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Figure 1. Trajectory Predictions by KI-GAN on SinD Dataset: Comparative Visualization of Ground Truth and Model Predictions. (Light 

red to dark red dots represent the trajectory’s ground truth for both observed and predicted frames. Light green to dark green dots illustrate 

the KI-GAN model’s predictions, highlighting accuracy and temporal progression.) 
 

Abstract 

Reliable prediction of vehicle trajectories at signalized 

intersections is crucial to urban traffic management and 

autonomous driving systems. However, it presents unique 

challenges, due to the complex roadway layout at inter- 

sections, involvement of traffic signal controls, and inter- 

actions among different types of road users. To address 

these issues, we present in this paper a novel model called 

Knowledge-Informed Generative Adversarial Network (KI- 

GAN), which integrates both traffic signal information and 

multi-vehicle interactions to predict vehicle trajectories ac- 

curately. Additionally, we propose a specialized attention 

pooling method that accounts for vehicle orientation and 

proximity at intersections. Based on the SinD dataset, our 

KI-GAN model is able to achieve an Average Displace- 

ment Error (ADE) of 0.05 and a Final Displacement Er- ror 

(FDE) of 0.12 for a 6-second observation and 6-second 

prediction cycle. When the prediction window is extended 

to 9 seconds, the ADE and FDE values are further re- duced 

to 0.11 and 0.26, respectively. These results demon- strate 

the effectiveness of the proposed KI-GAN model in vehicle 

trajectory prediction under complex scenarios at signalized 

intersections, which represents a significant ad- 
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vancement in the target field. Code is available at https : 
//github.com/ChuhengWei/KI  GAN. 

 

1. Introduction 

In the era of urbanization, traffic management at signal- 

ized intersections has become increasingly crucial in or- der 

to maintain safety [46]. These intersections serve as 

epicenters of vehicular movement, wherein the confluence 

of diverse road users and their interactions exacerbate traf- 

fic flow complexity [49]. Multiple vehicle trajectory fore- 

casting in such environments is not only crucial for effi- 

cient traffic management systems, but also indispensable 

for reliable and effective autonomous driving [36]. In this 

study, we introduce the Knowledge-Informed Generative 

Adversarial Network (KI-GAN), a model specifically de- 

signed for predicting vehicle trajectories at signalized inter- 

sections. It is imperative to develop such a model to address 

the inherent challenges presented by urban traffic environ- 

ments, such as intricate roadway layouts at intersections and 

traffic conditions and signal operations that are quite dy- 

namic in nature. 

1.1. Background 

Trajectory prediction is a vital component in the develop- 

ment of efficient and safe transportation systems [36]. In 

dynamic and interactive environments, forecasting the fu- 

ture path of vehicles based on their current and past states 

becomes increasingly challenging [34]. In the existing tra- 

jectory prediction research, linear scenarios, such as high- 

ways or non-interactive environments, have been primarily 

examined [4, 9, 44]. However, with the growing complex- 

ity of urban traffic, particularly at intersections, the need for 

more sophisticated models has become evident [36]. As op- 

posed to highways and rural thoroughfares, intersections are 

characterized by their multidirectional flow patterns, diver- 

gent vehicular behavior, and traffic control signals, which 

distinguish them from other junctions [11, 48]. 

In multi-vehicle scenarios, the interaction between vehi- 

cles plays a crucial role [2, 23, 44]. Each vehicle’s move- 

ment can influence the path of others, creating a dynamic 

system that is challenging to predict. In addition to phys- 

ical interactions, drivers are also influenced by their per- 

ceptions, decisions, and reactions to surrounding environ- 

ment, including roadway geometry[30], other vehicles [38], 

pedestrians [18], and traffic signs and signals [22]. These 

elements contribute to a certain level of complexity sel- 

dom encountered in simpler traffic scenarios. The status of 

traffic lights, for example, exerts a profound influence on 

driving behavior, prompting actions like acceleration, de- 

celeration, or directional changes [13, 41]. Consequently, 

anticipating vehicular paths in such environments becomes 

a notably intricate endeavor. Moreover, the heterogeneity 

in vehicle types and sizes introduces additional complexity 

layers [38]. For instance, larger vehicles like trucks exhibit 

distinct maneuvering and acceleration characteristics com- 

pared to smaller vehicles [35], underscoring the need for 

a predictive model capable of assimilating and interpreting 

these diverse vehicular dynamics for precise trajectory fore- 

casting. 

