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Abstract—Personalization in driving behavior research is cru-
cial for developing intelligent vehicles that can safely coex-
ist with human-driven vehicles in mixed-traffic environments.
By accounting for the diversity of human driving behaviors,
personalized modeling can improve predictive capabilities of
intelligent vehicles and foster a more balanced traffic ecosystem.
This paper presents a systematic review on personalization in
driving behavior, evaluating their potential to enhance road
safety, transportation efficiency, and human-centric mobility. It
proposes a taxonomy to categorize personalized driving behaviors
and surveys relevant datasets, modeling methodologies, and
techniques for validating personalized driver models. Focusing
on personalized driving behavior, the study emphasizes the need
for intelligent vehicles to adapt to the complex and heterogeneous
behaviors exhibited by human drivers to enhance predictability,
responsiveness, and ultimately create a safe and efficient traffic
environment. Lastly, key challenges are identified, along with
promising future research directions to advance personalized
driving behavior research.

Keywords: Personalization, driving behavior modeling, data-
driven techniques, human-in-the-loop simulation, field exper-
iments

I. INTRODUCTION
A. Motivation

The study of driving behavior is a cornerstone in the pursuit
of human-centered mobility [1], a concept that prioritizes the
needs and experiences of people in the design and implementa-
tion of transportation systems. While traditional driving behav-
ior study has focused on collective trends, the true complexity
of driving behavior lies in its diversity among individuals,
each shaped by unique preferences, skills, and purposes. This
diversity is not just a challenge to the understanding of
collective behavior but a vital area of study, necessitating a
deeper exploration into the unique traits characterizing each
person’s driving behavior. In the context of emerging intelli-
gent vehicles (IVs) coexisting with human-driven vehicles in
mixed-traffic environments, the concept of personalization in
driving behavior becomes even more crucial. In this study,
personalization refers to the customization of driving systems
to recognize and adapt to the unique driving patterns, habits,
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and preferences of individual drivers. Such understanding is
essential for the advancement of IVs and for ensuring their
integration into our traffic ecosystems in a manner that is
seamless and harmonious.

In this light, personalization in driving behavior emerges as
a multifaceted concept that encompasses the distinctive driving
patterns (observable behaviors and sequences of actions),
habits (regular practices or tendencies, often unconscious),
and preferences (personal choices based on likes or dislikes)
exhibited by individual drivers throughout the driving process.
This concept covers the responses and adaptive strategies they
employ in reaction to varying external stimuli, highlighting
a driver’s personalized interaction with static road elements
and other dynamic road users. These specific reactions and
interactions are deeply influenced by a constellation of factors
including, but not limited to, individual personality traits,
driving experiences, and specific situational conditions like
weather, traffic, and road types, all of which collectively shape
their unique driving behavior.

In recent years, research has revealed the significant im-
plications of personalizing driving behavior across various
sectors within transportation and vehicle technology. Studying
these behaviors offers extensive benefits, including enhanc-
ing user experiences in human-driven vehicles, advancing
technologies in autonomous vehicles, and shaping informed
transportation policies. For human-driven vehicles, knowing
the driver’s preference enhances the user experience by pro-
viding personalized steering control setting [2] and vehicle
personalized cabin climate conditioning [3], [4]. For IVs, i.e.,
partially or fully automated vehicles, understanding other road
users’ driving behavior allows IV to predict its surrounding
environment [5], [6], and react appropriately to unexpected
events or changes. This is where personalization plays a
crucial role. By tailoring predictions to individual driving
behaviors, Vs can achieve more precise assessments of their
environment. Such enhanced accuracy is beneficial for various
vehicular communication applications [7], which are crucial
for the safe and efficient operation of these vehicles. No-
tably, in applications that require prediction, like cooperative
maneuvering and intent sharing, the improved understanding
gained from personalization is invaluable. In cooperative ma-
neuvering, including negotiation scenarios, IVs can anticipate
and coordinate their movements more effectively with other
road users [8]. Similarly, intent sharing applications [9] benefit
as IVs can reliably communicate their future actions, such
as turning or braking, to surrounding vehicles. This level of
predictive capability, underpinned by personalized behavior

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 23,2025 at 20:02:48 UTC from IEEE Xplore. Restrictions apply.

© 2024 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.


http://www.ieee.org/publications/rights/index.html
mailto:xishunliao@ucla.edu

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIV.2024.3425647

models, is crucial for fostering safer and more harmonious
interactions between automated and human-driven vehicles
in mixed traffic environments. As a result, personalized au-
tonomous systems [10], [11] will become more trustworthy
and reliable to be accepted and adopted by the public. Besides
vehicle technologies, the study of personalized driving patterns
can significantly influence the development of informed, eq-
uitable rules and regulations in sectors. For example, driving
pattern learning for driving risk scoring [12], [13] can be used
by insurance companies to tailor pricing, catalyzing a new era
of personalized and responsible road usage.

Personalization in driving behavior lies at the intersection
of two fields: driving behavior modeling and personalization.
The field of driving behavior modeling has witnessed a surge
in scholarly investigation, with several comprehensive surveys
elucidating various approaches that have been undertaken in
this domain [14]-[16]. Meanwhile, reviews on personalized
Advanced Driver-Assistance Systems (ADAS) [17], [18] have
summarized the approaches to implement personalization on
vehicles. However, despite valuable contributions, contempo-
rary surveys exhibits notable shortcomings:

- Overgeneralization in driving behavior modeling. A criti-
cal limitation of solely studying driving behavior without
personalization is the overreliance on generalized data,
which consequently leads to the overlooking of individual
driver variability. Additionally, these studies often use
static modeling methods that fail to capture the dynamic
and evolving nature of individual driving behaviors, lim-
iting their real-world applicability and adaptability.

- Narrow scope in ADAS personalization: Surveys for
personalized ADAS emphasizes personalization primarily
focuses on vehicle-level adaptations, such as human-
machine interface customization and control settings.
This narrow focus often misses the broader aspect of
personalization, leading to an incomplete understanding
and integration of personalized driving behavior into
system design.

- Lack of comprehensive modeling framework: Across both
fields, there is a notable absence of a comprehensive and
structured process for developing models that encapsulate
personalized driving behavior. This gap hinders the effec-
tive integration of individual driver characteristics into
predictive models and practical applications.

B. Contributions

Compared to existing surveys, our key contributions in-

clude:

- We performed a comprehensive review of current studies
on personalization in driving behavior.

- We proposed a comprehensive taxonomy, mapping mod-
eling strategies across various time scales, behavioral
response stages, and granularity for a systematic under-
standing of personalized driving behavior.

- We elaborated the process of personalizing driving be-
havior, including data collection, behavior modeling, and
model validation.

- We delivered an insightful discussion to identify promis-
ing areas for personalized driving behavior research.

C. Study Scope

This review discusses personalization in driving behavior
and especially focuses on how driving behaviors are charac-
terized and modeled for each individual driver. To be specific,
it explores the theoretical foundations and methodologies of
personalized behavior modeling, as well as the integration of
individualized data to enhance personalization for algorithms
and systems, allowing for the adaptation of general driver
models to meet specific personal needs.

This study emphasizes the prevalent data-driven approaches
in the field of driving behavior personalization. The rationale
behind this is that individual driving behaviors are complex
and diverse, influenced by a myriad of factors. Traditional
rule-based and model-based approaches often fall short in
capturing this complexity. By leveraging a vast amount of
data and a number of modern machine-learning techniques,
researchers can develop models that are both more accurate
and specifically tailored to individual drivers. This data-driven
methodology aligns with the trends and findings identified in
our systematic review of the literature, reflecting the latest
advancements and challenges in the domain.

To carry out a systematic literature search, this study fol-
lows the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analysis) guidelines [19]. The literature
search is conducted using two databases: Google Scholar
and IEEE Xplore digital library. The step-by-step screening
process is shown in Fig. 1. Initially, the title or keywords
of the article must include “personalization”, ”personal”, or
“personalized”. Secondly, the scope is narrowed to literature
published within the last decade, specifically from 2013 to
2023. Subsequently, an in-depth search is executed on these fil-
tered results, employing a combination of key terms: *Driving’,
’Driver’, *Vehicle’, Car’, ’ADAS’, ’Cruise control’, ’Driver
profile’, and ’Behavior’. The final step involves a careful
exclusion of duplicate articles and those not directly relevant
to the central theme of personalized driving behavior, ensuring
a focused and relevant collection of literature for our study.

D. Article Organization

The remainder of this paper is organized to correspond
with the three main stages of the personalization process: data
construction, behavior modeling and algorithm development,
and model evaluation. Section II presents a taxonomy of
personalized driving behavior, establishing the foundation for
the subsequent sections. Section III discusses the construction
of a personalized driving behavior dataset, including different
categories of available datasets, data acquisition and process-
ing, forming the basis of our data-driven approach. In Section
IV, we elaborate approaches to developing a personalized
model and system for driving behavior. Section V focuses
on the evaluation of the personalized model. Section VI is
dedicated to A detailed discussion for research gaps and
future directions, synthesizing insights from each stage of
the personalization process. Finally, the paper concludes in
Section VII.
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Fig. 1: The PRISMA schema for literature search in this study

II. TAXONOMY

Modeling personalized driving behavior is the foundation of
the personalization process, and personalized driving behaviors
can be organized using an integrated and cascading taxonomy,
as shown in Fig. 2. This multi-tiered approach begins with
categorizing behaviors into long-, mid-, and short-term from
the temporal scale perspective. Within the short-term behavior
section, we further divide the behavioral response stages
during driving into distinct stages based on the vehicle opera-
tion pipeline, i.e., perception, cognition, and actuation. These
stages can be further detailed by classifying specific types
of driver-vehicle interactions. This layered and interconnected
structure effectively captures the full spectrum of personalized
driving behaviors, from overarching temporal patterns down to
the nuances of moment-to-moment interactions.

