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Abstract Many cities across the world are looking to use technology and innovation 

to improve the overall efficiency and safety for their residents. At the heart of these 

smart-city plans, a variety of intelligent transportation system technologies can be 

used to improve safety, enhance mobility measures (e.g., traffic flow), and minimize 

environmental impacts of a city’s mobility ecosystem. Early implementations of 

these ITS technologies often take place in affluent cities, where there are many 

funding opportunities and suitable areas for deployment. However, it is critical that 

we also develop smart city solutions that are focused on improving conditions of 

disadvantaged and environmental justice communities, whose residents have suffered 

the most from unmitigated urban sprawl and its environmental and health impacts. As 

a leading example, Inland Southern California has grown to be one of the largest hubs 

of goods movement in the world. Numerous logistics facilities such as warehouses, 

rail facilities, and truck depots have rapidly spread throughout these communities, 

with the local residents bearing a disproportionate burden of truck traffic, poor air 

quality, and adverse health effects. Further, the majority of residents have lower- 

wage jobs and very few mobility options, other than low-end personal car ownership. 

To improve this situation, UC Riverside researchers have focused their smart city 

research on these impacted communities, finding innovative solutions to eco-friendly 

traffic management, developing better-shared (electric) mobility solutions for the 

community, improving freight movements, and enhancing the transition to vehicle 

electrification. Numerous research and development projects are currently underway 

in Inland Southern California, spanning advanced smart city modeling and impact 

analysis, community outreach events, and real-world technology demonstrations. 

This chapter describes several of these ITS solutions and their potential for improving 

many cities around the world. 
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17.1 Introduction 

 
One of the key goals of any “Smart City” is to improve a city’s operational efficiency 

and promote economic growth while also improving the quality of life for its citi- 

zens. This is typically accomplished by using a variety of smart technologies and 

data analyses. Smart city characteristics include having effective and highly func- 

tional public transportation, progressive city planning, better infrastructure based 

around technology, and a variety of environmental initiatives that are focused on the 

public health. This leads to local citizens being able to live and work within the city, 

effectively uses a number of city resources.1 

Every city that has goals of becoming “smarter” will have different characteris- 

tics based on their current conditions and future plans. Some cities will have clear 

pathways for improvement, while other cities will have greater challenges due to 

inherent burdens such as poor air quality, chronic public health problems, lack of 

affordable housing, and increased levels of poverty. These “disadvantaged” commu- 

nities desperately want to improve their conditions; one of the key questions is how 

to take advantage of smart-city technology, infrastructure, and techniques to make 

these improvements happen. 

In this chapter, we examine a variety of Intelligent Transportation System (ITS) 

solutions that are focused on disadvantaged communities. The general goal of ITS 

technology is to improve safety, enhance mobility measures (e.g., traffic flow), and 

minimize environmental impacts of a city’s mobility ecosystem. To date, most of 

the early implementations of these ITS technologies often take place in affluent 

cities, where there are many funding opportunities and suitable areas for deployment. 

However, it is critical that we also examine smart city solutions that are focused on 

improving conditions of disadvantaged and environmental justice communi- ties, 

whose residents have suffered the most from unmitigated urban sprawl and its 

environmental and health impacts. 

As a case study, we focus on Inland Southern California, including projects in 

the cities of Riverside and San Bernardino, California. Much of Inland Southern 

California is designated as “disadvantaged” based on California’s CalEnviroScreen 

modeling tool [1]. Our research addresses a number of ITS topics for this region, 

including improved traffic flow along major arterial roadways, smart intersections, 

shared mobility solutions, and improved routing of heavy-duty trucks. This chapter 

draws on a number of recent publications on these topics, listed in the reference 

section. 

 

 

17.1.1 Riverside’s Smart City Partnership 

 
The City of Riverside, California, and the University of California-Riverside (UCR) 

have joined together in the last several years to pursue a number of activities focused 

on making Riverside a “Smart City.” Riverside is one of the largest cities in Inland 
 

1 OpenStreetMap is a trademark of the OpenStreetMap Foundation, and is used with their 

permission. This product is not endorsed by or affiliated with the OpenStreetMap Foundation. 
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Southern California and a key component of Southern California’s economy. River- 

side has a population of approximately 320,000 residents, medium densification of 

housing, four expanding universities, and steady growth in local and regional indus- 

trial development. A significant amount of rail freight passes through Riverside, 

coming to and from the ports of Los Angeles and Long Beach, which import over 

40% of the goods coming in to the United States. Riverside has over 400 signal- 

ized intersections and experiences a number of transportation issues on a daily basis 

including traffic congestion and related air pollution. Riverside is part of Southern 

California’s “Inland Empire,” which has had a long history of dealing with air quality 

issues, suffering from some of the worst air pollution in the country dating back to 

the 1960s. However, with aggressive air quality regulations primarily aimed at the 

transportation sector, criteria pollutant emissions have been reduced by as much as 

90% over the last half century. 

More recently, greenhouse gas (GHG) emissions are now being aggressively 

targeted in the region to deal with climate change issues. The State of California has 

already taken steps to restructure environmental guidelines to de-emphasize the addi- 

tion of roadway capacity as a congestion and environmental mitigation measure—an 

effort in which Riverside has been an active participant. Local leadership is now re- 

envisioning Riverside and embracing smart-city technology in order to bring relief 

to congested roadways, reduce emissions, encourage mode-shifts, improve safety, 

update parking requirements and zoning, and significantly enhance the quality of life 

of the City’s residents and patrons. At the heart of this effort is the recent launching 

of Riverside’s Transformative Climate Communities Program. 

 

 

17.1.2 Transformative Climate Communities (TCC) Program 

 
Funded by the State of California’s Strategic Growth Council, the City and its part- 

ners received $31.2 M in 2020 to pursue a broad community-based effort to empower 

Riverside’s Eastside area, with the goal of creating new economic opportunities, and 

improving the health and well-being of Riverside residents. The project area centers 

around the City’s 7th and Chicago housing project, known as Entrada, and contains 

most of the Eastside from the City’s downtown Metrolink station all the way to 

UCR, as shown in Fig. 17.1. There are a number of projects that are being developed 

with this TCC funding, including providing high-quality multimodal transporta- 

tion, affordable housing, urban greening, solar energy, and workforce development 

training in the targeted region. UCR researchers are working closely with the City, 

project leaders, and community stakeholders to identify and track specific indica- 

tors of project quality and assess public health, economic development, greenhouse 

gas reductions, and other outcomes for the entire program. This TCC Program is 

progressing well, more details can be found at https://storymaps.arcgis.com/stories/ 

b5fffd6ae7744b8ab82bb8a725c25c36. 

