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Abstract

The battery electric truck (BET) has emerged as a promising solution to reduce greenhouse gas emissions in urban logistics,
given the current strict environmental regulations. This research explores the formulation and solution of the bi-objective
BET dispatching problem with backhauls and time windows, aiming to simultaneously reduce environmental impacts and
enhance the efficiency of urban logistics. From the sustainability perspective, one of the objectives is to minimize total energy
costs, which include energy consumption and battery replacement expenses. On the other hand, from an economic perspec-
tive, the other objective is the minimization of labor costs. To solve this bi-objective BET dispatching problem, we propose an
innovative approach, integrating an adaptive large neighborhood search-based metaheuristics algorithm with a multi-objective
optimization strategy. This integration enables the exploration of the trade-off between fleet energy expenses and labor
costs, optimizing the dispatching decisions for BETs. To validate the proposed dispatching strategy, extensive experiments
were conducted using real-world fleet operations data from a logistics fleet in Southern California. The results demonstrated
that the proposed approach yields a set of Pareto solutions, showcasing its effectiveness in finding a balance between energy
efficiency and labor costs in urban logistics systems. The findings of this research contribute to advancing sustainable urban
logistics practices and provide valuable insights for fleet operators in effectively managing BET fleets to reduce environmental
impacts while maintaining economic efficiency.

Keywords
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Urban freight transportation plays an important role in
fostering economic development and sustainability within
cities, garnering attention from stakeholders in both the
public and the private sectors. For example, the

U.S.A. has set a goal to achieve a 50%—52% reduction in
greenhouse gas (GHG) emissions below 2005 levels
economy-wide, including from the transportation sector,
by 2030 (/). As another example, the European

Environment Agency has planned to reduce GHG
emissions from transportation to a level of 6% below 1990
levels by 2030 (2). These ambitious goals have led to the
implementation of diverse policies and measures,
particularly promoting low-carbon fuels and electric
vehicles (EVs). Among others, battery EVs have emerged
as a promising and viable option to achieve sustainable

urban freight transportation and contribute toward
reaching these environmental targets.

In recent years, there has been a surge in the adoption
of EVs such as battery electric trucks (BETSs) within the
logistics and transportation network planning domain.
Notably, this trend is evident in various applications, such
as EV routing (3-8), BET fleet dispatching (9-/2), and
electric bus scheduling (13, /4). Those efforts have
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been made to reduce GHG emissions through efficient
routing and scheduling of EVs. This is especially impor-
tant for heavy-duty (i.e., Classes 7 and 8) BETs, which
are subject to limitations such as short range of travel,
high vehicle purchase and battery replacement costs,
scarcity of recharging stations, and long recharging time.
Our study is motivated by the pressing need to curb
transportation-related GHG emissions and establish a
sustainable urban freight dispatching strategy. However,
we recognize the inherent conflict between two essential
perspectives when developing such a strategy—the need
to address environmental concerns while also meeting
economic goals. On the one hand, from a sustainability
point of view, an energy-efficient dispatching approach
is desired to minimize total energy consumption. On the
other hand, a time-efficient routing strategy is crucial to
ensure the optimal level of service and customer
satisfaction.

For instance, cargo weight is one of the key factors
influencing heavy-duty BET energy consumption, espe-
cially for Class 8 BETs. During a route, more energy is
consumed when a BET travels long distances with a full
or heavy load. Consequently, decision-makers may adjust
the service sequences of BETs to achieve an energy-
efficient dispatching solution for the truck fleet. In that
case, customers who require heavy cargo may have
priority. The BET can visit them first to reduce the cargo
weight, and then visit the remaining customers. Thus, this
adjustment may lead to an increase in the total travel time,
potentially causing delays for other custom- ers and
reducing the level of service.

Researchers have applied techniques from multi-
objective optimization (MOQ) to solve multi-objective
vehicle routing problems. For example, Demir et al. (15)
extended the traditional pollution routing problem
(PRP) and proposed a bi-objective PRP model for an
internal combustion engine vehicle fleet. The first
objective is minimizing fuel consumption while the sec-
ond objective is minimizing the total travel time. To
address this problem, the authors incorporated MOO
techniques with an adaptive large neighborhood search
(ALNS) metaheuristic, where the ALNS is a search engine
to find a set of Pareto solutions. Mun0z- Villamizar et al.
(16) introduced a bi-objective urban transport network
model aimed at improving the effi- ciency of urban
logistics while simultaneously reducing environmental
impacts and maintaining service levels. Specifically, the
authors investigated the efficient trade- off between
potential economic impacts and GHG emission reduction
when implementing an EV fleet. A weighted method was
introduced to find the efficient frontier of the problem.
Recently, Amiri et al. (/7) introduced a green vehicle
routing problem (G-VRP) variant and considered a
heterogenous truck fleet,

which includes heavy-duty diesel trucks and BETs. The
authors first investigated the economic impact as one
objective when deploying the mixed truck fleet. To
address environmental concerns, they also considered
GHG emissions as the second objective.

