atrial fibrillation to prevent heart

stroke [21]. As motion can corrupt PPG signal recordings,

to try to make day-to-day monitoring successful, many

researchers worked on the prerequisite signal processing

pipelines for motion artifact removal [21]. In other contexts,

there are many studies proposing various signal processing

techniques to remove motion artifacts from other biomedical

signals such as ECG [22], [23], electroencephalogram (EEG)

[24], functional near-infrared spectroscopy (fNIRS), etc. The

motion artifact removal schemes are not only important for

deploying sensors in consumer devices, but also it has been

an important preprocessing pipeline for scientific research.

Among popular approaches, motion reference based on

inertial sensor measurements has been widely utilized to

monitor activity.

FIGURE 1. An Overview of the Experimental Setup. (a) A participant
wearing respiration belt and the ECG leads; (b) and placements of SC
sensor, accelerometer and PPG sensor on participants non-dominant
hand.

If a possible noise source reference is available, adaptive

filtering is one of the most desirable techniques for reducing

the noise from the target signal [25]. Adaptive filters have

been extensively studied to remove motion artifacts from var-

ious biomedical signals, including ECG [22], [23], PPG [26],

[27], EEG [28], [29], fNIRS [30]. LMS (Least Mean

Squares) filters are widely used in various biomedical signal

processing applications, including ECG denoising, EEG

signal enhancement [31], [32], [33]. These filters are known

for their simplicity and adaptability, making them suitable

candidates for motion artifact removal. RLS (Recursive Least

Squares) filters have been extensively explored in biomedical

signal processing due to their ability to adapt quickly to

changing signal conditions. They have found applications in

PPG noise cancellation [34], EEG noise cancellation [35],

highlighting their relevance in the context of biomedical

signal analysis. Volterra LMS and Volterra LMS filters are

less common than LMS and RLS in biomedical signal

processing, they have been employed in nonlinear system

identification and modeling [36]. They may find relevance

in signal analysis when dealing with nonlinear artifacts or

complex relationships within the signal. However, to the best

of our knowledge, there have not been studies that evaluate

adaptive filters for the removal of motion artifacts from

EDA utilizing reference information from inertial sensors.

Although EDA is one of the most potential candidates

for next-generation wearable health monitoring [37], the

amount of research conducted on EDA signals to obtain

information reliably is relatively limited compared to cardiac
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FIGURE 2. An Overview of Motion Artifact Reduction Algorithm: The above block diagram depicts multirate adaptive
filtering architecture for motion artifact reduction from SC recording with three channel accelerometer recordings as the
noise source reference. Figure shows how multi-channel noise reference stream is combined to a single stream via
upsampling and delaying before feeding into adaptive filter. On the other hand SC is decomposed into d [k] and ySCL[k]
high pass and low pass filters respectively. The error between high frequency components d [k] and adaptive filter artifact
estimation z[k] is denoted as e[k] and is being fed back to the adaptive algorithm to update the adaptive filter coefficients.

signals. In particular, very little research has been carried

out to reduce the artifacts in EDA. There are a few studies

that investigate different methods for artifact detection,

including semi-supervised machine learning approaches [38]

and unsupervised machine learning approaches [39], [40].

Moreover, supervised machine learning-based [41], deep

auto-encoder-based [42], and wavelet-based heuristic [43]

techniques are investigated to correct artifacts. However,

those have not investigated noise reference information to

model the artifact. Whether the motion artifacts can be

represented as the linear or nonlinear transformation of a

noise source reference (such as the accelerometer recording),

and whether such transformation can be modeled with

adaptive filters, are yet to be investigated. Furthermore, some

of the fluctuations present in SC are related to respiration

and may not be directly related to ANS activation. In 2003,

Schneider et al. [44] reported evidence of misinterpretation of

experimental observations due to irregular respiration-related

SC activation. Hence, they proposed a rule-based approach

to identify such cases. Later in 2019, Lee et al. [45]

utilized a similar rule-based approach to detect and later

remove respiration-related noise from SC data based on the

PPG-derived respiration reference signal. However, a more

systematic approach is required to identify and isolate such

activations which can be referred to as respiration-induced

noise.

Therefore, in this study, we evaluate linear adaptive filters

as well as non-linear Volterra adaptive filters that take

the three accelerometers as the reference signal to model

the artifacts in a multi-rate manner as shown in Figure 2.

We utilize a publicly available dataset and simulated artifacts

to evaluate four types of adaptive filters. Furthermore,

we perform experiments to induce motion artifacts during

SC data collection while recording motion information with

a three-axis accelerometer sensor. We evaluate the adaptive

filtering performance of removing motion artifacts utilizing

the experimental data. We also collect respiration reference

signals to identify respiration-induced noise.

In the following sections, we first discuss the materials and

methods which includes the experimentation for data collec-

tion, additional publicly available dataset description, mathe-

matical basis adaptive filters, linear/nonlinear/multirate adap-

tive filters, the deconvolution algorithm for EDA [46], and

proposed respiration removal technique. Finally, we present

the results, discussions on the results, and conclusions.

