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Abstract 

The battery electric truck (BET) has emerged as a promising solution to reduce greenhouse gas emissions in urban logistics, 
given the current strict environmental regulations. This research explores the formulation and solution of the bi-objective 
BET dispatching problem with backhauls and time windows, aiming to simultaneously reduce environmental impacts and 
enhance the efficiency of urban logistics. From the sustainability perspective, one of the objectives is to minimize total energy 
costs, which include energy consumption and battery replacement expenses. On the other hand, from an economic perspec- 
tive, the other objective is the minimization of labor costs. To solve this bi-objective BET dispatching problem, we propose an 
innovative approach, integrating an adaptive large neighborhood search-based metaheuristics algorithm with a multi-objective 
optimization strategy. This integration enables the exploration of the trade-off between fleet energy expenses and labor 
costs, optimizing the dispatching decisions for BETs. To validate the proposed dispatching strategy, extensive experiments 
were conducted using real-world fleet operations data from a logistics fleet in Southern California. The results demonstrated 
that the proposed approach yields a set of Pareto solutions, showcasing its effectiveness in finding a balance between energy 
efficiency and labor costs in urban logistics systems. The findings of this research contribute to advancing sustainable urban 
logistics practices and provide valuable insights for fleet operators in effectively managing BET fleets to reduce environmental 
impacts while maintaining economic efficiency. 
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Urban freight transportation plays an important role in 

fostering economic development and sustainability within 

cities, garnering attention from stakeholders in both the 

public and the private sectors. For example, the 

U.S.A. has set a goal to achieve a 50%–52% reduction in 

greenhouse gas (GHG) emissions below 2005 levels 

economy-wide, including from the transportation sector, 

by  2030  (1).  As  another  example,  the  European 

urban freight transportation and contribute toward 

reaching these environmental targets. 

In recent years, there has been a surge in the adoption 

of EVs such as battery electric trucks (BETs) within the 

logistics and transportation network planning domain. 

Notably, this trend is evident in various applications, such 

as EV routing (3–8), BET fleet dispatching (9–12), and 

electric bus scheduling (13, 14). Those efforts have 

Environment Agency has planned to reduce GHG   

emissions from transportation to a level of 6% below 1990 

levels by 2030 (2). These ambitious goals have led to the 

implementation of diverse policies and measures, 

particularly promoting low-carbon fuels and electric 

vehicles (EVs). Among others, battery EVs have emerged 

as a promising and viable option to achieve sustainable 
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been made to reduce GHG emissions through efficient 

routing and scheduling of EVs. This is especially impor- 

tant for heavy-duty (i.e., Classes 7 and 8) BETs, which 

are subject to limitations such as short range of travel, 

high vehicle purchase and battery replacement costs, 

scarcity of recharging stations, and long recharging time. 

Our study is motivated by the pressing need to curb 

transportation-related GHG emissions and establish a 

sustainable urban freight dispatching strategy. However, 

we recognize the inherent conflict between two essential 

perspectives when developing such a strategy—the need 

to address environmental concerns while also meeting 

economic goals. On the one hand, from a sustainability 

point of view, an energy-efficient dispatching approach 

is desired to minimize total energy consumption. On the 

other hand, a time-efficient routing strategy is crucial to 

ensure  the  optimal  level  of  service  and  customer 

satisfaction. 

For instance, cargo weight is one of the key factors 

influencing heavy-duty BET energy consumption, espe- 

cially for Class 8 BETs. During a route, more energy is 

consumed when a BET travels long distances with a full 

or heavy load. Consequently, decision-makers may adjust 

the service sequences of BETs to achieve an energy-

efficient dispatching solution for the truck fleet. In that 

case, customers who require heavy cargo may have 

priority. The BET can visit them first to reduce the cargo 

weight, and then visit the remaining customers. Thus, this 

adjustment may lead to an increase in the total travel time, 

potentially causing delays for other custom- ers and 

reducing the level of service. 

Researchers have applied techniques from multi- 

objective optimization (MOO) to solve multi-objective 

vehicle routing problems. For example, Demir et al. (15) 

extended the traditional pollution routing problem 

(PRP) and proposed a bi-objective PRP model for an 

internal combustion engine vehicle fleet. The first 

objective is minimizing fuel consumption while the sec- 

ond objective is minimizing the total travel time. To 

address this problem, the authors incorporated MOO 

techniques with an adaptive large neighborhood search 

(ALNS) metaheuristic, where the ALNS is a search engine 

to find a set of Pareto solutions. M u ñ o z -  Villamizar et al. 

(16) introduced a bi-objective urban transport network 

model aimed at improving the effi- ciency of urban 

logistics while simultaneously reducing environmental 

impacts and maintaining service levels. Specifically, the 

authors investigated the efficient trade- off between 

potential economic impacts and GHG emission reduction 

when implementing an EV fleet. A weighted method was 

introduced to find the efficient frontier of the problem. 

Recently, Amiri et al. (17) introduced a green vehicle 

routing problem (G-VRP) variant and considered a 

heterogenous truck fleet, 

which includes heavy-duty diesel trucks and BETs. The 

authors first investigated the economic impact as one 

objective when deploying the mixed truck fleet. To 

address environmental concerns, they also considered 

GHG emissions as the second objective. 

