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Abstract—Personalization in driving behavior research is cru- 
cial for developing intelligent vehicles that can safely coex- 
ist with human-driven vehicles in mixed-traffic environments. 
By accounting for the diversity of human driving behaviors, 
personalized modeling can improve predictive capabilities of 
intelligent vehicles and foster a more balanced traffic ecosystem. 
This paper presents a systematic review on personalization in 
driving behavior, evaluating their potential to enhance road 
safety, transportation efficiency, and human-centric mobility. It 
proposes a taxonomy to categorize personalized driving behaviors 
and surveys relevant datasets, modeling methodologies, and 
techniques for validating personalized driver models. Focusing 
on personalized driving behavior, the study emphasizes the need 
for intelligent vehicles to adapt to the complex and heterogeneous 
behaviors exhibited by human drivers to enhance predictability, 
responsiveness, and ultimately create a safe and efficient traffic 
environment. Lastly, key challenges are identified, along with 
promising future research directions to advance personalized 
driving behavior research. 

Keywords: Personalization, driving behavior modeling, data- 

driven techniques, human-in-the-loop simulation, field exper- 
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I. INTRODUCTION 

A. Motivation 

The study of driving behavior is a cornerstone in the pursuit 

of human-centered mobility [1], a concept that prioritizes the 

needs and experiences of people in the design and implementa- 

tion of transportation systems. While traditional driving behav- 

ior study has focused on collective trends, the true complexity 

of driving behavior lies in its diversity among individuals, 

each shaped by unique preferences, skills, and purposes. This 

diversity is not just a challenge to the understanding of 

collective behavior but a vital area of study, necessitating a 

deeper exploration into the unique traits characterizing each 

person’s driving behavior. In the context of emerging intelli- 

gent vehicles (IVs) coexisting with human-driven vehicles in 

mixed-traffic environments, the concept of personalization in 

driving behavior becomes even more crucial. In this study, 

personalization refers to the customization of driving systems 

to recognize and adapt to the unique driving patterns, habits, 
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and preferences of individual drivers. Such understanding is 

essential for the advancement of IVs and for ensuring their 

integration into our traffic ecosystems in a manner that is 

seamless and harmonious. 

In this light, personalization in driving behavior emerges as 

a multifaceted concept that encompasses the distinctive driving 

patterns (observable behaviors and sequences of actions), 

habits (regular practices or tendencies, often unconscious), 

and preferences (personal choices based on likes or dislikes) 

exhibited by individual drivers throughout the driving process. 

This concept covers the responses and adaptive strategies they 

employ in reaction to varying external stimuli, highlighting 

a driver’s personalized interaction with static road elements 

and other dynamic road users. These specific reactions and 

interactions are deeply influenced by a constellation of factors 

including, but not limited to, individual personality traits, 

driving experiences, and specific situational conditions like 

weather, traffic, and road types, all of which collectively shape 

their unique driving behavior. 

In recent years, research has revealed the significant im- 

plications of personalizing driving behavior across various 

sectors within transportation and vehicle technology. Studying 

these behaviors offers extensive benefits, including enhanc- 

ing user experiences in human-driven vehicles, advancing 

technologies in autonomous vehicles, and shaping informed 

transportation policies. For human-driven vehicles, knowing 

the driver’s preference enhances the user experience by pro- 

viding personalized steering control setting [2] and vehicle 

personalized cabin climate conditioning [3], [4]. For IVs, i.e., 

partially or fully automated vehicles, understanding other road 

users’ driving behavior allows IV to predict its surrounding 

environment [5], [6], and react appropriately to unexpected 

events or changes. This is where personalization plays a 

crucial role. By tailoring predictions to individual driving 

behaviors, IVs can achieve more precise assessments of their 

environment. Such enhanced accuracy is beneficial for various 

vehicular communication applications [7], which are crucial 

for the safe and efficient operation of these vehicles. No- 

tably, in applications that require prediction, like cooperative 

maneuvering and intent sharing, the improved understanding 

gained from personalization is invaluable. In cooperative ma- 

neuvering, including negotiation scenarios, IVs can anticipate 

and coordinate their movements more effectively with other 

road users [8]. Similarly, intent sharing applications [9] benefit 

as IVs can reliably communicate their future actions, such 

as turning or braking, to surrounding vehicles. This level of 

predictive capability, underpinned by personalized behavior 
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models, is crucial for fostering safer and more harmonious 

interactions between automated and human-driven vehicles 

in mixed traffic environments. As a result, personalized au- 

tonomous systems [10], [11] will become more trustworthy 

and reliable to be accepted and adopted by the public. Besides 

vehicle technologies, the study of personalized driving patterns 

can significantly influence the development of informed, eq- 

uitable rules and regulations in sectors. For example, driving 

pattern learning for driving risk scoring [12], [13] can be used 

by insurance companies to tailor pricing, catalyzing a new era 

of personalized and responsible road usage. 

Personalization in driving behavior lies at the intersection 

of two fields: driving behavior modeling and personalization. 

The field of driving behavior modeling has witnessed a surge 

in scholarly investigation, with several comprehensive surveys 

elucidating various approaches that have been undertaken in 

this domain [14]–[16]. Meanwhile, reviews on personalized 

Advanced Driver-Assistance Systems (ADAS) [17], [18] have 

summarized the approaches to implement personalization on 

vehicles. However, despite valuable contributions, contempo- 

rary surveys exhibits notable shortcomings: 

• Overgeneralization in driving behavior modeling. A criti- 

cal limitation of solely studying driving behavior without 

personalization is the overreliance on generalized data, 

which consequently leads to the overlooking of individual 

driver variability. Additionally, these studies often use 

static modeling methods that fail to capture the dynamic 

and evolving nature of individual driving behaviors, lim- 

iting their real-world applicability and adaptability. 

• Narrow scope in ADAS personalization: Surveys for 

personalized ADAS emphasizes personalization primarily 

focuses on vehicle-level adaptations, such as human- 

machine interface customization and control settings. 

This narrow focus often misses the broader aspect of 

personalization, leading to an incomplete understanding 

and integration of personalized driving behavior into 

system design. 

• Lack of comprehensive modeling framework: Across both 

fields, there is a notable absence of a comprehensive and 

structured process for developing models that encapsulate 

personalized driving behavior. This gap hinders the effec- 

tive integration of individual driver characteristics into 

predictive models and practical applications. 

B. Contributions 

Compared to existing surveys, our key contributions in- 

clude: 

• We performed a comprehensive review of current studies 

on personalization in driving behavior. 

• We proposed a comprehensive taxonomy, mapping mod- 

eling strategies across various time scales, behavioral 

response stages, and granularity for a systematic under- 

standing of personalized driving behavior. 

• We elaborated the process of personalizing driving be- 

havior, including data collection, behavior modeling, and 

model validation. 

• We delivered an insightful discussion to identify promis- 

ing areas for personalized driving behavior research. 

C. Study Scope 

This review discusses personalization in driving behavior 

and especially focuses on how driving behaviors are charac- 

terized and modeled for each individual driver. To be specific, 

it explores the theoretical foundations and methodologies of 

personalized behavior modeling, as well as the integration of 

individualized data to enhance personalization for algorithms 

and systems, allowing for the adaptation of general driver 

models to meet specific personal needs. 

This study emphasizes the prevalent data-driven approaches 

in the field of driving behavior personalization. The rationale 

behind this is that individual driving behaviors are complex 

and diverse, influenced by a myriad of factors. Traditional 

rule-based and model-based approaches often fall short in 

capturing this complexity. By leveraging a vast amount of 

data and a number of modern machine-learning techniques, 

researchers can develop models that are both more accurate 

and specifically tailored to individual drivers. This data-driven 

methodology aligns with the trends and findings identified in 

our systematic review of the literature, reflecting the latest 

advancements and challenges in the domain. 

To carry out a systematic literature search, this study fol- 

lows the PRISMA (Preferred Reporting Items for Systematic 

Reviews and Meta-Analysis) guidelines [19]. The literature 

search is conducted using two databases: Google Scholar 

and IEEE Xplore digital library. The step-by-step screening 

process is shown in Fig. 1. Initially, the title or keywords 

of the article must include ”personalization”, ”personal”, or 

”personalized”. Secondly, the scope is narrowed to literature 

published within the last decade, specifically from 2013 to 

2023. Subsequently, an in-depth search is executed on these fil- 

tered results, employing a combination of key terms: ’Driving’, 

’Driver’, ’Vehicle’, ’Car’, ’ADAS’, ’Cruise control’, ’Driver 

profile’, and ’Behavior’. The final step involves a careful 

exclusion of duplicate articles and those not directly relevant 

to the central theme of personalized driving behavior, ensuring 

a focused and relevant collection of literature for our study. 

 

 

D. Article Organization 

The remainder of this paper is organized to correspond 

with the three main stages of the personalization process: data 

construction, behavior modeling and algorithm development, 

and model evaluation. Section II presents a taxonomy of 

personalized driving behavior, establishing the foundation for 

the subsequent sections. Section III discusses the construction 

of a personalized driving behavior dataset, including different 

categories of available datasets, data acquisition and process- 

ing, forming the basis of our data-driven approach. In Section 

IV, we elaborate approaches to developing a personalized 

model and system for driving behavior. Section V focuses 

on the evaluation of the personalized model. Section VI is 

dedicated to A detailed discussion for research gaps and 

future directions, synthesizing insights from each stage of 

the personalization process. Finally, the paper concludes in 

Section VII. 
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Fig. 1: The PRISMA schema for literature search in this study 

 

II. TAXONOMY 

Modeling personalized driving behavior is the foundation of 

the personalization process, and personalized driving behaviors 

can be organized using an integrated and cascading taxonomy, 

as shown in Fig. 2. This multi-tiered approach begins with 

categorizing behaviors into long-, mid-, and short-term from 

the temporal scale perspective. Within the short-term behavior 

section, we further divide the behavioral response stages 

during driving into distinct stages based on the vehicle opera- 

tion pipeline, i.e., perception, cognition, and actuation. These 

stages can be further detailed by classifying specific types 

of driver-vehicle interactions. This layered and interconnected 

structure effectively captures the full spectrum of personalized 

driving behaviors, from overarching temporal patterns down to 

the nuances of moment-to-moment interactions. 

