l‘)

Check for
updates

Parallel Verification for d-Equivalence
of Neural Network Quantization

Pei Huang!, Yuting Yang??, Haoze Wu!, Ieva Daukantas*, Min Wu',
Fuqi Jia'?%, and Clark Barrett!®)

1 Stanford University, Stanford, CA, USA
{huangpei,haozewu,minwu, jiafq24,barrett}@stanford.edu
2 UCAS, Beijing, China
3 Institute of Computing Technology, CAS, Beijing, China
yangyuting@ict.ac.cn
4 IT University of Copenhagen, Copenhagen, Denmark
daukantas@itu.dk
5 Institute of Software, CAS, Beijing, China

Abstract. Quantization replaces floating point arithmetic with integer
arithmetic in deep neural networks, enabling more efficient on-device
inference with less power and memory. However, it also brings in loss
of generalization and even potential errors to the models. In this work,
we propose a parallelization technique for formally verifying the equiva-
lence between quantized models and their original real-valued counter-
parts. In order to guarantee both soundness and completeness, mixed
integer linear programming (MILP) is deployed as the baseline tech-
nique. Nevertheless, the incorporation of two networks as well as the
mixture of integer and real number arithmetic make the problem much
more challenging than verifying a single network, and thus using MILP
alone is inadequate for the non-trivial cases. To tackle this, we design
a distributed verification technique that can leverage hundreds of CPUs
on high-performance computing clusters. We develop a two-tier parallel
framework and propose property- and output-based partition strategies.
Evaluated on perception networks quantized with PyTorch, our approach
outperforms existing methods in successfully verifying many cases that
are otherwise considered infeasible.

Keywords: Quantized neural networks - Equivalence verification -
Parallel computing

1 Introduction

In the past few years, deep neural networks (DNNs) [11] have demonstrated strik-
ing and steadily improving capabilities across a wide range of tasks [5,6,32,39].
Ongoing improvements to neural networks are typically achieved through a sig-
nificant expansion in their scale. This escalation, however, frequently leads to
substantial increases in computational cost, memory bandwidth requirements,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Avni et al. (Eds.): SAIV 2024, LNCS 14846, pp. 78-99, 2024.
https://doi.org/10.1007/978-3-031-65112-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65112-0_4&domain=pdf
https://doi.org/10.1007/978-3-031-65112-0_4

Parallel Verification for d-Equivalence of Neural Network Quantization 79

and energy consumption, which make DNNs difficult to deploy on embedded sys-
tems with limited hardware resources. A promising approach for mitigating this
difficulty is neural network quantization. This technique replaces floating point
arithmetic with integer arithmetic in deep models, enabling more efficient infer-
ence on devices with reduced power and memory requirements [13,21]. Quanti-
zation has been employed, for example, in Tesla’s FSD-chip [1] and in various
mobile devices [2,25]).

As quantization trades off precision for efficiency, the accuracy or general-
izability of a quantized neural network (QNN) is typically reduced compared
to that of the original real-valued network. Although the impact of neural net-
work quantization can be measured through empirical indicators such as changes
in accuracy on a test set, this is still insufficient, especially considering that
neural networks are increasingly being used in safety-critical scenarios such as
autonomous driving [38] and medical diagnostics [4]. With the increasing popu-
larization and use of QNNs, it is urgent to develop efficient and effective analysis
methods that also provide rigorous guarantees. Formal verification is an estab-
lished technique which applies mathematical reasoning to provide such guaran-
tees. In this paper, we explore the use of formal methods to quantitatively ana-
lyze the changes in a neural network’s output for the same input space before
and after quantization.

We introduce a generalized concept of equivalence to characterize the differ-
ences between an original network and a quantized network. Specifically, we say
that a real-valued DNN A (z) and its quantized version Ng(x) are d-equivalent
if, for all possible inputs z in an input space B of interest, |V (z) — Ng(z)|| < ¢
holds. We refer to it as “equivalence” because the goal is for the two networks
to produce outputs that are as similar as possible for every possible input. Of
course, it is unrealistic to expect a QNN to maintain absolute equivalence with
its original real-valued network. Therefore, a tolerance ¢ is introduced.

Our approach for determining §-equivalence is inspired by a stream of related
work on error bound verification. Paulsen et al. [29,30] propose differential ver-
ification methods, which aim to establish formal guarantees on the difference
between a network represented by weights in high-precision floating-point for-
mat and another network represented by weights in low-precision fixed-point for-
mat. The low-precision network can be thought of as a simplified and partially
quantized neural network. They apply a sound but incomplete interval propa-
gation to overestimate the difference between two networks. Zhang et al. [41]
extend the differential analysis with a complete mixed integer linear program-
ming (MILP)-based method in order to precisely verify error bounds between
real-valued neural networks and fully quantized networks obtained using a toy
quantization scheme. Their analysis requires formally modeling both networks,
meaning that the scale of the problem is double that of formally analyzing one of
the networks. Even for small networks, differential analysis using this approach
often cannot be completed within a reasonable amount of time. As a way to sim-
plify the problem, Zhang et al. [41] focus on classification networks and only on
the output difference for the predicted class rather than all classes. Besides this

80 P. Huang et al.

simplification, the toy quantization scheme used in their work is simpler than
and different from quantization schemes used in practice. As a result, conclusions
drawn from their approach may not be valid for quantized networks obtained
with standard quantization packages.

In this work, we build on and extend these approaches in several ways. We fol-
low Zhang et al. by using two neural networks and MILP encodings and solvers,
which are exact in the sense that they guarantee both soundness and complete-
ness. However, in contrast to the toy quantization schemes used in Zhang et
al., we focus on realistic quantization schemes used in popular deep learning
frameworks such as PyTorch and TensorFlow. Furthermore, to overcome the
scalability challenges posed by using exact techniques and two networks, we
propose an efficient parallel verification method. Our main framework is based
on a divide-and-conquer strategy, which breaks down the original problem into
many sub-problems and uses multiple CPUs to solve them simultaneously. This
approach has been shown to be effective for related problems such as Boolean
satisfiability [15,16].