Contrary to the traditional PRP (15), developing a 

dispatching strategy for a BET fleet poses greater chal- 

lenges. Since BETs have limited battery capacity (and 

thus, range), decision-makers need to consider an opti- 

mal recharging scheme at both the tactical and opera- 

tional levels when necessary. Firstly, an en route partial 

recharging policy (18) should be taken into account. This 

policy has the potential to reduce idle time and improve 

dispatching efficiency. Secondly, because of the scarcity 

of charging stations, BETs may need to make a detour 

to reach a suitable recharging station. In this study, we 

incorporate these practical considerations in the design of 

BET dispatching strategies. 

In addition, the proposed BET dispatching problem 

considers a backhaul strategy, where the BET routes fol- 

low a last-in, first-out rule (19). It has been demonstrated 

as a sustainable way to improve the dispatching effi- 

ciency in urban logistics (20). To do this, customers are 

categorized into linehaul customers, who require deliv- 

eries, and backhaul customers, who require pickups. The 

pickup orders are only initiated once all deliveries are 

completed. This strategy is commonly known as the vehi- 

cle routing problem with backhauls (VRPB) (21). Over 

the years, various approaches have been proposed to solve 

the VPRB, including exact methods (21, 22) and 

metaheuristics approaches (23–25). 

Major contributions of this paper to the research field 

are summarized as follows. 

 

• Formulation of a bi-objective BET dispatching 

problem: A novel bi-objective dispatching problem 

is proposed for BET fleets, considering important 

factors such as backhauling, en route partial 

recharging policy, limited range and capacity, and 

time window constraints. This extended formula- 

tion of the classic G-VRP incorporates two objec- 

tive functions, total BET fleet energy cost and total 

labor cost, addressing both environmental and 

economic concerns. 
• Development of an efficient dispatching strategy: 

An advanced dispatching algorithm is developed to 

solve the bi-objective BET dispatching prob- lem. 

The algorithm combines the ALNS meta- heuristics 

with a MOO approach. By leveraging the ALNS 

framework, the algorithm searches for a set of 

Pareto solutions that provide versatile dis- patching 

guidance for fleet operators. 
• Validation with benchmark and real-world fleet dis- 

patching data: To assess the performance of the 
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proposed dispatching algorithm with respect to 

solution quality and computation time, we apply 

our dispatching algorithm to a VRPB benchmark 

dataset (21) and find that it achieves the best- 

known solution (BKS) in 16 instances (out of 62). 

The deviation between our best solution and the 

BKS is less than 1% for more than half of the 

problem instances, demonstrating the efficacy of 

our algorithm. In addition, the ALNS framework is 

extensively validated using real-world fleet dis- 

patching data, confirming the effectiveness of the 

dispatching algorithm in practical applications. 

 

Overall, this research significantly contributes to 

advancing the field of sustainable urban logistics and BET 

fleet management, providing valuable insights and 

practical tools for optimizing dispatching decisions while 

considering energy efficiency and cost-effectiveness. 

The remainder of this paper is organized as follows. 

The second section presents a mixed-integer linear pro- 

gramming (MILP) model of the bi-objective BET dis- 

patching problem. The third section describes the 

methodology of the ALNS-based metaheuristics algo- 

rithm, integrated with a MOO approach to effectively 

solve the proposed problem. The fourth section is dedi- 

cated to the evaluation of the solution performance based 

on a VRPB benchmark dataset as well as a real- world 

case study. Finally, the fifth section concludes the paper 

and outlines potential directions for future work. 

 

Problem Description and Formulation 

The proposed bi-objective BET dispatching problem 

considers a set of customers with known delivery type 

(pickup or delivery), appointment time windows, service 

time, demand, and address. The dispatcher should make a 

dispatching decision for a fleet of BETs with limited cargo 

payload and battery capacity, following the last-in and 

first-out strategy. The goal is to construct optimal routes 

that start from the depot, visit all customers exactly once 

following a first-out and last-in rule, and return to the 

same depot within the predefined operation time. 

Specifically, a possible en route recharging scheme is 

considered during the route planning when the BET route 

is energy infeasible. 

There are two conflicting objectives during the 

decision-making stage: fleet energy cost (i.e., battery elec- 

tricity and depletion cost) and labor cost. The first objec- 

tive is to minimize the fleet energy cost related to battery 

energy consumption, recharging cost, and battery 

replacement cost in urban distribution. The second 

objective is minimizing the labor cost, which is a linear 

combination of travel and recharging time. Considering a 

realistic energy consumption model (detailed in the 

BET Fleet Energy Cost of Transportation section), the 

cargo weight and travel distance can influence the total 

energy consumption. So, the BET may detour to avoid a 

full truckload with long trips. Therefore, the total travel 

time could be increased because of the detour. 

A bi-objective evaluation is recommended to estimate 

the efficient frontier between fleet energy and labor costs. 

The detailed mathematical formulation of those objec- 

tives is described in the BET Fleet Energy Cost of 

Transportation and Travel Time Cost of Transportation 

sections, following the Problem Description section. 

 

Problem Description 

The proposed BET dispatching problem requires decision-

making at two levels: (1) the strategic level, where an en 

route recharging schedule needs to be located during 

dispatching; and (2) the tactical level, which determines 

the energy-efficient routing strategy of the BET fleet 

considering the backhauling strategy, time windows, and 

partial recharging policy. 

To formulate the BET dispatching problem, we define 

it on a complete directed graph G = ðN 0O, D [ R, A Þ, 

where N 0O, D is the set of nodes including customer nodes 

N and depot node ðO, DÞ, and R represents a set of 

recharging stations. The customers N can be partitioned 

into two sets, that is, N = fL, Bg, where the sets 

L = ð1, 2, . .  . , nÞ and B = ðn + 1, n + 2, . . .  , n + mÞ 

represent the linehaul customers and the backhaul cus- 

tomers, respectively. Each customer i 2 N has a specific 

service type, a service time s, a time window ½e, l], and a 

demand q (negative if delivery and positive if pickup). 

