ON THE EXISTENCE OF MINIMIZING SETS FOR A
WEAKLY-REPULSIVE NON-LOCAL ENERGY

D. CARAZZATO, A. PRATELLI, AND I. TOPALOGLU

ABSTRACT. We consider a non-local interaction energy over bounded densities of fixed mass
m. We prove that under certain regularity assumptions on the interaction kernel these en-
ergies admit minimizers given by characteristic functions of sets when m is sufficiently small
(or even for every m, in particular cases). We show that these assumptions are satisfied by
particular interaction kernels in power-law form, and give a certain characterization of mini-
mizing sets. Finally, following a recent result of Davies, Lim and McCann, we give sufficient
conditions on the interaction kernel so that the minimizer of the energy over probability
measures is given by Dirac masses concentrated on the vertices of a regular (N + 1)-gon of
side length 1 in RY.

1. INTRODUCTION

1

1oc(RN ), one can consider the corresponding energy

Given a radial, interaction kernel g € L
in different classes. The first natural class is the one of the sets with finite volume, for which

the energy is given by
E(B) :/ / g(x —y)dzdy. (1.1)
EJE

A standard relaxation suggests then to consider L' functions with values in [0, 1] (which will

be often called “densities”) in place of sets, for which the energy is

ety = [ [ ot nh@hy)dedy. (12)
RN JRN
A further relaxation consists in directly considering finite positive measures M™, and defining

E() = / / oz — ) dyu(z) du(y) . (1.3)

The corresponding minimization problems are then, for any given m > 0,

min{S(E): ECRN, |E| = m} , (1.4)
min{S(h): he L'®RY), 0<h <1, |hl, = m} : (1.5)
min{&(u): € MFRY), fuflag =1} (1.6)
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Of course, each problem extends the previous omes, since for any set £ C R™ one has
E(E) = £(xp) and |E| = ||xp||,, and similarly for any function h : RY — [0,1] one has
E(h) = E(RL) and ||h||; = |hZ || oy, Where £ denotes the Lebesgue measure in RY. These
minimization problems and the relation between them — often for a specific choice of g — have
been extensively investigated by many authors, with a particular effort in the last decade;
some references are, for instance, [2, 4, 5, 9, 10, 14, 17, 18, 22]. As soon as g is lower semicon-
tinuous and g(z) — +oo when |z| — +00, the existence of a minimizer in (1.6) follows from
compactness arguments (see [3, 6, 24]).

Let us briefly describe some of the known results in a specific, important case, namely, for
the attractive-repulsive kernel given in the power-law form g;(x) = |z|* + ﬁ, where a > 0
and 0 < 8 < N. First of all, in [2], it was shown that a set E is a minimizer for (1.4) if and
only if its characteristic function X, is a solution of (1.5). The same holds true also in a more
general setting.

If N—2< B < N,in [7] it is shown that the optimal measures are actually L°°-functions.
Recently, in [6], the first two authors extended this result to a wide class of generic interaction
kernels, also providing an a priori bound on the L°-norm of minimizers.

In addition, if 0 < 8 < N — 1, using quantitative rearrangement inequalities Frank and
Lieb proved in [18] the existence of a threshold mpay € (0, 00) such that the ball with volume
m is the only (up to translation) minimizer of (1.4) for m > mypay. In the special case of
quadratic attraction (o = 2), Burchard, Choksi and the third author had proven the same
result in [2], by exploiting the convexity of the energy among densities h with fixed center of
mass. Consequently, Lopes used a similar argument in [22] to prove that for 2 < a <4 (and
any 0 < f < N) minimizers of (1.5) are radially symmetric and unique up to translations.
Recently, the first author extended the results of [18] and showed that when the interaction
kernel is given by g(z) = |z|* 4+ g(z), for a wide class of functions g(x), the unique (up to
translations) minimizers of (1.5) are given by the characteristic function of balls when m is
sufficiently large (see [4]). The stability and local minimality of the ball when 0 < < N —1
has also been studied in [1]. On the other hand, in the small volume regime, the energy (1.4)
does not admit a minimizer for N > 2, a=2, N—-2< < N,andfor N =3, a >0, =1,
as was shown in [2] and [17] respectively. In these cases, the minimizers of (1.5) actually
satisfy h < 1 almost everywhere.

In this paper, we are interested in generic interaction kernels which are weakly repulsive (at
the origin). This means that g(0) = 0, and g is negative for small distances and positive for
larger ones. In particular, while for strongly repulsive kernels, like g1, a measure containing
some atom has always infinite energy, for weakly repulsive kernels atomic measures have finite
energy, and hence they are possible candidates for the minimization problem (1.6). This is

not just a theoretical possibility; in fact, Carrillo, Figalli and Patacchini showed in [8] that
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global minimizers of (1.3) over probability measures are supported on finitely many points
if g(z) ~ |2|® for some B > 2 when |z| < 1. Here, writing with a small abuse of notation
g(lz]) = g(z), by « g(z) ~ |z|® 7 we mean that g(0) = 0 and ¢/(t)t'# — —C as t — 0 for
some C' > 0.

An important example of a weakly repulsive kernel is given by

_ = Jal?
92(1‘) - a ,6 ?

Dividing by « and § clearly makes no difference, but it is convenient so that the minimal

a>p>0. (1.7)

interaction is reached at distance 1. It is possible to apply arguments by Frank and Lieb
to g2 and see that again, when m is large enough, the minimizers of (1.5) are characteristic
functions of a ball. This kind of kernel has been studied by Davies, Lim and McCann in a
series of papers ([12, 13, 21]), and they are able to precisely characterize the solutions of (1.6)

in some cases.

Theorem 1.1 (Davies-Lim-McCann, [12, 13]). Let N > 2, and g = g2 be given by (1.7).
If B =2 < «a < 4, then the unique minimizer of (1.6), up to rigid motion, is given by the
uniform distribution over a sphere, that is, p = N VLB, for a suitable choice of ¢ and
r. Ifa>4, 8>2 and («, B) # (4,2), then the unique minimizer is given by a purely atomic

measure uniformly distributed over the vertices of the unit reqular (N + 1)-gon Apy.

The minimizers have been investigated also in dimension N = 1. In this case, the unique
minimizer is given by two equal masses at distance 1 as soon as a > 3, § > 2 (see [13]),
while for 2 < a < 3, f = 2 the minimizer, which is computed explicitly in [15], is absolutely

continuous and supported on an interval.