II. MATERIALS AND METHODS

A. DATASETS

1) EXPERIMENTAL SETUP AND DATA COLLECTION

In this study, we designed and performed an experiment

to collect motion artifact-corrupted SC signals with two

noise references. The study was reviewed and approved

by the University of Houston Institutional Review Board

(STUDY00001078).We collected data from two participants,

with multiple trials for each participant. We specifically

recruited participants from the study team who possess

familiarity with all signals and sensors considered in

the experiment. Participants were aware of the difference

between the corrupted data of the motion artifact and the

clean data. In the first scenario of data collection, participants

were suggested to observe the SC signal that will be collected

and suggested to perform ‘hand waving’ as they want so

that some motion artifact is generated in the observed signal.
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FIGURE 3. Non-linear Artifact Reduction Result Example with Simulated Noise Source. Subplots from top to bottom show the artifact removal
performance with LMS filter, V2-LMS, RLS, V2-RLS filter with a single noise reference.

In the second scenario, participants were suggested to do

‘in place jogging’ while also observing the recorded signal

in real-time to make sure the data are motion-corrupted

because of their movement. The point of the tasks is to

generate motion artifacts generated from natural movement

while asking the user to observe the data so that the motion is

intense enough to generate motion artifacts. Data collection

was carried out with the Biopac MP160 system. We measure

the SC signal between the proximal phalanx of the index

finger and the ring finger for the nondominant hand. For

measuring data from the fingers, we used two Shimmer

reusable SC electrodes. We have also attached a Biopac SC

wet electrode to the thenar eminence and the hypothenar

eminence for the collection of SC data. Both dry and wet

electrodes are then attached to Biopac BioNomadix wireless

BN-PPGED amplifiers/transmitters with BN-EDA-LEAD2

leads. For motion reference collection, we placed the Biopac

TSD109C3 three-axis accelerometer on the SC electrode

placed at the ring finger. Customization of the TSD109C3

accelerometer is performed to be able to use two Biopac

BN-GONIO wireless transmitters for three-axis acceleration

data acquisition. Customization is carried out by Biopac Inc;

Biopac used their two-channel wireless transmitters to inter-

face two channels of accelerometer data, and the remaining

channel was interfaced with another wireless transmitter’s

one channel. Furthermore, a PPG sensor has been placed

on the distal phalanx of the ring finger in the nondominant

hand. Additionally, we collect the three lead ECG signals and

the respiration signal with the Biopac BioNomadix wireless

BN-RSPEC amplifier/transmitter. We recorded all signals at

a 2 kHz sampling frequency. Figure 1 shows a brief overview

of the placement of the sensors.
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FIGURE 4. Inference Performance of ANS Activation After Deconvolution Algorithm After Artifact Removal with Different Filters. (a) Example of
deconvolution (top to bottom sub-plots depict raw signals in red with reconstructed signal in black, tonic component, phasic component and identified
ANS activations, respectively), (b) receiver operating characteristic (ROC) curves of detection performance of event related SC responses after reducing
artifacts with different approaches, and (c) area under the curves (AUC) for ROCs.

2) SIMULATED DATA

In addition to the experimental dataset that we collected,

we also generated and analyzed a simulated dataset. This was

done by taking the publicly available experimental dataset

of SCRs to loud sounds [47] and adding known simulated

artifacts to it. Bach et al. [4] designed this experiment to

model event-related SCRs. The dataset includes SC data

measurement from the thenar/hypothenar of the nondominant

hand, the middle phalanx of the dominant second and third

finger, and themedial plantar surface of the nondominant foot

for each of the 26 participants. Here, we only utilize the SC

recordings from the thenar/hypothenar of the non-dominant

hand of all the participants for single-channel analysis. The

details of the experiments and the dataset are provided in [4].

B. ADAPTIVE FILTERS

1) WIENER FILTER

We briefly discuss the basics of adaptive filters that we use to

evaluate artifact removal performance. In this study, we limit

our scope to the adaptive filters finite impulse response (FIR).

First, we describe the ideal case of filtering, and then we

derive different adaptive filters with appropriate assumptions

for practical implementation. The ideal case is known as

Wiener Filter (WF). A WF has two inputs, a desired signal

d[k] and a noise reference signal n[k ′] [25]. Here, we extend

our assumption that d[k] and n[k ′] can have different

sampling frequencies for multirate formulation. Furthermore,

we extend our assumption here that the sampling frequency

of the noise source n[k ′] is higher than the desired signal

d[k]. Let the sampling frequencies beFd andFn, respectively.

We also assume that the sampling ratio M = Fn/Fd is an

integer. If the filter at k th is definedwith the vectorw[k] where

w[k, k ′] is the k ′th element in the filter at the k th time step, then

the filter output z[k] can be written as

z[k] = w[k]¦x[k],

where x[k] = [ n[Mk − L + 1] n[Mk − L + 2] · · · n[Mk −

1] n[Mk] ]¦. Here, L is the length of the FIR filter. The error
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FIGURE 5. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC recording From
Participant 1, Trial 5, During In-Place Jogging. The first left panel depicts raw (artifact corrupted) and cleaned (artifact reduced) SC data.
The first right panel shows the corresponding power spectrum density. The next three panels show three accelerometer channel recordings
on the left and their corresponding power spectrum density on the right.

vector can be represented as

e[k] = d[k] − z[k]. (1)

