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Abstract

Offline optimization is an emerging problem in many exper-
imental engineering domains including protein, drug or air-
craft design, where online experimentation to collect evalua-
tion data is too expensive or dangerous. To avoid that, one has
to optimize an unknown function given only its offline evalu-
ation at a fixed set of inputs. A naive solution to this problem
is to learn a surrogate model of the unknown function and op-
timize this surrogate instead. However, such a naive optimizer
is prone to erroneous overestimation of the surrogate (possi-
bly due to over-fitting on a biased sample of function evalua-
tion) on inputs outside the offline dataset. Prior approaches
addressing this challenge have primarily focused on learn-
ing robust surrogate models. However, their search strategies
are derived from the surrogate model rather than the actual
offline data. To fill this important gap, we introduce a new
learning-to-search perspective for offline optimization by re-
formulating it as an offline reinforcement learning problem.
Our proposed policy-guided gradient search approach explic-
itly learns the best policy for a given surrogate model created
from the offline data. Our empirical results on multiple bench-
marks demonstrate that the learned optimization policy can
be combined with existing offline surrogates to significantly
improve the optimization performance.

Introduction
Many science and engineering applications involve optimiz-
ing expensive-to-evaluate black-box functions over complex
design spaces (Wang et al. 2023). Some prototypical exam-
ples include design optimization over input space of candi-
date proteins (Gao et al. 2020), molecules (Deshwal, Simon,
and Doppa 2021), drugs (Schneider et al. 2020), hardware
architectures (Huang et al. 2021; Deshwal et al. 2019), and
superconducting materials (Fannjiang and Listgarten 2020).
In such applications, evaluating a candidate input involves
performing a lab experiment or expensive computational
simulation. These problems are referred to as expensive
black-box optimization (BBO). One standard framework to
solve expensive BBO problems is Bayesian optimization
where we iteratively query the black-box function’s evalu-
ation for inputs recommended by a surrogate model, whose
accuracy is continuously improved via learning from such
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input-output pairs (Shahriari et al. 2015; Eriksson et al.
2019; Deshwal and Doppa 2021).

However, in some real-world scenarios where the over-
head and cost of setting up experiments are prohibitively
expensive (e.g., wet lab experiments that often require ex-
pensive materials and equipment), it becomes impractical
to consider black-box optimization in the online setting. In-
stead, a more practical setting is to assume access to an ex-
isting database of previously collected input-output pairs,
and consider solving this problem in an offline manner.
This problem setting is termed offline model-based BBO
and was first introduced in the recent work of (Kumar and
Levine 2020; Trabucco et al. 2021). The goal of optimiza-
tion method is to leverage this offline training data to un-
cover optimal designs from the given input space. There are
two main interrelated challenges for effectively solving the
offline optimization problem. First, how to learn surrogate
models from the offline dataset which are robust on inputs
outside the offline dataset. Second, how to create effective
search strategies beyond the local neighborhood of training
data to find high-quality inputs. These challenges are often
amplified due to the complexity of optimization problems
including high-dimensional search spaces, highly sensitive
objective functions where similar inputs might not induce
similar outputs, and sparsity of the available data.

Prior work on offline optimization (see Section ) can be
grouped into two broad categories based on the algorith-
mic design choices to address these two challenges. The
first family learns a generative model of the input distribu-
tion along side the surrogate model to characterize a trust
region from which high-performing inputs can be sampled
directly (Fannjiang and Listgarten 2020; Brookes, Park, and
Listgarten 2019). However, generative models cannot be
robustly learned on high-dimensional search spaces with
sparse training data and domain knowledge required to cre-
ate valid trust regions may not be available. The second
family learns a surrogate model from the offline data which
is then optimized directly using gradient updates (Trabucco
et al. 2021; Yu et al. 2021a; Fu and Levine 2021). Conserva-
tive regularizers are typically designed to avoid overestima-
tion for inputs which are far away from the offline training
data. However, surrogate models, such as deep neural net-
works, can be non-smooth which could result in highly sub-
optimal solutions for a fixed gradient search strategy. This
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motivates the following question: How can we learn poli-
cies to effectively guide the gradient-based search process
in input regions outside the offline data?

This paper answers the above question by introducing
a new learning-to-search perspective and a principled ap-
proach referred to as Policy-guided Gradient Search (PGS)
for solving offline optimization problems. PGS is inspired
by the prior successes of integrating learning into search
procedures (Daumé, Langford, and Marcu 2009; Doppa,
Fern, and Tadepalli 2014) and learned optimizers (Flenner-
hag et al. 2019). The key idea behind PGS is to reformulate
the step-size in the standard gradient update into a direction
vector. Such direction vector can be viewed as an output α
= π(xk) of a guiding policy π to direct the search space ex-
ploration from xk in the direction of the high-performing in-
put regions. PGS can be seen as a mechanism to correct the
surrogate model’s gradients with respect to Oracle search.
We formulate the policy learning task as an instance of of-
fline reinforcement learning (RL) problem and provide an
effective strategy for synthesizing trajectories from the of-
fline dataset which is critical for creating high-performing
policies. This reduction approach allows us to leverage the
large body of existing work on offline RL to effectively
solve offline optimization problems. Hyper-parameter selec-
tion is a challenging task for offline optimization and none
of the prior methods provide any procedure. To address this
challenge, we propose an approach referred to as offline
state estimation via latent embeddings using only the offline
dataset. Empirical evaluation on diverse optimization tasks
from the design-bench benchmark (Trabucco et al. 2022)
demonstrates that PGS performs better than prior methods
on many tasks and ablation analysis shows the benefits of
our algorithm design choices.