The goal of this paper is to study the question of existence of optimal sets, that is, min-
imizers of (1.4). First of all, we underline that existence should not be expected in general.
Indeed, as said above, relaxation arguments allow to deduce that a minimizing set exists if
and only if there is a function minimizing (1.5) which is a characteristic function, and this
is, of course, a peculiar situation. As a matter of fact, in all the results where existence
of optimal sets is established, as in the ones described above, the optimal sets are actually
balls, and there is not really an argument which provides existence, but rather the existence
is simply obtained as a consequence of the optimality of the balls. It is worth noting that
there are, in fact, non-local energies for which existence of optimal sets (different from balls)

is known. However, they are not of the form (1.1), but of the form

E(E) // y—a)dzdy, (1.8)

where P(E) denotes the perimeter of E and g is a rather general function, the prototype

being negative powers of the distance. For energies of this form, existence of optimal sets
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has been established under different assumptions, see for instance [16, 19, 20, 23]. However,
the situation is completely different, due to the presence of the perimeter instead of a non-
local double integral. This dramatically changes the situation, because the class of sets is no
more dense, in the energy sense, in the class of L' functions (of course, among functions, the
perimeter term has to be replaced by the total variation). Hence, it is not true that existence
of optimal sets implies that some optimal L' function must be a characteristic function. As
a consequence, existence of optimal sets is not something to be in general unexpected, on the
contrary it usually comes as a rather standard application of compactness in BV, the only
difficulty being in excluding loss of mass at infinity.

Summarizing, up to now in the literature existence of optimal sets was either more or less
simple by standard methods, as for energies like (1.8), or it was only obtained in special cases
where the optimal sets are actually balls, for energies like (1.1). What we are able to do
in this paper is to provide a first argument ensuring the existence of optimal sets for some
weakly repulsive kernels. That is, we prove that in some cases when an optimal measure
is concentrated on a negligible set, an optimal set exists if the mass is small. Even though
the precise statement, Theorem 3.2, has rather technical assumptions, its meaning becomes
particularly evident having in mind Theorem 1.1. Indeed, when the powers ensure that the
optimal measure is uniformly distributed over the vertices of the unit, regular (N + 1)-gon
Ay, then we get existence of optimal sets for small mass, and these sets are made by N + 1
disjoint, convex subsets close to the vertices of Ay, see Theorem 3.6. Instead, when the
powers are so that the optimal measure is uniformly distributed over a sphere, then we get
existence of optimal sets for every mass, and the solutions are always either annuli or balls,
see Theorem 3.8.

We remark that the existence of minimal sets for similar energies was also investigated,
with different techniques, by Clark in her Ph.D. thesis [11].

1.1. Plan of the paper. The plan of the paper is the following. In Section 2 we introduce
some notation and some basic results, in particular the existence of minimizers for (1.5)
and the corresponding optimality conditions, and an explicit bound on the diameter of their
support, see Proposition 2.4.

In Section 3 we prove our main results. Specifically, Theorem 3.2 provides existence of an
optimal set for small mass under some technical assumptions on g. Then, in Theorem 3.6, we
observe that this abstract result can be applied for instance in the cases when Theorem 1.1
ensures that the optimal measure is given by atoms in the vertices of Ay. The existence
of optimal sets is true also when Theorem 1.1 says that the optimal measure is uniformly
distributed over a sphere, and this is the content of Theorem 3.8, which is valid not only for
small mass but for all m values. Finally, Theorem 3.10 gives some technical conditions under

which the minimal measures are concentrated on the vertices of Ay. This generalizes the
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results by Davies, Lim and McCann. In this case the abstract existence result of Theorem 3.2
can be applied again to show that optimal sets exist for small mass. We highlight that the
hypotheses of this last theorem are stable with respect to small perturbations, showing that
the existence of minimizing sets is not a feature possessed only by some specific kernels.

We conclude by observing that, in the cases considered by Theorem 1.1, we prove existence
of an optimal set for small mass, and as described above existence is also known for large
mass, when the optimal set is a ball. This leaves open the question of what happens in the
intermediate volume regimes. On one side, as noted above, one should in general not expect
existence of optimal sets. But on the other side, at least for the cases when the optimal mea-
sure is uniformly distributed over a sphere, our results provide existence of optimal measures

also for intermediate masses.

2. NOTATION AND PRELIMINARY RESULTS

This section is devoted to introduce the few notation that we use and to gather a couple of

1

iocs lower semicontinuous

useful results. Through this paper, g : R — R denotes a radial, L
function. Since g is radial, with a slight abuse of notation we will often write g(¢) = g(x) for
any |z| = t. We use the letter £ to denote the interaction between two densities. This means

that, given hy, hy € LY(RY;]0,1]), we write

etmne) = [ [ oo —uhiha) drdy,

so that in particular, according to the notation (1.2), we have £(h) = £(h,h). The very
same notation is used for the case of two sets, or two measures, extending (1.1) and (1.3)

respectively. The potential of a measure 1 is the function v, : RY — R defined as

Yulz) = / oz — y) duly)

and given the density h we denote for brevity by v the potential of the measure h.Z.
The potential is very useful in computing the energy of a measure, in particular of course
E(u) = [ dp. Moreover, it naturally appears in the Euler-Lagrange conditions for the
minimization problem, thanks to the following standard result (we give a short sketch of the

proof, the formal one can be seen for instance in [7] or [2]).

Proposition 2.1. Let g € L%OC(RN) be a function bounded from below. If f and p are

minimizers of (1.5) and (1.6) respectively, then

vr= A L -ae in{0< f<1},
s =€) peac,

vy > A L -a.e. in {f =0}, (EL)
E n RN ,
P <A L -a.e. in{f =1}, U = E(p) mn \ sptp

for some constant \ € (—oo, +00].
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Sketch of the proof. We concentrate only on the case of densities since it is the most relevant
one in this paper, the other case is completely similar. Given any function h : RN — [—1,1]

with compact support and satisfying [h=0and 0 < f + h <1, for any ¢ € [0, 1] we have

E(f +1h) = E(f) + Qt/wf(:):)h(x) dz + 2E(h) .

For any 0 < ¢ < 1 the function f+th is an admissible competitor in (1.5), thus by minimality
we have E(f) < E(f + th). Then, also using that £(h) < +o0o since spth is compact, we
deduce that 1 ¢(z) < v¢(y) for any two points x, y such that f(z) > 0 and f(y) < 1. This is
stronger than (E'L). O

Another standard result is the existence of minimizers for problems (1.5) and (1.6). The
proof in our general setting can be easily adapted from those already available in the literature,

see for instance [3, 4, 24].

Lemma 2.2. Assume that g € L%OC(RN) s bounded from below, lower semicontinuous and

lim;| 400 (%) = +o00. Then, for any m > 0 there exist a minimizer of (1.5) and a minimizer

of (1.6).