The objective function for the WF algorithm is usually

derived from the mean square error (MSE), which is

represented as

Jw = E{(e2[k])}

= E{(d[k] − z[k])¦(d[k] − z[k])}

= E{(d2[k]} − 2w[k]¦E{d[k]x[k]}

+ w[k]¦E{x[k]x[k]¦}w[k])

= E{(d2[k])} − 2w[k]¦p[k] + w[k]¦R[k]w[k], (2)

where p[k], and R[k] represent the cross-correlation

E{d[k]x[k]} and the autocorrelation of E{x[k]¦x[k]},

respectively. For WF, w[k], p[k], and R[k] are considered

constant for all k time points with the assumption that d[k]

and x[k] are jointly wide-sense stationary (WSS). Therefore,

the sample index k can be removed for the case of WF and

can be written as w, p, and R. To minimize MSE, we need

to find the minima of the function in (2). Therefore, we take

the derivative with respect to w and set it to zero to obtain the

optimal filter coefficient vector wo.

∇wJw = −2p+ 2Rw = 0

⇒ wo = R−1p. (3)

However, in practical settings, R and p are not known.

Therefore, some approximation or good estimates of R and p

are required. Mostly, different approximations of these leads

to different types of adaptive filters, which we will discuss in

later sections.

2) LEAST MEAN SQUARES (LMS) ADAPTIVE FILTER

At the k th step of least mean square (LMS) filter, the

approximations are carried out as

R̂[k] = x[k]x[k]¦,

p̂[k] = d[k]x[k].
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FIGURE 6. Closer View of Different Segments of the Motion Reduced Results for All Trials from Both
Participants. Each panels in subplot (a) and (b) denotes a zoomed in plots different segments from
Participant 1 and 2. Black and red lines denote the raw SC data and artifact reduced SC data.
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FIGURE 7. Deep Breath Detection Results for Five Trials of Participant 1. In each panel, the top subplot denotes the raw respiration signal
recorded from the respiration belt, the bottom subplot shows the estimated detection probability p[k] (blue lines). The light red and green
shaded region represent the intermediate probabilities p1[k] and p2[k], respectively.

We plug these approximations into (2) to obtain the

approximation of MSE for the k th sample as

Ĵw[k] = d2[k] − 2w[k]p̂[k] + w[k]¦R̂[k]w[k].

We insert these approximations into (2) to obtain the

approximation of MSE, Jw. Using this, the filter update

equation for the k th time stamp is as

w[k + 1] = w[k] − α∇wĴw[k], (4)

where α corresponds to the step size. After simplification, the

final equation becomes

w[k + 1] = w[k] + αe[k]x[k]. (5)

3) RECURSIVE LEAST SQUARE (RLS) ADAPTIVE FILTER

At k th step of recursive least square (RLS) filter, the

approximations are carried out as

R̂[k] =

k
∑

i=0

γ (k−i)x[i]x[i]¦,

p̂[k] =

k
∑

i=0

γ (k−i)d[k]x[k],

where γ is called the forgetting factor and is selected between

0 f γ f 1. If we set γ = 0, then the corresponding RLS

filters are the same as the LMS filter. We insert (2) to obtain

the approximate MSE, Jw.

Ĵw[k] = d2[k] − 2w[k]p̂[k] + w[k]¦R̂[k]w[k].

We set the derivative ∇w[k]Ĵw[k] = 0 and find that the filter

update equation for k th is as,

w[k] = R̂−1[k]p̂[k]. (6)

However, this equation is computationally expensive. An iter-

ative update can be performed using the weights calculated in

the last step. After simplification, the update equation can be

written as follows [25],

w[k + 1] = w[k] + e[k]SD[k]x[k], (7)

where

ψ[k] = SD[k − 1]x[k],

φ[k] =
ψ[k]

λ + ψ[k]
,

SD[k] =
1

λ

[

SD[k − 1] − ψ[k]φ[k]T
]

.
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FIGURE 8. Separation of Respiration Induced Electrodermal Activity from the Inferred ANS Activation for Five Trials from Participant 1.
In each panel, the top subplot denotes the artifact reduced (red stars) and the reconstructed SC (black lines), the bottom subplot shows the
separated respiration induced activation and the pure ANS generated activation.

During initialization, set SD(0) = δI where δ can be the

inverse of an estimate of the input signal power; x(0) =

w(0) = [0 0 · · · 0], and evaluate.

4) SECOND ORDER VOLTERRA ADAPTIVE FILTERS (LMS

AND RLS)

To obtain an nth order Volterra LMS/RLS filter, we simply

populate the reference signal vector with the nonlinear terms
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FIGURE 9. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording from
Participant 1, Trial 1, During Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact reduced) SC data. The
first right panel shows the corresponding power spectrum density. The next three panels show three accelerometer channel recordings on
the left and their corresponding power spectrum density on the right.

for each iteration and update the length of the adaptive filter

coefficient vector accordingly. For example, for the 2nd order

case, the reference signal is

x[k] = [xL[k]
¦ xNL[k]

¦]¦

where, xL[k]= [n[Mk − L + 1] n[Mk−L+2] · · · n[Mk] ]¦,

xNL[k] = vec(xL[k]xL[k]
¦).

Here, ‘vec’ denotes the matrix-to-vector conversion opera-

tion. Now the corresponding adaptive filter length is L ′ =

L + L2, i.e., there are L ′ numbers of elements in the vector

w[k] for each time step. All other steps of the adaptive filter

are the same as in the linear cases. We define V2− LMS and

V2 − RLS to refer to 2nd order Volterra RLS and LMS filter.