Since UCR is part of the Eastside community, UCR has ongoing efforts to improve 

local economic opportunities and health. This includes efforts at improving mobility 

https://storymaps.arcgis.com/stories/b5fffd6ae7744b8ab82bb8a725c25c36
https://storymaps.arcgis.com/stories/b5fffd6ae7744b8ab82bb8a725c25c36
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Fig. 17.1 City of Riverside’s Eastside community, with various projects being developed as part 

of the Transformative Climate Communities Program. (permission for reusing this figure granted 

from the City of Riverside; original source: https://storymaps.arcgis.com/stories/b5fffd6ae7744b8 

ab82bb8a725c25c36. Base map accessed from ArcGIS Online, see https://www.esri.com/en-us/ 

legal/copyright-proprietary-rights; Map image is the intellectual property of Esri and is used herein 

under license. Copyright © 2020 Esri and its licensors. All rights reserved)2 

 

between the UCR campus and downtown Riverside, centered around a designation of 

an “Innovation Corridor,” described below. In addition, UCR has been researching 

ways to reduce the impacts of goods movement, warehousing, and supply chain 

logistics in the region. This includes developing and assessing new technology and 

techniques to reduce the impacts heavy trucks have on local neighborhoods and 

working closely with the Center for Community Action and Environmental Justice 

on community outreach. 

 

 

17.1.3 Riverside’s Innovation Corridor and Smart 

Intersection 

 
As part of Riverside’s Transformative Climate Communities Program, the City and 

UCR have set out to create an “Innovation Corridor,” a 6-mile section of University 

Avenue between the UCR campus and downtown (see Fig. 17.2 and [2]). This area 

 

2 In several figures in this document, OpenStreetMap has been utilized. OpenStreetMap is a trade- 

mark of the OpenStreetMap Foundation, and is used with their permission. This product is not 

endorsed by or affiliated with the OpenStreetMap Foundation. 

https://storymaps.arcgis.com/stories/b5fffd6ae7744b8ab82bb8a725c25c36
https://storymaps.arcgis.com/stories/b5fffd6ae7744b8ab82bb8a725c25c36
https://www.esri.com/en-us/legal/copyright-proprietary-rights
https://www.esri.com/en-us/legal/copyright-proprietary-rights
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was selected due to its proximity to an expanding transit and alternative transporta- 

tion network, research institutions associated with UCR, and the ever-expanding 

entertainment destinations in the downtown region. Along this corridor, the traffic 

signal controllers were updated to be compatible with SAE connectivity standards. 

Further, several key intersections along this corridor have been set up with short-range 

communication roadside units. With this communications capability, Signal Phase 

and Timing (SPaT) messages from the traffic signal controllers can be directly trans- 

mitted to vehicles equipped with similar communication technology, traveling along 

the corridor. In addition to the SPaT messages, other information can be broadcast, 

such as positioning correction information and map information on the intersection 

configuration. 

In addition to the communication capability between the traffic signals and the 

equipped vehicles, the Innovation Corridor also has several air quality monitors 

located along the roadway. 

The overarching goal of this Innovative Corridor is to serve as a key testbed for 

connected and automated vehicles applications, for improving safety, traffic flow, 

and reducing pollutant emissions. Since this arterial corridor cuts directly through 

local neighborhoods, impacts from these applications should bring direct benefits to 

the community. One of the key connected vehicle applications that has been tested 

along the Innovation Corridor is described in Sect. 17.2. 

Another key part of Riverside’s Innovation Corridor, is a smart-intersection 

located at University Avenue and Iowa Street. This smart-intersection has been 

equipped with various surveillance systems, including a GridSmart fisheye camera 

system, as well as stationary LiDAR sensors that provide a detailed 3D view of the 

intersection and various road users, including cars, trucks, bicyclists, and pedestrians. 

This intersection is illustrated in Fig. 17.3, showing the location of the sensors at 

the intersection. This smart-intersection also serves as a key research testbed, where 

 

 

Fig. 17.2 City of Riverside’s Innovation Corridor (i.e., a section of University Avenue between 

UCR and downtown), adapted from [11], permission for reusing this figure granted from UC Davis 

Institute of Transportation Studies; Base map from OpenStreetMap (https://www.openstreetmap. 

org/copyright); available under the Open Database License (https://www.opendatacommons.org) 

https://www.openstreetmap.org/copyright
https://www.openstreetmap.org/copyright
https://www.opendatacommons.org/
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Fig. 17.3 City of Riverside’s smart intersection (i.e., intersection of University Avenue and Iowa 

Street, along the Innovation Corridor) 

 

 

we can conduct experiments in improving road user safety, mobility, and minimize 

emissions. 

 

 

17.2 Eco-Friendly Cooperative Traffic Optimization 

 
It is well known that roadway congestion is detrimental from many perspectives: it 

negatively impacts our mobility, leading to longer travel times, increased emis- 

sions, and increasing the total amount of fuel consumption. There are a number of 

congestion mitigation measures that can be deployed, many of which take advantage 

of ITS technology. For example, traffic signal optimization on our arterial roadways 

has long been recognized as a critical component in improving transportation effi- 

ciency and mitigating congestion at signalized intersections [3]. Traffic signal timing 

optimization aims to determine the ideal allocation of green, yellow, and red signal 

phases to minimize delays, reduce travel times, enhance traffic flow, and maximize 

intersection capacity [4]. With advances in sensors, communications, and computing, 

traffic-adaptive signal controllers can now utilize real-time vehicle detector data to 

measure traffic flow, which can in turn be used to optimize traffic passing through 

an intersection. Further, in a connected vehicle environment, vehicles can directly 

communicate with the infrastructure to provide information on vehicle status (e.g., 
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location, speed, lane position, etc.) to traffic signal controllers, allowing for better 

signal timing optimization. 

 

 

17.2.1 Vehicle Trajectory Planning 

 
In addition to optimizing traffic signal timing, it is also possible to have vehicles 

adjust their speed trajectories based on information from the traffic signals. This 

trajectory planning optimization can be done in an eco-friendly way, to where energy 

consumption and emissions are minimized. Over the years, extensive research has 

been conducted on this type of vehicle trajectory optimization, resulting in the devel- 

opment of various models, algorithms, and optimization techniques. Commonly 

referred to as “Eco-Approach and Departure at Signalized Intersections” (EAD) in 

North America and “Green Light Optimized Speed Advisory” (GLOSA) in Europe, 

various pilot deployments have taken place around the world, including in Riverside 

California, along the Innovation Corridor. 

We have carried out a variety of EAD experiments both in simulation as well as 

in the real-world, utilizing the enhanced infrastructure along the Innovation Corridor 

(more details can be found in [5]. The goals of this research are to demonstrate how 

connected vehicles can improve both mobility and environmental factors along a 

signalized arterial roadway. Like other CAV applications that involve determining 

optimal speed profiles for vehicles traveling within an urban transportation network, 

the EAD application utilizes: 

• the SPaT data from the upcoming traffic signals; 

• map and route information (e.g., stop-bar location, road grade, road speed limit, 
turning movement); 

• downstream traffic conditions such as queue length; and 

• the vehicle’s state and powertrain limitations (e.g., vehicle position, instanta- 

neous speed, acceleration/deceleration limit), to determine the optimal recom- 

mended speed profile that can minimize the target vehicle’s energy consump- 

tion and tailpipe emissions when approaching to and departing from signalized 

intersections. 

