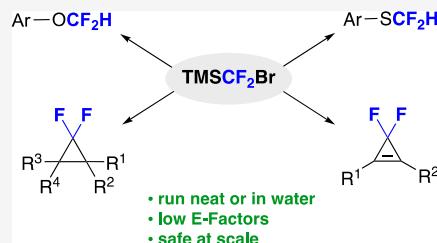


Reactions of In Situ-Generated Difluorocarbene ($:CF_2$) with Aromatic/Heteroaromatic Alcohols, Thiols, Olefins, and Alkynes under Environmentally Responsible Conditions

Erfan Oftadeh, Madison J. Wong, Julie Yu, Xiaohan Li, Yilin Cao, Fabrice Gallou, Luisa Heinz, and Bruce H. Lipshutz*

Cite This: <https://doi.org/10.1021/acs.joc.4c01955>

Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Environmentally respectful methods for generating and utilizing difluorocarbene ($:CF_2$) in the synthesis of a wide array of valuable difluoromethylated compounds are disclosed. In particular, the insertion of the CF_2 moiety into aromatic/heteroaromatic alcohols, thiols, olefins, and alkynes under neat or aqueous micellar catalysis conditions is demonstrated. These methods yield both satisfactory results and significantly lower E-Factors compared to traditional synthetic approaches. Key applications of these methodologies include optimization en route to a pantoprazole intermediate and development of a representative one-pot chemoenzymatic sequence. Additionally, analysis via calorimetry indicates no significant safety risk in the context of the developed solvent-free conditions.

INTRODUCTION

Insertion of the difluoromethylene moiety (CF_2) into numerous target molecules has been recognized for decades as an attractive means of altering the properties of the resulting species.¹ Several areas of research have pursued the inclusion of this functional group: agrochemicals,² polymers,³ liquid crystals,⁴ and in particular, pharmaceuticals^{5–7} are common recipients, such as ether derivatives Flomoxef,⁵ Pantoprazole,⁶ and Roflumilast,⁷ as well as the recently reported PI3K γ inhibitor developed by Arcus⁸ (Figure 1). Moreover, as discussed in a review by Ni and Hu, the CF_2 residue can also be found in many other types of

functionalities, including thioethers, cyclopropanes, and cyclopropenes.⁹ Access to this mildly electrophilic carbene leading to the resulting derivatives follows from a variety of sources, although some approaches involve reagents that are dangerous and/or environmentally questionable, e.g., those having ozone-depleting properties.¹⁰ Recent advances, however, have led to several species that are considered not only far more attractive but, indeed, are also oftentimes more efficient.¹¹

Notwithstanding the extensive development of fluorinated carbene chemistry and its increasing importance in these areas of interest, what is characteristic today of every known method for introducing the CF_2 residue is its negative impact from an environmental perspective. Thus, there does not appear to be any technology for inserting this valued CF_2 group that even mentions, let alone considers, the environmental aspects associated with the chemistry being used. In this report, therefore, we disclose new technologies leading to products that contain the CF_2 residue, including aromatic/heteroaromatic ethers and thioethers of the types $Ar-OCF_2H$ and $Ar-SCF_2H$. In addition, inroads to both difluorocyclopropanes and -cyclopropenes are described utilizing environ-

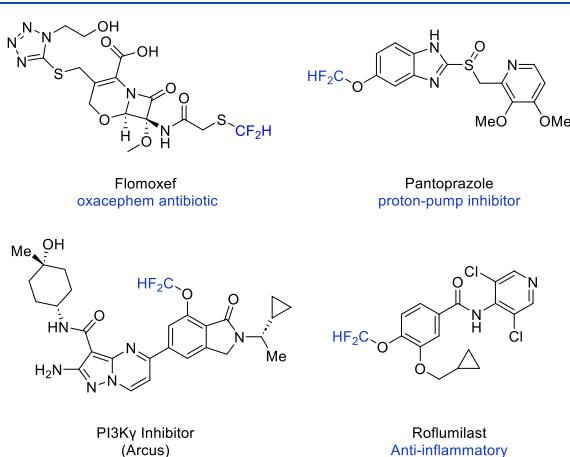


Figure 1. Representative bioactive difluoromethylated (thio)ethers.

