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Figure 1. A Visual Comparison of (a) Transfer Learning, (b) Knowledge Distillation, and (c) Feature Correction Transfer Learning 
 

Abstract 

 
A significant challenge in the field of object detection lies 

in the system’s performance under non-ideal imaging con- 

ditions, such as rain, fog, low illumination, or raw Bayer 

images that lack ISP processing. Our study introduces ‘Fea- 

ture Corrective Transfer Learning’, a novel approach that 

leverages transfer learning and a bespoke loss function to 

facilitate the end-to-end detection of objects in these chal- 

lenging scenarios without the need to convert non-ideal 

images into their RGB counterparts. In our methodol- ogy, 

we initially train a comprehensive model on a pristine RGB 

image dataset. Subsequently, non-ideal images are 

processed by comparing their feature maps against those 

from the initial ideal RGB model. This comparison em- 

ploys the Extended Area Novel Structural Discrepancy Loss 

(EANSDL), a novel loss function designed to quantify simi- 

larities and integrate them into the detection loss. This ap- 

proach refines the model’s ability to perform object detec- 

tion across varying conditions through direct feature map 

correction, encapsulating the essence of Feature Correc- 

tive Transfer Learning. Experimental validation on vari- 

ants of the KITTI dataset demonstrates a significant im- 

provement in mean Average Precision (mAP), resulting in 

a 3.8-8.1% relative enhancement in detection under non- 

ideal conditions compared to the baseline model, and a less 

marginal performance difference within 1.3% of the 

mAP@[0.5:0.95] achieved under ideal conditions by the 

standard Faster RCNN algorithm. 

 

1. Introduction 

As a vital component of computer vision, object detec- tion 

is used in a wide range of applications such as au- tonomous 

driving, surveillance, and augmented reality [35]. Despite 

significant advancements, the robust detection of objects 

under non-ideal imaging conditions—such as rain [22], fog 

[26], low illumination [6], or directly from raw Bayer 

images [1] without Image Signal Processing (ISP) [28]—

remains a considerable challenge. Traditional meth- ods 

often rely on preprocessing steps to convert non-ideal 

images into more ‘ideal’ conditions before detection [19], 

which can lead to loss of details and introduce unwanted 

artifacts. 

In response to these challenges, transfer learning 

presents an effective strategy by leveraging pre-existing 

models trained on extensive, well-labeled datasets to ad- 

dress the variances in imaging conditions [34]. Tradition- 
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ally, it involves a two-phase process: initially training a 

source model on comprehensive source data, followed by 

fine-tuning where parts of this model are adjusted or fixed 

to adapt to new tasks as shown in Figure 1-(a). While effec- 

tive in managing image quality variances, existing transfer 

learning approaches often fall short in addressing the spe- 

cific challenges posed by non-ideal imaging environments 

[24]. 

Knowledge distillation algorithms [12], as shown in Fig- 

ure 1-(b), primarily utilize a complex model (Teacher) pre- 

trained on a large dataset to enhance the performance of a 

smaller model (Student) on a target task. This is achieved 

by minimizing the loss function based on the discrepancy 

between their outputs, thus guiding the student model’s im- 

provement. Drawing inspiration from both traditional trans- 

fer learning and knowledge distillation, we propose the Fea- 

ture Corrective Transfer Learning (FCTL) approach, illus- 

trated in Figure 1-(c). In the pre-trained phase, a compre- 

hensive source model is trained on ideal images. During the 

fine-tuning phase, the structure and parameters of the source 

model are kept unchanged while establishing an identical 

target model. This phase involves training with both non- 

ideal and ideal versions of the same image, leveraging the 

established source model to perform feature correction on 

the target model through a specific loss function at selected 

layers. This novel approach, FCTL, distinguishes itself by 

emphasizing direct feature map correction to enhance the 

robustness and accuracy of object detection models under 

non-ideal conditions, without necessitating the conversion 

of non-ideal images to their RGB counterparts. 

Based on this framework, we have developed the Fea- 

ture Corrective Transfer Learning NITF-RCNN algorithm 

that is supplemented by the Extended Region Novel Struc- 

ture Difference Loss (EANSDL). In our method, we use a 

two-stage training strategy, establishing a strong baseline 

using the original RGB dataset and then performing feature 

map correction on non-ideal image models. By prioritizing 

direct feature map correction over traditional preprocessing, 

this process iteratively enhances the model’s ability to de- 

tect objects under adverse conditions. 

