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ABSTRACT 

 

Driver State Monitoring (DSM) is paramount for improving driving safety for both drivers of 

ego-vehicles and their surrounding road users, increasing public trust, and supporting the transition 

to autonomous driving. This paper introduces a Transformer-based classifier for DSM using an in-

vehicle camera capturing raw Bayer images. Compared to traditional RGB images, we opt for the 

original Bayer data, further employing a Transformer-based classification algorithm. Experimental 

results prove that the accuracy of the Bayer Color-filled type images is only 0.61% lower than that 

of RGB images. Additionally, the performance of Bayer data is closely comparable to RGB images 

for DSM purposes. However, utilizing Bayer data can offer potential advantages, including 

reduced camera costs, lower energy consumption, and shortened Image Signal Processing (ISP) 

time. These benefits will enhance the efficacy of DSM systems and promote their widespread 

adoption. 

 

INTRODUCTION 

 

The safety of drivers is a paramount concern in the modern transportation industry. With the ever-

increasing integration of technology into our vehicles, Driver State Monitoring (DSM) systems 

have emerged as a critical tool to enhance driving safety (Guettas et al. 2019). In addition to 

benefiting the drivers of ego-vehicles, these systems also contribute to the building of public trust 

in the era of autonomous driving (Wang 2022). Furthermore, they play a vital role in safeguarding 

the well-being of other road users (Gonçalves and Bengler 2015). 

A unique approach to our research is motivated by the urgent need to improve road safety 

and reduce accidents caused by driver distraction. Our motivation is to explore the use of Bayer 

data as an alternative to traditional DSM systems that rely on RGB images. The objective of this 

project is to address a number of critical challenges directly by harnessing the original sensor data 

directly. These include reducing camera costs, lowering energy consumption, and shortening 

Image Signal Processing (ISP) time (Wei et al. 2023), ultimately enhancing the efficiency and 

cost-effectiveness of DSM systems. 
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Backgrounds 

(1) Driver state monitoring and driver distraction detection systems 

The DSM systems are integral components in contemporary vehicles aiming to detect, in 

real-time, the physiological and cognitive states of a driver (Baek et al. 2018). These states 

encompass fatigue, distraction, drunkenness, and a myriad of other conditions that could 

potentially impede one's ability to operate a vehicle safely. 

The detection of driver distraction is a significant component of DSM. Distraction is any 

activity or factor that diverts the driver's attention away from the primary task of operating the 

vehicle in the context of driving. A person may experience this from internal stimuli, such as 

cognitive preoccupation or drowsiness, as well as external stimuli, such as using his/her mobile 

phone, adjusting the in-car entertainment or navigation system, or engaging in conversation with 

other passengers (Abouelnaga et al. 2017). A variety of road accidents are preceded by these 

distractions, which is why timely detection is of utmost importance (Eraqi et al. 2019). In order to 

identify signs of driver distraction and take preventive measures, modern DSM systems use a 

variety of techniques, including visual analytics from cameras. 

Employing a combination of cameras, sensors, and sophisticated algorithms, these systems 

can issue warnings or even take corrective actions to prevent potential accidents (Wei et al. 2022). 

As the bridge between traditional vehicles and fully autonomous driving, DSM enhances safety 

and fosters public trust in next-generation vehicular technologies. 

 

(2) Raw (bayer) image data 

Raw image data pertains to a particular configuration of the color filter array (CFA) widely 

adopted in numerous digital cameras to record color imagery. Named after its inventor, Bryce 

Bayer, this unique filter mosaic consists of a strategic alignment of red, green, and blue filters 

organized on a square grid of photosensors (Bayer 1976). As illustrated in Figure 1, the elementary 

2x2 unit of the Bayer CFA comprises one red pixel, two green pixels, and one blue pixel. Notably, 

the green filter is emphasized due to its alignment with the human visual system's spectral response 

band, making it particularly sensitive to the nuances of green light (Wang and Jeon 2015). During 

image acquisition, each pixel registers information corresponding to just a single color, be it red, 

green, or blue. Subsequently, the unrecorded color values for each pixel are deduced through 

interpolation of adjacent pixels, resulting in a comprehensive color image. This intricate procedure 

is termed "demosaicing". 