Contrary to the traditional PRP (75), developing a
dispatching strategy for a BET fleet poses greater chal-
lenges. Since BETs have limited battery capacity (and
thus, range), decision-makers need to consider an opti-
mal recharging scheme at both the tactical and opera-
tional levels when necessary. Firstly, an en route partial
recharging policy (/8) should be taken into account. This
policy has the potential to reduce idle time and improve
dispatching efficiency. Secondly, because of the scarcity
of charging stations, BETs may need to make a detour
to reach a suitable recharging station. In this study, we
incorporate these practical considerations in the design of
BET dispatching strategies.

In addition, the proposed BET dispatching problem
considers a backhaul strategy, where the BET routes fol-
low a last-in, first-out rule (/9). It has been demonstrated
as a sustainable way to improve the dispatching effi-
ciency in urban logistics (20). To do this, customers are
categorized into linechaul customers, who require deliv-
eries, and backhaul customers, who require pickups. The
pickup orders are only initiated once all deliveries are
completed. This strategy is commonly known as the vehi-
cle routing problem with backhauls (VRPB) (27). Over
the years, various approaches have been proposed to solve
the VPRB, including exact methods (27, 22) and
metaheuristics approaches (23—25).

Major contributions of this paper to the research field
are summarized as follows.

* Formulation of a bi-objective BET dispatching
problem: A novel bi-objective dispatching problem
is proposed for BET fleets, considering important
factors such as backhauling, en route partial
recharging policy, limited range and capacity, and
time window constraints. This extended formula-
tion of the classic G-VRP incorporates two objec-
tive functions, total BET fleet energy cost and total
labor cost, addressing both environmental and
economic concerns.

* Development of an efficient dispatching strategy:
An advanced dispatching algorithm is developed to
solve the bi-objective BET dispatching prob- lem.
The algorithm combines the ALNS meta- heuristics
with a MOO approach. By leveraging the ALNS
framework, the algorithm searches for a set of
Pareto solutions that provide versatile dis- patching
guidance for fleet operators.

*  Validation with benchmark and real-world fleet dis-
patching data: To assess the performance of the
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proposed dispatching algorithm with respect to
solution quality and computation time, we apply
our dispatching algorithm to a VRPB benchmark
dataset (2/) and find that it achieves the best-
known solution (BKS) in 16 instances (out of 62).
The deviation between our best solution and the
BKS is less than 1% for more than half of the
problem instances, demonstrating the efficacy of
our algorithm. In addition, the ALNS framework is
extensively validated using real-world fleet dis-
patching data, confirming the effectiveness of the
dispatching algorithm in practical applications.

Overall, this research significantly contributes to
advancing the field of sustainable urban logistics and BET
fleet management, providing valuable insights and
practical tools for optimizing dispatching decisions while
considering energy efficiency and cost-effectiveness.

The remainder of this paper is organized as follows.
The second section presents a mixed-integer linear pro-
gramming (MILP) model of the bi-objective BET dis-
patching problem. The third section describes the
methodology of the ALNS-based metaheuristics algo-
rithm, integrated with a MOO approach to effectively
solve the proposed problem. The fourth section is dedi-
cated to the evaluation of the solution performance based
on a VRPB benchmark dataset as well as a real- world
case study. Finally, the fifth section concludes the paper
and outlines potential directions for future work.

Problem Description and Formulation

The proposed bi-objective BET dispatching problem
considers a set of customers with known delivery type
(pickup or delivery), appointment time windows, service
time, demand, and address. The dispatcher should make a
dispatching decision for a fleet of BETs with limited cargo
payload and battery capacity, following the last-in and
first-out strategy. The goal is to construct optimal routes
that start from the depot, visit all customers exactly once
following a first-out and last-in rule, and return to the
same depot within the predefined operation time.
Specifically, a possible en route recharging scheme is
considered during the route planning when the BET route
is energy infeasible.

There are two conflicting objectives during the
decision-making stage: fleet energy cost (i.e., battery elec-
tricity and depletion cost) and labor cost. The first objec-
tive is to minimize the fleet energy cost related to battery
energy consumption, recharging cost, and battery
replacement cost in urban distribution. The second
objective is minimizing the labor cost, which is a linear
combination of travel and recharging time. Considering a
realistic energy consumption model (detailed in the

BET Fleet Energy Cost of Transportation section), the
cargo weight and travel distance can influence the total
energy consumption. So, the BET may detour to avoid a
full truckload with long trips. Therefore, the total travel
time could be increased because of the detour.

A bi-objective evaluation is recommended to estimate
the efficient frontier between fleet energy and labor costs.
The detailed mathematical formulation of those objec-
tives is described in the BET Fleet Energy Cost of
Transportation and Travel Time Cost of Transportation
sections, following the Problem Description section.

Problem Description

The proposed BET dispatching problem requires decision-
making at two levels: (1) the strategic level, where an en
route recharging schedule needs to be located during
dispatching; and (2) the tactical level, which determines
the energy-efficient routing strategy of the BET fleet
considering the backhauling strategy, time windows, and
partial recharging policy.