In response to the complexities of intersection scenarios, 

our research integrates a wealth of intersection-specific in- 

formation into our trajectory prediction model. We focus 

on the interactional layers by modeling essential vehicle 

characteristics such as speed, size, type, and their dynam- 

ics, including acceleration. Simultaneously, we incorporate 

a traffic light model, vital in influencing driver decisions 

and maneuvers. Additionally, recognizing the distinct na- 

ture of vehicle interactions at intersections, we introduce an 

innovative pooling method designed to capture the unique 

behavioral patterns of vehicles in these settings. This dual 

approach of detailed vehicle modeling and advanced inter- 

action techniques marks a significant step towards more ac- 

curately predicting vehicle trajectories in the challenging 

environment of urban intersections. 

1.2. Contributions 

Addressing the challenges of the trajectory prediction at sig- 

nalized intersection, our paper contributes significantly to 

the following fields: 

Introduction of KI-GAN: Our primary contribution is 

the development of Knowledge-Informed Generative Ad- 

versarial Networks (KI-GAN), a model that stands out for 

its ability to integrate diverse and critical data sources. By 

assimilating diverse vehicle data, traffic signal information, 

and multi-vehicle interactions, KI-GAN offers a compre- 

hensive understanding of the factors influencing vehicle tra- 

jectories at intersections. The core of its innovation lies in 

the multi-module encoder, a feature that allows the model 

to process and interpret various types of input data effec- 

tively. This encoder is essential for capturing the complex, 

multi-layered interactions and conditions typical of urban 

intersections, thereby enabling the model to predict vehicle 

trajectories with a higher degree of accuracy and reliability. 

Specialized Attention Pooling Method: Comple- 

menting the KI-GAN, we introduce an advanced attention 

pooling method specifically designed for analyzing vehicle 

orientation and proximity in intersection scenarios. This 

method, known as Vehicle Attention Pooling Net (VAP- 

Net), marks a significant improvement over traditional in- 

teraction modules used in trajectory prediction models. It 

is adept at discerning the subtle yet critical aspects of vehi- 

cle behavior and interaction, such as speed and orientation 

towards other vehicles and response to nearby traffic ele- 

ments. Our empirical results demonstrate the superiority 

of VAP-Net in accurately capturing and predicting the nu- 
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anced movements of vehicles in complex urban intersection 

environments. 

 

 

2. Related Work 

In this review, we focus on trajectory prediction methods 

tailored for the unique dynamics of signalized intersections 

and the integral multi-vehicle interactions. Signalized in- 

tersections require sophisticated prediction methods due to 

variables like traffic signals and vehicle maneuvers, while 

interaction-based multi-vehicle predictions are crucial for a 

realistic depiction of collective traffic behavior. 

 

2.1. Trajectory Prediction Models for Intersection 
Scenarios 

Some researchers have attempted to tailor deep learning 

algorithms specifically for trajectory prediction at signal- 

ized intersections. Abdelraouf et al. [1] used sequence- to-

sequence Long Short-Term Memory (LSTM) networks for 

intersection-wide vehicle trajectory prediction. Their 

proposed algorithm predicted future vehicle positions and 

orientations. Kawasaki and Tasaki [18] designed a model 

specifically for predicting turning trajectories at intersec- 

tions, considering the geometry of the crossing and the 

speeds of observed vehicles. Cao et al. [7] developed a 

vision-based intersection trajectory prediction model that 

predicts vehicle maneuvers such as left turns, right turns, or 

going straight, aiming to prevent traffic collisions. While 

these models mark progress in intersection-specific predic- 

tion, they often overlook the critical role of traffic signals. 