 

 

Figure 1. The minimum unit of Bayer CFA. 
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Opting for Bayer data is advantageous over RGB images in certain applications. Not only 

does it represent the rawest form of imaging data, but it also allows for greater flexibility in post- 

processing (Chan et al. 2023). By working directly with Bayer data, researchers can access 

unadulterated imaging information, potentially unlocking further nuances that may be pivotal in 

certain applications like DSM. 

Contributions 

This paper advances DSM research in two pivotal ways: 

Transformer-based classification 

We employ a Transformer-based classification algorithm, an architecture that has recently 

gained prominence in various tasks but is yet to be fully explored for DSM. Experimental 

evaluations manifest that the Transformer-based classifier offers competitive, if not superior, 

performance in distraction detection tasks. 

Innovative input data 

Instead of conventionally processed images, this work introduces the innovative use of raw 

Bayer images as the primary input for in-vehicle driver distraction detection. This offers the 

potential for significant cost and energy savings. 

Structure of the Paper 

Following the introduction, Section 2 delves into related work that contextualizes our study 

within the broader driver distraction detection research landscape. Section 3 elucidates our 

methodology, presenting a detailed overview of the Bayer data acquisition and the Transformer- 

based classification mechanism. Section 4 combines both experimental setups and the 

consequential findings. Finally, Section 5 consolidates our results, drawing conclusions and paving 

the way for future research endeavors. 

 

RELATED WORK 

 

Driving Distraction Detection 

Distracted driving encompasses any activity that diverts a driver's attention from the 

primary responsibility of driving. Distractions can be categorized as visual, manual, or cognitive. 

Activities such as texting, talking on a cellphone, adjusting the radio, engaging in conversations 

with passengers, or even simply daydreaming are all examples of such distractions. The 

phenomenon of distracted driving has ascended as a grave concern in road safety, prompting 

widespread research in both academic and industrial sectors (Liang and Lee 2014; Wang et al. 

2022). The imperative of timely detection of driver distraction, followed by either alerting the 

driver or an automatic vehicular control takeover, cannot be overemphasized. Traditional 

classifiers, such as the Support-vector machine (SVM), have also been employed for distraction 

recognition using camera data (Kutila et al. 2007). Furthermore, Liu et al. (2016) tapped into semi-

supervised machine learning methodologies to classify drivers' states by assessing their eye and 

head movements. 

To this end, a multitude of studies have delved into methods to accurately identify driver 

distractions. Wang et al. (2022) employed a Long Short-Term Memory (LSTM) model paired with 

vehicle dynamics sensor data to pinpoint cell phone usage as a driver distraction. Concurrently, 

bioelectric signals have been explored in conjunction with naturalistic driving data. Li et al. (2022) 

harnessed temporal data along with electroencephalography (EEG) signals to delve into the 

nuances of driver distraction. In recent times, in-vehicle cameras, offering 
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practicality in their application, have been deployed to extract detailed insights from the facial 

expressions and movements of drivers. For instance, Grahn and Taipalus (2021) innovated a 

technique to discern driver distraction by analyzing varying glancing behaviors. In a similar vein, 

Craye and Karray (2015) utilized AdaBoost classifiers and the Hidden Markov Model to detect 

myriad distractions, such as making phone calls, drinking, texting, and general lack of focus on 

driving. Eye-specific metrics, including eyelid closure rate and distance changes, have been 

leveraged by Sigari et al. (2013) to determine a driver's state of distraction. Machine learning 

models and techniques have been particularly instrumental in this realm. Li et al. (2022) used a 

variety of driver actions as training data to craft models adept at recognizing distractions. Dong 

and Lin (2021) utilized Convolutional Neural Networks (CNN) to classify an array of distracted 

driving behaviors. Pushing the boundaries, Huang and Fu (2022) introduced a deep 3D residual 

network embedded with an attention mechanism and encoder-decoder (D3DRN-AMED) structure, 

specifically designed to detect driver distractions by examining their focal points. 

 

Bayer Image Data Applications 

Bayer image data is frequently transformed to an RGB-per-pixel format to facilitate image 

recognition tasks. For instance, Huang et al. (2008) pioneered a driver monitoring system using 

this methodology. Similarly, the Oxford RobotCar perceived its surroundings by converting Bayer 

data into more recognizable formats (Maddern et al. 2017). Horak (2011) employed this approach 

in driver eye tracking to identify signs of fatigue. Given these precedents, a pertinent question 

arises: is it possible to leverage Bayer data directly for image recognition? If so, this can 

significantly expedite image processing and result in substantial hardware cost savings. Recent 

research suggests that this is feasible. For example, Wei (2022) successfully employed raw Bayer 

data in vehicle detection and tracking tasks. Likewise, Chan et al. (2023) harnessed Bayer data for 

vehicle detection on the renowned KITTI dataset. Considering the critical nature of tasks like 

distraction detection, which necessitates real-time monitoring of a driver's status, the direct 

utilization of Bayer data is a promising avenue worthy of further exploration. In addition, there 

have been efforts to develop specialized models tailored to Bayer data. For instance, Wei et al. 