We observe two main challenges when using divide-and-conquer. First, it is
difficult to divide the problem into sub-problems of similar difficulty. Some sub-
problems can be extremely simple, to the extent that the overhead of divide-
and-conquer is larger than the runtime of the sub-problem. Conversely, other
sub-problems are almost as challenging as the original problem, requiring nearly
the same amount of time to solve. Second, even though sub-problems are always
theoretically simpler than the original problem, in practice, sub-problems can
take longer to solve due to the high variance in runtime performance under
small perturbations, a feature that is common among solvers that tackle NP
hard (or harder) problems. To address the first issue, we propose a two-stage
output-based partition method. The first stage eliminates logical disjunction
from the equivalence property, and the second stage further decomposes the
problem based on estimated interval ranges for the output nodes provided by
standard abstract interpretation-based analyses. To address the second issue,
we adopt a two-level parallel strategy. We utilize multiple independent processes
to solve all sub-problems concurrently. Within each process, we employ multi-
threaded parallelism to run a portfolio of solving algorithms, each with a differ-
ent configuration, all solving the same sub-problem simultaneously. Our parallel
algorithm is designed for high performance computing (HPC) clusters which can
utilize hundreds of CPUs. To minimize the additional overhead caused by pro-
cess communication, inter-node communication uses the standard message pass-
ing interface (MPI), while multi-core parallelization within processes is achieved
through multiprocessing and shared memory mechanisms.

We call our system Efficient QNN Equivalence Verification, or EQEV. Our
experimental results show that EQEV can, for the first time, verify the equiva-
lence of QNNs of moderate size in non-trivial scenarios. Our contributions can
be summarized as follows:

Parallel Verification for d-Equivalence of Neural Network Quantization 81

1. We provide the first MILP-based exact equivalence verification approach for
QNNs obtained with quantization schemes used in current popular deep learn-
ing frameworks;

2. We propose an output-based two-stage partitioning method which helps bal-
ance the difficulty of sub-problems and greatly improves the efficiency of
parallel verification;

3. We implement our approach in a tool called EQEV that can utilize hundreds
of CPUs in an HPC cluster for equivalence verification, achieved through
a combination of MPI, multi-processing, and multi-threading. EQEV is the
first system to verify the equivalence of moderate-sized networks in reasonable
time Fig. 1.

0.797

=]
b

uonezI[eULION

Fig. 1. d-equivalence of quantized networks and real-valued networks.

2 Related Work

Formal verification of DNNs is a technique which determines whether a network
satisfies a formal property by either proving the property or providing a counter-
example to the property. For instance, robustness is often formulated as a for-
mal property expressing the non-existence of adversarial examples in a bounded
neighborhood of some input based on a certain distance metric. Researchers
have developed various techniques for verifying DNNs such as constraint solving
(based on satisfiability modulo theories (SMT) [8,20,23,37] or MILP [3,7,9]) and
abstract interpretation [10,27,31,33,35,36,40]. The former provides sound and
complete guarantees but with limited scalability as the problem is NP-hard [23];
the latter utilizes over-approximation to improve scalability but at the cost of
completeness. However, work on formal approaches for QNN verification is lim-
ited, potentially due to the difficulty of modeling quantization schemes or the
computational cost [22].

Not until recently did researchers start to focus on the verification of QNNs.
For example, Henzinger et al. [14], Mistry et al. [28], and Zhang et al. [42] pro-
pose using SMT, MILP, and integer linear programming (ILP), respectively, to
model the QNN verification problem. Although this work pioneers new direc-
tions for QNN verification, it is based on toy quantization schemes rather than
realistic quantization algorithms used in popular deep learning frameworks such
as PyTorch and TensorFlow. Very recently, in 2023, Huang et al. [19] provide
a hybrid verification method that is the first to support realistic quantization
schemes in PyTorch.

82 P. Huang et al.

Nevertheless, the above-mentioned DNN and QNN verification techniques
only focus on a single individual neural network; they are inadequate when
performing formal analyses involving two networks. Paulsen et al. [29,30] propose
a differential verification method leveraging abstract interpretation to verify the
discrepancy between two neural networks with identical topologies but slightly
different weights. Zhang et al. [41] build on this to precisely verify the error bound
between real-valued and quantized models using a complete MILP analysis, but
still only for toy quantization schemes and only for a predicted class (as opposed
to all classes) in a classification task.

3 Preliminaries

3.1 Quantized Neural Networks (QNNs)

Quantization, in our context, is the process of mapping a variable from a real
number 7 to an integer g using parameters s and z, as follows.

Quantization: ¢ = Round(f + z), De-quantization: r =s(q—z). (1)
s

We call Eq. (1) the quantization scheme, and constants s and z the quantization
parameters, for which s (“scale”) is an arbitrary real number, and z (“zero
point”) is the integer corresponding to ¢ when r = 0. In practice, the quantized
value ¢ is represented by a fixed number of bits, e.g., ¢ is an 8-bit integer in 8-bit
quantization. If ¢ does not fit in the number of bits provided, then the closest
representable value is used.

Matrix multiplication is one of the most common operations in DNN forward
inference. Assume there are three matrices of real numbers, and the product of
the first two matrices is the third matrix. We use r7), with o € {1,2,3} and
0 <4,j < N —1, to denote the entries of these three matrices, assuming they
are all square and of size N. In order to be able to handle neurons with distinct
quantization parameters, we use (84, 2o) to denote the quantization parameters

for the three matrices and qgj) to represent the quantized entries. Using the
quantization scheme in Eq. (1), we have rid) = sa(qg’” — 24). Thus, by the
definition of matrix multiplication, we have

N-1
S3(Q§Z7]) —23) = Z Sl(qyk) - Z1)$2(Qék7]) — 22), (2)
k=0
which can be rewritten as
619y Vo1
i 152 ik k,j
0 =z 23 @ - a)a" - z). 3)
k=0

For a dense layer of a DNN, suppose we use y := ReLU(Wx + b) to denote
the nonlinear transformation, where W is the weight matrix, b is the bias vector,

Parallel Verification for d-Equivalence of Neural Network Quantization 83

x is the input vector, and y is the output vector. Then, its quantized version can
be written as y, 1= g(xq, Wy, bg), where Wy, by, x4, and y, are the quantized
entries of W, b, x, and y, respectively, and ¢ is explained below. For the input
and output vectors, we use zx, zy as their zero points and sy, sy as their scales.
And we use zJ, to denote the zero point and s/, to denote the scale for the weight
matrix corresponding to the j-th output neuron. Following [19], the computation
Vq = 9(xq, Wy, by) can be written as the series of calculations shown in Eq. (4).

