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Abstract— In the challenging realm of object detection un- der
rainy conditions, visual distortions significantly hinder
accuracy. This paper introduces Rain-Adapt Faster RCNN
(RAF-RCNN), an innovative end-to-end approach that merges
advanced deraining techniques with robust object detection.
Our method integrates rain removal and object detection into a
single process, using a novel feature transfer learning approach
for enhanced robustness. By employing the Extended Area
Structural Discrepancy Loss (EASDL), RAF-RCNN enhances
feature map evaluation, leading to significant performance
improvements. In quantitative testing of the Rainy KITTI
dataset, RAF-RCNN achieves a mean Average Precision (mAP)
of 51.4% at IOU [0.5, 0.95], exceeding previous methods by at
least 5.5%. These results demonstrate RAF-RCNN’s potential to
significantly enhance perception systems in intelligent trans-
portation, promising substantial improvements in reliability and
safety for autonomous vehicles operating in varied weather
conditions.

I. INTRODUCTION

Object detection is crucial in the development of au-
tonomous driving technologies, a key focus area in intelligent
transportation systems [1], [2]. However, the reliability of
these systems is often compromised under adverse weather
conditions, such as rain, which is a critical challenge for
autonomous vehicles [3]. This paper introduces Rain Adapt
Faster R-CNN (RAF-RCNN), a groundbreaking approach
designed specifically for intelligent driving systems, that
adapts features from clear to rainy conditions, enhancing the
robustness and reliability of autonomous vehicle perception
in challenging environments.

By integrating the deraining process into the object detec-
tion pipeline, the RAF-RCNN model creates an end-to-end
solution that is seamless and end-to-end. In addition to retain-
ing the essential features, this innovative approach bypasses
the traditional two-stage rainy day object detection process,
thereby increasing the efficiency of detection, as shown in
Fig. 1-(c). Moreover, by leveraging feature corrective transfer
learning [4], RAF-RCNN adeptly adjusts to the variances
of rainy conditions, using real-world affected datasets for
training. This enables precise detection and identification
under severe rain, where visibility is notably reduced.

The current technologies for object detection in rainy
conditions can be broadly categorized into two approaches.
The first approach is a two-stage method, as illustrated
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in Fig. 1 -(a). This method initially employs a deraining
module to process rainy images, producing relatively rain-
free images. Subsequently, an object detection module is used
to recognize objects in the derained images. The second
approach, which has been the focus of recent research efforts
[5], is an end-to-end deraining module as shown in Fig.
1 -(b). This method utilizes a single neural network to
simultaneously achieve deraining and object detection in one
training process. However, even in this approach, the derained
images are considered an interim outcome of the model and
are evaluated using a loss function to assess the deraining
effectiveness.

Nevertheless, it’s important to question the necessity of
derained images in the neural network’s process for rain-
affected object detection. It might be feasible and potentially
more efficient to rely solely on the neural network’s capacity
to interpret and detect objects directly from rainy images [6],
[7]. This approach challenges the conventional methodology
and suggests a paradigm shift, leveraging the advanced learn-
ing capabilities of neural networks to bypass the deraining
step entirely.

A. Research Significance and Potential Impacts

A key assumption of this research is that perfect visual
clarity, similar to human vision, is not necessary to detect
objects effectively. Convolutional Neural Networks (CNNs),
the backbone of modern object detection frameworks, are the
basis for this argument. Unlike human vision, deep neural
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networks possess the unique ability to recognize relevant
features from images, even if the effects of these images differ
somewhat from those observed by the human eye [8]. It
has been demonstrated that neural networks do not require
neural networks to produce high-quality, human- friendly
images for visual tasks, especially object detection tasks [8],
[9].

In contrast to the traditional paradigm, this approach
suggests that object detection might not require the pursuit of
derained images as a prerequisite. By bypassing the
intermediary step of rain removal, RAF-RCNN is intended to
achieve favorable detection results directly from rainy images.

Furthermore, the application of transfer learning in RAF-
RCNN aids in aligning features between rainy and clear
weather conditions, enhancing the model’s ability to learn
from and adapt to these different scenarios. This feature
alignment is critical in ensuring the robustness and accuracy
of the model in diverse environmental conditions.

