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Abstract—The emergence of battery electric trucks (BETSs) in
recent years has shown great promise in reducing greenhouse
gas (GHG) emissions in urban freight logistics. However,
designing a customer-oriented dispatching strategy for a BET
fleet is more complex than traditional vehicle routing problems
(VRP) due to several constraints, such as limited driving range,
potential need for en route recharging, and long recharging
times. Also, in practice, the uncertain travel times in urban
transportation network may lead to the violation of scheduled
customer time windows and impact overall energy consumption.
To better utilize the BET fleet, this paper introduces a robust
BET dispatching problem with backhauls and time windows
under travel time uncertainty, which aims to minimize the
overall fleet energy consumption while also minimizing the risk
of violating customer time window. A mathematical optimization
model based on novel route-related sets is developed, and an
adaptive large neighborhood search (ALNS) metaheuristic
algorithm is used to find robust dispatching solutions. Based on
real-world data from a truck fleet in San Bernardino County,
California, a simulation study is conducted to demonstrate the
robustness of the solutions obtained by the proposed method.
Moreover, a sensitivity analysis with respect to uncertainty
parameters is performed to assess the trade-off between the
overall fleet energy consumption and the robustness of the
solutions.

I. INTRODUCTION

The emergence of battery electric trucks (BETSs) in recent
years has shown promise in reducing greenhouse gas (GHG)
emissions in the freight transportation sector [1]. Especially in
urban freight transportation, there are several advantages when
deploying heavy-duty (i.e., Classes 7 and 8) BETSs rather than
conventional heavy-duty diesel trucks, such as zero tailpipe
emissions, reduced noise pollution, and reduced independence
on fossil fuels. However, the major concerns of logistics
companies about electrifying their fleet include range anxiety,
long recharging times, and limited charging infrastructure. The
decision-makers need to ensure that their BETs have enough
energy to reach charging stations while satisfying the level of
service requirements of customers.

In urban areas, trip travel times can be uncertain because of
traffic congestion, which may increase the risk of the
dispatched BETs missing one or more of the scheduled
customer time windows. In addition, uncertain travel times
may increase or decrease the average speed of the BETs and
affect their energy consumption [2].
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This study aims to explore the impact of uncertain travel
time on the BET dispatching problem. In an attempt to find a
robust dispatching strategy for a BET fleet, we formulate a
robust BET dispatching problem with backhauls and time
windows under travel time uncertainty, a variant of the green
vehicle routing problem (GVRP). The proposed problem is
applied to a real-world case study, and an optimization model
is developed to find a set of robust soluitons. The main
contributions of this research are as follows:

e A mathematical optimization model based on novel
route-dependent uncertainty sets for a BET fleet is
developed. In addition, a microscopic energy
consumption model is incorporated into the
optimization model.

e An adaptive large neighborhood search (ALNS)
metaheuristic algorithm incorporating a robust
optimization method is employed to find robust
solutions for the BET dispatching problem under
uncertain travel times.

e The optimization model and the solution approach
are applied to a real-world case study from a regional
distribution fleet in San Bernardino County,
California. Monte Carlo simulation is performed to
verify the robustness of the solutions.

The remainder of this paper is organized as follows. The
related literature on the GVRP is briefly discussed in Section
II. Then, Section III introduces the mixed integer linear
programming (MILP) model of the robust BET dispatching
problem. Next, Section IV describes the incorporation of a
robust optimization method and the ALNS metaheuristic
algorithm in detail. Finally, the results and conclusions are
presented in Sections V and VI, respectively.

II. LITERATURE REVIEW

The proposed BET dispatching problem is an extension of
the traditional GVRP introduced by Erdogan and Miller-
Hooks [3]. The GVRP introduces the concept of refueling
along the route where alternative fuel vehicles can refuel at
specific refueling stations and continue to visit more
customers. Furthermore, Schneider et al. [4] formally
proposed the electric vehicle routing problem with time
windows (EVRP-TW) as an extension of GVRP. The electric
vehicles in the fleet can visit recharging stations to recharge
their batteries while ensuring that the customers’ time
windows are still satisfied. Keskin and Catay [5] introduced a
partial recharging scheme when devising the dispatching
solution, which was shown to be a more efficient strategy
compared to the full recharging scheme. Considering a
backhauling strategy [6] and a realistic BET energy
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consumption model, Peng et al. [7] studied an energy-efficient
dispatching strategy for a BET fleet. For more information
about the GVRP, readers can refer to [8] and [9].