. J
() 3 =2+ =2 ;< WD — 1) (x} — 2) + b]
(ii) §1 == Round(j) (4)
(iii) 3 := Clip(if],1b, ub)

(iv) v} := max(93, z,)

Here, the Clip function returns a value for j&% in the range [lb, ub] that is closest
to g]{ . The values for b and ub are chosen based on the smallest and largest
values allowed by a the quantization scheme, e.g., [Ib,ub] = [0,255] for an 8-
bit unsigned type. Huang et al. [19] further propose an ILP encoding for such
quantization schemes. We review the scheme and flag variables that are turned
into ILP variables by adding a dot above them, e.g. :'cfl for the input. Step (i)
becomes ;

i = 2+ S) —)@ = 20) 41)
We do not introduce an ILP variable for ¢ as we will be able to eliminate it
below. The Round function in Step (ii) can be encoded by the following two

constraints.
yl - yO < 0.5 6
{ 9 —] <05 —e, (6)

for some small value of €. Eliminating the temporary variable g)g by combining
(5) and (6), we have

gj{—zy Z(:(—zj)(:isi—zm)—bj<05)

zy—i—‘swé’Z() —2) (& — zz) + 0] — 9] <05 —e.
The Clip function is encoded as
Encode_mazx(ij,,., i, 1b) U Encode_min (i}, 47, .0, ub), (8)

where §J, . denotes a fresh auxiliary variable. Encode_max() and Encode_min,()
can both be realized in a linear form with the big-M method [3,19]. Finally,
Step (iv) takes the maximum of g3 and the zero point z,, which represents
the ReLU function in the quantized network. This can be directly encoded as
Encode max(yq, Uy 2y)-

84 P. Huang et al.

We note that the quantization scheme in PyTorch usually represents inputs
and outputs of each layer as unsigned integers and weights as signed integers.
Also, quantization parameters (i.e., zero points and scales) are determined at the
time of quantization; therefore they are constants at inference time. Additional
encodings for typical fusion layers such as the fusion of affine transformations
and batch normalizations, as well as the fusion of affine transformations and
ReLUs, are detailed in [19], and we will not review them here. For real-valued
networks, the MILP encoding for each layer of the computation process y :=
ReLU(Wx + b) is well-established (see, e.g., [3,7,9]).

4 4-Equivalence

As mentioned above, quantized neural networks can exhibit behavior that is dif-
ferent from the original network. These differences are primarily due to the pre-
cision loss introduced by parameter, input, and output quantization. During the
quantization process, floating-point numbers are typically converted into fixed-
bit representations with lower precision (e.g., 8-bit integers). This means that
the parameter values from the original network may be truncated or rounded,
introducing quantization errors. These errors can accumulate during the forward
propagation of the network, resulting in discrepancies between the output val-
ues of the quantized and the original networks. Such discrepancies can negatively
impact a network’s performance, especially for tasks that require high-precision
outputs. Thus, a critical goal in neural network quantization is to minimize the
impact of the quantization process on accuracy and generalization. A natural
way to approach this is to aim to minimize the differences in the output values
between the QNN and the original network. By applying formal techniques, we
can provide rigorous guarantees about the impact of quantization, which can
then be used to inform the quantization process and reduce errors. This paper
reports on our efforts to do precisely this.

We denote a real-valued DNN with d layers as A/ : R® — R™, which can be
seen as a composition of a set of d functions such that N := %o [% 1o ... ol
A quantized neural network Ng : R" — R™ with d layers can be seen as a
composition of d + 2 functions such that Ng := P ol?0l9"1o... 0l 09 where
I9 : R® — Z" is a quantization layer for the inputs and [P : Z™ — R™ is a
de-quantization layer producing the outputs. Intermediate layers [0l 1o...ol!
are maps from Z"™ to Z™.

Due to the use of real arithmetic, it is difficult (if not impossible) to achieve
exact numerical equivalence between two different neural networks. Thus, for
our purposes, if the output difference between the quantized and the original
networks is less than a given constant §, we say they are equivalent. Intuitively,
smaller values of ¢ imply stronger notions of equivalence, also indicating that
the quantized network better preserves the original functionality.

We will use the following definition of local equivalence between a real-valued
neural network and its quantized counterpart, which focuses on the differences
in output values for input regions around the data distribution. Our definition

Parallel Verification for d-Equivalence of Neural Network Quantization 85

is similar to those found in [29,41], except that we focus on differences over an
entire output vector rather than differences only over a specific target output.

Definition 1 (Local é-Equivalence). Given a DNN N and its quantized neu-
ral network Ng, they are considered to be locally §-equivalent at point x, with
respect to a radius r if the following formula holds:

Vz. (x € Boo (x4, 7) — [N (x) — No(z)]|, < 9), (9)

where Bog(z4,7) = {x ||| — 24|, < r} denotes the input neighborhood around
Ty, and § is some non-negative constant.

Then we extend the concept of local d-equivalence to global J-equivalence,
which captures the differences caused by quantization across the entire possible
input space (even though this space may contain meaningless input examples).
It can be used to measure the overall difference in performance between two
models. As before, a smaller § implies that the quantized model preserves better
the performance of the original real-valued model.

Definition 2 (Global é-Equivalence). In Definition 1, if the perturbation
radius 1 is large enough so that the input neighborhood Beo(x.,r) covers all
possible inputs, the DNN N and QNN Ng are said to be globally ¢-equivalent.

For example, in the case of image inputs where each pixel value is in the range of
[0, 255], if Definition 1 holds when r is set to 255, then we say that the original
and the quantized models have global §-equivalence.

5 MILP Encoding

We next discuss how to encode Eq. (9) as a MILP problem. Note that, if we
only need to check a property on a single quantized network, we can model
the input as the value directly after preprocessing and thus skip the encoding
of the quantization layer. However, when it comes to verifying d-equivalence,
we cannot ignore the quantization layer. This is because, for the common input
shared by the original and the quantized models, the quantized model first sends
the input through the quantization layer while the original model does not. We
use acZY to denote the (real-type) variable representing the j-th neuron of the
real-valued input, and ig to denote the (integer-type) variable representing the
value quantization. For the quantization layer [¢, we have:

{x%/sx + 2 —j:g <0.5

i) — (2] /sy + 2,) < 0.5 —e.

(10)

Similarly, for the output layers of the two networks, we use real-type variables
O N7 to denote the j-th neuron of the outputs of [(QNN) and ¢¢ (DNN),

respectively. The integer-type variable yg represents the j-th neuron of the out-
put of quantized layer (4. We have

NG = sy(5 — =), (11)

86 P. Huang et al.

where z, and s, are the zero point and the scale of the de-quantization layer.
To examine whether the equivalence property holds, we negate Formula (9)
and check for satisfiability. We rewrite the constraint |N(z) — Ng(z)|| < 6 as

Encode_Max (s, N}y = N, ING = N[, L ING =N A (gs > 6), (12)

where gs represents the maximum output difference. We have |x| = maz(—z,),
so Formula (12) can be transformed into a linear form. Formulae (10), (11),
and (12) jointly model the DNN and the QNN, while their respective layer-by-
layer computation processes can be represented using the encoding described in
Sect. 3.