To formulate the BET dispatching problem, we define
iton a complete directed graph G=8N% p[ R, A b,
where N %, p is the set of nodes including customer nodes
N and depot node 80O, DP, and R represents a set of
recharging stations. The customers N can be partitioned
into two sets, that is, N = fL, Bg, where the sets
L=061,2, ..., nb and B=0n+1, n+2, ..., n+mp
represent the linehaul customers and the backhaul cus-
tomers, respectively. Each customer i 2 N has a specific
service type, a service time s, a time window Ye, /], and a
demand ¢ (negative if delivery and positive if pickup).

The arc set is defined by A= A4 [ A>[ Az, where
A= 1(,j)2A:i2L[ O,j2L[ Rg to connect all
forward flows, 4, = f(i,j)) 2 A:i2 B[ R,j2 B[ Dgto
represent the backward flows, and the interface arc is
represented by 43=(i,j)2A:i2 L[ R,j2 B[ Dg.
To simplify the flow degrees in the mathematical formu-
lation, we define D" = fj : (i, /) 2 A, i 2 N %o, pg, which
denotes the forward of i, and D =1j:(j,i) 2 A,
i 2 N %, pg, which denotes the backward of i. Each arc
(i, /) has an associated travel distance d;;, energy con-
sumption £y, and travel time ¢;.

BET Fleet Energy Cost of Transportation

The first objective function of the bi-objective BET dis-
patching problem is to minimize the total energy cost,
which consists of total energy consumption, recharging,
and battery replacement costs. In addition, we consider the
microscopic energy consumption models presented by
Wang et al. (26) and Goeke and Schneider (3) to esti- mate
BET energy consumption in each arc.
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Figure 1. Calculation of required energy on an arc.

Figure 1 illustrates the calculation of required energy
consumption for the BET. We first determine the
mechanical power applied to fulfill its acceleration and
overcome the air and rolling resistance. Then, electric
power output Wg; from the battery can be estimated by the
efficiencies of the electric motors based on the trac- tive
power. In addition, similar to the energy consump- tion
model in Wang et al. (26), the accessory load P is
considered in our model. Finally, the required electric
power and accessory load are converted into the amount
of power generated from the battery, which depends on
the battery discharge efficiency.

The rolling resistance F, of the BET is calculated by
Equation 1, which is required to overcome the rolling,

aerodynamic resistance, and gravitational force. In this
equation, ¢, denotes the rolling resistance factor, g stands
for the gravitational constant, and u represents the
gradient angle. We assume the total weight

M=w+ Cy, where w and Cj; represent the curb weight
(i.e., the weight of empty truck) and load carried by the
BET, respectively:

F,=c,*M *g-ecos(u): olp

Considering the speed v, the aerodynamic drag
coefficient c4, the air density r,, and the frontal area A4,

the aerodynamic resistance F, can be calculated by the
following:

1

Fa=§~ra-A-cd-v2: 32p

Therefore, the total mechanical power Py, is as follows:
PM -
)

1
Mea+ E'Cd'r-A-v2+M-g-sinéub+cr-M°g°cos(u) on:

d;
w = 8P +P P V=aw+C d +brv?’d +P 9y

Ejj M acc ij i ij i acc
vy ij v
04b

where a = a + gsinu + gC,cosu is an arc specific con-
stant and b =0:5CuAr is a vehicle specific constant.

Therefore, the motor efficiency deff,,P and battery dis-
charging efficiency deffsP of a BET are taken into consid-
eration in the model. The electric energy consumption E;$
for traveling this arc can be calculated as follows:

E.= WEii _6PM+Pach).dﬁ_ 1 o
Y e]ﬁ . effm e]ﬁ * effm Vij eﬁd ° eﬁm 05p
h j i g1 aceg
a w+C d +bv’dy +pP "7

In this study, minimizing the total fleet energy cost
0Zb can be formulated as a mixed-integer programming
problem, as shown in Equation 6. The first term is the total
energy consumption cost for the BET fleet, while the
second term is the battery replacement cost. The bat- tery
replacement cost is generated by the distance tra- veled by
the BETs. We assume the BET fleet has to have
replacement batteries after 150,000 mi, and the cost fac-
tor of replacement C? is given by Goeke and Schneider
(3). A binary variable x; is used to determine if the BET

has traveled on the arcs:
X

minZ, = 0 0 CEE{J’ + CBd,] Xij:

2N o [R,j2N p [R, i6Yj
06b

Travel Time Cost of Transportation

The second objective function of the bi-objective BET
dispatching problem is to minimize the total labor cost of
transportation with respect to travel time. It consists of
travel times, loading/unloading service times at each cus-
tomer, and idling time at the recharging station. Table 1
summarizes the variable definitions in our model:

x
minZ, =

T 6Yl —in)
r

tjts;+ kij Xij

0 0
2N o[Ry2N p[R,i6Y%

d7pb

Multi-Objective Evaluation and Constraints

The multi-objective evaluation is used to evaluate the
impact of the fleet energy cost and the labor cost of trans-

a3p



portati’?ﬁ{’g etal py non-dominated solutions (i.e., Pareto the Pareto optimal solutions, it attempts to improve oA83%
identifying a set of optimal solutions). When searching for the objective functions without compromising the other.
The mechanical and accessory energy required by the Thereby, one way is to use the weighted method, which
BET is estimated by the following: minimizes the weighted sum of the objective functions.
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Table 1. Notations and Vehicle Parameters of the Mathematical
Model