Contributions: The key contribution of this paper is the de-
velopment and evaluation of the PGS approach for solving
offline optimization problems. Specific contributions are:
• Learning-to-search formulation to guide gradient search

and reducing policy learning to offline RL.
• Trajectory synthesis for offline RL based policy learning

and hyperparameter tuning using trajectory embeddings.
• Empirical evaluation and ablation analysis of PGS on the

design-bench benchmark. The code for PGS is publicly
available at https://github.com/yassineCh/PGS.

Problem Setup
Suppose X is an input space where each x ∈ X is a d-
dimensional candidate input. Let f : X 7→ ℜ be an un-
known, expensive real-valued objective function which can
evaluate any given input x ∈ X to produce output y = f(x).
For example, in drug design application, f(x) corresponds
to running a physical lab experiment. Similarly, in hardware
optimization application, f(x) call involves performing an
expensive simulation to mimic the real hardware. Our goal
is to find an input x ∈ X that approximately optimizes f :

x̂ s.t. f(x̂) ≈ max
x

f(x) (1)

To solve this optimization problem, we are pro-
vided with a static dataset of n input-output pairs

D={(x1, y1), (x2, y2), · · · , (xn, yn)} collected offline,
where yi=f(xi). The optimization algorithm does not have
access to objective function f values on inputs outside
the dataset D. Hence, this problem is referred to as offline
black-box optimization.

An offline model-based optimization algorithm produces
an input x̂ ∈ X which is outside the training dataset D.
We measure the accuracy of solution in terms of the real
objective function value of x̂, namely f(x̂). Ideally, f(x̂)
should be higher than the best function value seen in the
offline dataset D (say ybest=max{y1, y2, · · · , yn}).

Related Work
Prior work on offline optimization fall into two categories:

Sampling from Generative Models. Existing works in this
family often focus on learning a generative model of the
input space. For example, (Brookes, Park, and Listgarten
2019) and (Fannjiang and Listgarten 2020) employs a vari-
ational auto-encoder (Kingma and Welling 2013) which can
be conditionally guided by a set of (domain-related) desir-
able properties. Similarly, (Kumar and Levine 2020) learns
an inverse mapping from the performance measure to the in-
put design using conditional generative adversarial network
(Mirza and Osindero 2014). However, these approaches re-
quire learning a full generative model of the input space in
addition to a surrogate model, which adds more complex-
ity to the overall learning process. More recently, (BONET)
(Krishnamoorthy, Mashkaria, and Grover 2022a) proposed a
sequence modeling based conditional autoregressive model
approach that aims to mimic an online black-box optimizer
represented by a collection of sorted trajectories synthesized
from the offline data. However, BONET requires knowledge
of the oracle maxima which makes it unclear whether its per-
formance remains robust if the assumed knowledge of the
oracle maxima is not accurate.

Both BONET and our proposed PGS rely on constructing
synthetic trajectories from the given offline dataset. How-
ever, they differ in the methodology for trajectory synthe-
sis. BONET uses sorted trajectories over the entire offline
dataset while PGS generates randomized trajectories from
top-p percentile offline data. Unlike BONET, we provide a
hyperparameter selection approach to tune p for any given
offline optimization task. Trajectories with monotonically
increasing function values may not allow the policy to re-
cover from mistakes, especially as the offline dataset is in
a low function-value space. Trajectories with more variabil-
ity in the function value as done in PGS can overcome this
challenge as we demonstrate through ablation studies.

Gradient-based Updates. Gradient-based approaches ad-
vocate learning a conservative proxy that can be directly
optimized via gradient ascent to circumvent the erroneous
overestimation of the proxy model at out-of-distribution in-
puts. For example, (Yu et al. 2021a) mitigates the non-
smooth nature of neural network using robust model pre-
training and model adaptation to ensure a criteria of lo-
cal smoothness while (Fu and Levine 2021) uses normal-
ized maximum likelihood to handle uncertainty in out-
of-distribution (OOD) prediction. Alternatively, (Trabucco



Algorithm 1: Policy-guided Gradient Search (PGS)

Input: starting input for search x0 ∈ D; surrogate model f̂θ;
policy π; number of search steps T
Output: best uncovered input x̂

1: for each search step k=1, 2, · · · , T do
2: Predict step size: αk−1 = π(xk−1)
3: Perform gradient step: xk ← xk−1 +

αk−1∇xf̂θ(x)|x = xk−1

4: end for
5: return the solution of gradient search xT

et al. 2021) explicitly penalizes high-value prediction for
OOD examples to avoid erroneous overestimation of OOD
input directly. Nonetheless, the optimization policies of
these methods are mostly based on the local gradient in-
formation derived from the (imperfect) proxy at each data
point, which in general does not always capture the (more
global) relationship connecting the distance between two
(arbitrary) input coordinates to the difference between their
induced objective function values. This motivates us to in-
vestigate a reformulation of offline optimization as an of-
fline reinforcement learning task which can naturally encode
all the above information within a framework of (learnable)
policy-guided gradient search, as detailed in Section .

Distinction from Learning-to-Optimize Setup: Our pol-
icy learning problem is entirely different than the one con-
sidered in a seemingly related literature of learning-to-
optimize (L2O) because we are only given a single of-
fline dataset collected from a single task. Existing work on
L2O (Andrychowicz et al. 2016) considers the problem set-
ting where multiple datasets belonging to different tasks are
available for the learner (aka meta-learning).