As some trial efforts, Roy et al. [38] incorporated vehicle 

size in their (GAN)-based approach for both signalized and 

non-signalized intersections, but without directly consider- 

ing traffic signal status. Oh and Peng [32] focused on the 

impact of traffic lights on vehicle speed rather than trajec- 

tory variation. Zhang et al.’s D2-TPred model [46], using a 

spatial dynamic interaction graph (SDG) and a behavior de- 

pendency graph (BDG), is a notable exception, as it consid- 

ered traffic light-induced trajectory discontinuities. How- 

ever, these models still tend to overlook a comprehensive 

view of vehicle characteristics in their interaction-based tra- 

jectory predictions. 

In conclusion, while there has been significant progress 

in trajectory prediction at intersections, existing models of- 

ten fall short in simultaneously addressing the complex ve- 

hicle interactions and the impact of traffic signals. This gap 

highlights the need for a comprehensive approach like the 

proposed KI-GAN model, which integrates these critical as- 

pects for enhanced trajectory forecasting at signalized inter- 

sections. 

2.2. Multi-Vehicle Trajectory Prediction Consider- 
ing Interactions 

Forecasting trajectories at intersections is complex due to 

significant vehicle interactions and dense traffic conditions. 

This complexity is mirrored in pedestrian trajectory predic- 

tion research [3, 15, 20], where the interplay between mul- 

tiple agents has also been recognized as a pivotal element. 

In interactive scenarios, vehicle accidents are riskier than 

pedestrian incidents, requiring analysis of more complex 

data including vehicle size, type, and speed, along with his- 

torical trajectory Early studies, like those by Pecher et al. 

[33], recognized the importance of considering neighbor- 

ing vehicles’ trajectories, laying the groundwork for more 

complex interaction models. Building on this, Lin et al. 

[24] introduced the concept of Spatio-Temporal Attention 

in their Long Short-Term Memory (STA-LSTM) model to 

better understand the influence of historical and nearby ve- 

hicle trajectories. Similarly, Mo et al. [29] explored the 

social interaction behaviors among vehicles, especially on 

highways, highlighting how the number of vehicles can in- 

fluence behaviors and trajectories. 

In the realm of multi-vehicle interactions, models have 

become increasingly sophisticated. Salzmann et al. [39] 

introduced the modular, graph-structured Trajectron++ 

model, which predicts the trajectories of multiple agents by 

integrating agent dynamics and semantic maps. Subse- 

quently, other scholars [25–27, 31, 37] advanced this by pre- 

dicting multiple potential behaviors and future positions of 

surrounding vehicles, using convolutional neural networks 

and grid map predictions, respectively. 

However, most of these studies did not fully account for 

the unique complexities at intersections, such as the intri- 

cacies of roadway layout, vehicle orientation, and diverse 

vehicle types. These factors necessitate a multi-parameter 

model to capture the intricate dynamics at intersections, 

where the influence of nearby vehicles varies based on prox- 

imity and speed. 

2.3. Research Gaps 

Based on a comprehensive review of existing research, we 

have found the following key research gaps in trajectory 

prediction for intersections: 

Traffic Light Influence: Most current models do not ad- 

equately factor in the influence of traffic light status on ve- 

hicle behavior at intersections. Traffic light status has been 

shown to have significant effect over driving behaviour at 

intersections [17]. This oversight can lead to significant in- 

accuracies in trajectory prediction. 

Multidimensional Data Integration: Traditional mod- 

els often rely on simplistic representations of vehicle inter- 

actions, primarily based on positional data. However, at in- 

tersections, the integration of additional data types such as 

vehicle speed [28], size [10], type [38], and traffic signal 
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Figure 2. Architecture of Knowledge-Informed Generative Adversarial Networks 

 

status [46] is crucial for a realistic and accurate prediction 

model. 

Advanced Interaction Pooling: Existing models lack a 

specialized mechanism to handle the complex interactions 

at intersections. A new approach that can effectively pool 

interaction data, taking into account the diverse factors in- 

fluencing vehicle behavior at intersections, is needed. 