Table 1. Conversion of Alcohols to Their Difluoromethyl Ethers under Neat Conditions^a

R—OH	Method A: TMSCF ₂ Br (1.5 equiv) KF (2 equiv) rt, 5 min, neat	or	Method B: TMSCF ₂ Br (1.5 equiv) KF (2 equiv), KOH (2 equiv) rt, 10 min, neat	→ R—OCF ₂ H			
Method A							
	95%		76%		87%		84%
	77%		44%		68%		
Method B							
	70%		56%		72%		

^aIsolated yields.Table 2. Conversion of Thiols to Their Difluoromethyl Thioethers under Neat Conditions^a

Ar/Heteroar—SH	Method C: TMSCF ₂ Br (2 equiv) KF (1 equiv) 60 °C, 10 min, neat	or	Method D: TMSCF ₂ Br (3 equiv) KF (1 equiv), rt, 10 min 2 wt % TPGS-750-M (0.5 M) 10 v/v % EtOAc	→ Ar/Heteroar—SCF ₂ H			
Method C							
	92%		97%		87%		98%
Method D							
	75%		47%(85) ^a		30%(71) ^a		88%
	88%		30%(94) ^b		64%		73%

^aIsolated yields. ^bNaOH solution (4 equiv) in place of KF and 20% toluene as the cosolvent were used. ^cNaOH solution (2 equiv) in place of KF was used in the absence of the cosolvent.

mentally responsible conditions that take place in a synthetically competitive fashion.

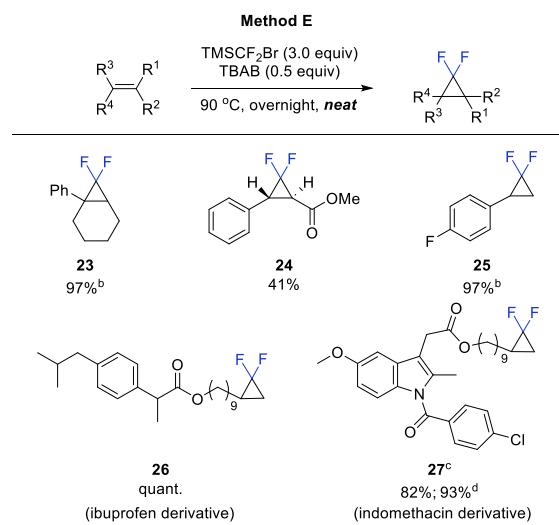
According to the ACS Green Chemistry Institute, organic solvents constitute a substantial percentage of the organic waste generated by the chemical enterprise, especially in the pharmaceutical industry.^{12,13} In recognition of the ongoing depletion of the world's petroleum reserves, which provide

several commonly used organic solvents, as well as the unavoidable burning of large portions of organic waste derived from these solvents leading to emission of CO₂ and hence contributing to climate change,¹⁴ we continue to develop new technologies that minimize their usage. Their replacement with recyclable water containing a designer surfactant enables them to function as nanoreactors for a

variety of important reactions.^{15,16} While chemistry in water accomplishes most of the intended goals, it remains prudent to appreciate the words of Sheldon, who stated in very clear and uncompromising terms that “The best solvent is no solvent,...”¹⁷ The unavoidable interpretation is that in circumstances where the intended reaction can be done safely and under neat conditions, this is the preferred approach, i.e., in the complete absence of any reaction medium.

The notion of doing reactions under neat conditions is certainly not new; indeed, there are reviews on this subject.¹⁸ However, what is also apparent is that most of the chemistry amenable to such an approach does not include the types of reactions of greatest interest to the fine chemical industry.¹⁹ We have started, therefore, to examine the possibilities for either running reactions neat (e.g., as described for ketone allylations),²⁰ or alternatively, using very high concentrations of “green” organic solvents, such as EtOAc or 2-MeTHF, as we recently applied to an environmentally respectful and economical route to nirmatrelvir (the key ingredient in Paxlovid).²¹ The resulting E-Factors, as expected, were very low, especially when compared with those from prior art that utilized organic solvents (vide infra).

