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Abstract— In the challenging realm of object detection un- der 
rainy conditions, visual distortions significantly hinder 
accuracy. This paper introduces Rain-Adapt Faster RCNN 
(RAF-RCNN), an innovative end-to-end approach that merges 
advanced deraining techniques with robust object detection. 
Our method integrates rain removal and object detection into a 
single process, using a novel feature transfer learning approach 
for enhanced robustness. By employing the Extended Area 
Structural Discrepancy Loss (EASDL), RAF-RCNN enhances 
feature map evaluation, leading to significant performance 
improvements. In quantitative testing of the Rainy KITTI 
dataset, RAF-RCNN achieves a mean Average Precision (mAP) 
of 51.4% at IOU [0.5, 0.95], exceeding previous methods by at 
least 5.5%. These results demonstrate RAF-RCNN’s potential to 
significantly enhance perception systems in intelligent trans- 
portation, promising substantial improvements in reliability and 
safety for autonomous vehicles operating in varied weather 
conditions. 

I. INTRODUCTION 

Object detection is crucial in the development of au- 

tonomous driving technologies, a key focus area in intelligent 

transportation systems [1], [2]. However, the reliability of 

these systems is often compromised under adverse weather 

conditions, such as rain, which is a critical challenge for 

autonomous vehicles [3]. This paper introduces Rain Adapt 

Faster R-CNN (RAF-RCNN), a groundbreaking approach 

designed specifically for intelligent driving systems, that 

adapts features from clear to rainy conditions, enhancing the 

robustness and reliability of autonomous vehicle perception 

in challenging environments. 

By integrating the deraining process into the object detec- 

tion pipeline, the RAF-RCNN model creates an end-to-end 

solution that is seamless and end-to-end. In addition to retain- 

ing the essential features, this innovative approach bypasses 

the traditional two-stage rainy day object detection process, 

thereby increasing the efficiency of detection, as shown in 

Fig. 1-(c). Moreover, by leveraging feature corrective transfer 

learning [4], RAF-RCNN adeptly adjusts to the variances 

of rainy conditions, using real-world affected datasets for 

training. This enables precise detection and identification 

under severe rain, where visibility is notably reduced. 

The current technologies for object detection in rainy 

conditions can be broadly categorized into two approaches. 

The first approach is a two-stage method, as illustrated 
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Fig. 1: Pipeline for Previous Deraining Object Detection 

Methods and RAF-RCNN 

 

 

in Fig. 1 -(a). This method initially employs a deraining 

module to process rainy images, producing relatively rain- 

free images. Subsequently, an object detection module is used 

to recognize objects in the derained images. The second 

approach, which has been the focus of recent research efforts 

[5], is an end-to-end deraining module as shown in Fig. 

1 -(b). This method utilizes a single neural network to 

simultaneously achieve deraining and object detection in one 

training process. However, even in this approach, the derained 

images are considered an interim outcome of the model and 

are evaluated using a loss function to assess the deraining 

effectiveness. 

Nevertheless, it’s important to question the necessity of 

derained images in the neural network’s process for rain- 

affected object detection. It might be feasible and potentially 

more efficient to rely solely on the neural network’s capacity 

to interpret and detect objects directly from rainy images [6], 

[7]. This approach challenges the conventional methodology 

and suggests a paradigm shift, leveraging the advanced learn- 

ing capabilities of neural networks to bypass the deraining 

step entirely. 

A. Research Significance and Potential Impacts 

A key assumption of this research is that perfect visual 

clarity, similar to human vision, is not necessary to detect 

objects effectively. Convolutional Neural Networks (CNNs), 

the backbone of modern object detection frameworks, are the 

basis for this argument. Unlike human vision, deep neural 
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networks possess the unique ability to recognize relevant 

features from images, even if the effects of these images differ 

somewhat from those observed by the human eye [8]. It 

has been demonstrated that neural networks do not require 

neural networks to produce high-quality, human- friendly 

images for visual tasks, especially object detection tasks [8], 

[9]. 

In contrast to the traditional paradigm, this approach 

suggests that object detection might not require the pursuit of 

derained images as a prerequisite. By bypassing the 

intermediary step of rain removal, RAF-RCNN is intended to 

achieve favorable detection results directly from rainy images. 

Furthermore, the application of transfer learning in RAF- 

RCNN aids in aligning features between rainy and clear 

weather conditions, enhancing the model’s ability to learn 

from and adapt to these different scenarios. This feature 

alignment is critical in ensuring the robustness and accuracy 

of the model in diverse environmental conditions. 

B. Contributions 

With the complexity of object detection in rainy con- 

ditions, the development of RAF-RCNN is an important 

advancement. Moving forward, we delineate the principal 

contributions of RAF-RCNN as follows: 

• End-to-End Rainy Object Detection Models: We 

present RAF-RCNN, the first model of its kind that dis- 

regards the human visual perception aspect in deraining. 

Unlike traditional methods that evaluate deraining effec- 

tiveness at the image level, our model integrates the de- 

raining process within the object detection framework. 