A. By Temporal Scale

The investigation of personalized driving behavior is com-
plex, and we approach it by segmenting it into three distinct
time scales: long, middle, and short-term. These scales each
possess distinctive characteristics and are intricately inter-
linked with one another, influencing and being influenced in
a dynamic manner. Long-term behaviors set a foundational
context that shapes mid-term behaviors, which in turn have
a direct impact on short-term actions and decisions. This
creates a complex, interconnected web of driving behaviors
across these temporal scales, necessitating different modeling
strategies and focus.

Long-term: On this temporal scale, personalized driving
behavior focuses on relatively stable aspects of the driver’s
profile, such as personality [20], [21], demographic informa-
tion [22], [23], and frequently visited locations (e.g., work-
place and home) that are used in activity-based modeling [24].

These features, collected and profiled over a long duration,
establish the foundational layer for performing personalization,
providing a consistent reference point from which we can
integrate and adapt the more dynamic aspects of the driver’s
profile. For example, a driver’s travel behavioral preference
for manual versus automatic transmission, the willingness to
engage in risk [25], and the impact of regional geographic and
socio-economic characteristics on ride-hailing driver profiling
[26]) would fall under this category.

Mid-term: This represents the modeling of personalized
driving behavior that, while exhibiting more changes, still
maintain relative stability. Compared to long-term behaviors,
mid-term behaviors typically span multiple trips or a single
extended trip. This scale takes into account a variety of factors
that can be influenced by time of day, specific events, or
environmental changes. A key component of this category
is the analysis of driving styles [2], [27]-[30], embodying a
blend of persistent long-term habits and adaptable mid-term
responses to dynamic elements like traffic states and roadway
geometry. As representative driving patterns, car-following
[31]-[33] and lane-change behavior [34]-[36] at this level
encompass a driver’s general tendencies and preferences, and
reveal how the driver interacts with surroundings, providing
insights into a driver’s consideration of safety, comfort, and
efficiency. Also, driver mood state [37], [38] falls into the mid-
term category, as a driver’s emotional state can fluctuate based
on specific experiences or situations, but generally follows
certain patterns. Similarly, temporary driver physiological state
[39], [40], like drowsiness, has the same influence to driving
pattern. Moreover, drivers demonstrate distinct concerns re-
garding fuel/energy efficiency and exhibit corresponding be-
havioral adaptations when operating different types of vehicles
[41], especially for electric or hybrid vehicles [42]. Situational
circumstances should be considered as well, and the behavior
is influenced by factors like weather, traffic conditions, vehicle
conditions, passenger conditions, and route elevations [43]—
[47]. These mid-term elements, when combined, offer valuable
insights into how drivers respond to evolving conditions and
how these responses shape their overall driving behavior.

Short-term: This temporal scale pertains to immediate
behaviors and operations that change rapidly during the driving
process. Short-term behaviors are situational behaviors and are
directly influenced by mid-term behaviors. Compared to mid-
term behaviors, short-term behaviors are usually evaluated at
the level of a single trip or specific events. It encompasses
the whole behavioral response pipeline, including the driver’s
perception, cognition, and actuation, as elaborated in subsec-
tion II-B. Interactions with the vehicle’s control systems and
immediate responses to external events are also categorized
under short-term behaviors.

B. By Behavioral-Response Stage

When modeling personalized driving behavior, it’s critical
to consider the entire behavioral response pipeline, which
involves the stages of perception, cognition, and actuation.
These stimulus-driven stages reflect the sequential process of
human interaction with the vehicle and driving environment,
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Fig. 2: Taxonomy of personalized driving behavior

and they have specific characteristics unique to individual
drivers.

Perception stage: This initial stage is all about how the
driver perceives the environment. As illustrated by the Drift
Diffusion Model (DDM) [48], initial sensory inputs, or “stim-
uli”, are actively processed to accumulate evidence towards a
decision boundary. Perception is not merely a passive receipt
of information but actively influences the cognition (e.g.,
decision making) from the outset. This stage sets the premise
for all subsequent steps, as the information perceived here
will influence the cognitive processing of that information and,
ultimately, the physical actuation in response.

Drivers may exhibit different perceptual behaviors to gather
information, and not every driver receives the same infor-
mation or integrates it in the same way while driving. The
focus of a driver’s gaze is another significant factor [49],
[50]; some drivers may focus mainly on the road ahead, while
others frequently check mirrors or allocate their attention to
a secondary task [51] (e.g., instrument panels). Other factors
include the driver’s awareness of the environment [52], [53],
such as attention to traffic signs, other vehicles, and pedestri-
ans, and these often involve distraction or drowsiness detection
studies [54]-[57]. The perception stage also includes the study
of capability (affected by midterm behavior), such as vision
acuity, spatial awareness (distances, speeds, and angles), and
sensory responsiveness (visual, auditory, and tactile inputs), to
perceive the environment or access external signals.

Cognition stage: At this stage, the mental processing of
perceived information takes place. Drivers interpret what they
see, anticipate potential outcomes, and make decisions based
on their experience, understanding and judgement. Studies
focusing on this stage cover a variety of aspects. To name a
few, drivers’ risk assessment [58], [59] might greatly influence
how they react to potential dangers on the road. Also, decision-
making studies [60], [61] evaluate how drivers respond under
different circumstances, noting differences between more ag-

gressive or cautious behaviors. On the other hand, intention
prediction studies [62]-[67] anticipate a driver’s next actions
based on current behaviors, as a typical use case of cognition
process modeling. Additionally, studies on cognitive process-
ing, such as cognitive load assessment [68]-[70] contribute
further to understanding the cognitive demands on a driver
during various situations. Likewise, research into drivers’
emotional responses [38], [71] dives deep into how emotions
influence decision-making and overall driving behavior, further
enriching our understanding of the cognitive aspect of driving.
These aforementioned cognitive factors together shape the
comprehensive profile of a driver’s behavior on the road.

The inherently abstract nature of these cognitive processes
necessitates indirect methods for their assessment. Recent
advancements in physiological measurements have offered
promising methodologies to bridge this gap. For instance,
Luo et al. [72] studied how personal comfort system affects
the cognition performance based on heart rates. Najafi et al.
proposed to use Electrodermal Activity (EDA) Skin Potential
Response (SPR), their Electrocardiogram (ECG), and their
Electroencephalogram (EEG) for driver attention assessment
[73]. Govindarajan et.al. [74] adopted headband and camera
to measure EGG signals and thermal facial data, which are
used for personalized reaction time prediction. By correlating
physiological signals with driving behaviors, researchers can
infer the underlying cognitive and emotional processes for
more personalized and adaptive driving assistance systems that
cater to the individual cognitive profiles of drivers.

Actuation stage: The Actuation stage is the dynamic and
observable component of the behavioral response in driv-
ing, where the cognitive choices formed from perception are
translated into physical maneuvers. In this conclusive phase,
the driver’s mental activities—encompassing the assessment
of environmental conditions and cognitive judgments—are
translated into direct interactions with the vehicle’s controls.

As shown in Fig. 2, this phase serves not only as the
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execution of a driver’s behavioral response process but also
completes a feedback loop via perception. It involves two
primary response types, and they are 1) immediate responses:
these are the direct, often reflexive actions taken in response
to immediate and unexpected driving situations. They rep-
resent the driver’s ability to quickly process and act upon
the information perceived, illustrating the practical application
of cognitive decisions in real time, which includes quick
adjustments to the steering, throttle, and brake [75], [76].
2) Maneuver execution: in contrast to the reactive nature
of immediate responses, maneuver execution encompasses
the strategic implementation of complex driving maneuvers
planned by the driver. This includes performing overtaking
[77], as well as the dynamic adaptation required for car-
following and lane-changing [78]—-[81].

Actuation is more situational compared to the mid-term
driving pattern, characterized by higher intensity in reaction
and interaction. These situational behaviors are the main
prediction target of many literature because they are highly
affected by a driver’s characteristics of perception, and cogni-
tion under various traffic conditions. As such, the Actuation
Stage is not only about action but is integral to a cyclical
behavioral response process that feeds back via perception,
forming an iterative loop that shapes and is shaped by the
driver’s continuous interaction with the surroundings. This
loop is central to enhancing driving safety and the development
of personalized driving assistance systems that can adapt to an
individual’s driving style in real time.

C. By Granularity

Granularity, within the context of personalized driving
behavior modeling, refers to the level of detail and indi-
vidualization applied when analyzing and modeling driving
behavior. This concept acknowledges that while drivers may
share similar patterns, each individual also possesses unique
traits that merit distinct consideration. Therefore, adopting
both group-based (coarse-grained) and individual-based (fine-
grained) modeling methods is a prudent approach to compre-
hensively capture the range of driving behaviors.

Individual-based modeling (fine-grained) is the focus of this
review. It concentrates on tailoring behavioral predictions and
interventions to the specific traits and behaviors of individual
drivers. This level of granularity involves detailed data collec-
tion and analysis for each driver, enabling highly customized
and accurate behavior models.

Group-based modeling (coarse-grained) categorizes drivers
into clusters based on shared behavior patterns, such as driver
type clustering [64], [82] and classification [21], [83]. This
approach helps in the initial understanding and segmentation
of driver data, facilitating the identification of broad behavior
patterns and commonalities among different driver groups. It
serves as an effective strategy for segmenting driving behavior,
which can be refined for more detailed analysis.