The arc set is defined by A = A1 [ A2 [ A3, where 

A1 = f(i, j) 2 A : i 2 L [ O, j 2 L [ Rg to connect all 

forward flows, A2 = f(i, j) 2 A : i 2 B [ R, j 2 B [ Dg to 

represent the backward flows, and the interface arc is 

represented by A3 = f(i, j) 2 A : i 2 L [ R, j 2 B [ Dg. 

To simplify the flow degrees in the mathematical formu- 

lation, we define D+ = fj : (i, j) 2 A, i 2 N 0O, Dg, which 

denotes the forward of i, and D- = fj : (j, i) 2 A, 

i 2 N 0O, Dg, which denotes the backward of i. Each arc 

(i, j) has an associated travel distance dij, energy con- 

sumption Eij, and travel time tij. 

 

 

BET Fleet Energy Cost of Transportation 

The first objective function of the bi-objective BET dis- 

patching problem is to minimize the total energy cost, 

which consists of total energy consumption, recharging, 

and battery replacement costs. In addition, we consider the 

microscopic energy consumption models presented by 

Wang et al. (26) and Goeke and Schneider (3) to esti- mate 

BET energy consumption in each arc. 
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where a = a + gsinu + gCrcosu is an arc specific con- 

stant and b = 0:5CdAr is a vehicle specific constant. 

Therefore, the motor efficiency ðeffmÞ and battery dis- 

charging efficiency ðeffdÞ of a BET are taken into consid- 

eration in the model. The electric energy consumption Eij$ 

for traveling this arc can be calculated as follows: 

E = 
  WEij  

= 
ðPM + PaccÞ 

• 
dij 

= 
1 

•
 

ij effd • effm effd • effm vij 
 

 

effd • effm ð5Þ 

Figure 1. Calculation of required energy on an arc. 
 h
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consumption for the BET. We first determine the 

mechanical power applied to fulfill its acceleration and 

overcome the air and rolling resistance. Then, electric 

power output WEij from the battery can be estimated by the 

efficiencies of the electric motors based on the trac- tive 

power. In addition, similar to the energy consump- tion 

model in Wang et al. (26), the accessory load Pacc is 

considered in our model. Finally, the required electric 

power and accessory load are converted into the amount 

of power generated from the battery, which depends on 

the battery discharge efficiency. 

The rolling resistance Fr of the BET is calculated by 

Equation 1, which is required to overcome the rolling, 

In this study, minimizing the total fleet energy cost 

ðZ1Þ can be formulated as a mixed-integer programming 

problem, as shown in Equation 6. The first term is the total 

energy consumption cost for the BET fleet, while the 

second term is the battery replacement cost. The bat- tery 

replacement cost is generated by the distance tra- veled by 

the BETs. We assume the BET fleet has to have 

replacement batteries after 150,000 mi, and the cost fac- 

tor of replacement CB is given by Goeke and Schneider 

(3). A binary variable xij is used to determine if the BET 

has traveled on the arcs: 

min Z1 = 
X 

0 0 

 
CEEij + CBdij

 
xij: 

aerodynamic resistance, and gravitational force. In this 

equation, cr denotes the rolling resistance factor, g stands 

for the gravitational constant, and u represents the  

gradient  angle.  We  assume  the  total  weight 

i2N O [ R, j2N D [ R, i6¼j 
 

 

 

 

Travel Time Cost of Transportation 

ð6Þ 

M = w + Cij, where w and Cij represent the curb weight 

(i.e., the weight of empty truck) and load carried by the 

BET, respectively: 

Fr = cr • M • g • cos(u): ð1Þ 

Considering the speed v, the aerodynamic drag 

coefficient cd, the air density ra, and the frontal area A, 

The second objective function of the bi-objective BET 

dispatching problem is to minimize the total labor cost of 

transportation with respect to travel time. It consists of 

travel times, loading/unloading service times at each cus- 

tomer, and idling time at the recharging station. Table 1 

summarizes the variable definitions in our model: 

the aerodynamic resistance Fa can be calculated by the 

following: 

1 

minZ2 = 
 

0 0 C 
i2N O [R,j2N D [R,i6¼j 

T

  

tij +si + 
ðYi -yiÞ

k
 

r 
ij 

)

xij 

 

ð7Þ 

Fa = • ra • A • cd • v2: ð2Þ 
2 

Therefore, the total mechanical power PM is as follows: 

 
PM = 

Multi-Objective Evaluation and Constraints 
The multi-objective evaluation is used to evaluate the 

impact of the fleet energy cost and the labor cost of trans- 

M • a + 
1 

• c 
2  

d 
• r• A • v2 +M • g • sinðuÞ+ cr • M • g • cos(u)

)

• n: ð3Þ 

Figure 1 illustrates the calculation of required energy 

  

ij 

X 
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portation by 

identifying a set of 

non-dominated solutions (i.e., Pareto 

optimal solutions). When searching for 

the Pareto optimal solutions, it attempts to improve one of 

the objective functions without compromising the other. 