6 Symbolic Interval Analysis

In this section, we introduce a process for conducting interval analysis on two net-
works simultaneously in order to obtain bounds for each variable. After obtaining
the bounds, it is sometimes possible to directly conclude that the property holds.
This is the approach taken in [29,30]. However, even if the bounds are not precise
enough to prove the property, we can use them to simplify the MILP problem.
In particular, the bounds may be able to reduce the search space and show that
some neurons are always active or always inactive. Finally, the bounds are also
useful when deciding how to divide the problem in the parallel approach we
describe next. To compute the bounds, we use standard abstract interpretation
techniques which use convex polyhedra to over-estimate the output interval of
each node [34].

In order to apply these standard techniques, we first combine our two net-
works into a single network by adding expressions of the form:

yl =N — N (13)

In other words, we add one more layer with weights consisting solely of 1 and
—1 in order to calculate the symbolic difference between the outputs of the two
networks. We can now regard the combined networks as a single network. As
before we use a symbol with a dot above it to represent a variable in the MILP
model and use existing techniques to compute the lower bound [b(y) and upper
bound ub(y) for each variable . After obtaining the bounds of variable ¢} in
particular (the variable corresponding to yg), sometimes we can directly conclude
that the property holds. When verifying equivalence, bound propagation can
sometimes also allow us to conclude that the property does not hold. The possible
results are summarized as follows.

1. If there exists a j € {1,2,...,m} such that Ib(y]) > &V ub(y}) < —0, then the
d-equivalence property does not hold. _ A

2. If, for all j € {1,2,...,m}, we have Ib(y}) > —6 A ub(y}) < 0, then the
d-equivalence property holds.

3. Otherwise, it is unknown whether the §-equivalence property holds.

Parallel Verification for d-Equivalence of Neural Network Quantization 87

7 Parallelization

As the verification radius (r in Eq. (9)) increases and the value of delta
approaches the maximum value where Eq. (9) still holds, the interval analysis
method will eventually fail. Moreover, the participation of two networks doubles
the size of the verification problem. This means that for many radii and toler-
ances ¢ of interest, existing techniques are unable to obtain any results within
a reasonable time using the computing power of a single machine. Therefore, in
this section, we introduce a distributed parallel method to tackle such cases.

Slave node 1 Slave node 2
'_f‘/\ S Property Partition 1 Interval Partition
(= === s (= === 1
— --- cee = --- E

= NG 1
& & '
5> & unsat |+ So
b ¥ ¢ H
c\&o y ;
i '

N :
: qb\,u Ty ‘»\‘ UNSAT

fs/ \,ﬁ

=P A process
-=-> AThread

== (:':::S

Slave node 3 Slave node N

Fig. 2. The parallel verification framework.

7.1 Process Management

Divide-and-conquer has been shown to be an efficient method for conquering dif-
ficult constraint solving problems and has even been used to solve combinatorial
mathematical puzzles such as the Pythagorean triples problem [15-18]. Wu et
al. [37] showed that divide-and-conquer can significantly improve the efficiency
of verifying real-valued DNNs. For these reasons, we also adopt a divide-and-
conquer paradigm. However, unlike previous work, we adopt two different levels
of parallelism and improve the process management strategy as explained below.

We partition a problem (a formula ¢) into K independent sub-problems, ¢;,
where ¢ < Vic(x) @i, and try to solve each sub-problem within a time budget Tp.
If a solving attempt exceeds the time budget, that problem is further partitioned
and the sub-problems are allocated the same time budget. Our parallel problem-
solving approach can be regarded as a tree as shown in Fig. 2. Assuming some
number N of CPUs, the problem can be partitioned into no more than N sub-
problems initially. We wait for a duration of T before continuing to partition sub-
problems because, as the partition level increases, the number of sub-problems
grows exponentially. After time Tj has elapsed, some (simpler) sub-problems

88 P. Huang et al.

may be finshed, freeing up computing resources. The remaining sub-problems
are further partitioned. Unlike in previous work, we do not halt the process of
solving a problem when further splitting it into sub-problems. We observed that
doing so often results in situations where problems, having already consumed
considerable time and nearing been solved, are halted. Consequently, we end up
expending a substantial amount of time to re-solve the same problem in the form
of many sub-problems.

Utilizing CPUs on a single machine is insufficient for solving hard equivalence
verification problems. Thus, to enable the use of hundreds of CPUs in an HPC
cluster, we utilize the MPI protocol to facilitate communication among comput-
ing nodes. To reduce the additional overhead introduced by process communi-
cation, we mix this multi-node approach with a shared memory multi-process
model for utilizing multiple cores within a single computing node. We adopt
the classical master-slave model to manage processes. In the master process,
we maintain a tree structure to record the status of each sub-problem solving
process. If the master node sends the complete formula to the slave nodes every
time, the communication overhead would be significant. Therefore, we initialize
a basic formula for each node, and then each time the master node distributes
tasks, it only sends an incremental modification of the formula to the slave nodes.

When solving of hard instances, there is a very interesting phenomenon
whereby sub-problems might take more time to solve than the original problem.
This is because, in order to solve problems that are NP-hard, modern solvers
use a large number of heuristic strategies, with the result that solving times
are highly unstable: small changes to a problem can result in highly variant
runtimes (both faster and slower). To alleviate this issue, we implement a sec-
ond level of parallelism within each process that is solving each sub-problem.
Namely, within each process, we use multiple threads to run solving algorithms
with different parameter configurations to simultaneously process the same sub-
problem. Compared to the divide-and-conquer approach, the advantage of a
parallel paradigm using solving algorithms with multiple different parameter
configurations to handle the same problem is that it can simultaneously explore
different search branches of the problem without implicitly increasing the diffi-
culty of the problem. The divide-and-conquer method, while decomposing the
original problem into several sub-problems, shifts the problem from finding a
single solution to finding multiple different solutions which implicitly increases
the difficulty of the problem. Our hybrid parallel approach not only makes full
use of computing resources but also helps ensure more stable performance in
solving sub-problems.