Policy-guided Gradient Search Algorithm
We first provide an overview of the PGS algorithm. Next, we
describe a learning approach to create policies for PGS using
offline RL. Finally, we outline the offline RL algorithm em-
ployed in our implementation and describe a methodology
for hyper-parameter selection using only offline data.
Overview of Policy-guided Gradient Search (PGS). Our
proposed offline model-based optimization approach PGS
works as follows. PGS needs a surrogate model f̂θ : X 7→ ℜ
to make predictions on inputs outside the offline dataset D
and a policy π : X 7→ ℜd to predict the step size to guide
the gradient search towards inputs with high function val-
ues. PGS (Algorihtm 1) performs T steps of gradient search
using both surogate model f̂θ and policy π starting from an
input x0 ∈ D with high function value as follows:

xk ← xk−1 + αk−1∇xf̂θ(x)|x=xk−1
with k ∈ [T ] (2)

where αk−1 = π(xk−1) is the step-size predicted by policy
π. The solution from the gradient search xT is returned as
the output. The effectiveness of PGS for offline BBO crit-
ically depends on the policy π. We provide an offline RL
formulation using the static dataset D to create robust poli-
cies to improve the accuracy of PGS. This reduction allows

us to leverage the large body of work on offline RL to solve
offline BBO problems in a principled manner.

Policy Learning Formulation
We can train the surrogate function f̂θ from offline dataset
D using a regression learner. The accuracy of PGS approach
for solving offline BBO problem given a model f̂θ, policy π,
and starting input x0 ∈ D is measured in terms of the real
objective function value of xT , i.e., f(xT ). Therefore, the
overall learning objective to create a policy to guide gradient
search is as follows.

π∗ ← max
π∈Π

E [f(xT )] such that

x0 ∼ Xstart and xT = PGS
(
x0, f̂θ, π, T

)
(3)

where x0 is a starting input drawn from the distribution
Xstart and xT is the solution of PGS (Algorithm 1) with sur-
rogate model f̂θ, policy π, and T search steps. The optimal
π∗ from the policy space Π maximizes f(xT ) in expecta-
tion (over Xstart). Before we discuss the details of our pol-
icy learning approach, we explain the corresponding Markov
Decision Process (MDP) formulation.

MDP Definition. An MDP is a 4-tuple < S,A, TF,R >,
where S is the set of states, A is the set of actions, TF is a
transition function, and R is a bounded reward function. A
policy π : S 7→ A is a mapping from states to actions.

State space S: Every candidate input x ∈ X corresponds
to one state s ∈ S.

Action space A: There are many choices for defining
action space. Therefore, we first provide some motiva-
tion for the specific choice employed in our formulation.
It is well-known in the optimization theory that second-
order gradient based algorithms including Newton’s method,
Quasi-Newton’s method are much more effective than first-
order gradient methods in terms of reaching good solutions
faster. The key idea in such methods is to employ second-
order gradient (i.e., Hessian matrix) information to precon-
dition the gradient in the solution iterate, i.e. xk = xk−1 −
B∇f(xk−1)) where B is a preconditioning matrix. For ex-
ample, B is the inverse Hessian for Newton’s method. How-
ever, as a consequence of requiring second-order gradients
(Hessian), most of these approaches are computationally-
expensive than first order gradient descent approaches. In-
spired by this idea, we parameterize the action space of our
gradient search in terms of a diagonal matrix of parameters
B= diag(α) (i.e., a step-size vector) to strike a good balance
between expressiveness and statistical efficiency for policy
learning. Using a step-size vector (i.e., one parameter for
each input dimension) is more expressive than the typical ap-
proach of using a scalar learning rate and more statistically
efficient than an entire preconditioning matrix of parame-
ters. This parametrization has also shown to be quite bene-
ficial in the recent literature on learned optimizers or learn-
ing to learn methods (Flennerhag et al. 2019; Li and Malik
2016). Hence, we consider each candidate action a ∈ A to
be a step-size vector α. Note that each parameter value in α
could be either positive or negative.
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Figure 1: High-level overview of policy-guided gradient search approach for offline black-box optimization (BBO). The key
idea is to cast the offline BBO problem as an offline RL problem. This reduction is accomplished by constructing random
trajectories from a subset of inputs with high function values from the given offline data D (say Top p percentile which is
determined in a data-driven manner using our offline state estimation approach). The policy π corresponds to selecting a step-
size vector for a gradient based update on a trained surrogate model f̂θ. Given a learned policy π, surrogate model f̂θ and a
starting input x0 with high function value sampled from the offline data D, PGS performs T steps of gradient search by asking
the policy π to predict the step-size vector α at each search step.

Transition function TF : The transition function TF : S×
A 7→ S is deterministic in our formulation. It takes a state s
= x and an action a = α to produce the next state s′ = x′.

x′ ← x+ α∇xf̂θ(x) (4)

Reward function R: The reward function R : S ×A 7→ ℜ
is defined as follows. The reward R(s, a) of taking an action
a = α at a state s = x is equal to f(x′) − f(x), where s′ =
x′ is the next state. In other words, reward is the difference
between objective function values of next state and current
state. It is positive when we go from states with low function
values to states with high function values and vice versa.

The above MDP construction is a deliberate design choice
in our reduction approach to create policies using offline RL
methods. In fact, improved offline optimization performance
from PGS using this simple MDP in terms of state and re-
ward representation demonstrates its effectiveness. We be-
lieve that considering more complex choices in the MDP
(e.g., sequence modeling based unsupervised state embed-
dings and/or reward engineering) can be an interesting av-
enue for future research.

Trajectory Construction and RL Approach
Recall that we only have access to the function values for
a subset of inputs from X as part of the offline dataset D.
We can employ D to create a set of random trajectories over
the Top p percentile data (sequence of inputs whose objec-
tive function values are high) and employ standard RL al-
gorithms to create a policy π for policy-guided search. We
describe the two key steps of this approach below.