C. ARTIFACT REDUCTION FROM SC SIGNAL WITH

ACCELEROMETER NOISE REFERENCE

A part of the artifact contamination on SC signal is related

to the movement of the sensors. Motion information can

be recorded in many different forms. One of the popular

ways is to utilize a three-axis accelerometer to measure

the acceleration. A three-axis accelerometer records data

for three different axes. Therefore, we have three different

noise reference channels corresponding to three axes. For

the discretized recordings, we combine the sample stream

from these three signals into one discretized sample stream.

Now, the new stream has a frequency that is three times the

sampling frequency for the single channel. We perform an

adaptive filter in the recorded SC signal, while considering

the accelerometer recording as the noise reference. The SC

signal, denoted as ySC (t), contains a DC component and

some very low frequency components acting as a baseline.

We remove these baseline low frequency components so that

the mean value of the desired signal is zero. We consider

the desired signal as the high pass version of the recorded

raw SC signal. We perform low pass filter on the raw

SC signal to obtain the slow varying component ySCL(t).

Then we subtract the low pass filtered signal from the

raw signal to obtain the high pass filtered SC signal,

which is our desired signal d[k]. The noise reference
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FIGURE 10. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording from
Participant 1, Trial 2, During Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact reduced) SC data. The
first right panel shows the corresponding power spectrum density. The next three panels show three accelerometer channel recordings on
the left and their corresponding power spectrum density on the right.

n[k] = [n1[k − L + 1] n2[k − L + 1] n3[k − L + 1] n1[k −

L+2] n2[k−L+2] n3[k−L+2] · · · n1[k] n2[k] n3[k]]

and set Fx = 3 × Fd to perform the multi-resolution

linear/nonlinear adaptive filtering. HereFn corresponds to the

sampling frequency of the combined noise reference, ni[k]

represent the k th sample of the accelerometer recording for

the ith channel representing a spatial axis, ∀i ∈ {1, 2, 3}.

Before, combining all the accelerometer data into one noise

vector, we perform a third order moving median filtering to

remove any spike or outlier noise that has been observed

in some of the accelerometer channel data. This noise does

not represent motion artifacts and could be related to the

internal electronics of the accelerometer. We perform the

motion artifact removal on the signal at 100 Hz sampling

frequency for ySC [k]. Figure 2 shows an overview of the

motion artifact removal scheme. If each channel of noise

reference is uncorrelated then, it is trivial to show that

this implementation is equivalent to multi-reference adaptive

filters [48]. In a cascaded multi-reference filter, in every

stage, the goal is to orthogonalize the error with respect to

the corresponding noise reference vector. The later stage is

then trained on the error from the previous stage same way.

Therefore, the final error is orthogonal to all the reference

vectors. In the proposed, architecture we represent this in a

multi-rate formulation, where we find the final orthogonal

residual error simultaneously for each of all noise references.

D. BAYESIANEDA FOR DECONVOLUTION OF SC

RESPONSE

For obtaining the ANS from the SC signal, we take

a deconvolution approach provided in [46]. We use the

following three-dimensional linearized state-space model to

describe the SC fluctuations from [46],

ṡ1(t) = −
1

τr
s1(t) + u(t), (sweat production)

ṡ2(t) =
ηs1(t)

τr
s1(t) −

1

τp
s2(t), (pore collapse)

ṡ3(t) =
(1 − η)s1(t)

τr
s1(t) −

1

τd
s3(t) (slow re-absorption)
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FIGURE 11. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording from
Participant 1, Trial 3, During Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact reduced) SC data. The
first right panel shows the corresponding power spectrum density. The next three panels show three accelerometer channel recordings on
the left and their corresponding power spectrum density on the right.

where s1(t), s2(t), and s3(t) states respectively represent the

amount of sweat in the sweat ducts, the fraction of sweat in

the ducts that are electrically conducted to the surface due

to the open pore, and the fraction of sweat that is diffused

in the corneum. The parameters τp and τd represent the

faster decay time due to fast re-absorption and the slow

decay time related to slow elimination (due to the cumulative

effect of re-absorption, diffusion in the deeper corneum and

evaporation), respectively. The parameter τr denotes the rise

time of the SC. System input u(t) represents the activation

of ANS. To keep the definition simple, we assume that ANS

activation occurs during the integer multiple of the sampling

period. Let Ts be the sampling period. With the sparsity

assumption as in [3], i.e. the number of activation events

is very small compared to the number of samples in SC,

we represent the activation of ANS as u(t) =
∑K

k=1 u[k]δ(t−

kTs) where u[k] is the amplitude of the impulse during the

activation of ANS at time kTs; here, u[k] is zero if there

is no impulse in the stimuli. Here, we set the parameter

η = 0.5 similarly to [46]. We represent the continuous

state-space model as

ṡ(t) = Acs(t) + Bcu(t),

ySC (t) = Ccs(t) + ν(t),

where, s(t) =
[

s1(t) s2(t) s3(t)
]¦

,

Ac =







− 1
τr

0 0

+
ηp
τr

− 1
τp

0

+
ηd
τr

0 − 1
τd






, Bc =





1

0

0



,

Cc =
[

0 1 1
]