7.2 Partitioning Strategies

We now discuss our partitioning strategy for equivalence verification problems.
When using the divide-and-conquer approach to handle NP-hard problems, it
is common to encounter a situation where, e.g., after dividing a problem into
10 sub-problems, most of them (e.g., 9) are very simple and only take a few
seconds to solve, while one sub-problem is as hard as the original problem. This

Parallel Verification for d-Equivalence of Neural Network Quantization 89

is because sometimes the sub-problems we generate actually correspond to very
trivial situations, or in other words, these situations correspond to search spaces
that can be avoided by the reasoning algorithm after a few reasoning steps. To
generate more balanced sub-problems, Wu et al. [37] propose a ReL U-based
partitioning which creates case splits that fix the phase of ReLUs directly. For
real-valued neural networks, the more ReL U function states that are fixed, the
simpler the sub-problems become. In the extreme case, if all ReLUs states are
fixed, a linear programming problem is obtained that can be efficiently checked.
However, for QNN verification, this is not the case, as even if we fix the states
of all the ReLU functions, the verification problem is still an NP-hard MILP or
ILP problem. Moreover, we found empirically that this decomposition method
is not very effective for the verification of QNNs.

We propose a two-stage output-based partitioning method for QNN verifica-
tion with the goal of producing sub-problems of (hopefully) equal difficulty. The
first stage (property partitioning) is to partition the search space by eliminat-
ing logical disjunctions (V) from the property being checked. The second stage
(interval partitioning) is to decompose by doing case analysis over the range of
the variable corresponding to the output.

Property Partitioning. In our property partition stage, formula (12) can be

be rewritten in the following form:

(WL =N = 8) VN =N = 0) Voo, VNG = N™ > 8) V (N™ — NG > 6)

1 2 2m—1 2m

(14)
The 2m items connected via disjunction in the formula (14) correspond to 2m
sub-problems. Disjunctions can often hinder the efficiency of MILP algorithms;
thus, this decomposition can be very helpful for improving the efficiency of rea-
soning.

Interval Partitioning. In the interval partitioning stage, we further partition
the problem based on the computed interval range of variable N? , which cor-
responds to the output of the j-th component of the quantized neural network.
Note that this interval consists of integers. Suppose we have a sub-problem ¢’
containing N’é, whose current interval is [lb,ub]. We can partition ¢ into K
sub-problems, where the i-th sub-problem (1 <i < K) is:

ub — b ub

_lez’ —1,ub) (15)

¢; =@ Nlb+ | I

J(i—1) SN <min(ib + |
Here we choose to decompose the output variable of the QNN instead of decom-
posing the output variable of the real-valued network for two reasons: (1) The
interval of the QNN output variable consists of integers, and the smallest size
it can be decomposed into is 1, whereas a real number interval can be infinitely
subdivided. (2) After the first stage of decomposition, variables J\/é and N7 only

90 P. Huang et al.

appear together in a single constraint, in the form of (]\fé2 — N7 > §) which is
a binary constraint. As soon as we modify the interval of variable N 7 the rea-

soning algorithm will adjust the value range of variable Ni through a simple
reasoning step. Moreover, dividing the output space of the network into very
small regions indirectly constrains the input space and the states of many acti-
vation functions.

Advantages. In terms of the number of sub-problems generated, the method
based on ReLU function state decomposition produces 2" sub-problems if n
ReL Us are decomposed at a time. In equivalence verification, two networks are
involved, doubling the number of ReL Us. Sometimes, even after repeatedly exe-
cuting decomposition to fix the states of dozens of neurons, the effect on the
entire network may not be very significant. In our method, the problem decom-
position in the first stage only produces a number of sub-problems that is twice
the number of neural network output categories. For many neural networks,
the number of output categories is not too large. Thus, we can typically obtain
enough CPUs to process the sub-problems generated in the first stage. After
running these with a time budget of T and filtering out the solved cases, we are
ready to enter the second stage of partitioning. In the second stage, we limit the
number of sub-problems, K, to be less than the number of available CPUs on a
node in order to fully utilize the computational power of a node and minimize
communication among nodes as much as possible. For many moderate verifica-
tion radii, the interval sizes obtained for QNN output variables are often even
smaller than the number of CPUs in a single node.

With regards to balancing problem difficulty, for the ReLU function state
decomposition method, since the activation states of the ReL U function are esti-
mated based on an over-approximation method, there will be some sub-problems
for which activation states do not exist. These situations are likely trivial, but
we still need to spend a lot of time running and filtering them, while other acti-
vation states correspond to situations with the same difficulty as the original
problem. In contrast, we know that each output node of the neural network
corresponds to a function almost the size of the network itself. Thus, in our
method, by decomposing the problem based on the output, although there may
be some non-existent cases in the interval estimated by the over-approximation
method, for the possible output values, the difficulty of each sub-problem is fairly
balanced.

8 Experiments

We implemented a Python-based parallel verification tool called EQEV.!? We
use Gurobi [12] as our backend MILP solver and the abstract interpretation-
based interval analysis is done by Marabou [24]. Our experiment is conducted
on two well-known neural network architectures: fully connected neural networks

! https://github.com/huangdiudiu/EQEV.

https://github.com/huangdiudiu/EQEV

Parallel Verification for d-Equivalence of Neural Network Quantization 91

(FC) and convolutional neural networks (CNN). We use the notation FCN-M
to refer to a network consisting of N dense layers with M hidden units in each
layer. For example, the structure of FC2-100 is 784 x 100x 100 x 10. CNN1
is a network with one convolutional layer of 4 channels, followed by one batch
normalization layer, one max-pooling layer with a kernel size of 2, and a fully
connected layer with 10 units. The convolutional layer has 4 x 4 filters and
2 x 2 strides with a padding of 1. CNN2 is identical to CNN1 except that its
convolutional layer has 2 channels. All neural networks are trained on the MNIST
dataset [26] and quantized with PyTorch using its default static quantization
scheme. Verification experiments are conducted on the test set. The experimental
environment is a high-performance computing (HPC) cluster running slurm for
cluster management. For EQEV | unless specifically stated otherwise, the default
configuration uses 21 compute nodes with 16 CPUs each, for a total of 336 CPUs.
We allocate 1GB of memory for each CPU. The parameters of the CPU are not
fixed because the HPC is heterogeneous, containing several different types of
CPUs. During the interval decomposition stage, we set the value of K to 14.

We verify the local §-equivalence of networks with r = 4,812 and § =
1.7,1.9,2.1,2.3. For the quantized networks we use, choosing these values for
6 makes the problems relatively difficult. For most instances, the verification
results switch from SAT to UNSAT near these values of ¢. In other words, the
values of § are situated near the phase transition points (the maximum difference
between two networks). For the QNNs we use, no instances can be directly solved
by interval analysis. We randomly select 100 examples from the test set, and any
instance that exceeds the timeout is recorded as 1800s (30 min).