The EAD application inherently smooths traffic flow, thereby improving mobility, 

reducing energy consumption, and lowering tailpipe emissions. The advisory speed 

profile and other relevant information produced from the EAD algorithm can be 

conveyed to the driver typically through a human–machine interface (HMI or driver– 

vehicle interface, DVI), or through partial automation (e.g., a form of adaptive cruise 

control). In our research, we primarily utilize an HMI to provide the drivers with an 

advisory speed. Figure 17.4 illustrates a generalized system architecture for the 

EAD application. Technical detail on the application can be found in [2] and related 

publications. 
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Fig. 17.4 The generalized system architecture of the EAD application that was implemented 

 

 

We have carried out extensive testing of the EAD connected vehicle algorithm, 

both in simulation and the real world, with the goal to reduce the idling time at inter- 

sections, and avoid unnecessary accelerations, while also allowing for safe driving. 

The EAD algorithm calculates an optimal velocity to minimize fuel consumption as 

described in [6]. For our experiments, the signal controllers along the Innovation 

Corridor were set up to transmit SPaT information, providing a timestamp for the 

minimum time remaining and maximum time remaining to the connected vehicles in 

the experiment. Two instrumented vehicles are generally utilized in the experiments, 

where one test vehicle is utilized that fully implemented the connected vehicle EAD 

application, while the other vehicle is used as a comparison vehicle, driven normally 

with traffic without the EAD application. The experiments were conducted at various 

times throughout a typical weekday (e.g., between 10:00AM and noon, and 1:30PM– 

3:30PM). During the experiments, the actual fuel consumption from the vehicles 

were recorded in real time, along with detailed trajectory information (i.e., vehicle 

speed and position at 1 Hz). Once the vehicle trajectories were collected, they were 

used as input to well-calibrated vehicle emissions models to also estimate emission 

reductions. 

As an example of our results, Table 17.1 shows the CO2 and fuel consumption 

for scenarios carried out both in simulation as well as the real world. In general, the 

simulation results tended to provide slightly greater reductions compared to the real- 

world results. But, in general, the EAD application generally provides reductions in 

the range of 5–15%. 
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Table 17.1 EAD experimental results 

Results No EAD EAD Improvement (%) 

Simulation CO2 (g/mi) 541.04 479.02 11.46 

Fuel (g/mi) 163.62 144.86 11.5 

Real-World CO2 (g/mi) 430.7 402.3 6.6 

Fuel (g/mi) 137.63 128.5 6.63 

 

17.2.2 Vehicle Trajectory and Traffic Signal Timing 

Co-optimization 

 
In recent years, there has been growing interest in developing methods for the co- 

optimization of traffic signal timing and adjusting vehicle trajectories at signalized 

intersections [5]. This is motivated by the fact that traditional traffic signal control 

methods, which typically focus on optimizing traffic flow, can lead to inefficient 

vehicle movements and increased fuel consumption [5]. By also making adjust- 

ments to vehicle speed trajectories, it would be possible to improve both on traffic 

flow as well as achieving lower energy consumption and emissions. Again, this co- 

optimization leverages advances in connected and automated vehicle technologies, 

enabling vehicles to communicate with each other and with the traffic signal system 

in real time, and to adjust their speed under the prevailing traffic conditions. 

As part of our research, we have developed a co-optimization technique referred to 

as “Eco-friendly Cooperative Traffic Optimization” or ECoTOp, described in detail in 

[5, 8]. The ECoTOp framework combines vehicle eco-trajectory planning optimiza- 

tion and traffic signal optimization to achieve enhanced transportation performance 

at individual signalized intersections. The goal of the ECoTOp framework is not to 

just find a single optimized solution for traffic throughput and lower emissions but 

to provide a system that can be dynamically adjusted to select the most suit- able 

optimization strategy based on real-time traffic conditions and environmental 

considerations. 

The ECoTOp system is comprised of two major modules: a traffic signal optimiza- 

tion module and the eco-trajectory planning module (from [5]). These modules are 

designed to interact with each other but often have inherent conflicts when pursuing 

their own optimization goals. The traffic signal optimization module seeks reliable 

information from incoming vehicles, including current dynamic state and future 

movement, as early as possible. It also requires the flexibility to adjust the signal 

timing plan at any time to adapt to the dynamic traffic conditions. On the other hand, 

the eco-trajectory planning module requires reliable signal timing informa- tion 

ahead of time to plan trajectories that can reduce energy consumption and 

emissions. However, vehicles operating under the eco-trajectory plan still require 

some flexibility in operation to improve safety, mobility, and energy performance in 

certain situations, such as emergency braking and lane changing. 
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In general, it is not feasible to create an ideal co-optimized system in an isolated 

intersection with mixed traffic due to two main reasons. Firstly, unconnected vehi- 

cles with human drivers typically have diverse driving styles, which can sometimes 

be unpredictable. Secondly, the limitations in sensing, communication, and control 

sometimes make it impossible to predict the time and state when each vehicle enters 

the system, even for connected and autonomous vehicles. In a mixed traffic environ- 

ment, each module must make trade-offs to achieve an integrated optimization. This 

section presents the method for interaction between the two modules. 

The ECoTOp system achieves the co-optimization of signal control and vehicle 

trajectory by following the flowchart depicted in Fig. 17.5. The ECoTOp system 

works as follows for the co-optimization of signal control and vehicle trajectory [5]: 

(1) The number of vehicles is determined for each lane in the network within the 

communication range. 

(2) The number of vehicles is calculated that can be served within the current green 

time for each lane. 

(3) Based on these values, two things are determined: the time required for the 

delayed vehicles controlled by the phase for that lane to pass through the 

intersection, and also the time required for maximum throughput. 

(4) This information is then used as input to a Sequential Least Squares Program- 

ming (SLSQP) optimizer in order to obtain the new phase times. 

 

Fig. 17.5 ECoTOp algorithm flowchart (from [5], permission for reusing this figure granted by 

author David Oswald) 
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(5) Simultaneously, each connected vehicle receives the Signal Phase and Timing 

(SPaT) information and queue information. 

(6) As in the standard EAD algorithm, the queue information is used to possibly 

change lanes and to calculate timing for the trajectory planning. 

(7) Given this timing and the current vehicle velocity, a Random Forest-based 

trajectory optimizer is used to obtain each individual vehicle trajectory. 

(8) Finally, the signal controller is updated with the optimal phase timing obtained 

from the SLSQP optimizer. 

In order to evaluate the effectiveness of our ECoTOp system, we carried out 

a high-fidelity simulation of Riverside’s smart intersection along the Innovation 

Corridor (University and Iowa Avenues). This simulation was carefully calibrated 

with measured traffic volumes and turning movements, along with the current phase 

and timing information. Different levels of the connected vehicle penetration rate 

were used and compared to three other scenarios: (1) a baseline scenario where the 

intersection timing is setup as it is today, with no vehicles performing EAD; (2) an 

optimized traffic signal timing algorithm (without vehicles performing EAD); and 

(3) a pure EAD scenario, with current standard signal timing. The results of this are 

depicted in Fig. 17.6, where we show CO2 emissions (proportional to energy 

consumption) and traffic throughput as a measure of mobility. Figure 17.6 thereby 

consists of four quadrants: the upper left shows the results of the baseline scenario (no 

EAD, no signal optimization); the upper right shows the results for only optimizing 

signal timing; the lower left shows EAD trajectory planning only; and the lower 

right shows the results of the co-optimized ECoTOp system (from [5]). Figure 17.6 

illustrates the results for 100% connected vehicle penetration rate and a volume to 

capacity ratio (V/C) of 0.82. 