This integration not only simplifies training complexity 

but also significantly enhances detection performance in 

rainy conditions. 

• Feature Corrective Transfer Learning in Rainy Ob- 

ject Detection: We incorporate feature corrective trans- 

fer learning technique [4] specifically tailored for rainy 

condition object detection. By utilizing sunny realistic 

datasets, we facilitate the adaptation of the model at the 

feature map level, enhancing its ability to detect objects 

in rainy conditions with enhanced accuracy. 

• Novel Loss Function - EASDL: We introduce a novel 

loss function, the Extended Area Structural Discrepancy 

Loss (EASDL), designed to evaluate and optimize fea- 

ture map alignment in the context of transfer learning. 

This loss function plays a crucial role in fine-tuning the 

model’s ability to distinguish and detect objects amidst 

rain-distorted images challenges. 

II. RELATED WORK 

A. Single Image Deraining 

Deep Neural Networks for Deraining: The field of single 

image deraining has benefited significantly from deep 

learning technologies. Fu et al. [10] introduced DerainNet, 

a novel approach that utilizes a guide filter to decompose 

an image into a base and a detail layer, where the detail layer 

is processed through a residual network to remove 

rain effects. This approach effectively clears the image of 

rain. Additionally, Qian et al. [11] delved into the potential of 

Generative Adversarial Networks (GANs), augmented with 

visual attention mechanisms. As a result, DeRaindrop was 

developed, a specialized GAN designed specifically for the 

detection and elimination of raindrops. Fu et al. [12] further 

developed the Deep Detail Network (DDN), which uses 

CNNs to accurately predict and reduce discrepancies between 

rainy and clear images. 

Progressive Deraining Networks: Progressive deraining 

methods have revolutionized the approach to removing rain 

from images by introducing more dynamic and effective 

techniques. [13], who developed PReNet. This innovative 

approach entails the recursive removal of rain from a single 

image. This technique progressively derains the original 

image through iterations, each improving the rain removal, 

and ultimately results in a high-quality rain-free image. 

Building on these concepts, Wang et al. [14] introduced 

the Rain Convolution Dictionary Network (RCDNet), which 

autonomously identifies and processes rain elements, thus 

improving the deraining quality. Zamir et al. [15] further 

contributed by proposing MPRNet, a multi-stage architecture 

that simplifies the restoration process and improves the 

learning of restoration functions incrementally. 

B. Object Detection in Rainy Conditions 

Two-stage Object Detection Approaches in Rainy Con- 

dition: In deep learning, two-stage object detection methods 

have been developed to handle rainy and adverse weather 

conditions. These methods typically involve an initial stage of 

image restoration followed by object detection. Huang et 

al. [16] pioneered the development of a dual-subnet network 

(DSNet), which bifurcates its mechanism into two separate 

subnetworks dedicated to image recovery and object 

detection, respectively. Further augmenting this field, they 

introduced the Selective Features Absorption Network (SFA- 

Net) [17]. The SFA-Net consists of three integral parts: a 

feature selection subnetwork, an object detection subnet- 

work, and a feature absorption subnetwork. It is especially 

beneficial in rainy conditions due to its enhanced detection 

capabilities. 

In a similar vein, on tasks, enhancing training data with 

synthetic rainfall variations to improve object detection ro- 

bustness. Sindagi et al. [18] presented a domain adversarial 

object detection framework that uses pre-adversarial training 

to address various weather conditions. Moreover, Appiah and 

Mensah [19] enhanced images with the ESRGAN algorithm 

before detection using the YoloV7 algorithm to cope with rain 

impacts effectively. 

End-to-End Object Detection Approaches in Rainy 

Conditions: Additionally, recent advancements include end- 

to-end object detection systems that integrate deraining and 

object detection into a single neural network. Wang et al. [20] 

developed an end-to-end network that integrates deraining 

and object detection into cascading modules, treating the tasks 

as distinct yet sequential stages within one framework. This 

approach starts with deraining before object detection, 



1420 

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 24,2025 at 17:45:57 UTC from IEEE Xplore. Restrictions apply. 

 

 

Fig. 2: Architectures of RAF-RCNN (Rain-Adapt Faster RCNN) 

 

maintaining separate focuses within a unified system. Liu 

et al. [3] introduced the Image-Adaptive YOLO (IA-YOLO) 

which combines a small CNN with YOLOv3 and a differ- 

entiable image processing (DIP) module. This configuration 

preprocesses rain-distorted images for detection, still modi- 

fying images to reduce weather impacts before the detection 

phase. 

Using the concept of Feature Corrective Transfer Learning 

(FCTL), Wei et al. [4] developed a model for object detection 

in non-ideal conditions, termed NITF RCNN. Through the use 

of this model, real-time detection is enabled, eschewing any 

processes which create idealized images either directly or 

indirectly. However, the NITF RCNN model, due to its 

generalist nature, lacks specific adaptations for detecting 

objects in images captured during rain. 