(2023) attempted to adapt the Faster R-CNN neural network model specifically for Bayer data and 

introduced camera parameters as supplementary input information for object detection. Their 

findings demonstrated that customizing deep neural network models to accommodate the inherent 

characteristics of Bayer data can yield beneficial improvements in performance. 

 

METHODOLOGY 

 

Bayer Data Generation 

In the Bayer data generation section of this study, we adopted the widely used RGGB 

pattern for generating Bayer images. In this section, we outline the methodology employed to 

generate two types of Bayer data from RGB images, namely the Bayer 0-filled image and the 

Bayer color-filled image (Chan et al. 2023). It is important to note that the process of converting 

raw sensor data into RGB images involves the Image Signal Processing (ISP) stage, making the 

methods employed here inherently approximate. 

(1) Bayer 0-filled data 

In the Bayer 0-filled image generation method, a new image is created while maintaining 

its color format. Specifically, within each 2x2 pixel grid, only one channel's color value is 
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retained, and all other positions within the grid are set to zero. For example, for the R channel, 

only the top-left pixel within each 2x2 grid retains the R value, while all other positions within the 

grid are assigned zero. Similarly, for the B channel, only the bottom-right pixel within each 2x2 

grid retains the B value, while the remaining positions are set to zero. In the case of the G channel, 

only the top-right and bottom-left positions within each grid retain their original G values, while 

the other two positions in the grid are set to zero. 

The mathematical representation of this method is: 

For the R channel 

 

𝐵𝑎𝑦𝑒𝑟𝑅(𝑖, 𝑗) = {𝐼𝑅(𝑖, 𝑗) 𝑖𝑓 (𝑥 % 2 = 0) 𝑎𝑛𝑑 (𝑦 % 2 = 0) 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 
For the G channel 

 

𝐵𝑎𝑦𝑒𝑟𝐺(𝑖, 𝑗) = {𝐼𝐺(𝑖, 𝑗) 𝑖𝑓 (𝑥 % 2 ≠ 𝑦 % 2) 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 
For the B channel 

 

𝐵𝑎𝑦𝑒𝑟𝐵(𝑖, 𝑗) = {𝐼𝐵(𝑖, 𝑗) 𝑖𝑓 (𝑥 % 2 = 1) 𝑎𝑛𝑑 (𝑦 % 2 = 1) 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 
where: 

IR(i,j), IG(i,j), IB(i,j) represent the Red, Green, and Blue color channels of the raw sensor 

data at pixel (i,j), respectively. 

BayerR, BayerG, BayerR represent the Red, Green, and Blue value of the generated 

Bayer image at pixel (i,j) 

i and j represent the row and column indices of the pixels in the sensor data or Bayer 

image.  

% denotes the modulo operation. 

(2) Bayer color-filled data 

In the Bayer color-filled image generation method, a new image is created while 

preserving its color format. Within each 2x2 pixel grid, colors are replaced with specific values. 

To elaborate, for the R channel, all four pixels within the grid are assigned the value of the top- 

left R channel pixel. Similarly, for the B channel, all four pixels in the grid are assigned the value 

of the bottom-right B channel pixel. Regarding the G channel, the top-right and bottom-left pixels 

within each grid retain their original G values, while the other two pixels in the grid are set to the 

average of the adjacent G channel values. 

The mathematical representation of this method is: 

For the R channel 

 

𝐵𝑎𝑦𝑒𝑟𝑅(𝑖, 𝑗) = 𝐼𝑅(𝑖 − (𝑖%2), 𝑗 − (𝑗%2)) 

 
For the G channel 

 
1 

𝐵𝑎𝑦𝑒𝑟𝑅(𝑖, 𝑗) = {𝐼𝐺(𝑖, 𝑗) 𝑖𝑓 (𝑖%2) ≠ (𝑗%2) 
2 

(𝐼𝐺(𝑖 − (𝑖%2), 𝑗) + 𝐼𝐺(𝑖, 𝑗 − (𝑗%2))) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
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For the B channel 

 

𝐵𝑎𝑦𝑒𝑟𝐵(𝑖, 𝑗) = 𝐼𝐵(𝑖 − (𝑖%2) + 1, 𝑗 − (𝑗%2) + 1) 

 
where: 

IR(i,j), IG(i,j), IB(i,j) represent the Red, Green, and Blue color channels of the raw sensor 

data at pixel (i,j), respectively. 