There are several takeaways from these results: As shown in the lower left quad- 

rant, the EAD trajectory planning algorithm results in a CO2 savings of approximately 

11.7%, as expected; however, the EAD-only scenario has a small negative impact 

on mobility (i.e., throughput is decreased by 7%). For the upper right quadrant, the 

signal optimization algorithm improves throughput by approximately 17.5%, with 

negligible impacts on CO2 emissions (±1%). When the full ECoTOp system is in 

place, there is both a CO2 benefit (~7%) and a throughput increase (~9%). Again, 

this is a snapshot of a typical result, a more expansive sensitivity analysis is carried 

out and reported in [5]. 

It is clear that there are trade-offs between the environmental benefits and mobility 

(i.e., throughput) in our co-optimization scenarios. Another important feature of the 

ECoTOp system is that it can be made adaptable based on dynamically changing 

traffic conditions. Essentially, the parameters of the ECoTOp system can be changed 

depending on the traffic conditions (e.g., traffic volume), changes in the vehicle mix, 

as well as the desire of the City to either emphasize environmental improvements or 

mobility, or some mixture. For example, if a bad air quality day is forecasted, it may 

make sense to minimize emissions for that day (note that criteria air pollutants track 

closely with CO2) at the expense of slightly lower traffic throughput. Conversely, the 

City may choose to maximize throughput after a major public event when it is in the 
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Fig. 17.6 ECoTOp experimental results (lower right), compared to baseline (upper left), EAD-only 

trajectory planning (lower left), and signal optimization only (upper right) (from [5], permission 

for reusing this figure granted by author David Oswald) 

 

 

interest to clear traffic quickly. By simply dialing in the appropriate parameters to 

the ECoTOp system, the overall system can be made adaptable and versatile, as part 

of the overall smart city design. 

 

 

17.3 Riverside Shared Mobility 

 
Like many cities in California, the City of Riverside is moving forward with multiple 

options and strategies for personal mobility, with the idea of reducing our dependency 

on a personal-automobile ownership model that is very common today, particularly 

in Southern California. As part of Riverside’s Transformative Climate Communi- 

ties Program (described in Sect. 17.1), the City is exploring future deployment of 

shared mobility. Many forms of shared mobility have been discussed, following the 

general shared mobility definition of shared-use of a vehicle, bicycle, or other mode 

that enables users to have short-term access to transportation modes on an “as-

needed” basis [9]. This included examining carsharing, personal vehicle sharing 

(PVS, including peer-to-peer (P2P) carsharing and fractional ownership), scooter 

sharing, bike-sharing, transportation network companies (TNCs, also known as 

ridesourcing or ridehailing such as Uber and Lyft), ridesharing (i.e., carpooling, 

vanpooling), microtransit, and courier network services as defined in [9]. 
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17.3.1 Shared Mobility Planning 

 
As part of our research program, we have engaged with the City of Riverside to help 

develop a shared mobility plan. Our research activities include assisting with commu- 

nity outreach in evaluating what types of shared mobility might work in the city, and 

conducting extensive modeling of zero-carbon carsharing options within the City. 

We are also working closely with a local carsharing company called StratosShare 

[10]. This local company is an on-demand carsharing operator that exclusively rents 

low-carbon vehicles (e.g., EVs, hydrogen fuel cell electric vehicles) by the hour or 

day to the public, throughout Inland Southern California. Drivers download the 

StratosShare app, create accounts, select time of use as well as pickup/drop-off 

locations, and push to start. StratosShare was founded under the vision to provide a 

low-cost zero-emission shared-use transportation to Inland Southern California. 

StratosShare is already up and running, working with the California Energy Commis- 

sion and Toyota in deploying 15 vehicles in disadvantaged communities throughout 

Riverside and San Bernardino Counties. These vehicles are strategically located at 

train stations, universities, airports, and downtown locations to provide a first/last- 

mile transportation solution. StratosShare is planning to expand their system with 

additional vehicles and additional locations, so they played a strong role in Riverside’s 

shared mobility planning. 

To better understand the mobility needs of the community, we worked with the City 

of Riverside and StratosShare to develop and carry out a targeted community survey, 

consisting of a number of questions that were directed at establishing existing travel 

patterns and needs. In addition, several questions were aimed directly at the potential 

of a zero-emission carsharing system. The results and analysis of these surveys can be 

found in [11] and have informed the team on how to best deploy shared mobility, and 

also served as input to a comprehensive travel demand model, described in further 

detail below. In summary, the survey indicated that City residents utilize private 

vehicles for most of their travel, but the community in general was very much in 

favor of improving other modes such as walking, public transit, biking, and shared 

mobility. Most survey respondents agreed that it is important to create a sustainable 

community, by making it easier and safer to use active and public transportation. The 

majority of respondents were in favor of zero-emission carsharing. 

 

 

17.3.2 Shared Mobility Modeling 

 
A critical part of our research was to develop extensive shared mobility modeling 

tools, working with StratosShare and the City of Riverside. Specifically, the focus was 

on evaluating different scenarios for a carsharing system utilizing a zero-emission 

fleet. From the literature, it is clear that carsharing systems show great potential 

in reducing vehicle ownership, achieving VMT and GHG reductions, encouraging 
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alternative transportation modes, and increasing access and mobility of disadvan- 

taged communities (e.g., see [9, 12–15]). Further, it has been shown that vehicle 

electrification and increased automation have the potential to reduce carsharing GHG 

emissions, along with reducing private vehicle ownership (see, e.g., [16–18]). For 

all of these reasons, Riverside wants to increase zero-emission carsharing operations 

within the community. 

It is important to note that many of the existing carsharing studies focus on 

analyzing the impact of the carsharing program after their real-world deployment. It 

is more challenging to predict the impact of carsharing before implementation due 

to the lack of behavioral data from the participants. To overcome this issue, two 

methodologies have been applied in existing research. The first method is primarily 

survey-based and has been applied in many cases (see, e.g., [19–21]). Another mech- 

anism for predicting carsharing success is based on discrete-choice modeling. For 

example, in a carsharing study for London, a Perceived Activity Set (PAS) model was 

created to build a conceptual framework of shared mobility, referring to a set of out- 

of-home activities that encompass their potential travel needs when making decisions 

that structurally affect their accessibility [22]. This modeling method focused on the 

long-term impact of carsharing, including the decision to purchase or sell a car or a 

bike, and the decision to subscribe the transit/carsharing membership. Another study 

in Rotterdam, Netherland, developed a method in modeling the short-term impact of 

carsharing using discrete choice model, choosing between five conventional modes: 

car driver, car passenger, public transport, cycling, and walking. Carsharing was 

considered as a new mode that was introduced within the mode choice, meaning 

that a new utility function was required for the carsharing alternative, consisting of 

variables that are likely to explain carsharing demand. 

In our research, the goal was to predict the impact of the potential deployment of 

zero-emission carsharing in the City of Riverside. A hybrid model was developed 

with three key components: survey data, discrete-choice model, and agent-based 

simulation. In our modeling effort, we first derived travel demand data and travelers’ 

activity schedules, and then applied this to the BEAM model (Behavior, Energy, 

Autonomy, and Mobility), developed by Lawrence Berkeley National Laboratory 

[23]. BEAM is a mesoscopic simulation model for urban transportation systems 

with particular support on shared mobility modeling, energy estimation, and compu- 

tation over large-scale networks. With proper travel demand and travelers’ activity 

schedules, BEAM can evaluate traffic condition, energy consumption and air quality 

for the entire network, and predict the mode choice and routing decision for each 

individual agent. 