The mechanical and accessory energy required by the 

BET is estimated by the following: 

Thereby, one way is to use the weighted method, which 

minimizes the weighted sum of the objective functions. 
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Table 1. Notations and Vehicle Parameters of the Mathematical 
Model 

 
 

Notation Description 
 

 

Problem parameters 

X

i2D
- xij = 1, j 2 N [ R, ð9Þ 

X

j2D+ xij = 1, i 2 N [ R, ð10Þ 

X 
xij - xji = 0, 8i 2 N 0O [ R, ð11Þ 

 
  

CB Cost factor of battery replacement 
T 

X

i2D- 
 

xij = K, ð12Þ 

C Cost factor of travel time O 

mB Set of BETs available at the depot 
K Total number of BETs in operation 
N Sets of customer vertices 
L Sets of linehaul customer vertices 
B Sets of backhaul customer vertices 
R Recharging station(s) 

 

 
Vehicle constraints: 

X

i2D+ xij = K: ð13Þ 

r Recharging rate 
dij Distance between vertices i and j 
Eij Energy consumption between vertices i and j 
tij Travel time between vertices i and j 
TO Earliest departure time 
TD Latest return time 

 
Recharging constraints: 

X

j2(D [ N 

yO = Q: ð14Þ 

 

 

[ R) 
xij ł 1, 8i 2 R, ð15Þ 

C Cargo payload capacity X  

t + ð1 - k Þs + k • 
Yi - yi

 

 
 

 
 

if drop-off) 
ei Earliest start of service time at vertex i 
li Latest start of service time at vertex i 
si Service time at vertex i 

Decision variables 

xij ł TD - TO, 8i 2 O [ N [ R, j 2 (D [ N [ R), i 6¼ j, 

ð16Þ 

0\Yi ł Minf60 • r, 80% • Qg8i 2 R, ð17Þ 

ti Decision variable specifying the time of arrival 
 

 

0 ł
 

ð1 - k Þ • y + k • Y - E 
 
x ł Q, 

ki Decision variable specifying the visit to 
recharging station vertex i. 0 if customer, 1 

0 

8i 2 N O 
0 

[ R, j 2 N D [ R, i 6¼  j: 

if charging station. 
ui Decision variable specifying the remain cargo 

on arrival at vertex i 
yi Current SOC for BET vB when arriving at 

vertex i 
Yi Finish charging SOC for BET vB at vertex i 

Time window constraints: 

 

ti + si + tij xij - l0 1 - xij ł tj 

8i 2 O [N [ R, 8j 2 D [N [ R i 6¼  j, 

 

 

ð19Þ 

xij Binary decision variable. 0 if the route from i 
to j is not visited by BET vB, 1 otherwise 

 
Note: BET = battery electric truck; SOC = state of charge. 

ei ł ti ł li, 8i 2 N 0O, D: ð20Þ 

Demand constraints: 

0 ł uo ł C, ð21Þ 

 

This method transfers a multi-objective function to a sin- 

gle objective function by multiplying a weighted sum of 

factors. The mixed-integer programming formulation of 

our problem is shown in Equation 8. We define non- 

0 ł uj ł (ui - qi)xij + C 1 - xij 

8i 2 O [N [ R, 8j 2 D [N [ R, i 6¼  j: 

Binary decision variable: 

 

ð22Þ 

negative weighting factors wa and ð1 - waÞ for the fleet xij 2 f0, 1g, 8i, j 2 N 0O, D, i 6¼  j: ð23Þ 

energy cost and labor cost, respectively: 
Constraints 9–11 define the forward and backward 

minZ3=wa 
0 

 
CEEij +CBdij

 
xij 

flow conservation constraints. Constraints 12 and 13 

ensure that the number of routes equals the number of 

C E Cost factor of energy consumption 

i, j2ðD [ N [ RÞ 

at vertex i 

Q BET maximum battery capacity 
qi Demand at vertex (positive if pickup, negative 

ij 
ð18Þ 
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+(1-w )
X

 CT

  

t +s +
ðYi -yiÞ

k 

)

x , 

operating BETs. Constraint 14 defines that the BET fleet 

is fully recharged with battery capacity Q when departing 
 

 

 

subject to the following. 

Demand and flow balance constraints: 

ð8Þ occurs at most once during dispatching. Constraints 16– 

18 state the recharging time window and the maximum 

charging volume. The maximum charging time is limited 

to 1 h. Constraints 19 and 20 force the BET to visit the 

customers  within  the  scheduled  time  windows. 

the depot. Constraint 15 guarantees a recharging visit 

0 0 
i2N O [R,j2N D [R,i6¼j 

0 



Peng et al 1855 
 

    

2 i j 3 maxi2N ðqiÞ-mini2N ðqiÞ 
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Constraints 21 and 22 guarantee the cargo load does not 

exceed the payload capacity for either linehauls or back- 

hauls. Finally, condition 23 defines the binary decision 

variables. 

 

Methodology 

In this section, an ALNS metaheuristic is proposed to 

solve the bi-objective BET dispatching problem. There 

are two main goals for the developed ALNS framework. 

One on hand, the ALNS is used as a searching engine to 

find a set of Pareto solutions for the proposed bi- objective 

BET dispatching problem. On the other hand, an en route 

partial recharging schedule is scheduled for the BET fleet. 

An overview of the ALNS framework is 

chosen to be removed. This pair of customers is iden- 

tified and removed to subset Lremoval. Next, the new 

request is selected from this route that has not been 

touched by the removal operator, and a new pair is 

identified by their distance. This process continues 

several times until the desired number of customers has 

been removed to the subset Lremoval. 