Adverse weather cross-domain object detection (CDOD) 

has been widely studied. Recent works, such as those by Li et 

al. [21] and Chen et al. [22], focus on domain adaptation to 

improve detection under various adverse weather condi- tions 

without requiring interim outcomes. These approaches 

emphasize the importance of adapting models to different 

weather scenarios, yet still leave room for methods specifi- 

cally designed to handle the unique challenges posed by rainy 

weather. Despite these advancements, our approach, RAF- 

RCNN, integrates feature transfer learning directly into the 

detection framework without relying on deraining evaluation, 

simplifying the model architecture and enhancing detection 

performance under rainy conditions. 

III. METHODOLOGY 

A. Overview of RAF-RCNN Framework 

The RAF-RCNN, as illustrated in Fig. 2, is a novel object 

detection framework tailored for the intricacies of rainy 

conditions. It meticulously extends the capabilities of the 

standard Faster R-CNN [23] by incorporating specialized 

structural modifications. These adaptations are critical in 

enabling the RAF-RCNN to maintain high fidelity in feature 

representation and object localization, even in the presence of 

visual noise introduced by rain. The model’s end-to- end 

architecture encapsulates advanced preprocessing, robust 

feature extraction, feature refinement, and attention-enhanced 

detection mechanisms. This integration facilitates a seamless 

transition of feature learning from clear to rain-affected 

scenarios, thereby ensuring consistent detection performance 

across varied weather conditions. 

The RAF-RCNN architecture, tailored for rain-distorted 

conditions, features a dual-stage backbone upgrade and a self-

attention-equipped ROI head. The Pre-Recursive Net- work 

initially processes inputs to alleviate rain’s visual noise, 

streamlining them for the ResNet-50 FPN to extract multi-

scale features crucial for accurate detection. Post- extraction, 

the Post-Recursive Network fine-tunes these features, 

enhancing the model’s interpretive capabilities in adverse 

weather (Fig. 4). Complementing the backbone, the ROI head 

incorporates a self-attention mechanism, focusing the 

model’s predictive power on salient features for robust object 

localization. 

RAF-RCNN’s cutting-edge feature corrective transfer 

learning, depicted in Fig. 2, directly aligns rain-affect feature 

maps with their clear-weather counterparts, harnessing the 

traditional Faster R-CNN’s strengths. Due to the introduction 

of a transfer learning structure, the loss function does not 

only include the bounding box regression loss LBBox and 

classification loss LClass covered by Faster R-CNN [23], but 

also incorporates a feature match lossLF eat. Therefore, the 

modified total loss formula is: 

 

Ltotal = λ · LFeature + α · LBBox + β · LClass. (1) 

. 

This feature alignment is quantified and optimized through 

the Extended Area Structural Discrepancy Loss (EASDL), 

a loss function that critically evaluates and min- imizes the 

structural discrepancies between feature maps, bolstering the 

model’s detection accuracy in challenging rain conditions. 

B. Backbone Enhancements 

The enhanced backbone architecture in the Recursive 

Faster R-CNN [23] is innovatively designed to potentially 

improve the model’s performance in processing rain-distorted 

images. Based on PReNet [13] and other recursive deraining 
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Fig. 3: Architecture of Pre-Recursive Network in Backbone 

 

 

methods [5], [14], [15], this modified backbone is organized 

into three distinct but interconnected sub-networks. Each sub-

network is strategically positioned to contribute towards the 

potential improvement of feature representation in rain- 

affected scenarios. 

1) Initial Stage: Pre-Recursive Network: To combat rain- 

distorted images, the Pre-Recursive Network operates as an 

advanced preprocessing unit that targets the visual anomalies 

that result from rain. It is important to note that this network 

plays an important role in adapting to the intricate details of 

RGB images affected by rain as part of the initial processing 

in order to ensure that distortions caused by rain are fully 

addressed. 

Structurally, this network consists of several convolutional 

layers, each followed by a Rectified Linear Unit (ReLU). The 

ReLU activation [24] is crucial for introducing non-linearity, 

enabling the network to capture the complex patterns asso- 

ciated with rain-distorted images. In order to ensure that es- 

sential image details are preserved, each convolutional layer 

extracts rain-specific features while the residual connection 

ensures the extraction of essential features. Fig. 3 shows 

the architecture of the Pre-Recursive Network. In order to 

ensure that critical contextual information is retained, this 

combination of feature extraction and preservation is crucial 

in preparing the image for further processing by the FPN 

backbone. 

2) Core Feature Extraction: FPN Backbone: Based on the 

robust ResNet50 model [25], the architecture is centered 

around the Feature Pyramid Network (FPN) Backbone [26]. 

In rain-distorted environments, the ResNet50 FPN backbone 

is capable of extracting multi-scale features, which is essen- 

tial for the detection of objects at different size scales. To 

detect objects obscured or altered by rain, the FPN must 

be able to create hierarchical representations of features at 

various scales. It generates a comprehensive feature map that 

captures both macro and micro details, making it easier to 

detect objects that may be partially obscured or distorted as a 

result of rain. 