The trips in BEAM are associated with the travelers’ demographic information 

synthesized by PopGen and CEMDAP, other modeling components of the BEAM 

framework [23]. A discrete choice model was applied to describe the model choice 

behavior with existing means of transportation, e.g., car driving, car passenger, public 

transit, cycling, and walking. The parameters for this model were adopted from 

literature, and then calibrated using data from our Eastside Climate Collaborative 

Survey (see Sect. 17.3.1) and other localized data. We then introduced carsharing 

service into this discrete choice model to study its impact on travel behavior and its 
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benefit on fossil fuel savings and greenhouse gas reduction considering the mode 

shift from private cars to zero-emission carsharing vehicles. 

 

 

17.3.2.1 BEAM Model Development and Calibration 

 

In a discrete-choice model, typically there are three types of variables: (1) vari- ables 

that represent the level-of-service data of a certain mode (e.g., travel time and cost); 

(2) dummy variables that represent the characteristics of a person (e.g., age, gender, 

and income) or a household (e.g., number of cars and income); and (3) an alternative 

specific constant to represent variables that are not present in the utility function but 

still affect the mode choice. The traveler’s daily trip activity data and the 

corresponding person/household attributes are critical to estimate the mode share for 

transportation. In our modeling efforts, we introduced a simulation-based data 

collection method using the BEAM tools which provided calibrated level-of-service 

data and person/household data to support the discrete choice model, as illustrated 

in Fig. 17.7. 

To acquire personal and household information, we generated raw data using 

PopGen, and calibrated them using latest survey data, including information on 

population, age, and income for each zone in the City. Next in the calibration 

process, we utilized data from the Southern California Association of Governments 

(SCAG) [24]. The SCAG region encompasses 6 counties (Imperial, Los Angeles, 

Orange, Riverside, San Bernardino, and Ventura) and 191 cities in an area covering 

more than 38,000 square miles. SCAG develops long-range regional transportation 

plans including sustainable communities’ strategies and growth forecast components, 

regional transportation improvement programs, regional housing needs allocations 

and a portion of the South Coast Air Quality management plans [24]. Zone-based 

 

Fig. 17.7 System diagram for data collection (from [11], permission for reusing this figure granted 

from UC Davis Institute of Transportation Studies) 
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level-of-service travel data (LOS-data) from SCAG is necessary to analyze carsharing 

alternatives, identifying travel time, travel cost, along access/egress time for public 

transit. 

Next, we utilized Comprehensive Econometric Micro-simulator for Daily 

Activity-travel Patterns (CEMDAP) software, representing a system of econometric 

models that represent the decision-making behavior of individuals [25]. It is one of 

the first systems to comprehensively simulate the activity–travel patterns of workers 

as well as non-workers in a continuous time domain. Given various land-use, socio- 

demographic, activity system, and transportation level-of-service attributes as input, 

the system provides as output the complete daily activity–travel patterns for each 

individual in the household [25]. With the data from PopGen and SCAG, CEMDAP 

creates daily activities for each person in the region of study (i.e., Riverside). 

The personal/household data from PopGen and trip data from CEMDAP were 

then loaded into BEAM to derive the mode-specific level-of-service data for all the 

travelers. The BEAM model implementation for the City of Riverside was coded 

and calibrated using multiple data sources. This Riverside BEAM model was then 

able to serve as a powerful platform to evaluate the performance of the current 

shared mobility systems and predict the results of the future deployment, including 

link-by-link trajectories, mode and routing decisions, and energy consumption and 

CO2 production. Further details of the Riverside BEAM model development and 

calibration are provided in [11]. 

 

 

17.3.2.2 BEAM Modeling Results 

 

To evaluate the potential impact of zero-emission carsharing in the City of Riverside, 

we first identified potential locations of carsharing stations and the demand around 

the station, based on community input data. Figure 17.8 shows six potential locations 

suggested by the community and the city. Station 1 is in Eastside neighborhood near 

Mission Inn. Stations 2 and 3 are in University neighborhood near UCR campus. 

These three stations will be deployed along the Innovative Corridor (see Sect. 17.1), 

and the other three will be in the southern part of Riverside, one in Casa Blanca 

neighborhood, one in Airport neighborhood, and one in La Sierra neighborhood 

close to the shopping mall named Galleria at Tyler. Using the BEAM model, we 

identified the potential customers of the carsharing service at each station as the 

travelers who live, work or have other activities within walk/bike range of the station 

and plan to make roundtrips from that station. The table at the left-top corner of Fig. 

17.8 shows the number of potential customers and trips at each station. 

Next, we applied the discrete choice model to estimate the mode share of those 

potential customers around each station. Figure 17.9 shows the mode share before 

and after introducing carsharing for the trips with a work-commute purpose. For the 

“before carsharing” scenario, the mode shares for all conventional modes are very 

close to the survey results, showing good performance in coefficient calibration. For 

the “after carsharing” scenario, the mode share for carsharing for work trips was 
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Fig. 17.8 Potential locations and travel demand of carsharing stations, from [11], permission for 

reusing this figure granted from UC Davis Institute of Trans-portation Studies; Base map from 

OpenStreetMap (https://www.openstreetmap.org/copyright); available under the Open Database 

License (http://www.opendatacommons.org) 

 

 

between 8 and 13%. About two thirds of the carsharing trips are shifted from car 

driving trips, and the rest are shifted from other modes including car passenger, public 

transit, cycling, and walking. Due to the introduction of carsharing services, it was 

predicted that trips from single driver cars would be reduced by 8–12%, trips as car 

passenger (including carpool and taxi) would be reduced by 10–26%, and trips as 

transit passenger would be reduced by 4–16%. Walking and bicycle trips were less 

impacted by carsharing, with 6 and 3% reduction, respectively. 

For non-work trips, we evaluated trips associated with education, as well as trips 

“for other purposes” (e.g., shopping, etc.). It was found that for education-based trips, 

the carsharing mode share shift is less than 1%, having little impact on conventional 

modes. For trips with other purposes, the carsharing mode share shift was predicted 

to be between 15 and 23%, as shown in Fig. 17.10. Among all the new carsharing 

trips, 39% of them are shifted from car driving trips. 

It is clear that the potential for carsharing services can enhance the accessibility 

of the local residents near the stations, especially for the household that do not own 

a private car. According to the numerical results, for the people without cars in their 

households, the mode share of carsharing for work trip increases by 17–40%. Consid- 

ering the high correlation between income and car ownership, the carsharing program 

would significantly improve the accessibility of the disadvantaged communities. 