The last result that we present is an a-priori bound on the diameter of the support of
a minimizing density, and this deserves a quick comment. When dealing with minimizing
measures, the boundedness of the support is a quite standard result, and it has been proved
in several different contexts (see for instance [3, 6]). As we have already noticed, for many
properties (for instance the existence given by the above lemma) working with measures or
with densities does not make much difference. However, the compactness of the support of
minimizers is more delicate for the case of densities due to the fact that the Fuler—Lagrange
condition (F'L) for densities has an additional constraint (see [17] for the special case when
g is given by a power-law of the form g¢;). As a consequence, the proof of the result below
does not follow by a simple generalization of the proofs available for the case of measures.

Therefore we provide a complete proof.

Definition 2.3. A radial function g : RN — R is said definitively non-decreasing if there
exists some R > 0 such that g(s) > g(t) for every s >t > R.

Proposition 2.4. Let g € Llloc(RN) be a radial, lower semicontinuous, bounded from below,
definitively non-decreasing function such that lim|y_, o g(z) = +00. Then, there is a con-
stant D = D(g,m) such that the diameter of the support of any density minimizing (1.5)
is bounded by D. If, in addition, g is locally bounded, then one can take the same constant

D(g,m) for every m < 1.

Proof. We can assume without loss of generality that ¢ > 0. Let f : RV — [0,1] be any
minimizer of (1.5). In particular, £(f) < Cp,, where C,,, = C,,(g, m) is the energy of a ball of
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volume m. Then, let us fix a constant R = R(g, m) so that g is non-decreasing on [R, +00),
the volume of the ball of radius R is bigger than xm, where k = k(N) is a purely geometric

constant that will be defined later, and

5Cm,

m2

g(R) > (2.1)

Let us now call f; = fXBR and § = m — ||f1||z1. Up to a translation, we can assume that
§ <m/5. Indeed, if this was not true, then for any 2 € RV the mass of f outside of the ball
B(z, R) would be more than m/5, and then also by (2.1)

ez [ [ swmnsr@ s> [ gw( [ ) e

m2

> [ FaR) @) dr = " g(R) > o

against the optimality of f. We let now RT = R*(g,m) > 50R be another constant, so that

5
g(R" = R) > 29(6R) + 5 — 9(z)dz, (2.2)
2m Biir
and we aim to prove that f is supported in Bg+, so that the proof will be concluded with

— + — — — 3
D =2R™. Let us call fo = fXBR+\BR and f3 = fXRN\BR+’ so that f = fi1 + fo+ f3. Calling
now € = || f3]|;1 < 0 < m/5, our claim can be rewritten as ¢ = 0, thus we assume € > 0 and
we look for a contradiction.

Let z* be a minimizer of the potential ¢,(2) = [pnx (2 — y) f2(y) dy within the support
of f3. Notice that such a minimizer exists. Indeed, by assumption the support of f3 is a
non-empty closed set, and the above function is either constantly 0 if fo = 0 (and in such a
case any point of the support is a minimizer), or it is a continuous function which explodes

for |z] — oco. The minimality property of z* ensures that

&) = [ bn@hE) a2 vl = va (e 23)

Let us now define the set

.-t
C:{zERN: 4R§\Z\S5R,m2608(ﬂ/15)},
2| -z

which is the portion of cone highlighted in Figure 1. We call then & = wyRY /|C|, which is a
purely geometrical constant only depending on N. Then, since by construction |Br| > km,
we have |C| = |Bg|/k > m. Since | fllr1(p,,) = m — €, there exists a positive density f3,

concentrated in C, such that

I fsll = e, 0<fi=fitfotfz<1.
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B
4R\ B,

FIGURE 1. The construction in Proposition 2.4.

In particular, the fact that fs is concentrated in C gives

z-zt

o] 2 os(n/15) Ve spt(f3) (2.4)

We will conclude our proof by showing that £(f) > £(f), which will contradict the minimality

of f since by construction f is a competitor for problem (1.5). Notice that

E(f) ~ (1) = 2(Ef1. fo) — Efu, fo) + EUas fa) = EUar ) + EUfs) — (). (29)
Let us evaluate separately the different pieces. First of all, by construction
E(fiif3) 2 (BT = R)| fall ol fill o2 = g(RT — R)e(m —9),
E(f1, f3) < g(6R)| fallp: 1 fill 2 = g(6R)e(m — 6)

thus by (2.2) and since § < m/5 and (2.1) we have

E(f1, f3) —E(f1, f3) = §m5<g(6R)—|—2in /BuRg(x) d:v) > 46(;;”—1—26/1311129(33) dr. (2.6)

To estimate E(fa, f3) — E(fa, f3), it is convenient to subdivide RY into three pieces. The first
one is the ball H' = Bgg, and the other two are

+ et
H”_{:):géH’: <1R+}, H’”_{xgéH’:xZ >;R+},

2] 7 2 Ead
which are respectively on the left and on the right of the dashed hyperplane in the figure. We
call then f}, f)/ and fI the restrictions of fo to H', H” and H", so that fo = f5+ f5 + f'.

‘We now observe that

= [ [ o -ahepwaas [ [ g -2k e

<[/ @)l drd= = ¢ /| (@)

Next, we pass to f5. For any 3 € H” N Bg+ and z € spt(f3), by construction and using (2.4)

(2.7)

we have R < |y — z| < |y" — 2T|. Since g is non-decreasing on [R, +00), also by (2.3) we can
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evaluate

LR =[] a0 =) dedy”

= /RN /RN 9" =2 oy ) fa(z) dzdy" = /R oy =N a2
=y (2) S E(fa, f).

The argument to estimate £(f}’, f3) is similar. Since for any w € Bg, any ¢ € H" N Bg+,

and any z in the support of f3 we have, by construction and an elementary trigonometric

7 "

calculation, |y —w| > |y — z| > R, we evaluate

/// f3 /m /RN n ( ///)f3( )dZ dy/// S E/ g(y/// —w)fz(ym) dy///'

"

Since this is true for every w € By, and f; is concentrated on Br, we obtain

-0 )= [ e Fonwduse [ ] o —w) ) ) dy” d
_CSU A < E() < 2Con

which since § < m/5 implies

E(fY, f3) < 2¢ % (2.9)
Putting together (2.7), (2.8) and (2.9), we have
E(fay f3) — E(fo, fg) > —2¢ % - €/B g(z)dx (2.10)

Lastly, since the support of fg is contained in C, whose diameter is much smaller than 11R,

we can readily estimate

sh)=euins [ [ ge-nhad—c [ g @

Biir

Inserting (2.6), (2.10) and (2.11) into (2.5), and minding also £(f3) > 0, we finally obtain

m

() — () z4scm+s/ g()dz >0,
Biir

thus the contradiction £(f) > E(f) is established and this concludes the first part of the
proof.