Notation Description
Problem parameters
ct Cost factor of energy consumption
(6] Cost factor of battery replacement

C Cost factor of travel time

mg Set of BETs available at the depot
K Total number of BETs in operation
N Sets of customer vertices

L Sets of linehaul customer vertices
B Sets of backhaul customer vertices
R Recharging station(s)

r Recharging rate

dj Distance between vertices j and j

Ej Energy consumption between vertices i and j

tj Travel time between vertices i and j

To Earliest departure time

To Latest return time

C Cargo payload capacity

Q BET maximum battery capacity

qi Demand at vertex (positive if pickup, negative
if drop-off)

e Earliest start of service time at vertex i

i Latest start of service time at vertex i

Sj Service time at vertex i

Decision variables

t; Decision variable specifying the time of arrival
at vertex i
ki Decision variable specifying the visit to

recharging station vertex i. O if customer, 1

if charging station.

U Decision variable specifying the remain cargo
on arrival at vertex i

Vi Current SOC for BET vg when arriving at
vertex i

Y Finish charging SOC for BET vz at vertex i

Xji Binary decision variable. 0 if the route from i

to j is not visited by BET v, 1 otherwise

Note: BET = battery electric truck; SOC = state of charge.

This method transfers a multi-objective function to a sin-
gle objective function by multiplying a weighted sum of
factors. The mixed-integer programming formulation of
our problem is shown in Equation 8. We define non-

negative weighting factors w, and 61 — w,P for the fleet

energy cost and labor cost, respectively:

minZ3=wa CEEi/“FCBd,'j Xij

iZDfxijZI’ij [R, 09p
X .
j2D+/‘x,'j:1,lzN [ R, 010b
X
xy—xj;IO,SiZNOO[R, ol1p
j2 NOp[R, i 6/
X
2D Xj = K, 012p
X o
2D Xj = K: 013pb
o
Vehicle constraints:
yo =0 014p
Recharging constraints:
X .
j2(D[N[R)xU+I’SZ 2R, 015p

X Y — v
;01 = kby 4+ =Y
i, /20D [N [ RP r

xi¥Tp - To,8i 2 O[N[R,j2 (D[N [R),i 6%},

0l16p
O\Y; tMinf60 *r,80% * Qgl8i 2 R, 017p
Ok 81 —kbey+kY -E x;¥0,
) ) o y 018p
i i i i ij
0 0
8i2 No[R,j2 Np[R,764:
Time window constraints:
ti+ s+t xij—l() l—x,j ‘l'tj 519p
Bi2O[N[R,82D[N[R 64,
e,-]'t,—l'l,-, 8i 2 NO(),DZ 62019
Demand constraints:
0¥u, ¥C, 021b
Ol’uj -l’(ui - qi)xij —+ C 1 b X;‘j 62213
8i2O0[N[R,82D[N[R,i6A4
Binary decision variable:
x;2 10,1g, 8i,j 2N, p,i 64 j: 023p

Constraints 9—-11 define the forward and backward

flow conservation constraints. Constraints 12 and 13
ensure that the number of routes equals the number of



xX

p p 0 - .
1854 2N o[8J2N pIRi6% b ) operating BETs. CoRersasrtraidre figseg et fienerB 2o gibbk
FA-w) o oy CT 1 +s, ++Lkﬁ x;  is fully recharged with battery capacity Q when departing
OHEER IO r the depot. Constraint 15 guarantees a recharging visit
08b

subject to the following.
Demand and flow balance constraints:

occurs at most once during dispatching. Constraints 16—
18 state the recharging time window and the maximum
charging volume. The maximum charging time is limited
to 1 h. Constraints 19 and 20 force the BET to visit the
customers within the scheduled time windows.
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Constraints 21 and 22 guarantee the cargo load does not
exceed the payload capacity for either linechauls or back-
hauls. Finally, condition 23 defines the binary decision
variables.

Methodology

In this section, an ALNS metaheuristic is proposed to
solve the bi-objective BET dispatching problem. There
are two main goals for the developed ALNS framework.
One on hand, the ALNS is used as a searching engine to
find a set of Pareto solutions for the proposed bi- objective
BET dispatching problem. On the other hand, an en route
partial recharging schedule is scheduled for the BET fleet.
An overview of the ALNS framework is

described in Algorithm 1.