Fig. 4: Architecture of Post-Recursive Network in Backbone 

 

3) Refinement Stage: Post-Recursive Network: The Post- 

Recursive Network serves as a critical refinement stage, 

strategically designed to align the feature maps from the FPN 

closer to those typical of clear weather conditions. By 

processing the multi-scale feature maps generated by the 

FPN, this network aims to fine-tune the rain-distorted 

features, enhancing their suitability for more accurate object 

detection in adverse weather. 

Similar to the Pre-Recursive Network, it consists of several 

convolutional layers with ReLU activations [24] tailored to 

the FPN output scale, which is showen in Fig. 4. In each layer, 

we refine the feature maps, adjusting the rain-affected 

features subtly while preserving the integrity of the core data. 

The targeted post-processing of the model is essential in order 

to enable it not only to detect objects in rainy conditions, but 

also to do so with a feature representation that bridges the gap 

to clear weather conditions, thereby facilitating a successful 

transfer of learning. 

C. Integration of Attention Mechanism in ROI Head 

By incorporating the Transformer module [27] into the 

Region of Interest (ROI) header of the Faster R-CNN frame- 

work [23], some assistance in the field of object detection can 

be provided. We believe that, especially under challenging 

conditions of rainwater distortion, improvements in ROI 

heads can help the model focus more on prominent features 

in RoI to improve the detection process, which is critical to 

maintaining performance in harsh weather conditions. 

As displayed in Fig. 5, the modified ROI header based on 

attention mainly includes the following steps. 

Input Feature Map Reception: The journey starts with 

the input feature map from the RoI, which contains essential 

information for object detection. 

Attention Module Operation: 

• The feature map is first passed through a linear layer that 

performs down-sampling, reducing its dimension- ality 

to focus on critical features. 

• A ReLU activation function follows, introducing non- 

linearity to enhance feature representation. 

• An up-sampling linear layer then restores the feature 

dimension, preparing it for attention weight application. 
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 1   

 
Fig. 5: Artecture of Modified Self-Attention ROI Head 

 

• A Sigmoid function generates attention weights, which 

are crucial for highlighting significant aspects of the 

feature map while diminishing less important parts. 

Application of Attention Weights: An element-wise 

multiplication is performed between the attention weights and 

the feature map. This step selectively amplifies salient 

features, ensuring that the model focuses on the most relevant 

aspects for object detection. 

Processed Feature Map: The resultant feature map, now 

refined with focused attention, encapsulates the crucial 

for utilizing the clear weather detection capabilities of the 

traditional Faster R-CNN model [23]. 

E. Extended Area Structural Discrepancy Loss: EASDL 

To evaluate and learn from the differences between A 
and B at the feature level, we propose the Extended Area 

Structural Discrepancy Loss (EASDL). In addressing the 

challenges posed by complex visual environments in tasks 

such as object detection, the need arises for a loss function 

capable of effectively capturing and quantifying structural 

differences between feature maps. 

The EASDL is formulated to capture not only local 

gradient discrepancies at individual pixel locations but also 

gradient consistency in a broader surrounding area. This dual 

consideration enables the model to be sensitive to both 

immediate and expansive structural variances, which is 

particularly useful in detecting subtle yet critical spatial 

discrepancies in feature maps. Unlike traditional approaches 

that rely on pixel-based comparisons, EASDL focuses on the 

structural aspects and area consistency of the feature maps. 
1) Mathematical Formulation: Given two feature maps A 

and B with dimensions [batch size, channels, width, height], 

the EASDL is defined as: 

 

EASDL(A, B) 

features needed for accurate object identification and local- 

ization. 

  

= 
WH 

 

 exp(−∆S(x, y)) × ∆S(x, y) 

RoI Head Processing: The classification head, com- 

prising a linear layer, processes the feature map to predict 

object classes. Concurrently, the regression head, also a linear 

layer, predicts bounding box coordinates, crucial for object 

localization. 

Output Generation: The final output includes class 

scores, indicating the likelihood of each class, and bounding 

box coordinates, specifying the location of detected objects 

within the RoI. 

D. Feature Corrective Transfer Learning Strategy 

Our research utilizes a transfer learning approach at the 

feature map level, which is particularly effective in rain- 

distorted image scenarios [4]. In this approach, the structural 

and spatial characteristics of feature maps generated from 

rain-affected images are aligned with those of feature maps 

generated under clear weather conditions. The alignment is 

hypothesized to facilitate the extraction of weather-agnostic 

features, increasing the model’s generalization capabilities 

across a variety of environmental conditions. 

Feature Map Generation: For a given rain-distorted 

image, the enhanced backbone of our RAF RCCN model 

generates a feature map, denoted as A. As a result, the same 

image in clear weather conditions is processed through a 

traditional Faster RCNN backbone to produce B as a feature 

map. 

x=1 y=1 

+ λ · Ω(A, B, x, y, r)

 

. (2) 

where: 

• ∆S(x, y) represents the difference in local gradient 

magnitudes at position (x, y), computed as the absolute 

difference between the gradients of A and B. 

• λ is a weighting factor that balances the contribution of 

the extended area gradient term. 