Assume now that ¢ is locally bounded, and let us notice that a simple modification of the
proof provides the same constant D(g,m) for every m < 1. Notice first that any ball with
volume m < 1 has diameter less than wg,l/N thus C,,, < Cm?, where C' = sup{g(z), |z| <

~1/N

2wy " }. As a consequence, one can take the same radius R in (2.1) for every m < 1. The
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radius R' defined in (2.2) explodes when m 0, but the local boundedness of g allows for
a much simpler definition of RT. More precisely, (2.7) can be clearly modified by saying

= em
E(f Jo) < - g(11R),
and then the proof works with no other modification replacing the definition (2.2) of Rt by
g(R" — R) > 29(6R) + g(11R),

which does not depend on m. Since D(g,m) = 2R™, the proof is concluded. ]

3. EXISTENCE OF MINIMAL SETS WITH SMALL VOLUME

3.1. Existence results for general kernels. A minimizer of the problem (1.5) exists under
mild hypotheses on g, as we recalled in Lemma 2.2 (and this can be also found in [4, 10]),
but, in general, this problem does not necessarily admit a minimizer if considered among the
restricted class of the characteristic functions (see e.g. [2, 17] and [6, Remark 3.16]). Here we
show that, under certain rather general conditions on g, the solutions to the problem (1.5)
are characteristic functions of sets also when m is small enough. First we prove a general

statement, and then we specialize further connecting our results to those present in [12, 13].

Lemma 3.1. Let g € C(RYN) be definitively non-decreasing such that lim| 400 9(7) = +o00.
Let f; be a minimizer of (1.5) with ||f;|l, = m; for any sequence m; \, 0. Then, up to trans-
lations and up to taking a subsequence, m}lfj i for some p € P(RN) minimizing (1.6).
Moreover, if 1, > E(u) in RN \ spt u, then for any e > 0 there is j such that

sptf; C Be + spt Vi>j. (3.1)

Proof. Since g is continuous, thus locally bounded, Proposition 2.4 ensures that the supports
of the densities f; are uniformly bounded. Therefore, the probability measures p; = m}l fi
have uniformly bounded support and then, up to subsequences and translations, we have
I X 4 for some probability measure p with bounded support.

Let now i be any minimizer of (1.6), and for any j let &; be a partition of RY made by

pairwise disjoint cubes of volume m;, and define the function f] as

fil@)=mQ) VQe P VzeQ.

By construction, 0 < f; < 1 and that ||fj|l; = mj, so by the minimality of f; we have
E(f;) < E(f;). The continuity of g easily guarantees that E(mjflfj) — &(f1), and then also

by the lower semicontinuity of £ we deduce
E(p) < liminf E(uj) = liminfmj_QS(fj) < liminfmj_25(fj) = liminfé’(mj_lfj) =&().

Hence, p is a minimizer of £ in P(RY).
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Suppose now that 1, > £(u) outside of spty, and keep in mind that v, = £(u) on sptu
by Proposition 2.1. Since g is continuous and explodes at infinity, and since p has bounded
support, we deduce that the potential 1, is continuous and explodes at infinity, thus for any
e > 0 there exists v > 0 such that ¢, (z) > £(u) + v whenever dist(z,sptu) > €. Let us now
call U = spty + B and V' = spty + Bs, with ¢ so small that ¢, (z) < ¥,(y) — /2 for any
r € V and any y € U°. Since g is continuous and sptu; are uniformly bounded, then 1, are
locally uniformly continuous with a common modulus of continuity. The convergence fi; Ao
guarantees then that 1), converge pointwise to v, and thanks to the common modulus of

continuity this convergence is locally uniform. Therefore, if j is large enough we have that

v

’QDMJ‘ (:C) < wuj (y) - g Vz € ‘/a Y€ ue. (32)
Suppose now by contradiction that (3.1) does not hold true, thus that for some arbitrarily
large j the function f; is not concentrated on U. Then, for every n < 1, we can define a
modified function 0 < f < 1 by “moving a mass n from U to V”. Formally speaking, fisa
function such that 0 < f < fj on U¢ while f; < f <1 on V, and so that

[i-n=[ r-f=n

The existence of such a function f is obvious as soon as |V| < mj, which is certainly true
for j large enough. We can then call i = m}lf, and v = p; — fi = m]-fl(fj - f), so that

lv|| = 2mj_177. So, we estimate

(i) = £1) = £0) +2613.0) =€) +2 | (@)dv(a) < Ol = T o]

where we have used (3.2) and the fact that g is continuous and the support of v is bounded.

For n <« 1 this gives £(1) < E(p;), thus E(f) < £(f;), and this is impossible since f; is a

minimizer of (1.5) and f is a competitor. O

Theorem 3.2. Let ¢ € C%*RYN) be a definitively non-decreasing function such that
limy| 400 g(7) = +o0. Let f; be a minimizer of (1.5) with ||f;|l, = m; and any sequence
mj N\ 0, and assume that m;lfj Sope PRN). If ¥, > E(pu) in RY \ sptu and for any
x € spty there exists v € SN such that 024, (x) > 0, then f; is the characteristic function

of a set when j is large enough.

Proof. By Lemma 3.1 we know that p is a minimizer of (1.6), and that (3.1) holds. By
assumption, for any « € sptu there exists some v, € SV~ such that 92 ¢, (x) > 0, and since
621#“ is continuous (because g is of class C? and u has bounded support) there exist some
0z, Tz > 0 such that (931 Yu(y) > 20, for every y € B, (x). By compactness, there are finitely

many points x1, Za, ..., T) € spty, corresponding directions vy, vo, ..., vy € SV and two
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constants d, r > 0 such that the balls B, (z;) cover the whole sptyu, and one has
R2uly) >26  Vie{l,...,k},Yy € Br(z;). (3.3)

Since spty is covered by the finitely many balls B, (x;), there exists some ¢ > 0 such that the
balls cover also sptu + Be, thus also sptf; for any j large enough, by (3.1). Moreover, since
g € C?(RY) and m;lfj X p, we have that m;1D21,Z)fj converges to D%y, locally uniformly.
Therefore, (3.3) holds also replacing 20 with § and 1, with ¢/, for every j large enough. This
condition clearly implies that each level set of ¢, has zero measure. But the Euler-Lagrange
condition (E'L) ensures that {0 < f; < 1} is contained in a single level set. We deduce then

that the function f; has value 0 or 1 almost everywhere, thus it is a characteristic function. [

Corollary 3.3. Let ¢ € C%*RYN) be a definitively non-decreasing function such that
im0 (@) = +00. Suppose that, for any minimizer yu of € in P(RN), we have

(1) ¥ > E(p) in RV \ spty;

(2) for any x € sptu there exists v € SN=1 such that 92¢,(z) > 0.
Then, there exists T > 0 such that any fn, minimizing (1.5) with || fm||; = m is the charac-

teristic function of a set when m < m.