3. Methodology 

3.1. Framework of KI-GAN 

The Knowledge-Informed Generative Adversarial Network 

(KI-GAN) framework is presented in this section, a sophis- 

ticated model designed to accurately predict vehicular traf- 

fic patterns. Figure 2 illustrates our model’s architecture, 

where the trajectory of a single agent (highlighted in green) 

is fully processed through multiple encoders to form a com- 

bined feature vector. It should be noted that the construc- 

tion of the combined feature vector for other agents in the 

scene adheres to the same methodology, ensuring a uni- fied 

approach to trajectory prediction across all agents. As 

illustrated in the figure, our framework employs a multi- 

encoder approach, integrating diverse data streams to cap- 

ture the complex dynamics of vehicle movement and inter- 

action. This framework allows the generation of realistic 

and socially-aware trajectory predictions through the struc- 

tured synthesis of spatial, vehicular, and traffic information. 

 

3.1.1 Encoders 

The generator consists of four specialized encoders: Tra- 

jectory Encoder, Physical Attributes Encoder, Motion En- 

coder,and Traffic Encoder, each designed to process distinct 

types of input data. 

• Trajectory Encoder: This module focuses on spatial co- 

ordinates (x, y) of vehicles. Using Recurrent Neural Net- 

work (RNN) architectures, it captures temporal depen- 

dencies and movement patterns in trajectory data, offer- 

ing insight into the vehicles’ historical paths. 

Etraj = RNNtraj(X, Y ), (1) 

where X and Y refer to vectors composed of coordinates 

of trajectory points. 

• Motion Encoder: This encoder deals with dynamic ve- 

hicle states, including velocity and acceleration. Similar 

to the Trajectory Encoder, it also utilizes an RNN to un- 

derstand the temporal evolution of these state variables, 

providing a real-time context to the vehicle’s movement. 

Emotion = RNNstate(V, A), (2) 

where V stands for a vector composed of vehicle speeds, 

and A represents a vector composed of vehicle accelera- 

tions. 

• Physical Attributes Encoder: This part of the Generator 

encodes vehicle-specific information such as type and di- 

mensions. By employing separate embedding layers for 

categorical data (like vehicle type) and linear layers for 

continuous data (dimensions), it creates a comprehensive 

feature vector for each vehicle. 

 

Ephy = Concat(Embedtype(T ), Linearsize(L, W )), (3) 

where T denotes the type of the vehicle, including cars, 

trucks, buses, etc., and L and W indicate the length and 

width of the vehicle from a top-down perspective. 

• Traffic Encoder: Dedicated to processing the traffic state 

information, this encoder uses an embedding layer to 

transform discrete traffic states into a higher-dimensional 

space. For example, we encode the status of traffic lights 

at intersections in the SinD dataset [42] using numbers 1 
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to 5 as shown in Table 1. This transformation allows the 

model to encode and interpret various traffic conditions 

effectively. 

Etraffic = Embedtraffic(Tstate), (4) 
 

where Tstate signifies the traffic light status at the intersec- 

tion. 

Table 1. Traffic light status in each direction and the correspond- 

ing digital codes (The SinD dataset features an intersection with a 

single traffic light per direction, lacking dedicated left-turn sig- 

nals, resulting in a unified signal state per direction. Moreover, 

the east-west and north-south traffic light states are synchronized 

respectively.) 

 

Direction 
North South East West Code 

Green Green Red Red 1 

Yellow Yellow Red Red 2 

Red Red Red Red 3 

Red Red Green Green 4 

Red Red Yellow Yellow 5 

 

 

 

3.1.2 Social Interaction 

After encoding the different data streams, the features from 

the Trajectory, Motion, and Physical Attributes Encoders 

are concatenated to form a combined feature vector. 

Fcombined = Concat(Etraj, Emotion, Ephy). (5) 
 

This vector, representing each trajectory, is then fed into 

a pooling layer along with features from other trajectories. 