RESULTS AND DISCUSSION

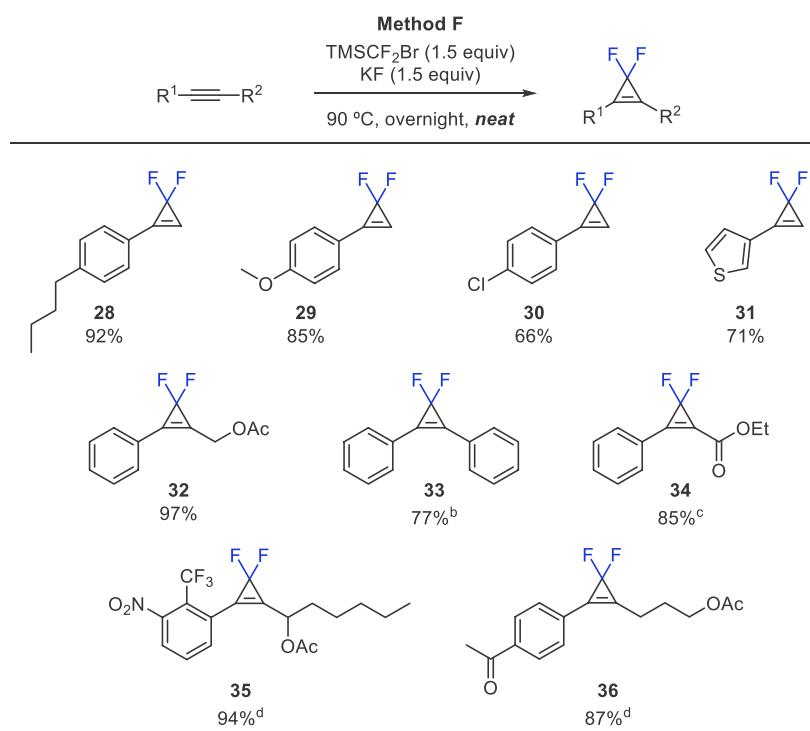

Initially, both aromatic and heteroaromatic alcohols and thiols were derivatized to arrive at the corresponding $-\text{OCF}_2\text{H}$ and $-\text{SCF}_2\text{H}$ ethers. Several sources of CF_2 carbene were screened (e.g., TMSCF_3), and ultimately, the reagent first described by Hu and co-workers,²² TMSCF_2Br , was identified as the most effective when used in the presence of an initiator (e.g., KF). Alternatively, initiators such as tetrabutylammonium bromide (TBAB) were found to be the most effective for cyclopropanations/cyclopropenations (vide infra).²² Other fluoride sources such as TBAF, KHF_2 , NaF , and CsF were far less effective. Various alkanols could be converted to the corresponding difluoromethyl ethers at room temperature in minutes (Table 1, Method A; all reactions were run on a 0.25 mmol scale). In some cases, the presence of KOH was found to enhance the extent of conversion (Table 1, Method B). The order of addition follows the sequence: substrate, initiator, and then TMSCF_2Br . Yields tended to be variable, ranging from a modest 44% to a high of 95%. Product isolation involves either direct loading of the reaction mixture onto a silica gel column or a simple aqueous wash; either is sufficient to ultimately obtain pure material. Traditionally, these ethers are made in aqueous CH_3CN at -78°C to rt over a 30 min period in highly variable yields.²³

Likewise, the treatment of various aromatic thiols neat at 60°C for only 10 min afforded the desired thioethers typically in high isolated yields (Table 2, Method C). Since educts bearing more acidic thiols were often found to form side products under neat conditions, several nitrogen-rich heteroaromatic mercaptans were best converted to their difluorinated ethers under aqueous micellar catalysis conditions (0.5 M), in these cases with reactions occurring at ambient temperature also in only 10 min (Table 2, Method D). The presence of EtOAc as the cosolvent (10%, v/v) was needed to assist with the initial dissolution of the otherwise highly crystalline educts.

Due to the weak nucleophilicity of some electron-deficient thiols, the addition of a stronger base than in situ-generated

bromide from TMSCF_2Br , or fluoride from KF, was needed to assist trapping the proton of the thiols (see compounds 16–17 and 20)^{24–28} The addition of CF_2 carbene to both alkenes and alkynes could also be effected, neat, to afford the corresponding difluorocyclopropanes and difluorocyclopropenes, respectively, although more vigorous conditions were required. That is, reactions were heated neat at 90°C for ca. a 12 h period (Tables 3 and 4). This was expected given the

Table 3. Formation of Difluorocyclopropanes under Neat Conditions^a



^aIsolated yields. ^b1.5 equiv of TMSCF_2Br used. ^cDemethylated side product was observed when using TBAB. ^dTBAI was used instead of TBAB.