 

A. By Temporal Scale 

The investigation of personalized driving behavior is com- 

plex, and we approach it by segmenting it into three distinct 

time scales: long, middle, and short-term. These scales each 

possess distinctive characteristics and are intricately inter- 

linked with one another, influencing and being influenced in 

a dynamic manner. Long-term behaviors set a foundational 

context that shapes mid-term behaviors, which in turn have 

a direct impact on short-term actions and decisions. This 

creates a complex, interconnected web of driving behaviors 

across these temporal scales, necessitating different modeling 

strategies and focus. 

Long-term: On this temporal scale, personalized driving 

behavior focuses on relatively stable aspects of the driver’s 

profile, such as personality [20], [21], demographic informa- 

tion [22], [23], and frequently visited locations (e.g., work- 

place and home) that are used in activity-based modeling [24]. 

These features, collected and profiled over a long duration, 

establish the foundational layer for performing personalization, 

providing a consistent reference point from which we can 

integrate and adapt the more dynamic aspects of the driver’s 

profile. For example, a driver’s travel behavioral preference 

for manual versus automatic transmission, the willingness to 

engage in risk [25], and the impact of regional geographic and 

socio-economic characteristics on ride-hailing driver profiling 

[26]) would fall under this category. 

Mid-term: This represents the modeling of personalized 

driving behavior that, while exhibiting more changes, still 

maintain relative stability. Compared to long-term behaviors, 

mid-term behaviors typically span multiple trips or a single 

extended trip. This scale takes into account a variety of factors 

that can be influenced by time of day, specific events, or 

environmental changes. A key component of this category 

is the analysis of driving styles [2], [27]–[30], embodying a 

blend of persistent long-term habits and adaptable mid-term 

responses to dynamic elements like traffic states and roadway 

geometry. As representative driving patterns, car-following 

[31]–[33] and lane-change behavior [34]–[36] at this level 

encompass a driver’s general tendencies and preferences, and 

reveal how the driver interacts with surroundings, providing 

insights into a driver’s consideration of safety, comfort, and 

efficiency. Also, driver mood state [37], [38] falls into the mid- 

term category, as a driver’s emotional state can fluctuate based 

on specific experiences or situations, but generally follows 

certain patterns. Similarly, temporary driver physiological state 

[39], [40], like drowsiness, has the same influence to driving 

pattern. Moreover, drivers demonstrate distinct concerns re- 

garding fuel/energy efficiency and exhibit corresponding be- 

havioral adaptations when operating different types of vehicles 

[41], especially for electric or hybrid vehicles [42]. Situational 

circumstances should be considered as well, and the behavior 

is influenced by factors like weather, traffic conditions, vehicle 

conditions, passenger conditions, and route elevations [43]– 

[47]. These mid-term elements, when combined, offer valuable 

insights into how drivers respond to evolving conditions and 

how these responses shape their overall driving behavior. 

Short-term: This temporal scale pertains to immediate 

behaviors and operations that change rapidly during the driving 

process. Short-term behaviors are situational behaviors and are 

directly influenced by mid-term behaviors. Compared to mid- 

term behaviors, short-term behaviors are usually evaluated at 

the level of a single trip or specific events. It encompasses 

the whole behavioral response pipeline, including the driver’s 

perception, cognition, and actuation, as elaborated in subsec- 

tion II-B. Interactions with the vehicle’s control systems and 

immediate responses to external events are also categorized 

under short-term behaviors. 

 

B. By Behavioral-Response Stage 

When modeling personalized driving behavior, it’s critical 

to consider the entire behavioral response pipeline, which 

involves the stages of perception, cognition, and actuation. 

These stimulus-driven stages reflect the sequential process of 

human interaction with the vehicle and driving environment, 
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Fig. 2: Taxonomy of personalized driving behavior 

and they have specific characteristics unique to individual 

drivers. 

Perception stage: This initial stage is all about how the 

driver perceives the environment. As illustrated by the Drift 

Diffusion Model (DDM) [48], initial sensory inputs, or ”stim- 

uli”, are actively processed to accumulate evidence towards a 

decision boundary. Perception is not merely a passive receipt 

of information but actively influences the cognition (e.g., 

decision making) from the outset. This stage sets the premise 

for all subsequent steps, as the information perceived here 

will influence the cognitive processing of that information and, 

ultimately, the physical actuation in response. 

Drivers may exhibit different perceptual behaviors to gather 

information, and not every driver receives the same infor- 

mation or integrates it in the same way while driving. The 

focus of a driver’s gaze is another significant factor [49], 

[50]; some drivers may focus mainly on the road ahead, while 

others frequently check mirrors or allocate their attention to 

a secondary task [51] (e.g., instrument panels). Other factors 

include the driver’s awareness of the environment [52], [53], 

such as attention to traffic signs, other vehicles, and pedestri- 

ans, and these often involve distraction or drowsiness detection 

studies [54]–[57]. The perception stage also includes the study 

of capability (affected by midterm behavior), such as vision 

acuity, spatial awareness (distances, speeds, and angles), and 

sensory responsiveness (visual, auditory, and tactile inputs), to 

perceive the environment or access external signals. 

Cognition stage: At this stage, the mental processing of 

perceived information takes place. Drivers interpret what they 

see, anticipate potential outcomes, and make decisions based 

on their experience, understanding and judgement. Studies 

focusing on this stage cover a variety of aspects. To name a 

few, drivers’ risk assessment [58], [59] might greatly influence 

how they react to potential dangers on the road. Also, decision- 

making studies [60], [61] evaluate how drivers respond under 

different circumstances, noting differences between more ag- 

gressive or cautious behaviors. On the other hand, intention 

prediction studies [62]–[67] anticipate a driver’s next actions 

based on current behaviors, as a typical use case of cognition 

process modeling. Additionally, studies on cognitive process- 

ing, such as cognitive load assessment [68]–[70] contribute 

further to understanding the cognitive demands on a driver 

during various situations. Likewise, research into drivers’ 

emotional responses [38], [71] dives deep into how emotions 

influence decision-making and overall driving behavior, further 

enriching our understanding of the cognitive aspect of driving. 

These aforementioned cognitive factors together shape the 

comprehensive profile of a driver’s behavior on the road. 

The inherently abstract nature of these cognitive processes 

necessitates indirect methods for their assessment. Recent 

advancements in physiological measurements have offered 

promising methodologies to bridge this gap. For instance, 

Luo et al. [72] studied how personal comfort system affects 

the cognition performance based on heart rates. Najafi et al. 

proposed to use Electrodermal Activity (EDA) Skin Potential 

Response (SPR), their Electrocardiogram (ECG), and their 

Electroencephalogram (EEG) for driver attention assessment 

[73]. Govindarajan et.al. [74] adopted headband and camera 

to measure EGG signals and thermal facial data, which are 

used for personalized reaction time prediction. By correlating 

physiological signals with driving behaviors, researchers can 

infer the underlying cognitive and emotional processes for 

more personalized and adaptive driving assistance systems that 

cater to the individual cognitive profiles of drivers. 

Actuation stage: The Actuation stage is the dynamic and 

observable component of the behavioral response in driv- 

ing, where the cognitive choices formed from perception are 

translated into physical maneuvers. In this conclusive phase, 

the driver’s mental activities—encompassing the assessment 

of environmental conditions and cognitive judgments—are 

translated into direct interactions with the vehicle’s controls. 

As shown in Fig. 2, this phase serves not only as the 
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execution of a driver’s behavioral response process but also 

completes a feedback loop via perception. It involves two 

primary response types, and they are 1) immediate responses: 

these are the direct, often reflexive actions taken in response 

to immediate and unexpected driving situations. They rep- 

resent the driver’s ability to quickly process and act upon 

the information perceived, illustrating the practical application 

of cognitive decisions in real time, which includes quick 

adjustments to the steering, throttle, and brake [75], [76]. 

2) Maneuver execution: in contrast to the reactive nature 

of immediate responses, maneuver execution encompasses 

the strategic implementation of complex driving maneuvers 

planned by the driver. This includes performing overtaking 

[77], as well as the dynamic adaptation required for car- 

following and lane-changing [78]–[81]. 

Actuation is more situational compared to the mid-term 

driving pattern, characterized by higher intensity in reaction 

and interaction. These situational behaviors are the main 

prediction target of many literature because they are highly 

affected by a driver’s characteristics of perception, and cogni- 

tion under various traffic conditions. As such, the Actuation 

Stage is not only about action but is integral to a cyclical 

behavioral response process that feeds back via perception, 

forming an iterative loop that shapes and is shaped by the 

driver’s continuous interaction with the surroundings. This 

loop is central to enhancing driving safety and the development 

of personalized driving assistance systems that can adapt to an 

individual’s driving style in real time. 

 

C. By Granularity 

Granularity, within the context of personalized driving 

behavior modeling, refers to the level of detail and indi- 

vidualization applied when analyzing and modeling driving 

behavior. This concept acknowledges that while drivers may 

share similar patterns, each individual also possesses unique 

traits that merit distinct consideration. Therefore, adopting 

both group-based (coarse-grained) and individual-based (fine- 

grained) modeling methods is a prudent approach to compre- 

hensively capture the range of driving behaviors. 

Individual-based modeling (fine-grained) is the focus of this 

review. It concentrates on tailoring behavioral predictions and 

interventions to the specific traits and behaviors of individual 

drivers. This level of granularity involves detailed data collec- 

tion and analysis for each driver, enabling highly customized 

and accurate behavior models. 

Group-based modeling (coarse-grained) categorizes drivers 

into clusters based on shared behavior patterns, such as driver 

type clustering [64], [82] and classification [21], [83]. This 

approach helps in the initial understanding and segmentation 

of driver data, facilitating the identification of broad behavior 

patterns and commonalities among different driver groups. It 

serves as an effective strategy for segmenting driving behavior, 

which can be refined for more detailed analysis. 