The pooling layer aggregates contextual information from 

neighboring trajectories, enabling the model to understand 

the social and spatial interactions among vehicles. For the 

pooling layer, we propose a Vehicle Attention Pooling Net 

(VAP-Net), which is designed to effectively calculate and 

interpret potential interactions and interrelations between 

vehicle trajectories. 

constitutes the comprehensive input to the decoder. This 

integration is mathematically represented as: 

Frecombined = Concat(P, Fcombined, Etraffic). (7) 
 

The decoder is realized through an LSTM [16] framework, 

which utilizes the enriched input Frecombined to forecast fu- 

ture vehicle trajectories. The LSTM, with its recurrent ar- 

chitecture, is adept at generating sequences that are tempo- 

rally consistent and socially acceptable by reflecting on his- 

torical data, present ego-vehicle states, and the surrounding 

traffic conditions[16]. This dynamic is encapsulated in the 

equation: 

Trajectoryfuture = LSTM([Frecombined; z]). (8) 

Here, z introduces a degree of randomness, enabling the 

model to generate a spectrum of possible future trajectories, 

contributing to its robustness. As a result of the blending of 

these multifaceted data streams, the model offers a compre- 

hensive insight into vehicular dynamics, paving the way for 

reliable and precise predictions. This model’s versatility is 

attributed to its ability to synthesize such a wide range of 

predictive capabilities across a variety of traffic conditions. 

 

3.1.4  Discriminator 

The Discriminator assesses the generated paths by com- 

paring them against actual vehicle movements, assigning a 

score that reflects their authenticity [47]. This evalua- tion 

not only categorizes the paths as genuine or fabricated but 

also enhances the fidelity of the trajectory generation by 

providing feedback to the Generator. 

The Discriminator’s objective is formalized within the 

GAN’s loss function, where it seeks to maximize its classi- 

fication accuracy, thus enabling a refined generation of tra- 

jectories. Simultaneously, the model employs an L2 loss to 

quantify the deviation of the generated paths from the true 

trajectories, thereby selecting the most plausible path 

among multiple predictions. 

Mathematically, the Discriminator’s process is repre- 

sented as follows: 

Objective Function of GAN: 

min max V (G, D) = Ex∼pdata(x)[log D(x)] 

G D 
 

P = VAPNet(Fcombined, (X, Y ), V ), (6) 
+ Ez∼pz (z)[log(1 − D(G(z)))].  (9) 

where (X, Y ) denote vectors composed of trajectory coor- 

dinates, and V indicates a vector composed of speeds. 

L2 Loss Metric: 

L = min ∥Yi − Y  ̂(k)∥2, (10) 

k 
i
 

3.1.3 Decoder The output of the pooling layer, when amalgamated with 
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i 

where, G denotes the Generator, D the Discriminator, 

x the real trajectory data, z the input noise vector, Yi the 
actual trajectory, and Yˆ (k) 

the k-th predicted trajectory by 

the encoded traffic state and the combined feature vector, the Generator. 
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3.2. Vehicular Attention Pooling Net (VAP-Net) 

Generative Adversarial Networks (GANs) [14] employ a 

pooling layer that is vital for managing information shar- 

ing among objects in a scene. This layer calculates agents’ 

relative positions and merges their hidden states to represent 

their interactions. For vehicle trajectory prediction at inter- 

sections, traffic light status is a key factor influencing driver 

behavior [22], and the proximity between vehicles and to 

the stop-bar largely dictates driving decisions [10]. Addi- 

tionally, at intersections, drivers must consider the speed 

[18] and direction [12] of nearby vehicles. Faster vehicles 

are monitored more closely due to their higher potential for 

danger, and vehicles from opposing directions are also crit- 

ical to note from the collision risk perspective. 

Research has shown that vehicle interactions at intersec- 

tions involve complexities beyond mere positional relation- 

ships, as the dynamics of surrounding vehicles, including 

their speed and direction, significantly influence decision- 

making during interactions [9, 19, 43]. Considering the 

particular nature of vehicle trajectory prediction at inter- 

sections, we present a novel pooling network architecture 

known as Vehicular Attention Pooling Net (VAP-Net). By 

incorporating a mechanism of attention in addition to po- 

sitional information into VAP-Net, the model enhances its 

ability to capture dynamic interactions between complex 

agents. By integrating various streams of information, in- 

cluding positional information, velocity vectors, and histor- 

ical information, it is designed to intricately process and in- 

tegrate information. The architecture effectively combines 

spatial and velocity embeddings with an attention-driven 

pooling mechanism to create nuanced representations of 

agent interactions. 