, The phasic and tonic components of SC can

be represented as follows.

yp(t) = Cc,ps(t) + νp(t),

ys(t) = Cc,ss(t) + νs(t),

where, Cc,p =
[

0 1 0
]

, Cc,s =
[

0 0 1
]

. The discretized

state-space model is as follows,

s[k] = Ad s[k − 1] + Bdu[k], (8)

ySC[k] = Cd s[k] + ν[k]. (9)
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FIGURE 12. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording from
Participant 1, Trial 4 During, Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact reduced) SC data. The
first right panel shows the corresponding power spectrum density. The next three panels show three accelerometer channel recordings on
the left and their corresponding power spectrum density on the right.

where s[k], y[k] ∈ R, u[k], ν[k] denote the state vector,

observation, ANS activation, and measurement error in the

discrete domain. The vector u = [u[1] u[2] · · · u[K ]]¦

represents the ANS activation over the duration of the SC

data. Here, Ad = eAcTs , Bd =
∫ Ts
0 eAc(Ts−ρ)Bcdρ, and

Cd = Cc.We further define the tonic and phasic components.

Here, Ts represents the sampling frequency. With this dis-

crete state-space representation, we perform deconvolution

using the scalable iterative reweighted Bayesian filtering-

based expectation-maximization (EM) approach, called

BayesianEDA [46], to identify u[k], ∀k ∈ {1, 2, 3, . . . ,K },

i.e., the discretized version of u(t) as well as the physiological

system parameters. The deconvolution is performed with

a downsampled version of the noise-reduced signal with a

sampling frequency of 4 Hz.

E. ISOLATING RESPIRATION-INDUCED SC ACTIVATION

Unlike the motion artifact in EDA, respiration-induced

artifacts are more complex, i.e., mapping from deep breath

respiration signal to the corresponding EDA response (which

has a specific characteristic shape) is highly non-linear and

not suitable to be modeled with adaptive filters. When

someone takes a deep breath, there is a SC response that

looks exactly the same as SC responses. However, if one

knows at what time the deep breath happens, these responses

can be easily isolated via deconvolution of SC data. More

specifically, deep breath induces SC activation which can

be isolated from the other SC activation. To isolate the

respiration-induced activation of the SC, deep breaths must

be detected, as mainly deep breaths are responsible for such

SC responses. We consider two aspects of respiration for

the detection of deep breaths. Firstly, deep breathing takes

a bit longer. Second, deep breath generates higher stress on

the respiration belt, i.e. the corresponding recorded voltage

from the transducer will have a higher amplitude. We only

considered respiration signals that are not motion-corrupted

based on visual inspection.

First, we perform a continuous wavelet transform of

the respiration signal. From all the wavelet coefficients,

we keep those related to the 0.05 − 0.25 Hz frequency

68220 VOLUME 12, 2024



M. R. Amin et al.: SCR Artifact Reduction

FIGURE 13. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording From
Participant 1, Trial 5, During Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact reduced) SC data. The
first right panel shows the corresponding power spectrum density. The next three panels show three accelerometer channel recordings on
the left and their corresponding power spectrum density on the right.

components and perform an inverse wavelet transform to

obtain the reconstructed respiration signal. One should note

that the band pass filtering with FIR/IIR filter should also

serve the purpose. In this way, we remove any potential

high-frequency components related to normal breathing [49]

and noise along with any potential DC component related to

the baseline shift because of movement in the respiration belt.

As the next step, we detect the breathing amplitude variation

over time. Then we perform moving average filtering with

a window size of 5 seconds on the absolute value of the

respiration signal. Here, the window size is selected to be

around the maximum length of a normal breath, which

is about 5 seconds. We tried with different size of the

window from 0 to 20 with 2 seconds increment, by visual

inspection, a 5 seconds window seemed reasonable to us

in terms of detecting high stress in the belt. The moving

average of the absolute value of the respiration signal will

be higher where the respiration belt stress is higher. We use

the ‘movmean’ function of MATLAB [50]. Then we obtain

a moving standard deviation of the moving mean signal with

a window of 30 seconds and take the sample-wise ratio of

the moving mean signal and the moving standard deviation

signal. This ratio standardizes the signal according to the

30-second window. Standardization accounts for different

levels of fluctuations related to variable belt tightness levels.

Variability in the belt tightness levels of the transducer belt

may originate from changes in the participant’s pose or

changes in the belt position during the experiment. Next,

we subtract the mean from the ratio signal and multiply it

by 3. Finally, we perform a sigmoid transformation tomap the

signal between 0 and 1 to represent the probability. We define

this probability as p1[k].

Second, we perform peak detection on the wavelet-

reconstructed respiration signal and peak detection on the

negative of it. For peak detection, we use ‘findpeaks’

from MATLAB with default settings [50]. We take both

amplitude and locations of the peaks from the reconstructed

and negative reconstructed signals to perform a spline

interpolation. Then we obtained a moving standard deviation

of the interpolated signal with a window of 90 seconds.
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FIGURE 14. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording from
Participant 1, Trial 6, During Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact reduced) SC data. The
first right panel shows the corresponding power spectrum density. The next three panels show three accelerometer channel recordings on
the left and their corresponding power spectrum density on the right.