It should be emphasized that with 100 test cases for each setting of § and r,
and considering we have 4 different networks and 4 types of solving algorithms,
with each instance requiring 30 min of computation time and over 300 CPUs,
conducting a fully exhaustive set of experiments is challenging. Thus, we selected
a subset of representative scenarios for each comparison.

9 Efficiency

We first compare the parallel methods that come with Gurobi and the paral-
lel method of ReLLU-based partitioning. The basic parallel approach of Gurobi
is to run multiple solvers with different parameter configurations on the same
problem. Since many nodes in our cluster have a maximum of only 20 CPUs, we
set it up to use 20 threads, and we name it “20_Threads”. We name the parallel
approach of ReLLU-based partitioning “relu_split.” Since the original version does
not support QNNs nor our cluster environment, we replicated a similar version
using MPI based on the literature [37]. It utilizes the same number of CPUs as
EQEV.

Table1 demonstrates that EQEV outperforms other parallel methods for
quantization equivalence verification. The table shows total runtimes for each
configuration with the number of timeouts in parentheses. We used a time-
out of 1800s. The results of 20_Threads indicate that without decomposing

92

P. Huang et al.

Table 1. Total execution time(s) of different methods.

0=17

0=19

0=21

0=23

FC1-100 |r =4

20_Threads
Relu_Split
EQEV

177677(97)
180000(100)
130860(36)

158135(86)
162468(85)
128242(61)

91210(46)
92314(46)
52502(25)

39125(18)
35505(16)
17945(6)

20_Threads
Relu_Split
EQEV

179986(99)
179958(97)
127016(27)

178721(99)
178252(99)
165912(82)

176795(98)
180000(100)
157961(79)

170379(93)
180000(100)
148479(73)

20_Threads
Relu_Split
EQEV

180000 (100)
1751472(97)
131845(27)

180000(100)
180000(100)
175960(93)

180000(100)
180000(100)
179334(98)

180000(100)
180000(100)
180000(100)

FC2-100 | r =4

20_Threads
Relu_Split
EQEV

178524(99)
170304(92)
124919(35)

180000(100)
177566(98)
153233(62)

180000(100)
178838(99)
163313(73)

180000(100)
180000(100)
174654(92)

20_Threads
Relu_Split
EQEV

177135(98)
1570525(86)
102884(23)

180000(100)
180000(100)
144899(52)

180000(100)
180000(100)
173289(81)

180000(100)
180000(100)
176651(91)

20_Threads
Relu_Split
EQEV

166140(90)
1571382(87)
98470(23)

178470(99)
178769(99)
145065(52)

178359(99)
178314(99)
173184(88)

180000(100)
180000(100)
178002(97)

the problem, merely using different parameter configurations to explore vari-
ous branches simultaneously is almost completely ineffective for these difficult
instances. Relu_Split also performs poorly here for at least two reasons: first,
it partitions the problem and then restarts after running for a while, so a lot
of time is wasted resolving problems that time out; second, since equivalence
verification involves two networks, the number of ReLU nodes doubles. Dur-
ing its execution, we found that sub-problems of the neurons initially chosen
for decomposition cannot be solved within the time budget. After decomposing
only 9 ReLU nodes, the number of the sub-problems (22 = 512) exceeds the
number of CPUs (336), causing process blocking. Our method decomposes the
problems into fewer partitions with relatively more balanced difficulty. Moreover,
our process management approach is better suited for verifying equivalence. We
do not stop the processes solving the original problem (the problem before inter-
val partitioning); sometimes, this original problem is able to produce a result
shortly after the timeout budget, which means we do not have to spend sub-
stantial time on restarting. Additionally, in our process management strategy,
the MPI4+multi-process design pattern reduces the overhead of process commu-
nication, while the multi-threading parallelism within a process enhances the
efficiency and stability of solving individual sub-problems.

We also include a rough comparison with the verifier of Zhang et al. [41]. We
modify their code to support verifying the equivalence defined in our paper and

Parallel Verification for d-Equivalence of Neural Network Quantization 93

set up 20 parallel threads for its back-end Gurobi solver. The structure of net-
work FC2_100 used for comparison is the same, but the network parameters and
quantization scheme are different. The normalization applied to inputs is also dif-
ferent, depending on how the neural network is trained. Our network inputs are
normalized to the range of [—1, 1] using standard normalization, whereas Zhang
et al.’s network inputs are normalized to [0, 1] by dividing by 255. This means
that the same values of ¢ that are difficult for our verifier may not necessarily
be difficult for their verifier.

Table 2. The comparison between QEBVerif and EQEV on FC2-100.

r=4 r=2_8 r=12
QEBVerif | EQEV | QEBVerif | EQEV | QEBVerif | EQEV
0 = 1.7 | Time(s) |154642 124919 | 158843 102884 | 162509 98470
Unknown | 85 35 86 23 88 23
Abstract |6 0 0 0 0 0
0 =19 Time(s) |143622 153233 | 163460 144899 | 162582 145065
Unknown | 79 62 90 52 89 52
Abstract |13 0 0 0 0 0
0 =2.1| Time(s) |130850 163313 | 166283 173289 | 169864 173184
Unknown | 71 73 91 81 93 88
Abstract |20 0 0 0 0 0
0 = 2.3 | Time(s) |114479 174654 | 169744 176651 | 169492 178002
Unknown | 62 92 94 91 93 97
Abstract | 30 0 0 0 0 0

Table 2 presents the experimental results, from which we can observe that
EQEV is capable of verifying more instances within the time limit. The instances
solved during the interval analysis phase are listed in the row of “Abstract.” As
the § values are not near the phase transition points for the networks used
by QEBVerif, we find that almost all instances solvable by QEBVerif in our
experiments are those that can be directly resolved by interval analysis within
5s, while hardly any of the instances requiring MILP solving can be solved
within the time limit. However, for our verification, the setting of ¢ is such that
no instances can be directly resolved through interval analysis and all results are
provided by the MILP solving phase.

Tables 1 and 2 list some of the more difficult cases. For some relatively simpler
cases, our method can almost verify all instances. For example:

— For FC1-100, when 6 = 1, r = 4,8,12, EQEV can verify all 100 instances
within a total time of 4000s, and the results are all SAT. When delta = 3,
r =4, EQEV can verify all 100 instances within a total time of 2633 s, and
the results are all UNSAT.