• Ω(A, B, x, y, r) denotes the extended area gradient con- 

sistency term, defined over a neighborhood of radius r 
around each pixel. 

2) Implementation Details: The gradient function G(·), a 
core component of the EASDL, is designed to extract the 

structural characteristics of feature maps. We implement this 

function using the Sobel operator, a prominent method for 

edge detection, to compute the gradient at each pixel within 

the feature maps. The operator functions by convolving the 

feature map with two separate 3x3 kernels, each designed to 

detect edges along specific orientations. 

The Sobel operator is defined using the following convo- 

lutional kernels: 

−1  0  1
 

−1  −2  −1  

Sx = −2    0    2  , Sy =   0 0 0   . (3) 

  
 

to ensure that A, despite being derived from rain-distorted 

inputs, is closely similar to B in terms of structural sim- ilarity 

and spatial consistency. This resemblance is crucial 

W H 

−1  0  1 1 2 1 Objective of Transfer Learning: The core objective is 
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The horizontal gradient (Sobel-x) detects vertical edges, 

and the vertical gradient (Sobel-y) detects horizontal edges. 

These gradients are computed as follows: 
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r   

 

Gx(A) = A ∗ Sx, Gy(A) = A ∗ Sy. (4) 

The overall gradient magnitude at each pixel is then 

calculated by combining these individual gradients: 

G(A, x, y) = 
✓

Gx(A, x, y)2 + Gy(A, x, y)2. (5) 

The extended area gradient term Ω(A, B, x, y, r), evalu- 

ates the consistency of gradient changes within a neighbor- 

hood around each pixel. For a specified radius r, it considers 

a square window around each pixel: 

 
Ω(A, B, x, y, r) 

of the impact of varying rain densities on the model, ensuring 

that the model is capable of adapting to diverse real-world 

scenarios. Throughout the experiment, 80% of the data is 

allocated for training and 20% for validation. 

B. Quantitative Results 

In this study, all models were developed, trained, and 

evaluated using the PyTorch framework in Python. In order 

to maximize model performance, 50 training epochs were 

used with the stochastic gradient descent (SGD) optimization 

method [30]. SGD optimizer parameters included a learning 

rate of 0.0005, a momentum of 0.9 and a weight decay of 

0.0001. 

TABLE I: Evaluation Results of Different Models on Rainy 

 1  
= 

(2r + 1)2 

   
|(G(A, x, y) − G(A, x + i, y + j)) 

KITTI Dataset After 50 Training Epochs 
 

mAP 

i=−r j=−r 

−(G(B, x, y) − G(B, x + i, y + j))| . (6) 

The integration of local gradient differences and extended 

area consistency in EASDL enables the model to capture both 

immediate pixel-wise discrepancies and broader spatial 

patterns, facilitating the learning of robust and generalizable 

features in complex visual environments. 

IV. EXPERIMENTS 

Method 

A. Datasets 

In our study, we strategically use the KITTI Object 

Detection Dataset [28] for its diverse real-world driving 

scenarios and the Rainy KITTI Dataset [29] for its synthetic 

rain conditions, effectively capturing the performance of our 

model in both clear and adverse weather scenarios. 

KITTI Object Detection Dataset: The KITTI dataset, 

originating from Karlsruhe, Germany, is a cornerstone in the 

automotive field, renowned for benchmarking perception 

tasks like object detection [28]. It consists of 7,481 images, 

featuring diverse urban, rural, and highway scenes with 

detailed annotations of various entities, including vehicles, 

pedestrians, and cyclists among others. 

Rainy KITTI Object Detection Datasets: Rainy KITTI 

is a variation of the original KITTI dataset that includes 

artificially synthesized rain that mimics real-world rainy 

conditions for object detection [29]. As part of this dataset, 

virtual generated images with life-like rain effects are created 

by overlaying generated rainy condition on the original im- 

ages utilizing physical particle simulators, scene illumination 

estimation, and accurate photometric modeling of rain. 

In our experiments, the Rainy KITTI dataset serves as 

the primary resource for training and validation. Each image 

in the KITTI dataset has seven different levels of rainfall 

conditions, each corresponding to a different intensity of 

rainfall (1mm, 5mm, 17mm, 25mm, 50mm, 75mm, 100mm, 

200mm). For our dataset assembly, we randomly selected one 

image from these seven rainfall conditions for each original 

KITTI image, thereby ensuring an equal number of training 

data for comparison between clear and rainy conditions. 