weakly electrophilic nature of the carbene generated and the weakly nucleophilic character of each unsaturated system. When run traditionally in toluene, refluxing conditions are normally required (110°C) over a 2–4 h period. Nonetheless, considerable functionality was tolerated in both types of starting materials. In the former case, difluorocyclopropane products were formed, one featured example being product 26 derived from the olefin-containing ester of ibuprofen. A second example leading to product 27 originates with the same type of ester but, in this case, derived from indomethacin. Various terminal and disubstituted acetylenes smoothly participated to give the desired cyclopropenes 28–36, with most additions of CF_2 carbene proceeding in good-to-excellent yields.

Comparisons of E-Factors associated with both literature conditions vs those being used in these studies for insertions of CF_2 carbene can be found in Table 5.^{23,28–34} The values associated with these neat reactions do not exceed 2.8, while those associated with known procedures performed in organic solvents are typically far higher.

With an extensive toolbox of technologies available based on chemistry in water, options for creating sequences (i.e., telescoping) are now readily carried out. As an example involving the application of this difluorocarbene chemistry, the synthesis of a critical intermediate for pantoprazole, a proton pump inhibitor frequently prescribed for gastroesophageal reflux disease, is illustrated in Scheme 1. The conventional route toward this intermediate that uses the same starting material is also shown. The former

Table 4. Formation of Difluorocyclopropenes under Neat Conditions^a

^aIsolated yields. ^b60 °C instead of 90 °C. ^c0.5 equiv of TBAI instead of KF. ^dAdditional 1.5 equiv of TMSCF₂Br was added after 12 h; total reaction time: 2 days.

encompasses a two-step, two-pot process, where BrCF₂CO₂Et serves as the difluorocarbene source, requires a 12 h reaction period, and utilizes DMF, a solvent known for its significant reproductive toxicity.³⁵ In this sequence, the resultant difluoromethyl ether is isolated and then subjected to reduction of both nitro groups (utilizing up to 10 mol % Pd as the catalyst); cyclization afforded the final product in 49% overall yield. By contrast, this new, greener technology achieves difluoromethylation in a solvent-free environment, the reaction being completed within five minutes. Nitro group reduction is subsequently carried out using carbonyl iron powder (CIP) in an aqueous micellar environment. The resultant reaction mixture is then filtered through a Celite plug, and the entire filtrate containing the diamine is subjected to cyclization, arriving at the same product (37) in an overall yield of 84%. Notably, this sequence eliminates the use of organic solvents, as well as precious metal catalysts. Moreover, in addition to dramatically improving the overall efficiency, it features a considerable improvement in time economy.³⁶

A second sequence, shown in *Scheme 2*, demonstrates the feasibility of incorporating difluoromethylation as part of a chemoenzymatic process³⁷ run under aqueous micellar conditions. Treatment of *p*-bromophenol under solvent-free difluoromethylation conditions at only 40 °C was followed by Suzuki–Miyaura coupling to yield the corresponding biaryl ketone 38. Reduction of the carbonyl group upon addition of ADH101 (and necessary cofactors) into a buffered aqueous solution containing TPGS-750-M led to nonracemic alcohol 39 in an overall yield of 60% and in high ee.

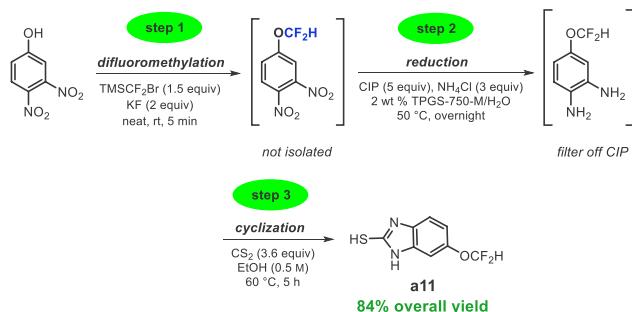
A practical consideration associated with any solvent-free reaction run at scale raises the issue of safety, an inherent concern regarding a reaction's exothermicity. Thus, calorim-