Trajectory synthesis. We construct the set of trajectories
from a prioritized subset Dtop of inputs with high function
values from the given offline dataset D. This choice is pri-
marily motivated by the need to align our training process
with the test-time search algorithm. Recall that during the
test-time, we perform T gradient search steps guided by
the trained policy starting from inputs with high objective
function values. Naturally, it is useful to induce the policy
in search regions from inputs with high function values as
well. Therefore, we consider a simple and scalable choice
of picking the examples lying in the pth-percentile of the
given offline dataset D sorted based on their objective func-
tion values. Note that our approach does not use any data
outside the given offline dataset D.

Restricting the trajectory synthesis to the subsetDtop also
allows more flexibility and robustness in constructing the
trajectories for offline RL. We consider a simple approach
to construct trajectories from Dtop. To create a trajectory
of length T , τ = (x1, y1), (x2, y2), · · · , (xT , yT ), we ran-
domly sample a sequence of input-output pairs from Dtop

without replacement. We create a collection of trajecto-
ries Υ={τ1, τ2, · · · , τm} by repeating this procedure several
times. However, the decision to select the prioritized subset
Dtop has an inherent trade-off as this may lead to loss of di-
versity in the trajectories when we discard inputs from the
low-ranked objective function values. Importantly, the right
trade-off to achieve improved offline optimization perfor-
mance may vary from one benchmark to another. Therefore,
we provide a principled hyper-parameter selection method-
ology based on offline state estimation (explained later) to
select the value of p for Top p percentile which can be po-
tentially useful for other offline optimization approaches.



Algorithm 2: Learning to Guide Gradient Search
Input: offline dataset D = {(xi, yi)}ni=1; number of input dimen-
sions d; number of search steps T
Output: model f̂θ and policy π

1: Learn surrogate model f̂θ: f̂θ ← REGRESSION-LEARNER(D)
2: Select Dtop ⊆ D consisting of inputs with Top p percentile

highest objective values
3: Create a collection of random trajectories of length T using
Dtop: Υ={τ1, τ2, · · · , τm} s.t every trajectory τi consists of a
random sequence of examples from the Top p percentile data

4: Training data for policy learning ∆← ∅
5: for each trajectory τ=(x1, y1), · · · , (xT , yT )) ∈ Υ do
6: for each pair (xk−1, yk−1) and (xk, yk) from τ do
7: Add a sample (s, a, s′, r) to ∆

where current state s = xk−1, next state s′ = xk, reward
r = yk − yk−1, and action a = αk−1 s.t xk ← xk−1 +

αk−1∇xf̂θ(x)|x = xk−1

8: end for
9: end for

10: Learn policy π:
π ← OFFLINE-REINFORCEMENT-LEARNER(∆)

11: return the learned surrogate function f̂θ and policy π

Baseline RL approach. Given the set of trajectories
Υ={τ1, τ2, · · · , τm}, a straightforward approach would be
to use a standard RL algorithm (Sutton and Barto 2018) with
a function approximator (Mnih et al. 2015) to find a policy
π. Although this approach is very simple, it will most likely
fail as the learned policy π cannot handle out-of-distribution
(OOD) states/inputs, i.e., inputs outside the offline dataset
D. Instead, we propose using an offline RL approach which
leverages explicit conservatism to find policies which are ro-
bust to OOD data. Indeed, our experiments show that incor-
porating OOD robustness via offline RL is critical for good
performance on offline BBO.

Offline RL Approach for Policy Learning
Prior work on offline RL has shown significant successes in
learning policies from a given offline dataset of experiences
(i.e., 4-tuples consisting of state, action, next state, and re-
ward). Inspired by these successes, we consider an offline
RL approach to learn policies that are robust to OOD inputs
outside the offline data D. In our MDP formulation, we do
not know the reward for some pairs of states, when we do not
know the real objective function value of the corresponding
input of at least one of the states.

To learn an effective policy to handle OOD states via of-
fline RL, an agent should deviate from the available behavior
in the logged/offline data. However, distributional shift sce-
narios are overestimated by the value function, leading to
mediocre policies. Model-free approaches circumvent such
bias by embedding constraints over the objective function
via some form of regularization. Constraints include the pol-
icy, the value function, or both (Fujimoto et al. 2019; Peng
et al. 2019; Kumar et al. 2019; Wu, Tucker, and Nachum
2020; Kumar et al. 2020; Fujimoto and Gu 2021). Model-
based approaches create conservative MDPs of the environ-
ment and proceed to apply regular online RL methods since

they have access to the environment dynamics (Kidambi
et al. 2020; Yu et al. 2020, 2021b).

Our offline RL approach (see Algorithm 2) shares the first
step of the above-mentioned baseline RL approach, namely,
trajectory synthesis. We employ the dataset of random tra-
jectories Υ={τ1, τ2, · · · , τm} to create a training set which
is appropriate for offline RL as explained below.

Reduction to offline RL. Recall that each training example
for offline RL is a 4-tuple of the form (s, a, s′, r), where s
is a current state, a is an action, s′ is the next state result-
ing from taking an action a at state s, r is the reward for
going to next state s′ from s. We generate a set of train-
ing examples of this form using random trajectories as fol-
lows (Line 5-9 in Algorithm 2). For each trajectory τ ∈ Υ
= (x1, y1), (x2, y2), · · · , (xT , yT ), we create one offline RL
training example for every pair of inputs (xk−1, yk−1) and
(xk, yk) from τ . The state s = xk−1, the action a = α such
that the gradient step will result in the next state s′ = xk:
xk ← xk−1 + α∇xf̂θ(x)|x = xk−1, the next state s′ = xk,
and the reward r = f(xk) − f(xk−1). The aggregate set of
offline RL training examples ∆ over all trajectories in Υ are
given to an offline RL algorithm to create the policy π (Line
10 in Algorithm 2). The main advantage of this reduction is
that it allows us to leverage prior work on offline RL to solve
the challenging problem of offline black-box optimization.