Transitioning from coarse-grained to fine-grained modeling
involves not only increasing the number of driver clusters but
also deepening the analysis within each cluster. This refine-
ment enhances the model’s ability to differentiate between

drivers on a more granular level. As more detailed data are
incorporated—such as specific situational reactions, driving
conditions, and temporal behaviors—the clusters become in-
creasingly refined. This refined clustering approach allows the
model to capture unique driver traits and tendencies more
accurately, thus moving the analysis from a broader group-
based perspective to an individual-focused one. Techniques
such as incremental learning are employed to continuously
update the model as new data becomes available, particularly
individual-specific data. For instance, Zhao et al. [80] utilized
an incremental learning method to retrain their model based
on human feedback, developing a personalized adaptive cruise
control system that better matches each driver’s preference
during each trip. Federated learning is another effective tech-
nique. Once a group-based model is established, it can be
customized for individual drivers by continuing to train locally
on each driver’s data. Du et al. [84] implemented a clustering-
based personalized federated learning framework to model
lane change behavior, enabling the learning of individual
behaviors based on a general model.

This granularity spectrum, ranging from coarse-grained
group-based to fine-grained individual-based modeling, illus-
trates a flexible approach to personalizing driving behavior
analysis, adapting the level of detail to the specific needs of
the research or application.

D. Interactive vs. Non-Interactive

Drivers engage in continuous interactions [85] with other
road users, and within the scope of this paper, we mainly focus
on vehicular interactions. These interactions, pivotal in person-
alized driving behavior modeling, predominantly reside within
the cognition and actuation subsections of our discussion. In-
teractive behaviors cover a driver’s dynamic interactions with
other vehicles, involving their predictive, decision-making,
and vehicle operation capabilities. Examples include adjusting
speed to both react to and influence the movements of other ve-
hicles [86], [87]. Conversely, non-interactive behaviors refer
to reactions with static or predictable elements, such as road
conditions, traffic signs, and traffic signals [88]-[91]. Diving
deeper, the study of personalized interaction patterns seeks
to understand the tendencies of individual drivers, focusing on
how they distinctly react to and influence other vehicles.

III. PERSONALIZED DATASET

The foundation of personalization in driving behavior lies
in the construction of a personalized dataset, which is both
the initial step and the cornerstone of the personalization
process. This dataset’s primary goal is to capture the unique
driving patterns and characteristics of each individual driver.
A robust and effective personalized dataset has three vital
characteristics:

a) Individual Identifiability: This aspect emphasizes the
need to distinguish and label the unique behavioral traits of
each driver, facilitating a truly personalized analysis.
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TABLE I: Personalized Dataset Summary

Data Category Collection Collection Typical Data Utilization
Methods Instruments
Vehicle Operational NDS, FOT, OBD II, IMU, Vehicle Speed, Throttle * Dynamics Insight: Provides comprehensive under-

and Contextual Data

Simulation (Huil)

GNSS, On-board
Sensors (LiDAR,
Radar, Cameras)

position, Engine RPM,
Location, Surrounding
Objects Information

standing of vehicle operation behavior and driver in-
teraction with the control systems in various driving
scenarios.

* Environmental Contextualization: Captures essen-
tial data to evaluate the interaction of vehicle dynamics
with environmental and situational variables.

Driver Physiological
and Behavioral Data

NDS, FOT,
Simulation (Huil)

EEG, ECG,
In-Cabin Cameras,
Wearable Devices

Eye or Body
Movements, Heart Rate,
Facial Expressions,
Skin Conductance,
Gestures

* Behavioral Insight: Delivers key metrics on driver
states, such as attentiveness and emotional states,
crucial for assessing mental workload and predicting
potential driving distractions.

* Physiological Correlation: Enhances the modeling
of personalized driving behavior by correlating phys-
iological markers with cognitive and emotional driver

states.
Demographic and Interviews, Questionnaires, Attitudes, Psychological ~ « Personalized Profiling: Aids in creating in-depth
Subjective Evaluation ~ Questionnaires User Feedback, Characteristics, driver profiles by gathering subjective data on indi-
Data Driving Reports Social-Economic and vidual driver characteristics and preferences.
Demographic * Behavioral Explanation: Offers explanations for
Information, Personal specific driving behaviors by linking them to socio-
Experiences economic, demographic and psychological data points.

b) Adequate Volume: To effectively feed and optimize
data-intensive algorithms, the dataset must possess a sub-
stantial volume of data. A rich dataset allows for a more
comprehensive analysis and understanding of varied driving
behaviors, enhancing the accuracy and reliability of the re-
sulting models.

¢) Appropriate Data Type Variety: 1t’s essential that the
dataset includes a diverse range of data types (e.g., driver
data, vehicle data, and driving environment data), tailored to
capture the various aspects of driving behavior. This variety
ensures that the dataset comprehensively addresses the specific
nuances and needs of different driving styles.

This section presents the data acquisition and processing,
with a special focus on categorizing data for driving behavior
personalization, surveying available data sources, and outlining
the collection of customized datasets for particular study
objectives, as summarized in Table 1.

A. Data Categories for Driving Behavior Personalization

The potential data type for driving behavior personalization
includes:

a) Vehicle Operational and Contextual Data can be obtained
from onboard information systems, like OBD II (On-Board
Diagnostics IT), GNSS (Global Navigation Satellite System),
IMUs (Inertial Measurement Units), and vehicle sensors (e.g.,
front cameras, LiDAR, Radar, etc.). These systems together
provide insights into vehicle speed, throttle position, engine
RPM, location, acceleration, braking, cornering forces, and
surrounding environment information. This data helps to shed
light on a driver’s operational behavior and how the driver
interacts with others in various traffic conditions, enabling the
customization of driving assistance systems to better support
the driver’s needs [47], [64], [83], [92]-[94].

b) Driver Physiological and Behavioral Data can offer
an understanding of attentiveness, emotional state, mental
workload, and potential distractions. This data can be collected

by in-cabin cameras and wearable devices like Electroen-
cephalography (EEG) and Electrocardiography (ECG). These
tools monitor various indicators, such as the driver’s eye
movements, body movements, facial expressions, gestures,
heart rate, skin conductance, and other physiological signals
[68], [72]-[74], [95], [96]. By correlating these physiologi-
cal signals with driving behaviors, researchers can infer the
underlying cognitive and emotional processes that dictate
the driver’s responses. This deeper understanding allows for
the development of more effective personalized and adaptive
driving assistance systems that can adjust interaction modes,
prioritize information delivery, and manage alerts to accom-
modate the driver’s current state.

¢) Demographic and Subjective Evaluation Data can pro-
vide insights into why certain driving behaviors manifest and
what drivers think or feel in certain situations. These data are
essential for building a comprehensive driver profile, which
includes the driver’s attitudes, psychological characteristics,
situation awareness levels, and self-identified driving styles.
Such information is typically gathered through questionnaires
and interviews, allowing researchers to personalize driving
models based on the driver’s background, personality, and self-
identification, which can greatly influence driving behavior and
the effectiveness of tailored driving interventions [20], [52],
[71], [97], [98].

B. Personalized Real-World Data

Having discussed the various data types integral to model
personalized driving behavior, it’s crucial to consider the
sources of these data. Two principal sources of real-world
data, namely the Naturalistic Driving Study (NDS) and Field
Operational Test (FOT) data, are indispensable in this context
[99]. As depicted in Fig. 3, while FOT data offers some
experimental control, NDS operates with considerably less or
none, capturing genuine behavioral dynamics in natural driving
scenarios [100].
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Fig. 3: Real-world data from naturalistic driving studies and
field operational tests [100]

The FOTs typically involve a series of structured stages,
starting with the design of the test objectives. During the
execution phase, pilot testing is conducted to refine the systems
and procedures, followed by the main phase of data collection,
where specific vehicle technologies and driver behaviors are
monitored under predefined conditions. Post data collection,
the analysis phase focuses on evaluating the data against the
test objectives, ensuring compliance with ethical standards.
Similarly, NDS employs an unobtrusive approach where data
collection equipment is installed in vehicles without influenc-
ing or altering the driver’s normal behavior. This method al-
lows for the capture of authentic driving behavior under natural
conditions. The data gathered is then analyzed to understand
how various driving patterns correlate with different driving
contexts.

1) NDS data: There’s a growing recognition of the value of
NDS datasets. NDS employs advanced in-vehicle technologies
to discreetly record drivers’ behaviors during routine driving
scenarios. It allows researchers to observe and analyze drivers’
authentic reactions and decision-making patterns in real time,
offering insights into their adaptive strategies across varied
traffic and environmental conditions.

To facilitate personalization in NDS datasets, driver identi-
fiability is paramount. Several open-source NDS datasets have
been introduced to bolster studies on personalized driving
behavior. These datasets not only capture authentic reactions
and behaviors across a myriad of driving contexts but also
ensure driver identifiability, fostering the evolution of more
personalized models. Notable examples include the 100-Car
Naturalistic Driving Study dataset [101], [102] and the Can-
drive study dataset [103]. Both offer comprehensive data by
non-intrusively capturing vehicle states and driver maneuvers.
These datasets are obtained using the participant’s vehicle,
ensuring familiarity, and are equipped with cameras and sen-
sors. While sensors track vehicle states and the surrounding
environment, cameras record the facial expressions and re-
actions of the drivers throughout their sessions. This setup
not only captures drivers’ emotions and responses but also
facilitates data segmentation for each individual, paving the
way for the creation of customized datasets for every partic-
ipant. Moreover, datasets like Brain4Cars [104], Drive&Act
[105], SHRP2 [106], UAH-DriveSet [107], and MIT AVT
[108] further expand the scope of available naturalistic driving
datasets.