etry analysis was performed on heteroaromatic product 19, selected as a representative thioether resulting from this procedure. The data obtained indicate that the reaction is moderately exothermic, with a value of -53 kJ/kg at 30 °C. This corresponds to an adiabatic temperature rise of approximately 36 °C. Meanwhile, the dynamic part of the SETARAM thermostability test, spanning a temperature range of 30–60 °C for this reaction mixture, displayed only a very minor exothermic signal above roughly 30 °C (approximately -2 kJ/kg). In addition, a further differential scanning calorimetry (DSC) analysis of the product mixture conducted up to 400 °C revealed that the first exotherm of safety significance emerges above approximately 205 °C (approximately 347 kJ/kg). Overall, the conclusion is that no significant heat release compromises safety at the prescribed reaction temperature of 60 °C (see the Supporting Information for details).

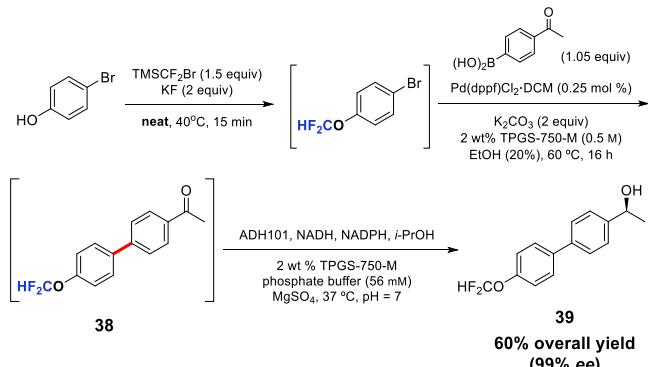
In summary, environmentally responsible routes to various difluoromethylated derivatives, including difluoromethyl ethers, thioethers, cyclopropanes, and cyclopropenes, are reported. The potential for applying these technologies is demonstrated by the synthesis of a pantoprazole intermediate, achieving notable yield improvements along with a significant reduction in the sequence's original environmental footprint. Additionally, this approach has been successfully integrated into a one-pot sequence, featuring a representative chemoenzymatic route to a nonracemic product. The implied safety aspect associated with green chemistry is established for these neat reactions via a calorimetric analysis, further emphasizing the viability of solvent-free conditions. Overall, these advances pave the way for more sustainable and safer chemical practices, with potential applications extending across various sectors of the chemical enterprise.

Table 5. Comparisons with Existing Literature Procedures

compound	literature conditions	this work
	BrCF ₂ P(O)(OC ₂ H ₅) ₂ (2 equiv) KOH (20 equiv) MeCN (5 mL) H ₂ O (5 mL)	KF (2.0 equiv) TMSCF ₂ Br (1.5 equiv) 5 min
123	E-Factor = 93.9	E-Factor = 1.4
	<i>p</i> -nitrophenyl-chlorodifluoromethylsulfone (1.5 equiv) KOH (16 equiv) MeCN (3 mL) H ₂ O (3 mL)	KF (2.0 equiv) TMSCF ₂ Br (1.5 equiv) KOH (2 equiv)
8²⁸	E-Factor = 41.4	E-Factor = 2.4
	K ₂ CO ₃ (1.5 equiv) SCDA (2 equiv) ^b DMF (5 mL)	KF (1.0 equiv) TMSCF ₂ Br (2 equiv) 10 min
14²⁹	E-Factor = 28.7	E-Factor = 1.4
	LiOH (1.2 equiv) S-(difluoromethyl)sulfonium salt (1.2 equiv) fluorobenzene (2 mL)	KF (1.0 equiv) TMSCF ₂ Br (2 equiv) EtOAc (0.05 mL) 2 wt % TPGS-750-M (0.45 mL)
19³⁰	E-Factor = 52.2	E-Factor = 3.4
	KI (2.25 equiv) MDFA (1.5 equiv) ^c TMS-Cl (2 equiv) dioxane/diglyme mixture 2 d	TBAB (0.5 equiv) TMSCF ₂ Br (3.0 equiv) 16 h
23³¹	E-Factor = 5.6	E-Factor = 2.8
	NaI (0.2 equiv) TMSCF ₃ (1.5 equiv) THF, 2 h	TBAB (0.5 equiv) TMSCF ₂ Br (3.0 equiv) 16 h
25³²	E-Factor = 118.9	E-Factor = 3.4
	NaI (0.35 equiv) TMSCF ₃ (1.5 equiv) THF, 4 h	KF (2.0 equiv) TMSCF ₂ Br (1.5 equiv) 16 h
29³³	E-Factor = 9.8	E-Factor = 1.4
	TBAC (2.0 equiv) TMSCF ₂ Br (1.5 equiv) toluene, 4 h	KF (2.0 equiv) TMSCF ₂ Br (1.5 equiv) 16 h
32³⁴	E-Factor = 13.9	E-Factor = 1.0


^aCalculations: see the Supporting Information. ^bSodium chlorodifluoroacetate. ^cMDFA, methyl 2,2-difluoro-2-(fluorosulfonyl)acetate.