Conservative Q-learning (CQL). To implement our PGS
approach, we can employ any existing offline RL algorithm.
We chose conservative Q-learning because of its demon-
strated effectiveness in practice (Kumar et al. 2020). For the
sake of completeness, we briefly describe the CQL approach
and how it is configured for our experimental evaluation. To
address distributional shift, CQL learns a lower bound of the
true policy value leading to a more reliable value function
estimate. Along with the standard temporal difference er-
ror, a regularizer is added to minimize Q-values for unseen
actions sampled from a distribution µ – see Eq. (5), which
optimizes for Q̂π = argminQ ℓ(Q) where

ℓ(Q) ≜ max
µ(a|s)

(
E

s∼D
E

a∼µ

[
Q(s, a)

]
− E
(s,a)∼D

[
Q(s, a)

])
+

1

2β
E

(s,a,s′)∼D

[
∆(s, a, s′)

]
(5)

with ∆(s, a, s′) = (r(s, a) + γEπ[Q(s′, a′)]−Q(s, a))2

The conservative Q function is then used to train a soft-
actor critic agent in our case (Haarnoja et al. 2018). Since
our MDP is deterministic in nature, CQL’s theoretical anal-
ysis is also directly applicable to the offline optimization set-
ting. This is another advantage of our reduction formulation!

Offline State Estimation via Latent Embeddings
for Hyperparameter Selection
We propose a principled methodology for selecting the key
hyper-parameters of our PGS approach. The main idea is
to assign estimated function values to unknown inputs (out-
side the offline dataset) such that they are mostly correlated



with the true function values. We leverage offline state repre-
sentation learning objectives (Yang and Nachum 2021; Oh,
Singh, and Lee 2017) to embed the inputs (states in our MDP
formulation) into a latent embedding space. This idea of
pre-trained state representations from offline data has been
shown to be quite effective for RL algorithms (Yang and
Nachum 2021). To get an offline estimate of the performance
of inputs suggested by PGS, we employ the following algo-
rithmic procedure which we refer to as Offline State Estima-
tion via Latent embeddings (OSEL):

• Embed unknown input into the latent embedding space.
• Get a K-nearest neighbor regressor based estimate of the

performance, where we pick K nearest offline dataset in-
puts in the latent space as neighbors.

We would like to emphasize that the OSEL procedure
only uses the offline dataset D and does not rely on ex-
ternal sources. We perform pre-training of embeddings us-
ing random trajectories generated from the entire offline
dataset. Our hyper-parameter selection methodology repre-
sents a thoughtful and principled means of improving the
quality of input representations, which, in turn, contributes
to the overall performance of our approach.

Experiments and Results
We first describe our setup including the benchmarks, eval-
uation methodology, and baselines. Next, we discuss the re-
sults comparing the PGS approach with baseline methods.

Experimental Setup
Benchmark tasks. We employ six challenging benchmark
tasks (and corresponding datasets) from diverse domains.
All these datasets and the oracle evaluations are accessed
via the design-bench benchmark (Trabucco et al. 2022).
1) D’Kitty Morphology: This task requires optimizing the
morphology of a four-legged robot named D’Kitty in order
to reach a given location (Ahn et al. 2020). The morphologi-
cal parameters of the robot is defined over a 56-dimensional
continuous search space. 2) Ant Morphology: Similar to
the D’Kitty benchmark, this task (Brockman et al. 2016) re-
quires optimizing the morphology of a 3D robot. The search
space of parameters is continuous and 60-dimensional in
size. 3) Superconductor: This task (Brookes, Park, and
Listgarten 2019) involves designing superconductors with
high critical temperatures which has many engineering and
material science applications and each input point is repre-
sented by a 86-dimensional continuous vector. 4) GFP: The
goal of this task (Rao et al. 2019) is to find fluorescence
maximizing proteins. Each point in the search space denotes
a protein which is represented by a 237-dimensional vec-
tor. Each input dimension can take values from 20 differ-
ent amino acids. 5) TF Bind8: This task aims to maximize
the binding activity score between a given human transcrip-
tion factor and a DNA sequence. It’s a discrete task with
8-length DNA sequences represented as vectors with values
from 4 categories. 6) UTR: This task (Sample et al. 2019)
requires optimizing a search space of 50-dimensional DNA
sequences to maximize the expression level of a given gene.

Configuration of algorithms and baselines. We compare
PGS against baselines including COMs (Trabucco et al.
2021), NEMO (Fu and Levine 2021), ROMA (Yu et al.
2021a), BDI (Chen et al. 2022), BONET (Krishnamoor-
thy, Mashkaria, and Grover 2022b) and other baselines from
design-bench (Trabucco et al. 2022). We took the results for
all baselines from their respective papers. Since NEMO and
ROMA don’t report normalized scores, and their original pa-
pers lack a few tasks, we take their results from the state-
of-the-art BDI paper (Chen et al. 2022). This is reasonable
because all baselines use the same design-bench benchmark
and evaluation methodology. We note that BONET utilizes
double the evaluation budget (i.e., 256 points) compared to
all other methods. Therefore, for fair evaluation with all the
baselines, we ran BONET code (from official implementa-
tion https://github.com/siddarthk97/bonet) to generate 128
points for evaluation.