Generation of the Initial Solution

The initial solution for ALNS is generated by a greedy
constructive heuristic. At the beginning, unvisited cus-
tomers are first sorted in a non-decreasing order accord-
ing to the cost function Zs, then iteratively inserted into
the BET routes. During each iteration, a candidate cus-
tomer i is randomly selected and insert to the current solu-
tion S which leads to a minimum increase in the total
cost, that is, ¢; = Z305™"P - Z3 S, , where S is the solu-

tion with the candidate customer i and S™ is the solution
with customer i. Once the BET route is energy infeasible,
we try to insert a possible recharging schedule from a set of
available recharging stations R. Therefore, more unvisited
customers are allowed to insert the solution S™ until the
energy violation, truck cargo capacity violation, or total
working time limitation occurs. Subsequently, if there are
customers who are not visited, a new BET route starts fol-
lowing the aforementioned processes.

Destroy and Repair Operators

Our ALNS framework uses five destroy operators for
removing n = E *N vertices from the current solution,
where the number of customers/vertices # is predefined by
the destroy rate E. The removal heuristics are detailed as
follows.

Random removal randomly removes n customers/ver-
tices from the BET routes. It can randomly remove
customers and the recharging schedule.

Random path removal destroys an entire consecutive
sub-path with n vertices.

Simplified Shaw removal identifies and removes cus-
tomers according to their geographical positions.
Firstly, we randomly choose a customer from the route
and find the closest customer that has not been

chosen to be removed. This pair of customers is iden-
tified and removed to subset L,emovai. Next, the new
request is selected from this route that has not been
touched by the removal operator, and a new pair is
identified by their distance. This process continues
several times until the desired number of customers has
been removed to the subset Ly emovar.

Worst removal iteratively removes n vertices that con-
tribute the largest insertion cost. It first sorts the
insertion cost of all vertices in descending order by
calculating ¢; = Z30sP - Z30s.,P, where s_; is the route
without customer 7 and s is the route with customer i.
Shaw removal (27) removes a set of n similar customers.
A relatedness function is used to check the similarity
for customers i and j, which can be calculated by

maxuw/_ 6dij 2 i l

3 P-mi
f le e 1 F maxpn %P_%H/ZN 5qll>.

1
Ldi,jb=f

The weight vector f=(f,, f,, f3) is applied to nor-
malize the relatedness function. At the beginning, a
customer i 2N is randomly selected as a candidate cus-
tomer who needs to be removed. Next, the most related
customer j 2N ni is chosen by calculating the similarity
function with the smallest value Loi, jb. The operator
continues to remove the related customer with j.
Finally, the Shaw removal operator terminates once n
customers have been removed.

Our ALNS framework applies four repair operators
to reconstruct all unvisited customers such that the new
solution is feasible. Figure 2 shows an example of the
repairing process.

Greedy insertion iteratively reinserts unvisited custom-
ers to construct a route by selecting the feasible cost-
minimizing position of each customer. The greedy inser-
tion process terminates when all unvisited customers have
been inserted.

Greedy insertion with charging stations is employed to
construct routes and determine a recharging schedule. For
the insertion of customers, it follows the greedy insertion
process. If a BET route is energy infeasible, an appropriate
charging station (CS) visit is inserted, consid- ering the
detour cost and recharging constraints described in the
Multi-Objective Evaluation and Constraints section. If the
current BET route has a possible en route recharging visit,
more customers are allowed to be visited. When no more
customers can be inserted into the current route because of
the constraints, a new BET route should be started.
However, there is an exception: once a recharging visit has
been assigned, no additional customers can be inserted. In
this case, the recharging visit will be removed since
recharging is unnecessary.

Regret insertion was described by Ropke and Pisinger
(23) and Goeke and Schneider (3), and aims to estimate
the future effect of an insertion operation. The idea is to
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Algorithm 1. Overview of the ALNS framework.

Input: An initial feasible solution S generated by initialization
phase;
Output: Best solution S?
1:$"t  generate inital solution()
2:=5M y-=951, ..., 1b; v =01, ..., 1P
3: while iterations h is not reached do
4: {select a destroy operatorz 2 P~ by P(y") }
5:  Remove n vertex from current solution S¢ (
Sc=Sinit at the first iteration) with z

6 s ApplyDestroyedOperator( S°)
7: {soelect arepair operator z* 2 F;* by P(v) 1}
8: S  ApplyRepairOperator( S¢)
9 if accept_SA( S¢', S?) then

10: s 5

d b

11: if S is better than S then

12: Sb s

13: end if

14: end if

15: Update: the weight for v- and v*

16: end while

17: return s?

find the insertion position that maximizes the difference
between the best insertion position and the kth best
insertion position. Let reg; r represents the regret value,
which can be calculated by reg; r = Df0i, pos; 1P-
Df 6i, posi, P, where Df0i, pos; 1P indicates the cost
improvement with the best insertion and Df i, pos; P
denotes the cost improvement generated by the kth best
insertion. In this paper, we use Regret-2 insertion method.