Scheme 1. Comparison of Routes toward an Intermediate Leading to Pantoprazole


Literature route (*Adv. Synth. Catal.* 2018, 360, 4161):

This work: sequence towards an intermediate en route to pantoprazole:

Scheme 2. Three-Step Chemoenzymatic Sequence

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its Supporting Information.

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.joc.4c01955>.

Experimental procedures, characterization data, and NMR spectra for new compounds ([PDF](#))

AUTHOR INFORMATION

Corresponding Author

Bruce H. Lipshutz — Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States; orcid.org/0000-0001-9116-7049; Email: bhlipshutz@ucsb.edu

Authors

Erfan Oftadeh — Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States

Madison J. Wong — Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States; orcid.org/0000-0001-8094-9678

Julie Yu — Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States

Xiaohan Li — Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States

Yilin Cao — Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States

Fabrice Gallou — Chemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland; orcid.org/0000-0001-8996-6079

Luisa Heinz — Chemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland

Complete contact information is available at:
<https://pubs.acs.org/10.1021/acs.joc.4c01955>

Author Contributions

This manuscript was written with contributions from all authors.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by the NSF (CHE-2152566).

REFERENCES

- (1) Sessler, C. D.; Rahm, M.; Becker, S.; Goldberg, J. M.; Wang, F.; Lippard, S. J. CF(2)H, a Hydrogen Bond Donor. *J. Am. Chem. Soc.* **2017**, *139*, 9325–9332.
- (2) Giornal, F.; Pazenok, S.; Rodefeld, L.; Lui, N.; Vors, J.-P.; Leroux, F. R. Synthesis of diversely fluorinated pyrazoles as novel active agrochemical ingredients. *J. Fluorine Chem.* **2013**, *152*, 2–11.
- (3) Liu, H.; Ding, A.; Ma, C.; Huang, X.; Feng, C.; Wang, Z.; Wang, Z.; Lu, G. The difluoromethylthio moiety lowers the LCST of oligo(ethylene glycol)-based homopolymers. *Polym. Chem.* **2020**, *11*, 5833–5843.
- (4) Bremer, M.; Kirsch, P.; Klasen-Memmer, M.; Tarumi, K. The TV in your pocket: development of liquid-crystal materials for the new millennium. *Angew. Chem., Int. Ed. Engl.* **2013**, *52*, 8880–8896.
- (5) Tsuji, T.; Satoh, H.; Narisada, M.; Hamashima, Y.; Yoshida, T. Synthesis and antibacterial activity of 6315-S, a new member of the oxacephem antibiotic. *J. Antibiot.* **1985**, *38*, 466–476.
- (6) O'Hagan, D. Fluorine in health care: Organofluorine containing blockbuster drugs. *J. Fluorine Chem.* **2010**, *131*, 1071–1081.
- (7) Smart, B. E. Fluorine substituent effects (on bioactivity). *J. Fluorine Chem.* **2001**, *109*, 3–11.
- (8) Mata, G.; Miles, D. H.; Drew, S. L.; Fournier, J.; Lawson, K. V.; Mailyan, A. K.; Sharif, E. U.; Yan, X.; Beatty, J. W.; Banuelos, J. Design, Synthesis, and Structure–Activity Relationship Optimization of Pyrazolopyrimidine Amide Inhibitors of Phosphoinositide 3-Kinase γ (PI3K γ). *J. Med. Chem.* **2021**, *65*, 1418–1444.
- (9) (a) Ni, C.; Hu, J. Recent advances in the synthetic application of difluorocarbene. *Synthesis* **2014**, *46*, 842–863. See also: (b) Xie, Q.; Hu, J. A Journey of the Development of Privileged Difluorocarbene Reagents TMSCF_2X ($\text{X} = \text{Br, F, Cl}$) for Organic Synthesis. *Acc. Chem. Res.* **2024**, *57*, 693–713.
- (10) Zheng, J.; Li, Y.; Zhang, L.; Hu, J.; Meuzelaar, G. J.; Federsel, H.-J. Chlorodifluoromethyl phenyl sulfone: a novel non-ozone-depleting substance-based difluorocarbene reagent for O-and N-difluoromethylations. *Chem. Commun.* **2007**, *5149–5151*.