Proof. We proceed by contradiction. If the thesis is false, there exists some sequence m; ~\, 0
and densities f; which minimize (1.5) with mass m; and are not characteristic functions.
Since, as already noticed in the proof of Lemma 3.1, their supports are uniformly bounded, up
to a translation and a subsequence we have that m;l fi = p € P(RY). Since y is a minimizer
of £ in P(RY) by Lemma 3.1, our assumption ensures that we can apply Theorem 3.2, clearly

obtaining a contradiction. O

Remark 3.4. We observe that the proofs of Theorem 3.2 and Corollary 3.3 work also if we
have a function g € C**(R") and, for a given x that minimizes £ in P(RY) (or any minimizer,
in the corollary), we have that for every x € spty there exist v € SV~! and j € {1,...,k}
with 9774, () > 0.

3.2. More precise results for power-law kernels. This section is devoted to discuss the
situation in the special case of a function g given by (1.7). Let us start with a couple of
definitions. We define by Ay = {z1,...,2n+1} C RY the vertices of the standard regular
(N + 1)-gon centered at the origin and with mutual distance 1. We call Hy = \/% its

height, and Cn = 1/% its circumradius. Moreover, we define

N+1
1

= - 5 .
UN N1 4 i
=1

(3.4)
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the probability measure which is uniformly distributed over the points of Ay. We present
now a geometric result which will provide us a positive bound on the second derivative of the

potential.

Lemma 3.5. The constant

N+1
KN ‘— min { E <U, €XT; — .1‘1)2 Ve SN_l} (3'5)

i=1

satisfies Ky =1 4f N=1and Ky =1/2 if N > 2.

Proof. First of all, we claim that for every N > 2 and every v € SV—1

N+1 ) 1
;@,m =5 (3.6)

To do so, we decompose v = v1 + v9, where vg is the projection of v onto the hyperplane II

parallel to the face containing xo, ..., xx+1 and passing through the origin. We can write
N+1 N+1 ) N+1 N+1 N+1
S wm)? =" ((onm) + (va,2:)" = > (i) + Y (v2,2:) +2 > (01, 3:)(va, 7).
i=1 i=1 i=1 i=1 i=1

Notice now that by definition (ve,z1) = 0, and (v1,z;) has the same value for each i > 2.
Since Zf\:{l x; = 0, we deduce that the last sum vanishes. Moreover, notice that |z;| = Cy,

and the distance of any x; with ¢ > 2 from the hyperplane Il is Hy — C. Therefore

N+1 N+1 N+1
Z<’U,£L’i>2 = |U1‘2012V + Z <Ul,$i>2 + Z<U2,l’i>2
i=1 i=2 i=2
) N+1 v
2
= |Ul‘2(C]2V + N(Hy — Cn) ) + (1- \111’2) Z(m, i)
i=2
_ v [? (1= ) Nz+31<02 21)?
2 = el

The last expression is linear with respect to |v1|2. Therefore, either it is constant, or it is
minimized for |v;| = 0 or |v;| = 1. This means that, if the sum in (3.6) is not constant, then
it is minimized only if v is either parallel or orthogonal to x1. However, the same should
be true also with any other x;, and this is clearly impossible. We deduce then that the sum
in (3.6) is constant, and then it is enough to choose |v;| = 1 to deduce that the constant value
is 1/2, that is, (3.6) is proved.
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Let us now consider the sum in (3.5). We can assume that N > 3, since the cases N =1, 2

are elementary computations. Arguing similarly as before, we get

N+1 N+1
Z (v, x; — ac1>2 = Z (v1,m; — x1)2 + (vg, x; — :L'1>2 + 2(v1, z; — x1){ve, ; — x1)
i=1 =2

N+1 N+1

X
= NHR|vi* + ) (vo, 2:)* — 2Hn vy, ﬁ) > (va, @)
i—2 R
N+1 N+1
N+ 1
\v1’2+ Z V9, ;) +2HN(111,’ 1|><1}2,x1> ‘01‘2_’_ Z UQ,.%L
=2
N+1
N+1 v
=gl =) 3 (e
i=2

Notice now that the projections of the points x; with 2 < i < N on the (N — 1)-dimensional
hyperplane II are the vertices of the standard regular N-gon centered in the origin. Therefore,
the property (3.6) in dimension N — 1 > 2 ensures us that the value of the last sum in the

above estimate is 1/2, regardless of what vg is. Therefore, we have

S oas— g = Lo L= oP N+
: % 1 2 1 2 ) )
=1
and the minimum of this expression among all v € S¥~! is clearly 1/2. Therefore, the proof

is completed. O

We can now present our main results for the power-law kernel g given by (1.7).

Theorem 3.6. Let N > 2 and let g = g2 be defined by (1.7), with « > 5 > 2, a > 4 and
(o, B) # (4,2). Then, if m is small enough, every minimizer of (1.5) is the characteristic
function of some set Ey, which is then a minimizer of (1./). Moreover, Ey, consists of N + 1

convex components, each of which is contained in a small neighborhood of a vertex of An.

Proof. With this choice of powers «, 3, we know by [13, Theorem 1.2, Corollary 1.4] that
the measure iy defined in (3.4) is the only minimizer of £ in P(RY), and that v, > &(un)
outside of sptuy = Axy. We now want to compute the first and second derivatives of the

function

N+1

1/)#1\7 N +1 Z ¢5x1
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at the point z;. First of all, notice that for a radial function ¢ : RY — R and any choice of
zeRN ve SN t >0 one has

(r,v) +t
|z + tv]
& ot oD (.

G glat ) = g"(a) T 1
a2, 2 T al [af?