BayerR, BayerG, BayerR represent the Red, Green, and Blue value of the generated Bayer 

image at pixel (i,j) 

i and j represent the row and column indices of the pixels in the sensor data or Bayer 

image. 

% denotes the modulo operation. 

 

Transformer Model 

To harness the potential of Bayer data for driver distraction detection, the Transformer 

model, renowned for its proficiency in handling sequential data, is incorporated to discern and 

predict the driver's state. 

The Transformer architecture, introduced by Vaswani et al. (2017), stands apart due to its 

distinctive self-attention mechanism. The multi-head attention layer in Figure 2 stands as a 

cornerstone in the Transformer model, epitomizing its novelty and efficacy in handling sequential 

data. Instead of utilizing a singular set of Query (Q), Key (K), and Value (V) weight matrices, this 

mechanism deploys multiple sets, referred to as “heads”, to simultaneously process the input data 

from different representational spaces. This multiplicity ensures that for each input word or token, 

diverse relationships and contextual dependencies with other tokens can be captured (Han et al., 

2023). Unlike conventional models that process input tokens sequentially or in fixed patterns, the 

Transformer’s self-attention mechanism assesses and assigns varying weights to different tokens 

based on their contextual significance. This ensures that during the production of an output, the 

model can dynamically shift its focus across different portions of the input, allowing for a richer 

and more contextually-aware representation of data. This inherent ability of the Transformer to 

recognize patterns and relationships within the data makes it particularly suitable for tasks like 

driver distraction detection, where the nuanced understanding of a driver's state based on raw 

Bayer data becomes paramount. 

Figure 3 illustrates the architecture of our proposed model, which is designed specifically 

to analyze Bayer image data in the context of Driver State Monitoring (DSM). The purpose of this 

model is to capture and discern the multifaceted states of the driver from raw Bayer images. 

Convolutional Neural Network (CNN): The CNN is used as the first feature extractor in 

our model. This network is designed to process Bayer image data, exploiting the spatial hierarchy 

of images through convolutional filters that detect edges, textures, and other visual patterns at 

various scales. In the case of high-resolution Bayer images, the CNN architecture has the 

advantage of reducing the dimensionality of data while preserving the essential information. 

Transformer-based Encoder: The Transformer-based encoder receives the feature maps 

produced by the CNN. It consists of a series of self-attention mechanisms that enable the model to 

weigh and integrate information across an entire image. By performing parallel computations, the 

Transformer-based encoder is able to capture complex relationships within data. This is different 

from traditional approaches, which process data sequentially. It is especially useful for 
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determining the temporal dynamics of driver behavior, which may not be immediately adjacent 

to one another in a sequence of images. 
 

 

Figure 2. Multi-head Attention. 
 

Figure 3. The Transformer architecture for driver distraction detection. 

 

 

Transformer-based Decoder: Following the encoder, the Transformer-based decoder 

synthesizes the encoded features into a comprehensive representation. As a mirror of the encoder 

structure, it incorporates additional cross-attention layers that allow it to focus on specific 

segments of the input sequence in accordance with the encoder context. With this component, the 

sequence of driver states can be reconstructed and the current state can be inferred with a high 

level of accuracy. 

Feed-Forward Network: The final component is the feed-forward network, which 

interprets the output from the Transformer-based decoder. The network is composed of dense 

layers that perform classification based on contextualized features. Feature representations are 

mapped to probabilities of safe or unsafe driving states based on a high-dimensional feature 

representation. During training, the network minimizes prediction errors, ensuring that the final 

output accurately reflects the likelihood that a driver is distracted. 
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EXPERIMENTS AND RESULTS 

Dataset Selection 

The dataset used in this study is the Distracted Driver Dataset (Abouelnaga et al. 2017; Eraqi et al. 

2019) from the Machine Intelligence Group at the American University in Cairo (MI-AUC). It 

consists of individual images with a resolution of 1920×1080 pixels and captures real-world 

driving activities. 