 

3.2.1 Embedding and Interaction Encoding 

VAP-Net begins its operation by embedding spatial and ve- 

locity information for each agent in the scene: 

 
Relative Position Embedding For each pair of agents 

i, j, the relative position vector RPij = pi − pj is com- 
puted, where pi and pj denote their respective positional 
coordinates. This vector is then transformed through a spa- 

tial embedding layer: 

Eij = fspatial(RPij), (11) 

where fspatial represents the spatial embedding function. 

Velocity Vector Embedding Simultaneously, the veloc- 

ity vector vi of each agent is embedded: 

Vi = fvelocity(vi), (12) 

with fvelocity being the velocity embedding function. 

3.2.2 Attention Mechanism 

The attention mechanism dynamically assigns weights to 

features based on their relevance: 

 

Attention Weight Calculation For each agent pair, we 

concatenate their relative position and velocity embeddings 

and input this to an attention MLP. The output attention 

scores are normalized to form weights: 

Wij = Softmax (fattention([Eij; Vi])) ,  (13) 

where fattention denotes the attention MLP. 

3.2.3 Feature Integration and Contextual Pooling 

Feature Aggregation The agent’s hidden states Hi are 

modulated by the attention weights to emphasize significant 

interactions: 
′ = Hi ⊙ Wij, (14) 

where ⊙ signifies element-wise multiplication. 
 

Contextual Pooling The weighted hidden states are then 

concatenated with the relative position embeddings. This 

concatenated vector is processed through a series of MLPs, 

and a max-pooling operation is applied to extract a refined 

representation. We define this output as the Attention Pool- 

ing Feature (APFi), which encapsulates the fused charac- 

teristics of individual movement and interactive dynamics: 

APFi = max
 

MLP
 

[Eij; H
′ ]

  
, (15) 

capturing both individual motion characteristics and inter- 

action dynamics. 

Through the integration of Pool Hidden Net’s feature 

processing with an advanced attention mechanism, VAP- 

Net provides a context-aware synthesis of multi-agent in- 

teractions. This representation is pivotal for accurate pre- 

diction of future trajectories in complex and dynamic envi- 

ronments. 

4. Experiments 

4.1. Dataset 

In the development of our proposed KI-GAN algorithm, 

a substantial set of vehicular movement parameters is re- 

quired to accurately simulate and predict the interactions at 

intersections. These parameters include not only the basic 

metrics such as the positions, speeds, and accelerations of 

the vehicles but also extend to more detailed aspects like the 

vehicle type and size, as well as the status of traffic lights 

in each direction within the intersections. After a thorough 

comparison and analysis of a range of available datasets[5, 

6, 8, 21, 40, 45], we found that the SinD dataset 

H 
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[42] stands out as the only dataset that comprehensively 

meets all our requirements for input data. Its extensive 

coverage of the aforementioned parameters makes it excep- 

tionally suitable for the verification algorithm in this article, 

offering the precise blend of data necessary to support the 

intricate computations and simulations at the heart of our 

research. 

The SinD dataset, originating from a signalized inter- 

section in Tianjin, China, stands as a rich and detailed re- 

source for trajectory analysis, encompassing over 13,000 

traffic participants across seven categories, including cars, 

buses, trucks, motorcycles, bicycles, tricycles, and pedes- 

trians, over a span of seven hours. Besides providing com- 

prehensive information regarding the type, dimensions, and 

trajectory of each vehicle, this dataset also provides com- 

prehensive data regarding traffic light states and timings, 

which are crucial for studies related to vehicle dynamics 

and compliance with traffic signals. Its emphasis on signal- 

ized intersections and diverse traffic participant categories, 

offering a wealth of detailed information, meets the specific 

needs of our model for comprehensive urban traffic analy- 

sis. 

4.2. Experimental Setup and Evaluation Metrics 

The original SinD dataset captures data at 30 frames per 

second. For our study, we sampled the data at a step size of 

15, resulting in a frequency of 2 frames per second. In sit- 

uations of minimal vehicle movement or complete stops at 

intersections influenced by traffic signals, brief observation 

intervals can result in skewed data, which can negatively af- 

fect the model’s ability to learn dynamic movements. Thus, 

we observed data for 6 seconds (12 frames) and predicted 

trajectories for both 6 seconds (12 frames) and 9 seconds 

(18 frames). 