94 P. Huang et al.

— For FC2-100, when § = 1, r = 4, EQEV can verify all 100 instances within a
total time of 17955 s, and the results are all SAT. When § = 1, r = 12, EQEV
can verify all 100 instances within a total time of 11715s, and the results are
all SAT.

— For CNN1, when 6 =1, r = 4, 8,12, EQEV can verify all 100 instances within
a total time of 2000 s, and the results are all SAT. When § = 3, r = 4, EQEV
can verify all 100 instances within a total time of 1432s, and the results are
all UNSAT.

10 Verification Results

10.1 Local d-Equivalence

Figure 3 plots the percentage (number) of instances shown to be UNSAT (equiv-
alent) by EQEV at each tolerance. The curve of “UNSAT+Unknown” can be
regarded as the upper bound of the percentage of instances that have equivalence.
As the value of § increases, it is clear that the curve corresponding to “UNSAT”
must first diverge from and then gradually converge with the curve corresponding
to “UNSAT+Unknown”. The point of maximum divergence corresponds to the
most difficult scenario in our equivalence verification. Theoretically, two curves
will intersect at points where the value of § is very small and where the value of
0 is very large.

10.2 Global §-Equivalence

For global §-equivalence, we set r large enough to cover the entire input space
and add cases with 6 = 5,15, 20. Table 3 presents the results of global equivalence
verification. We can observe that for these § values, almost no network is able to
maintain good equivalence throughout the entire input space, not even for high
values of §. This indicates that the step of adjusting scale and zero point with the
training set during the quantization process effectively preserves the equivalence
of the quantized neural network and the original real-valued neural network in
the data distribution space only. The regions that are unsafe for 6 = 15,20 may
exhibit significant differences between the QNN and its original real-valued NN.

Table 3. Global §-Equivalence Results.

FC1-100 FC2-100 CNN1 CNN2
Result | Time | Result | Time | Result | Time | Result | Time
6 =1.7|SAT |90 SAT 1540 |SAT |222 |SAT |409
6 =1.9|SAT 117 | Unkn |1800 |SAT 219 |SAT 426
0=21|SAT [131 |Unkn |1800 |SAT |578 |SAT |360
6 =2.3|SAT 159 | Unkn |1800 |SAT 254 |Unkn | 1800
0 =>5.0|SAT [146 |Unkn |1800 |SAT |199 |SAT |493
6 =15 |SAT |[117 |Unkn |1800 |SAT |162 |SAT |796
6 =20 |SAT 165 | Unkn |1800 |SAT 127 | SAT |508

Parallel Verification for d-Equivalence of Neural Network Quantization 95

80 80

60 60
- UNSAT

-+- UNSAT+Unknown

- UNSAT
~-+-- UNSAT+Unknown

= UNSAT
~-e- UNSAT+Unknown

Number
Number
Number
001-104

0] / 40 0
20 - 20 e 20
. of - e o
17 19 21 23 17 19 21 23 6
6 6
1 r=4 100 r=8 100 r=12

80 80 80

60 60 60

-+ UNSAT
-+ UNSAT+Unknown

-+ UNSAT
-+ UNSAT+Unknown

- UNSAT
-+ UNSAT+Unknown

Number
Number
Number
001-204

40 40 40

20 20 20 *

0 0 0
1.7 1.9 2.1 2.3 1.7 1.9 2.1 2.3 b
5 5
r=4 r=8 r=12
100] 100 T 100 ;
80 80 / 80

60 V4 60 60
e UNSAT

- UNSAT+Unknown

-+ UNSAT
-+ UNSAT+Unknown

-+ UNSAT
~-=- UNSAT+Unknown

Number

Number

Number
INNO

40 40 40

20 20 20

2.3 1.7

Fig. 3. Verification results for EQEV.

11 Conclusion

In this work, we propose a parallel method for verifying the equivalence between
QNNs and their corresponding original real-valued NNs. To address the scala-
bility issues arising from the involvement of two networks, our parallel approach
employs a two-level hybrid parallel strategy and optimizes the process manage-
ment method. Additionally, we propose two partition methods based on prop-
erties and outputs. Experimental results show that our equivalence verification
tool is more efficient and can tackle more difficult instances than previously
existing approaches. Based on the analysis results from our tools, we found that
the quantization schemes adopted in mainstream deep learning frameworks effec-
tively maintain the equivalence within the data distribution space, but this is
achieved at the cost of sacrificing equivalence outside of the data distribution. In
future work, it would be interesting to formally analyze the equivalence between
the original networks and the quantized neural networks in the context of appli-
cations, i.e. to investigate whether the results produced by the two networks are
equivalent for specific application scenarios.

96

P. Huang et al.

Acknowledgments. This work was funded in part by a Ford Alliance Project
(199909), NSF (grant number 2211505), and the Stanford Center for AI Safety.

References

1.
2.

10.

11.

12.
13.

FSD chip-tesla (2022). https://en.wikichip.org/wiki/tesla_(car_company) /fsd_chip
Bunda, S., Spreeuwers, L.J., Zeinstra, C.G.: Sub-byte quantization of mobile face
recognition convolutional neural networks. In: Bromme, A., et al. (eds.) Proceed-
ings of the 21st International Conference of the Biometrics Special Interest Group,
BIOSIG 2022, Darmstadt, Germany, 14-16 September 2022. LNI, vol. P-329, pp.
229-236. IEEE / Gesellschaft fiir Informatik e.V. (2022)

Cheng, C.-H., Nithrenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 251-268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2_18

. Ciresan, D.C., Giusti, A., Gambardella, .M., Schmidhuber, J.: Deep neural net-

works segment neuronal membranes in electron microscopy images. In: Advances
in Neural Information Processing Systems 25: 26th Annual Conference on Neural
Information Processing Systems 2012. Proceedings of a meeting held 3—6 December
2012, Lake Tahoe, Nevada, United States, pp. 2852-2860 (2012)

Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, 2-7 June 2019, vol. 1. pp. 4171-4186. Association for Computational Lin-
guistics (2019)

Dosovitskiy, A., et al.: An image is worth 16 x 16 words: transformers for image
recognition at scale. In: 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, 3-7 May 2021. OpenReview.net (2021)
Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: Dutle, A., Munoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 121-138. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77935-5_9

Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269-286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_19
Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints Int. J. 23(3), 296-309 (2018)

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: 2018 IEEE Symposium on Security and Privacy, SP 2018, Pro-
ceedings, 21-23 May 2018, San Francisco, California, USA, pp. 3-18. IEEE Com-
puter Society (2018)

Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. MIT Press, Adaptive
computation and machine learning (2016)

Gurobi: A most powerful mathematical optimization solver (2018)

Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
work with pruning, trained quantization and Huffman coding. In: 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2—4
May 2016, Conference Track Proceedings (2016)

https://en.wikichip.org/wiki/tesla_(car_company)/fsd_chip
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-68167-2_19

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Parallel Verification for d-Equivalence of Neural Network Quantization 97

Henzinger, T.A., Lechner, M., Zikeli¢, D.: Scalable verification of quantized neural
networks. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAT 2021,
pp. 3787-3795. AAAIT Press (2021)

Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and Conquer: guiding
CDCL SAT solvers by lookaheads. In: Eder, K., Lourengo, J., Shehory, O. (eds.)
HVC 2011. LNCS, vol. 7261, pp. 50-65. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-34188-5_8

Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean
Pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D.
(eds.) SAT 2016. LNCS, vol. 9710, pp. 228-245. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40970-2_15

Huang, P., Liu, M., Ge, C., Ma, F., Zhang, J.: Investigating the existence of orthog-
onal golf designs via satisfiability testing. In: Davenport, J.H., Wang, D., Kauers,
M., Bradford, R.J. (eds.) Proceedings of the 2019 on International Symposium on
Symbolic and Algebraic Computation, ISSAC 2019, Beijing, China, July 15-18,
2019, pp. 203-210. ACM (2019)

Huang, P., Ma, F., Ge, C., Zhang, J., Zhang, H.: Investigating the existence of
large sets of idempotent quasigroups via satisfiability testing. In: Galmiche, D.,
Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 354—
369. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_24
Huang, P., et al.: Towards efficient verification of quantized neural networks. arXiv
preprint arXiv:2312.12679 (2023)

Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kuncak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3-29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1
Jacob, B., et al.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: 2018 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18-22 June 2018, pp.
2704-2713. Computer Vision Foundation/IEEE Computer Society (2018)

Jia, K., Rinard, M.C.: Efficient exact verification of binarized neural networks.
In: Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, 6-12 December 2020,
virtual (2020)

Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kuncak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97-117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9_5

Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443-452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26
Kulkarni, U., M, M.S., Gurlahosur, S.V., Bhogar, G.: Quantization friendly
MobileNet (QF-MobileNet) architecture for vision based applications on embedded
platforms. Neural Networks 136, 28-39 (2021)

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278-2324 (1998). https://doi.org/10.
1109/5.726791

Mirman, M., Gehr, T., Vechev, M.T.: Differentiable abstract interpretation for
provably robust neural networks. In: Proceedings of the 35th International Confer-
ence on Machine Learning, ICML 2018, Stockholmsmassan, Stockholm, Sweden,
10-15 July 2018. Proceedings of Machine Learning Research, vol. 80, pp. 3575—
3583. PMLR (2018)

https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-94205-6_24
http://arxiv.org/abs/2312.12679
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791

98

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

P. Huang et al.

Mistry, S., Saha, I., Biswas, S.: An MILP encoding for efficient verification of
quantized deep neural networks. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 41(11), 44454456 (2022)

Paulsen, B., Wang, J., Wang, C.: ReluDiff: differential verification of deep neural
networks. In: Rothermel, G., Bae, D. (eds.) ICSE ’20: 42nd International Con-
ference on Software Engineering, Seoul, South Korea, 27 June-19 July, 2020, pp.
714-726. ACM (2020)

Paulsen, B., Wang, J., Wang, J., Wang, C.: NEURODIFF: scalable differential veri-
fication of neural networks using fine-grained approximation. In: 35th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2020, Mel-
bourne, Australia, 21-25 September 2020, pp. 784-796. IEEE (2020)
Raghunathan, A., Steinhardt, J., Liang, P.: Semidefinite relaxations for certifying
robustness to adversarial examples. In: Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pp. 10900-10910 (2018)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, 7-9 May 2015, Conference Track Proceedings
2015

éingh? G., Gehr, T., Piischel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3(POPL), 41:1-41:30 (2019)

Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
3-8 December 2018, Montréal, Canada, pp. 6369-6379 (2018)

Weng, T., et al.: Towards fast computation of certified robustness for ReLU net-
works. In: Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmaéssan, Stockholm, Sweden, 10-15 July 2018. Proceedings
of Machine Learning Research, vol. 80, pp. 5273-5282. PMLR (2018)

Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the con-
vex outer adversarial polytope. In: Proceedings of the 35th International Confer-
ence on Machine Learning, ICML 2018, Stockholmsméssan, Stockholm, Sweden,
10-15 July 2018. Proceedings of Machine Learning Research, vol. 80, pp. 5283—
5292. PMLR (2018)

Wu, H., et al.: Parallelization techniques for verifying neural networks. In: 2020
Formal Methods in Computer Aided Design, FMCAD 2020, Haifa, Israel, 21-24
September 2020, pp. 128-137. IEEE (2020)

Xu, H., Gao, Y., Yu, F., Darrell, T.: End-to-end learning of driving models from
large-scale video datasets. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21-26 July 2017, pp. 3530—
3538. IEEE Computer Society (2017)

Yang, Y., Lei, W., Huang, P., Cao, J., Li, J., Chua, T.: A dual prompt learning
framework for few-shot dialogue state tracking. In: Ding, Y., Tang, J., Sequeda,
J.F., Aroyo, L., Castillo, C., Houben, G. (eds.) Proceedings of the ACM Web
Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023-4 May 2023, pp.
1468-1477. ACM (2023)

Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: Efficient neural network
robustness certification with general activation functions. In: Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada,
pp- 4944-4953 (2018)

41.

42.

Parallel Verification for d-Equivalence of Neural Network Quantization 99

Zhang, Y., Song, F., Sun, J.: QEBVerif: Quantization error bound verification of
neural networks. In: Enea, C., Lal, A. (eds.) Computer Aided Verification - 35th
International Conference, CAV 2023, Paris, France, 1722 July 2023, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 13965, pp. 413-437. Springer
(2023)

Zhang, Y., et al.: QVIP: an ILP-based formal verification approach for quantized
neural networks. In: 37th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2022, Rochester, MI, USA, 10-14 October 2022, pp.
82:1-82:13. ACM (2022)

	Parallel Verification for -Equivalence of Neural Network Quantization
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Quantized Neural Networks (QNNs)

	4 -Equivalence
	5 MILP Encoding
	6 Symbolic Interval Analysis
	7 Parallelization
	7.1 Process Management
	7.2 Partitioning Strategies

	8 Experiments
	9 Efficiency
	10 Verification Results
	10.1 Local -Equivalence
	10.2 Global -Equivalence

	11 Conclusion
	References