Transitioning from coarse-grained to fine-grained modeling 

involves not only increasing the number of driver clusters but 

also deepening the analysis within each cluster. This refine- 

ment enhances the model’s ability to differentiate between 

drivers on a more granular level. As more detailed data are 

incorporated—such as specific situational reactions, driving 

conditions, and temporal behaviors—the clusters become in- 

creasingly refined. This refined clustering approach allows the 

model to capture unique driver traits and tendencies more 

accurately, thus moving the analysis from a broader group- 

based perspective to an individual-focused one. Techniques 

such as incremental learning are employed to continuously 

update the model as new data becomes available, particularly 

individual-specific data. For instance, Zhao et al. [80] utilized 

an incremental learning method to retrain their model based 

on human feedback, developing a personalized adaptive cruise 

control system that better matches each driver’s preference 

during each trip. Federated learning is another effective tech- 

nique. Once a group-based model is established, it can be 

customized for individual drivers by continuing to train locally 

on each driver’s data. Du et al. [84] implemented a clustering- 

based personalized federated learning framework to model 

lane change behavior, enabling the learning of individual 

behaviors based on a general model. 

This granularity spectrum, ranging from coarse-grained 

group-based to fine-grained individual-based modeling, illus- 

trates a flexible approach to personalizing driving behavior 

analysis, adapting the level of detail to the specific needs of 

the research or application. 

 

 

D. Interactive vs. Non-Interactive 

Drivers engage in continuous interactions [85] with other 

road users, and within the scope of this paper, we mainly focus 

on vehicular interactions. These interactions, pivotal in person- 

alized driving behavior modeling, predominantly reside within 

the cognition and actuation subsections of our discussion. In- 

teractive behaviors cover a driver’s dynamic interactions with 

other vehicles, involving their predictive, decision-making, 

and vehicle operation capabilities. Examples include adjusting 

speed to both react to and influence the movements of other ve- 

hicles [86], [87]. Conversely, non-interactive behaviors refer 

to reactions with static or predictable elements, such as road 

conditions, traffic signs, and traffic signals [88]–[91]. Diving 

deeper, the study of personalized interaction patterns seeks 

to understand the tendencies of individual drivers, focusing on 

how they distinctly react to and influence other vehicles. 

 

 

III. PERSONALIZED DATASET 

 

The foundation of personalization in driving behavior lies 

in the construction of a personalized dataset, which is both 

the initial step and the cornerstone of the personalization 

process. This dataset’s primary goal is to capture the unique 

driving patterns and characteristics of each individual driver. 

A robust and effective personalized dataset has three vital 

characteristics: 

a) Individual Identifiability: This aspect emphasizes the 

need to distinguish and label the unique behavioral traits of 

each driver, facilitating a truly personalized analysis. 
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TABLE I: Personalized Dataset Summary 
 

Data Category Collection 
Methods 

Collection 
Instruments 

Typical Data Utilization 

Vehicle Operational NDS, FOT, OBD II, IMU, Vehicle Speed, Throttle • Dynamics Insight: Provides comprehensive under- 
and Contextual Data Simulation (HuiL) GNSS, On-board position, Engine RPM, standing of vehicle operation behavior and driver in- 

  Sensors (LiDAR, Location, Surrounding teraction with the control systems in various driving 
  Radar, Cameras) Objects Information scenarios. 
    • Environmental Contextualization: Captures essen- 
    tial data to evaluate the interaction of vehicle dynamics 
    with environmental and situational variables. 

Driver Physiological NDS, FOT, EEG, ECG, Eye or Body • Behavioral Insight: Delivers key metrics on driver 
and Behavioral Data Simulation (HuiL) In-Cabin Cameras, Movements, Heart Rate, states, such as attentiveness and emotional states, 

  Wearable Devices Facial Expressions, crucial for assessing mental workload and predicting 
   Skin Conductance, potential driving distractions. 
   Gestures • Physiological Correlation: Enhances the modeling 
    of personalized driving behavior by correlating phys- 
    iological markers with cognitive and emotional driver 
    states. 

Demographic and Interviews, Questionnaires, Attitudes, Psychological • Personalized Profiling: Aids in creating in-depth 
Subjective Evaluation Questionnaires User Feedback, Characteristics, driver profiles by gathering subjective data on indi- 
Data  Driving Reports Social-Economic and vidual driver characteristics and preferences. 

   Demographic • Behavioral Explanation: Offers explanations for 
   Information, Personal specific driving behaviors by linking them to socio- 

   Experiences economic, demographic and psychological data points. 

 

b) Adequate Volume: To effectively feed and optimize 

data-intensive algorithms, the dataset must possess a sub- 

stantial volume of data. A rich dataset allows for a more 

comprehensive analysis and understanding of varied driving 

behaviors, enhancing the accuracy and reliability of the re- 

sulting models. 

c) Appropriate Data Type Variety: It’s essential that the 

dataset includes a diverse range of data types (e.g., driver 

data, vehicle data, and driving environment data), tailored to 

capture the various aspects of driving behavior. This variety 

ensures that the dataset comprehensively addresses the specific 

nuances and needs of different driving styles. 

This section presents the data acquisition and processing, 

with a special focus on categorizing data for driving behavior 

personalization, surveying available data sources, and outlining 

the collection of customized datasets for particular study 

objectives, as summarized in Table I. 

 

A. Data Categories for Driving Behavior Personalization 

The potential data type for driving behavior personalization 

includes: 

a) Vehicle Operational and Contextual Data can be obtained 

from onboard information systems, like OBD II (On-Board 

Diagnostics II), GNSS (Global Navigation Satellite System), 

IMUs (Inertial Measurement Units), and vehicle sensors (e.g., 

front cameras, LiDAR, Radar, etc.). These systems together 

provide insights into vehicle speed, throttle position, engine 

RPM, location, acceleration, braking, cornering forces, and 

surrounding environment information. This data helps to shed 

light on a driver’s operational behavior and how the driver 

interacts with others in various traffic conditions, enabling the 

customization of driving assistance systems to better support 

the driver’s needs [47], [64], [83], [92]–[94]. 

b) Driver Physiological and Behavioral Data can offer 

an understanding of attentiveness, emotional state, mental 

workload, and potential distractions. This data can be collected 

by in-cabin cameras and wearable devices like Electroen- 

cephalography (EEG) and Electrocardiography (ECG). These 

tools monitor various indicators, such as the driver’s eye 

movements, body movements, facial expressions, gestures, 

heart rate, skin conductance, and other physiological signals 

[68], [72]–[74], [95], [96]. By correlating these physiologi- 

cal signals with driving behaviors, researchers can infer the 

underlying cognitive and emotional processes that dictate 

the driver’s responses. This deeper understanding allows for 

the development of more effective personalized and adaptive 

driving assistance systems that can adjust interaction modes, 

prioritize information delivery, and manage alerts to accom- 

modate the driver’s current state. 

c) Demographic and Subjective Evaluation Data can pro- 

vide insights into why certain driving behaviors manifest and 

what drivers think or feel in certain situations. These data are 

essential for building a comprehensive driver profile, which 

includes the driver’s attitudes, psychological characteristics, 

situation awareness levels, and self-identified driving styles. 

Such information is typically gathered through questionnaires 

and interviews, allowing researchers to personalize driving 

models based on the driver’s background, personality, and self- 

identification, which can greatly influence driving behavior and 

the effectiveness of tailored driving interventions [20], [52], 

[71], [97], [98]. 

 

B. Personalized Real-World Data 

Having discussed the various data types integral to model 

personalized driving behavior, it’s crucial to consider the 

sources of these data. Two principal sources of real-world 

data, namely the Naturalistic Driving Study (NDS) and Field 

Operational Test (FOT) data, are indispensable in this context 

[99]. As depicted in Fig. 3, while FOT data offers some 

experimental control, NDS operates with considerably less or 

none, capturing genuine behavioral dynamics in natural driving 

scenarios [100]. 
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Fig. 3: Real-world data from naturalistic driving studies and 

field operational tests [100] 

 

The FOTs typically involve a series of structured stages, 

starting with the design of the test objectives. During the 

execution phase, pilot testing is conducted to refine the systems 

and procedures, followed by the main phase of data collection, 

where specific vehicle technologies and driver behaviors are 

monitored under predefined conditions. Post data collection, 

the analysis phase focuses on evaluating the data against the 

test objectives, ensuring compliance with ethical standards. 

Similarly, NDS employs an unobtrusive approach where data 

collection equipment is installed in vehicles without influenc- 

ing or altering the driver’s normal behavior. This method al- 

lows for the capture of authentic driving behavior under natural 

conditions. The data gathered is then analyzed to understand 

how various driving patterns correlate with different driving 

contexts. 

1) NDS data: There’s a growing recognition of the value of 

NDS datasets. NDS employs advanced in-vehicle technologies 

to discreetly record drivers’ behaviors during routine driving 

scenarios. It allows researchers to observe and analyze drivers’ 

authentic reactions and decision-making patterns in real time, 

offering insights into their adaptive strategies across varied 

traffic and environmental conditions. 

To facilitate personalization in NDS datasets, driver identi- 

fiability is paramount. Several open-source NDS datasets have 

been introduced to bolster studies on personalized driving 

behavior. These datasets not only capture authentic reactions 

and behaviors across a myriad of driving contexts but also 

ensure driver identifiability, fostering the evolution of more 

personalized models. Notable examples include the 100-Car 

Naturalistic Driving Study dataset [101], [102] and the Can- 

drive study dataset [103]. Both offer comprehensive data by 

non-intrusively capturing vehicle states and driver maneuvers. 

These datasets are obtained using the participant’s vehicle, 

ensuring familiarity, and are equipped with cameras and sen- 

sors. While sensors track vehicle states and the surrounding 

environment, cameras record the facial expressions and re- 

actions of the drivers throughout their sessions. This setup 

not only captures drivers’ emotions and responses but also 

facilitates data segmentation for each individual, paving the 

way for the creation of customized datasets for every partic- 

ipant. Moreover, datasets like Brain4Cars [104], Drive&Act 

[105], SHRP2 [106], UAH-DriveSet [107], and MIT AVT 

[108] further expand the scope of available naturalistic driving 

datasets. 

However, These datasets were primarily constructed for 

generic or broader applications and might not fully cater to 

the intricacies required for personalization. While they offer 

significant advantages, such as capturing a wide range of driv- 

ing contexts and ensuring driver identifiability, they often fall 

short in meeting the requirements for data volume and variety 

of data types necessary for comprehensive personalization. 