1.1. Contributions 

• Feature Corrective Transfer Learning Framework: A 

new transfer learning approach is tailored to object de- 

tection in challenging conditions, employing feature map 

correction to align non-ideal images with high-quality 

RGB datasets, thereby improving robustness and detec- 

tion accuracy. 

• Non-Ideal Image Transfer Faster-RCNN (NITF- 

RCNN): An adaptation of the Faster-RCNN architecture 

incorporates our feature map correction algorithm, de- 

signed to specifically address the challenges presented by 

non-ideal imaging conditions, ensuring a thoughtful 

rather than blanket application of transfer learning. 

• Extended Area Novel Structural Discrepancy Loss 

(EANSDL): A novel loss function is created to facilitate 

feature map correction, enabling precise adjustments dur- 

ing training by quantifying the discrepancy between fea- 

ture maps under different conditions, thus enhancing the 

model’s performance in detecting objects across diverse 

visual environments. 

 

 

2. Related Work 

2.1. Object Detection under Non-Ideal Visual Con- 
ditions 

Within the domain of object detection under non-ideal vi- 

sual conditions, a diverse array of strategies has been ex- 

plored, ranging from traditional preprocessing to innovative 

end-to-end models. Sindagi et al. [22] preprocessed images 

affected by haze and rain using traditional techniques and 

weather-specific knowledge for object detection. Kvyet- 

nyy et al. [15], alternatively, addressed low-light chal- 

lenges through denoising methods like bilateral filtering and 

wavelet thresholding, aiming to improve detection perfor- 

mance. Moreover, some scholars have adopted two-stage 

model approaches, grounded in deep learning. For exam- 

ple, Huang et al. [13] introduced a dual-subnet network 

(DSNet), comprising detection and restoration subnets to 

achieve image restoration and object detection under harsh 

weather conditions separately. Yang et al. [32] presented a 

two-stage unsupervised deraining approach, utilizing non- 

local contrastive learning to decouple the rain layer from 

clean images more effectively before object detection tasks. 

Emerging research, however, aims to develop truly end- 

to-end solutions. For example, Wang et al. [27] proposed an 

end-to-end object detection network to mitigate the impact 

of rainfall, featuring cascaded networks for image restora- 

tion and object detection. While this is an end-to-end train- 

ing approach, deraining and detection are still separated into 

two networks, with the first network producing derained im- 

ages. Additionally, Wei et al. [29] attempted to perform 

end-to-end object detection on raw images by incorporating 

camera parameters into the network to adapt to the features 

of raw Bayer images. However, This method requires other 

forms of input besides images and more complex neural net- 

works. 

In summary, there is a conspicuous absence of suitable, 

truly end-to-end models that forego the intermediate image 

restoration step. There also lacks a universal model capa- 

ble of effectively handling all types of non-ideal conditions, 

highlighting a significant gap in the current state of object 

detection under non-ideal visual conditions. 
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2.2. Advancing Object Detection through Transfer 
Learning Techniques 

In the field of computer vision, transfer learning has 

emerged as a key strategic tool for improving performance 

in related, yet distinct, tasks [24]. To enhance model perfor- 

mance and efficiency, researchers have begun applying the 

principles of transfer learning to object detection since its 

introduction. To improve the accuracy of object detection, 

Ito et al. [14] used genetic algorithms within the transfer 

learning process to determine which layers should be re- 

learned automatically. They also avoided the trial-and-error 

approach inherent in traditional approaches to object detec- 

tion. Their research demonstrates that partially intercept- 

ing neural networks can enhance the efficiency of transfer 

learning 

Several studies have focused on transferring abilities 

learned from large, general datasets to more specialized 

tasks, such as detecting small objects. A resolution adapta- 

tion scheme was employed by Xu et al. [31] to enhance the 

detection of small-scale objects by adjusting models trained 

on generic datasets using images of various smaller reso- 

lutions, thereby significantly increasing performance. Ac- 

cording to Bu et al. [2], a transfer learning system named 

GAIA was designed in recognition of the unique require- 

ments of the object detection domain. Using this sys- tem, 

tailored solutions are automatically generated based on 

heterogeneous downstream demands, offering powerful 

pretrained weights and selecting models that meet specific 

needs for object detection, including latency constraints and 

particular data domains, thereby demonstrating a significant 

advancement in small-sample object detection algorithms. 