Worst removal iteratively removes n vertices that con- 

tribute the largest insertion cost. It first sorts the 

insertion cost of all vertices in descending order by 

calculating ci = Z3ðsÞ - Z3ðs-iÞ, where s-i is the route 

without customer i and s is the route with customer i. 

Shaw removal (27) removes a set of n similar customers. 

A relatedness function is used to check the similarity 

for customers i and j, which can be calculated by 

described in Algorithm 1. Lði, jÞ=f 
dij +f 1e - e 1 +f 

jqi -qj j 
.
 

 

Generation of the Initial Solution 

The initial solution for ALNS is generated by a greedy 

constructive heuristic. At the beginning, unvisited cus- 

tomers are first sorted in a non-decreasing order accord- 

ing to the cost function Z3, then iteratively inserted into 

the BET routes. During each iteration, a candidate cus- 

tomer i is randomly selected and insert to the current solu- 

tion Sinit, which leads to a minimum increase in the total 

cost, that is, ci = Z3ðSinitÞ - Z3 Sinit , where Sinit is the solu- 

The weight vector f=(f1, f2, f3) is applied to nor- 

malize the relatedness function. At the beginning, a 
customer i 2N is randomly selected as a candidate cus- 

tomer who needs to be removed. Next, the most related 

customer j 2N ni is chosen by calculating the similarity 

function with the smallest value Lði, jÞ. The operator 

continues to remove the related customer with j. 

Finally, the Shaw removal operator terminates once n 

customers have been removed. 

tion with the candidate customer i and Sinit is the solution 

with customer i. Once the BET route is energy infeasible, 

we try to insert a possible recharging schedule from a set of 

available recharging stations R. Therefore, more unvisited 

customers are allowed to insert the solution Sinit until the 

energy violation, truck cargo capacity violation, or total 

working time limitation occurs. Subsequently, if there are 

customers who are not visited, a new BET route starts fol- 

lowing the aforementioned processes. 

 

Destroy and Repair Operators 

Our ALNS framework uses five destroy operators for 

removing n = E •N vertices from the current solution, 

where the number of customers/vertices n is predefined by 

the destroy rate E. The removal heuristics are detailed as 

follows. 

 

Random removal randomly removes n customers/ver- 

tices from the BET routes. It can randomly remove 

customers and the recharging schedule. 

Random path removal destroys an entire consecutive 

sub-path with n vertices. 

Simplified Shaw removal identifies and removes cus- 

tomers according to their geographical positions. 

Firstly, we randomly choose a customer from the route 

and find the closest customer that has not been 

Our ALNS framework applies four repair operators 

to reconstruct all unvisited customers such that the new 

solution is feasible. Figure 2 shows an example of the 

repairing process. 

Greedy insertion iteratively reinserts unvisited custom- 

ers to construct a route by selecting the feasible cost- 

minimizing position of each customer. The greedy inser- 

tion process terminates when all unvisited customers have 

been inserted. 

Greedy insertion with charging stations is employed to 

construct routes and determine a recharging schedule. For 

the insertion of customers, it follows the greedy insertion 

process. If a BET route is energy infeasible, an appropriate 

charging station (CS) visit is inserted, consid- ering the 

detour cost and recharging constraints described in the 

Multi-Objective Evaluation and Constraints section. If the 

current BET route has a possible en route recharging visit, 

more customers are allowed to be visited. When no more 

customers can be inserted into the current route because of 

the constraints, a new BET route should be started. 

However, there is an exception: once a recharging visit has 

been assigned, no additional customers can be inserted. In 

this case, the recharging visit will be removed since 

recharging is unnecessary. 

Regret insertion was described by Ropke and Pisinger 

(23) and Goeke and Schneider (3), and aims to estimate 

the future effect of an insertion operation. The idea is to 

1 maxi, j2N ðdij Þ 
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Algorithm 1. Overview of the ALNS framework. 

{
z-, z-, . .  . , z- 

} 
denote a set of removal operators 

and  P+ = 
{
z+, z+, . .  . , z+ 

}  
represent  the  repair 

phase; 
Output: Best solution Sb 

1: Sinit  generate inital solution( )  

2: S = S  ; v = ð1, . .  . , 1Þ; v 

 

 

 

= ð1, . .  . , 1Þ 

operators. The number of removal and repair operators 

is denoted by ND and NR, respectively. We define two 

weight vectors, v- = v-, v-, . .  . , v-  and v+ = 

(
v+, v+, . .  . , v+ 

]
, to store the weight of a set of 

4: {select a destroy operator z- 2 P- by P(v-) } 
5: Remove n vertex from current solution Sc ( 

Sc = Sinit at the first iteration) with z- 

6: Sc0

   ApplyDestroyedOperator( Sc) 
7: {select a repair operator z+ 2 P+ by P(v+) }} 
8: Sc0

  ApplyRepairOperator( Sc0 

) 

destroy and repair operators, consecutively. In the first 
iteration, the operator is randomly selected, and the weight 

of each operator is initialized to 1. Then, during each 

iteration, the operator can be selected following the 
roulette wheel principle by calculating their probability 

9: if accept_SA( Sc0 

, Sb) then 

10: Sc   Sc0

 

 
 

PrðselectiÞ = v = v 

!

 
jGj  

. The termination criterion is 
 

12: Sb   Sc0

 

13: end if 
14: end if 
15: Update: the weight for v- and v+ 
16: end while 

when the ALNS reaches the maximum iteration h. 

In our ALNS framework, a simulated annealing (SA) 

heuristic is used to accept or reject the new solution Sc0 

. 