However, These datasets were primarily constructed for
generic or broader applications and might not fully cater to
the intricacies required for personalization. While they offer

significant advantages, such as capturing a wide range of driv-
ing contexts and ensuring driver identifiability, they often fall
short in meeting the requirements for data volume and variety
of data types necessary for comprehensive personalization.
Specifically, these datasets are collected from a restricted set of
drivers and certain scenarios, making it challenging to extrap-
olate findings to a broader population, traffic conditions, and
different personalization objectives. Additionally, these open-
source naturalistic datasets focus more on collecting short-
term actuation driving behavior but ignore the data required
for personalizing other stages of driving behavior, compelling
researchers to create their customized datasets for different
research purposes. Therefore, in the context of NDS, many
researchers create customized datasets based on personalized
objectives, in addition to the dataset of vehicle operation.
For instance, Hu et al. [3] compiled in-vehicle temperature,
humidity, car speed, pressure, and window state to build a per-
sonalized driver climate control behavior recognition model.
Banerjee et al. [49] extracted eye gazing data to model the
driver’s perception behavior. For modeling the driver workload
during each trip, Xie et al. [69] collected ECG, heart (HR)
heart rate variability (HRV), breath rate (BR), galvanic skin
response (GSR), vehicle speed, and acceleration.

2) FOT data: Conversely, FOT is designed to evaluate spe-
cific vehicle functions in their usual operational environments
and traffic conditions. Structured to identify the real-world
impacts and benefits of these functions, the data from FOT
is invaluable for enhancing performance and safety attributes.

Summarizing different types of FOTs, Barnard et al. [109],
[110] presented a systematic and scientific procedure for
implementing an FOT. They categorized these tests into three
main domains: user-centered, vehicle-centered, and context-
centered evaluations. Using the FOT dataset created by the
Dutch Ministry of Transports [111], Viti et al. [112] investi-
gated how the adaptive cruise control system influences driving
behaviors. Instead of using existing FOT data, Lyu et al. [113]
carried out a small-scale (44 participants) naturalistic-FOT (N-
FOT) to collect naturalistic driving data for establishing a
driving style recognition framework. Taking a step further to
studying personalized behavior, Liao et al. [66], [114] built an
FOT testbed and used the collected data to train and validate
a personalized lane-change prediction model.

Many extensive N-FOT projects, along with the datasets
they generate, are utilized for algorithm development, as high-
lighted in [115], [116]. While these datasets also serve as proof
of concept, their primary role is in performance evaluation.
The level of experimental control directly corresponds to the
suitability of the dataset for algorithmic assessment, which
will be further discussed in Section V-B2. Yet, the domain
of personalized driving behavior through FOT data still offers
ample opportunities for further research.

C. Human-in-the-Loop (Huil) Simulation Dataset

Real-world driving datasets are often collected in ever-
changing environments influenced by various temporal factors
(e.g., traffic conditions, vehicles nearby, weather, time of the
day), leading to inconsistencies. This variability makes it
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difficult to discern if these temporal factors directly impact a
driver’s behavior or if they’re merely coincidental. A compre-
hensive understanding truly necessitates longitudinal studies
to capture the recurrent pattern over extended periods. Driv-
ing simulations, in contrast to real-world datasets, provide a
controlled environment for consistent data collection. Human-
in-the-loop (Huil) driving simulations in an immersive simu-
lation platform (e.g., NADS-1 driving simulator [117]) present
an opportunity to mimic real-world scenarios while ensuring
that the conditions remain standardized, facilitating more
precise analysis and comparisons across different drivers and
driving behaviors.

Just as in real-world datasets, driver identifiability remains a
fundamental prerequisite for personalized simulation datasets.
Doubek et al. [118] introduced an open-source Human-
in-the-Loop (Huil) driving simulation dataset to examine
automation-to-manual takeover behavior, capturing data from
25 drivers. Similarly, a multi-HuiL simulation was carried out
and dataset was published [119], [120], aimed at exploring
interactions between two human drivers across diverse traffic
scenarios. Simulation datasets tailored to specific research
needs are increasingly prevalent, primarily due to their ease
of collection compared to real-world datasets. As an illustra-
tion, researchers [2], [36], [76], [121] utilized HuilL driving
simulations to collect targeted personalized driving behavior
data. This approach allows researchers to deliberately replicate
specific traffic scenarios or vehicular interactions, facilitating
a more precise identification of primary behavioral indicators
and reducing the impact of incidental factors. Moreover,
HuiL allows for the exploration of rare or extreme scenarios,
granting insights into driver reactions in situations seldom or
never seen in reality.

However, it’s important to acknowledge the limitations
of HuilL datasets. One significant drawback is the potential
for domain shift, where the simulated environment does not
perfectly replicate real-world conditions, leading to discrepan-
cies in driving behavior. Additionally, the psychological and
physiological responses elicited in simulations might differ
from real-life situations, leading to behavioral discrepancies.
These factors highlight the importance of complementing
HuiL studies with real-world data for a more comprehensive
validation. Further exploration on developing Huil driving
simulations and addressing these challenges is discussed in
Section V-B1.

D. Personalized Interaction Dataset

Modeling personalized interaction behavior requires under-
standing how a driver reacts to and influences other road users.
Consequently, it necessitates data from the perspectives of all
involved road users, which is crucial in understanding driving
behavior in traffic or group dynamics. Currently, however,
there is a significant gap due to the absence of interaction
data involving multiple vehicles. The aforementioned datasets
are predominantly generated from the perspective of the ego
vehicle and its driver.

The development of connected vehicles (CVs) has made
data sharing more accessible. Specifically, the data collected

from CVs can include aspects such as the driver’s profile,
their current state, and intricate details of their actuation
maneuvers. Based on shared data of two connected vehicles,
Liao et al. [6] discovered personalized interaction patterns
exhibited by aggressive and cautious drivers in a ramp merging
area. Their study illustrates the different strategies adopted by
these two drivers when they attempt to influence or react to
the maneuvers of other vehicles in conflict situations. While
this rich information enables collaborative analyses across
multiple vehicles, the process still faces challenges. Factors
like communication delays [114], communication range, and
signal blockage [122] hamper data synchronization and sensor
fusion, thereby posing constraints on the generation of datasets
utilizing CVs. Therefore, Huil driving stimulation is still the
main tool to collect driving for multiple drivers. Zhao et al.
[121], [123] established a multi-driver co-simulation platform
to study personalized interaction behaviors. This platform
integrates SUMO (a traffic simulator) and Unity (a game
engine simulator), equipped with two driving simulation kits
with steering wheels and pedals. Supported by AWS service, it
can also simulate vehicle-to-cloud communication, in addition
to vehicle-to-vehicle communication.

E. Data Analysis and Preprocessing

In the quest for a robust personalized dataset, the primary
challenge often lies not just in collecting ample data, but
in ensuring its quality, relevance, and diversity to accurately
represent the individual driver’s behavior across varying sce-
narios. This stage involves processing and understanding the
acquired data. Analysis techniques such as statistical methods,
data mining, or machine learning can be used to extract
meaningful information about driving habits, decision-making
processes, and reactions to different situations. It also involves
identifying important features that significantly impact driving
behavior and separating the noise or less relevant information.
Thus, data analysis and preprocessing are usually conducted
in parallel.

Data noise removal can be accomplished using low-pass
filters such as the median filter, wavelet filter, and Kalman
filter, as well as the moving average filter [14]. Following noise
removal, an integral preprocessing step is segmentation. In the
context of trajectory data, segmentation is typically based on
events, actions, or defined time intervals, and these data can
be labeled manually or through automated labeling techniques
[124]. For image and video data, distinguishing between the
foreground and background is particularly crucial.

Data analysis helps understand the data, and hence re-
searcher can decide on approaches for personalization. Besides
the descriptive statistics analysis (e.g., measuring the data dis-
tribution), analyzing feature importance is a usual practice, and
some popular approaches include correlation analysis [125],
permutation feature importance (PFI) Analysis [126], principal
component analysis (PCA) [127], etc. In addressing dataset
limitations, researchers often engage in data balancing and
augmentation [128]-[130]. Besides data processing, transfer
learning (TL) [69], [76] is adopted to overcome the data
constraint.
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IV. APPROACHES TO PERSONALIZATION IN DRIVING
BEHAVIOR

Having established the vital role and characteristics of
personalized datasets, we now shift our focus towards the
methodologies. Leveraging the rich insights derived from
personalized data, we aim to create models that precisely
mirror individual driving behaviors, a process denoted as
model personalization.

In this section, we will explore approaches researchers
employ to characterize personalized driving behavior, discuss
the potential benefits of personalized behavior modeling in
the context of driving, and review the key algorithms that
effectively meet these objectives. We will also evaluate the
advantages and disadvantages of these algorithms, as summa-
rized in Table II.

A. Personalizing the Driver Model

This approach is based on fitting the parameters of a pre-
defined model for the characteristics of a specific driver. This
type of parametric model can be explainable cost functions,
neural networks, probabilistic models, and regression models.
Cost function is widely used to illustrate the preference of
a driver. Inverse reinforcement learning (IRL), as one type of
imitation learning, is an effective method to recover the cost
function given the driving demonstration. Some studies [66],
[133] used cost functions to describe the personalized lane
change preference of a driver and adopted IRL to recover the
weights of the cost function based on the driver’s historical
driving trajectories. Since drivers adjust their car-following
gaps at different speeds, Zhao et al. [32] modeled the personal-
ized car-following behavior with a cost function in speed-gap
space using IRL. Also, based on IRL, Bao et al. [131] used
a personalized cost function to depict how a driver perceives
risk in a lane change, as the core of a subjective risk model,
which is then integrated into a controller to generate a user’s
preferred lane change maneuvers. Along the same lines, based
on end-to-end imitation learning, Tian et al. [132] personalized
the parameters for the cost function of the planning and control
module, using limited historical samples.

