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ABSTRACT

Cooperative verification is a promising technique for verifying the
safety and security properties of Programmable Logic Controllers
(PLCs). However, cooperative verification has not yet been widely
used for PLC programs, and there are no cooperative verification
benchmarks for PLC programs. This paper presents verification
tools and property benchmarks for cooperative verification of the
safety and security properties of PLC programs. We developed
two algorithms: 1) to select and rank verification tools that sat-
isfy the tool selection requirement of PLC programs. 2) A verifier
validator that cooperatively verifies PLC programs using three com-
plementary verification tools. We added a property benchmark that
adds the end-of-the-cycle (EoC) variable to the LTL specification
property to adjust the tool’s verification from step semantics to
the PLC’s scan-cycle semantics. We conducted experiments using
CoVeriTeam(a cooperative verification framework) with 40 real-
world PLC programs from PLCOpen. Our approach significantly
enhances the accuracy and reliability of PLC program verification
by recommending tools that our experiments show to have the
lowest false positive rate (FPR) and false negative rates(FNR). We
recommend CBMC, CPA-SEQ, and Symbiotic as the go-to tools for
cooperative verification of PLC programs using CoVeriTeam.
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1 INTRODUCTION

Programmable logic controllers (PLCs) are widely used to control critical in-
frastructure systems, such as water treatment plants, nuclear power plants,
and transportation systems. However, verifying the safety and security
of PLC programs is a challenging task due to the heterogeneity of PLC
architectures, control logic designs, the complexity of PLC scan cycles, and
interrupt handling. Existing verification tools for PLC programs such as
Cpachecker [9], cbmc [21], esbmc [18], FDBverifier [20], assume-guarantee
reasoning [23-25] etc., often suffer from false positives (pointing to nonex-
istent property violations), false negatives ( reporting no violations where
there are violations) due to verification algorithm designs for software pro-
grams rather than PLC, such as overapproximation and underapproximation
of time and process values to abstract the details from the state space to
get a manageable or controllable set. False positives can cause unnecessary
downtime and rework, while false negatives can lead to serious safety and
security hazards. To curb these problems, false positives and negatives, com-
bining the strengths of two or more tools became necessary. Cooperative
verification is a technique that combines the strengths of multiple verifica-
tion tools to improve the accuracy and reliability of verification results [6].
However, cooperative verification has not yet been widely used for PLC
programs and, indeed, other conventional programs. The work available
in the literature dealing with cooperative verification [6-8, 11] was not
focused on safety-critical systems, except [6], which explains how effective
the application of cooperative verification could be in safety-critical sys-
tems; however, no practical application or experiment was performed to
establish benchmarks to guide tool selection, performance (verification time
and scalability), and property specification to verify the safety and security
properties of PLC programs. To the best of our knowledge, there is no inves-
tigation with respect to cooperative verification and setting the necessary
benchmarks in programs, property, and tool selection to verify PLC logic.
Therefore, this paper presents new tools and techniques as benchmarks
for cooperative verification of the safety and security properties of PLC
programs.

Our contribution is to develop a framework and benchmarks for cooper-
ative verification of the safety and security properties of PLC programs. To
this end, we developed algorithms and techniques that help to achieve the
benchmarks in the following.

(1) A tool selection algorithm that selects three complementary verifi-
cation tools from a cooperative verification environment based on
user requirements and tool features.

(2) A property benchmark that adds the end-of-the-cycle (EoC) variable
to the LTL specification property to adjust the tool’s verification
from step semantics to the PLC’s scan-cycle semantics.

(3) A three-tool verifier validator that combines three verification tools
selected by the tool selector algorithm to verify and validate PLC
programs using the CoVeriTeam cooperative verification platform.

(4) Link to the repository containing our experiment artifacts for repro-
ducibility purposes.
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In addition to our contributions, our experiments serve as valuable experi-
ence reports, providing insight for fellow researchers entering the field of
cooperative verification of PLC programs as research in this area continues
to expand. We conducted experiments that involved our algorithms imple-
mented for tool selection within a cooperative verification environment,
which led to the selection of tools based on specific property requirements
and tool features. Our custom verifier validator, designed to combine three
different tools, is used with CoVeriTeam as a cooperative verification plat-
form, confirming the capacity of the selected tools to detect violations
through the synergy of their strengths. We evaluated the results using
evaluation criteria, including false positive and negative rates (FPR and
FNR) by establishing ground truths using PLCVerif [15] (a tool specializing
in verifying PLC programs in their native language Structured Text (ST)),
ultimately determining the most effective benchmark tools.

We further validated our findings by validating our results with PLCVerif
and examining the result logs of the verification tools to uncover false
positive and negative results. Our evaluation included 40 real-world PLC
programs obtained from PLC Open and annotated PLC programs from [12].
Our results and experiences collectively confirm that our approach signifi-
cantly improves the accuracy and reliability of PLC program verification.
Furthermore, our recommended tools and property benchmarks provide
valuable guidance for technicians and engineers who are navigating the
cooperative verification of PLC programs. The subsequent sections of the
paper are structured as follows: related work reviewed prior literature in
the field, specifically focusing on benchmark development and cooperative
verification. Our methodology section details the algorithms and techniques
we have introduced. We proceed to present our case study, in which we
describe the experiments carried out with the CoVeriTeam framework as a
central element. Following this, the results and discussion section elaborates
on our findings, and the results validation section explains how we veri-
fied these outcomes. Finally, our conclusion discusses the key takeaways,
outlines the study’s limitations, and hints at potential avenues for future
work.