When considering that the carsharing fleet would be zero-emissions (electric or 

fuel cell), the mode shift from gasoline private vehicles to electric carsharing vehicles 

https://www.openstreetmap.org/copyright
http://www.opendatacommons.org/
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Fig. 17.9 Mode shares for work trips before (top) and after (bottom) introducing carsharing (from 

[11], permission for reusing this figure granted from UC Davis Institute of Transportation Studies) 

 

 

would significantly reduce fuel consumption and greenhouse gas emissions. Based 

on our modeling results, it is expected that greenhouse gas emissions would go 

down by 10%, simply by reducing the use of the private gasoline-powered cars after 

introducing carsharing in the neighborhood. Besides the direct mode-shift impact 

shown in the proposed model, carsharing would also serve as the last-mile solution 

for public transit and further reduce private car trips from this carsharing-transit 

synergy. In the long term, the reduction of car ownership will further decrease the 
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Fig. 17.10 Mode shares for non-work trips before (top) and after (bottom) introducing carsharing 

(from [11], permission for reusing this figure granted from UC Davis Institute of Transportation 

Studies) 

 

 

travel demand and therefore reduce fuel consumption and greenhouse gas emissions. 

These benefits are being explored in future research. 



454 M. J. Barth et al. 
 

17.3.3 Shared Mobility in Riverside: Key Conclusions 

and Recommendations 

 
As shown by our survey and modeling results, a zero-emission carsharing service 

can be a promising approach to improving the accessibility and environmental 

sustainability of communities. To successfully implement the carsharing services, 

the following recommendations can be made: 

• The preferable locations of the carsharing stations should be in a community with 

high population density, where the residents of that community can quickly access 
to the station conveniently by walking or cycling. 

• Since people who don’t have cars in the household will likely have higher use 

rates of carsharing services for their travel, car ownership is a critical index in 

identifying the best locations for carsharing stations. As such, a disadvantaged 

area with lower car ownership will receive larger benefits from introducing zero- 

emission carsharing. 

• Age is another key factor impacting the acceptance of carsharing. Carsharing 

receives higher interest in a community with higher percentage of people aged 45 

or below. 

• Reducing access/egress time can increase the popularity of carsharing. This can 
be achieved by easier parking and simple check-out/check-in transactions. 

• Based on our Riverside community survey, it was found that 40% of the respon- 
dents are not that interested in zero-emission carsharing services. As such, 

outreach activities will play a critical role to further increase the acceptance of 

carsharing in the community. 

 

 

17.4 Goods Movement and Innovative Truck Routing 

 
Due to a variety of factors, Inland Southern California has grown to become one of 

the largest hubs of goods movement activity in the nation, with considerable 

infrastructure, employment, and economics connected to the logistics industry. This 

logistics industry will continue to grow as an important part of the economy, but it 

is critical that it be managed in a way that the quality of life in the communities is 

preserved, negative environmental impacts are minimized, and good-paying jobs are 

prevalent. Imports throughout the nation continue to increase, placing increased stress 

on the current logistics supply chain. Currently, more than 44% of the nation’s goods 

pass through Inland Southern California on their way to their final destinations—as 

such, the nation greatly depends on a properly functioning goods movement system 

in Inland Southern California. 

It is clear that goods movement activities in the region have grown substantially 

over the last few decades and there are many underlying positive elements, including 

a rich flow of goods and wealth, as well as substantial employment opportunities. But, 
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in addition to these positive elements, there are also a number of negative elements, 

including: 

• Air quality in the region is poor, notably due to the huge flow of diesel-fueled 

heavy vehicles (both trucks and locomotives), generating nitrogen oxides (NOx), 

particulate matter, and greenhouse gas emissions; this has adversely affected the 

public health and quality of life in the region. 
• Traffic congestion in the region is severe across all roadway types (freeways, 

arterial roadways), negatively affecting the quality of life in the region. This leads 

to not only increased emissions but also an economic loss due to time spent in 

traffic. 

• The employment situation in the region is quite volatile, with many of the logistics 

related employment opportunities being part-time, temporary, low-paying, and 

lacking upward career mobility. Employment is also under the threat of replace- 

ment by automation, and subject to pandemic-related and other negative health 

considerations. 

• Land use has been negatively affected, where greenery is being replaced by 

densely packed warehouses, storage facilities, truck and trailer parking, and 

massive railyards; this has decreased the social and environmental attractiveness, 

and precluded the implementation of facilities from higher value sectors such as 

high-tech, manufacturing, and R&D parks. 

• Social equity has suffered, where the impacts of air pollution, congestion, and 

other measures are significantly higher on disadvantaged communities in the 

region. 

It is important to note that the poor air quality associated with goods movement 

is not due to warehouse operations itself, but instead is mostly due to its associated 

transportation activities. The internal operation of warehouses typically has a high 

degree of automation and are highly electrified that can be accomplished cleanly 

with renewable electricity. Indeed, several warehouses have been awarded a high 

level of green building certificates. The majority of the poor air quality is associated 

with the heavy-duty freight transportation sector, which includes diesel trucks and 

locomotives. This accounts for well over 90% of the emissions associated with ware- 

house operations. We currently rely on heavy-duty vehicles in high volume that travel 

significant distances in the region. This flow of heavy-duty vehicles to/from logistics 

facilities in Inland Southern California is also a major cause of congestion and road 

infrastructure deterioration on roadways all over the region. While the majority of 

these heavy vehicles are diesel-powered, there is currently a big push to transition 

these vehicles to zero emissions, based on battery or fuel cell technology. 

The proliferation of freight facilities and heavy-duty vehicles is also caused by the 

fact that most of the companies operating in the Inland Southern California logistic 

ecosystem are in many ways operating in silos. Warehouses are typically built in 

areas that have low land prices; this usually drives where warehouses are located. It 

is often the case that commercial zoning is adjacent to disadvantaged communities 

and freeways. There are many documented cases of these communities unsuccess- 

fully opposing the locations of proposed warehouses in recent years. However, there 
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is a large incentive for the cities and counties to acquire revenue from these trans- 

actions. In the absence of other offers for commercial development, and potentially 

due to the lack of resources of the communities opposing to the development, it has 

become common that logistics warehouses constitute a major portion of these neigh- 

borhoods. This places the negative impacts of air pollution, noise, and congestion 

from truck traffic on these areas in comparison to a zoning pattern that would space 

the warehouses out throughout the region. Planning and zoning requirements among 

cities and counties also can vary greatly, often times leading to inefficiencies in the 

overall arrangement of the broader logistic operations. 

 

 

17.4.1 Innovative Truck Routing in Inland Southern 

California 

 
Over the last several years, we have been developing a number of intelligent trans- 

portation system technologies, such as advanced fleet management tools, to mitigate 

the negative impacts of goods movement. These tools include, for instance, intel- 

ligent fleet scheduling software tailored for electric trucks, dynamic time-of-day 

fleet scheduling software, geofencing strategies, and low pollutant exposure truck 

routing. These tools are coupled with our research in connected and automated vehi- 

cles, with a focus on heavy-duty vehicles, leading to more efficient truck operations 

and smoother traffic flow. 

As an example of our recent efforts, we have carried out a case study where we have 

employed our low pollutant exposure routing technique around the San Bernardino 

Airport, which is being built out as a major air cargo hub for Amazon, UPS, and 

FedEx here in Inland Southern California. This airport mainly supports air cargo 

operations and it has recently been approved to undergo a major expansion [26]. The 

surrounding community is largely classified as a disadvantaged community (under 

California SB 535, see [1]). Local residents, communities, and organizations have 

been expressing concerns about future employment opportunities and environmental 

impacts [27]. 