The SA algorithm can diversify the solution by accepting 

17: return Sb 
a worse solution Sc0

 with probability e -ðf ðSc0 
Þ-f ðScÞÞ=T , 

 

 

find the insertion position that maximizes the difference 

between the best insertion position and the kth best 

insertion position. Let regi, k represents the regret value, 

which can be calculated by regi, k = Df ði, posi, 1Þ- 

Df ði, posi, kÞ, where Df ði, posi, 1Þ indicates the cost 

improvement with the best insertion and Df ði, posi, kÞ 

denotes the cost improvement generated by the kth best 

insertion. In this paper, we use Regret-2 insertion method. 

 

ALNS Improvement 

The ALNS algorithm iteratively uses the removal and 

repair operators described above to construct new 

solution Sc0 

from the input solution Sc. Let P- = 

where f ð•Þ is the cost function and T is the current tem- 

perature of a SA heuristic. We predefine an initial tem- 

perature Tinit, which can be decreased at every iteration 

by T = dTinit, where the deterioration rate is d 2 ð0, 1Þ. 

An adaptive mechanism is used to update the weight of 

the removal and repair operators with respect to their 

performance. In each iteration, there are four possible 

outcomes of the new solution Sc0 

: (1) the new best solu- 

tion is found, (2) an improved solution is found but it is 

worse than the global best solution SB, (3) a worse solu- 

tion is accepted by the SA algorithm, and (4) a worse 

solution  is  rejected.  We  set  a  score  vector 
c = ½j1, j2, j3, j4] to evaluate each outcome. 

Therefore, the operator in each iteration can be updated 

by the function vi = lvi + (1 - l)c, where l 2 ð0, 1Þ is 

a decay variable to control the sensitivity of the weight 

vector. 

 

 
Figure 2. An example of the repairing process. 
Note: BET = battery electric truck. 

b j = 1 

Input: An initial feasible solution S generated by initialization 

+ 

3: while iterations h is not reached do 

11: if S 
c0 

is better than S then 

i j 
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ra Air density km=m3 
    

 

Numerical Studies 

To evaluate the proposed BET dispatching strategy in the 

real-world scenario, this section presents numerical tests 

using real data from a full-service supply chain company. 

The section is structured as follows. The Experiment 

Design and Parameter Setting section pre- sents the 

characteristics of the real-world data and the parameter 

settings used in our study. In the Experiments on Standard 

VRPB Instances section, we assess the solu- tion quality 

of the proposed ALNS algorithm by testing it on the 

standard VRPB benchmark dataset (21) and comparing 

the results with the BKSs in the literature. The Bi-

Objective Model Results Analysis section analyzes the 

results of the bi-objective BET dispatching problem. 

The mathematical models described in our study are 

programmed in Python 3.9 language. The experiments of 

Table 2. Summary of Dataset Characteristics 
 

 
Instance 

No. of 
customers 

No. of 
linehauls 

No. of 
backhauls 

 
CSs 

BETVRPB1 47 33 14 5 
BETVRPB2 58 26 32 5 
BETVRPB3 71 39 32 5 

Note: BET = battery electric truck; CS = charging station. 
 
 

 

Table 3. Summary of the Problem Parameters 
 

Notation Description Value 

Vehicle properties 

A Frontal surface area of a BET (m2) 10 

the bi-objective BET dispatching problem are conducted 

on an online server with 32 GB RAM. The test per- 

formed on the benchmark instances is conducted on a 

desktop computer with an Intel Core i7 CPU 3.6 GHz 

C Maximum BET cargo capacity 
(lb) (29) 

Q Maximum BET usable battery 
capacity (kWh) 

37,000 

300 

processor and 16 GB RAM. The data and detailed routes 

are open access via GitHub (https://github.com/ 

CurtisPeng123/Results-for-the-standard-VRPB-dataset- 

GJ89-). 

 

Experiment Design and Parameter Setting 

The experimental data is obtained from a logistics com- 

pany that operates in Riverside and San Bernardino 

Counties, California. It contains one-day historical itiner- 

aries of a heavy-duty diesel truck fleet, including cus- 

tomer IDs, locations, service types (delivery or pickup), 

required demands, service times, and required time win- 

effm Motor efficiency (5) 0.7 
effd Discharging efficiency (31) 0.91 
cr Rolling resistance coefficient (26) 0.008 
cd Coefficient of rolling drag (15) 0.7 
w Vehicle curb weight (lb) 8,000 
g Gravitational constant m=s2 9.81 

u Road angle 08 
a Acceleration m=s2 0 
n Vehicle speed (mph) 20 
Pacc Accessory power (kW) (26) 5.6 

Problem variables 

s Loading/unloading time (hours) (0, 2] 
½TO, TD] Working hours [8 a.m., 4 p.m.] 
r Recharging rate (kWh/min) 3.96 

dows. Three BET dispatching instances are sampled from 

the historical data with different customer sizes to assess 

the performance of the proposed dispatching approach. 

CE Recharging cost (USD per kWh) 
(30) 

CB Battery replacement cost (USD 

0.5 

0.1989 

In each instance, five customers are randomly selected 
CT 

where a charging station is equipped in their parking lot. 

per kilometer) 
Labor cost (USD per hour) (32) 62 

A BET can be recharged immediately when arriving at the 

charging stations. Table 2 summarizes the character- istics 

of the generated instances. 