Finally, we take the sample-wise ratio of the interpolated

signal and the moving standard deviation signal. This ratio

standardizes the signal based on the 90-second window

and accounts for high levels of fluctuations with different

tightness levels of the transducer belt because of changes in

the participant’s pose. Finally, we multiply the ratio signal

by 10 and perform a sigmoid transformation to map the

signal between 0 to 1 to represent probability. We define this

probability as p2[k]. We multiply these two probabilities to

obtain one probability signal representing the probability of a

deep breath. Let us denote this probability by p[k]. Therefore,

we can write p[k] = p1[k]p2[k]. We obtain the probability

with 100 Hz sampling frequency and then down-sample in

order to match the deconvolution results.

After deconvolution with the BayesianEDA algorithm

to obtain ANS activation, we define respiration-induced

activation as u[k]p[k] and direct activation ofANS as u[k](1−

p[k]). Here, the deconvolution with BayesianEDA algorithm

is performed at 4 Hz. Therefore, p[k] was downsampled

at the same sampling frequency to obtain u[k]p[k] and

u[k](1 − p[k]).

F. INVESTIGATE ADAPTIVE FILTERS WITH KNOWN

SIMULATED NOISE

The objective of the simulated study is to have an idea

of the performance of four different adaptive filters in the

removal of artifacts from SC data. For the simulated study,

we first generate a reference noise signal and then perform a

non-linear transformation to add it to the raw signals from

the publicly available dataset in [47]. The noise reference

is generated by summation of a sine wave and a square

wave where the amplitude and the frequencies are randomly

varied. Square wave-type artifacts are representation of

sensor saturation effect. On the other hand, sign wave is

representative of rhythmic motions due to movements such

as running or jogging. The reason of using these two types

of signal along with Gaussian noise is the effort towards
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FIGURE 15. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording from
Participant 2, Trial 1, During Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact reduced) SC data. The
first right panel shows the corresponding power spectrum density. The next three panels show three accelerometer channel recordings on
the left and their corresponding power spectrum density on the right.

motion artifacts closer to reality. For the simulation purpose,

we vary the amplitude of the waves that are sampled from

a Gaussian distribution every second with the mean of 20%

of the standard deviation of the corresponding SC recording.

On the other hand, the standard deviation of the random

amplitude has been selected to be 5% of the standard

deviation of the corresponding SC recording amplitudes.

Similarly, for the frequencies, we sampled every 0.5 seconds

randomly from a Gaussian distribution of mean 1 Hz and

variance 0.25 Hz. We also add zero mean Gaussian noise

with a standard deviation of 0.2. The sampling frequency for

discretization is selected as 100 Hz, which is the same as the

sampling frequency of the dataset. We utilize the following

transformation for simulating the artifact-corrupted SC signal

as follows,

ySC [k] = yDSC [k] + (h ∗ n)[k] + c1(n[k])
2 + c2(n[k])

3.

(10)

where h is a filter representing the transformation of the

noise. We generate it first by drawing 50 samples from

zero-mean Gaussian distributed number to create a vector

hr then scale it by dividing it by its norm to find the filter,

i.e., h = hr
||hr ||2

. Furthermore, c1 and c2 are randomly sampled

from Gaussian distributed random variables with a standard

deviation of 0.1 and 0.01. Here, yDSC represents the SC signals

from the publicly available datasets. k denotes the k th sample.

We successfully utilized the artifact removal with the adaptive

filter with parameters α = 0.02 and λ = 0.999995. These

values were selected by trial and error and visual inspection

of the results for all the data corresponding to 26 participants

in [47].

III. RESULTS

A. SIMULATION RESULTS

Figure 3 shows the results of the LMS, V2-LMS, RLS,

and V2-RLS filtering. The visual depiction shows that the

adaptive filters can remove most of the simulated noise.

The result also shows a qualitative illustration that RLS and

V2-RLS are performing better in terms of their ability to

follow the ground truth. Moreover, results from RLS and
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FIGURE 16. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording from
Participant 2, Trial 2, During Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact reduced) SC data. The
first right panel shows the corresponding power spectrum density. The next three panels show three accelerometer channel recordings on
the left and their corresponding power spectrum density on the right.

V2-RLS filters were always stable while LMS and V2-LMS

filters became unstable for 5 participants and could not be

used for further analysis.

Using stable adaptive filtering results, we deconvolve the

artifact-reduced SC signal to perform deconvolution with

BayesianEDA algorithm [46]. Figure 4-(a) shows an example

deconvolution result showing the inferred activation of ANS

from the artifact-reduced signal. Furthermore, we use the

estimated activation of ANS u(t) to distinguish between

event-related SCRs and non-event-related SCRs. Here, the

events are loud sound events. First, we label all nonzero

elements in estimated u[k] ∀k as positive if they are within

5 seconds after the participant heard a loud sound event,

and other impulses as negative. We consider the values of

non-zero elements to be the only feature for the classification

within the participants to investigate the receiver operating

characteristic (ROC) [51], [52]. Figure 4-(b) shows the ROCs

obtained from the filtered signal from the FIR lowpass

filter with 0.5 Hz cutoff, LMS adaptive filter, RLS adaptive

filter, and V2-RLS adaptive filter. Figure 4-(c) shows the

corresponding area under the curve (AUC) of the ROCs. The

results show that the RLS-filtered signals yield the highest

AUC (≈ 0.738).