Personalized neural networks, specifically trained for indi-
vidual drivers, have proven to outperform general networks.
Leveraging the capability of neural networks for reusability,
Dang et al. [136] employed a pre-trained LSTM network
to a new dataset as a personalized network to the time-to-
lane-change of specific drivers. The study in [49] demon-
strated enhanced accuracy in driver distraction detection using
a personalized encoder-decoder module. The individualized
neural networks developed for each driver, as per [37], showed
superior performance in recognizing driver emotions when
compared to a general model. Furthermore, Abdelraouf et al.
[7] introduced a personalized approach for vehicle trajectory
prediction using temporal graph neural networks. Combining
Graph Convolution Network (GCN) and LSTM, their model,
pre-trained on large datasets and fine-tuned for individual
driver, significantly improved prediction accuracy, particularly
for longer horizons.

Personalized probabilistic models are also efficient tools,
such as Hidden Markov Model (HMM) and Generalized Gaus-
sian Mixture Models (GMM). Lefevre et al. [137] adopted
a personalized HMM to build a personalized lane-keeping
assistance. The personalized HMM captures how a driver
changes his or her decision over left/right lane change and lane
keeping, revealing the transition probabilities between each
action. Wang et al. [138] demonstrated a personalized HMM-
GMM model that can capture better car-following behavior
than traditional GMM-based models.

Similarly, personalized regression model. To search for a
personalized navigation route, a personalized fuel consumption
prediction model was proposed using a multivariate nonlin-
ear regression model (MNR) [47], whose parameters were
estimated based on a driver’s driving style. Similarly, for
developing a personalized route searching method, Chen et
al. [82] initialized the weight vector of a graph-based road
network as the user preference model, based on a driver’s
classified driving style, and then adjusted the weights once
the driving behavior changed.

Training personalized models for each driver presents sig-
nificant computational challenges, primarily due to the sheer

number of individual models required when dealing with

a large driver population. Each model necessitates sepa-

rate training, validation, and testing processes, escalating the

computational workload exponentially with the increase in
the number of drivers. Despite their computational intensity,
these personalized models have effectively bridged the gap
between generic predictions and individualized insights. To
mitigate computational demands, researchers [3], [135], [139],
suggested categorizing driving styles and tailoring networks

accordingly. This strategy balances the need for detailed per-
sonalization with computational efficiency, offering a practical
solution to the challenges posed by large-scale model training.

The effectiveness of personalized models largely depends
on the design and robustness of the underlying base model.
A well-constructed base model is pivotal for yielding accurate
and detailed predictions tailored to individual drivers. How-
ever, customizing these models for each driver is resource-

intensive, requiring substantial computational resources for
fine-tuning. To address challenges associated with limited
personalized driving data, transfer learning (TL) has emerged

as a popular tool. This technique involves pre-training a
model on a general dataset and subsequently fine-tuning it

with individual-specific data. Abdelraouf et al. [7] effectively

utilized this approach, demonstrating its efficiency in person-
alization. Similarly, Li et al. [76] employed an importance-
weight-based TL approach to adapt the base model for new
drivers using a relatively small amount of personalized data,
thus streamlining the adaptation process.

B. Personalizing the Driver Attributes

This approach learns the attributes of the driver to build
a driver profile, and these attributes can be modeled inde-
pendently and jointly, with researchers opting for a specific
approach based on their research focus.

The process of modeling independent attributes is succinct
and direct, encapsulating distinct characteristics like subjective
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TABLE II: Summary of Approaches to Driving Behavior Personalization

Approaches Output Algorithms Pros Cons
Inverse Reinforcement
Cost .
Functions Learning [32], [66],
[131]-133]
Encoder-Decoder . o
Modules [49], [134], « Highly Specific: The models are highly C.O rlrllple;(llty. dC'Tl becprﬁle cq(rirlp lex, es;
Neural CNN+SVM [37], personalized, leading to more accurate pre- gle’icvl;gybvgh;\?iofsaal:ll(% sVZel:tna?i;:l ¢ array o
Networks Transfer Learning [135], dictions. . . -
GCN [7], LSTM [135], * Flexibility: Can be applied to a variety 'DatafDependell'lcy& F{ih? quah:iy and. quan-
Personalizing [136] of driving behaviors and scenarios through tlt)l/’fo personalized driving data impact
the Driver model personalization (e.g., fine-tuning), of- ? CBOHIIZKI/ICG. I D . Th f
Model HMM [137], fering broad applicability. ase hi (;Se 1gp§ndencg ' d e per Or(i
HMM+GMM [138], + Comprehensiveness: Bridges the gap be- n}?ncte; 18 yfrtileb on tdel esign an
Probabilistic Importance-Weighted tween generic and personalized insights. ctiectiveness ot the base model.
Models Least-Squares
Probabilistic Classifier
[76]
Reeression Gradient Boosting
M ogdels Decision Tree [3], NAR
[139], MNR [47]
Subjective Risk Level by
RFGA-BLTSM [140]
Aggressiveness Index by
ESD [28] Acceleration,
Time Headway and Pedal - . . . .
Single by statistical distributions * Adaptability: Capable of evolving to | ¢ Partial View: Might not capture the
Attributes analysis, Kernel Density capture changes in driver’s behaviors and | complete picture of driving behavior if too
P lizi Estimation [94], [141], preferences over time. focused on specific attributes.
he rs]gqa 12Ing [142], Driving Risk * Targeted Interventions: Allows for | ¢ Data Sensitivity: Requires reliable data
26 ‘brlver Probability by personalized feedback and improvement | on various attributes, while precise and
ttributes Power-Law Function suggestions. accurate data can be challenging to obtain
Estimation [23] * Clarity: Provides clear, focused insights | and quantify.
into particular aspects of driving behavior,
Parameters of Personality incorporating various aspects of behavior
Joint by LSTM-based MTLA | and preference.
. network [21], Tradeoff
Attributes
between Presences by
Optimization [91]
K-Means [2], [82], [83],
Driver [83], [143], HCA [71],
. [139], GMM [76], [144], S . . litv: Mich - |
Clustering * Simplicity: Straightforward in interpreta- Generality: Might oversimplify complex
[145], [36], [68], PRM tion, and the outputs can be easily imple- | driving behaviors, leading to generic in-
Labeling [64] mented in downstream modules. sights, not capturing the detailed behaviors
Drivers SVM [2]. [371. [68] * Efficient: Efficient in identifying patterns | of individual drivers. o
ey and trends in driving data for generalized | * Static Labels: Lack flexibility to adapt
nge-B;‘SGd ﬁlgsSIﬁSer interventions. to evolving driving behavior.
Driver Clas- [64], [94], [140], LSTM
sification [21], PNN [83], Fuzzy
Inference [71],
Semi-Supervised
Learning [146]-[148]
. Driving Reinforcement Learning + Adaptive: Continuously learns and adapts
Learning Policy [149]-[151] L . . * Computational Load: Often demands
. to the driver’s evolving behavior and external L :
Personalized conditions significant computational power and data.
Driving Replicated . . . - . * Slow Convergence: Learning and adap-
Strategy Driving Generative Adversarial  Personalized Feedback: Can offer real- | ;i can o time-consuming.
£ Imitation Learning [152] time, personalized feedback.
Behaviors
Preference Questionnaire
Driver Self- [20], [44], P syghometric * Driver Engagement: Directly involves | ¢ Subjectivity: The qualitative nature
n Evaluation Tests [153], Driver drivers in the assessment, increasing | might introduce biases due to individual
Perslqnahlzed Feedbgck [46], [154], engagement. perceptions.
Sua ltative Interviews [155] * Rich Insights: Captures detailed insights | * Quantification Challenges: Turning
ssessment . . from the driver’s perspective that are not | qualitative observations into actionable
L1qgu1stlc Rule_—based Driving easily captured by quantitative data. quantitative data can be difficult.
In51gh_t Scoring [12], [20], [27], + Explainability: Provides a clear and
Quantifica- [156] Fuzzy Logic-Based | understandable overview of the studied
tion Methods [59], [71], [157]

driving behaviors.
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risk perception [140], aggression levels, and the probability
distribution of accelerations [141]. These isolated attributes
are studied to provide insights into specific aspects of driving
behavior without considering their interaction or combined
impact on overall driving style. He et al. [23] developed a
personalized insurance pricing strategy based on the quantifi-
cation of a driver’s risk from trajectories. This method charac-
terized drivers using their risk probabilities, mileage estima-
tion, and their demographic information. Using aggressiveness
index measured in energy spectral density (ESD) analysis was
proposed by [28] to quantitatively evaluate driving style.

Analyzing the distribution of an independent attribute is
straight straightforward approach to characterizing a driver.
Kim et al. [142] personalized the acceleration behavior of
an electric vehicle according to the driver’s characteristics
and quantified the performance by comparing each driver’s
driving data using Kernel Density Estimation. The analysis
was conducted on five drivers to show how the kernel density
function of acceleration of each driver differs from that of
others. Likewise, Baek et al. [94] characterized a driver using a
statistical model based on his or her time headway distribution
and pedal control patterns. This approach allowed the model
to adapt to the driver’s changing preferences over time.

While a single, well-defined personal attribute can offer an
intuitive depiction of a driver, it may fall short of comprehen-
sively capturing the multifaceted nature of driving behaviors.
Addressing this, researchers have gravitated towards multi-
attribute models that yield more nuanced and holistic driver
profiles. Das et al. [21] designed an LSTM-based Multi-
Task Learning with Attention (MTLA) network to capture
a driver’s personality traits implicitly, where the attention
mechanism acts as a feature selector and assigns weights
on predefined traits for each individual. Similarly, Butakov
et al. [91] examined drivers’ willingness to balance time of
arrival, fuel economy, comfort, and safety. This multi-attribute
approach facilitated the resolution of optimization problems,
helping drivers in navigating through signalized intersections.