Most of the existing literature on GVRP did not consider
uncertain factors (e.g., [1], [3], [4], [10], [11]). In the context
of GVRP, only a handful of existing papers considered
uncertainties. For example, Pelletier et al. [2] studied the
EVRP under energy consumption uncertainty. They proposed
a robust optimization (RO) model and solved the problem with
the ALNS algorithm. Shen et al. [12] introduced a robust
EVRP-TW under demand uncertainty. They considered the
cargo weight-dependent energy consumption of the electric
vehicles through the use of a microscopic energy consumption
model. Recently, Jeong et al. [13] adopted an adaptive robust
RO model to solve the EVRP under energy consumption
uncertainty.

In order to enhance the efficient utilization of BET fleets for
last-mile delivery in urban areas, this study extends [7] and
presents a robust BET dispatching problem with backhauls
and time windows under heterogeneous uncertain travel times.
Furthermore, we apply the ALNS metaheuristic incorporating
the RO method to address the proposed MILP model. The goal
is to find a robust dispatching solution that minimize the
overall fleet energy consumption while satisfying the
customers' time windows under travel time uncertainty within
the uncertain sets.

III. PROBLEM FORMULATION

Section III-A briefly describes the proposed BET
dispatching problem. Section II-B presents a microscopic
energy consumption model for BETs. Lastly, a robust version
of the BET dispatching problem is discussed in Section II-C
where a route-dependent uncertainty set is incorporated to
describe the heterogenous uncertain travel times.

A. Problem Description

Figure 1 shows an example of the proposed BET
dispatching problem. The dispatching follows the backhauling
strategy [6] where the linehaul customers (who require
deliveries) should be visited first, followed by the backhaul
customers (who require pickups). A set of homogenous BETs
with battery capacity Q and cargo payload capacity C are
available at the depot to serve all customers. These BETs start
service at Ty and return to the same depot before Tp due to
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Figure 1. An example instance of the proposed BET dispatching
problem with backhauls and time windows under uncertain travel time.

time for some arcs may vary due to the uncertain traffic
condition.

The proposed BET dispatching problem considers the
backhauling strategy, en route partial recharging policy, and
customer time windows under uncertain travel time. To
formally formulate this problem, we first define it on a
complete directed graph G = (W'pp U R, A ), where N'gp
is the set of nodes including customer nodes V', a depot node
O for departure (or D for destination), and R represents a set
of recharging stations. There are two types of orders, i.e.,
deliveries and pickups. Then, the customers N can be
partitioned into two sets, i.e., N = {L, B}, where the sets L =
(1,2,...,n) and B=(n+1,n+2,.., n+m) represent
the linehaul customers and the backhaul customers,
respectively. Each customer i € V" has a specific service type,
a service time s;, a time window [e;, [;], and a demand q;
(negative if delivery and positive if pickup). The arc set A is
defined by A = A; U A, U Az, where a set Ay = {(i,j) €
A:1€LUO0,jeLUR} connects all forward flows, a set
Ay ={(i,j)) € A:i € BUR,j € BUD} represents the
backward flows, and the interface arcs are represented by
A3 ={(i,j) e A:i€ LUR,j € BUD} . Following the
integer linear programming formulation of [6], we define
A = {j: (i,)) € A,i € N'gp}, which denotes the forward of
i, and A7 = {j: (j,i) € A, i € N'pp}, which denotes the
backward of i. Each arc (i, j) € A has an associated travel
distance d;;, energy consumption Ej;, and travel time t;;.