Additionally, this approach allows a more realistic simulation 

r 

 @0.5 @0.75 @[0.5,0.95]  

Faster R-CNN [23] 73.5% 45.1% 42.3%  

Retina Net [1] 54.6% 28.8% 30.1%  

DETR [31] 59.7% 29.8% 31.2%  

YOLOv4 [32] 65.5% 35.5% 35.1%  

Dynamic R-CNN [33] 71.8% 47.5% 44.4%  

YOLOx [34] 62.6% 33.7% 34.1%  

YOLOv8 [35] 74.3% 44.2% 40.4%  

NITF-RCNN [4] 78.2% 47.8% 45.9%  

RAF-RCNN 82.1% 54.5% 51.4%  
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Moreover, three metrics were utilized to evaluate model 

performance: mAP@0.5, mAP@0.75, and mAP@[0.5:0.95], 

reflecting mean average precision at varying intersection 

over union (IoU) thresholds. These metrics range from basic 

(mAP@0.5) to more stringent (mAP@[0.5:0.95]), averaging 

performance across thresholds from 0.5 to 0.95. After 50 

epochs of training and assessment, results for two distinct 

models are summarized in Table I, reported as mean average 

precision (mAP) according to the COCO benchmark [36]. 

The quantitative evaluation, as summarized in Table 

I, demonstrates the superior performance of RAF-RCNN 

across all metrics when compared to a variety of contempo- 

rary object detection models tested under similar rainy condi- 

tions. Notably, RAF-RCNN achieved an mAP@[0.5,0.95] of 

51.4%, which is 5.5% higher than the next best model, NITF- 

RCNN [4], and a significant 9.0% improvement over Dy- 

namic R-CNN [33], the best performing conventional model. 

This precision enhancement emphasizes RAF-RCNN’s ca- 

pability to maintain detection accuracy under challenging 

weather conditions, highlighting its effectiveness in adverse 

environments. 

C. Qualitative Results 

For a comprehensive analysis, quantitative evaluation met- 

rics alone cannot fully demonstrate the effectiveness of the 

algorithm. Therefore, we also opted for direct observation 

mailto:mAP@0.5
mailto:mAP@0.75
mailto:(mAP@0.5
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Fig. 6: Detection Performance of RAF-RCNN on Rainy 

KITTI Dataset under Various Rainfall Conditions (5mm, 

25mm, 100mm) 

 

 

of the detection results. Using the Rainy KITTI dataset, we 

selected two representative images (000031, 000383) and 

simulated rainfall conditions (5 mm, 25 mm, and 100 mm). 

Fig. 6 displays the intuitive results of our proposed object 

detection algorithm applied to these six images, none of which 

were included in the training set. 

Our algorithm maintains a relatively good detection per- 

formance in sparse object conditions across a wide range of 

rainfall intensities, as demonstrated by the left three images in 

Fig. 3. With confidence levels close to 1.00, it is evident that 

the bounding boxes are consistently and accurately 

positioned. 

However, the right three images reveal a less ideal detec- 

tion outcome when objects have a high degree of overlap. 

In scenarios with multiple overlapping objects, there is 

noticeable deviation in the bounding boxes positioning. As 

the intensity of simulated rainfall increases, the incidence of 

false positives and missed detection also rises. 

 

D. Ablation Experiments 

An ablation study was conducted to validate the signifi- 

cance of each component of the RAF-RCNN by selectively 

disabling components of the model. The components, de- 

noted as A, B, C, and D, correspond to the Pre-Recursive 

Network in the Backbone (A), the Post-Recursive Network in 

the Backbone (B), the Feature Corrective Transfer Learning 

correction module (C), and the Modified Self-Attention ROI 

Head (D), respectively. As we removed each component 

in turn, we were able to investigate their individual con- 

tributions to the performance of the model. As shown in Table 

II, the complete model (including all components) achieved 

the highest performance with an mAP@[0.5:0.95] of 51.4%. 

In contrast, removing component A resulted in a decrease to 

48.3%, highlighting its critical role in enhancing detection 

under rainy conditions. Similarly, the removal of components 

B, C, and D also led to varying decreases in performance, 

demonstrating their importance in the model’s overall 

effectiveness. 

To validate the effectiveness of the EASDL function 

proposed in this paper, we also assessed the impact of 

different loss functions on the performance of RAF-RCNN. 

In particular, we compared the EASDL with other standard 

TABLE II: Ablation Study Results of Each Improvement 

Component in RAF-RCNN 
 

  Component    mAP   

A B C D  @0.5 @0.75 @[0.5:0.95] 

 × ✓ ✓ ✓  78.3% 52.0% 48.3%  

 ✓ × ✓ ✓  79.6% 53.1% 49.8%  

 ✓ ✓ × ✓   78.5% 48.3% 46.3%  

 ✓  ✓ ✓ ×  80.3% 52.7% 49.4%  

 ✓  ✓ ✓ ✓   82.1% 54.5% 51.4%  

Note: A = Pre-recursive network in backbone, B = Post-recursive network 
in backbone, C = Feature corrective transfer learning module, D = 

Modified self-attention ROI head. 

 

 

loss functions, such as Mean Square Error (MSE), Struc- tural 

Similarity Index (SSIM), and Cosine Similarity. The results, 

presented in Table III, show that EASDL signifi- cantly 

outperforms the other evaluated functions, with an 

mAP@[0.5:0.95] of 51.4%, compared to 46.1% for the next 

best performing loss function (Cosine Similarity). Accord- 

ingly, EASDL is effective in aligning feature maps from 

different weather conditions, which enhances the model’s 

ability to detect objects in rainy weather. 