2 RELATED WORK

In this related work section, we explore two crucial facets: benchmark de-
velopment within Industrial Control Systems (ICS) and the application of
cooperative verification techniques to detect violations in Programmable
Logic Controller (PLC) programs. This paper focuses on 1) addressing the
creation of benchmarks and 2) examining the influence of cooperative ver-
ification on the safety and security aspects of PLC programs. To begin,
we dive into the benchmark development literature before delving into
the implications of cooperative verification for PLC program properties.
First, within the domain of benchmark development, Althoff (2022) [3]
presents a methodological approach explicitly tailored for the verification
of the power system. This methodology systematically selects the types
of verification problem, case descriptions, and property definitions. In par-
ticular, it leverages the CORA toolbox to generate various benchmarks
to evaluate reachability analysis tools. However, it predominantly targets
power systems, and its adaptability to domains like PLCs warrants further
exploration. Beyer et al. (2019) [10] make significant contributions to bench-
marking, focusing on automatic solvers and verifiers. Their framework
outlines fundamental requirements, including resource measurement accu-
racy and reliable process termination. Although this framework enhances
benchmarking practices, it primarily concerns the rigorous assessment of
tools and the presentation of results, rather than the explicit development
of cooperative verification benchmarks for PLC programs. On the contrary,
our paper is dedicated to optimizing cooperative verification platforms for
the assessment of the PLC program, encompassing the critical aspects of
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tool selection, specification properties, and test case creation. Transitioning
to cooperative verification’s influence on PLC program verification, recent
works, including those by Beyer et al. [6-8, 11, 12], underscore the trans-
formative potential of cooperative verification, especially in the context of
safety-critical infrastructures. Cooperative verification offers promise but
requires various tools, properties, and program benchmarks customized
for varied cooperative verification environments. Our research contributes
significantly to this endeavor, providing practical tools and techniques to
assist practitioners and researchers in adeptly navigating the cooperative
verification of PLC programs, mainly through platforms like CoVeriTeam.

3 METHODOLOGY

As depicted in figure 1, the proposed methodology aligns with those dis-
cussed in the related work section (cf. Section 2), although tailored to the
unique behaviors of PLCs.

Specification Properties
The PLC program must
satisfy the formal
properties (temporal logic,
etc).

Benchmark Evaluation
Criteria
Establish evaluati
(time, false positives, false
negatives, scalability, etc.)

Verification Problem
Identify the specific PLC
i solve

Tools Selecti

(e.g,

correct outputs, etc. Choose appropriate tools
based on the complexity of
the program and properties
to be verified.

Results & Result Validation

results using benchmark
criteria.

Figure 1: Steps in the Methodology

The approach begins with carefully selecting verification problems tai-
lored to PLC program behaviors. A tool selection criterion is established to
choose appropriate tools that align with the PLC program scan cycle seman-
tics and enable adequate cooperative verification. Specification property
requirements are defined to outline desired properties for PLC programs,
accompanied by criteria for evaluating proposed benchmarks. Key evalua-
tion metrics include false positives, false negatives, false positive rate (FPR),
false negative rate (FNR), and tool execution time thresholds. The methodol-
ogy ensures the integrity of the results through an incorporated validation
step, further enhancing the precision of the experimental findings. We will
proceed systematically, addressing each step in detail to fully explain each.

3.1 Problem Identification

Addressing the challenges associated with PLC programs requires a clear
understanding of specific verification issues. These issues, as described
in [14], cover safety properties, deadlock prevention, and ensuring correct
output. In this paper, we narrow our focus to the safety and security of
PLC programs, emphasizing the accuracy of the output when provided with
specific inputs. This emphasis is rooted in the critical nature of industrial
control systems, where deviations from the correct output can lead to safety
violations and potential hazards in various sectors. We carefully select PLC
programs with safety and security properties to achieve this, leveraging
openPLC programs with specially designed annotations. This process in-
volves identifying relevant properties, establishing selection methodologies
for tools and properties, and ensuring alignment with the scan-cycle se-
mantics of PLC programs, enabling adequate cooperative verification for

accurate and comprehensive results.

3.2 Specification Property Requirement

Referring to Table 1, we have outlined the requirements for specification
properties essential to verify PLC programs in a cooperative verification
setting. These requirements are the foundation for our experiments in
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assessing their compliance within the context of cooperative verification
using the CoVeriTeam-compatible Linear Temporal Logic (LTL) dialect.

The table highlights the importance of representative properties that
span safety and security to fully cover the domain of PLC systems. Invari-
ance and reachability ensure correctness and safety, while safety properties
are critical for Industrial Control Systems (ICS). Security properties are
essential for data protection, and boundary properties are crucial for testing
tool correctness. These requirements and rationales guide the selection and
definition of properties for verification of the PLC program in cooperative
environments.