We configure PGS as follows. For each task, we nor-
malize inputs and outputs before we train a vanilla multi-
layer perceptron, f̂θ, with two hidden layers with 2048 units
and ReLU activation. f̂θ is trained to minimize the mean
squared error of function values. We employ the publicly
available implementation of CQL https://github.com/young-
geng/CQL. PGS is based on gradient updates over continu-
ous valued inputs in contrast to discrete tasks. To mitigate
this, we learn a latent representaion of the discrete inputs.
We apply a variational autencoder and train PGS over the
learned latent space. Note that we decode the results before
oracle evaluation.

We configure OSEL for hyper-parameter selection as fol-
lows. We employ contrastive predictive loss objective as
used in value prediction networks (VPNs) (Oh, Singh, and
Lee 2017) where the key idea involves learning to predict m-
step future rewards and value functions starting from a given
state. We used the publicly available implementation of
VPNs (https://github.com/google-research/google-research/
tree/master/rl repr). We employ 20000 trajectories of length
T=50 to align training with test-time search process. We
evaluate four different values of p = {10, 20, 30, 40} for Top
p percentile data and number of epochs of CQL ranging
from 50 to 400 in increments of 50 and picked the configu-
ration with the best OSEL performance.

Evaluation methodology. We follow the methodology as
introduced in the design-bench benchmark (Trabucco et al.
2022) and employed by all prior work on offline BBO. Each
algorithm generates a set of N points which are evaluated
by oracle and the 100th percentile (best value among the N
points) is computed to compare the different approaches. All
objective/oracle values are normalized to [0, 1] by using the
mean and max from a larger unobserved data set. We run
PGS and BONET on each task for five different runs and
report the mean and standard deviation in the results section.

Results and Discussion
PGS w/ offline RL vs. standard RL. To clearly show that
the offline RL component of PGS approach brings signifi-
cant advantage, we perform ablation by replacing it with a
standard RL algorithm while keeping everything else same



Continuous Tasks Superconductor Ant Morphology D’Kitty Morphology
PGS w/ Offline RL 0.563 ± 0.058 0.949 ± 0.017 0.966 ± 0.013
PGS w/ Standard RL 0.528 ± 0.012 0.303 ± 0.017 0.900 ± 0.007

Discrete Tasks GFP TF Bind 8 UTR
PGS w/ Offline RL 0.864 ± 0.000 0.981 ± 0.015 0.713 ± 0.009
PGS w/ Standard RL 0.864 ± 0.000 0.774 ± 0.063 0.686 ± 0.013

Table 1: Ablation Results showing the ablation of using standard RL as opposed to offline RL to create the policy for PGS.

Method Superconductor Ant Morphology D’Kitty Morphology
D(best) 0.399 0.565 0.884
BO-qEI 0.402 ± 0.034 0.819 ± 0.000 0.896 ± 0.000
CMA-ES 0.465 ± 0.024 1.214 ± 0.732 0.724 ± 0.001
REINFORCE 0.481 ± 0.013 0.266 ± 0.032 0.562 ± 0.196
CbAS 0.503 ± 0.069 0.876 ± 0.031 0.892 ± 0.008
Auto.CbAS 0.421 ± 0.045 0.882 ± 0.045 0.906 ± 0.006
MIN 0.469 ± 0.023 0.913 ± 0.036 0.945 ± 0.012
BONET 0.411± 0.024 0.927 ± 0.010 0.954 ± 0.009
Grad 0.518 ± 0.024 0.293 ± 0.023 0.874 ± 0.022
COMs 0.439 ± 0.033 0.944 ± 0.016 0.949 ± 0.015
ROMA 0.476± 0.024 0.814± 0.051 0.905± 0.018
NEMO 0.488± 0.034 0.814± 0.043 0.924± 0.012
BDI 0.520± 0.005 0.962± 0.000 0.941± 0.000
PGS (ours) 0.563± 0.058 0.949± 0.017 0.966± 0.013

Table 2: Results comparing PGS and baseline methods on benchmark tasks with continuous search spaces. PGS finds better
solutions than all other approaches on Superconductor and D’Kitty Morphology and is competitive on Ant Morphology.

Method GFP TF Bind 8 UTR Mean Rank
D(best) 0.789 0.439 0.593
BO-qEI 0.254 ± 0.352 0.798 ± 0.083 0.684 ± 0.000 11.33/13
CMA-ES 0.054 ± 0.002 0.953 ± 0.022 0.707 ± 0.014 7/13
REINFORCE 0.865 ± 0.000 0.948 ± 0.028 0.688 ± 0.010 8.16/13
CbAS 0.865 ± 0.000 0.927 ± 0.051 0.694 ± 0.010 6.33/13
Auto.CbAS 0.865 ± 0.000 0.910 ± 0.044 0.691 ± 0.012 7.5/13
MIN 0.865 ± 0.001 0.905 ± 0.052 0.697 ± 0.010 5.83/13
BONET 0.864 ± 0.000 0.911 ± 0.034 0.688 ± 0.011 7.33/13
Grad 0.864 ± 0.001 0.977 ± 0.025 0.695 ± 0.013 6.5/13
COMs 0.864 ± 0.000 0.945 ± 0.033 0.699 ± 0.011 5.33/13
ROMA 0.558± 0.395 0.928± 0.038 0.690± 0.012 8.66/13
NEMO 0.150 ± 0.270 0.905 ± 0.048 0.694 ± 0.015 8.5/13
BDI 0.864 ± 0.000 0.973 ± 0.000 0.760 ± 0.000 3/13
PGS (ours) 0.864 ± 0.000 0.981 ± 0.015 0.713 ± 0.009 2.16/13

Table 3: Results comparing PGS and baselines on benchmarks with discrete input spaces. PGS finds better solution than all
other approaches on TF Bind 8, reaches the best benchmarks solution on GFP and is competitive on UTR. The last column
show the mean rank computed across all the 6 tasks to measure the overall effectiveness of methods for multiple tasks.

including the synthesized trajectories. We chose soft-actor
critic as the RL method. This allows us to keep it consis-
tent with our offline RL method (CQL) since it builds upon
soft-actor critic as one of it’s components. Results in Table
1 show that the performance of PGS becomes consistently
worse by using standard RL over CQL, which demonstrates
the importance of employing offline RL algorithm to correct
for OOD data using the principle of conservatism.