B. EXPERIMENTAL RESULTS

We applied all four types of adaptive filters on the experimen-

tal data with different settings; however, only the RLS filter

provided stable results while learning. Therefore, we present

only results from the RLS filter for the experimental study.

The SC and three-axis accelerometer signals are resampled to

100 Hz. Based on the adaptive filtering scheme in Figure 2,

the desired signal has a sampling frequency of 100 Hz,

and the noise reference has a sampling frequency of 300 Hz.

The adaptive filter length is also L = 300 to consider a

1 second window. For the forgetting factor, we first tested

the value that has been used for the simulated data. Based

on the results, we relaxed the forgetting factor to allow the

filter to re-adjust itself for newer data well. Through trial

and error, λ = 0.999 seemed to work well for our study.
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FIGURE 17. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording
from Participant 2, Trial 3, During Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact
reduced) SC data. The first right panel shows the corresponding power spectrum density. The next three panels show three
accelerometer channel recordings on the left and their corresponding power spectrum density on the right.

Figure 5 shows an example adaptive filtering result utilizing

the RLS adaptive filter. Figure 5 also shows that some of

the peaks that are seen in the captured motion information

power spectrum density of the accelerometer are also can

be seen in the raw experimental power spectrum density of

the SC signal. RLS adaptive filter could successfully remove

those peaks. Figure 5, also depicts that there is a significant

amount of energy reduction in the power spectrum density.

Additional results for all participants are provided in the

Appendix. Figure 6 shows some zoomed-in segments from all

trials of Participants 1 and 2. The figure provides a qualitative

illustration of RLS adaptive filters’ ability to reduce artifacts

utilizing accelerometer information.

Additionally, we try to identify SCR activation related

to the deep breaths. We only utilize the respiration signal

for Trial 1-5 for Participant 1. Because other respiration

signals seemed to be heavily corrupted with artifacts reducing

artifacts in respiration signals is out of the scope of this

study. First, we successfully detected deep respirations

based on the method described in Section II-E. Figure 7

represents the results of the deep breath detection. Next,

we deconvolve the motion artifact-reduced SC signals and

identify the respiration-induced SC activation based on the

estimated probability p[k]. Figure 8 shows the results of

the identification of respiration-induced activation for SCR

generation.

IV. DISCUSSION

In this study, we first investigated four different adaptive filter

candidates with simulated data and evaluated their perfor-

mance based on the identification of ANS performance from

the artifact-reduced signals. Then we perform experiments to

collect motion artifact corrupted SC data along with motion

reference signal (accelerometer sensor data and respiration

signal). Then we evaluate performance artifact removal

performance of the linear-RLS filter from experimental data.

Finally, we propose a method for identifying and separating

respiration-induced artifacts from ANS activation utilizing

Bayesian filter-based deconvolution algorithm. From the

simulated study with publicly available experimental SC

data [47], we can see that the RLS filter performs better

than other filters in terms of retaining information about

event-related responses so that detection of such events is

detected. Moreover, the linear RLS filter is the most stable
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FIGURE 18. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording
from Participant 2, Trial 4, During Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact
reduced) SC data. The first right panel shows the corresponding power spectrum density. The next three panels show three
accelerometer channel recordings on the left and their corresponding power spectrum density on the right.

one. Although we have considered some nonlinearity in

the noise reference transformation, the RLS filter was able

to model the transformation with a time-varying piecewise

linear fashion. However, LMS, V2-LMS and V2-LMS filters

suffer from instability and the high number of parameters

required to update each step compared to the number

of observations used during gradient calculation. Further

analysis with deconvolution on artifact-reduced SC data and

consequent loud-sound detection confirms that the RLS filter

is reasonably improving the detection ability of event-related

activations for SCR generation.

From the analysis of our experimental study, we see that

only the RLS filter was able to achieve stability in terms

of reducing the motion artifact. However, none of the other

filters was able to achieve stable results. The power spectrum

density change also confirms that there is a significant

reduction in the spectrum peaks that are generated by motion.

We observe some peaks in the accelerometer power spectrum.

The similarities are also seen in the power spectrum of

raw SC data denoting the artifacts. After artifact removal,

these spectrum peaks are not visible anymore. In Figure 6,

we also see that how different types of artifacts are reduced.

In some cases, we have seen that the RLS filter output

becomes more noisy than the input. These scenarios suggest

significant changes in the transformation system between the

accelerometer data to artifact generation. The RLS filter takes

some time to learn the new system and inaccuracy in the

reduction can be seen during this learning phase.

Furthermore, we see that a simple rule-based algorithm

combined with BayesianEDA [46] can lead to the successful

identification of the deep-breath and deep-breath-induced

SCR responses. In this way, direct ANS activation can

be isolated from respiration-induced activation. Thus, the

respiration-induced alteration of SC data can be ignored

in some applications of autonomic arousal estimation by

modifying the state-space formulations in [5], [14], [15],

and [53]. However, we have considered some intuitive

rule-based algorithm for deep breath detection.