B. Contributions

With the complexity of object detection in rainy con-
ditions, the development of RAF-RCNN is an important
advancement. Moving forward, we delineate the principal
contributions of RAF-RCNN as follows:

- End-to-End Rainy Object Detection Models: We
present RAF-RCNN, the first model of its kind that dis-
regards the human visual perception aspect in deraining.
Unlike traditional methods that evaluate deraining effec-
tiveness at the image level, our model integrates the de-
raining process within the object detection framework.
This integration not only simplifies training complexity
but also significantly enhances detection performance in
rainy conditions.

- Feature Corrective Transfer Learning in Rainy Ob-
ject Detection: We incorporate feature corrective trans-
fer learning technique [4] specifically tailored for rainy
condition object detection. By utilizing sunny realistic
datasets, we facilitate the adaptation of the model at the
feature map level, enhancing its ability to detect objects
in rainy conditions with enhanced accuracy.

- Novel Loss Function - EASDL: We introduce a novel
loss function, the Extended Area Structural Discrepancy
Loss (EASDL), designed to evaluate and optimize fea-
ture map alignment in the context of transfer learning.
This loss function plays a crucial role in fine-tuning the
model’s ability to distinguish and detect objects amidst
rain-distorted images challenges.

II. RELATED WORK
A. Single Image Deraining

Deep Neural Networks for Deraining: The field of single
image deraining has benefited significantly from deep
learning technologies. Fu et al. [10] introduced DerainNet,
a novel approach that utilizes a guide filter to decompose
an image into a base and a detail layer, where the detail layer
is processed through a residual network to remove

rain effects. This approach effectively clears the image of
rain. Additionally, Qian et al. [11] delved into the potential of
Generative Adversarial Networks (GANs), augmented with
visual attention mechanisms. As a result, DeRaindrop was
developed, a specialized GAN designed specifically for the
detection and elimination of raindrops. Fu et al. [12] further
developed the Deep Detail Network (DDN), which uses
CNN s to accurately predict and reduce discrepancies between
rainy and clear images.

Progressive Deraining Networks: Progressive deraining
methods have revolutionized the approach to removing rain
from images by introducing more dynamic and effective
techniques. [13], who developed PReNet. This innovative
approach entails the recursive removal of rain from a single
image. This technique progressively derains the original
image through iterations, each improving the rain removal,
and ultimately results in a high-quality rain-free image.
Building on these concepts, Wang et al. [14] introduced
the Rain Convolution Dictionary Network (RCDNet), which
autonomously identifies and processes rain elements, thus
improving the deraining quality. Zamir et al. [15] further
contributed by proposing MPRNet, a multi-stage architecture
that simplifies the restoration process and improves the
learning of restoration functions incrementally.

B. Object Detection in Rainy Conditions

Two-stage Object Detection Approaches in Rainy Con-
dition: In deep learning, two-stage object detection methods
have been developed to handle rainy and adverse weather
conditions. These methods typically involve an initial stage of
image restoration followed by object detection. Huang et
al. [16] pioneered the development of a dual-subnet network
(DSNet), which bifurcates its mechanism into two separate
subnetworks dedicated to image recovery and object
detection, respectively. Further augmenting this field, they
introduced the Selective Features Absorption Network (SFA-
Net) [17]. The SFA-Net consists of three integral parts: a
feature selection subnetwork, an object detection subnet-
work, and a feature absorption subnetwork. It is especially
beneficial in rainy conditions due to its enhanced detection
capabilities.

In a similar vein, on tasks, enhancing training data with
synthetic rainfall variations to improve object detection ro-
bustness. Sindagi et al. [18] presented a domain adversarial
object detection framework that uses pre-adversarial training
to address various weather conditions. Moreover, Appiah and
Mensah [19] enhanced images with the ESRGAN algorithm
before detection using the YoloV7 algorithm to cope with rain
impacts effectively.