- (11) Britton, R.; Gouverneur, V.; Lin, J.-H.; Meanwell, M.; Ni, C.; Pupo, G.; Xiao, J.-C.; Hu, J. Contemporary synthetic strategies in organofluorine chemistry. *Nat. Rev. Methods Primers* **2021**, *1*, 47.
- (12) Jimenez-Gonzalez, C.; Ponder, C. S.; Broxterman, Q. B.; Manley, J. B. Using the right green yardstick: why process mass intensity is used in the pharmaceutical industry to drive more sustainable processes. *Org. Process Res. Dev.* **2011**, *15*, 912–917.
- (13) Sharma, S.; Das, J.; Braje, W. M.; Dash, A. K.; Handa, S. A glimpse into green chemistry practices in the pharmaceutical industry. *ChemSusChem* **2020**, *13*, 2859–2875.
- (14) Sheldon, R. A.; Bode, M. L.; Akakios, S. G. Metrics of green chemistry: Waste minimization. *Curr. Opin. Green Sustain. Chem.* **2022**, *33*, No. 100569.
- (15) Cortes-Clerget, M.; Kincaid, J. R. A.; Akporji, N.; Lipshutz, B. H. Surfactant Assemblies as Nanoreactors for Organic Transformations. In *Supramolecular Catalysis*, van Leeuwen, P. W. N. M.; Raynal, M., Ed.; Wiley, 2022; 467–487.
- (16) Cortes-Clerget, M.; Yu, J.; Kincaid, J. R.; Walde, P.; Gallou, F.; Lipshutz, B. H. Water as the reaction medium in organic chemistry: from our worst enemy to our best friend. *Chem. Sci.* **2021**, *12*, 4237–4266.
- (17) Sheldon, R. A. Green solvents for sustainable organic synthesis: state of the art. *Green Chem.* **2005**, *7*, 267–278.
- (18) Martins, M. A.; Frizzo, C. P.; Moreira, D. N.; Buriol, L.; Machado, P. Solvent-free heterocyclic synthesis. *Chem. Rev.* **2009**, *109*, 4140–4182.
- (19) Brown, D. G.; Bostrom, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? Miniperspective. *J. Med. Chem.* **2016**, *59*, 4443–4458.
- (20) Li, X.; Wood, A. B.; Lee, N. R.; Gallou, F.; Lipshutz, B. H. Allylations of aryl/heteroaryl ketones: neat, clean, and sustainable. Applications to targets in the pharma- and nutraceutical industries. *Green Chem.* **2022**, *24*, 4909–4914.
- (21) Kincaid, J. R.; Caravez, J. C.; Iyer, K. S.; Kavthe, R. D.; Fleck, N.; Aue, D. H.; Lipshutz, B. H. A sustainable synthesis of the SARS-CoV-2 Mpro inhibitor nirmatrelvir, the active ingredient in Paxlovid. *Commun. Chem.* **2022**, *5*, 156.
- (22) Li, L.; Wang, F.; Ni, C.; Hu, J. Synthesis of gem-Difluorocyclopropane (e) nes and O-, S-, N-, and P-Difluoromethylated Compounds with TMSCF_2Br . *Angew. Chem., Int. Ed.* **2013**, *52*, 12390–12394.
- (23) Zafrani, Y.; Sod-Moriah, G.; Segall, Y. Diethyl bromodifluoromethylphosphonate: a highly efficient and environmentally benign difluorocarbene precursor. *Tetrahedron* **2009**, *65*, 5278–5283.
- (24) Walkowiak-Kulikowska, J.; Kanigowska, J.; Koroniak, H. α -(Difluoromethyl) styrene: improved approach to grams scale synthesis. *J. Fluorine Chem.* **2015**, *179*, 175–178.
- (25) Qiu, X.; Lou, W.; Zhang, S.; Meng, S.; Guo, Y.; Ma, X.; Liu, C.; Shen, Q. Scalable Synthesis of the Shelf-Stable Radical Difluoromethylthiolation Reagent S-(Difluoromethyl) benzenesulfonylate $\text{PhSO}_2\text{SCF}_2\text{H}$. *Org. Process Res. Dev.* **2023**, *27*, 1104–1110.
- (26) Langlois, B. R. Improvement of the synthesis of aryl difluoromethyl ethers and thioethers by using a solid-liquid phase-transfer technique. *J. Fluorine Chem.* **1988**, *41*, 247–261.
- (27) Prakash, G. S.; Krishnamoorthy, S.; Kar, S.; Olah, G. A. Direct S-difluoromethylation of thiols using the Ruppert–Prakash reagent. *J. Fluorine Chem.* **2015**, *180*, 186–191.
- (28) Wang, F.; Zhang, L.; Zheng, J.; Hu, J. Chlorodifluoromethyl aryl ketones and sulfones as difluorocarbene reagents: The substituent effect. *J. Fluorine Chem.* **2011**, *132*, 521–528.