Specification Property Requirement Table

Requirement

Rationale

Observable state: Properties
should be amenable to change so
that extra variables that indicate
the observable state of PLC
programs can be added to the
property specifications

PLC observable states must be
identified for correct verification
of PLC programs because the PLC
program’s end-of-cycle (EoC) is
the observable state that helps bal-
ance the steps and cycle semantics
of conventional IT programs and
OT PLC logics.

Representative properties:
Properties must represent the
domain of PLC systems, from
safety properties to security
properties.

A good benchmark must cover the
important areas of the domain of
interest.

Invariance: This is a condition
that remains true throughout the
execution of the program.

Properties we test should remain
true in all states to ensure correct-
ness.

Reachability: Ability to reach a
specific state from an initial state.

Specification properties should be
able to reach any state of interest
for safety reasons.

Safety: Ensuring that no hazard is
created from violations of safety
properties.

The lifeblood of ICS is the safety of
the systems and personnel. There-
fore, the safety properties should
be used as benchmarks for the se-
lection of the verification tool.

Security: The ability to ensure
that there are no data leaks or ac-
cess control violations within the

program.

Security properties are necessary
to determine the benchmark prop-
erties for the selection of coopera-
tive verification tools.

Table 1: Property Specification Requirements for PLC Pro-
gram’s Property Benchmarks

In the context of Programmable Logic Controllers (PLCs) with their
characteristic scan-cycle semantics, applying Linear Temporal Logic (LTL)
properties tailored for conventional programming languages like C and
C++ poses a challenge, which is processing PLC programs in step semantics
instead of cycle-semantics. We introduce the End-of-Cycle variable (EoC)
concept to adapt the properties of LTL to PLCs, as discussed by Bohlender
et al. [12]. For example, consider an LTL specification property formula like:

G (EmergencyStop — O(OperationStopped)) Here, "EmergencyStop”

represents the condition when the emergency stop button is pressed, and
the specification asserts that it will eventually lead to "OperationStopped"
becoming true immediately or at some point in the future. By introducing
the EoC variable, we can transform the formula into the following.

G (EmergencyStop — (EoC U O(OperationStopped))) In this modified

formula: "EoC" represents the end of a cycle in the PLC operation. "Emer-
gencyStop" and "OperationStopped" are specific conditions or events within
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the system. The "G" operator ensures that the entire expression is globally
valid across all time steps. The "—" operator denotes an implication. The
"O" operator indicates that the following condition will hold at some point
in the future. The "U" operator signifies the "Until" operator, which asserts
that the left condition holds until the proper condition becomes true. This
adjustment accommodates the PLC scan-cycle semantics, enabling precise
specification and verification of system behavior.

3.3 Tool Selection Requirement

Building upon the framework proposedby [22], which outlines selecting
effective security vulnerability and testing (SVT) tools over trivial ones by
providing specific requirements, our tool selection process carefully consid-
ers specific criteria. In cooperative verification environments, many tools
are encountered, each characterized by various types and intended verifica-
tion purposes. Moreover, the behavior of Programmable Logic Controller
(PLC) programs sets them apart from other programming paradigms like C
or Java. Consequently, we have outlined the requirements for any tool we
choose.

Tool Requirements Table

Requirement

Rationale

TR1: Modular Verification tool
(can run more than one algorithm)

Modular tools provide the oppor-
tunity to try more than one ver-
ification method (such as predi-
cate abstraction, abstract interpre-
tation, symbolic execution, etc.),
which makes for robust verifica-
tion.

TR2: Verification tool that can ver-
ify real-time property specifica-
tions

PLC programs’ behaviors are
mostly real-time, and a tool that
recognizes that.

TR3: Flexibility: Flexible Verifica-
tion tools can run different algo-
rithms not designed for a specific
verification algorithm

Flexible tools make for easy coop-
erative combination. And can ver-
ify both safety and security prop-
erties.

TR4: Machine-readable output

Machine-readable output fosters
post-verification analysis and val-
idation.

TRS5: Verify C programs or Struc-
tured Text PLC programming lan-

guage

The tools have to verify C pro-
grams or ST PLC programs be-
cause, in our experiment, we con-

verted ST to C for our experi-
ments.

TR6: Memory safety verification | PLCs have little memory; there-
fore, the safety of the memory
from memory violations is neces-

sary.

TR7: Support for LTL and sym-
bolic model checking

The properties to be verified
are written in LTL dialect in
CoVeriTeam, and symbolic model
checking increases fast analysis of
large and complex systems such
as ICS.

Table 2: Tool Requirements Table

Table 2 outlines the critical criteria for selecting appropriate verification
tools in cooperative verification environments, particularly for programable
logic controller (PLC) programs. These requirements are carefully crafted
to address the unique challenges of PLC programs, which exhibit real-time
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behaviors distinct from traditional programming languages. The first re-
quirement, Tool Requirement-1 (TR1), emphasizes the need for modular
verification tools capable of employing various verification methods, en-
hancing the robustness of the verification process. TR2 underscores the
importance of real-time property verification, aligning with the temporal
nature of PLC program behaviors. TR3 highlights the importance of tool
flexibility, allowing them to run diverse algorithms not limited to a specific
verification technique, facilitating cooperative verification across safety
and security properties. TR4 advocates for machine-readable tool outputs,
which facilitate post-verification analysis and validation. TR5 necessitates
the ability to verify both C and Structured Text PLC programs, accommodat-
ing the experimental conversion of Structured Text to C. TR6 emphasizes
memory safety, while TR7 requires tools to support LTL and symbolic model
checking. Collectively, these requirements serve as a comprehensive foun-
dation for selecting tools that can effectively address the complexities of
verifying PLC programs in cooperative environments. We will describe the
tool selection algorithm and how it works.