End-to-End Object Detection Approaches in Rainy
Conditions: Additionally, recent advancements include end-
to-end object detection systems that integrate deraining and
object detection into a single neural network. Wang et al. [20]
developed an end-to-end network that integrates deraining
and object detection into cascading modules, treating the tasks
as distinct yet sequential stages within one framework. This
approach starts with deraining before object detection,
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Fig. 2: Architectures of RAF-RCNN (Rain-Adapt Faster RCNN)

maintaining separate focuses within a unified system. Liu
et al. [3] introduced the Image-Adaptive YOLO (IA-YOLO)
which combines a small CNN with YOLOv3 and a differ-
entiable image processing (DIP) module. This configuration
preprocesses rain-distorted images for detection, still modi-
fying images to reduce weather impacts before the detection
phase.

Using the concept of Feature Corrective Transfer Learning
(FCTL), Wei et al. [4] developed a model for object detection
in non-ideal conditions, termed NITF RCNN. Through the use
of this model, real-time detection is enabled, eschewing any
processes which create idealized images either directly or
indirectly. However, the NITF RCNN model, due to its
generalist nature, lacks specific adaptations for detecting
objects in images captured during rain.

Adverse weather cross-domain object detection (CDOD)
has been widely studied. Recent works, such as those by Li et
al. [21] and Chen et al. [22], focus on domain adaptation to
improve detection under various adverse weather condi- tions
without requiring interim outcomes. These approaches
emphasize the importance of adapting models to different
weather scenarios, yet still leave room for methods specifi-
cally designed to handle the unique challenges posed by rainy
weather. Despite these advancements, our approach, RAF-
RCNN, integrates feature transfer learning directly into the
detection framework without relying on deraining evaluation,
simplifying the model architecture and enhancing detection
performance under rainy conditions.

III. METHODOLOGY
A. Overview of RAF-RCNN Framework

The RAF-RCNN, as illustrated in Fig. 2, is a novel object
detection framework tailored for the intricacies of rainy
conditions. It meticulously extends the capabilities of the
standard Faster R-CNN [23] by incorporating specialized
structural modifications. These adaptations are critical in
enabling the RAF-RCNN to maintain high fidelity in feature
representation and object localization, even in the presence of
visual noise introduced by rain. The model’s end-to- end
architecture encapsulates advanced preprocessing, robust
feature extraction, feature refinement, and attention-enhanced

detection mechanisms. This integration facilitates a seamless
transition of feature learning from clear to rain-affected
scenarios, thereby ensuring consistent detection performance
across varied weather conditions.

The RAF-RCNN architecture, tailored for rain-distorted
conditions, features a dual-stage backbone upgrade and a self-
attention-equipped ROI head. The Pre-Recursive Net- work
initially processes inputs to alleviate rain’s visual noise,
streamlining them for the ResNet-50 FPN to extract multi-
scale features crucial for accurate detection. Post- extraction,
the Post-Recursive Network fine-tunes these features,
enhancing the model’s interpretive capabilities in adverse
weather (Fig. 4). Complementing the backbone, the ROI head
incorporates a self-attention mechanism, focusing the
model’s predictive power on salient features for robust object
localization.

RAF-RCNN’s cutting-edge feature corrective transfer
learning, depicted in Fig. 2, directly aligns rain-affect feature
maps with their clear-weather counterparts, harnessing the
traditional Faster R-CNN’s strengths. Due to the introduction
of a transfer learning structure, the loss function does not
only include the bounding box regression loss Lppox and
classification loss Lcuss covered by Faster R-CNN [23], but
also incorporates a feature match lossLreqar. Therefore, the
modified total loss formula is:

(D

Ltotal =A- LFeature +a- LBBox + ﬁ - LClass-

This feature alignment is quantified and optimized through
the Extended Area Structural Discrepancy Loss (EASDL),
a loss function that critically evaluates and min- imizes the
structural discrepancies between feature maps, bolstering the
model’s detection accuracy in challenging rain conditions.

B. Backbone Enhancements

The enhanced backbone architecture in the Recursive
Faster R-CNN [23] is innovatively designed to potentially
improve the model’s performance in processing rain-distorted
images. Based on PReNet [13] and other recursive deraining
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Fig. 3: Architecture of Pre-Recursive Network in Backbone

methods [5], [14], [15], this modified backbone is organized
into three distinct but interconnected sub-networks. Each sub-
network is strategically positioned to contribute towards the
potential improvement of feature representation in rain-
affected scenarios.