The study comprises a diverse cohort of 31 participants hailing from seven distinct 

countries, which consisted of 22 males and 9 females. Furthermore, the dataset encompasses 

imagery captured within four distinct car models. Additionally, the dataset is thoughtfully 

categorized, comprising a total of 17,308 frames distributed across ten distinct categories: Drive 

Safe (3,686 frames), Talk Passenger (2,570 frames), Text Right (1,974 frames), Drink (1,612 

frames), Talk Left (1,361 frames), Text Left (1,301 frames), Talk Right (1,223 frames), Adjust 

Radio (1,220 frames), Hair & Makeup (1,202 frames), and Reach Behind (1,159 frames). 
 

 

Figure 4. Example of different types of images used in this study. 

 

To streamline the experiment, we collapsed all categories into two groups: safe driving and 

unsafe driving. To prevent an unwieldy dataset size, we randomly selected 3,600 images from safe 

driving and an equal number of images from the various unsafe driving categories, resulting in a 

total experimental dataset of 7,200 images. Within this dataset, 80% of the images were allocated 

for training purposes, while the remaining 20% were designated for validation. 

The RGB images utilized in the experiment were directly sourced from the Distracted 

Driver Dataset. Color-filled Bayer images, on the other hand, were generated using the previously 

described Bayer image generation method. Figure 4 illustrates a comparative display of the RGB 

and Bayer images employed in the experiment. 

 

Results 

(1) Quantitative Analysis (Detection Results) 

In our investigation, we conducted training and evaluation experiments using three distinct 

Transformer-based classifier models. These models were trained on the same set of images in RGB 

format, Bayer 0-filled format, and Bayer color-filled format, each subjected to 10,000 training 

epochs. The achieved classification accuracies, as presented in Table 1, reveal noteworthy insights 

into the performance of these formats. 

The RGB format exhibited the highest accuracy at 70.65%, highlighting its effectiveness 

as a baseline for classification tasks. Surprisingly, the Bayer color-filled format closely followed 

with an accuracy of 70.04%, outperforming the Bayer 0-filled format, which achieved an accuracy 

of 65.36%. This unexpected outcome suggests that the Bayer color-filled format, 
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despite introducing some interpolation and color substitution effects, offers competitive 

performance, possibly due to its ability to retain more color information. These results underscore 

the potential utility of the Bayer color-filled format as an efficient alternative for driver distraction 

detection, but further investigation is warranted to explore its underlying advantages and 

limitations. 

Table 1. Accuracy of models trained on images of different formats. 

 

Format Number Format Accuracy 

1 Original RGB 70.65% 

2 Bayer Color -filled 70.04% 

3 Bayer 0-filled 65.36% 

However, it is crucial to note that achieving optimal performance with Transformer-based 

models requires extended training epochs. With increasing training epochs, the models in all three 

formats demonstrated improved accuracy (Carion et al. 2020). Although Transformer- based 

models require longer training times, they could capture complex patterns and features in the data 

with remarkable accuracy. In spite of the promising results demonstrated by the Bayer color-filled 

format, further investigation is recommended to fully unlock its potential and determine the 

optimal training duration in order to achieve peak accuracy. 

(2) Qualitative Analysis (System Cost) 

In evaluating the economic feasibility of the proposed driver distraction detection system, 

three key aspects were considered: hardware costs, processing costs, and energy consumption. 

Hardware Costs: According to a comparative analysis, Bayer color cameras offer a 

significant price advantage over their three-CCD or three-CMOS counterparts. For instance, a 

high-quality 5-megapixel Bayer area scan camera is available for less than half the cost of an 

equivalent 3.2-megapixel prism camera. It is important to note that this notable price disparity 

plays a crucial role in large-scale deployments where initial capital expenditures are an important 

constraint (JAI, 2019). 

Processing Costs: Bayer cameras utilize predefined patterns of color filters atop the pixels, 

requiring an interpolation process in order to estimate RGB values for each pixel (Adimec, 2013). 

Color accuracy may be marginally compromised by this approach, however, processing power 

requirements are significantly reduced compared to 3-CCD or 3-CMOS systems, which capture 

precise RGB values without interpolation, thus requiring increased computational resources and, 

consequently, higher processing costs (Adimec, 2013). 

Energy Consumption: As compared to polymer filters used in conventional Bayer 

sensors, prism glass used in 3-CMOS cameras exhibits enhanced light transmission capabilities. 