Additionally, efforts have been made to extend the util- 

ity of transfer learning beyond mere knowledge transfer by 

utilizing data augmentation and synthetic datasets. Taluk- 

dar et al. [24] explored the generation of synthetic datasets 

through various data augmentation algorithms to assist in 

the transfer learning process for convolutional neural net- 

works. Their experiments across a range of object detection 

algorithms validated the significance of synthetic datasets 

in enhancing transfer learning outcomes. Moreover, some 

researchers have applied transfer learning to address chal- 

lenges presented by non-ideal data conditions. For instance, 

Chen et al. [5] improved the Faster R-CNN algorithm 

through transfer learning, employing two domain adapta- 

tion structures to measure domain similarity. Their Domain 

Adaptation Faster R-CNN which utilized adversarial train- 

ing, proved effective in low-light conditions. 

However, these approaches primarily focus on domain- 

specific challenges and do not extensively explore object 

detection under adverse weather conditions through trans- 

fer learning. This gap highlights the novelty of the pro- 

posed framework, which specifically addresses feature map 

correction for object detection in challenging environmental 

conditions, setting a new research direction in this area. 

 

3.  Feature Corrective Transfer Learning 

Framework 

End-to-end object detection holds paramount importance in 

computer vision, offering a seamless process from image 

input to object identification and localization [3]. Tradi- 

tionally, object detection under non-ideal conditions such as 

poor lighting, adverse weather, or unprocessed raw images, 

necessitates transforming these images into a more ’ideal’ 

state before detection can occur. However, this transforma- 

tion often targets human visual preferences rather than the 

requirements of neural networks. This paper posits that true 

end-to-end detection should circumvent the need for such 

transformations, thereby directly addressing the detection 

in non-ideal conditions. 

However, evidence suggests that models developed for 

ideal situations do not perform optimally on non-ideal cases 

[4], which underscores the necessity for model adjustments 

[29]. Direct modifications to handle non-ideal image fea- 

tures could introduce bias or overfitting to specific condi- 

tions. To address this, we propose Feature Map Correction 

(FMC) to assist the neural network training process with- 

out altering the underlying architecture. Most object de- 

tection algorithms process the input image through a neu- 

ral network to perform bounding box regression and object 

classification across various feature layers and scales. The 

Feature Corrective Transfer Learning (FCTL) method in- 

troduced in this paper aims to guide the training of models 

on non-ideal images towards closer alignment with the fea- 

ture layers of models trained on ideal images. 

3.1. Implementation of the FCTL Framework 

To formalize the FCTL framework, we define a mathemati- 

cal model consisting of the following key steps: 

1. Model Selection and Training on Ideal Images 

Let Dideal represent the dataset of ideal images. We se- 

lect an object detection model M , and train it on Dideal to 

optimize the model parameters θideal: 

θideal = arg min Ldet(M (Dideal; θ)) (1) 
θ 

where Ldet is the total loss function for the object de- 

tection task, typically comprising classification loss and 
bounding box regression loss. 

2. Generation of Non-Ideal Image Versions 

For each ideal image x ∈ Dideal, we generate a non-ideal 

version x′ by synthesizing non-ideal conditions such as 
rainy weather. This can be achieved by adding noises, 

blurring, etc. 

3. Training the Same Object Detection Model on Non- 

Ideal Images 
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4.1. Non-Ideal Image Transfer Faster R-CNN 

 

 

Figure 2. Architecture of Non-Ideal Image Transfer Faster RCNN (NITF-RCNN) Model 

 

Next, the same model M is trained on the non-ideal im- 

ages Dnon_ideal, while also using the corresponding ideal 

images for validation. During this phase, one or mul- 

tiple feature layers are selected to assess the similarity 

between the feature maps of the model trained on ideal 

images and those of the model being trained on non-ideal 

images, employing a feature similarity loss function Lfs: 

  
 

 
 

In subsequent section, we elaborate on the modifications 

to the Faster RCNN framework, leading to the develop- 

ment of the Non-Ideal Image Transfer Faster-RCNN (NITF- 

RCNN) model. This model incorporates a feature similar- 

ity loss to evaluate the similarity of pyramid feature maps, 

showcasing the practical application of the FCTL method- 

ology. 