ALNS Improvement

The ALNS algorithm iteratively uses the removal and
repair operators described above to construct new
solution S¢ from the input solution S¢. Let P~ =

z,zZ, ...,z denote a set of removal operators
12 ND

+ + S+ :
and P"= z/,zy ..., Z',, Tepresent the repair
operators. The number of removal and repair operators
is denoted by ND and Za/R, respectively. \}/e define two

weight vectors, v =y, , ..., vy, and v'=

+

( .
V”, Vg, e, V*izv}, to store the weight of a _set of
destroy and repair operators, consecutively. In the first

iteration, the operator is randomly selected, and the weight
of each operator is initialized to 1. Then, during each
iteration, the operator can be selected following the
roulette wheel principle by calculating their probability
Proselectib=v = B’V
P The termination criterion is
j=
when the ALNS reaches the maximum iteration h.
In our ALNS framework, a simulated annealing (SA)
heuristic is used to accept or reject the new solution N
The SA algorithm can diversify the solution by accepting

0 .
a worse solution S with probability ¢/ 05 Pjoseb=1

where f0+P is the cost function and 7' is the current tem-
perature of a SA heuristic. We predefine an initial tem-
perature T;.i;, which can be decreased at every iteration
by T'=dTini, where the deterioration rate is d 2 00, 1b.

An adaptive mechanism is used to update the weight of
the removal and repair operators with respect to their
performance. In each iteration, there are four possible
outcomes of the new solution S (1) the new best solu-
tion is found, (2) an improved solution is found but it is
worse than the global best solution S?, (3) a worse solu-
tion is accepted by the SA algorithm, and (4) a worse
solution 1is rejected. We set a score vector
c =131, J2 J3» Jal to evaluate each outcome.
Therefore, the operator in each iteration can be updated
by the function v;= lv; + (1 — I)c, where 1 2 980, 1P is
a decay variable to control the sensitivity of the weight
vector.

i

Unvisited customers D4
Destroved BET trip D1 » D2 | D3
New BET trip D1 —» D2 » D3 Cl » D4

D Linehaul customer

@ Backhaul customer &

Charging station

Figure 2. An example of the repairing process.
Note: BET = battery electric truck.
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Numerical Studies

To evaluate the proposed BET dispatching strategy in the
real-world scenario, this section presents numerical tests
using real data from a full-service supply chain company.
The section is structured as follows. The Experiment
Design and Parameter Setting section pre- sents the
characteristics of the real-world data and the parameter
settings used in our study. In the Experiments on Standard
VRPB Instances section, we assess the solu- tion quality
of the proposed ALNS algorithm by testing it on the
standard VRPB benchmark dataset (2/) and comparing
the results with the BKSs in the literature. The Bi-
Objective Model Results Analysis section analyzes the
results of the bi-objective BET dispatching problem.

The mathematical models described in our study are
programmed in Python 3.9 language. The experiments of

the bi-objective BET dispatching problem are conducted
on an online server with 32GB RAM. The test per-
formed on the benchmark instances is conducted on a
desktop computer with an Intel Core i7 CPU 3.6 GHz

processor and 16 GB RAM. The data and detailed routes
are open access via GitHub (https://github.com/
CurtisPeng123/Results-for-the-standard-VR PB-dataset-
GJ89-).

Experiment Design and Parameter Setting

The experimental data is obtained from a logistics com-
pany that operates in Riverside and San Bernardino
Counties, California. It contains one-day historical itiner-
aries of a heavy-duty diesel truck fleet, including cus-
tomer IDs, locations, service types (delivery or pickup),
required demands, service times, and required time win-

dows. Three BET dispatching instances are sampled from
the historical data with different customer sizes to assess
the performance of the proposed dispatching approach.

In each instance, five customers are randomly selected
where a charging station is equipped in their parking lot.

A BET can be recharged immediately when arriving at the
charging stations. Table 2 summarizes the character- istics
of the generated instances.

Based on the customer’s location information, the
Direction Service Application Programming Interface
(DSAPI) provided by OpenRouteService (28) is used to
generate geographical travel distance and travel time
matrices for the truck routes. Those matrices consider the
urban transport network, speed limitation, and restricted
zones for the heavy-duty trucks.

In the numerical study, we use the properties and coef-
ficients of a Class 8 BET model that is commercially
available in the current U.S. market (29). To safely use the
battery and extend its life, this study assumes the usable
battery capacity of the BET to be 300 kWh, which is 80%
of its nominal value (i.e., 375kWh) as given in

Table 2. Summary of Dataset Characteristics

No. of No. of No. of
Instance customers linehauls backhauls CSs
BETVRPB1 47 33 14 5
BETVRPB2 58 26 32 5
BETVRPB3 71 39 32 5

Note: BET = battery electric truck; CS = charging station.

Table 3. Summary of the Problem Parameters

Notation Description Value
Vehicle properties
A Frontal surface area of a BET (m?) 10
Cc Maximum BET cargo capacity 37,000
(Ib) (29)
Q Maximum BET usable battery 300
capacity (kWh)
effm Motor efficiency (5) 0.7
effq Discharging efficiency (31) 0.91
G Rolling resistance coefficient (26) 0.008
C4 Coefficient of rolling drag (15) 0.7
w Vebhicle curb weight (lb) 8,000
g Gravitational constant m=s?2 9.81
I, Air density km=m3 1.2041
u Road angle 08
a Acceleration m=s? 0
n Vehicle speed (mph) 20
Pace Accessory power (kW) (26) 5.6
Problem variables
s Loading/unloading time (hours) (0, 2]
%To, To] ~ Working hours [8a.m., 4 p.m.]
r Recharging rate (kWh/min) 3.96
(e Recharging cost (USD per kWh) 0.5
(30)
ce Battery replacement cost (USD 0.1989
per kilometer)
c Labor cost (USD per hour) (32) 62

Note: BET = battery electric truck.