The BETs are fully recharged starting from the depot.
Additionally, a possible en route partial recharging at one of
the recharging stations R is allowed when the state-of-charge
(SOC) of a BET is insufficient to complete the remaining jobs.
Several constraints are considered to ensure an efficient
recharging process. The recharging time is up to one hour with
a constant charging speed r. Additionally, a BET receives a
charge of up to 80% of battery capacity Q. This particular
assumption is based on [14], which shows that the battery level
increases linearly until 80% SOC and then grows at a slow rate
afterward. Also, the recharging frequency is at most once for
each BET route.

B. Microscopic Energy Consumption Model for BETs

A microscopic energy consumption model is used to
estimate the link-level energy consumption of BETs. We
extend the energy consumption models of BETSs introduced in
[10] and [15], considering travel distance, travel time, the
weight of cargo payload, and accessory load. Specifically,
similar to the model in [16], we first determine the tractive
power required to meet the BET’s acceleration demand and
overcome the air resistance and the rolling resistance, as in (1).

1
PT=(M-a+5-cd-pa-,4-v2+M-g-sin(9)+cT-M-

g - cos (6))-v. 1)

In this equation, the total weight of a BET is calculated by
M =w + C;;, where w represents the curb weight with no
payload, and Cj; is the payload carried from node i to j .
Moreover, cq4 is the aerodynamic drag coefficient, while p,
denotes the air density and A represents the frontal area of the
BET. ¢, represents the rolling friction coefficient, and 6 is the
angle of the road. The gravitational acceleration is represented

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 24,2025 at 17:50:10 UTC from IEEE Xplore. Restrictions apply.



by g . In addition, considering varying travel speeds in
different road segments, the average travel speed for an arc is
estimated by v;; = d;;/t;. Then, the energy consumption for
a BET in each arc is estimated by (2), according to the tractive
power Pr and the accessory power P4. . To simplify the
formulation, we define a coefficient a;; = a + gsin 6 +
gCrcos 0 , which is a constant value. f = 0.5C;4p, is a
vehicle-specific coefficient.

W ~@ +P )Y=a w+C )d +pv2d +
Eij T acc ij gy oy y oy
p )
ace y,

Considering the efficiencies of the electrical components,
such as motor efficiency ( eff, ) and battery discharging
efficiency (eff4), the link-level electric energy consumption

can be estimated by (3). Also, to simplify the dispatching
problem, it should be noted that the energy regeneration during
braking is not considered.

F — W — (Pr£Pacc) | dij — 1 ' {Z (W +
U effacffm  effaeffm vy effaeffm Y
C ) +pvid 1+P _i}. ®)
ij ij ij ij acc Vij

C. A Robust BET Dispatching Problem under Travel Time
Uncertainty

As the uncertain travel time is considered in this study, we
introduce a robust BET dispatching problem based on the RO
theory in Ben-Tal et al. [17]. For each BET k, the uncertain
travel time £ for some arcs (i, j) € A are varying within a
predefined uncertain set U;. Since historical travel time data
may not be available to determine a specific distribution of the
uncertain travel time, we define a budget uncertainty polytope

to describe the uncertain travel time, which is similar to [18].

The budgeted uncertain set U, is defined as in (4) and (5).

Ur = Xpex Uk, 4
Uk= FeRAJE =t +8 ¢t , B <Tk,
t J i iy i ij t
]
)eAk
0<pB <1,Tk= 0 Ak V(i) € A 5)
ij ¢ ¢

In (4), U, is the Cartesian product of the travel time
uncertainty set U¥ for each BET k € K. In (5), A* represents
the set of arcs on a route traveled by BET k. The uncertain
travel time £; of an arc (i, j) € A* can take any value from its
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route robustness as it takes into account a higher degree of
travel time uncertainty.

The mathematical formulation of the proposed BET
dispatching problem contains the following decision variables.
First, the binary variable x;;; = 1 indicates if an arc (i, j) is
traveled by BET k (Vk € K); otherwise, it equals 0. K denotes
a set of available BETs. Battery recharging decision variable
gix defines whether a recharging is needed for the BET.