4. Methodology 

+ λLfs 
 

(Fideal 

 

, Fnon_ideal 

 

)

 

.  (2) 
(NITF-RCNN) 

The NITF-RCNN framework adapts the traditional Faster 

Here, Fideal and Fnon_ideal represent the feature maps from 

the model under ideal and non-ideal conditions, respec- 

tively, and λ is a coefficient that balances the two loss 

terms. 

4. Incorporating Feature Similarity Loss during Back- 

propagation 

During the backpropagation process in training, the total 

loss Ltotal to be minimized includes not only the standard 

detection loss Ldet—comprising classification loss and 
bounding box regression loss—but also the feature sim- 

ilarity loss Lfs. This dual-objective loss function aims to 

ensure accuracy in object detection while introducing a 

mechanism for feature map correction: 

R-CNN [8] to object detection in non-ideal visual condi- 

tions, maintaining the original architecture while incorpo- 

rating feature map correction. As shown in Figure 2, this 

specialized algorithm employs a dual backbone structure: a 

static backbone derived from a model pre-trained on ideal 

images and a dynamic backbone that is fine-tuned on non- 

ideal images. 

Training on Ideal Images 

The foundation is laid by training a Faster R-CNN model 

equipped with a ResNet-50 backbone [11] and Feature 

Pyramid Network (FPN) [17] on a dataset of ideal RGB im- 

ages to establish the static backbone. The objective function 

for this training phase is defined as: 

Ltotal = Ldet + λLfs , (3) 
θideal = arg min LFaster R-CNN(Dideal; θ). (5) 

θ 

Feature Corrective Transfer Learning 

θ = arg min Ltotal. (4) 
θ 

The feature similarity loss Lfs is designed to effectively 

measure the discrepancies in structure and content between 
the feature maps of the model trained on ideal images and 

those trained on non-ideal images. It is crucial to note that 

similarity in feature space can significantly differ from 

image similarity, necessitating a distinct evaluation metric. 

This paper introduces the Extended Area Novel Structural 

Discrepancy Loss (EANSDL) method to assess the similar- 

ity at the feature level. 

Ldet(M (Dnon_ideal; θ)) θnon_ideal = arg min 
θ 
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In the feature-level transfer learning phase, the pre- 

trained static backbone extracts feature maps from the ideal 

images to form the "ideal pyramid," while the non-ideal im- 

ages are concurrently processed through the dynamic back- 

bone. Both are then subject to the region proposal network 

(RPN) [8] and Region of Interest (ROI) Pooling [9]. The 

dynamic backbone undergoes training, guided by the fol- 

lowing combined loss function: 

Ltotal = Ldet(Dnon_ideal; θ) + λLEANSDL(Fideal, Fnon_ideal). 
(6) 
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where Ldet represents the standard object detection loss, 

which includes bounding box regression and classification 

losses [8]. LEANSDL denotes the Extended Area Novel Struc- 

tural Discrepancy Loss, a dedicated loss function assessing 

the similarity between feature maps. λ serves as the balanc- 

ing coefficient for the feature similarity loss. 

Validation 

During validation, only the non-ideal images are pro- 

cessed through the NITF-RCNN to assess the model’s de- 

4.2.1 Mathematical Formulation 

Consider two feature maps, A (non-ideal condi- tions) 

and B (ideal conditions), each with dimensions [batchsize, 
channels, width, height]. The formulation of EANSDL is 

given by: 

 

 

EANSDL(A, B, δ, rL) 

tection capability in non-ideal conditions. This is achieved 

by applying the trained model to non-ideal images, with the 

W 

= D(δ) · 
W · H exp(−∆S(x, y)) · ∆S(x, y) 

loss functions serving as indicators of performance: 

Lvalidation(Dnon_ideal; θ). (7) 

 

Structural Summary and Potential Advantages 

The NITF-RCNN framework retains the integrity of the 

traditional Faster R-CNN structure, with the addition of the 

feature correction component for ideal images. This ap- 

proach provides several potential advantages: 

• Feature Correction Without Structural Modification: 

The framework enhances object detection under non- 

ideal conditions without the need for significant modifi- 

cations to the existing architecture. 