Regarding hyperparameters, we selected a batch size of 

64 and trained the model for 50 epochs. The learning rate 

for the Generator was set to 0.001, and for the Discrimina- 

tor, it was set to be 0.0005. 

We used Average Displacement Error (ADE) and Final 

Displacement Error (FDE) as metrics for trajectory accu- 

racy evaluation. These are defined as: 

 

ADE = 
1 X 1 X q

(xi − x̂ i )2 + (yi − yˆi)2, (16) 

Moreover, experiments for this study were performed us- 

ing an Nvidia RTX 3090 graphics card, with the code devel- 

oped in Pytorch. 

4.3. Results 

Quantitative Results 

The SinD dataset encompasses 23 segments, out of 

which 20 were allocated for training and 3 for validation. 

Table 2 presents the evaluation metrics on the validation 

set, showcasing the results for both 12-frame observations 

with 12-frame predictions and 12-frame observations with 

18-frame predictions. 

Table 2. Evaluation Metrics for Trajectory Prediction at Signal- 

ized Intersection (*In adapting the algorithm from [22] for SinD 

dataset, which lacks public video information, we have omitted the 

vision encoding module. Instead, we focus on employing trajec- 

tory data, vehicle states, and traffic light status for our comparison 

models, aligning with the available dataset features. ) 

Method 
12-12 12-18 

 

 

 

 

 

 

 KI-GAN 0.05 0.12 0.11 0.26  

 

 

Overall, the ADE and FDE metrics across all algorithms 

were relatively low. In addition to the fact that more than 

half of the vehicles at a traffic-light-controlled intersection 

were stationary or low-speed, lane-changing behavior was 

almost completely absent, resulting in universally lower er- 

rors at this intersection. For 12-frame predictions, our pro- 

posed method outperforms the others by 43%, while for 18- 

frame predictions, our proposed method outperforms the 

others by over 31%. As opposed to other methods that rely 

solely on trajectory information and are less respon- sive to 

discontinuous temporal changes [3, 15, 37, 39], our model 

is much more sensitive to traffic light changes. Fur- 

 
 

N T 
i=1 

 

FDE = 
1 X

 

t t t t 

t=1 

 q

(xi − x̂ i  )2 + (yi − yˆi )2, (17) 

thermore, our approach can identify the type and size of 

vehicles, employing distinct prediction methods for motor 

vehicles such as cars and non-motorized vehicles like bicy- 

cles and motorcycles. This also contributes positively to the 

 
 

N T T T T 

i=1 

where N is the total number of trajectories, T the pre- 

diction horizon, (xi, yi) the ground truth coordinates, and 

improvement of trajectory prediction accuracy. 

Qualitative Results 

Figure 1 illustrates selected trajectory prediction seg- 

ments from the validation set. The top three images corre- 

t  t 
( x̂ i ,  yˆi) the predicted coordinates at time t for the i-th tra- spond to 12-frame observations with 12-frame predictions, 

N 

 ADE FDE  ADE FDE  

S-GAN[15] 1.32 2.46  1.53 2.95  

S-LSTM[3] 0.87 1.60  0.96 1.78  

Trajetron++[39] 0.37 0.93  0.70 1.91  

FJMP [37] 0.27 0.68  0.41 1.13  

[22]* 0.10 0.21  0.16 0.38  
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t  t 

jectory. while the bottom three images pertain to 12-frame observa- 
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Table 3. Impact of Encoder Components on Trajectory Prediction Accuracy 

 
 

Interaction Encoder 
Traffic

 12-12 12-18 
 

  

 

Trajectory  Motion Physical Attri- 

Encoder Encoder  bute Encoder 
Encoder ADE FDE ADE FDE 

 

✓ ✓ ✓ × 0.52 (↑ 940.0 %) 1.13 (↑ 841.7 %) 0.79 (↑ 618.2 %) 1.54 (↑ 492.3 %) 