Comparison with state-of-the-art. We present the results
comparing PGS with all baselines in Tables 2 (continu-
ous input spaces) and 3 (discrete input spaces). Each col-
umn with the task name shows the 100th percentile (top
score) found by each method on the corresponding task. The
D(best) row refers to the highest score in each task’s offline
data. We also show the mean rank achieved by the meth-
ods computed across all the tasks. We highlight in bold the
methods with the best results for every task.



Task AntMorphology DKittyMorphology Superconductor TFBind8

PGS (IQL) 0.939± 0.021 0.959± 0.002 0.532± 0.000 0.960 ± 0.027
PGS (CQL) 0.949± 0.017 0.966± 0.013 0.563± 0.058 0.981 ± 0.015

Table 4: Table comparing the results of training with another offline RL algorithm: IQL (Kostrikov, Nair, and Levine 2022)

Task AntMorphology DKittyMorphology Superconductor TFBind8

PGS (entire data) 0.890± 0.022 0.947± 0.013 0.533± 0.036 0.955± 0.024
PGS (top p) 0.949 ± 0.017 0.966 ± 0.013 0.563 ± 0.058 0.981 ± 0.015

Table 5: Table comparing the results of PGS using trajectories synthesized with top p percentile data vs. entire offline dataset.

Task AntMorphology DKittyMorphology TFBind8

PGS (monotonic) 0.916± 0.027 0.964± 0.013 0.925± 0.031
PGS (top p) 0.949 ± 0.017 0.966 ± 0.013 0.981 ± 0.015

Table 6: Table comparing the results of PGS using top p random trajectories vs. monotonically increasing trajectories

Cumulatively, PGS achieves an average ranking of 2.16
across all tasks, which is higher than all the baselines. In-
dividually, PGS finds the best scores on 4 (Superconductor,
D’Kitty Morphology, TFBind8, and GFP) out of the 6 tasks
and very close to the best baseline on Ant Morphology and
UTR. PGS significantly outperforms baselines, especially in
Superconductor and D’Kitty tasks, and excels in surpassing
the best designs from offline data across all tasks, showcas-
ing its effectiveness in offline BBO problem-solving.

Since the performance of offline RL critically depends on
the amount of state space coverage in the offline dataset, one
potential limitation of PGS is that it may not perform well
if the coverage is bad. For example, the offline dataset for
the Ant morphology task are picked from the lowest scoring
parts of the objective space relative to other benchmarks.

Ablation experiments. We conducted several ablations to
demonstrate the effectiveness and generality of PGS.

• PGS with other offline RL methods: We conducted abla-
tion experiments on PGS by replacing CQL with another
off-the-shelf offline RL algorithm, implicit Q learning
(IQL) (Kostrikov, Nair, and Levine 2022). Remarkably,
we observed consistent and strong performance across
various tasks. These results in Table 4, averaged over five
runs, underscore the robustness of PGS’s core concept:
the reduction to an offline RL problem.

• PGS with Top-p percentile vs. entire offline data: We run
the ablation of running offline RL on trajectories con-
structed from top p prioritized data subset versus that
from the entire offline dataset. The results shown in Ta-
ble 5 empirically confirm that the top p percentile subset
selection is a better strategy for trajectory construction.

• PGS with monotonic trajectories over entire offline data:
We perform PGS ablation to compare our proposed
trajectory synthesis approach (random trajectories over
the top p percentile offline data) with BONET (mono-
tonic trajectories over the entire offline data). The results

shown in Table 6 provide empirical evidence that our tra-
jectory design approach reaches better solutions.

• Other ablations: We also performed ablation experi-
ments on variations in number of gradient search steps
at test-time and examining the performance of PGS with
varying dataset sizes for offline RL. Furthermore, We an-
alyzed the policy-guided search trajectory at test-time by
computing the norms of action vectors. We observed that
the norms of action sequence consistently decrease as the
number of search steps increase (aggressive to conserva-
tive exploration of search space). This phenomenon sug-
gests that our learned policy becomes more adept at guid-
ing the search as we approach regions associated with
high-value designs. For more details on all ablation ex-
periments, please refer to the Appendix.

Summary and Future Work
This paper introduces the new perspective of policy-guided
gradient search for offline black-box optimization (BBO).
This perspective is aimed at improving the search strat-
egy in offline BBO, which complements prior methods that
have focused on improving surrogate models while using
fixed search strategies. Empirical results show that learned
search strategies can help in improving the accuracy of op-
timization significantly across multiple benchmarks. There
are many avenues of future work. First, exploring more so-
phisticated trajectory sampling methods will improve the
effectiveness of many offline optimization methods includ-
ing PGS and BONET. Second, while our hyperparameter
selection method based on offline state estimation showed
promise, but finding the appropriate hyper-parameters for
offline optimization remains an open and important research
challenge. Finally, identifying suitable offline optimization
methods for specific problems based on problem proper-
ties is a valuable future research direction which can benefit
practitioners and motivate researchers to drive algorithmic
advancements to improve the Pareto front of solutions.
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A Appendix
In this section, we provide more details about the experi-
mental setup and include ablation results to further evaluate
our PGS approach. The hyper-parameters for learning the
surrogate model and OSEL embeddings are given in Table
7. They are kept same as the previous related work and are
fairly robust.