Considering the partial recharging policy, variable Yy

determines the SOC when the BET finishes the recharging.

Additionally, a time decision variable 7;; specifies the arrival

time of the trip. The remaining cargo capacity and battery
capacity variables are defined by uy, and y;, respectively.
Therefore, the proposed robust BET dispatching problem is
expressed as follows.

min Eijkxijk
keK i€ N gUR,jE N pUR,i #j (6)
Subject to:
Ykek Ziea~ Xijk =1, JENUR (7
J
Y X +x =1 i€ENUR (8)
keK jer;, ijk
Zje UR i#j Xijk — Xjik =0,ViEN URkEK Q)
N
’ Yieay Xy = K ,Vk €K (10)
ZieAg Xijkk = K,VkeK an
yok =Q, V€ NUR k€K (12)
Yjeounur) Xijk < 1L,Vi€E Rk €K (13)
0 <Yy <Min{0.8Q,36007},Vie R,k e K (14)
Tie(0) + (s + Eijic) xijic — Lo(1 — x4) < T (D), (15)
ViEOUNUREFEMDUNUR),i#jkeEK
e < Tik(f) <l, Vie NVO‘D,k EK (16)
0<u <C VkeK a7
ok
0<u <(u-qg%¥ +C1—-x)
J i iy ij (18)

ViEOUNURVjEDUNUR,i#j

interval [t i, t ;+ t ;] . t; denotes the nominal value of
uncertain travel time in an arc (i, j) € A, and t ;; represents the
maximum deyviation fron} the nominal value ti{ B

(11 ) . Bij 1s an,
auxiliary variable, and ['* denotes the uncertain’ tfavel time
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0<((1—gu) yix+gir Y — Eij ) xij < Q,Vi €
NoUR,jE NpUR,i #j k€K (19)

xijk €{0,1}, Vi,j € Nop, i # j, k € K. (20)
t

budget for a BET trip. Specifically, Ff controls the number of
arcs with high travel time uncertainty, which is calculated by

6. Ax , where 6, € [0,1] is the travel time uncertainty
budget coefficient and A* is the number of arcs in route k.
For example, if 6; = 0, then Ftk 0 , which means the
uncertainty degree is zero so the uncertain travel time

equals t ;; for all arcs in route k. If 6; = 1 and [} = Ak, all
the arcs in route k can take any value in the interval
[ty tij + tij]. Thus, the larger value of I'X provides greater

87

Objective (6) is to minimize the total energy consumption
of all BETs. Constraints (7) through (9) guarantee the forward
and backward flow conservation constraints. Constraints (10)
and (11) define the degree constraints for the depot. Constraint
(12) ensures that each BET 1s fully recharged before departing
from the depot. Constraint (13) defines that the recharging
frequency is at most once for a BET. Constraint (14) specifies
the charging constraints. For the time window constraints,
considering uncertain travel time £, constraints (15) and (16)
guarantee that the arrival time at each node satisfies its time
window. Constraints (17) and (18) ensure that the cargo
payload is less or equal to the maximum cargo capacity for
each BET. Constraint (19) enforces that the SOC of any BET
cannot be less than 0. Constraint (20) defines a binary variable.
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IV. SOLUTION APPROACHES

To address the proposed BET dispatching problem, we first
incorporate a RO method [17] into the proposed mathematical
model. Then, an ALNS metaheuristic algorithm is used to find
a robust dispatching solution.

A. Incorporating Uncertainty and Reformulating the Cost
Function

While the heterogenous travel time uncertainty is
considered in the proposed robust BET dispatching problem,
it may not always be possible to enforce the feasibility of the
solution during the search. To ensure the effectiveness of the
algorithm, infeasible solutions due to tight constraints, such as
time windows, battery capacity, and restricted recharging time,
are allowed during the search process. We use a surrogate
objective function based on Equation (6) and add penalties
associated with travel time violations. So, the latest possible
vehicle arrival time at each vertex, as well as the potential
penalty costs, can be estimated.