TABLE III: Performance Comparison of Different Loss 

Functions as Feature Loss in RAF-RCNN’s Feature Cor- 

rective Transfer Learning Mechanism on the Rainy KITTI 

Dataset 
 

Loss Function    
@0.5 

mAP 

@0.75 @[0.5,0.95] 

MSE 74.7% 45.1% 44.3% 

SSIM 76.8% 44.5% 43.8% 

Cosine Similarity 78.8% 49.0% 46.1% 

EASDL 82.1% 54.5% 51.4% 

 

V. CONCLUSIONS AND FUTURE WORK 

In this work, we presented RAF-RCNN, an innovative ap- 

proach to object detection in rainy conditions that integrates 

a deraining process directly into the detection framework. Our 

model leverages a novel feature transfer learning tech- nique 

and the Extended Area Structural Discrepancy Loss 

(EASDL), outperforming traditional models on the challeng- 

ing Rainy KITTI dataset. The success of RAF-RCNN not only 

demonstrates its efficacy in adverse weather but also its 

potential to improve autonomous systems’ reliability, such as 

vehicles and surveillance in variable environments. 

Aside from its current application, RAF-RCNN has the 

potential to provide a multitude of benefits and contributions. 

As a result of its ability to detect features in complex weather 

conditions without requiring pristine images, it represents a 

significant advancement in autonomous vehicle technology. 

Combined with its efficient feature transfer learning, the 

model’s adaptability paves the way for future research into 
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other adverse conditions, including fog, dust, and nighttime. 

This method can be used for a variety of complex im- 

age signal processing tasks, providing a broader range of 

applications for deep learning. During future research, we 

intend to minimize the occurrence of false positives and 

missed detections in highly cluttered environments, improve 

the feature transfer learning process to handle even more 

challenging conditions, and extend our approach to a wider 

range of environments. 

 

REFERENCES 
 

[1] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dolla´r, “Focal loss for 
dense object detection,” in Proceedings of the IEEE international 
conference on computer vision, 2017, pp. 2980–2988. 

[2] D. P. Bavirisetti, H. R. Martinsen, G. H. Kiss, and F. Lindseth, “A 
multi-task vision transformer for segmentation and monocular depth 
estimation for autonomous vehicles,” IEEE Open Journal of Intelligent 
Transportation Systems, 2023. 

[3] W. Liu, G. Ren, R. Yu, S. Guo, J. Zhu, and L. Zhang, “Image- adaptive 
yolo for object detection in adverse weather conditions,” in 
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, 
no. 2, 2022, pp. 1792–1800. 

[4] C. Wei, G. Wu, and M. J. Barth, “Feature corrective transfer learning: 
End-to-end solutions to object detection in non-ideal visual condi- 
tions,” in Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR) Workshops, June 2024, pp. 
23–32. 

[5] T. Wang, K. Wang, Q. Li, and H. Cecotti, “Progressive rain 
removal based on the combination network of cnn and transformer,” 
Intell. Neuroscience, vol. 2022, jan 2022. [Online]. Available: 
https://doi.org/10.1155/2022/5067175 

[6] C. Wei, G. Wu, M. Barth, P. H. Chan, V. Donzella, and A. Huggett, 
“Enhanced object detection by integrating camera parameters into raw 
image-based faster r-cnn,” in 2023 IEEE International Intelligent 
Transportation Systems Conference (ITSC). IEEE, 2023. 

[7] Y. Wang, P. H. Chan, and V. Donzella, “A two-stage h. 264 based 
video compression method for automotive cameras,” in 2022 IEEE 5th 
international conference on industrial cyber-physical systems (ICPS). 
IEEE, 2022, pp. 01–06. 

[8] P. H. Chan, C. Wei, A. Huggett, and V. Donzella, “Raw camera 
data object detectors: an optimisation for automotive processing and 
transmission,” Authorea Preprints, 2023. 

[9] C. Wei, “Vehicle detecting and tracking application based on yolov5 
and deepsort for bayer data,” in 2022 17th International Conference on 
Control, Automation, Robotics and Vision (ICARCV). IEEE, 2022, 
pp. 843–849. 

[10] X. Fu, J. Huang, X. Ding, Y. Liao, and J. Paisley, “Clearing the skies: 
A deep network architecture for single-image rain removal,” IEEE 
Transactions on Image Processing, vol. 26, no. 6, pp. 2944–2956, 
2017. 

[11] R. Qian, R. T. Tan, W. Yang, J. Su, and J. Liu, “Attentive generative 
adversarial network for raindrop removal from a single image,” in 
Proceedings of the IEEE conference on computer vision and pattern 
recognition, 2018, pp. 2482–2491. 

[12] X. Fu, J. Huang, D. Zeng, Y. Huang, X. Ding, and J. Paisley, 
“Removing rain from single images via a deep detail network,” in 
Proceedings of the IEEE conference on computer vision and pattern 
recognition, 2017, pp. 3855–3863. 