Algorithm 1 serves the purpose of aiding in the selection of the most
suitable tool from a list of candidates for the verification of the PLC program.
The process begins with extracting tool-related data from an online database
compiled from the tools’ official documentation. These data form the basis
for the evaluation of the tools. Each tool in the list is characterized by its
characteristics and is assigned an initial score of zero. The scoring process
is discerning, with scores weighted to reflect the relevance of each feature
to the verification of the PLC program. In particular, features crucial to this
task, such as real-time properties and safety, receive higher scores, while
features such as open source nature are assigned lower scores.

The algorithm systematically assesses the alignment of each tool with
predefined criteria, producing a ranked list of tools that best meet the
criteria for the verification of the PLC program. A unique feature of this
implementation is providing tool features and specifications directly within
the script, bypassing the need for a real-time online database. In summary,
Algorithm ?? streamlines the selection of the optimal tool for the verifica-
tion of the PLC program by meticulously scoring the features of each tool
according to their relevance. The resulting ranked list of tools aligns with
the specific needs of PLC verification, with higher scores assigned to critical
features in this context, ultimately facilitating the selection of the most ap-
propriate tool for the task. The adaptability of this implementation, utilizing
hard-coded features and specifications, ensures functionality even when a
comprehensive online database is unavailable, maintaining the algorithm’s
efficacy.

3.4 Tools Evaluation Criteria

To evaluate the performance of the tools, we devised criteria to
evaluate the performance of the tools to identify the benchmarks.

Table 3 summarizes the critical evaluation criteria for the verification
tools of the PLC program, focusing on the vital aspects of the evaluation of
the performance of the tool. It emphasizes the importance of false negatives
and positives as critical metrics. Introduce a 30-minute execution time
threshold to manage tool performance. Compatibility is critical to evaluating
how tools can collaborate effectively in the verification process. Verification
time is excluded from the criteria due to its unreliability, often influenced
by external factors such as BenchExec and CPU throttling. The approach
involves a two-step process to accurately distinguish false positives and
false negatives from tool-generated results. The deliberate introduction
of errors into select PLC programs creates ground truths for the accurate
identification of violations. Subsequently, verification tools are executed
on these modified programs and their results are compared with ground-
truth data. False positives are identified when a tool incorrectly marks
non-violations as violations, indicating unnecessary alerts. False negatives
arise when a tool does not identify known violations, signifying a lack of
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Algorithm 1: Tool Selection Algorithm

Data: C - A set of criteria used for tool evaluation
T - A set of tools to be evaluated.
M(c;, tj) - A function that determines whether a tool t;
meets the criteria c;
D - An online database containing tool data
Result: The ranked list of tools based on how well they
meet the criteria and the data from the online
database
// Fetch tool data from the online database D
and create a list L
Fetch tool data from the online database D and create a list
L;
forall tj € T do
// Initialize the total score S(tj) to 0
3) Initialize the total score S(t;) to 0;
1) forall ¢; € C do
5) if M(ci, tj) = 1 then
// Add the criterion’s score S(c¢;) to
the total score S(t;)
6) Add the criterion’s score S(c;) to the total score

S(t5);

1

f=2

2

=

// Rank the tools in L based on their total
scores S(tj)
7) Rank the tools in L based on their total scores S(t;);
8) return The ranked list of tools

Evaluation Criteria

Requirement | Rationale

False negatives | False negative means that the real violations are not
(FNs) detected.

False positives | False positives show the ability of a tool to detect false
(FPs) violations.

Execution time | The more time a tool takes to verify a PLC program, the
threshold BenchExec will terminate the process if it goes beyond

the set threshold, which is set at 30 minutes.

Compatibility | When tools are combined, their ability to work together

helps to know tools that could cooperate to verify PLC
programs.

False Positive
Rate

This helps us to know each tool’s rate of false positives
after several verifications.

False Negative | This helps to find the rate of false negatives for each tool

Rate after several verifications.

Table 3: Tools’ Evaluation Criteria Table

sensitivity. The methodology, results, and validation are discussed in more
detail in the forthcoming case study section.