For this study, we have generated simulated noise with

some arbitrary settings. Therefore, it might not be capturing

the whole space of artifact corruption. However, it allows

us to obtain an idea of how different adaptive filters might

perform in real-world settings. For the experimental data,

we have suggested the participants look the screen and try
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FIGURE 19. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording from
Participant 2, Trial 5, During Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact reduced) SC data. The
first right panel shows the corresponding power spectrum density. The next three panels show three accelerometer channel recordings on
the left and their corresponding power spectrum density on the right.

to generate artifacts by hand waving and in-place jogging

with multiple trials which might be slightly different than

the reality. However, this experimental dataset is a stepping

stone to evaluate motion artifact-contaminated data and

corresponding artifact reduction algorithms. In the future,

we plan to performmore experiments with different scenarios

and different activities such that the dataset approximately

represents the real-world motion artifact space. For this

investigation, the experimental part has been beneficial to

evaluate adaptive filters in a qualitative manner. One possible

future experiment can be performing physical activities

during a loud sound event experiment [47]. Another future

direction is to perform experiments by placing sensors and

noise references from different skin locations such as the

wrist.

As mentioned in both the experimental and simulated

study results, there have been many cases of unstable results.

RLS filter seemed to be more stable for the selected value

for both the simulated and the experimental data. LMS

and V2-LMS have shown instability for some examples of

simulated data (5 out of 26 participants) and have always

been unstable for the experimental dataset. V2-RLS also

showed unstable results only for the experimental dataset. For

unstable results, the coefficients of the adaptive filter values

explode to infinity. To handle stability, we plan to utilize

techniques such as regularization in the cost function similar

to [54]. Another possible future direction to handle instability

is to use techniques such as leaky LMS/RLS algorithms

[55], [56].

We have only utilized accelerometer data for the noise ref-

erence. We observe that the accelerometer data-based noise

is noise reference is helping to reduce a significant amount of

artifacts. However, we only placed an accelerometer on one of

the electrodes while the motion artifact could be a resultant

of motion on both the electrodes on both hands. Therefore,

an additional accelerometer sensor on the other electrode can

potentially improve the results. Moreover, accelerometers are

not good at capturing some types of motion information.

For example, if someone bends their finger resulting in

some pressure on the electrodes will lead to a magnitude
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FIGURE 20. Example Artifact Reduction Result with Multi-resolution RLS Adaptive Filter with Experimental SC Recording from
Participant 2, Trial 6, During Hand Waving. The first left panel depicts raw (artifact corrupted) and cleaned (artifact reduced) SC data. The
first right panel shows the corresponding power spectrum density. The next three panels show three accelerometer channel recordings on
the left and their corresponding power spectrum density on the right.

artifact that might not be captured in the accelerometer

reading. Moreover, the orientation of the hand might also

lead to a change in the sensor placement. Therefore, more

noise reference sensors such as gyroscopes, magnetometers,

and pressure sensors should be investigated in a systematic

manner.

From results we can see that RLS filter is reasonably

performing in terms of reducing motion artifact. As RLS

filters are updated at each time step, the resulting filters act

as a piecewise linear transformation of the noise reference

x[k] such that the error signal e[k] is minimized. Thus, the

non-linearity that has been introduced by the RLS filter might

not be enough. On the other hand, the volterra-series-based

nonlinearity requires huge number of coefficients, which

might lead to over-fitting and instability. One potential future

direction of this study is to investigate neural networks [57]

or adaptive filters based on functional links [58] to better

realize the nonlinear transformation with a lower number of

coefficients.

Finally, to assess the effectiveness of the proposed

denoising approach, a quantitative evaluation of the noise

removal effect is needed where a noiseless ground-truth

reference is a must. However, with the current experimental

setup obtaining ground truth SC data aswell asmotion artifact

contamination is impossible. The only way to achieve this is

to provide a known emotional stimulus such as a loud sound

and see how well the SC response due to the stimulus is

detected after and before motion artifact removal, similar to

our simulated study. Furthermore, the proposed approaches

would have to be validated by means of a representative

series of human tests. Therefore, we plan to experiment in

the future similar to a loud sound experiment, in the presence

of a motion artifact.

V. CONCLUSION

In this study, we have investigated linear and nonlinear

adaptive filters in terms of artifact reduction performance.

We have utilized BayesianEDA algorithm to deconvolve the
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SC data to identify the activations. We utilized simulated

data utilizing publicly available datasets as well as the

experimental study in order to quantitatively and qualitatively

investigate different filters. Our investigation shows that RLS

filter performed best based on our experimental dataset.

We further show that deep breath detection and BayesianEDA

algorithm can be utilized to identify the deep breath-induced

activations and corresponding SCRs. In this study, to show the

feasibility of reducing respiration-induced artifacts in SCR,

we collected a small experimental dataset and developed

the proposed algorithm as a first step for moving toward

the real-world use of SCR in tracking cognitive arousal

and mental well-being. In the future, we plan to develop

an improved deep breath detection algorithm (specifically,

those responsible for the SCR generation in SC data) by

collecting a large dataset and utilizing a data-driven machine

learning approach. In conclusion, this study is an important

step towards the implementation of SC signal-based ANS

activation detection [11], [12], [13], [46], arousal estima-

tion [5], [14], [15], [53], and the corresponding control design

for an effective mobile brain-machine interface architecture

for emotional stress management [16], [59], [60], [61].

APPENDIX A

ADDITIONAL RESULTS

Additional figures showing the motion artifact removal

performance for all the experimental data collected from two

participants.
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