This results in improved light sensitivity and a reduction in lighting requirements. However, this 

heightened sensitivity comes with an increased energy demand. In contrast, Bayer images’ 

relatively low sensitivity could contribute to reduced energy consumption, especially in well-lit 

environments (Chouinard, 2018). 

 

CONCLUSION 

In this study, we introduce a novel Transformer-based classifier tailored for driver state 

monitoring (DSM) using two distinct raw Bayer images. Our aim is to explore its potential as a 
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cost-effective, energy-saving alternative to traditional RGB imaging techniques. The experimental 

results reveal that models using Bayer data differ in accuracy by a mere 0.61% compared to their 

RGB counterparts, with a promising trend towards further convergence observed. Such findings 

underscore the feasibility of Bayer data as a suitable replacement for conventional RGB imaging. 

Moreover, our experiments demonstrate that Bayer data can closely match the performance of 

RGB images in DSM applications. Through this research, we not only highlight the benefits of 

employing Bayer data but also contribute to the broader adoption of DSM systems. This enhances 

road safety by making these systems more accessible and cost- effective, ultimately benefiting 

everyone on the road. 

Firstly, we have demonstrated unequivocally the efficacy of Transformer-based methods 

for detecting driver distraction through a meticulous evaluation of classifiers trained on three 

distinct image categories. The results obtained from our experiment validate the robustness and 

adaptability of these models post-training, emphasizing their ability to distinguish and interpret 

complex visual cues indicative of driver distraction. As the field of deep learning continues to 

evolve, these models stand as a formidable tool in the pursuit of safer and more efficient driving 

experiences. 

Secondly, the comparative analysis between RGB and Bayer color-filled images sheds 

light on a significant finding. The study illustrates that Bayer data has comparable potential to 

RGB images when it comes to detecting driver distraction states. This study suggests that even 

low-cost, energy-efficient cameras lacking sophisticated Image Signal Processing (ISP) units can 

be harnessed for driver state monitoring. Such an approach not only holds promise for reducing 

the hardware costs associated with driver monitoring systems but also paves the way for wider 

accessibility and adoption of this critical technology in enhancing road safety. 

 

FUTURE WORK 

 

To obtain more precise conclusions and enhance the performance of our model, our future work 

can be directed towards the following three aspects: 

(1) Collection of Genuine Bayer Image Data: A critical direction for future research will be the 

collection of a real-world Bayer image dataset that is specifically tailored for monitoring the state 

of a driver. Rather than converting RGB images into Bayer data, which requires an irreversible 

Image Signal Processing (ISP) step, it is imperative to capture Bayer images directly from the 

vehicle's camera. It is anticipated that such an authentic dataset will not only enhance credibility 

of our findings, but will also serve as a valuable resource for training and evaluating DSM models. 

For the model to be robust and generalizable, it should include a variety of driving conditions, 

lighting scenarios, and driver behaviors. 

(2) Introduction of Region of Interest (ROI) Mechanism: Through the implementation of a 

Region of Interest (ROI) mechanism within the model, key focal points in identifying driver 

behavior can be highlighted. As a result of this strategic integration, irrelevant information may be 

reduced, model precision could be enhanced, and training time could be reduced. In order for the 

model to be able to discern and categorize driver distractions effectively, we anticipate focusing 

its attention on critical areas of interest. 

(3) Model Adaptation for Bayer Data: Adaptations tailored specifically for Bayer data should 

be explored in more detail. While we have demonstrated the effectiveness of Transformer-based 

models on this type of data, further refinement and optimization remain to be done. Customized 

architectures or modifications designed to harness the unique characteristics of Bayer data could 
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potentially yield even better results. It may be possible to unlock untapped potential for driver state 

monitoring by fine-tuning or retraining existing Transformer-based models with a focus on Bayer 

data. By doing so, the model will be able to extract more nuanced and informative features from 

this unique image format. 

(4) Robustness Assessment in Diverse Driving Environments: Our future research will explore 

the adaptability of our Transformer-based classification system in a variety of driving 

environments, including low-light and strobe scenarios. These conditions present distinct 

challenges to systems designed to monitor the driver's state of mind. We intend to conduct 

comprehensive testing and simulations in order to assess the efficiency of our system in these 

challenging lighting environments. During this assessment, data collected from real-world driving 

situations under a variety of lighting conditions will be collected and analyzed, a critical step in 

confirming the system's resilience against adverse lighting. 
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