%g(az +tv) = ¢'(|z + tv])
(3.7)

So, with the function g = g9, keeping in mind that ¢’(1) = 0 and ¢”(1) = o — 3, we have for
every i > 2 that

e

while of course
0yts,, (1) = ¢"(0).
We have now to distinguish the cases 5 =2 and 8 > 2. If 8 > 2, then ¢”(0) = 0 and then by

Lemma 3.5

N+1
1 (o= B)KN a—p
2 = > or > >
0 02, (21) > 0 for every v € SV~1. Instead, if 8 = 2, then ¢”(0) = —1, and then
N+1
1 -1+ (Oé - Q)KN
2 2
=—1 —1 > . .
Bt = g (1 2 o)) 2 = (3.5

Since Ky = 1/2 by Lemma 3.5 and « > 4 because we are considering 8 = 2, then —1 +
(a —2)Ky > 0, hence again 8§¢MN > 0 for every v € S¥~1. The fact that any minimizer of
problem (1.5) with [| f,,[|; = m is given by a characteristic function fm, = X, is then ensured
by Corollary 3.3. Moreover, we know that the sets F,, converge to Ay in the Hausdorff sense
by (3.1) of Lemma 3.1, and m_1D2¢fm converges to D217ZJMN locally uniformly as noticed in
Theorem 3.2. As a consequence, Dzwfm is strictly positive definite in a neighborhood of each
point z; when m is sufficiently small, and so the set E,, N By 5(;) is convex for each i because

it coincides with the sublevel set of a convex function. O

Remark 3.7. The same result is true also if N =1 for a« > 5 > 2, « > 3 and (o, 3) # (3,2).
The proof is exactly the same, the only difference is that the term in (3.8) was strictly positive

since « — 2 > 2 and Ky = 1/2, while now it is strictly positive since « —2 > 1 and Ky = 1.

In contrast, the next theorem shows that for certain choices of the parameters v and 5 the

minimizer of (1.5) is the characteristic function of a set for all values of m.
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Theorem 3.8. Let g be defined by (1.7) with B =2, N > 2 and o € (2,4), or =2, N =1
and o € (3,4). Then, for every m > 0 the minimizer f,, of (1.5) is the characteristic function
of a radial set, which is either an annulus or a disk. In particular, as m \, 0, the set is an

annulus which converges to a circle in Hausdorff distance.

Proof. Let us consider any m > 0. Since « € (2,4) and = 2, it is known that the energy
€ is strictly convex among the functions with barycenter in the origin, see for instance [6,
Section 4]. This implies that there is only a single minimizer among the functions with
barycenter in the origin, and thanks to the invariance of the energy by rotation we obtain
that this minimal function has to be spherically symmetric. Since f,, is spherically symmetric,
and since a > 2 for N > 2 or a > 3 for N = 1, [12, Theorem 2.2] ensures that the potential
1y, has positive third derivative, that is, calling ¢(s) = 1y, (se1) one has ¢"(s) > 0 for every
s > 0. Moreover, ¢'(0) = 0 because 1y, is regular and radial. This implies that all level sets
of ¢ are given by either one or two points, hence for every A € R the set {x € RV : ¢(|z|) = A}
is negligible. Since Proposition 2.1 ensures that in the set where 0 < f,, < 1 the potential has
a constant value A, this gives that the set {0 < f,,, < 1} is negligible, and this precisely means
that f,, is the characteristic function of some set E,,, which, in turn, is radial because so is
fim. Moreover, calling I C R the set such that E,, = {z € RV : |z| € I}, again Proposition 2.1
ensures that I = {s € R: ¢(s) < A} for some X € R. Keeping again in mind that ¢/(0) = 0
and ¢"'(s) > 0 for all s > 0, we have that the sublevel sets of ¢ are all intervals, either of
the form (a,b) for some 0 < a < b, or of the form [0,b) for some b > 0. This means that E,,
is either an annulus or a disk. In particular, Lemma 3.1 ensures that F,, is an annulus for
m < 1, since it must converge in the Hausdorff sense to a circle for m \, 0. On the other
hand, E,, is surely a whole disk for m > 1. O

3.3. Last results for general kernels. We have seen that, by Theorem 1.1, in the special
case when g is a power-law kernel of the form (1.7) for a suitable choice of the parameters
«, (3, the unique minimizing measure is the purely atomic measure f uniformly distributed
over the vertices of the regular (IV + 1)-gon Ax. The goal of this last section is to show that
minimality of such a measure does not necessarily require the particular form (1.7), but it can
also be a consequence of more geometrical, general properties of g. Let us be more precise. If
we assume, just to fix the ideas, that g(0) =0, g(1) = —1 and g(t) > —1 for every ¢ # 1, then
pairs of points in the support of an optimal measure have convenience to stay at distance 1,
but it is impossible that all pair of points have distance 1 since every point of the support has
distance 0 from itself. It is reasonable to guess that in some cases the most convenient choice
could be to have as many points as possible with mutual distance 1, hence, with N + 1 points

in the vertices of a unit regular (N + 1)-gon. In particular, one can imagine that this could
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happen whenever g &~ —1 only in a small neighborhood of —1, and g is flat enough close to
0. In this section, we are going to prove that it is indeed so. In order to present a simple
proof of geometric flavour, we use highly non-sharp assumptions, and we write the proof in
the planar case N = 2 for simplicity of notations. The general case N > 3 does not require
any different ideas. The only caveat is notational complication due to several indices. The
final Remark 3.11 discusses the case of higher dimensions with slight improvements of the
constants.

The first result we present is a “confinement result”, which says that if g is close to —1 only
close to 1 and not so much negative otherwise, then an optimal measure must be supported

in a union of 3 small balls around the vertices of As.

Lemma 3.9 (Confinement around Ag). Let g € Ll (R?) be a radial, continuous function
such that g(0) =0, g(1) =ming = —1, and for some n < 1/64 and { < 1/165 one has

g(t)>—-n forte0,3/2)\(1-¢&14¢), g(t) >0 fort>3/2.

Then every minimizing measure | is concentrated in the union of three sets with diameter
less than 5¢ and mutual distance between 1 —6& and 1+&. More precisely, given any point in

any of the three sets, its distance with each of the other two sets is between 1 — 6£ and 1+ €.

Proof. The assumptions on g imply that its graph must be in the shaded region in Figure 2,
left (a possible choice of g is depicted just as an example). Let u be an optimal measure. We
divide the proof in few steps.
Step 1. The diameter of sptu is at most 3/2.
Let us call i the measure which is uniformly distributed over the vertices of an equilateral
triangle of side 1. Then by minimality of ;1 we have

E(w) < Em) = (3.9)
Assume now the existence of x1, xo € sptu with |21 — z2| > 3/2. For a small r < 1, that will
be specified in few lines, we can take two measures p1, ua < p so that p:= ||p1|] = ||uz2| >0
and sptu; C B, ja(w;). For every —1 < e < 1 we define pe = p + e(p1 — p2), which is still a

probability measure. We have

E(pe) = E(p) + 2€<5(u,u1) - 5(%#2)) + &2 (5(/“) + E(pa) — 2& (1, MQ)) .