Specifically, these datasets are collected from a restricted set of 

drivers and certain scenarios, making it challenging to extrap- 

olate findings to a broader population, traffic conditions, and 

different personalization objectives. Additionally, these open- 

source naturalistic datasets focus more on collecting short- 

term actuation driving behavior but ignore the data required 

for personalizing other stages of driving behavior, compelling 

researchers to create their customized datasets for different 

research purposes. Therefore, in the context of NDS, many 

researchers create customized datasets based on personalized 

objectives, in addition to the dataset of vehicle operation. 

For instance, Hu et al. [3] compiled in-vehicle temperature, 

humidity, car speed, pressure, and window state to build a per- 

sonalized driver climate control behavior recognition model. 

Banerjee et al. [49] extracted eye gazing data to model the 

driver’s perception behavior. For modeling the driver workload 

during each trip, Xie et al. [69] collected ECG, heart (HR) 

heart rate variability (HRV), breath rate (BR), galvanic skin 

response (GSR), vehicle speed, and acceleration. 

2) FOT data: Conversely, FOT is designed to evaluate spe- 

cific vehicle functions in their usual operational environments 

and traffic conditions. Structured to identify the real-world 

impacts and benefits of these functions, the data from FOT 

is invaluable for enhancing performance and safety attributes. 

Summarizing different types of FOTs, Barnard et al. [109], 

[110] presented a systematic and scientific procedure for 

implementing an FOT. They categorized these tests into three 

main domains: user-centered, vehicle-centered, and context- 

centered evaluations. Using the FOT dataset created by the 

Dutch Ministry of Transports [111], Viti et al. [112] investi- 

gated how the adaptive cruise control system influences driving 

behaviors. Instead of using existing FOT data, Lyu et al. [113] 

carried out a small-scale (44 participants) naturalistic-FOT (N- 

FOT) to collect naturalistic driving data for establishing a 

driving style recognition framework. Taking a step further to 

studying personalized behavior, Liao et al. [66], [114] built an 

FOT testbed and used the collected data to train and validate 

a personalized lane-change prediction model. 

Many extensive N-FOT projects, along with the datasets 

they generate, are utilized for algorithm development, as high- 

lighted in [115], [116]. While these datasets also serve as proof 

of concept, their primary role is in performance evaluation. 

The level of experimental control directly corresponds to the 

suitability of the dataset for algorithmic assessment, which 

will be further discussed in Section V-B2. Yet, the domain 

of personalized driving behavior through FOT data still offers 

ample opportunities for further research. 

 

C. Human-in-the-Loop (HuiL) Simulation Dataset 

Real-world driving datasets are often collected in ever- 

changing environments influenced by various temporal factors 

(e.g., traffic conditions, vehicles nearby, weather, time of the 

day), leading to inconsistencies. This variability makes it 
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difficult to discern if these temporal factors directly impact a 

driver’s behavior or if they’re merely coincidental. A compre- 

hensive understanding truly necessitates longitudinal studies 

to capture the recurrent pattern over extended periods. Driv- 

ing simulations, in contrast to real-world datasets, provide a 

controlled environment for consistent data collection. Human- 

in-the-loop (HuiL) driving simulations in an immersive simu- 

lation platform (e.g., NADS-1 driving simulator [117]) present 

an opportunity to mimic real-world scenarios while ensuring 

that the conditions remain standardized, facilitating more 

precise analysis and comparisons across different drivers and 

driving behaviors. 

Just as in real-world datasets, driver identifiability remains a 

fundamental prerequisite for personalized simulation datasets. 

Doubek et al. [118] introduced an open-source Human- 

in-the-Loop (HuiL) driving simulation dataset to examine 

automation-to-manual takeover behavior, capturing data from 

25 drivers. Similarly, a multi-HuiL simulation was carried out 

and dataset was published [119], [120], aimed at exploring 

interactions between two human drivers across diverse traffic 

scenarios. Simulation datasets tailored to specific research 

needs are increasingly prevalent, primarily due to their ease 

of collection compared to real-world datasets. As an illustra- 

tion, researchers [2], [36], [76], [121] utilized HuiL driving 

simulations to collect targeted personalized driving behavior 

data. This approach allows researchers to deliberately replicate 

specific traffic scenarios or vehicular interactions, facilitating 

a more precise identification of primary behavioral indicators 

and reducing the impact of incidental factors. Moreover, 

HuiL allows for the exploration of rare or extreme scenarios, 

granting insights into driver reactions in situations seldom or 

never seen in reality. 

However, it’s important to acknowledge the limitations 

of HuiL datasets. One significant drawback is the potential 

for domain shift, where the simulated environment does not 

perfectly replicate real-world conditions, leading to discrepan- 

cies in driving behavior. Additionally, the psychological and 

physiological responses elicited in simulations might differ 

from real-life situations, leading to behavioral discrepancies. 

These factors highlight the importance of complementing 

HuiL studies with real-world data for a more comprehensive 

validation. Further exploration on developing HuiL driving 

simulations and addressing these challenges is discussed in 

Section V-B1. 

 

D. Personalized Interaction Dataset 

Modeling personalized interaction behavior requires under- 

standing how a driver reacts to and influences other road users. 

Consequently, it necessitates data from the perspectives of all 

involved road users, which is crucial in understanding driving 

behavior in traffic or group dynamics. Currently, however, 

there is a significant gap due to the absence of interaction 

data involving multiple vehicles. The aforementioned datasets 

are predominantly generated from the perspective of the ego 

vehicle and its driver. 

The development of connected vehicles (CVs) has made 

data sharing more accessible. Specifically, the data collected 

from CVs can include aspects such as the driver’s profile, 

their current state, and intricate details of their actuation 

maneuvers. Based on shared data of two connected vehicles, 

Liao et al. [6] discovered personalized interaction patterns 

exhibited by aggressive and cautious drivers in a ramp merging 

area. Their study illustrates the different strategies adopted by 

these two drivers when they attempt to influence or react to 

the maneuvers of other vehicles in conflict situations. While 

this rich information enables collaborative analyses across 

multiple vehicles, the process still faces challenges. Factors 

like communication delays [114], communication range, and 

signal blockage [122] hamper data synchronization and sensor 

fusion, thereby posing constraints on the generation of datasets 

utilizing CVs. Therefore, HuiL driving stimulation is still the 

main tool to collect driving for multiple drivers. Zhao et al. 

[121], [123] established a multi-driver co-simulation platform 

to study personalized interaction behaviors. This platform 

integrates SUMO (a traffic simulator) and Unity (a game 

engine simulator), equipped with two driving simulation kits 

with steering wheels and pedals. Supported by AWS service, it 

can also simulate vehicle-to-cloud communication, in addition 

to vehicle-to-vehicle communication. 

 

E. Data Analysis and Preprocessing 

In the quest for a robust personalized dataset, the primary 

challenge often lies not just in collecting ample data, but 

in ensuring its quality, relevance, and diversity to accurately 

represent the individual driver’s behavior across varying sce- 

narios. This stage involves processing and understanding the 

acquired data. Analysis techniques such as statistical methods, 

data mining, or machine learning can be used to extract 

meaningful information about driving habits, decision-making 

processes, and reactions to different situations. It also involves 

identifying important features that significantly impact driving 

behavior and separating the noise or less relevant information. 

Thus, data analysis and preprocessing are usually conducted 

in parallel. 

Data noise removal can be accomplished using low-pass 

filters such as the median filter, wavelet filter, and Kalman 

filter, as well as the moving average filter [14]. Following noise 

removal, an integral preprocessing step is segmentation. In the 

context of trajectory data, segmentation is typically based on 

events, actions, or defined time intervals, and these data can 

be labeled manually or through automated labeling techniques 

[124]. For image and video data, distinguishing between the 

foreground and background is particularly crucial. 

Data analysis helps understand the data, and hence re- 

searcher can decide on approaches for personalization. Besides 

the descriptive statistics analysis (e.g., measuring the data dis- 

tribution), analyzing feature importance is a usual practice, and 

some popular approaches include correlation analysis [125], 

permutation feature importance (PFI) Analysis [126], principal 

component analysis (PCA) [127], etc. In addressing dataset 

limitations, researchers often engage in data balancing and 

augmentation [128]–[130]. Besides data processing, transfer 

learning (TL) [69], [76] is adopted to overcome the data 

constraint. 
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IV. APPROACHES TO PERSONALIZATION IN DRIVING  

BEHAVIOR 

Having established the vital role and characteristics of 

personalized datasets, we now shift our focus towards the 

methodologies. Leveraging the rich insights derived from 

personalized data, we aim to create models that precisely 

mirror individual driving behaviors, a process denoted as 

model personalization. 

In this section, we will explore approaches researchers 

employ to characterize personalized driving behavior, discuss 

the potential benefits of personalized behavior modeling in 

the context of driving, and review the key algorithms that 

effectively meet these objectives. We will also evaluate the 

advantages and disadvantages of these algorithms, as summa- 

rized in Table II. 

 

A. Personalizing the Driver Model 

This approach is based on fitting the parameters of a pre- 

defined model for the characteristics of a specific driver. This 

type of parametric model can be explainable cost functions, 

neural networks, probabilistic models, and regression models. 

Cost function is widely used to illustrate the preference of 

a driver. Inverse reinforcement learning (IRL), as one type of 

imitation learning, is an effective method to recover the cost 

function given the driving demonstration. Some studies [66], 

[133] used cost functions to describe the personalized lane 

change preference of a driver and adopted IRL to recover the 

weights of the cost function based on the driver’s historical 

driving trajectories. Since drivers adjust their car-following 

gaps at different speeds, Zhao et al. [32] modeled the personal- 

ized car-following behavior with a cost function in speed-gap 

space using IRL. Also, based on IRL, Bao et al. [131] used 

a personalized cost function to depict how a driver perceives 

risk in a lane change, as the core of a subjective risk model, 

which is then integrated into a controller to generate a user’s 

preferred lane change maneuvers. Along the same lines, based 

on end-to-end imitation learning, Tian et al. [132] personalized 

the parameters for the cost function of the planning and control 

module, using limited historical samples. 

Personalized neural networks, specifically trained for indi- 

vidual drivers, have proven to outperform general networks. 

Leveraging the capability of neural networks for reusability, 

Dang et al. [136] employed a pre-trained LSTM network 

to a new dataset as a personalized network to the time-to- 

lane-change of specific drivers. The study in [49] demon- 

strated enhanced accuracy in driver distraction detection using 

a personalized encoder-decoder module. The individualized 

neural networks developed for each driver, as per [37], showed 

superior performance in recognizing driver emotions when 

compared to a general model. Furthermore, Abdelraouf et al. 