(29) Mehta, V. P.; Greaney, M. F. S., N-, and Se-Difluoromethylation using sodium chlorodifluoroacetate. *Org. Lett.* **2013**, *15*, 5036–5039.

(30) Liu, G.-K.; Qin, W.-B.; Li, X.; Lin, L.-T.; Wong, H. N. Difluoromethylation of Phenols and Thiophenols with the S-(Difluoromethyl) sulfonium Salt: Reaction, Scope, and Mechanistic Study. *J. Org. Chem.* **2019**, *84*, 15948–15957.

(31) Eusterwiemann, S.; Martinez, H.; Dolbier, W. R., Jr Methyl 2, 2-difluoro-2-(fluorosulfonyl) acetate, a difluorocarbene reagent with reactivity comparable to that of trimethylsilyl 2, 2-difluoro-2-(fluorosulfonyl) acetate (TFDA). *J. Org. Chem.* **2012**, *77*, 5461–5464.

(32) Wang, F.; Luo, T.; Hu, J.; Wang, Y.; Krishnan, H. S.; Jog, P. V.; Ganesh, S. K.; Prakash, G. S.; Olah, G. A. Synthesis of gem-difluorinated cyclopropanes and cyclopropenes: trifluoromethyltrimethylsilane as a difluorocarbene source. *Angew. Chem., Int. Ed.* **2011**, *50*, 7153–7157.

(33) Nosik, P. S.; Pashko, M. O.; Poturai, A. S.; Kvasha, D. A.; Pashenko, A. E.; Rozhenko, A. B.; Suikov, S.; Volochnyuk, D. M.; Ryabukhin, S. V.; Yagupolskii, Y. L. Monosubstituted 3, 3-Difluorocyclopropenes as Bench-Stable Reagents: Scope and Limitations. *Eur. J. Org. Chem.* **2021**, *2021*, 6604–6615.

(34) Wang, F.; Zhang, W.; Zhu, J.; Li, H.; Huang, K.-W.; Hu, J. Chloride ion-catalyzed generation of difluorocarbene for efficient preparation of gem-difluorinated cyclopropenes and cyclopropanes. *Chem. Commun.* **2011**, *47*, 2411–2413.

(35) Chang, H.-Y.; Shih, T.-S.; Guo, Y. L.; Tsai, C.-Y.; Hsu, P.-C. Sperm function in workers exposed to N, N-dimethylformamide in the synthetic leather industry. *Fertil. Steril.* **2004**, *81*, 1589–1594.

(36) Polley, A.; Bairy, G.; Das, P.; Jana, R. Triple Mode of Alkylation with Ethyl Bromodifluoroacetate: N-, or O-Difluoromethylation, N-Ethylation and S-(ethoxycarbonyl) difluoromethylation. *Adv. Synth. Catal.* **2018**, *360*, 4161–4167.

(37) Cortes-Clerget, M.; Akporji, N.; Zhou, J.; Gao, F.; Guo, P.; Parmentier, M.; Gallou, F.; Berthon, J.-Y.; Lipshutz, B. H. Bridging the gap between transition metal-and bio-catalysis via aqueous micellar catalysis. *Nat. Commun.* **2019**, *10*, 2169.