VNR Electric Specifications (29). The accessory power of
the BET is set to 5.6 kWh, as described by Wang et al.
(26). For the energy cost, the recharging cost is set to 0.5
dollars per kWh at high peak times (30) using 250 kW DC
fast chargers. Table 3 summarizes the problem para- meter
settings.

We used the instance BETVRPB1 with 47 customers
to find appropriate parameter values. The first objective
function is used to tune the parameters. Similar to the
parameter tunning process in Ropke and Pisinger (33), a
preliminary analysis was conducted to initialize the para-
meters. We predefine a set of candidate parameter values
in Table 4 that have a stronger influence on the


https://github.com/CurtisPeng123/Results-for-the-standard-VRPB-dataset-GJ89-
https://github.com/CurtisPeng123/Results-for-the-standard-VRPB-dataset-GJ89-
https://github.com/CurtisPeng123/Results-for-the-standard-VRPB-dataset-GJ89-
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Table 4. Summary of Parameters in the Experiment

Variable Value

Score vector c=J1, j2, J3» Jal [15,9, 8, 5] [18, 10, 4, 3] [15, 9, 4, 3]
Dy (%) 0.86 1.00 0.95
Decay parameter 1 0.8 0.83 0.85

Dy (%) 0.79 0.92 0.87
Destroy rate E 35% 38% 40%
Dy (%) 0.97 0.77 0.81

Note: Bold values represent the final parameter setting.

Table 5. Average Comparison of the Proposed Adaptive Large Neighborhood Search Framework on the Standard Vehicle Routing

Problem with Backhauls

Instances group L B Avg. BKS cost Avg. best cost Dev (%) Time (s)
A 20 5 182,301 183,589 0.71 5
B 20 10 202,167 202,167 0.00 8
C 20 10 214,795 215,072 0.13 18
D 30 8 271,138 272,027 0.33 17
E 30 15 219,267 219,993 0.33 26
F 30 30 250,842 252,151 0.52 51
G 45 12 241,494 242,878 0.57 52
H 45 23 252,537 253,648 0.44 86
| 45 45 310,382 313,001 0.84 158
J 75 19 305,294 309,841 1.49 220
K 75 38 367,711 376,878 2.49 293
L 75 75 398,801 418,237 4.87 629
M 100 25 379,836 389,506 2.55 441
N 100 50 392,088 408,146 4.10 646

Note: BKS = best-known solution; Avg. = average; Dev = deviation.

performance of the ALNS framework. Next, we vary one
parameter value while holding the rest the same, and then
run the algorithm 10 times. A preferred parameter value is
defined by observing the minimum cost. Therefore, the
bold values in Table 4 are the fine-tuned parameters used
in the experiment. The average devia- tion (in percentage)
between the results for the tested set- tings for each
parameter and the best results we obtained is reported as
Dy in the table.
The complete parameter tuning leads to the parameter

vector 6f1: fZa f3> jls j2> j3> j4’ ]9 E, Tvinil‘a dp =

00:5, 0:25, 0:25, 15, 9, 8, 5, 0:8, 0:38, 20, 0:9998p,
which is used for all of the following experiments. To bal-
ance the solution quality and computation time of the
developed ALNS framework, we set the maximum itera-
tion h = 2000.

Experiments on Standard VRPB Instances

To assess the performance of our BET dispatching strat-
egy with respect to the solution quality and solution time,
we implement the proposed ALNS framework on the

standard VRPB instance set of Goetschalckx and Jacobs-
Blecha (21) (GJ89). The GJ89 instance set contains a
total of 14 groups that include 62 problem instances with
customer size ranging from 25 to 150. It has been used to
evaluate the performance of algorithms for solving stan-
dard VRPB by Toth and Vigo (22), Ropke and Pisinger
(23), and Brandao (24).

Using the parameter settings in Table 4, the ALNS
framework aims to minimize the total travel distance
objective in the standard VRPB instances. We use the

double precision method (23) to compute the Euclidian

distance. The results are rounded to the nearest integer
value. Table 5 summarizes the results for the standard
VRPB instances with 14 groups. Columns L and B repre-
sent the number of linehaul and backhaul customers,
respectively. The average results demonstrate that our
dispatching strategy generally performs well for the prob-
lem instances with fewer than 90 customers, where the
average deviation is less than 1% compared to the BKS
cost.