1) Initial Stage: Pre-Recursive Network: To combat rain-
distorted images, the Pre-Recursive Network operates as an
advanced preprocessing unit that targets the visual anomalies
that result from rain. It is important to note that this network
plays an important role in adapting to the intricate details of
RGB images affected by rain as part of the initial processing
in order to ensure that distortions caused by rain are fully
addressed.

Structurally, this network consists of several convolutional
layers, each followed by a Rectified Linear Unit (ReLU). The
ReLU activation [24] is crucial for introducing non-linearity,
enabling the network to capture the complex patterns asso-
ciated with rain-distorted images. In order to ensure that es-
sential image details are preserved, each convolutional layer
extracts rain-specific features while the residual connection
ensures the extraction of essential features. Fig. 3 shows
the architecture of the Pre-Recursive Network. In order to
ensure that critical contextual information is retained, this
combination of feature extraction and preservation is crucial
in preparing the image for further processing by the FPN
backbone.

2) Core Feature Extraction: FPN Backbone: Based on the
robust ResNet50 model [25], the architecture is centered
around the Feature Pyramid Network (FPN) Backbone [26].
In rain-distorted environments, the ResNet50 FPN backbone
is capable of extracting multi-scale features, which is essen-
tial for the detection of objects at different size scales. To
detect objects obscured or altered by rain, the FPN must
be able to create hierarchical representations of features at
various scales. It generates a comprehensive feature map that
captures both macro and micro details, making it easier to
detect objects that may be partially obscured or distorted as a
result of rain.
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Fig. 4: Architecture of Post-Recursive Network in Backbone

3) Refinement Stage: Post-Recursive Network: The Post-
Recursive Network serves as a critical refinement stage,
strategically designed to align the feature maps from the FPN
closer to those typical of clear weather conditions. By
processing the multi-scale feature maps generated by the
FPN, this network aims to fine-tune the rain-distorted
features, enhancing their suitability for more accurate object
detection in adverse weather.

Similar to the Pre-Recursive Network, it consists of several
convolutional layers with ReLU activations [24] tailored to
the FPN output scale, which is showen in Fig. 4. In each layer,
we refine the feature maps, adjusting the rain-affected
features subtly while preserving the integrity of the core data.
The targeted post-processing of the model is essential in order
to enable it not only to detect objects in rainy conditions, but
also to do so with a feature representation that bridges the gap
to clear weather conditions, thereby facilitating a successful
transfer of learning.

C. Integration of Attention Mechanism in ROI Head

By incorporating the Transformer module [27] into the
Region of Interest (ROI) header of the Faster R-CNN frame-
work [23], some assistance in the field of object detection can
be provided. We believe that, especially under challenging
conditions of rainwater distortion, improvements in ROI
heads can help the model focus more on prominent features
in Rol to improve the detection process, which is critical to
maintaining performance in harsh weather conditions.

As displayed in Fig. 5, the modified ROI header based on
attention mainly includes the following steps.

Input Feature Map Reception: The journey starts with
the input feature map from the Rol, which contains essential
information for object detection.

Attention Module Operation:

- The feature map is first passed through a linear layer that
performs down-sampling, reducing its dimension- ality
to focus on critical features.

- A ReLU activation function follows, introducing non-
linearity to enhance feature representation.

- An up-sampling linear layer then restores the feature
dimension, preparing it for attention weight application.
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- A Sigmoid function generates attention weights, which
are crucial for highlighting significant aspects of the
feature map while diminishing less important parts.

Application of Attention Weights: An clement-wise
multiplication is performed between the attention weights and
the feature map. This step selectively amplifies salient
features, ensuring that the model focuses on the most relevant
aspects for object detection.

Processed Feature Map: The resultant feature map, now
refined with focused attention, encapsulates the crucial

features needed for accurate object identification and local-
ization.

Rol Head Processing: The classification head, com-
prising a linear layer, processes the feature map to predict
object classes. Concurrently, the regression head, also a linear
layer, predicts bounding box coordinates, crucial for object
localization.

Output Generation: The final output includes class
scores, indicating the likelihood of each class, and bounding
box coordinates, specifying the location of detected objects
within the Rol.