Our methodology comprises two core components: Methodological steps
and methodological flow. Methodological steps systematically guide the
benchmarking process, covering the definition of the verification problem,
the specification properties, the selection of tools, the benchmark criteria,
and the analysis of the results. In the Methodology Workflow, as illustrated



Benchmarks for the Verification of Safety and Security
Properties of PLC Programs in Cooperative Verification Environments

Property
specifications

Benchmark Evaluation

2q01 Addy

: H. _
Generate »
ﬂ:t ML
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in Figure 2, we outline critical requirements, including property, tool, and
program selection, vital to defining candidate benchmarks tailored to the
unique characteristics of PLC programs. The selected cooperative verifica-
tion tools are then applied to these candidates, evaluating their performance
based on established metrics like false positives, false negatives, and ver-
ification time. The results of this assessment yield two critical types of
benchmarks: property specification benchmarks and cooperative verifica-
tion tool benchmarks. These benchmarks are subject to further evaluation
to ensure that they meet predefined criteria, adapting methodologies from
related domains to suit the specific context of PLC program behavior, as
referenced in earlier works [10], [16], and[22], respectively.

4 CASE STUDY

In this section, we present case study experiments, focusing on critical
components of our workflow. We introduce CoVeriTeam, a cooperative
verification tool, and discuss the specific PLC programs and specification
properties to be verified. The experiments include the implementation of
the tool selection algorithm, using a custom three-tool verifier validator,
and the significance of this approach. We present the results obtained and
follow with a discussion and validation, emphasizing their implications for
Industrial Control Systems (ICS) security.

4.1 Case Study Tool - CoVeriTeam

Cooperative verification is a collaborative approach that involves multiple
verification tools that work together to assess the accuracy and reliability
of the system or program, with the objective of improving the effectiveness
of the verification process by leveraging the strengths of different tools and
mitigating their limitations (Beyer et al., 2022). CoVeriTeam orchestrates the
collaboration of various verification tools, allowing them to jointly analyze
program properties of the Programmable Logic Controller (PLC), detect
potential violations, and optimize the verification process while saving
time. The evaluation of the performance of the cooperative verification
tool, the verification of the program, and the imposing of a 30-minute time
limit for each verification process [5] are part of this case study. For more
information on CoVeriTeam and its applications, readers can click here to
visit the CoVeriTeam GitLab page.

4.1.1 Custom Verifier Validator. We developed a custom verifier valida-
tor using three verification tools to verify PLC programs due to the high
safety-criticality of Industrial Control Systems (ICS). This tool provides an
additional validation layer that includes a stringent protocol for handling
errors and false or unknown verdicts, involving manual code review in
conflicting cases(where the three tools have conflicting verdicts) to ensure
safety and security standards are met. These tools are selected by our al-
gorithm described in the methodology section (cf. 1). The critical security
advantage is that if one tool fails, the other two with distinct verification
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attributes can detect violations, preventing false negatives that might occur
with single-tool verification.

From Algorithm 2, we describe the process of creating the custom verifier
validator as follows:

e Create actors: We create three "actors" (three verification tools)
named verifier, validator1, and validator2 from the createActor object
in the CoVeriTeam interpreted language.

o Define the conditions: We check whether a variable called "verdict"
has the value "true" or "false" and store the result in two conditions,
condition one and condition 2. Suppose that the first verifier’s result
is true or false. In that case, the second and third verifiers will
validate the result by verifying the same PLC program using the
results of the previous verifiers.

o Create and execute components: Based on these conditions, we

create two components (parts of our programy), a second-component,

and a third component. These components are used to perform
verification tasks using specified verifiers, and we run them.

Print actor type: We check and print the type of one of the actors,

which helps us to know its name and the execution technique (Se-

quence or Parallel).

Print artifacts: Finally, we print the results or artifacts produced by

our program when we execute the components. These artifacts are

sent to a folder within CoVeriTeam called cvt-output that contains
an XML verification result.

Algorithm 2: Custom Verifier Validator Algorithm

1: Create actors:

2. verifier < Create ProgramVerifier from YAML file at
verifier_path

3. validatorl < Create ProgramValidator from YAML file at
validator1_path

4. validator2 < Create ProgramValidator from YAML file at
validator2_path

5. Define conditions:

6: conditionl < Check if verdict is TRUE or FALSE

7 condition2 « Check if verdict is TRUE or FALSE

8: Create and execute components:

9:  second_component « ITE(conditionl, validator1)

10:  third_component « ITE(condition2, validator2)

11: Execute actors:

12:  res « Execute verifier followed by second_component

13:  resl « Execute verifier followed by third_component

14: Print actor type:

15:  Print the type information of verifying_verifier

16: Print artifacts:

17:  Print res and resl

4.2 PLC programs and Properties Verified

4.2.1 PLC Programs Verified. The PLC programs that we used in
the experiments are obtained from the PLCOpen safety library,
and [12] annotated PLC programs. Our choice is based on the fact
that most of the PLC programs have been used for an experiment
and, as such, are accessible and reliable. The PLC programs cover
important industrial processes in the ICS, such as EmergencyStop,
DiagnosticConcepts, SafeMotionlO, and safeMotion. We describe
the PLC programs below:
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e EmergencyStop: This PLC program involves the implementa-
tion of an emergency stop or shutdown procedure within an
industrial system. It may be designed to stop the operation
of machinery or processes quickly and safely in a critical
emergency to prevent accidents or damage.

e DiagnosticConcepts: Diagnostic Concepts is a PLC program
related to diagnostics and monitoring. Collects data from
sensors and devices in an industrial system, processes diag-
nostic information, provides insight into the health of the
system, or identifies potential issues.

o SafeMotionlO: SafeMotionIO refers to the control of safe
motion and motion-related functions in an industrial setting.
This program focuses on ensuring safe operation of machin-
ery, including aspects such as motion control, positioning,
and collision avoidance, while adhering to safety standards
and protocols.

o SafeMotion: Safe motion refers to motion control in an in-
dustrial environment, focusing on safety. It encompasses
various safety features and functions associated with motion
control systems, such as safe acceleration and deceleration,
speed monitoring, and error handling.