[7] introduced a personalized approach for vehicle trajectory 

prediction using temporal graph neural networks. Combining 

Graph Convolution Network (GCN) and LSTM, their model, 

pre-trained on large datasets and fine-tuned for individual 

driver, significantly improved prediction accuracy, particularly 

for longer horizons. 

Personalized probabilistic models are also efficient tools, 

such as Hidden Markov Model (HMM) and Generalized Gaus- 

sian Mixture Models (GMM). Lefevre et al. [137] adopted 

a personalized HMM to build a personalized lane-keeping 

assistance. The personalized HMM captures how a driver 

changes his or her decision over left/right lane change and lane 

keeping, revealing the transition probabilities between each 

action. Wang et al. [138] demonstrated a personalized HMM- 

GMM model that can capture better car-following behavior 

than traditional GMM-based models. 

Similarly, personalized regression model. To search for a 

personalized navigation route, a personalized fuel consumption 

prediction model was proposed using a multivariate nonlin- 

ear regression model (MNR) [47], whose parameters were 

estimated based on a driver’s driving style. Similarly, for 

developing a personalized route searching method, Chen et 

al. [82] initialized the weight vector of a graph-based road 

network as the user preference model, based on a driver’s 

classified driving style, and then adjusted the weights once 

the driving behavior changed. 

Training personalized models for each driver presents sig- 

nificant computational challenges, primarily due to the sheer 

number of individual models required when dealing with 

a large driver population. Each model necessitates sepa- 

rate training, validation, and testing processes, escalating the 

computational workload exponentially with the increase in 

the number of drivers. Despite their computational intensity, 

these personalized models have effectively bridged the gap 

between generic predictions and individualized insights. To 

mitigate computational demands, researchers [3], [135], [139], 

suggested categorizing driving styles and tailoring networks 

accordingly. This strategy balances the need for detailed per- 

sonalization with computational efficiency, offering a practical 

solution to the challenges posed by large-scale model training. 

The effectiveness of personalized models largely depends 

on the design and robustness of the underlying base model. 

A well-constructed base model is pivotal for yielding accurate 

and detailed predictions tailored to individual drivers. How- 

ever, customizing these models for each driver is resource- 

intensive, requiring substantial computational resources for 

fine-tuning. To address challenges associated with limited 

personalized driving data, transfer learning (TL) has emerged 

as a popular tool. This technique involves pre-training a 

model on a general dataset and subsequently fine-tuning it 

with individual-specific data. Abdelraouf et al. [7] effectively 

utilized this approach, demonstrating its efficiency in person- 

alization. Similarly, Li et al. [76] employed an importance- 

weight-based TL approach to adapt the base model for new 

drivers using a relatively small amount of personalized data, 

thus streamlining the adaptation process. 

B. Personalizing the Driver Attributes 

This approach learns the attributes of the driver to build 

a driver profile, and these attributes can be modeled inde- 

pendently and jointly, with researchers opting for a specific 

approach based on their research focus. 

The process of modeling independent attributes is succinct 

and direct, encapsulating distinct characteristics like subjective 
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TABLE II: Summary of Approaches to Driving Behavior Personalization 
 

Approaches Output Algorithms Pros Cons 

 
 

 

 
 

 

 
 

 
Personalizing 
the Driver 
Model 

 
Cost 
Functions 

Inverse Reinforcement 
Learning [32], [66], 
[131]–[133] 

 
 

 

 

 
• Highly Specific: The models are highly 
personalized, leading to more accurate pre- 
dictions. 
• Flexibility: Can be applied to a variety 
of driving behaviors and scenarios through 
model personalization (e.g., fine-tuning), of- 
fering broad applicability. 
• Comprehensiveness: Bridges the gap be- 
tween generic and personalized insights. 

 
 

 

 
• Complexity: Can become complex, es- 
pecially when dealing with a wide array of 
driving behaviors and scenarios. 
• Data Dependency: The quality and quan- 
tity of personalized driving data impact 
performance. 
• Base Model Dependency: The perfor- 
mance highly relied on the design and 
effectiveness of the base model. 

 

 
Neural 
Networks 

Encoder-Decoder 
Modules [49], [134], 
CNN+SVM [37], 
Transfer Learning [135], 
GCN [7], LSTM [135], 
[136] 

 

 
Probabilistic 
Models 

HMM [137], 
HMM+GMM [138], 
Importance-Weighted 
Least-Squares 
Probabilistic Classifier 
[76] 

 
Regression 
Models 

Gradient Boosting 
Decision Tree [3], NAR 
[139], MNR [47] 

 

 

 
 

 

 

 
Personalizing 
the Driver 
Attributes 

 

 

 
 

 
Single 
Attributes 

Subjective Risk Level by 
RFGA-BLTSM [140] 
Aggressiveness Index by 
ESD [28] Acceleration, 
Time Headway and Pedal 
by statistical distributions 
analysis, Kernel Density 
Estimation [94], [141], 
[142], Driving Risk 
Probability by 
Power-Law Function 
Estimation [23] 

 

 

 
 

 
• Adaptability: Capable of evolving to 
capture changes in driver’s behaviors and 
preferences over time. 
• Targeted Interventions: Allows for 
personalized feedback and improvement 
suggestions. 
• Clarity: Provides clear, focused insights 
into particular aspects of driving behavior, 
incorporating various aspects of behavior 
and preference. 

 

 

 
 

 
• Partial View: Might not capture the 
complete picture of driving behavior if too 
focused on specific attributes. 
• Data Sensitivity: Requires reliable data 
on various attributes, while precise and 
accurate data can be challenging to obtain 
and quantify. 

 
Joint 
Attributes 

Parameters of Personality 
by LSTM-based MTLA 
network [21], Tradeoff 
between Presences by 
Optimization [91] 

 
 

 

 
Labeling 
Drivers 

 

 
Driver 
Clustering 

K-Means [2], [82], [83], 
[83], [143], HCA [71], 
[139], GMM [76], [144], 
[145], [36], [68], PRM 
[64] 

 

 
• Simplicity: Straightforward in interpreta- 
tion, and the outputs can be easily imple- 
mented in downstream modules. 
• Efficient: Efficient in identifying patterns 
and trends in driving data for generalized 
interventions. 

 

 
• Generality: Might oversimplify complex 
driving behaviors, leading to generic in- 
sights, not capturing the detailed behaviors 
of individual drivers. 
• Static Labels: Lack flexibility to adapt 
to evolving driving behavior. 

 

 
Driver Clas- 
sification 

SVM [2], [37], [68], 
Tree-Based Classifier 
[64], [94], [140], LSTM 
[21], PNN [83], Fuzzy 
Inference [71], 
Semi-Supervised 
Learning [146]–[148] 

 
Learning 
Personalized 
Driving 
Strategy 

Driving 
Policy 

Reinforcement Learning 
[149]–[151] 

• Adaptive: Continuously learns and adapts 
to the driver’s evolving behavior and external 
conditions. 
• Personalized Feedback: Can offer real- 
time, personalized feedback. 

 
• Computational Load: Often demands 
significant computational power and data. 
• Slow Convergence: Learning and adap- 
tation can be time-consuming. 

Replicated 
Driving 
Behaviors 

 
Generative Adversarial 
Imitation Learning [152] 

 

 

 
Personalized 
Qualitative 
Assessment 

 

 
Driver Self- 
Evaluation 

Preference Questionnaire 
[20], [44], Psychometric 
Tests [153], Driver 
Feedback [46], [154], 
Interviews [155] 

 
• Driver Engagement: Directly involves 
drivers in the assessment, increasing 
engagement. 
• Rich Insights: Captures detailed insights 
from the driver’s perspective that are not 
easily captured by quantitative data. 
• Explainability: Provides a clear and 
understandable overview of the studied 
driving behaviors. 

 
• Subjectivity: The qualitative nature 
might introduce biases due to individual 
perceptions. 
• Quantification Challenges: Turning 
qualitative observations into actionable 
quantitative data can be difficult. Linguistic 

Insight 
Quantifica- 
tion 

Rule-based Driving 
Scoring [12], [20], [27], 
[156] Fuzzy Logic-Based 
Methods [59], [71], [157] 
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risk perception [140], aggression levels, and the probability 

distribution of accelerations [141]. These isolated attributes 

are studied to provide insights into specific aspects of driving 

behavior without considering their interaction or combined 

impact on overall driving style. He et al. [23] developed a 

personalized insurance pricing strategy based on the quantifi- 

cation of a driver’s risk from trajectories. This method charac- 

terized drivers using their risk probabilities, mileage estima- 

tion, and their demographic information. Using aggressiveness 

index measured in energy spectral density (ESD) analysis was 

proposed by [28] to quantitatively evaluate driving style. 

Analyzing the distribution of an independent attribute is 

straight straightforward approach to characterizing a driver. 

Kim et al. [142] personalized the acceleration behavior of 

an electric vehicle according to the driver’s characteristics 

and quantified the performance by comparing each driver’s 

driving data using Kernel Density Estimation. The analysis 

was conducted on five drivers to show how the kernel density 

function of acceleration of each driver differs from that of 

others. Likewise, Baek et al. [94] characterized a driver using a 

statistical model based on his or her time headway distribution 

and pedal control patterns. This approach allowed the model 

to adapt to the driver’s changing preferences over time. 

While a single, well-defined personal attribute can offer an 

intuitive depiction of a driver, it may fall short of comprehen- 

sively capturing the multifaceted nature of driving behaviors. 

Addressing this, researchers have gravitated towards multi- 

attribute models that yield more nuanced and holistic driver 

profiles. Das et al. [21] designed an LSTM-based Multi- 

Task Learning with Attention (MTLA) network to capture 

a driver’s personality traits implicitly, where the attention 

mechanism acts as a feature selector and assigns weights 

on predefined traits for each individual. Similarly, Butakov 

et al. [91] examined drivers’ willingness to balance time of 

arrival, fuel economy, comfort, and safety. This multi-attribute 

approach facilitated the resolution of optimization problems, 

helping drivers in navigating through signalized intersections. 