✓ ✓ × ✓ 0.14 (↑ 180.0 %) 0.32 (↑ 166.7 %) 0.22 (↑ 100.0 %) 0.48 (↑ 84.6 %) 

✓ × ✓ ✓ 0.12 (↑ 140.0 %) 0.27 (↑ 125.0 %) 0.17 (↑ 54.5%) 0.37 (↑ 42.3 %) 

✓ ✓ ✓ ✓ 0.05 0.12 0.11 0.26 

 

Table 4. Comparison of Pooling Methodologies on Trajectory Prediction Performance 

Pooling Method 12-12 12-18 

ADE  FDE  ADE  FDE 

Social Pool Net[3] 0.07 (↑ 40.0 %) 0.15 (↑ 25.0 %) 0.14 (↑ 27.3 %) 0.33 (↑ 26.9 %) 

Hidden Pool Net[15] 0.08 (↑ 60.0 %) 0.16 (↑ 33.3 %) 0.19 (↑ 72.7 %) 0.42 (↑ 61.5 %) 
VAP Net 0.05 0.12 0.11 0.26 

 

 

tions with 18-frame predictions. Visually, the congruence 

between predicted trajectories and the ground truth is re- 

markably high for both sparse and dense traffic scenarios, 

affirming the low overall ADE and FDE metrics. 

4.4. Ablation Experiments 

In the ablation study, to determine the effectiveness of each 

component of our model, we systematically removed each 

encoder except the Trajectory Encoder and observed the 

model performance. 

The data in Table 3 illustrates the significant role each 

encoder plays in the model’s performance. For instance, the 

exclusion of the Traffic Encoder leads to an increase in ADE 

by 940.0% and FDE by 841.7% for the 12-frame obser- 

vation and prediction scenario, which underscores the en- 

coder’s critical role in capturing traffic light-related dynam- 

ics. Similarly, the omission of the Motion Encoder results in 

a less pronounced but still substantial increase in error rates 

(ADE by 180.0% and FDE by 166.7% for the 12-frame ob- 

servation and prediction scenario), indicating its importance 

in understanding vehicular motion. The combined use of all 

encoders minimizes prediction errors, achieving the lowest 

ADE and FDE, which confirms the synergistic effect of the 

integrated information from all encoders on the model’s ac- 

curacy. 

Furthermore, we assessed how various pooling modules 

affected the overall model performance. According to Fig- 

ure 4, the results indicate that the pooling approach is ex- 

tremely important for trajectory prediction accuracy. The 

study indicated that attention to vehicle dynamics and in- 

teractions significantly enhances the accuracy of prediction 

with our proposed Vehicular Attention Pooling Net (VAP- 

Net). Based on Table 4, both the ADE and FDE metrics are 
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lower compared to the Social Pool Net [3] and Hidden Pool 

Net [15]. 

 

 

5. Conclusion 

Our work on the Knowledge-Informed Generative Adver- 

sarial Network (KI-GAN) represents a significant stride in 

trajectory forecasting at signalized intersections. The in- 

corporation of a multi-encoder framework, including the 

innovative Vehicle Attention Pooling Net (VAP-Net), has 

proven effective in accurately modeling the complexities of 

intersection dynamics. A key strength of KI-GAN is the 

integration of critical traffic signal information and vehi- 

cle interactions, which is evident in its performance met- 

rics. Among the key components, the VAP-Net stands out, 

demonstrating the effectiveness of its attention mechanism 

in improving trajectory prediction accuracy. As a result of 

this mechanism’s emphasis on vehicle speed and proximity 

between vehicles, which are crucial in intersection scenar- 

ios, the model is able to predict vehicle paths under varying 

traffic conditions with greater accuracy. 

With the promising results of KI-GAN, further advance- 
ments in traffic management systems and autonomous in- 
tersection navigation can be achieved, emphasizing that the 
model can be applied to real-world scenarios. For a more 
in-depth understanding of interactions with other road users 
(e.g., vulnerable road users) at intersections, future devel- 
opments could include integrating more contextual data or 
refining VAP-Net’s attention process. In navigating the 
complexity of urban traffic environments, KI-GAN offers 
a comprehensive and robust solution, setting a new stan- 
dard. 
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