C. Driver Labeling

This approach aims to identify and categorize drivers based
on factors that affect their driving behaviors, e.g., sudden
acceleration, hard braking, and other risky maneuvers. Mean-
while, explainable parameters (i.e., weights in the cost func-
tion) in Section IV-A and driver attributes in Section IV-B
may also be used as the indexes for driver labeling. Driver
clustering and classification are two main branches of driver
labeling. While primarily designed for coarse-grained, group-
based modeling, driver labeling also supports fine-tuning for
individual-specific models as detailed in the taxonomy (Sec-
tion II).

Driver clustering groups drivers based on similarities in
their driving behavior without any pre-existing classes or
categories. It is an efficient way to discover hidden patterns in
the driver dataset through unsupervised methods. Commonly
implemented algorithms for driver clustering include K-Means
[2], [82], [83], [143], Gaussian Mixture Model (GMM) [76],
[144], [145], Fuzzy C-Means [36], [68], and Polynomial Re-
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gression Mixture (PRM) [64]. A notable application of this ap-
proach is found in the work of Chen et al. [82], who developed
a personalized path recommendation system for autonomous
vehicles. In their system, driver clustering plays a crucial role
in the initial phase by generating a preference weight vector,
which lays the groundwork for tailoring path recommendations
to individual driver preferences. The unsupervised nature of
driver clustering is advantageous, as it minimizes the need for
prior assumptions and naturally uncovers behavioral patterns
within the data. This method not only facilitates effective
feature extraction but also enriches data interpretation. By
categorizing drivers into distinct groups, it adds layers of
information, such as specific driver labels, which are essential
for sophisticated downstream analysis and processing.

On the other hand, driver classification involves categorizing
drivers into predefined classes based on their driving behavior
for providing personalized services. Popular algorithms for
driver classification include support vector machine (SVM)
[2], [37], [68], tree-based classifier [64], [94], [140], long short
term memory (LSTM) time series classifier [21], probabilis-
tic neural network (PNN) [83], and fuzzy inference classi-
fier [71]. Typically employing supervised or semi-supervised
learning approaches, driver classification relies on predefined
driver types based on expert knowledge, facilitating easier
implementation in real-world scenarios. The real-time driver
classification system proposed by Bhumika et al. [21] is a
notable example showing how the classification contributes
to personalzation. Their system classifies drivers’ behaviors
into categories like ’normal’, drowsy’, or ’aggressive’, and
accordingly provides tailored recommendations for accepting
or rejecting trip requests. Driver classification plays a key role
in enhancing road safety and driver well-being by ensuring
that driving assistance systems are closely aligned with the
unique behaviors and needs of each driver.

Additionally, a key challenge in driver classification is the
scarcity of true labels, which is crucial for model accuracy but
often unavailable in real-world data due to the subjective inter-
pretation of driving behaviors. For example, speeding could be
seen either as an emergency action or reckless driving depend-
ing on the context. To combat this, researchers have turned
to semi-supervised learning techniques to augment model
accuracy using both labeled and unlabeled data. For instance,
Guzman and Loui [146] applied a federated semi-supervised
approach, initializing models with features extracted from
unlabeled data, then refining them with labeled data. Chen et
al. [147] employed a semi-supervised twin projection vector
machine that enhances classification by using labeled data
to establish the model’s framework while utilizing unlabeled
data to refine and validate its predictions. Similarly, Cheng
et al. [148] implemented a teacher-student semi-supervised
model for risky driving detection that uses a limited amount
of labeled data to guide learning while extensively employing
unlabeled data for model generalization. This approach enables
the teacher to generate pseudo-labels from the unlabeled data,
which are then used by the student for training, thus enhancing
dataset size and detection accuracy without extensive manual
labeling.

The driver labeling approach is popular due to its simplicity
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in categorizing and comparing different drivers. It can be im-
plemented in both offline (to predict behaviors prior to driving)
and online (to adapt recommendations in real time based on
the driver’s current state) manners. However, this method may
sometimes oversimplify complex driving behaviors by fitting
them into a limited number of categories.

D. Other Approaches

1) Personalized Driving Policy: Considering its ability to
adapt to a driver’s behavior over time, manage complex
decision-making tasks, and adjust its actions based on differ-
ent environmental states, personalized reinforcement learning
(RL) is employed to create a highly responsive and per-
sonalized driving behavior model. Considering the driving
aggressiveness and riskiness of each driver, researchers [149]
designed an RL-based personalized driving system (i.e., ve-
hicle controller) to recommend driving actions to the driver.
Leveraging smartphone sensor data, Vlachogiannis et al. [150]
utilized RL to develop a personalized driving behavior model
that adapts to individual driving patterns and environmental
states. The RL-based system analyzed critical driving metrics
like aggressiveness and speeding to formulate personalized
driving policies, which are delivered through a vehicle con-
troller system, and recommended self-improvement strategies
to drivers. Likewise, Uvarov and Ponomarev [151] presented
an RL-based intervention strategy that trained a personalized
policy to maintain the state (e.g., alertness) of a driver. Besides
RL, generative adversarial imitation learning (GAIL) is getting
famous for learning the complex driving policy of human
driver [152], and it can be extended to discover the interaction
policy between to multiple agents. Still, the limitations of these
policy learning approaches cannot be neglected. It may require
a large amount of data and computational resources to train
the model effectively. The learning process can be slow and
may require numerous iterations to converge.

2) Personalization by Qualitative Assessment: Besides the
aforementioned objective behavior modeling approaches, in-
corporating qualitative assessment has emerged as a valuable
strategy due to its explainability of driving behavior and its
capacity to capture experience and preference from the driver’s
perspective. These qualitative assessment can be implemented
by preference questionnaire [20], [44], psychometric tests
[153], driver feedback [46], [154], and interviews [155].

Still, these intuitive and linguistic qualitative assessments
require further quantification before they can be integrated
into modeling frameworks. Consequently, rule-based methods
have gained attention for effectively incorporating subjective
judgments, often dictating the creation of rules or the formu-
lation of scoring metrics [12], [20], [27], [156]. Within rule-
based approaches, fuzzy logic-based methods have emerged
as significant tools, as illustrated in works like [59] and
[157]. These methods are especially adept at quantifying
ambiguous linguistic concepts, offering a precise interpretation
of subjective expressions, such as discerning the subjective
boundaries of "too close’ in car following scenarios. However,
these methods have their limitations, as they may introduce
biases into the research and present challenges in achieving
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broad generalization. Typically, they are employed to comple-
ment objective methods, offering additional perspectives and
enriching the analytical narrative.

V. MODEL VALIDATION

The model validation process assesses the model’s perfor-
mance based on a set of benchmarks and indexes, measuring
the model’s accuracy, effectiveness, and generalizability. This
step ensures the reliability and robustness of the model before
deployment, enabling developers to observe its performance
in real-world scenarios, pinpoint unexpected challenges, and
fine-tune it as needed.

A. Evaluation Stages

Similar to the validation of other personalized systems
[158], the personalized driving behavior model can be evalu-
ated through three sequential phases: Offline Playback, Driving
Simulators, and Field Experiments. In the Offline Playback,
the model takes in recorded data or uses an independent dataset
distinct from the one used for model development to gauge its
fidelity to real-world driving behavior. Driving Simulation
are instrumental in assessing the model’s performance against
other benchmarks. The final phase, Field Experiments, ne-
cessitates testing the model in genuine traffic conditions. Pro-
gressing from a proof-of-concept phase to application-oriented
studies, the current research landscape shows limited work
that traverses all these stages. The majority focus primarily
on the first phase, aiming to demonstrate the efficacy of their
personalization algorithms.

Given that driving personalization models often deal with
time series data, the resulting data sequences can be termed
as ’trajectories.’” In personalized driving, these trajectories
encapsulate a series of actions or states over time, uniquely
characterizing a driver’s behavior patterns, ranging from pedal
behavior and car-following distances to route selections. Addi-
tionally, driver labeling typically serves as an intermediary step
in modeling. These models aim to categorize drivers based on
their unique driving patterns and then feed into a trajectory-
level personalization. Therefore, these clustering and classifi-
cation models often adopt trajectory similarity measures for
evaluation. Some studies with the primary focus on driver
labeling compare selected features between driver classes,
employing metrics such as confusion metrics for performance
evaluation. For instance, Bhumika et al. [21] used Receiver
Operating Characteristic (ROC) curves and F-scores to predict
various driving behaviors, while Zahraoui et al. [143] applied
False Discovery Rate (FDR) and Rate of Change (RoC) to
assess the effectiveness of clusters formed from training and
test trip data.

For validating the similarity of trajectories, metrics like
Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), or Root Mean Square Percentage Error (RMSPE)
are frequently used [5], [31], [32]. Such metrics are apt
for comparing trajectories with clear start and end points.
Specifically, MSE offers a simple yet effective computation,
RMSE ensures consistent unit measurements, and RMSPE
ensures the metric remains insensitive to data scale. However,
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complexities arise with varied data lengths, different start and
end times, or noise. Hence, alternative validation metrics have
been explored. For instance, Wang et al. [31] also employed
the Log Predictive-Density error (LPD) which considers the
entire prediction distribution, penalizing overconfident predic-
tions more than acknowledged poor predictions. On a similar
note, Toohey et al. [159] introduce and compare four trajectory
similarity measures: Longest Common Subsequence (LCSS),
Fre’chet Distance, Dynamic Time Warping (DTW), and Edit
Distance. LCSS is efficient against noise and outliers but can
be sensitive to minuscule trajectory alterations and might not
be suitable for varied trajectory lengths. Fre'chet Distance is
robust against noise and manages different trajectory lengths
but can be computationally intensive for larger datasets.
DTW is appropriate for varied trajectory lengths and time
distortions but can be noise-sensitive and resource-intensive.
Edit Distance is effective for diverse trajectory lengths and
time distortions and is scalable for larger datasets but may
be noise-sensitive. Expanding on the LCSS metric, Huang
et al. [35] proposed a similarity function (SF) to compare
two trajectories. Beyond trajectory comparisons, contrasting
the distribution of key indices from model-generated data
is also prevalent. For instance, Baek et al. [94] validated a
personalized speed planning algorithm using Time Headway
(THW) as an index and used Kolmogorov-Smirnov (K-S)
distance and Kullback-Leibler (K-L) divergence to measure
the resemblance between the driving styles of their algorithm
and human drivers. Also, Wang et al [138] compared the
observed frequency of variables in the collected datasets with
the expected frequency of samples from the learned model by
the goodness-of-fit (GoF) statistic value.