D. Feature Corrective Transfer Learning Strategy

Our research utilizes a transfer learning approach at the
feature map level, which is particularly effective in rain-
distorted image scenarios [4]. In this approach, the structural
and spatial characteristics of feature maps generated from
rain-affected images are aligned with those of feature maps
generated under clear weather conditions. The alignment is
hypothesized to facilitate the extraction of weather-agnostic
features, increasing the model’s generalization capabilities
across a variety of environmental conditions.

Feature Map Generation: For a given rain-distorted
image, the enhanced backbone of our RAF RCCN model
generates a feature map, denoted as A. As a result, the same
image in clear weather conditions is processed through a
traditional Faster RCNN backbone to produce B as a feature
map.

Objective of Transfer Learning: The core objective is
to ensure that A, despite being derived from rain-distorted
inputs, is closely similar to B in terms of structural sim- ilarity

for utilizing the clear weather detection capabilities of the
traditional Faster R-CNN model [23].

E. Extended Area Structural Discrepancy Loss: EASDL

To evaluate and learn from the differences between A
and B at the feature level, we propose the Extended Area
Structural Discrepancy Loss (EASDL). In addressing the
challenges posed by complex visual environments in tasks
such as object detection, the need arises for a loss function
capable of effectively capturing and quantifying structural
differences between feature maps.

The EASDL is formulated to capture not only local
gradient discrepancies at individual pixel locations but also
gradient consistency in a broader surrounding area. This dual
consideration enables the model to be sensitive to both
immediate and expansive structural variances, which is
particularly useful in detecting subtle yet critical spatial
discrepancies in feature maps. Unlike traditional approaches
that rely on pixel-based comparisons, EASDL focuses on the
structural aspects and area consistency of the feature maps.

1) Mathematical Formulation: Given two feature maps A
and B with dimensions [batch size, channels, width, height],
the EASDL is defined as:

EASDL(A, B)
_ L wH
- WH exp(—AS(x, y)) X AS(x, y)
x=1y=1
+A-Q(A,B,x,y,1) . 2
where:

- AS(x, y) represents the difference in local gradient
magnitudes at position (x, y), computed as the absolute
difference between the gradients of A and B.

- Ais a weighting factor that balances the contribution of
the extended area gradient term.

- Q(A, B, x, y, r) denotes the extended area gradient con-
sistency term, defined over a neighborhood of radius r
around each pixel.

2) Implementation Details: The gradient function G(-), a
core component of the EASDL, is designed to extract the
structural characteristics of feature maps. We implement this
function using the Sobel operator, a prominent method for
edge detection, to compute the gradient at each pixel within
the feature maps. The operator functions by convolving the
feature map with two separate 3x3 kernels, each designed to
detect edges along specific orientations.

The Sobel operator is defined using the following convo-
lutional kernels:

-1 0 1 -1 -2 -1
Sx=FE2 o 251 §,=Fh o o= (3
-1 0 1 1 2 1

and spatial consistency. This resemblance is crucial
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The horizontal gradient (Sobel-x) detects vertical edges,
and the vertical gradient (Sobel-y) detects horizontal edges.
These gradients are computed as follows:
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G(A) =A% Sy, GylA)=AxS,. 4
The overall gradient magnitude at each pixel is then
calculated by combining these individual gradients:

v
G, x,y) =

GAA, x, % + Gy(A,x, 2. (5)

The extended area gradient term Q(A, B, x, y, 1), evalu-
ates the consistency of gradient changes within a neighbor-
hood around each pixel. For a specified radius 7, it considers
a square window around each pixel:

Q(A,B,x,y,1)

1
= (21 + 1)2 r [(GA,x,y) — GA,x+ 1,y +)))

i=-rj=-r
—(GB,x,y) — GB,x+ 1,y +))| . ©6)

The integration of local gradient differences and extended
area consistency in EASDL enables the model to capture both
immediate pixel-wise discrepancies and broader spatial
patterns, facilitating the learning of robust and generalizable
features in complex visual environments.

IV. EXPERIMENTS

A. Datasets

In our study, we strategically use the KITTI Object
Detection Dataset [28] for its diverse real-world driving
scenarios and the Rainy KITTI Dataset [29] for its synthetic
rain conditions, effectively capturing the performance of our
model in both clear and adverse weather scenarios.