However, keeping in mind Proposition 2.1 and the fact that pu; < p, we have

E(p, p1) // x —y) dp (x) duly /% ydpi(z) = p&(p),

and similarly €(u, o) = pE(u). Therefore, the above expression becomes

E(pe) = E() +(Eur) + E(uz) = 26 (n, p2) ) - (3.10)
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Since by assumption g(0) =0 < C := g(|z1 — x2])/2 > 0, we can pick 7 > 0 so small that
g(s) < C < g(t) for every 0 < s <r and |z1 — xo| — 2r <t < |z1 — 22| + 2r.
We have then
E(pr) = //g(y—x) dpydpy < Cp®  and  E(ug) = //g(y—x) dpg dps < Cp?

while
E(p, p2) = //g(y — @) dpy dps > Cp®.
This ensures that the term in parentheses in (3.10) is strictly negative, giving £(u:) < €(u)
which contradicts the minimality of u. This concludes the step.
Step I1I. The sets Ay, Ay and Qg .
Let us now fix any point x € sptu, and call

Am:{y: 1—§<]y—x!<1+f}

the annulus centered at z with radii 1 — £ and 1+ &. By (3.9) and minding (F'L), we have

—5 2 €00 = ve) = [ otr—a)auts) + [ aly=2)duto) > —u(As) = (1 = n(4)
= \Az
> —u(Ag) =1,
which can be rewritten as
pA) > S . (3.11)

Q{L’,y

) y 16 A, 3) A,

FIGURE 2. Left: the graph of ¢ must be in the shaded region. Right: the

points , y and z and the sets A;, A, and Q. , in Step IL

We can then take a second point y in spty so that y € A;, and then also x € A,. The
intersection A, N A, is made by two different connected pieces, orange in Figure 2, right. A
trivial computation ensures that, by the assumption on &£, the diameter of each piece is less

than 5¢ and the distance between the two pieces is more than 3/2. Step I implies then that
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at least one connected piece of A, N A, is p-negligible. On the other hand, applying (3.11)
both to z and y we obtain that u(A, N A,) >1/3 —2n > 0, and then exactly one connected

piece of A, N A, has positive p-measure. We call Q.. , this piece, so that, as just observed,

pQey) > 5 — 20 (3.12)

Step III. The point z and the conclusion.

We can now define a third point z € spty N Qg y, so that each of the annuli A;, A, and A,
centered at one of the points z, y, z contains the other two points. Moreover, keeping the
same notation as in Step II, we call Q1 = Q4 ,y, Q2 = Q. and Q3 = @, .. Let now w be any
point in spty; since by Step I we know that the distance between w and any of the points
x,y, z is at most 3/2, an immediate computation ensures that, thanks to the bound on &,
the distance between w and at least one of the points x, y, z is less than 1 — 6£. To fix the

ideas, we can assume that
|z —w| <1-6¢. (3.13)
We assume then the existence of a point v € ()1 such that

v —w| > 5¢, (3.14)

and we look for a contradiction. Notice that this contradiction will conclude the proof;
indeed, if (3.14) is false for every v € @)1, there are some consequences. The first one is that
the whole sptu is contained in the three balls of radius 5¢ centered at x, y and z. Then, a
second consequence is that the intersection of any of these balls with sptu has diameter at
most 5¢, and thus p is concentrated in the union of three sets with diameter less than 5¢.
Moreover, by construction, for every point a in one of these sets, the annulus A, intersects
both the other two sets, and as a consequence the distance between a and each of the other
two sets is between 1 — 6§ and 1 + £. Therefore, we only have to get a contradiction.
Let us write ¢, = 91 + 12 + Y3 + 1, Where we define

$i(a) = / o(b—a)du() Vie{1,2,3}, tula)= / g(b— a) du(b).
i R2\(Q1UQ2UQ3)

Notice now that, for every b € sptuN@1, since the diameter of @ is less than 5¢ and by (3.13)
we have [b—v| <5 <1—¢ and |b—w| < 1—¢, and by the assumption on g this implies

Y1(w) > —nu(Q1), Y1(v) > —nu(Q1) . (3.15)

Moreover, using (3.11) also with A, and A, in place of A,, and keeping in mind that by
construction Q1 N Q2 N Q3 = (), we obtain that

1

(RN (QUQaUQy)) < 3n, Q1) < 5+, (3.16)
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and the first bound immediately yields

oo (10) + tool) = / g(b— w) + g(b— v) du > —61. (3.17)
R2\(Q1UQ2UQ3)

Take now any two points p € Q2, ¢ € Q3. As seen before, A, N A, has diameter less than 5¢,
so by the assumption (3.14) at least one between v and w does not belong to A, N Ay, hence
gp—v)+glp—w)+9(g—v)+glg-—w)=-3—-n.

Consequently, also by the second bound in (3.16) with Q2 and Q3 in place of @1, we have
1(Q2) (Y3(w) + ¥3(v)) + u(Qs) (Y2(w) + 12(v))

= / / 9(p—v) +9lp—w) +g(g —v) +glg —w)du(p) dpla) 5 o)

2
> (3 u(@u(@:) = <G4 n) (5 +0)

Again by (3.9) and (E'L), and using (3.15), (3.17), (3.12) and (3.18) we have then
—g > Pu(w) + Pu(v) = r(w) + Ya(w) + P3(w) + oo(w) + ¢1(v) + Y2(v) + ¥3(v) + Yoo (v)

-1
> —2nu(Q1) — 6n + L 2n ) ((Q2) (v3(w) + ¥3(v)) + w(Qs) (Ya(w) + 2 (v))
3

-1 2
> _2 —2n? — 61 — L (3+mn) 1Jrn
= =gn=An Ui 3N 3 )
and we derive the searched contradiction since this inequality is impossible for n < 1/64. O

The main result of this section is that under suitable assumptions on the second derivative
of g around 0 and around —1 the unique optimal measure is the purely atomic measure
uniformly distributed over the vertices of a triangle of side 1. More precisely, we have the

following result:

Theorem 3.10. Let g be as in Lemma 3.9, and assume in addition that
g"'(t) > —124"(s) Vit e (0,58), s e (1—681+6¢).

Then, the unique optimal measure (up to translations and rotations) is the purely atomic one,

uniformly distributed over the vertices of As.