• Direct Feature-Level Adaptation: By correcting feature 

maps directly through the FCTL approach, the model is 

better equipped to handle environmental disturbances in- 

herent in non-ideal images. 

• Balanced Learning: The use of a joint loss function al- 

lows the model to balance feature correction with the pri- 

mary detection tasks, potentially improving generaliza- 

tion and robustness. 

 

4.2. Adaptive Structural Alignment via EANSDL 

To address the challenge of aligning and comparing fea- 

ture maps under complex, non-ideal conditions, we intro- 

duce Extended Area Novel Structural Discrepancy Loss 

(EANSDL) which not only identifies pixel-level discrepan- 

cies but also ensures the structural integrity across larger 

areas, making it beneficial for advanced object detection 

frameworks like Faster RCNN in less-than-ideal conditions. 

EANSDL conducts a comprehensive evaluation, rectifying 

immediate discrepancies while maintaining overall struc- 

tural coherence, significantly enhancing Faster RCNN’s 

detection precision. Its design adaptively balances the 

analysis between detailed discrepancies and broader align- 

ments, dynamically adjusting the gradient consistency eval- 

uation across the feature pyramid’s hierarchical layers. This 

method achieves heightened sensitivity to layer-specific 

scales and resolutions, thereby bolstering structural in- 

tegrity and ensuring robust object detection across diverse 

imaging conditions. 

H 
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x=1 y=1 

+ λ · Ω(A, B, x, y, rL)

  

. (8) 

 

where: 

• D(δ) introduces a time-varying attenuation factor that 

adjusts the sensitivity of the loss function to training 

progress,with τ denoting the ratio of the current epoch 

to total epochs (ensuring that the loss adapts throughout 

the training lifecycle). 

• ∆S(x, y) denotes the local gradient magnitude difference 

at position (x, y), capturing immediate structural vari- 

ances. 

• λ represents a balancing factor for the contribution of the 

extended area gradient consistency. 

• Ω(A, B, x, y, rL) encapsulates the extended area gradi- 

ent consistency across a neighborhood radius rL, dynam- 

ically adjusted for each level of the Faster RCNN feature 

pyramid as: 

rL = r0/2level, (9) 

where r0 is the initial radius at the largest feature map, 

and level denotes the specific layer within the feature 

pyramid. 

 

4.2.2 Implementation Details 

Time-varying Attenuation Factor 

The Time-varying Attenuation Factor, represented as 

D(δ), introduces a dynamic mechanism to adjust the re- 

sponsiveness of the loss function throughout the training 

duration. The term δ signifies the proportion of the current 

epoch relative to the total number of epochs, calculated as: 

current_epoch 
δ = 

total_epochs 
. (10)

 

The implementation of this factor facilitates a method- 

ological shift in the model’s emphasis from rectifying 

prominent structural disparities in the initial training phase 

to honing finer details in subsequent phases of the training 

process. 

D(δ) is delineated as follows: 
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L 

    

 

 

 

 
where: 

 

D(δ) = exp(−α · δβ), (11) 

contribution of each local discrepancy ∆S(x, y) to the over- 

all loss. 

When these two terms are multiplied, i.e., 

exp(−∆S(x, y))  · ∆S(x, y), the  exponential  decay 

• α regulates the initial steepness of the decay trajectory; 

• β adjusts the curvature to slow down the decay pace. 

Fundamentally, D(δ) empowers the model to initially 

concentrate on correcting significant mismatches between 

feature maps, ensuring a solid foundation is established. As 

training progresses and the model evolves in complexity, 

the attenuation factor reduces the emphasis on these mis- 

matches. This modification aids in diminishing the influ- 

ence of the EANSDL on the total loss for object detection 

during the later phases, allowing for a greater focus on the 

quintessential tasks of object detection. 