To calculate the potential latest arrival time for a node on a
given solution S under uncertain travel times, let’s start with a
solution S that comprises m BET routes, represented by S =

. A route t led by BET k is defined =
o510 opd- A ropte traveled by BET ks defingd as o =

1 2 sk—1 s
k € K and s, Ek S. Forkthe route sy, the start node and the end
node are represented by pf and pk , respectively. Also, the
cugtomeri’ nodes or a recharging station visit are included in
Pk p . Considering an uncertainty degree of travel
2 sk —1
time [}* for a route traveled by BET k, we denote the latest
arrival time for node i in this route as A(i, [;¥). Inspired by a
calculation of A(i, [;¥) in [19] and [18], we take recharging
time hp’f into account during the route. Therefore, the latest

arrival time function A(i, T¥) is formulated as follows.

AG,TF) =
0,ifi =1

A —1,TF) + Spiy + tpk Igz«,ifpi,c ER,andTk =0
i—1Hi
maxi@i(e k, A —1,T")+h +t «),ifpt €R,andTk =0
k
Di t Pi-1 Pi-1 -1 ¢
pi

max(e K, A —1,T")+s« +tx «),if2<i< $ ,andTk =0

Pi t Pi-1 Pi-1Pi k ¢

rmaxti(AG—1,Tk—=1) +s & +t«

t Pi-1 Pi-1
p;

AG—1TH) +s« +tx «)ifpreR

K+t k,

Pi-1P;

t Pi-1 Pi—1Pi !
maxivi(e x, A—1,Tk—1)+h « +t k+te &
k
Pi ¢ Pi-1 Pi-1P; Pi-1P;

AG—1,TK)+h« +t«
t Pi1 Pi1
pi

(e, A(—1,TF—=1)+sk +tk

k),ifpt €Rand1<Tk<i-1
i~1 ¢

k+t ik k

t Pi-1 Pi-1
Pi
A(i—l,r’t‘)+5k +tr k),
P,

i~1 Pi-1P;
t

max Pi Pi-1Pi

m Sk
maxi0, A, T¥) — 1)

keK i=1

Cost(S) = f(S) +y:

(22)

B. Generation of Initial Solution

A modified greedy heuristic [7] is applied to generate an
initial solution. To begin, we randomly select a candidate
customer and insert them into a BET route. Subsequently, a
greedy heuristic is used to iteratively determine a candidate
customer with the smallest insertion cost increment on f(S),
and then insert it into the current route. When the current route
becomes energy infeasible, a potential recharging visit is
attempted to insert the current route from a set of recharging
stations R , selecting the one that generates the lowest
incremental insertion cost. Therefore, more customers may be
reachable. The current route is terminated when no more
vertices can be scheduled due to constraint violation. In such a
case, if there are still unvisited customers, a new BET route is
started following the same greedy insertion process described
above.

C. ALNS Algorithm
To solve the proposed BET dispatching problem, we use an
enhanced version of the ALNS algorithm described in Peng et

al. [7]. The ALNS algorithm is used as a search engine to find
a robust dispatching solution. Here, we only briefly describe
the ALNS algorithm due to limited space. For more details, we
refer interested readers to [7].

The ALNS, first proposed in [20], has been successfully
implemented to solve VRP with pick-up and delivery and
various VRP extensions (e.g., [21], [10], [22], [23]). The
developed ALNS algorithm begins with an initial solution
construction process described in Section IV-B and improves
the solution by applying removal and reinsertion operators.
Specifically, like [24], we use five removal and three
reinsertion operators in the ALNS framework. Each operator

has an assigned weight, which can be adjusted dynamically
according to performance. We employ the simulated annealing

heuristic to decide if a new solution should be accepted or
rejected, aiming to diversify the solution. It is noteworthy that

we use the surrogate cost function Cost(S) in equation (22) as

the objective function for the ALNS algorithm. Thus, the total
energy consumption and the potential delay penalty can be

minimized during the search process.