Proof. Let p be an optimal measure. By Lemma 3.9, p is concentrated on three sets
B, Bs, Bs, with diameter less than 5§ and mutual distance between 1 — 6 and 1+ &. More-
over, by (3.12) and (3.16), each of them has measure between § — 2n and % + 7. Let us call
C'=—min{g"(t): 0 <t <5} and C”" = min{g”(t): 1 —6§ <t <1+ 6},
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Let us take any four points x, y, z, w in spty, in particular x, y € By, 2 € Bs and w € Bs.

By construction and by Lemma 3.9, we have that
ly — x| <5, |z — 2| <146, |z —w| <14 6¢, |z —w| >1-6¢.

Calling for brevity 6, the direction of the vector a — b for any two points a # b € R?, the

above estimates give

. 55 . ‘Gccz_exw| 1 1_6‘5
exz _9 z S ) —_— Z - . 1
Sin (| ’ Y, ’) 1— 66 sSin < 2 > 92 1+ 66 (3 9)

Two elementary trigonometric estimates tell that, for a generic direction v,

0,,—0
|0x,z : V’2 + wz,w : V’2 > 2sin? <| 22 B x’w|> )

).

In particular, we set v = 6,,. Let us now consider the difference ||y — z| — |z — z||. By

(3.20)

|0,.- - 1/|2 — 16y - V‘Q‘ < sin (]%z — Oy

convexity of the distance, we can estimate this difference from below by |y — x| multiplied
either by |0, . - v| or by |6, . - |, unless the projection of z onto the line passing through x
and y is contained inside the segment xy, which means that 6, . and v are very close to be
perpendicular (and we discuss this case, which is in fact simpler, in a moment). We then have
that

ly = 2l — |2 — 2I| = min { |0 -, 18,2 v} Iy — o],

which in turn yields

C/I ) 2
gx—2)+g(y—2) > —2+T mln{wx,z v, |0y,2 1/\} ly — x| (3.21)
We can now repeat the very same argument with w in place of z. Again unless 6, ,, is very

close to be perpendicular to v, we have

1

o 2
9w —w) +gly— w) > —2+ —- min {|9x,w V), By - y\} ly — |2 (3.22)

Putting together (3.19) and (3.20), and in particular observing that the second estimate

in (3.19) holds also with y in place of = since x and y are generic points in By, we get that
. 2 . 2
min {\GIVZ v, [0y, - 1/]} + min {\H%w v, Oy - y[}

o (1002 — O] ) of 1 (1-66\% 56 _ 2
= Sm( 2 O v =100 v 2 5\ 7566 ) “1=6e 25
where the last estimate is true by the assumption in Lemma 3.9 that & < 1/165. This last
estimate together with (3.21) and (3.22) gives

"

o —2)+oly—2) +ole—w) +oly—w) > —4+ Soly—af. (329
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Recall that (3.23) holds under the assumption that v is not very close to be perpendicular
to either 0, , or 0, ,. However, if this is the case then an even stronger estimate holds; in

fact, if for instance v is almost perpendicular to 6, ,,, then we simply have
ly =2l = o = 2l| + |ly = wl = o~ wl| = [ly = 2| = [o = 2| = min{|62,- -], 10y vl } Iy~ al,

and since the minimum is close to v/3/2 because the triangle xyz is nearly equilateral, the
resulting estimate is stronger than (3.23). Hence, the validity of (3.23) is established in any

case. Concerning g(y — z), on the other hand, we have

C' )
gy—z) 2 -~ ly -z (3:24)

Let us write ¥~ = 9, (,uB,), that is, ¥~ (a) = fBZUB3 g(a —b)du(b). Using (3.23), and
recalling that g(z — 2) + g(y — 2) and g(z — w) + g(y — w) are both surely greater than —2,

we obtain
@0 = [ ale=2)+gl—2)duz) + [ oo —w)+aly—w) dutw)
2 C// 3
> =2p(By U Bs) + o ly — 2" min {(By), u(Bs) } (3.25)
Cl/ 1 C//
> —24(BaUB3) + — |y —x|*( 5 —2n ) > —2u(B2U B3) + — |y — z|*.
> ~2(Ba U Ba) + Sy - ol (5~ 20) = 2BV B + by
We now evaluate £(ul By, pt), which by (EL) coincides with p(B1)E(p). We have

E(ul By, p) / / y—x)du(y) du(z / / y—a)du(y)du(z) =1 & + &
By J By B BQUBg
By (3.24), we get

Cl
512—2/ / ly — 2|* du(y) du(z) .
B1 J B1

Instead, concerning &, by (3.25) we have
1
@ =g [ ] v @) 00 du) dut)
C/
/ / —2p(B2 U Bs) + 1 |y — 2| dp(=) dps(y)
B /B

=—u<Bl>u<B2UBs>+68&;1) /B /B ly — af? du(z) du(y).

Now, the assumptions imply that C” > 12C" > 34u(B;)C’. Hence, from the two estimates

above we get that

E(pl By, p) = —p(B1)p(By U Bs) ,
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with strict inequality unless pl B is concentrated in a single point. Since the same estimate
clearly works with puL Bs and pul Bs in place of ul By, calling ¢; = p(B;) for ¢ € {1, 2, 3}
and keeping in mind that ¢; 4+ co + ¢35 = 1, we get

—E&(p) < ci(ea +e3) +caler +e3) + esler +c2) = c1(1 — 1) + ea(1 — e2) + e3(1 — ¢3)
2
:1—(0%4-6%4-6%) Sg.

Since we already noticed that £(u) < —%, we finally deduce that necessarily ¢; = co = ¢3 = %
and each of the three measures pl_ B; is concentrated in a single point. In addition, all the

distances between any two of these three points must be equal to 1, as claimed. O

Remark 3.11. In the general case of dimension N > 3, one can perform the very same
construction as in Lemma 3.9 and Theorem 3.10, and obtain the very same results. More

precisely, there are explicitly computable constants 7, £, ¢; and cg, only depending on the

1

L (RYN) is a radial, continuous function

dimension, such that the following holds. If g € L
such that g(0) =0, g(1) = ming = —1, and for some 1 < 7 and £ < £ one has g(t) > —n for
t € [0,v3HN]\ (1 — &1+ €) and g(t) > 0 for t > +/3Hy, then every minimizing measure is
concentrated over the union of N + 1 sets with diameter less than ¢;£ and mutual distance
between 1 — (1 + ¢1)€ and 1+ €. In addition, if ¢”(t) > —cag”(s) for every t € (0,¢1€) and
s € (1 —(1+ec)& 14+ (1+ 01)5), then the unique optimal measure is the purely atomic one,

uniformly distributed over the vertices of Ay.
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