Gradient Computation Function 

Central to EANSDL, the gradient computation function 

G(·) employs the Sobel operator [23] to delineate edges and 
structural attributes across the feature maps. This operator 

convolves the feature map with two distinct 3×3 kernels, 
each engineered to unearth edges along respective orienta- 

tions: 

function in the loss calculation magnifies the impact of 

smaller discrepancies, directing the model’s focus on 

refining minor but essential structural differences. Simul- 

taneously, it lessens the penalty on larger discrepancies 

to avoid undue penalization for less critical variances. This 

mechanism ensures a balanced model training, pri- oritizing 

major discrepancies in early phases for overall performance 

and shifting towards finer adjustments in later stages as 

feature map discrepancies diminish, facilitating nuanced 

structural alignment for improved object detection accuracy. 

Extended Area Gradient Consistency 

The Extended Area Gradient Consistency term, Ω(A, 
B, x, y, rL), scrutinizes the uniformity of gradient 

transitions within a specified vicinity, thereby assessing 

broader spatial patterns. It evaluates the consistency of 

gradient changes across an extended neighborhood, defined 

by a radius rL. This radius is adaptively adjusted for each 

layer in the Faster RCNN feature pyramid, allowing for a 

multi-scale analysis: 

−1  0  1
 

−1  −2  −1  
Sx = −2    0    2  , Sy =   0 0 0   . (12) 

−1  0  1 1 2 1 
Ω(A, B, x, y, rL 

1 ) = 
(2r  + 1)2 

Vertical edges are identified through the horizontal gra- 

dient (Sobel-x), whereas horizontal edges are pinpointed by 

the vertical gradient (Sobel-y). The formulas for calculating 

rL 

· 
i=−rL 

rL 
 

 

j=−rL 

 

|(G(A, x, y) − G(A, x + i, y + j)) 

these gradients are as follows: 

Gx(A) = A ∗ Sx, Gy(A) = A ∗ Sy. (13) 

The aggregate gradient magnitude is consequently deter- 

mined by amalgamating these orthogonal gradients: 

G(A, x, y) = 
✓

Gx(A, x, y)2 + Gy(A, x, y)2.   (14) 

Local Gradient Magnitude Difference 

The local gradient magnitude difference between feature 

maps A and B, represented by /DeltaS(x, y), is expressed 

as: 

∆S(x, y) = |G(A, x, y) − G(B, x, y)| . (15) 

This metric quantifies the direct structural disparities, high- 

lighting areas where edge and texture information signif- 

icantly differ due to non-ideal imaging conditions. Es- 

sentially, ∆S(x, y) pinpoints the local discrepancies that the 

model needs to correct to better align feature maps derived 

from non-ideal and ideal scenarios.  The term 

exp(−∆S(x, y)) acts as a weighting factor, modulating the 

−(G(B, x, y) − G(B, x + i, y + j))| . (16) 

 

This extended area gradient consistency ensures that the 

model not only captures pixel-by-pixel discrepancies, but 

also appreciates broader spatial patterns and alignments. 

This multi-scale approach is critical for robust object de- 

tection, as it allows the model to recognize and adapt to the 

variances in object sizes and shapes across different feature 

map scales. 

In summary, EANSDL represents a significant advance 

in object detection, offering powerful structural insight and 

correction capabilities. By skillfully combining evalua- 

tions of both immediate and broader spatial contexts, the 

EANSDL function empowers object detection algorithms 

that correct feature maps layers through Transfer Learning, 

such as NITF RCNN, to deliver unparalleled performance. 

This approach ensures the meticulous alignment and refine- 

ment of feature maps, transcending the challenges posed by 

non-ideal imaging conditions. This approach not only 

enhances the model’s detection capabilities but also sets a 

benchmark for feature map analysis and correction in com- 
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plex visual environments. 
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Dataset 
Faster RCNN NITF RCNN 

 

 

 

 

 

 

 

 

 

 

Table 1. Evaluation Results of Faster RCNN and NITF RCNN on Different Datasets (The relative percentage improvement on each metric 

is compared between the NITF RCNN algorithm and Faster RCNN.) 