These PLC programs, including "EmergencyStop," "Diagnostic-
Concepts," "SafeMotionlO," and "safeMotion," serve as valuable rep-
resentatives of Industrial Control Systems (ICS) for benchmarking
purposes. They encompass critical aspects of industrial automation,
such as safety, security, diagnostics, and motion control, which
are fundamental in various ICS applications. We use 40 of these
programs, 25 single-module programs, and 15 multi-module pro-
grams. We want to ensure that the tools are evaluated in simple and
complex PLC programs to ascertain their suitability and efficiency
in verifying them.

4.2.2  Specification Properties Used For Verification. Our case study
focused on verifying safety and security properties within PLC pro-
grams, with a particular emphasis on security due to its increasing
relevance in today’s Industrial Control Systems (ICS) exposed to ex-
ternal networks. Although safety properties were not exhaustively
listed, they were annotated in the programs, meeting the require-
ments outlined in our methodology section. Security properties are
paramount in ensuring secure ICS operation, and their assessment
is intricate due to the unique characteristics of PLC programs.

4.2.3  Security Properties Considered. The aim is to identify and formulate
security properties that accurately represent violations in programming
logic controller (PLC) programs, focusing primarily on access control vul-
nerabilities. According to [28], PLC security vulnerabilities can be broadly
classified into network, firmware, and access control issues. Our primary
concern centers on access control and program modification attacks, as
compromised access can potentially lead to tampering with the process
logic. These security concerns will be converted into verifiable properties
to effectively assess benchmark verification tools. Examples of security
concerns in PLC programs, as identified by [27] and [1], include:

(1) Modification of Real-Time Inputs: Vulnerabilities arise when attack-
ers manipulate the input of the real-time sensor.

(2) Multiple Assignments for Output Variables: Race conditions can oc-
cur when an output variable depends on multiple timers or counters,
potentially leading to non-deterministic behavior.
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(3) Uninitialized or Unused Variables: Unused input or output variables
can be exploited by attackers to send malicious input or output, and
uninitialized variables may receive malicious values at runtime.

(4) Improper Runtime: Inputs manipulated at run-time can induce run-
time errors, introducing vulnerabilities.

To assess these security concerns, we express them as properties in
Linear Temporal Logic (LTL) and use them to evaluate the capability of
candidate benchmark verification tools in detecting PLC program secu-
rity vulnerabilities. Additionally, we adapt the property specifications to
align with PLCs’ operational behavior and scan cycle semantics (cf. 3.2).
This distinction helps to differentiate step semantics from PLC cycle se-
mantics, enhancing the accuracy of benchmark tool evaluations in security
verification.

4.3 Experiments

In this experiment, we set out to establish benchmark tools and
properties for the cooperative verification of PLC (Programmable
Logic Controller) programs within the CoVeriTeam framework,
using CoVeriTeam as a case study cooperative verification frame-
work. The process included multiple crucial steps: We started the
experiment by implementing a Python-based tool selection algo-
rithm that systematically evaluated specific features extracted from
the CoVeriTeam tool library documentation. These features in-
cluded safety and security property checks, real-time verification
support, over-approximation, abstract interpretation capabilities,
Counterexample-Guided Abstraction Refinement (CEGAR) inte-
gration, the presence of a graphical user interface (GUI), and open
source status. The documentation of each tool was subjected to
rigorous scrutiny for these characteristics, and each characteristic
was assigned a weighted score. The cumulative scores for each tool
allowed us to classify them according to their alignment with prede-
fined tool selection requirements for the PLC programs, as detailed
in Table 2. Due to constraints related to developing an online veri-
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Figure 3: Verification Tools Selection Ranking in CoVeriTeam

fication tool’s feature database/ontology, we directly integrated the
required features into the Python script. The script autonomously
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selected tools that demonstrated compatibility with the behavioral
characteristics of the PLC programs. As shown in Figure 3, the re-
sults were visually presented, highlighting the top-ranked tools rec-
ommended for the custom verifier validater. The custom verifier val-
idator is crucial in our experiment, allowing us to assess the perfor-
mance of the three selected tools and determine how effectively they
detect actual violations. Specifically, we used the custom verifier
validator to accommodate the trio of tools chosen by the tool selec-
tion algorithm. This strategic approach allowed us to subject these
tools to rigorous tests to identify the most suitable options to verify
PLC programs while meeting our stringent evaluation criteria. Our
aim is to discern the tools that collectively provide cooperative ver-
ification with zero false negatives or false positives. This process is
a pivotal step in determining the ideal combination of tools to effec-
tively verify PLC programs, ensuring accuracy and reliability in our
results.