KITTI Object Detection Dataset: The KITTI dataset,
originating from Karlsruhe, Germany, is a cornerstone in the
automotive field, renowned for benchmarking perception
tasks like object detection [28]. It consists of 7,481 images,
featuring diverse urban, rural, and highway scenes with
detailed annotations of various entities, including vehicles,
pedestrians, and cyclists among others.

Rainy KITTI Object Detection Datasets: Rainy KITTI
is a variation of the original KITTI dataset that includes
artificially synthesized rain that mimics real-world rainy
conditions for object detection [29]. As part of this dataset,
virtual generated images with life-like rain effects are created
by overlaying generated rainy condition on the original im-
ages utilizing physical particle simulators, scene illumination
estimation, and accurate photometric modeling of rain.

In our experiments, the Rainy KITTI dataset serves as
the primary resource for training and validation. Each image
in the KITTI dataset has seven different levels of rainfall
conditions, each corresponding to a different intensity of
rainfall (Imm, Smm, 17mm, 25mm, 50mm, 75mm, 100mm,
200mm). For our dataset assembly, we randomly selected one
image from these seven rainfall conditions for each original
KITTI image, thereby ensuring an equal number of training

of the impact of varying rain densities on the model, ensuring
that the model is capable of adapting to diverse real-world
scenarios. Throughout the experiment, 80% of the data is
allocated for training and 20% for validation.

B. Quantitative Results

In this study, all models were developed, trained, and
evaluated using the PyTorch framework in Python. In order
to maximize model performance, 50 training epochs were
used with the stochastic gradient descent (SGD) optimization
method [30]. SGD optimizer parameters included a learning
rate of 0.0005, a momentum of 0.9 and a weight decay of
0.0001.

TABLE I: Evaluation Results of Different Models on Rainy

KITTI Dataset After 50 Training Epochs

mAP
Method
@0.5 @0.75 @][0.5,0.95]

Faster R-CNN [23] 73.5% 45.1% 42.3%
Retina Net [1] 54.6%  28.8% 30.1%
DETR [31] 59.7%  29.8% 31.2%
YOLOvV4 [32] 65.5%  35.5% 35.1%
Dynamic R-CNN [33] 71.8% 47.5% 44.4%
YOLOx [34] 62.6% 33.7% 34.1%

data ¥O-Qvtpatison betwdém %eleaft4aid rain§O-¢¢nditions.
AddiNonaIRGHNS [approach alkaes a idoiRosealistigssgpgulation

RAF-RCNN 82.1%  54.5% 51.4%
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Moreover, three metrics were utilized to evaluate model
performance: mAP@0.5, mAP@0.75, and mAP@][0.5:0.95],
reflecting mean average precision at varying intersection
over union (IoU) thresholds. These metrics range from basic
(mAP@0.5) to more stringent (mAP@[0.5:0.95]), averaging
performance across thresholds from 0.5 to 0.95. After 50
epochs of training and assessment, results for two distinct
models are summarized in Table I, reported as mean average
precision (mAP) according to the COCO benchmark [36].

The quantitative evaluation, as summarized in Table
I, demonstrates the superior performance of RAF-RCNN
across all metrics when compared to a variety of contempo-
rary object detection models tested under similar rainy condi-
tions. Notably, RAF-RCNN achieved an mAP@][0.5,0.95] of
51.4%, which is 5.5% higher than the next best model, NITF-
RCNN [4], and a significant 9.0% improvement over Dy-
namic R-CNN [33], the best performing conventional model.
This precision enhancement emphasizes RAF-RCNN’s ca-
pability to maintain detection accuracy under challenging
weather conditions, highlighting its effectiveness in adverse
environments.

C. Qualitative Results

For a comprehensive analysis, quantitative evaluation met-
rics alone cannot fully demonstrate the effectiveness of the
algorithm. Therefore, we also opted for direct observation
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of the detection results. Using the Rainy KITTI dataset, we
selected two representative images (000031, 000383) and
simulated rainfall conditions (5 mm, 25 mm, and 100 mm).
Fig. 6 displays the intuitive results of our proposed object
detection algorithm applied to these six images, none of which
were included in the training set.

Our algorithm maintains a relatively good detection per-
formance in sparse object conditions across a wide range of
rainfall intensities, as demonstrated by the left three images in
Fig. 3. With confidence levels close to 1.00, it is evident that
the bounding boxes are consistently and accurately
positioned.