V. CASE STUDY

ifi< S andl1 <Tk<i-—-1
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ATk —1),if2<i<T*

@1

Therefore, the surrogate cost function of a given solution S
can be calculated as in equation (22). In (22), f(S) represents
the total energy cost as discussed in Section III-C and y,
denotes the penalty factor for time window violations.

! https://github.com/CurtisPeng123/Robust-BET-Dispatching-Dataset

This section presents a set of experiments to evaluate the
solution approach and investigate the robustness of solutions
under different uncertainty degrees. The problem instance is
generated from real-world dispatching data in a full-service

supply chain company. The proposed algorithm is
implemented in a Python environment. All experiments are
run on an online server with 32 GB RAM. The problem
instance and travel information are available via GitHub!.

A. Data Description and Experiment Design

The real-world dataset is derived from the historical travel
movements of a fleet of conventional heavy-duty diesel trucks
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that operated in San Bernardino County, California. We
generate a dispatching instance to assess the robust dispatching
strategy. The real-world test instance consists of 47 customers,
including 33 linehaul customers and 14 backhaul customers.
The dataset contains known dispatching information, such as
customers’ locations, visit type (delivery or pick-up), time
window, and required demand (weight of cargo to be delivered
or picked up). Ten customer locations are randomly selected
as recharging stations.

Based on the customer locations, we utilize the Direction

Service Application Programming Interface (DSAP?
provided by OpenRouteService [25] to generate real-worl

travel information for BET routes, including ideal travel time
and distance matrices. These matrices take into account truck-
restricted zones and speed limits within the urban
transportation network.

In this study, the parameters of the uncertainty set in (5) are
defined as follows. Each nominal travel time t ; equals the
real-world travel time obtained from the DSAPI. Additionally,
we assume that the maximum deviation t; is 0.2t ;. The

uncertainty budget coefficient of travel time 8, is set to 0.3.

The penalty value y; in (22) is set to 20. We adopt parameters

setting in ALNS metaheuristics, from our previous study [7].
In the numerical study, we use the characteristics of Class 8
BETs available in the current US market [26]. Table I
summarizes the problem variables.

TABLE I. SUMMARY OF PROBLEM PARAMETERS

Notation Description Value
A Frontal surface area of a BET [m?] 10

C BET usable battery capacity [kWh] 300

(0] BET payload capacity [lbs..] 37,000
effm Motor efficiency 0.7
effa Discharging efficiency 091

cr Rolling resistance coefficient 0.008
Cq Aerodynamic drag coefficient 0.7

w Vehicle curb weight [1bs.] 8,000
g Gravitational constant [m/s?] 9.81
Pa Air density (km/m®) 1.2041
6 Road angle 0°

a Acceleration 0

r Recharging rate [kWh/min] [27] 3.96
[To, Tp] Operating hour [8 am, 4 pm]
Pace Accessory power [kW] [16] 5.6

B. Solution Robustness Evaluation

Evaluating the robustness of the solution is necessary in the
experiments. We employ a Monte Carlo simulation process to
assess the robustness of the final solution derived from the
ALNS algorithm. To generate a simulation scenario, we
uniformly sample a random variable travel time, £;;, of an arc
(i,J) € A within its interval [t ;;, £ ;; + t;;]. It is important to
note that a solution comprises numerous arcs, and the travel
times of these arcs are uniformly sampled using the same
method. Consequently, we obtain one simulation scenario
characterized by heterogeneous uncertainty in travel time.

920

TABLE II. COMPARISON ON SOLUTIONS IN DETERMINISTIC TRAVEL

TIME
Instance SDet SRob
mg  OBJ Risk mg OBJ  Risk Dev
BETVRPB 7 686 100.0% 7 698 09% 5.5%

Note: mg, OBJ, Risk denote the number of BETS, the total energy
consumption (in kWh), and the proportion of infeasible solutions,

respectively.