Our experimental approach involved selecting sets of three tools
for each round based on safety and security properties, ensuring
that the chosen tools consistently ranked high according to the
recommendations of our selection algorithm, as shown in Fig-
ure 3. In the category of highest ranking, we selected Symbiotic,
Pesco [26], CBMC [21], Cpachecker [9], ESBMC-incr (selected
ahead of ESBMC for its incremental algorithm) and Cpa-seq. Addi-
tionally, we intentionally integrated tools that were not prioritized
by the selection algorithm to assess their performance. We included
FuseBMC [2], Brick [13], Symbiotic, and Cpachecker, Brick and
FuseBMC; The next rounds involved tool sets such as ESBMC-
Kind [17], Yogar-cbmc [29], Cpa-seq, Divine [4], Deagle [19], and
ESBMC-incr.

In the subsequent experiment, our aim was to assess the authen-
ticity of the benchmark tools by calculating their false-positive and
false-negative rates. To achieve this, we deliberately introduced
violations into the PLC programs and relied on an external tool,
PLCVerif, to establish ground truths. We then selected the top three
performing tools and combined them using a custom verifier val-
idator to verify 13 multimodule PLC programs. The verification
time was extended from 30 to 60 minutes to gauge potential im-
provements. This approach provided a robust evaluation of the
effectiveness of the tools, particularly for programs that had pre-
viously returned unknown or canceled. We have made all of the
experimental artifacts available in a repository for transparency
and reproducibility. These experiments were carried out on a Linux
Ubuntu 22.04 system with specific hardware specifications.

4.4 Results and Discussion

The tables, as in Table 4 and Table 5, show the results of various
verification tools compared with the ground truth established by
PLCVerif. This ground truth was determined through deliberate
violations, ensuring the correctness. Our result evaluation crite-
ria helped calculate false positives, false negatives, true positives,
and the respective rates, as summarized in Table 8, with "True"
indicating absence, and "False" indicating presence of violations,
"Unknown" means inconclusive due to timeout or complexity; an
"error" points to inability of the verification tool to successfully
analyze the PLC program, due to issues relating to compatibility to
the PLC program behavior.
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Table 8 summarizes the performance of various verification tools
in identifying security and safety issues. Some tools, such as CPA-
SEQ and ESBMC-INCR, show low False Negative Rates (FNR), in-
dicating their effectiveness in recognizing critical problems. How-
ever, ESBMC-INCR encountered challenges, generating numerous
unknown results due to time constraints and CPU throttling. In
contrast, tools such as CPA-SEQ and Symbiotic demonstrate low
False Positive Rates (FPR), reducing false alarms and supporting
operational efficiency. The discussion does not separately address
True Positives (TP) and True Negatives (TN), as they contribute
to the FPR and FNR calculations. Balancing FNR and FPR is vital.
Tools that excel in one area may lack in the other, necessitating a
trade-off. High FPR tools hinder efficiency, while high FNR tools
risk undetected issues, especially in critical applications. Low-FPR
and FNR tools can produce better results, as shown in Tables 6
and 7. The use of strengths and the extension of the verification
time improved accuracy for many PLC programs, benefiting pro-
grams 9, 10, 12, 13, 17, 19, 22, 23, 25, 28, 32, 33, and 38. Verification
time was not a primary factor in our analysis due to the unrelia-
bility of ICS critical to safety, where precision and reliability were
paramount.

4.5 Brief Experience Report

Our CoVeriTeam experiments uncovered limitations, notably the
platform’s requirement for property files with the a.prp extension,
which triggered exceptions when we attempted compliance. Adher-
ence to the specialized Linear Temporal Logic (LTL) dialect is crucial,
especially with the introduction of the "end-of-cycle" (EoC) vari-
able for cycle semantics alignment. We found that single-module
PLC programs with simple function blocks were more accessible
for verification than multimodule programs. In particular, symbi-
otic, CBMC, and CPA-SEQ emerged as preferred cooperative PLC
program verification choices through CoVeriTeam.

4.6 Result Validation With PLCVerif

To validate our results and create a reliable benchmark, we turned
to PLCVerif, a specialized tool to verify PLC programs in their orig-
inal Structured Text Language (ST). Although the verification tools
were initially designed for C programs, we first translated the ST
programs into C to align with them. However, PLCVerif’s native
ST language support stood out for its efficiency, as it is more reli-
able due to its post-verification abilities and clear results that show
whether there was an error or none. During validation, we inten-
tionally introduced violations into the 40 PLC programs, leveraging
PLCVerif’s capabilities beyond primary verification, such as model
reduction and support for expressing requirements informally in
everyday language. This inclusive validation process ensures the
credibility of our findings, enabling a confident evaluation of the
performance of the benchmark tool. In summary, PLCVerif played
a crucial role in validating our results, allowing us to establish
a reliable benchmark for our study’s candidate tools. It demon-
strated its strength in handling PLC programs in their original lan-
guage. It offered additional features that improved the assessment
of property formats, ensuring the robustness and credibility of our
findings.
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Table 4: Verification Result Table for Tools Recommended by the Tool Selector Algorithm