In the Appendix, we present detailed results obtained
by our ALNS algorithm and compare them with the
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Table 6. Computational Results of the Real-World Problem Instances
Wo Z5(5) Z:(S) Z(S) E(S) T(S) D(s) Time (s)
BETVRPB1
0.0 652 376 652 501 631 392 712
0.1 624 376 652 501 631 392 726
0.2 590 368 645 497 624 375 756
0.3 562 365 646 488 625 381 843
04 539 369 653 493 632 386 768
0.5 506 364 647 485 626 391 823
0.6 482 368 654 491 633 384 828
0.7 452 361 665 479 644 382 857
0.8 422 361 665 479 644 382 723
0.9 392 361 665 479 644 382 780
1.0 361 361 665 479 644 382 831
BETVRPB2
0.0 626 345 626 468 606 350 1657
0.1 600 345 628 468 608 350 1455
0.2 574 343 631 457 611 359 1346
0.3 545 343 631 457 611 359 1325
04 517 343 633 456 613 359 1722
0.5 487 343 631 457 611 359 1664
0.6 458 339 637 458 617 347 1662
0.7 427 339 632 458 611 345 1327
0.8 398 337 642 454 622 346 1351
0.9 368 337 644 456 623 345 1614
1.0 337 337 643 454 623 345 1668
BETVRPB3
0.0 720 415 720 548 697 443 2004
0.1 690 414 720 545 697 443 1810
0.2 666 417 728 549 704 449 1682
0.3 628 414 720 545 697 443 1933
0.4 599 415 722 548 698 443 2228
0.5 568 414 722 546 699 443 1814
0.6 536 413 721 545 698 442 1632
0.7 505 413 722 544 698 442 1961
0.8 475 412 726 543 703 441 2152
0.9 446 413 737 543 713 445 2716
1.0 407 407 733 537 709 435 1744

Note: BET = battery electric truck.

BKS reported by Koxc and Laporte (34) as well as the
solutions obtained by other metaheuristic algorithms in

the literature. The abbreviations of the papers that we
use for comparison are as follows: RP06 for Ropke and
Pisinger (23) and B16 for Brandao (24). Our proposed
ALNS algorithm can obtain the BKS in 16 of the 62
instances. The results indicate that our proposed ALNS
algorithm performs well within a moderate computa-
tional time.

Bi-Objective Model Results Analysis

Real-world truck dispatching data is used to validate the
proposed bi-objective model. The bi-objective model is
solved by the proposed BET dispatching strategy to gain
insight into the relative efficient frontier. As discussed in
the second section, the first objective Z; indicates the

total BET energy cost (in USD), the second objective Z,
denotes the labor cost (in USD), which is linearly related
to the total travel time, and Z;3 is the weighted-sum func-
tion to find the trade-off between those two objective val-
ues. For the weight factor w, of the total BET energy cost,
it is set to 0 in the first iteration and increases by 0.1 when
the ALNS framework terminates. The maximum value of
w, 18 set to 1. Therefore, we can obtain 11 results and
compare each result to find the non-dominated solu- tions,
that is, Pareto solutions. To ensure the solution quality, the
ALNS metaheuristic algorithm is restarted

10 times for each iteration and the best results are
selected. Table 6 shows the computational results of the
bi-objective model for the instances. The columns E(S),
7(S), and D(S) represent the BET energy consumption
(in kWh), total travel time (in minutes), and total travel
distance (in miles) of solution S, respectively. The col-
umn 7ime shows the CPU computational time.
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Figure 3. (a) The Pareto frontier of instance BETVRPBL1. (b) Total battery electric truck (BET) energy cost (USD) versus total travel

time for the Pareto solutions of instance BETVRPB1.

As demonstrated in Table 6, the proposed BET dis-
patching strategy can find four Pareto solutions for each
problem instance, and the efficient frontier shows the
possible best trade-off between the labor cost and the total
energy cost for the BET fleet. The decision-makers can
choose a dispatching strategy based on one of these
solutions. Taking the instance BETVRPBI as an exam-
ple, Figure 3a shows the Pareto solutions where the total
travel time cost ranges from $645 to $665 USD, while the
total BET energy cost ranges from $361 to $368 USD.
Figure 35 illustrates how the total travel time changes
under the obtained solutions. Comparing between solu-
tions A and B, the BET fleet can save 20 min of travel time
if the fleet owner spends $3 USD more on the BET energy
cost.

Conclusion and Future Work

This paper presents a bi-objective BET dispatching prob-
lem encompassing backhauls and time windows within a
MOO framework, aimed at devising an efficient dis-
patching strategy for urban freight transportation. By
accounting for both environmental and economic fac-
tors, the proposed model offers a comprehensive approach
to address the complexities of BET fleet opera- tions.
Striking the right balance between the multiple objectives
is vital to create an effective and harmonious BET
dispatching strategy that achieves both environ- mental
and economic goals. Our ALNS-based metaheur- istic
algorithm, integrated with a MOO approach, effectively
finds an efficient set of optimal dispatching strategies for
fleet operators.

As avenues for further research, this study opens pos-
sibilities to expand the proposed model by incorporating
additional constraints related to BET fleets, such as

charging station density or charging power. By consider-
ing these factors, future studies can refine the dispatching
strategy further and foster sustainable practices in urban
logistics. This research contributes valuable insights into
optimizing BET fleet operations and lays the ground-
work for ongoing investigations in advancing sustainable
transportation solutions.
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