However, the right three images reveal a less ideal detec-
tion outcome when objects have a high degree of overlap.
In scenarios with multiple overlapping objects, there is
noticeable deviation in the bounding boxes positioning. As
the intensity of simulated rainfall increases, the incidence of
false positives and missed detection also rises.

D. Ablation Experiments

An ablation study was conducted to validate the signifi-
cance of each component of the RAF-RCNN by selectively
disabling components of the model. The components, de-
noted as A, B, C, and D, correspond to the Pre-Recursive
Network in the Backbone (A), the Post-Recursive Network in
the Backbone (B), the Feature Corrective Transfer Learning
correction module (C), and the Modified Self-Attention ROI
Head (D), respectively. As we removed each component
in turn, we were able to investigate their individual con-
tributions to the performance of the model. As shown in Table
I, the complete model (including all components) achieved
the highest performance with an mAP@][0.5:0.95] of 51.4%.
In contrast, removing component A resulted in a decrease to
48.3%, highlighting its critical role in enhancing detection
under rainy conditions. Similarly, the removal of components
B, C, and D also led to varying decreases in performance,
demonstrating their importance in the model’s overall
effectiveness.

To validate the effectiveness of the EASDL function
proposed in this paper, we also assessed the impact of
different loss functions on the performance of RAF-RCNN.
In particular, we compared the EASDL with other standard

rmance of RAF-RCNN on Rainy

TABLE 1I: Ablation Study Results of Each Improvement
Component in RAF-RCNN

Component mAP
A B C D @0.5 @0.75 @[0.5:0.95]
X v v v 78.3%  52.0% 48.3%
v x v v 79.6%  53.1% 49.8%
v v X v 78.5% 48.3% 46.3%
v v v X 80.3%  52.7% 49.4%
v v v v 82.1% 54.5% 51.4%

Note: A = Pre-recursive network in backbone, B = Post-recursive network
in backbone, C = Feature corrective transfer learning module, D =
Modified self-attention ROI head.

loss functions, such as Mean Square Error (MSE), Struc- tural
Similarity Index (SSIM), and Cosine Similarity. The results,
presented in Table III, show that EASDL signifi- cantly
outperforms the other evaluated functions, with an
mAP@][0.5:0.95] of 51.4%, compared to 46.1% for the next
best performing loss function (Cosine Similarity). Accord-
ingly, EASDL is effective in aligning feature maps from
different weather conditions, which enhances the model’s
ability to detect objects in rainy weather.

TABLE III: Performance Comparison of Different Loss
Functions as Feature Loss in RAF-RCNN’s Feature Cor-
rective Transfer Learning Mechanism on the Rainy KITTI
Dataset

Loss Function mAP

@0.5 @0.75 @[0.5,0.95]
MSE 74.7%  45.1% 44.3%
SSIM 76.8%  44.5% 43.8%
Cosine Similarity ~ 78.8%  49.0% 46.1%
EASDL 82.1% 54.5% 51.4%

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented RAF-RCNN, an innovative ap-
proach to object detection in rainy conditions that integrates
a deraining process directly into the detection framework. Our
model leverages a novel feature transfer learning tech- nique
and the Extended Area Structural Discrepancy Loss
(EASDL), outperforming traditional models on the challeng-
ing Rainy KITTI dataset. The success of RAF-RCNN not only
demonstrates its efficacy in adverse weather but also its
potential to improve autonomous systems’ reliability, such as
vehicles and surveillance in variable environments.

Aside from its current application, RAF-RCNN has the
potential to provide a multitude of benefits and contributions.
As aresult of its ability to detect features in complex weather
conditions without requiring pristine images, it represents a
significant advancement in autonomous vehicle technology.
Combined with its efficient feature transfer learning, the
model’s adaptability paves the way for future research into
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other adverse conditions, including fog, dust, and nighttime.
This method can be used for a variety of complex im-
age signal processing tasks, providing a broader range of
applications for deep learning. During future research, we
intend to minimize the occurrence of false positives and
missed detections in highly cluttered environments, improve
the feature transfer learning process to handle even more
challenging conditions, and extend our approach to a wider
range of environments.
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