Based on the customer’s location information, the 

Direction Service Application Programming Interface 

(DSAPI) provided by OpenRouteService (28) is used to 

generate geographical travel distance and travel time 

matrices for the truck routes. Those matrices consider the 

urban transport network, speed limitation, and restricted 

zones for the heavy-duty trucks. 

In the numerical study, we use the properties and coef- 

ficients of a Class 8 BET model that is commercially 

available in the current U.S. market (29). To safely use the 

battery and extend its life, this study assumes the usable 

battery capacity of the BET to be 300 kWh, which is 80% 

of its nominal value (i.e., 375 kWh) as given in 

Note: BET = battery electric truck. 
 

 

VNR Electric Specifications (29). The accessory power of 

the BET is set to 5.6 kWh, as described by Wang et al. 

(26). For the energy cost, the recharging cost is set to 0.5 

dollars per kWh at high peak times (30) using 250 kW DC 

fast chargers. Table 3 summarizes the problem para- meter 

settings. 

We used the instance BETVRPB1 with 47 customers 

to find appropriate parameter values. The first objective 

function is used to tune the parameters. Similar to the 

parameter tunning process in Ropke and Pisinger (33), a 

preliminary analysis was conducted to initialize the para- 

meters. We predefine a set of candidate parameter values 

in Table 4 that have a stronger influence on the 

1.2041 

https://github.com/CurtisPeng123/Results-for-the-standard-VRPB-dataset-GJ89-
https://github.com/CurtisPeng123/Results-for-the-standard-VRPB-dataset-GJ89-
https://github.com/CurtisPeng123/Results-for-the-standard-VRPB-dataset-GJ89-
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Table 4. Summary of Parameters in the Experiment  

Variable  Value  

Score vector c = ½j1, j2, j3, j4] [15, 9, 8, 5] [18, 10, 4, 3] [15, 9, 4, 3] 
Dd (%) 0.86 1.00 0.95 
Decay parameter l 0.8 0.83 0.85 
Dd (%) 0.79 0.92 0.87 
Destroy rate E 35% 38% 40% 
Dd (%) 0.97 0.77 0.81 

Note: Bold values represent the final parameter setting. 
   

 

 

Table 5. Average Comparison of the Proposed Adaptive Large Neighborhood Search Framework on the Standard Vehicle Routing 
Problem with Backhauls 

 

Instances group L B Avg. BKS cost Avg. best cost Dev (%) Time (s) 

A 20 5 182,301 183,589 0.71 5 
B 20 10 202,167 202,167 0.00 8 
C 20 10 214,795 215,072 0.13 18 
D 30 8 271,138 272,027 0.33 17 
E 30 15 219,267 219,993 0.33 26 
F 30 30 250,842 252,151 0.52 51 
G 45 12 241,494 242,878 0.57 52 
H 45 23 252,537 253,648 0.44 86 
I 45 45 310,382 313,001 0.84 158 
J 75 19 305,294 309,841 1.49 220 
K 75 38 367,711 376,878 2.49 293 
L 75 75 398,801 418,237 4.87 629 
M 100 25 379,836 389,506 2.55 441 
N 100 50 392,088 408,146 4.10 646 

Note: BKS = best-known solution; Avg. = average; Dev = deviation. 

 

 

performance of the ALNS framework. Next, we vary one 

parameter value while holding the rest the same, and then 

run the algorithm 10 times. A preferred parameter value is 

defined by observing the minimum cost. Therefore, the 

bold values in Table 4 are the fine-tuned parameters used 

in the experiment. The average devia- tion (in percentage) 

between the results for the tested set- tings for each 

parameter and the best results we obtained is reported as 

Dd in the table. 

The complete parameter tuning leads to the parameter 

standard VRPB instance set of Goetschalckx and Jacobs- 

Blecha (21) (GJ89). The GJ89 instance set contains a 

total of 14 groups that include 62 problem instances with 

customer size ranging from 25 to 150. It has been used to 

evaluate the performance of algorithms for solving stan- 

dard VRPB by Toth and Vigo (22), Ropke and Pisinger 

(23), and B r a n d ã o  (24). 

Using the parameter settings in Table 4, the ALNS 

framework aims to minimize the total travel distance 

objective in the standard VRPB instances. We use the 

vector ðf1, f2, f3, j1, j2, j3, j4, l, E, Tinit, dÞ  = double precision method (23) to compute the Euclidian 

ð0:5, 0:25, 0:25, 15, 9, 8, 5, 0:8, 0:38, 20, 0:9998Þ, 

which is used for all of the following experiments. To bal- 

ance the solution quality and computation time of the 

developed ALNS framework, we set the maximum itera- 

tion h = 2000. 

 

Experiments on Standard VRPB Instances 

To assess the performance of our BET dispatching strat- 

egy with respect to the solution quality and solution time, 

we implement the proposed ALNS framework on the 

distance. The results are rounded to the nearest integer 

value. Table 5 summarizes the results for the standard 

VRPB instances with 14 groups. Columns L and B repre- 

sent the number of linehaul and backhaul customers, 

respectively. The average results demonstrate that our 

dispatching strategy generally performs well for the prob- 

lem instances with fewer than 90 customers, where the 

average deviation is less than 1% compared to the BKS 

cost. 