# | GroundTruth | Symbiotic Pesco Cbmc Time # GroundTruth | Symbiotic Pesco Cbmce Time
1 True True true True 0.371 21 False True False true 0.74
2 True True true True 0.367 22 True True unknown True 433
3 False True false false 1.345 23 True False unknown Error 10.75
4 True True True unknown | 4.34 24 False True true True 0.56
5 True False False unknown | 5.33 25 True True True true 0.82
6 False True True false 2.72 26 True True unknown | unknown | 28.6
7 False True unknown True 3.54 27 Unknown True Error unknown | 25.3
8 True True True True 0.93 28 False True True True 1.92
9 True True unknown | unknown | 20.22 29 True True False true 1.10
10 False True True false 1.54 30 True True False False 2.22
11 True True True True 0.65 31 True True True True 0.45
12 False True False True 0.90 32 True False False True 1.45
13 False True unknown Error 15.30 33 False True True unknown | 6.63
14 True True True true 0.42 34 False True True False 1.34
15 True True unknown True 3.35 35 False True True True 1.52
16 True True False False 2.23 36 False True True unknown | 7.54
17 False True False True 1.12 37 True True False False 2.12
18 False True True unknown | 5.59 38 False True Timeout | unknown | 25.31
19 True True True True 0.67 39 False False True True 0.651
20 True True True False 2.21 40 True True True True 0.542
Table 5: Verification Result Table for Tools Recommended by the Tool Selector Algorithm
# | GroundTruth | Cpachecker | esbmc-incr -seq Time # | GroundTruth | Cpachecker | esbmc-incr | cpa-seq | Time
1 True True True True 2.519 21 False True Timeout True 29.32
2 True Unknown True Unknown | 4.67 22 True True Unknown Timeout 2.71
3 False True Unknown True 3.46 23 True True Unknown | Unknown | 28.58
4 True True True True 5.057 24 False True Unknown True 2.72
5 True True False True 28.60 || 25 True True Unknown | Unknown | 4.96
6 False True True True 2.39 26 True True Unknown True 2.87
7 False True True Unknown | 12.04 || 27 Unknown True Unknown | Unknown | 29.14
8 True True Timeout True 2.63 28 False True Unknown | Unknown | 2.464
9 True True Unknown | Unknown | 24.16 || 29 True True Unknown True 4.24
10 False True Unknown | Unknown | 7.97 30 True True Unknown True 25.12
11 True True Timeout True 3.55 31 True False True Unknown | 2.34
12 False True Unknown | Unknown | 2.53 32 True Unknown False Unknown | 1.57
13 False True Unknown True 24.45 33 False True Unknown | Unknown | 4.27
14 True True Unknown True 3.33 34 False True Unknown False 29.12
15 True True Unknown True 5.14 35 False False Unknown False 28.56
16 True True Unknown True 29.86 36 False True False True 6.23
17 False True Unknown | Unknown | 2.52 37 True True Unknown True 29.67
18 False True Unknown True 2.49 38 False True Unknown | Unknown | 4.08
19 True True Unknown | Unknown | 29.76 || 39 False True False True 2.88
20 True True Unknown True 29.74 40 True False Unknown True 2.77

5 CONCLUSION, LIMITATIONS AND FUTURE
WORK

In conclusion, this paper addresses the critical challenge of en-
suring the verification of safety and security for PLC programs
by introducing innovative tools and techniques to serve as bench-
marks for cooperative verification. We have devised a tool selec-
tion algorithm that ranks verification tools based on their features
and adapts specification property formulas to suit the behavior
of the PLC program. Our custom verifier validater improves the
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accuracy and reliability of the verification of the PLC program,
helping technicians and engineers navigate this complex domain.
We have developed benchmark verification tools optimized for
CoVeriTeam and validated our results using PLCVerif. Although
the current implementation includes tools within the script, future
work will focus on establishing an online database or ontology
of verification tools for more efficient tool selection. We plan to
refine and expand our benchmarks to cover a wider range of safety
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Table 6: Verification Results for Top Performing Tools

# | GT | Symbiotic CBMC CPA-SEQ | Time (min)
1 T T T T 0.323
2 T T T T 1.12
3 F F F T 0.83
4 T T T T 0.74
5 T T T F 1.29
6 F F unknown F 20.32
7 T T unknown T 29.9
8 T T T unknown 23.1
9 F F F F 28.2
10 F T F F 2.63
11| T T T T 1.39
12| T T F unknown 1.88
13| F T F T 4.62

Table 7: Verification Results and Evaluation for Top Perform-
ing Tools

Verification Tool | FN | FP | TP | TN | FPR | FNR
Symbiotic 2 10| 8 3 0 0.2
CBMC 0 1 6 4 0.2 0
CPA-SEQ 2 1 5 3 10.25 | 0.29

Table 8: Verification Results and Evaluation

Verification Tool | FN | FP | TP | TN | FPR | FNR
Symbiotic 16 3 19 1 0.136 | 0.45
Pesco 9 6 11 4 0.6 0.45
CBMC 8 4 13 4 0.5 0.38
CpaChecker 16| 2 | 18| 1 0.67 | 0.47
ESBMC-INCR 2 2 4 2 0.5 0.33
CPA-SEQ 8 0 14 2 0 0.36

and security properties and a more comprehensive array of PLC
programs.
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