For this case study, we have applied our exposure-based routing technique, which 

guides heavy-duty diesel trucks (HDDTs) through a community in a way that lowers 

the total exposure of community members to the pollutant emissions from the truck 

without significantly increasing travel time [28]. The exposure-based routing tech- 

nique was applied to the San Bernardino Airport area, as shown in Fig. 17.11. This 

area is bounded by Freeway I-215 in the west, I-10 in the south, and I-210 curving 

from south to north then connecting the east–west side. Corners one, two, three, and 

four correspond to the Northwest, Northeast, Southeast, and Southwest corners of 

the San Bernardino city area, respectively. The location of San Bernardino Airport 

west side is marked in the figure below, and we evaluated the potential HDDT trips 

from the four corners to and from the airport. 
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Fig. 17.11 Map of Study Area, from [11], permission for reusing this figure granted from UC Davis 

Institute of Trans-portation Studies; Base map from OpenStreetMap (https://www.openstreetmap. 

org/copyright); available under the Open Database License (http://www.opendatacommons.org) 

 

 

Figure 17.12 presents the methodological framework of exposure-based routing. It 

involves a modeling chain that starts from vehicle emission modeling to air dispersion 

modeling, human exposure assessment, and finally vehicle route calculation where 

the output from one step is used as an input for the next step. In addition, each step 

also requires other inputs. The inputs and assumptions associated with each modeling 

step are described below. 

 

Fig. 17.12 Methodological framework of exposure-based routing (adapted from [11], permission 

for reusing this figure granted from UC Davis Institute of Transportation Studies) 

https://www.openstreetmap.org/copyright
https://www.openstreetmap.org/copyright
http://www.opendatacommons.org/
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17.4.1.1 Vehicle Emissions Modeling 

 

The calculation of emissions was focused on fine Particulate Matter (PM2.5), Nitrogen 

Oxide (NOx), and Carbon Dioxide (CO2) emissions from HDDTs. They were 

calculated using the following equation: 

Ei,j = Vi,k × Li × EFj,k , 

 

where Ei, j is the mass emission of pollutant j on link i; V i, k is the HDDT volume 

on link i with link speed k; Li is the length of link i; and EFj, k is the emission factor 

of pollutant j at speed k. The calculation was done for a single heavy-duty diesel 

truck of model year 2012, but for all the roadway links in the modeling area. It was 

assumed that this truck would be traveling at the speed equal to the speed limit of each 

roadway link. The data regarding speed limit on roadway links was obtained from a 

commercial digital roadway map. Emission factors of the truck were obtained from 

CARB’s EMFAC2017 model [29, 30], which is a regulatory model for estimating 

on-road mobile source emissions in California. Only running exhaust PM2.5, NOx 

and CO2 emissions were calculated. 

 

 

17.4.1.2 Air Dispersion Modeling 

 

An atmospheric dispersion model was needed to estimate the concentration of air 

pollutants emitted from vehicular sources at specific receptor locations. In this study, 

R-LINE, a research grade dispersion model for near-roadway assessment was used 

[31]. Micro-meteorology data inputs for R-LINE such as temperature, wind speed, 

wind direction, surface friction velocity, and Monin–Obukhov length were obtained 

for Redlands Station from South Coast Air Quality Management District website 

[32]. Source height was assumed to be 2.5 m (~8.2 ft), which represents a typical 

height of exhaust stacks of heavy-duty diesel trucks. Receptor height was assumed 

to be 1 m (~3.3 ft), which represents an average height of 5-year-old children. 

 

 

17.4.1.3 Human Exposure Assessment 

 

In this research, pollutant exposure is referred to the amount of pollutant inhaled by 

a group of subjects. Therefore, inhaled mass (IM) was used to represent the pollutant 

exposure, which was calculated as 

IM = C ∗ Pop ∗ t ∗ BR, 

 
where C is the pollutant concentration (µg/m3) in a given microenvironment; Pop is 
the number of subjects in the microenvironment; t is the truck travel time on the road 
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link (hour); and BR is the breathing rate (m3/hour/capita) of the subjects exposed to 

the pollutant. 

Breathing rates of population in different age groups were based on the U.S. EPA’s 

Exposure Factors Handbook [33]. In addition, the California Office of Environmental 

Health Hazard Assessment’s Technical Support Document of Exposure Assessment 

and Stochastic Analysis included detailed breathing rate scenarios [34]. It is desir- 

able to reduce population exposure to traffic-related air pollutants because tailpipe 

emissions, such as PM2.5 and NOx, are associated with health risks in young chil- 

dren, older adults, patients, and even healthy adults [35–37]. Thus, in this research, 

both population-wide average breathing rate of 17 m3/day and population-specific 

breathing rate were applied. 

 

 

17.4.1.4 Vehicle Route Calculation 

 

The Shortest Path Problem (SPP) is traditionally aimed at finding a travel route 

between a pair of origin–destination (OD) points that has the shortest distance 

or shortest travel time. However, in this research, the vehicle routing objective is to 

reduce inhaled mass of pollutant while limiting the increase in travel distance within 

a reasonable range for the trip. This is a multi-objective SPP studied by many 

researchers (e.g., [38]). Several methods for solving multi-objective SPP are summa- 

rized in [39]. In previous studies, we used a weighting method that transformed the 

multi-objective SPP into a single-objective SPP. The specific methods can be found 

in [40]. In this study, due to the limited number of OD pairs, we simply selected 

freeway routes and compared them with manually selected alternative routes that 

have similar travel time. 

 

 

17.4.1.5 Network Characterization 

 

Figure 17.13 shows four entry/exit points located at the four corners of the study 

area. The sensitive facilities or receptors considered in this study are primarily used 

by individuals that are most susceptible to the effects of air pollution. Daycares, 

schools (elementary to high schools), assisted living homes, and public parks were 

chosen as the sensitive facilities. The population data were projected to calendar year 

2018 at census block level based on 2010 Census and 2018 American Community 

Survey. Population at sensitive facilities were projected based on school enrollment 

data and census population. Population at residential blocks are estimated based on 

several sources including population by age groups [41], employment data [42, 43], 

and school enrollment rate [44, 45]. 

To better understand how the R-LINE model parameters impact the output concen- 

tration values, a sensitivity analysis of road width and freeway sound barrier options 

in R-LINE was performed. The results showed that for the current modeling scenario, 

the road width and sound barrier options only have minor effects on the modeled 

concentration results. On the other hand, the most impactful factors are traffic 



460 M. J. Barth et al. 
 

 

 
 

Fig. 17.13 Map of population, sensitive facilities, and truck trip attractions in San Bernardino 

(from [11], permission for reusing this figure granted from UC Davis Institute of Trans-portation 

Studies; base map accessed from ArcGIS Online, see https://www.esri.com/en-us/legal/copyright- 

proprietary-rights; Map image is the intellectual property of Esri and is used herein under license 

Copyright © 2020 Esri and its licensors. All rights reserved) 

 

 

speeds, emission factors, meteorological conditions, and population distribution. 

The influence of varying breathing rates was also examined where three different 

breathing rate scenarios were applied: an averaged breathing rate of 15 m3/day, an 

age-group specific breathing rates (in m3/day), and age-group specific breathing rates 

normalized by average body mass (in m3/day/kg). 