While offline playback offers clarity, critics argue that the
abstract nature of personalization might not be fully reflected
by mere time series or distribution matches. Overempha-
sis could lead to overfitting. Therefore, real-time validations
are essential, enabling instantaneous driver feedback on new

systems as a representation of personalization performance.
Despite the rising use of driving simulators and Human-in-the-
loop simulators for the design and validation of autonomous
vehicle systems, leveraging real-time driver feedback for vali-
dating personalization remains relatively uncharted. An excep-
tion is the work of Zhao et al. [32], [80], [81], who, in their
validation of a personalized Adaptive Cruise Control (ACC)
system, focused on driver interventions. They introduced met-
rics like the Percentage of Interruption (Pol) which denotes
the fraction of time the driver intervenes with the acceleration
or brake pedals, and the Number of Interruption-per-Minute
(NIM), indicating the frequency of such interventions.

Beyond measures of trajectory similarity and real-time
feedback, questionnaires emerge as an instrumental approach
to validate personalized driving behavior. They enable a direct
capture of drivers’ subjective evaluations, adding depth to
objective metrics. For example, Panou et al. [10] used multi-
phase trials to assess a personalized collision avoidance system
(P-CAS) by measuring driver reaction times. After the trials,
participants completed questionnaires that focused on their
opinions about different warning settings. Similarly, Amado
et al. [160] utilized questionnaires but uniquely incorpo-
rated an expert observer. This expert compared drivers’ self-
assessments against an objective evaluation, aiming for a bal-
anced understanding of the evaluated skills and performances.

In the quest to quantify a driver’s satisfaction and trust in
personalized systems, researchers have looked beyond just in-
direct metrics. A growing trend is to incorporate physiological
sensors to measure a driver’s bodily responses during inter-
actions with these systems. For instance, Nacpil et al. [161]
elaborated on how biosignals, obtained via tools like smart-
watch sensors for electrocardiography (ECG) and headsets for
electroencephalography (EEG), can be harnessed. Originally
intended for clinical applications, like EEG for diagnosing
epilepsy or discerning emotions, these tools are now being
repurposed. Furthermore, methodologies such as eye tracking,
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impedance cardiography (ICG), and photoplethysmography
(PPQG) are also employed, enriching the range of data available
to analyze a driver’s interaction with the personalized system.
In contrast to driving simulators, field experiments offer
enhanced validation by reflecting real-world driving condi-
tions. However, they encounter issues such as safety concerns,
regulatory constraints, and the complexities of system design,
which can limit the extent of their validation. Still, some
researchers choose on-road experiments for direct validation.
For example, Panou et al. [10] used multi-phase trials to
assess a personalized collision avoidance system (P-CAS) by
measuring driver reaction times. After the trials, participants
completed questionnaires that focused on their opinions about
different warning settings. Similarly, Amado et al. [160] uti-
lized questionnaires but uniquely incorporated an expert ob-
server. This expert compared drivers’ self-assessments against
an objective evaluation, aiming for a balanced understanding
of the evaluated skills and performances.

B. Validation Tools

The aforementioned three phases for model evaluation
phases mainly rely on human-in-the-loop (HuiL) driving sim-
ulators and field experiment testbeds. Developing these tools
becomes essential in validating the model, ensuring that it not
only meets the designated benchmarks but is also robust and
reliable in real-world applications.

1) Simulation Platform.: Evaluation of HuilL driving sim-
ulator demands a high standard for vehicle model, user
interface, and traffic environment. Much research has been
carried out to construct open-platform game engine-based
simulators, such as NVIDIA DRIVE Sim [162] based on
Omniverse [163], CARLA [164] based on Unreal Engine 4
(UE4) [165] and SVL [166] based on Unity [167]. These
simulators are equipped with high-fidelity physical engines,
sophisticated UI designs, and adaptable road environments that
incorporate various weather and road conditions, facilitating
comprehensive autonomous driving simulations. Additionally,
they offer extensive customization options for onboard sen-
sors, including radar, LIDAR, camera, and GPS, ensuring a
versatile and realistic simulation environment. While game-
engine simulators are adept at providing intricate simulations
for individual vehicles, they face challenges in terms of the
computational load and in effectively replicating complex,
dynamic traffic environments. In contrast, tools like PTV
VISSIM [168], a commercial microscopic traffic simulation
platform, as well as SUMO [169], an open-source alternative,
excel in creating realistic traffic environments. However, these
microscopic traffic simulators ignore the complex interaction
between drivers and may not be good at simulating individual
vehicles. Therefore, fusing the game engine-based simulator
and traffic simulator [170], [171] becomes the solution to pro-
vide a simulation platform for personalized driving behavior
evaluation.

A multi-human-in-the-loop (MHuiL) platform, developed
by Zhao et al. [121], [123], seamlessly integrates the features
of Unity and SUMO, enhanced by the computing power and
personalized data storage facilitated by Amazon Web Services
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(AWS). This platform is designed for driving behavior data
collection, algorithm development, and model evaluation. As
shown in Fig. 4, the platform is equipped with two sets of driv-
ing cockpits, enabling two drivers to simultaneously participate
in a single simulation, marking a significant advancement in
interactive behavior modeling.

This MHuiL platform stands out in driving behavior model
evaluation, primarily due to its high-fidelity driving environ-
ment, building on a replication of a real-world on/off-ramp
scenario in Riverside, California. Also, for a fair evaluation,
its scenario replay feature ensures identical environmental
settings for comprehensive analyses. This intricate simulation
is made possible and robust by the Edge-Gateway, a pivotal
element that bridges the integration and synchronization of
data and functionalities between Unity, SUMO, and AWS. It
ensures not only seamless interoperability within the platform
but also extends compatibility, facilitating the integration of
other simulators, software, and real-world end devices for a
comprehensive simulation experience.

Besides model evaluation, this tool enables the personalized
dataset collection for each driver at a low cost and addresses
the long tail problem by replicating rare scenarios. It under-
scores the platform’s adaptability in data collection, enhancing
the dataset’s diversity. Moreover, the multi-player setup am-
plifies the focus on interaction behavior, capturing nuanced
decisions and reactions from both drivers’ perspectives. This
rich dataset is further enriched by AWS’s real-time support
for services like trajectory prediction, driving scoring, and
fuel consumption analysis, facilitating deeper, more insightful
analyses.

2) Real-World Testbed: While HuilL simulations are in-
valuable for initial testing and iterations, the complexity of
real-world conditions necessitates comprehensive evaluations
through real-world test beds. These testbeds evaluate the
model’s adaptability and performance under practical chal-
lenges such as communication delays, signal loss, sensor
accuracy, and computational limits, offering a thorough assess-
ment beyond the controlled environments of simulations. How-
ever, constructing a large-scale real-world testbed (e.g., Mcity
[172]) is both time-intensive and resource-heavy. As stated
in [173], a naturalistic-FOT (N-FOT) experiment “cannot be
conducted for less than $10,000,000”, and hence researchers
search for more cost-effective alternatives like scenario-based
testbeds and mini-cities [174]-[176], which offer a practical
environment for proof-of-concept development and algorithm
evaluation.

To study personalized driving behavior (model development
and evaluation), a vehicle-edge-cloud digital twin testbed was
built by Liao et al. [66]. This real-world testbed involves three
passenger vehicles, an edge server, and AWS, as presented in
Fig. 5, which was used to collect a personalized dataset and
evaluate the performance of the proposed personalized lane
change behavior prediction system.

The architecture of this testbed maximizes the computa-
tional prowess of the cloud server. It crafts a unique digital
twin for each driver, extrapolated from their personalized driv-
ing model. This facilitates real-time simulations and analyses
within a virtual environment and can connected to the simu-
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Fig. 5: Vehicle-edge-cloud digital twin platform for personalized dataset collection and algorithm validation [66]

lation platform. With AWS’s data storage and computational
power, each driver’s digital twin is dynamic, evolving, and
adapting through the continuous intake of real-world driving
data.

The integration of an Edge-Gateway on the edge server
mitigates the challenge of communication latency between
the cloud and vehicles, ensuring seamless data exchange and
real-time service delivery to vehicles. The portability of this
testbed, necessitating only a tablet and GPS unit per vehicle,
enhances its applicability. It can be effortlessly deployed in any
area with signal coverage and is adaptable to various scenarios.
Further, the model evaluation is enhanced by the edge server’s
capability to replicate specific scenarios and direct each vehi-
cle to predetermined locations at targeted speeds. This level
of control ensures an environment of consistency, enabling
accurate assessment and comparison of model performances
under identical conditions.

VI. GAPS AND OPPORTUNITIES

Despite considerable advancements in driving behavior per-
sonalization, unexplored areas and unanswered questions per-
sist, offering potential opportunities for research and innova-
tion. This section illuminates these opportunities, pinpointing
specific gaps in the existing body of literature and propos-
ing pathways for future exploration to enrich our collective
understanding and knowledge.