 

C. Driver Labeling 

This approach aims to identify and categorize drivers based 

on factors that affect their driving behaviors, e.g., sudden 

acceleration, hard braking, and other risky maneuvers. Mean- 

while, explainable parameters (i.e., weights in the cost func- 

tion) in Section IV-A and driver attributes in Section IV-B 

may also be used as the indexes for driver labeling. Driver 

clustering and classification are two main branches of driver 

labeling. While primarily designed for coarse-grained, group- 

based modeling, driver labeling also supports fine-tuning for 

individual-specific models as detailed in the taxonomy (Sec- 

tion II). 

Driver clustering groups drivers based on similarities in 

their driving behavior without any pre-existing classes or 

categories. It is an efficient way to discover hidden patterns in 

the driver dataset through unsupervised methods. Commonly 

implemented algorithms for driver clustering include K-Means 

[2], [82], [83], [143], Gaussian Mixture Model (GMM) [76], 

[144], [145], Fuzzy C-Means [36], [68], and Polynomial Re- 

gression Mixture (PRM) [64]. A notable application of this ap- 

proach is found in the work of Chen et al. [82], who developed 

a personalized path recommendation system for autonomous 

vehicles. In their system, driver clustering plays a crucial role 

in the initial phase by generating a preference weight vector, 

which lays the groundwork for tailoring path recommendations 

to individual driver preferences. The unsupervised nature of 

driver clustering is advantageous, as it minimizes the need for 

prior assumptions and naturally uncovers behavioral patterns 

within the data. This method not only facilitates effective 

feature extraction but also enriches data interpretation. By 

categorizing drivers into distinct groups, it adds layers of 

information, such as specific driver labels, which are essential 

for sophisticated downstream analysis and processing. 

On the other hand, driver classification involves categorizing 

drivers into predefined classes based on their driving behavior 

for providing personalized services. Popular algorithms for 

driver classification include support vector machine (SVM) 

[2], [37], [68], tree-based classifier [64], [94], [140], long short 

term memory (LSTM) time series classifier [21], probabilis- 

tic neural network (PNN) [83], and fuzzy inference classi- 

fier [71]. Typically employing supervised or semi-supervised 

learning approaches, driver classification relies on predefined 

driver types based on expert knowledge, facilitating easier 

implementation in real-world scenarios. The real-time driver 

classification system proposed by Bhumika et al. [21] is a 

notable example showing how the classification contributes 

to personalzation. Their system classifies drivers’ behaviors 

into categories like ’normal’, ’drowsy’, or ’aggressive’, and 

accordingly provides tailored recommendations for accepting 

or rejecting trip requests. Driver classification plays a key role 

in enhancing road safety and driver well-being by ensuring 

that driving assistance systems are closely aligned with the 

unique behaviors and needs of each driver. 

Additionally, a key challenge in driver classification is the 

scarcity of true labels, which is crucial for model accuracy but 

often unavailable in real-world data due to the subjective inter- 

pretation of driving behaviors. For example, speeding could be 

seen either as an emergency action or reckless driving depend- 

ing on the context. To combat this, researchers have turned 

to semi-supervised learning techniques to augment model 

accuracy using both labeled and unlabeled data. For instance, 

Guzman and Loui [146] applied a federated semi-supervised 

approach, initializing models with features extracted from 

unlabeled data, then refining them with labeled data. Chen et 

al. [147] employed a semi-supervised twin projection vector 

machine that enhances classification by using labeled data 

to establish the model’s framework while utilizing unlabeled 

data to refine and validate its predictions. Similarly, Cheng 

et al. [148] implemented a teacher-student semi-supervised 

model for risky driving detection that uses a limited amount 

of labeled data to guide learning while extensively employing 

unlabeled data for model generalization. This approach enables 

the teacher to generate pseudo-labels from the unlabeled data, 

which are then used by the student for training, thus enhancing 

dataset size and detection accuracy without extensive manual 

labeling. 

The driver labeling approach is popular due to its simplicity 
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in categorizing and comparing different drivers. It can be im- 

plemented in both offline (to predict behaviors prior to driving) 

and online (to adapt recommendations in real time based on 

the driver’s current state) manners. However, this method may 

sometimes oversimplify complex driving behaviors by fitting 

them into a limited number of categories. 

 

D. Other Approaches 

1) Personalized Driving Policy: Considering its ability to 

adapt to a driver’s behavior over time, manage complex 

decision-making tasks, and adjust its actions based on differ- 

ent environmental states, personalized reinforcement learning 

(RL) is employed to create a highly responsive and per- 

sonalized driving behavior model. Considering the driving 

aggressiveness and riskiness of each driver, researchers [149] 

designed an RL-based personalized driving system (i.e., ve- 

hicle controller) to recommend driving actions to the driver. 

Leveraging smartphone sensor data, Vlachogiannis et al. [150] 

utilized RL to develop a personalized driving behavior model 

that adapts to individual driving patterns and environmental 

states. The RL-based system analyzed critical driving metrics 

like aggressiveness and speeding to formulate personalized 

driving policies, which are delivered through a vehicle con- 

troller system, and recommended self-improvement strategies 

to drivers. Likewise, Uvarov and Ponomarev [151] presented 

an RL-based intervention strategy that trained a personalized 

policy to maintain the state (e.g., alertness) of a driver. Besides 

RL, generative adversarial imitation learning (GAIL) is getting 

famous for learning the complex driving policy of human 

driver [152], and it can be extended to discover the interaction 

policy between to multiple agents. Still, the limitations of these 

policy learning approaches cannot be neglected. It may require 

a large amount of data and computational resources to train 

the model effectively. The learning process can be slow and 

may require numerous iterations to converge. 

2) Personalization by Qualitative Assessment: Besides the 

aforementioned objective behavior modeling approaches, in- 

corporating qualitative assessment has emerged as a valuable 

strategy due to its explainability of driving behavior and its 

capacity to capture experience and preference from the driver’s 

perspective. These qualitative assessment can be implemented 

by preference questionnaire [20], [44], psychometric tests 

[153], driver feedback [46], [154], and interviews [155]. 

Still, these intuitive and linguistic qualitative assessments 

require further quantification before they can be integrated 

into modeling frameworks. Consequently, rule-based methods 

have gained attention for effectively incorporating subjective 

judgments, often dictating the creation of rules or the formu- 

lation of scoring metrics [12], [20], [27], [156]. Within rule- 

based approaches, fuzzy logic-based methods have emerged 

as significant tools, as illustrated in works like [59] and 

[157]. These methods are especially adept at quantifying 

ambiguous linguistic concepts, offering a precise interpretation 

of subjective expressions, such as discerning the subjective 

boundaries of ’too close’ in car following scenarios. However, 

these methods have their limitations, as they may introduce 

biases into the research and present challenges in achieving 

broad generalization. Typically, they are employed to comple- 

ment objective methods, offering additional perspectives and 

enriching the analytical narrative. 

 

V. MODEL VALIDATION 

The model validation process assesses the model’s perfor- 

mance based on a set of benchmarks and indexes, measuring 

the model’s accuracy, effectiveness, and generalizability. This 

step ensures the reliability and robustness of the model before 

deployment, enabling developers to observe its performance 

in real-world scenarios, pinpoint unexpected challenges, and 

fine-tune it as needed. 

 

A. Evaluation Stages 

Similar to the validation of other personalized systems 

[158], the personalized driving behavior model can be evalu- 

ated through three sequential phases: Offline Playback, Driving 

Simulators, and Field Experiments. In the Offline Playback, 

the model takes in recorded data or uses an independent dataset 

distinct from the one used for model development to gauge its 

fidelity to real-world driving behavior. Driving Simulation 

are instrumental in assessing the model’s performance against 

other benchmarks. The final phase, Field Experiments, ne- 

cessitates testing the model in genuine traffic conditions. Pro- 

gressing from a proof-of-concept phase to application-oriented 

studies, the current research landscape shows limited work 

that traverses all these stages. The majority focus primarily 

on the first phase, aiming to demonstrate the efficacy of their 

personalization algorithms. 

Given that driving personalization models often deal with 

time series data, the resulting data sequences can be termed 

as ’trajectories.’ In personalized driving, these trajectories 

encapsulate a series of actions or states over time, uniquely 

characterizing a driver’s behavior patterns, ranging from pedal 

behavior and car-following distances to route selections. Addi- 

tionally, driver labeling typically serves as an intermediary step 

in modeling. These models aim to categorize drivers based on 

their unique driving patterns and then feed into a trajectory- 

level personalization. Therefore, these clustering and classifi- 

cation models often adopt trajectory similarity measures for 

evaluation. Some studies with the primary focus on driver 

labeling compare selected features between driver classes, 

employing metrics such as confusion metrics for performance 

evaluation. For instance, Bhumika et al. [21] used Receiver 

Operating Characteristic (ROC) curves and F-scores to predict 

various driving behaviors, while Zahraoui et al. [143] applied 

False Discovery Rate (FDR) and Rate of Change (RoC) to 

assess the effectiveness of clusters formed from training and 

test trip data. 

For validating the similarity of trajectories, metrics like 

Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), or Root Mean Square Percentage Error (RMSPE) 

are frequently used [5], [31], [32]. Such metrics are apt 

for comparing trajectories with clear start and end points. 

Specifically, MSE offers a simple yet effective computation, 

RMSE ensures consistent unit measurements, and RMSPE 

ensures the metric remains insensitive to data scale. However, 
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Fig. 4: Multi-driver co-simulation platform (adapted from [121], [123]) 

 

complexities arise with varied data lengths, different start and 

end times, or noise. Hence, alternative validation metrics have 

been explored. For instance, Wang et al. [31] also employed 

the Log Predictive-Density error (LPD) which considers the 

entire prediction distribution, penalizing overconfident predic- 

tions more than acknowledged poor predictions. On a similar 

note, Toohey et al. [159] introduce and compare four trajectory 

similarity measures: Longest Common Subsequence (LCSS), 

Fre´chet Distance, Dynamic Time Warping (DTW), and Edit 

Distance. LCSS is efficient against noise and outliers but can 

be sensitive to minuscule trajectory alterations and might not 

be suitable for varied trajectory lengths. Fre´chet Distance is 

robust against noise and manages different trajectory lengths 

but can be computationally intensive for larger datasets. 

DTW is appropriate for varied trajectory lengths and time 

distortions but can be noise-sensitive and resource-intensive. 