A.1 Hyper-parameter selection via OSEL
In this section, we describe the step-by-step procedure in-
volved in selecting two key hyperparmeters of PGS: top p
percentile of the data for trajectory construction and num-
ber of epochs required for training the offline RL policy.
Here, the number of epochs are conditionally dependent on
the choice of p hyper-parameter. For each candidate p value
in {10, 20, 30, 40}, we execute following steps: i) Gener-
ate a set of trajectories, ii) Train the offline RL (CQL) al-
gorithm for 400 epochs while logging the agent at every
50 epochs resulting in a total of 8 policies, iii) Perform
multiple (128) policy guided searches with each candidate
logged agent which is exactly similar to the test-time eval-
uation, iv) Apply OSEL to evaluate the final designs sug-
gested by policy guided search for each agent and com-
pute their average as the final score. This procedure al-
lows us to compute the score for each element in the carte-
sian product of p = {10, 20, 30, 40} and no of epochs
{50, 100, 150, 200, 250, 300, 350, 400}. We pick the hyper-
parameter pair with the best average OSEL score. The values
chosen by our hyper-parameter selection procedure for each
task are reported in Tables 8 and 9.

A.2 Discrete Tasks VAE details
We employ a β-VAE (Higgins et al. 2016) framework with
β = 1.0 to train an encoder and a decoder network. Both the
encoder and decoder networks consist of four residual con-
volution blocks. Each block comprises two 1D convolution
layers with a hidden size of 64 and a kernel size of 3. We
use the publicly available code of β-VAE, from the design
baselines, and train for 50 epochs.

A.3 Ablation experiments and results
As mentioned in the main text, we present additional abla-
tion results here.

PGS test-time action norms We examined the norms of
actions generated by the offline RL algorithm, as depicted
in figure 2, per the number of search steps. Clearly, the ac-
tion norms decrease as the search progresses. We hypoth-
esize that this trend arises from the offline RL algorithm’s
improved guidance of the search process, encouraging more
conservative actions as we approach regions near the opti-
mal design.

Test-time trajectory length (number of gradient search
steps) We ablate the number of search steps policy guided
search is run during test-time with a policy trained for 50
search steps and show the results in Table 10. Recall that we
employ this search starting from 128 different points gener-
ating a set of 128 points for evaluation. Based on the results,

Figure 2: PGS Action Norms During Search Steps

we see that the performance drops as we increase the no. of
steps (trajectory length). This decrease in performance can
be attributed to the train-test mismatch in offline RL policy
training since our policies are trained for trajectories of fixed
length 50, which is aligned with the standard evaluation pro-
cedure in the offline optimization literature.

PGS performance w/ varying dataset (number of trajec-
tories) size for offline RL Table 11 shows the ablation re-
sults for comparing PGS by training the policy with different
dataset sizes (number of trajectories) using offline RL algo-
rithm. Concretely, we ran CQL algorithm on three differ-
ent sets of number of trajectories (1000, 10000, 20000) and
evaluate the final performance. As evident from the table,
the performance of PGS roughly increases as we increase
the dataset size for offline RL training.



Table 7: Hyperparameters used for training the surrogate model and latent embedding for the OSEL procedure.

Hyperparameter Discrete Continuous

Number of epochs to train f̂θ 50 50
Batch size to train f̂θ 128 128
Adam learning rate to train f̂θ 3e−4 3e−4
T Number of gradient ascent steps in Equation 3 50 50
Discrete tasks latent vector dimension 32 -
Scale of α in Equation 4 2.0

√
d 0.05

√
d

KNN regressor k 10 10
KNN regressor k (breaking ties) 100 100
OSEL latent space dimension 8 32
OSEL embedding training window 8 8

Table 8: Selection of top p percentile and number of epochs for CQL training to train the policy for PGS for each task employed
in the experiments.

Task Ant DKitty Superconductor TFBind8 UTR GFP

Top p 20 40 40 30 10 40
CQL training epochs 300 300 100 150 50 50

Table 9: Selection of top p percentile and number of epochs for IQL training to train the policy for PGS for each task employed
in the experiments.

Task Ant DKitty Superconductor TFBind8

Top p 40 20 40 40
IQL training epochs 100 50 100 300

Table 10: Table showing the ablation result of comparing different trajectory lengths (number of search steps at the test-time)
guided by policy guided search during test-time search.

# Gradient Steps 50 60 70 80 90 100

AntMorphology 0.95± 0.02 0.91± 0.02 0.91± 0.02 0.91± 0.03 0.92± 0.04 0.89± 0.04
DKittyMorphology 0.97± 0.01 0.96± 0.01 0.96± 0.02 0.96± 0.01 0.96± 0.01 0.96± 0.01
Superconductor 0.56± 0.06 0.56± 0.06 0.55± 0.06 0.55± 0.06 0.56± 0.06 0.57± 0.05
TFBind8 0.98± 0.02 0.92± 0.03 0.92± 0.05 0.93± 0.04 0.90± 0.05 0.88± 0.07

Table 11: Table showing the ablation of different training dataset sizes (number of trajectories) for the offline RL algorithm in
PGS.

Number of trajectories 1k 10k 20k

AntMorphology 0.891± 0.036 0.889± 0.022 0.949± 0.017
DKittyMorphology 0.943± 0.010 0.964± 0.014 0.966± 0.013
Superconductor 0.535± 0.061 0.521± 0.059 0.563± 0.058
TFBind8 0.829± 0.022 0.900± 0.080 0.981± 0.015