A. Personalized Dataset and Validation

The first impediment in personalized driving behavior stud-
ies is the notable absence of open-source datasets that are
tailored to individualized driving patterns. Such datasets are

instrumental for benchmarking and cross-validation in the
development of more precise and adaptive models.

Next, a personalized driving dataset in mixed traffic is
significant. In the foreseeable future, human-driven and in-
telligent vehicles are anticipated to coexist on the roads,
and understanding the dynamics of their interactions becomes
paramount. Although datasets like Drive&Act [105] have
provided benchmarks for action recognition in automated
vehicles, there is a pronounced need for personalized datasets
in mixed traffic that capture the intricacies of human driving
behaviors in mixed traffic environments. Answers to 1) how
human drivers will interact with other intelligent vehicles, and
2) how they will behave in an intelligent vehicle, are worth
studying.

Furthermore, the complexity of driving behaviors neces-
sitates a longitudinal approach to data collection. A brief
segment of trajectory or short-term data is often insufficient
to encapsulate the detailed and recurrent patterns of individual
drivers since factors like emotion, weather, and traffic con-
ditions can introduce variability. Long-term data collection
emerges as a pivotal element in distilling consistent and
recurring driving patterns amidst the noise of occasional and
situational variations.

The wvalidation of personalized models poses another
challenge. The current paradigm often relies on post-
implementation assessment, gauging whether drivers are sat-
isfied with the product outcomes determined by the models.
This approach underscores the necessity of incorporating
drivers’ feedback more integrally in the model evaluation and
evolution processes. Another future research could explore
the thresholds and triggers for model updates, ensuring the

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 23,2025 at 20:02:48 UTC from IEEE Xplore. Restrictions apply.

© 2024 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.


http://www.ieee.org/publications/rights/index.html

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TIV.2024.3425647

models remain adaptive and reflective of the drivers’ evolving
behaviors and preferences.

The integration of digital twins in the driving behavior
personalization has been identified as a promising avenue,
although it is yet to be fully explored and optimized. One
of the cardinal advantages of employing digital twins lies in
their potential for extensive data collection, which is pivotal
for honing the accuracy and adaptability of driving behavior
models. The support of the cloud (e.g., AWS and similar
cloud service) facilitate the long-term recording and analysis
of individual driving data. With the continuous influx of new
data, the adaptability of the model over time ensures that the
model dynamically reflects the evolving patterns, behaviors,
and preferences of individual drivers.

B. Personalized Perception Behavior

One significant gap in the current research is the sparse
discussion on personalized perception behavior, even within
the broader context of general perception behavior. Perception
behavior forms the foundational layer in the driving behavior
model, dictating how drivers assimilate information from their
surroundings. It is crucial to acknowledge that the infor-
mation processed by each driver can vary significantly, due
to various factors including individual perception behaviors,
prior experiences, and situational awareness. A comprehensive
understanding of the types of information absorbed by drivers
is essential to accurately analyze the subsequent, distinct
cognition and actuation behavior.

The deficiency in personalized perception behavior study
is manifested in certain shortcomings. For instance, research
tends to analyze car-following behavior with a narrow focus,
predominantly scrutinizing the driver’s reactions to the vehicle
directly in front. However, in reality, drivers engage in a much
more complex perceptual process, continuously monitoring
their surroundings, including utilizing rear mirrors to gauge the
actions of the vehicles behind them and potentially adjusting
their strategies accordingly, especially when they perceive they
are being tailgated. Furthermore, individual drivers exhibit
unique habits and preferences when it comes to observing the
road environment. For instance, while some carefully check
over their shoulder to gauge the traffic behind or in the blind
spot, others may only give a glance, relying more on mirrors
or other cues. An analysis of head positions [84], [177] could
serve as a rich data source, offering insights into how drivers
perceive side-lane traffic and enhancing the accuracy of lane
change predictions.

Further research in this domain could potentially shed light
on how personalized perception behavior intertwines with
cognition and actuation phases. Therefore, highlighting the
pivotal role of perception behavior and advocating for more
extensive research in this area stands as a pressing need in
the field, poised to potentially revolutionize our understanding
of driving behavior from a more personalized and insightful
vantage point.

C. Personalized Interaction Behavior

The study of personalized interaction behavior, while having
gained attention, is still an evolving field with marked gaps
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and untapped opportunities. The complexity of interaction
behavior is woven by not only the individual driver’s habits,
skills, and responses but is also significantly influenced by the
dynamic interplay of multiple actors within the traffic system.
Each driver’s opinion on the interaction is different, and to
model their personalized interaction behavior, there is a noted
absence of comprehensive research addressing intricate ques-
tions: When and under what circumstances does interaction
occur? Who initiates and who responds? What are the tangible
and intangible impacts of these interactions? Furthermore, the
extent to which drivers consciously aim to influence their
environment and respond to the perceived intentions of others
is uncharted territory. This raises other pivotal questions:
Can we quantify the intensity of interactions? Can we map
the trajectory of actions and reactions in real-time driving
scenarios, offering insights into the fluid, adaptive nature of
driving behaviors?

Addressing these gaps requires innovative methodologies
and tools capable of capturing and analyzing the multi-
modal driver interactions. Still, current interaction research
[86] focuses more on general multi-agent interaction and has
barely scratched the surface of understanding how a driver’s
actions are influenced by personalized driving patterns, incite
reactions from surrounding drivers, and vice versa. One of
the profound fields is the application of causality and circular
causality analyses [6], [178] in the study of interaction driving
behaviors.

The pursuit of uncovering the secrets of personalized inter-
action behaviors, their triggers, dynamics, and impacts, is not
just an academic endeavor but a critical pathway to making
our roads safer, more efficient, and harmonious spaces where
technology and humanity intersect seamlessly.

D. The Rise of Large Language Models (LLMs)

The incorporation of Language Learning Models (LLMs) is
emerging as a pivotal evolution in the domain of personalized
driving behavior modeling. The complex narratives of driving,
encompassing diverse scenarios and driver responses, can be
intricately mapped and communicated through the advanced
linguistic capabilities of LLMs. For example, LINGO-1 devel-
oped by Wayve [179] employing LLM-based vision-language-
action model (VLAM) for interpreting driving scenarios has
demonstrated a promising research direction. A LINGO-1-
empowered vehicle can inform the driver that it stopped
because of pedestrians crossing the road. The capacity to
explain the rationale behind each vehicular movement in com-
prehensible language not only enriches the driver’s situational
awareness but also fortifies the trust dynamics between the
driver, the vehicle, and the embedded Al systems.

The prospect of leveraging Large Language Models (LLMs)
to model personalized driving behaviors presents a compelling
advancement in the field of Al-assisted driving. Envision Al
systems, augmented by the advanced capabilities of LLMs,
meticulously tailored to resonate with each driver’s unique
style and reactions. Different from transcends traditional and
generalized solutions, this approach introduce a sophisticated
Al co-pilot, which is designed to not only interpret and
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forecast driving scenarios in real-time, but also to do so
through a lens that is distinctly tailored to each driver. By
elucidating decisions and maneuvers with remarkable clarity, it
demonstrates an intricate understanding of individual drivers’
preferences and patterns, thereby personalizing the driving
experience to an unprecedented degree.

But the potential of LLMs extends even further. They offer a
transparent view of the reasoning behind each driving decision.
Drivers are not just passive recipients of information but are
engaged participants, gaining insights into their behaviors and
habits. If the AID’s interpretation is not quite right, drivers
can offer feedback, creating a dynamic learning environment
where both the Al and driver evolve together. This synergy
promises not just a customized driving experience but also
one that’s safer and grounded in mutual understanding and
trust. It’s a scenario where technology and humanity intersect,
each enhancing the other, leading to a new era of intelligent,
personalized, and explainable driving.

E. Discussion

As we navigated the methodologies of personalization in
driving behavior and analyzed the pros/cons of each type of
approach, it is crucial to consider three key points:

Personalization vs. Generalization. While personalization
enhances the driving experience, over-personalization might
constrain system flexibility and potentially induce over-
reliance that could compromise safety and negatively impact
overall traffic efficiency. The appropriate level of personal-
ization is driver-specific and calls for continued research and
feedback.

Model Robustness. Personalized models need to handle
diverse driving scenarios effectively, but overfitting can pose
challenges. Robustness needs training on various scenarios, us-
ing strategies to avoid overfitting, and regular model validation
and updates based on real-world performance.

Ethical and Privacy Concerns. As we collect and pro-
cess extensive amounts of sensitive personal data, this raises
critical questions regarding data security, privacy, consent,
and ownership. Balancing the creation of highly personalized
driving models with ethical imperatives and legal frameworks
is essential. Safeguards need to be established to ensure data
privacy and security while enabling the beneficial aspects
of personalization (e.g., blockchain technology and federal
learning [180]).

Constraints. Even though this review covers many as-
pects of personalization in driving behavior, there are still
some advanced technologies, such as Virtual Reality (VR),
Augmented Reality (AR), and other wearable devices, that
remain unexplored. Integrating these technologies into data
collection—whether in simulation environments, NDS, or
FOT—presents an unexplored frontier that could significantly
enhance the granularity and accuracy of behavioral data for
better personalization.

VII. CONCLUSIONS

In this paper, we proposed a comprehensive taxonomy for
personalized driving behavior, based on a thorough literature
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review. This taxonomy is structured along the span of time,
driving behavioral response pipeline, granularity, and interac-
tion. We explained the process of driving behavior person-
alization in detail, focusing specifically on the development
of personalized behavior models. We elaborated on common
personalization approaches, providing detailed explanations
supported by extensive literature. This work serves as a
valuable resource for future research and development in the
field of personalization in driving behavior.
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