 

5. Experiments 

5.1. Dataset Selection and Generation 

In our experimental setup, we combine original and synthe- 

sized datasets due to the requirement of having both ideal 

and non-ideal versions of the same image for transfer learn- 

ing. This necessity arises from the need to train on ideal 

images and then adapt to non-ideal conditions. Real non- 

ideal images, altered to simulate ’ideal’ conditions, often 

lose crucial details due to inherent visual obstructions like 

rain or fog. Therefore, to maintain content consistency and 

to ensure a robust training foundation, we opt for real-world 

images as our ideal dataset and generate synthetic coun- 

terparts for the non-ideal scenarios, effectively using high- 

quality originals to produce less information-dense but con- 

textually aligned images. 

The KITTI 2D object detection dataset [7] serves as the 

foundation for our experiments, known for its real-world 

driving scenarios, diverse object annotations, and complex 

urban environments. As the ideal dataset, we utilize KITTI 

alongside four synthetic datasets—Rainy-KITTI, Foggy- 

KITTI, Dark-KITTI, and RAW-KITTI—as our non-ideal 

datasets. 

• Rainy-KITTI & Foggy-KITTI: For simulating rain and 

fog conditions, we selected the Rainy-KITTI and Foggy- 

KITTI datasets [10, 25], recognized for their realistic em- 

ulation of these weather effects. The Rainy-KITTI dataset 

encompasses images under seven distinct rain intensities, 

ranging from light to heavy downpours. Similarly, the 

Foggy-KITTI dataset includes images under seven differ- 

ent visibility conditions due to fog. For our experiments, 

we randomly select an image from each of these condi- 

tions to compile our dataset. 

• Dark-KITTI: To generate a dataset simulating low-light 

conditions, we followed Rashed et al.’s methodology 

[21], utilizing the UNIT [18] algorithm for its superior 

performance in creating realistic night-time images. Us- 

ing 2000 clear-day images from the KITTI dataset [7] and 

2000 night images from the BDD100K dataset [33], we 

trained a day-to-night model on UNIT and generated the 

Dark-KITTI dataset. 

• Raw-KITTI: Addressing the challenge of replicating 

RAW Bayer images, due to the irreversible nature of the 

Image Signal Processing (ISP) [28], we adopted a dataset 

generation method from [4] to create a synthetic color 

Bayer image dataset, termed Raw-KITTI. This dataset 

features color channels in the RGB format, ensuring con- 

sistency in channel count across all datasets used in our 

experiments by assigning corresponding colors to each 

channel of the RAW data. 

5.2. Quantitative Results 

In our experiment, the learning rate was set to 0.005 and the 

batch size was configured at 8. We allocated 80% of 

each dataset for training and reserved 20% for valida- tion, 

conducting the training over 100 epochs. The perfor- mance 

evaluation was based on the mean Average Preci- sion 

(mAP), in accordance with the COCO detection bench- mark 

standards [16]. Our model’s performance was evalu- ated 

using three key metrics: mAP@0.5, mAP@0.75, and 

mAP@[0.5:0.95]. The mAP@0.5 and mAP@0.75 metrics 

represent the mean average precision at Intersection over 

Union (IoU) thresholds of 0.5 and 0.75, respectively, de- 

manding closer alignment with ground truth for higher val- 

ues. The mAP@[0.5:0.95] metric, averaging performance 

across an IoU threshold range from 0.5 to 0.95 with 0.05 

increments, provides a comprehensive assessment of model 

accuracy at various levels of detection precision. 

Table 1 encapsulates the evaluation results of Faster 

RCNN and our NITF-RCNN model across different 

datasets. It highlights the comparative performance im- 

provements of NITF-RCNN over Faster RCNN under var- 

ious conditions, showcasing the effectiveness of our FCTL 

framework. 

The results clearly demonstrate the superior performance 

of NITF-RCNN across all non-ideal imaging conditions, 

with notable performance gains. Specifically, NITF-RCNN 

achieved an 8.1% increase in mAP@0.5, a 5.6% increase in 

 mAP@0.5 mAP@0.75 mAP@[0.5,0.95]  mAP@0.5 mAP@0.75 mAP@[0.5,0.95]  

KITTI 80.87% 61.45% 55.43%  —- —- —-  

Rainy-KITTI 73.17% 56.15% 49.28%  79.16%(↑8.1%) 59.35%(↑5.6%) 51.86%(↑5.2%)  