Edit Distance is effective for diverse trajectory lengths and 

time distortions and is scalable for larger datasets but may 

be noise-sensitive. Expanding on the LCSS metric, Huang 

et al. [35] proposed a similarity function (SF) to compare 

two trajectories. Beyond trajectory comparisons, contrasting 

the distribution of key indices from model-generated data 

is also prevalent. For instance, Baek et al. [94] validated a 

personalized speed planning algorithm using Time Headway 

(THW) as an index and used Kolmogorov-Smirnov (K-S) 

distance and Kullback-Leibler (K-L) divergence to measure 

the resemblance between the driving styles of their algorithm 

and human drivers. Also, Wang et al [138] compared the 

observed frequency of variables in the collected datasets with 

the expected frequency of samples from the learned model by 

the goodness-of-fit (GoF) statistic value. 

While offline playback offers clarity, critics argue that the 

abstract nature of personalization might not be fully reflected 

by mere time series or distribution matches. Overempha- 

sis could lead to overfitting. Therefore, real-time validations 

are essential, enabling instantaneous driver feedback on new 

systems as a representation of personalization performance. 

Despite the rising use of driving simulators and Human-in-the- 

loop simulators for the design and validation of autonomous 

vehicle systems, leveraging real-time driver feedback for vali- 

dating personalization remains relatively uncharted. An excep- 

tion is the work of Zhao et al. [32], [80], [81], who, in their 

validation of a personalized Adaptive Cruise Control (ACC) 

system, focused on driver interventions. They introduced met- 

rics like the Percentage of Interruption (PoI) which denotes 

the fraction of time the driver intervenes with the acceleration 

or brake pedals, and the Number of Interruption-per-Minute 

(NIM), indicating the frequency of such interventions. 

Beyond measures of trajectory similarity and real-time 

feedback, questionnaires emerge as an instrumental approach 

to validate personalized driving behavior. They enable a direct 

capture of drivers’ subjective evaluations, adding depth to 

objective metrics. For example, Panou et al. [10] used multi- 

phase trials to assess a personalized collision avoidance system 

(P-CAS) by measuring driver reaction times. After the trials, 

participants completed questionnaires that focused on their 

opinions about different warning settings. Similarly, Amado 

et al. [160] utilized questionnaires but uniquely incorpo- 

rated an expert observer. This expert compared drivers’ self- 

assessments against an objective evaluation, aiming for a bal- 

anced understanding of the evaluated skills and performances. 

In the quest to quantify a driver’s satisfaction and trust in 

personalized systems, researchers have looked beyond just in- 

direct metrics. A growing trend is to incorporate physiological 

sensors to measure a driver’s bodily responses during inter- 

actions with these systems. For instance, Nacpil et al. [161] 

elaborated on how biosignals, obtained via tools like smart- 

watch sensors for electrocardiography (ECG) and headsets for 

electroencephalography (EEG), can be harnessed. Originally 

intended for clinical applications, like EEG for diagnosing 

epilepsy or discerning emotions, these tools are now being 

repurposed. Furthermore, methodologies such as eye tracking, 

http://www.ieee.org/publications/rights/index.html


This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2024.3425647 

14 

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 23,2025 at 20:02:48 UTC from IEEE Xplore. Restrictions apply. 
© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information. 

 

 

impedance cardiography (ICG), and photoplethysmography 

(PPG) are also employed, enriching the range of data available 

to analyze a driver’s interaction with the personalized system. 

In contrast to driving simulators, field experiments offer 

enhanced validation by reflecting real-world driving condi- 

tions. However, they encounter issues such as safety concerns, 

regulatory constraints, and the complexities of system design, 

which can limit the extent of their validation. Still, some 

researchers choose on-road experiments for direct validation. 

For example, Panou et al. [10] used multi-phase trials to 

assess a personalized collision avoidance system (P-CAS) by 

measuring driver reaction times. After the trials, participants 

completed questionnaires that focused on their opinions about 

different warning settings. Similarly, Amado et al. [160] uti- 

lized questionnaires but uniquely incorporated an expert ob- 

server. This expert compared drivers’ self-assessments against 

an objective evaluation, aiming for a balanced understanding 

of the evaluated skills and performances. 

 

B. Validation Tools 

The aforementioned three phases for model evaluation 

phases mainly rely on human-in-the-loop (HuiL) driving sim- 

ulators and field experiment testbeds. Developing these tools 

becomes essential in validating the model, ensuring that it not 

only meets the designated benchmarks but is also robust and 

reliable in real-world applications. 

1) Simulation Platform: Evaluation of HuiL driving sim- 

ulator demands a high standard for vehicle model, user 

interface, and traffic environment. Much research has been 

carried out to construct open-platform game engine-based 

simulators, such as NVIDIA DRIVE Sim [162] based on 

Omniverse [163], CARLA [164] based on Unreal Engine 4 

(UE4) [165] and SVL [166] based on Unity [167]. These 

simulators are equipped with high-fidelity physical engines, 

sophisticated UI designs, and adaptable road environments that 

incorporate various weather and road conditions, facilitating 

comprehensive autonomous driving simulations. Additionally, 

they offer extensive customization options for onboard sen- 

sors, including radar, LiDAR, camera, and GPS, ensuring a 

versatile and realistic simulation environment. While game- 

engine simulators are adept at providing intricate simulations 

for individual vehicles, they face challenges in terms of the 

computational load and in effectively replicating complex, 

dynamic traffic environments. In contrast, tools like PTV 

VISSIM [168], a commercial microscopic traffic simulation 

platform, as well as SUMO [169], an open-source alternative, 

excel in creating realistic traffic environments. However, these 

microscopic traffic simulators ignore the complex interaction 

between drivers and may not be good at simulating individual 

vehicles. Therefore, fusing the game engine-based simulator 

and traffic simulator [170], [171] becomes the solution to pro- 

vide a simulation platform for personalized driving behavior 

evaluation. 

A multi-human-in-the-loop (MHuiL) platform, developed 

by Zhao et al. [121], [123], seamlessly integrates the features 

of Unity and SUMO, enhanced by the computing power and 

personalized data storage facilitated by Amazon Web Services 

(AWS). This platform is designed for driving behavior data 

collection, algorithm development, and model evaluation. As 

shown in Fig. 4, the platform is equipped with two sets of driv- 

ing cockpits, enabling two drivers to simultaneously participate 

in a single simulation, marking a significant advancement in 

interactive behavior modeling. 

This MHuiL platform stands out in driving behavior model 

evaluation, primarily due to its high-fidelity driving environ- 

ment, building on a replication of a real-world on/off-ramp 

scenario in Riverside, California. Also, for a fair evaluation, 

its scenario replay feature ensures identical environmental 

settings for comprehensive analyses. This intricate simulation 

is made possible and robust by the Edge-Gateway, a pivotal 

element that bridges the integration and synchronization of 

data and functionalities between Unity, SUMO, and AWS. It 

ensures not only seamless interoperability within the platform 

but also extends compatibility, facilitating the integration of 

other simulators, software, and real-world end devices for a 

comprehensive simulation experience. 

Besides model evaluation, this tool enables the personalized 

dataset collection for each driver at a low cost and addresses 

the long tail problem by replicating rare scenarios. It under- 

scores the platform’s adaptability in data collection, enhancing 

the dataset’s diversity. Moreover, the multi-player setup am- 

plifies the focus on interaction behavior, capturing nuanced 

decisions and reactions from both drivers’ perspectives. This 

rich dataset is further enriched by AWS’s real-time support 

for services like trajectory prediction, driving scoring, and 

fuel consumption analysis, facilitating deeper, more insightful 

analyses. 

2) Real-World Testbed: While HuiL simulations are in- 

valuable for initial testing and iterations, the complexity of 

real-world conditions necessitates comprehensive evaluations 

through real-world test beds. These testbeds evaluate the 

model’s adaptability and performance under practical chal- 

lenges such as communication delays, signal loss, sensor 

accuracy, and computational limits, offering a thorough assess- 

ment beyond the controlled environments of simulations. How- 

ever, constructing a large-scale real-world testbed (e.g., Mcity 

[172]) is both time-intensive and resource-heavy. As stated 

in [173], a naturalistic-FOT (N-FOT) experiment ”cannot be 

conducted for less than $10,000,000”, and hence researchers 

search for more cost-effective alternatives like scenario-based 

testbeds and mini-cities [174]–[176], which offer a practical 

environment for proof-of-concept development and algorithm 

evaluation. 

To study personalized driving behavior (model development 

and evaluation), a vehicle-edge-cloud digital twin testbed was 

built by Liao et al. [66]. This real-world testbed involves three 

passenger vehicles, an edge server, and AWS, as presented in 

Fig. 5, which was used to collect a personalized dataset and 

evaluate the performance of the proposed personalized lane 

change behavior prediction system. 

The architecture of this testbed maximizes the computa- 

tional prowess of the cloud server. It crafts a unique digital 

twin for each driver, extrapolated from their personalized driv- 

ing model. This facilitates real-time simulations and analyses 

within a virtual environment and can connected to the simu- 
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Fig. 5: Vehicle-edge-cloud digital twin platform for personalized dataset collection and algorithm validation [66] 

 

lation platform. With AWS’s data storage and computational 

power, each driver’s digital twin is dynamic, evolving, and 

adapting through the continuous intake of real-world driving 

data. 

The integration of an Edge-Gateway on the edge server 

mitigates the challenge of communication latency between 

the cloud and vehicles, ensuring seamless data exchange and 

real-time service delivery to vehicles. The portability of this 

testbed, necessitating only a tablet and GPS unit per vehicle, 

enhances its applicability. It can be effortlessly deployed in any 

area with signal coverage and is adaptable to various scenarios. 

Further, the model evaluation is enhanced by the edge server’s 

capability to replicate specific scenarios and direct each vehi- 

cle to predetermined locations at targeted speeds. This level 

of control ensures an environment of consistency, enabling 

accurate assessment and comparison of model performances 

under identical conditions. 

VI. GAPS AND OPPORTUNITIES 

Despite considerable advancements in driving behavior per- 

sonalization, unexplored areas and unanswered questions per- 

sist, offering potential opportunities for research and innova- 

tion. This section illuminates these opportunities, pinpointing 

specific gaps in the existing body of literature and propos- 

ing pathways for future exploration to enrich our collective 

understanding and knowledge. 