[13] D. Ren, W. Zuo, Q. Hu, P. Zhu, and D. Meng, “Progressive image 
deraining networks: A better and simpler baseline,” in Proceedings of 
the IEEE/CVF conference on computer vision and pattern recognition, 
2019, pp. 3937–3946. 

[14] H. Wang, Q. Xie, Q. Zhao, and D. Meng, “A model-driven deep neural 
network for single image rain removal,” in Proceedings of the 
IEEE/CVF conference on computer vision and pattern recognition, 
2020, pp. 3103–3112. 

[15] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang, 
and L. Shao, “Multi-stage progressive image restoration,” in 2021 
IEEE/CVF Conference on Computer Vision and Pattern Recognition 
(CVPR), 2021, pp. 14 816–14 826. 

[16] S.-C. Huang, T.-H. Le, and D.-W. Jaw, “Dsnet: Joint semantic learning 
for object detection in inclement weather conditions,” IEEE Transac- 
tions on Pattern Analysis and Machine Intelligence, vol. 43, no. 8, pp. 
2623–2633, 2021. 

[17] S.-C. Huang, Q.-V. Hoang, and T.-H. Le, “Sfa-net: A selective features 
absorption network for object detection in rainy weather conditions,” 
IEEE Transactions on Neural Networks and Learning Systems, vol. 34, 
no. 8, pp. 5122–5132, 2023. 

[18] V. A. Sindagi, P. Oza, R. Yasarla, and V. M. Patel, “Prior-based domain 
adaptive object detection for hazy and rainy conditions,” in Computer 
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 
23–28, 2020, Part XIV 16. Springer, 2020, pp. 763–780. 

[19] E. O. Appiah and S. Mensah, “Object detection in adverse weather 
condition for autonomous vehicles,” Multimedia Tools and Applica- 
tions, pp. 1–27, 2023. 

[20] K. Wang, T. Wang, J. Qu, H. Jiang, Q. Li, and L. Chang, “An end-to- 
end cascaded image deraining and object detection neural network,” 
IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9541–9548, 
2022. 

[21] Y.-J. Li, X. Dai, C.-Y. Ma, Y.-C. Liu, K. Chen, B. Wu, Z. He, K. Kitani, 

and P. Vajda, “Cross-domain adaptive teacher for object detection,” in 
Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition, 2022, pp. 7581–7590. 

[22] M. Chen, W. Chen, S. Yang, J. Song, X. Wang, L. Zhang, Y. Yan, 
D. Qi, Y. Zhuang, D. Xie et al., “Learning domain adaptive object 
detection with probabilistic teacher,” arXiv preprint arXiv:2206.06293, 
2022. 

[23] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real- 
time object detection with region proposal networks,” IEEE transac- 
tions on pattern analysis and machine intelligence, vol. 39, no. 6, pp. 
1137–1149, 2016. 

[24] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv 
preprint arXiv:1803.08375, 2018. 

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image 
recognition,” in Proceedings of the IEEE conference on computer 
vision and pattern recognition, 2016, pp. 770–778. 

[26] T.-Y. Lin, P. Dolla´r, R. Girshick, K. He, B. Hariharan, and S. Belongie, 
“Feature pyramid networks for object detection,” in IEEE conference 
on computer vision and pattern recognition, 2017, pp. 2117–2125. 

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. 
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” 
Advances in neural information processing systems, vol. 30, 2017. 

[28] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: 
The kitti dataset,” The International Journal of Robotics Research, vol. 
32, no. 11, pp. 1231–1237, 2013. 

[29] S. S. Halder, J.-F. Lalonde, and R. d. Charette, “Physics-based 
rendering for improving robustness to rain,” in Proceedings of the 
IEEE/CVF International Conference on Computer Vision, 2019, pp. 10 
203–10 212. 

[30] L. Bottou, “Large-scale machine learning with stochastic gradient 
descent,” in Proceedings of COMPSTAT’2010: 19th International 
Conference on Computational StatisticsParis France, August 22-27, 
2010 Keynote, Invited and Contributed Papers. Springer, 2010, pp. 
177–186. 

[31] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and 

S. Zagoruyko, “End-to-end object detection with transformers,” in 
European conference on computer vision. Springer, 2020, pp. 213– 
229. 

[32] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op- timal 
speed and accuracy of object detection,” arXiv preprint 
arXiv:2004.10934, 2020. 

[33] H. Zhang, H. Chang, B. Ma, N. Wang, and X. Chen, “Dynamic r- cnn: 
Towards high quality object detection via dynamic training,” in 
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, 
UK, August 23–28, 2020, Proceedings, Part XV 16. Springer, 2020, 
pp. 260–275. 

[34] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo 
series in 2021,” arXiv preprint arXiv:2107.08430, 2021. 

[35] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLO,” Jan. 2023. 
[Online]. Available: https://github.com/ultralytics/ultralytics 

[36] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, 

P. Dolla´r, and C. L. Zitnick, “Microsoft coco: Common objects in 
context,” in Computer Vision–ECCV 2014: 13th European Conference, 
Zurich, Switzerland, September 6-12, 2014, Part V 13. Springer, 2014, 
pp. 740–755. 