Foggy-KITTI 71.88% 48.74% 42.31%  75.01%(↑4.4%) 51.30%(↑5.5%) 44.48%(↑5.1%)  

Dark-KITTI 62.74% 41.39% 37.89%  65.61%(↑4.6%) 44.05%(↑6.4%) 40.07%(↑5.7%)  

Raw-KITTI 76.13% 58.50% 51.76%  79.06%(↑3.8%) 61.91%(↑5.8%) 54.13%(↑4.6%)  

 

mailto:mAP@0.5
mailto:mAP@0.75
mailto:mAP@0.5
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mailto:mAP@0.5
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Figure 3. Detection Results of NITF-RCNN on Derivative Images of ID 000332 from the KITTI Dataset, where (a) represents the original 

image from the KITTI dataset detected using the Faster RCNN algorithm for comparison. 

 

mAP@0.75, and a 5.2% improvement in mAP@[0.5:0.95] 

on the Rainy-KITTI dataset. Similar improvements are ob- 

served across Foggy-KITTI, Dark-KITTI, and Raw-KITTI 

datasets, underlining the model’s enhanced detection capa- 

bilities in challenging visual scenarios. 

It is noteworthy that across all evaluated datasets, NITF-

RCNN exhibits consistent improvements over Faster RCNN 

in the comprehensive mAP@[0.5:0.95] metric, with relative 

gains ranging from 4.6% to 5.7%. This underscores the 

effectiveness of the NITF-RCNN model in maintain- ing 

high accuracy across various levels of detection preci- sion, 

especially in non-ideal imaging conditions. Remark- ably, 

on the Raw-KITTI dataset, the mAP@[0.5:0.95] per- 

formance of the NITF-RCNN approaches that of the ideal 

KITTI dataset on the Faster RCNN, with a mere 1.3% dif- 

ference. This highlights the significant advancements made 

by NITF-RCNN in closing the gap between object detection 

performances in ideal versus non-ideal conditions, show- 

casing its potential to operate effectively across a broader 

range of real-world scenarios. 

5.3. Qualitative Results 

Figure 3 displays the detection outcomes on four derivative 

datasets from the KITTI dataset, specifically for image ID 

000332. For the Rainy-KITTI and Foggy-KITTI datasets, 

we showcase detection results across three different levels 

of rainfall intensity and varying visibility, respectively. 

As a result of integrating the insights derived from Figure 

3 and Table 1, we are able to demonstrate that our method- 

ology yields performance similar to that of Faster RCNN 

under ideal conditions for the Rainy KITTI and Raw KITTI 

datasets. In contrast, the performance on the Dark KITTI 

and Foggy KITTI datasets is relatively inferior. It is hy- 

pothesized that the main reason for this discrepancy is that 

Rainy and Raw KITTI images are more visual discernible 

than low-light and foggy images, which facilitates easier 

detection [20, 30]. 

 

6. Conclusion 

This research introduces a pioneering approach in com- 

puter vision, particularly in object detection under non-ideal 

conditions such as low light, adverse weather, or directly 

from raw Bayer images without ISP. Using the novel con- 

cept of FCTL in conjunction with a unique loss function, 

EANSDL, we demonstrate that the NITF-RCNN model is 

able to significantly improve the object detection ability in 

various challenging environments. Our methodology by- 

passes traditional preprocessing requirements for non-ideal 

images, directly refining the model’s feature maps to closely 

align with those obtained from pristine RGB datasets. Ex- 

perimental results demonstrate the efficacy of this approach, 

which shows a substantial improvement in mAP over con- 

ventional methods, thus setting an industry benchmark. 

This study not only strengthens the robustness and ac- 

curacy of object detection models under diverse environ- 

mental conditions, but also provides new avenues for fur- 

ther research. It is possible for FCTL to be applied out- side 

of autonomous driving, surveillance, and augmented 

reality, suggesting its potential for other areas where visual 

data is compromised by conditions that are not ideal. In 

future research, FCTL may be adapted to address a wider 

range of imaging challenges, loss function optimization for 

higher efficiency, and integration of this approach with other 

frameworks for object detection. The successful application 

of FCTL heralds a paradigm shift in how visual data is pro- 

cessed, and promises advancements in various applications 

reliant on accurate and reliable object detection. 

mailto:mAP@0.75
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