 

A. Personalized Dataset and Validation 

The first impediment in personalized driving behavior stud- 

ies is the notable absence of open-source datasets that are 

tailored to individualized driving patterns. Such datasets are 

instrumental for benchmarking and cross-validation in the 

development of more precise and adaptive models. 

Next, a personalized driving dataset in mixed traffic is 

significant. In the foreseeable future, human-driven and in- 

telligent vehicles are anticipated to coexist on the roads, 

and understanding the dynamics of their interactions becomes 

paramount. Although datasets like Drive&Act [105] have 

provided benchmarks for action recognition in automated 

vehicles, there is a pronounced need for personalized datasets 

in mixed traffic that capture the intricacies of human driving 

behaviors in mixed traffic environments. Answers to 1) how 

human drivers will interact with other intelligent vehicles, and 

2) how they will behave in an intelligent vehicle, are worth 

studying. 

Furthermore, the complexity of driving behaviors neces- 

sitates a longitudinal approach to data collection. A brief 

segment of trajectory or short-term data is often insufficient 

to encapsulate the detailed and recurrent patterns of individual 

drivers since factors like emotion, weather, and traffic con- 

ditions can introduce variability. Long-term data collection 

emerges as a pivotal element in distilling consistent and 

recurring driving patterns amidst the noise of occasional and 

situational variations. 

The validation of personalized models poses another 

challenge. The current paradigm often relies on post- 

implementation assessment, gauging whether drivers are sat- 

isfied with the product outcomes determined by the models. 

This approach underscores the necessity of incorporating 

drivers’ feedback more integrally in the model evaluation and 

evolution processes. Another future research could explore 

the thresholds and triggers for model updates, ensuring the 
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models remain adaptive and reflective of the drivers’ evolving 

behaviors and preferences. 

The integration of digital twins in the driving behavior 

personalization has been identified as a promising avenue, 

although it is yet to be fully explored and optimized. One 

of the cardinal advantages of employing digital twins lies in 

their potential for extensive data collection, which is pivotal 

for honing the accuracy and adaptability of driving behavior 

models. The support of the cloud (e.g., AWS and similar 

cloud service) facilitate the long-term recording and analysis 

of individual driving data. With the continuous influx of new 

data, the adaptability of the model over time ensures that the 

model dynamically reflects the evolving patterns, behaviors, 

and preferences of individual drivers. 

B. Personalized Perception Behavior 

One significant gap in the current research is the sparse 

discussion on personalized perception behavior, even within 

the broader context of general perception behavior. Perception 

behavior forms the foundational layer in the driving behavior 

model, dictating how drivers assimilate information from their 

surroundings. It is crucial to acknowledge that the infor- 

mation processed by each driver can vary significantly, due 

to various factors including individual perception behaviors, 

prior experiences, and situational awareness. A comprehensive 

understanding of the types of information absorbed by drivers 

is essential to accurately analyze the subsequent, distinct 

cognition and actuation behavior. 

The deficiency in personalized perception behavior study 

is manifested in certain shortcomings. For instance, research 

tends to analyze car-following behavior with a narrow focus, 

predominantly scrutinizing the driver’s reactions to the vehicle 

directly in front. However, in reality, drivers engage in a much 

more complex perceptual process, continuously monitoring 

their surroundings, including utilizing rear mirrors to gauge the 

actions of the vehicles behind them and potentially adjusting 

their strategies accordingly, especially when they perceive they 

are being tailgated. Furthermore, individual drivers exhibit 

unique habits and preferences when it comes to observing the 

road environment. For instance, while some carefully check 

over their shoulder to gauge the traffic behind or in the blind 

spot, others may only give a glance, relying more on mirrors 

or other cues. An analysis of head positions [84], [177] could 

serve as a rich data source, offering insights into how drivers 

perceive side-lane traffic and enhancing the accuracy of lane 

change predictions. 

Further research in this domain could potentially shed light 

on how personalized perception behavior intertwines with 

cognition and actuation phases. Therefore, highlighting the 

pivotal role of perception behavior and advocating for more 

extensive research in this area stands as a pressing need in 

the field, poised to potentially revolutionize our understanding 

of driving behavior from a more personalized and insightful 

vantage point. 

C. Personalized Interaction Behavior 

The study of personalized interaction behavior, while having 

gained attention, is still an evolving field with marked gaps 

and untapped opportunities. The complexity of interaction 

behavior is woven by not only the individual driver’s habits, 

skills, and responses but is also significantly influenced by the 

dynamic interplay of multiple actors within the traffic system. 

Each driver’s opinion on the interaction is different, and to 

model their personalized interaction behavior, there is a noted 

absence of comprehensive research addressing intricate ques- 

tions: When and under what circumstances does interaction 

occur? Who initiates and who responds? What are the tangible 

and intangible impacts of these interactions? Furthermore, the 

extent to which drivers consciously aim to influence their 

environment and respond to the perceived intentions of others 

is uncharted territory. This raises other pivotal questions: 

Can we quantify the intensity of interactions? Can we map 

the trajectory of actions and reactions in real-time driving 

scenarios, offering insights into the fluid, adaptive nature of 

driving behaviors? 

Addressing these gaps requires innovative methodologies 

and tools capable of capturing and analyzing the multi- 

modal driver interactions. Still, current interaction research 

[86] focuses more on general multi-agent interaction and has 

barely scratched the surface of understanding how a driver’s 

actions are influenced by personalized driving patterns, incite 

reactions from surrounding drivers, and vice versa. One of 

the profound fields is the application of causality and circular 

causality analyses [6], [178] in the study of interaction driving 

behaviors. 

The pursuit of uncovering the secrets of personalized inter- 

action behaviors, their triggers, dynamics, and impacts, is not 

just an academic endeavor but a critical pathway to making 

our roads safer, more efficient, and harmonious spaces where 

technology and humanity intersect seamlessly. 

 

D. The Rise of Large Language Models (LLMs) 

The incorporation of Language Learning Models (LLMs) is 

emerging as a pivotal evolution in the domain of personalized 

driving behavior modeling. The complex narratives of driving, 

encompassing diverse scenarios and driver responses, can be 

intricately mapped and communicated through the advanced 

linguistic capabilities of LLMs. For example, LINGO-1 devel- 

oped by Wayve [179] employing LLM-based vision-language- 

action model (VLAM) for interpreting driving scenarios has 

demonstrated a promising research direction. A LINGO-1- 

empowered vehicle can inform the driver that it stopped 

because of pedestrians crossing the road. The capacity to 

explain the rationale behind each vehicular movement in com- 

prehensible language not only enriches the driver’s situational 

awareness but also fortifies the trust dynamics between the 

driver, the vehicle, and the embedded AI systems. 

The prospect of leveraging Large Language Models (LLMs) 

to model personalized driving behaviors presents a compelling 

advancement in the field of AI-assisted driving. Envision AI 

systems, augmented by the advanced capabilities of LLMs, 

meticulously tailored to resonate with each driver’s unique 

style and reactions. Different from transcends traditional and 

generalized solutions, this approach introduce a sophisticated 

AI co-pilot, which is designed to not only interpret and 

http://www.ieee.org/publications/rights/index.html


This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2024.3425647 

17 

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 23,2025 at 20:02:48 UTC from IEEE Xplore. Restrictions apply. 
© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information. 

 

 

forecast driving scenarios in real-time, but also to do so 

through a lens that is distinctly tailored to each driver. By 

elucidating decisions and maneuvers with remarkable clarity, it 

demonstrates an intricate understanding of individual drivers’ 

preferences and patterns, thereby personalizing the driving 

experience to an unprecedented degree. 

But the potential of LLMs extends even further. They offer a 

transparent view of the reasoning behind each driving decision. 

Drivers are not just passive recipients of information but are 

engaged participants, gaining insights into their behaviors and 

habits. If the AI’s interpretation is not quite right, drivers 

can offer feedback, creating a dynamic learning environment 

where both the AI and driver evolve together. This synergy 

promises not just a customized driving experience but also 

one that’s safer and grounded in mutual understanding and 

trust. It’s a scenario where technology and humanity intersect, 

each enhancing the other, leading to a new era of intelligent, 

personalized, and explainable driving. 

 

E. Discussion 

As we navigated the methodologies of personalization in 

driving behavior and analyzed the pros/cons of each type of 

approach, it is crucial to consider three key points: 

Personalization vs. Generalization. While personalization 

enhances the driving experience, over-personalization might 

constrain system flexibility and potentially induce over- 

reliance that could compromise safety and negatively impact 

overall traffic efficiency. The appropriate level of personal- 

ization is driver-specific and calls for continued research and 

feedback. 

Model Robustness. Personalized models need to handle 

diverse driving scenarios effectively, but overfitting can pose 

challenges. Robustness needs training on various scenarios, us- 

ing strategies to avoid overfitting, and regular model validation 

and updates based on real-world performance. 

Ethical and Privacy Concerns. As we collect and pro- 

cess extensive amounts of sensitive personal data, this raises 

critical questions regarding data security, privacy, consent, 

and ownership. Balancing the creation of highly personalized 

driving models with ethical imperatives and legal frameworks 

is essential. Safeguards need to be established to ensure data 

privacy and security while enabling the beneficial aspects 

of personalization (e.g., blockchain technology and federal 

learning [180]). 

Constraints. Even though this review covers many as- 

pects of personalization in driving behavior, there are still 

some advanced technologies, such as Virtual Reality (VR), 

Augmented Reality (AR), and other wearable devices, that 

remain unexplored. Integrating these technologies into data 

collection—whether in simulation environments, NDS, or 

FOT—presents an unexplored frontier that could significantly 

enhance the granularity and accuracy of behavioral data for 

better personalization. 

 

VII. CONCLUSIONS 

In this paper, we proposed a comprehensive taxonomy for 

personalized driving behavior, based on a thorough literature 

review. This taxonomy is structured along the span of time, 

driving behavioral response pipeline, granularity, and interac- 

tion. We explained the process of driving behavior person- 

alization in detail, focusing specifically on the development 

of personalized behavior models. We elaborated on common 

personalization approaches, providing detailed explanations 

supported by extensive literature. This work serves as a 

valuable resource for future research and development in the 

field of personalization in driving behavior. 
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