TABLE III. RESULTS FOR INSTANCE WITH DIFFERENT
Uncertainty/NGRRTABERWRPBALUES (')

Mg OB7T Risk
0 7 686 10070%
0.1 7 697 23%
0. 7 698 0.9%
U. U UT U370
0.5 7 719 0.0%

TABLE IV. RESULTS FOR INSTANCE WITH DIFFERENT
UNCERTAIN BUDGET COEEFICIENT VALUES (6;)

Uncertainty BETVRPB
budget coefficient mg OBJ Risk
0 7 686 100.0%
0.1 7 697 97.5%
0.2 7 697 72.1%
0.3 7 698 0.9%
0.5 7 700 0.3%

Subsequently, a “Risk” value is defined to represent the
proportion of infeasible scenarios within a simulation.

C. Performance of the Solution Approach

To assess the effectiveness of the ALNS, we compare the
solutions of the robust BET dispatching version under
uncertainty with the solution of the deterministic BET
dispatching scenario. Table II shows the comparison of the

experiment results. For each instance, the columns SP¢t and

Within the simulation process, a total of 1,000 scenarios are
generated to evaluate the robustness of the final solution. For
each solution, the number of infeasible scenarios is recorded.
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SRob denote the solutions of the deterministic version and the
solutions of the robust version, respectively. my denotes the
number of BETs, and “OBJ” indicates the total energy
consumption. “Risk” represents the proportion of infeasible
scenarios in the Monte Carlo simulation.

In Table II, we observe that the deterministic solutions are
fragile under travel time uncertainty. They encounter a higher
risk since they may violate one or more of the constraints.
However, the proposed robust BET dispatching approach can
significantly reduce the risk compared with the deterministic
dispatching approach. The risk can be reduced from 100% to
0.9% while the total energy consumption increases by merely
5.5%.

D. The Effect of Uncertainty Parameters

As mentioned in Section III-C, the robustness of the
solution is affected by the budgeted uncertain set of travel
time. Therefore, we analyze the impact of the maximum
deviation of travel time t ;; = a’t ;; and the uncertainty degree
[k separately. When investigating the effect of maximum .
deviation on the solutions, we assume the uncertainty budget
coefficient 8, is fixed and set it to 0.3. We define the uncertain
range coefficient a* in set {0.1, 0.2, 0.3, 0.5}, where the larger
value of at represents the greater deviation of ¢;;. Similarly, to
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analyze the effect of the uncertainty budget coefficient, we fix

at to 0.2 and change the travel time uncertainty budget
coefficient 8, in set {0.1, 0.2, 0.3, 0.5}. The larger value of
coefficient 6, may cause a larger number of arcs under travel

time uncertainty. The experiment results are reported in Table
IIT and Table IV.

As shown in Table III, when the uncertainty range at of
travel time increases from 0 to 0.5, the total energy
consumption rises from 686 to 719, or approximately 4.8%.
More energy cost is required to ensure a lower risk of violating
the time window constraints. In Table IV, as the degree of
uncertainty increases, the solution cost increases by 2.0%. By
comparing the results between these two tables, we notice that
the uncertainty range of travel time has a higher impact on the
robust solution. Based on the observations in this study, the
proposed dispatching strategy can provide dispatching
solutions under different risk levels so the decision-maker can
choose a preferred robust solution.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduces a robust BET dispatching problem
with backhauls and time windows under heterogenous travel
time uncertainty. A microscopic energy consumption model is
used to estimate the SOC of BETs during dispatching. We
apply the ALNS metaheuristic algorithm incorporating RO
method to find a robust dispatching solution. A real-world
dispatching case study is used to assess the performance of our
solution approach and examine the effect of the different
uncertainty parameters on the solutions. For the case study
examined in this paper, the solution risk can be reduced from
100% to 0.9% while the total energy consumption increases by
only 5.5%. Additionally, a Monte Carlo simulation process is
used to demonstrate the robustness of the solutions that were
obtained. The experiment results indicate a trade-off between
the total energy cost of the solution and its robustness under
different levels of uncertain travel times.

There are several directions for enhancing and expanding
this work in the future. For example, other uncertainties, such
as uncertain loading/unloading time at customer location or
waiting time at recharging stations, can be considered. Also,
learning-based algorithms can be utilized to solve BET
dispatching problems in a more efficient manner.
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