We first consider modeled PM2.5 IM values at sensitive facilities and census blocks 

based on the meteorological conditions at 10 A.M. on May 9, 2016, assuming a 

population-averaged breathing rate of 15 m3/day. For instance, a PM2.5 IM value 

of 0.23 µg/link means that there would be 0.23 µg of PM2.5 inhaled by the nearby 
population after the truck traversed this roadway link in the given scenario. As air 
pollutants from one roadway link can reach multiple facilities/blocks within 1,500 m, 

the IM values of roadway links are generally higher for those near large sensitive 

facilities and densely populated census blocks. We also consider the wind direc- 

tion, and it can be observed that roadway links upwind of large sensitive facilities 

and densely populated census blocks generally have higher IM values than those 

downwind. 

Figure 17.14 shows the aggregated PM2.5 IM values from both sensitive facilities 

and census blocks based on the meteorological conditions at 10 A.M. and 3 P.M. on 

May 9, 2016, assuming a population-averaged breathing rate of 15 m3/day. The 

aggregated PM2.5 IM values are generally higher at 10 A.M., when compared to that 

at 3 P.M., due to the more turbulent condition in the afternoon contributing to 

https://www.esri.com/en-us/legal/copyright-proprietary-rights
https://www.esri.com/en-us/legal/copyright-proprietary-rights
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Fig. 17.14 Total inhaled mass of PM2.5 (µg/link) at 10 A.M. (left) and 3 P.M. (right) assuming a 

population-averaged breathing rate of 15 m3/day (from [11], permission for reusing this figure 

granted from UC Davis Institute of Transportation Studies; base map accessed from ArcGIS Online, 

see https://www.esri.com/en-us/legal/copyright-proprietary-rights; Map image is the intellectual 

property of Esri and is used herein under license Copyright © 2020 Esri and its licensors. All rights 

reserved) 

 

 

faster dispersion of air pollutants. The comparison shows how the meteorological 

conditions can affect the IM values. 

 

 

17.4.2 Low-Exposure Route Comparison 

 
For trips that connect the four freeway corners and the air cargo hub, both a “baseline” 

route (typically the shortest-time route) and a low-exposure route (LER) were deter- 

mined. We then weighted those truck routes based on the number of trucks coming 

from and going to those respective freeway corners. To estimate the number of trucks 

entering and exiting the four corners, we used truck flow data from the California 

Department of Transportation’s Freeway Performance Measurement System [46]. 

As an example of our results, we calculated the total amount of IM of emissions for 

the weighted average of all four corners at 10 A.M., assuming a population-averaged 

breathing rate of 15 m3/day. These results are shown in Fig. 17.15. In general, it can 

be seen that as compared to the baseline routes, the low-exposure routes reduce IM 

of PM2.5 by 46%, IM of NOx by 20%, and CO2 emissions (and thus, vehicle fuel 

consumption) by 4%, on average. On the other hand, the low-exposure routes 

increase travel time by 29%, on average. 

https://www.esri.com/en-us/legal/copyright-proprietary-rights
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Fig. 17.15 Comparison of baseline routing to low-exposure routes at 10 A.M 

 

 

These results will vary by time of day, and with other roadway networks (more 

details, analyses, and examples are provided in [11]). However, pro-active low- 

exposure routing strategies may result in a significantly lower inhaled mass of PM2.5 

emissions by simply routing heavy-duty diesel trucks differently at different times of 

the day. From a policy perspective, it may be possible to encourage voluntary actions 

by truck companies to use these emerging routing technologies to divert heavy-duty 

truck traffic to low-impact routes, accepting a trade-off between slightly increased 

delivery time and reducing the exposure of PM2.5 and NOx to residents and sensi- 

tive receptors such as schools and hospitals. As an added incentive, there would be 

a slight reduction in their fleet average fuel consumption. Another policy approach 

would be to have local cities utilize their authority to designate truck routes through 

their communities, choosing routes that have the least air pollution impact on their 

residents. 

As with the traffic signal management described in Sect. 17.2, these routing oper- 

ations can be changed dynamically throughout the day. For example, when school 

children are walking to or from school, it would be best to have trucks maximally take 

advantage of low-exposure routing. In contrast, when there is less exposure risk (for 

example at night), it would be possible to switch the routing to “shortest-distance” or 

“shortest-time” routes so that trucks can make deliveries in the most efficient manner. 

 

 

17.5 Conclusions and Future Work 

 
In this chapter, we described a number of ITS solutions that are aimed at improving 

a city’s mobility eco-system, with a focus on minimizing the negative impacts on 

disadvantaged and environmental justice communities, while enhancing the overall 

mobility and safety. These ITS solutions, along with many others, should be part of 

a Smart-City Playbook that cities across the world can use, learning about the 

synergies and trade-offs between different strategies. 

Our research has primarily been focused on Inland Southern California, which 

suffers from high levels of traffic congestion, poor air quality that results from (in- 

part) vehicle emissions, and lack of alternative modes of transportation other than 

the ubiquitous personal vehicle. To better demonstrate and quantify the improve- 

ments that can be brought about by ITS solutions along a typical arterial roadway, 

we developed a real-world testbed in Riverside, California, called the Innovation 
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Corridor. This testbed runs squarely through disadvantaged neighborhoods, and ITS 

applications that can decrease congestion, lower emissions, and improve safety have 

a direct benefit on the local community. In addition, we are designing and deploying 

new carsharing options for these communities, so that they are not necessarily locked 

in to the inefficiencies of the personal car ownership model. Lastly, we are attempting 

to look for better solutions for the goods movement industry, where we can still enjoy 

the economic benefits of our goods movement system, but not necessarily suffer from 

all of their negative impacts. 

Another key aspect of these strategies is that they can all be deployed in a way that 

is synergistic and dynamically adjustable to deal with changing conditions. There 

are often trade-offs between safety, mobility, and environmental considerations, and 

cities should recognize that they do not need to be locked into one solution all 

the time. The example applications described in this chapter can easily be adjusted 

by simply changing parameters within the algorithms. Any smart city should take 

advantage of this capability, essentially tuning their solutions to maximize benefits 

to their communities. 

The UC Riverside team will continue to improve on the ITS solutions outlined in 

this chapter, deploy and test them in the real world, and develop new ideas that are 

squarely focused on improving the conditions of the local community. 

This chapter includes figures for which specific copyright permissions were 

obtained. The acknowledgments below detail the sources and nature of these 

permissions: 

(1) The City of Riverside has granted permission to use Fig. 17.1. This permission 

was granted via email on October 24, 2023. 

(2) The base maps of Figs. 17.2, 17.8, and 17.11 were sourced from OpenStreetMap, 

see https://www.openstreetmap.org/copyright. 

(3) Figures 17.5 and 17.6 are reprinted from the dissertation of David Oswald 

[reference 5] who has granted permission via email on November 16, 2023. 

(4) Figures 17.7, 17.8, 17.9, 17.10, 17.11, 17.12, 17.13, and 17.14 are reprinted from 

a CSTACC tecnical report [reference 11]; UC Davis has granted permission for 

use via email on October 24, 2023. 

(5) The base maps of Figs. 17.13 and 17.14 were sourced from ArcGIS Online, see 

https://www.esri.com/en-us/legal/copyright-proprietary-rights. 
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