In the Appendix, we present detailed results obtained 

by our ALNS algorithm and compare them with the 
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Table 6. Computational Results of the Real-World Problem Instances 
 

wa Z3(S) Z1(S) Z2(S) E(S) T(S) D(S) Time (s) 
 

 

BETVRPB1  

0.0 652 376 652 501 631 392 712 
0.1 624 376 652 501 631 392 726 
0.2 590 368 645 497 624 375 756 
0.3 562 365 646 488 625 381 843 
0.4 539 369 653 493 632 386 768 
0.5 506 364 647 485 626 391 823 
0.6 482 368 654 491 633 384 828 
0.7 452 361 665 479 644 382 857 
0.8 422 361 665 479 644 382 723 
0.9 392 361 665 479 644 382 780 
1.0 361 361 665 479 644 382 831 

BETVRPB2 
0.0 626 345 626 468 606 350 1657 
0.1 600 345 628 468 608 350 1455 
0.2 574 343 631 457 611 359 1346 
0.3 545 343 631 457 611 359 1325 
0.4 517 343 633 456 613 359 1722 
0.5 487 343 631 457 611 359 1664 
0.6 458 339 637 458 617 347 1662 
0.7 427 339 632 458 611 345 1327 
0.8 398 337 642 454 622 346 1351 
0.9 368 337 644 456 623 345 1614 
1.0 337 337 643 454 623 345 1668 

BETVRPB3 
0.0 720 415 720 548 697 443 2004 
0.1 690 414 720 545 697 443 1810 
0.2 666 417 728 549 704 449 1682 
0.3 628 414 720 545 697 443 1933 
0.4 599 415 722 548 698 443 2228 
0.5 568 414 722 546 699 443 1814 
0.6 536 413 721 545 698 442 1632 
0.7 505 413 722 544 698 442 1961 
0.8 475 412 726 543 703 441 2152 
0.9 446 413 737 543 713 445 2716 
1.0 407 407 733 537 709 435 1744 

Note: BET = battery electric truck. 

 

BKS reported by Koxc and Laporte (34) as well as the 
solutions obtained by other metaheuristic algorithms in 

the literature. The abbreviations of the papers that we 

use for comparison are as follows: RP06 for Ropke and 

Pisinger (23) and B16 for B r a n d ã o  (24). Our proposed 

ALNS algorithm can obtain the BKS in 16 of the 62 

instances. The results indicate that our proposed ALNS 

algorithm performs well within a moderate computa- 

tional time. 

 

 

Bi-Objective Model Results Analysis 

Real-world truck dispatching data is used to validate the 

proposed bi-objective model. The bi-objective model is 

solved by the proposed BET dispatching strategy to gain 

insight into the relative efficient frontier. As discussed in 

the second section, the first objective Z1 indicates the 

total BET energy cost (in USD), the second objective Z2 

denotes the labor cost (in USD), which is linearly related 

to the total travel time, and Z3 is the weighted-sum func- 

tion to find the trade-off between those two objective val- 

ues. For the weight factor wa of the total BET energy cost, 

it is set to 0 in the first iteration and increases by 0.1 when 

the ALNS framework terminates. The maximum value of 

wa is set to 1. Therefore, we can obtain 11 results and 

compare each result to find the non-dominated solu- tions, 

that is, Pareto solutions. To ensure the solution quality, the 

ALNS metaheuristic algorithm is restarted 

10 times for each iteration and the best results are 

selected. Table 6 shows the computational results of the 

bi-objective model for the instances. The columns E(S), 

T(S), and D(S) represent the BET energy consumption 

(in kWh), total travel time (in minutes), and total travel 

distance (in miles) of solution S, respectively. The col- 

umn Time shows the CPU computational time. 



1860 Transportation Research Record 2678(11) 
 

 

 
Figure 3. (a) The Pareto frontier of instance BETVRPB1. (b) Total battery electric truck (BET) energy cost (USD) versus total travel 
time for the Pareto solutions of instance BETVRPB1. 

 

 

As demonstrated in Table 6, the proposed BET dis- 

patching strategy can find four Pareto solutions for each 

problem instance, and the efficient frontier shows the 

possible best trade-off between the labor cost and the total 

energy cost for the BET fleet. The decision-makers can 

choose a dispatching strategy based on one of these 

solutions. Taking the instance BETVRPB1 as an exam- 

ple, Figure 3a shows the Pareto solutions where the total 

travel time cost ranges from $645 to $665 USD, while the 

total BET energy cost ranges from $361 to $368 USD. 

Figure 3b illustrates how the total travel time changes 

under the obtained solutions. Comparing between solu- 

tions A and B, the BET fleet can save 20 min of travel time 

if the fleet owner spends $3 USD more on the BET energy 

cost. 

 

Conclusion and Future Work 

This paper presents a bi-objective BET dispatching prob- 

lem encompassing backhauls and time windows within a 

MOO framework, aimed at devising an efficient dis- 

patching strategy for urban freight transportation. By 

accounting for both environmental and economic fac- 

tors, the proposed model offers a comprehensive approach 

to address the complexities of BET fleet opera- tions. 

Striking the right balance between the multiple objectives 

is vital to create an effective and harmonious BET 

dispatching strategy that achieves both environ- mental 

and economic goals. Our ALNS-based metaheur- istic 

algorithm, integrated with a MOO approach, effectively 

finds an efficient set of optimal dispatching strategies for 

fleet operators. 

As avenues for further research, this study opens pos- 

sibilities to expand the proposed model by incorporating 

additional constraints related to BET fleets, such as 

charging station density or charging power. By consider- 

ing these factors, future studies can refine the dispatching 

strategy further and foster sustainable practices in urban 

logistics. This research contributes valuable insights into 

optimizing BET fleet operations and lays the ground- 

work for ongoing investigations in advancing sustainable 

transportation solutions. 
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