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Abstract—The emergence of battery electric trucks (BETs) in 

recent years has shown great promise in reducing greenhouse 

gas (GHG) emissions in urban freight logistics. However, 

designing a customer-oriented dispatching strategy for a BET 

fleet is more complex than traditional vehicle routing problems 

(VRP) due to several constraints, such as limited driving range, 

potential need for en route recharging, and long recharging 

times. Also, in practice, the uncertain travel times in urban 

transportation network may lead to the violation of scheduled 

customer time windows and impact overall energy consumption. 

To better utilize the BET fleet, this paper introduces a robust 

BET dispatching problem with backhauls and time windows 

under travel time uncertainty, which aims to minimize the 

overall fleet energy consumption while also minimizing the risk 

of violating customer time window. A mathematical optimization 

model based on novel route-related sets is developed, and an 

adaptive large neighborhood search (ALNS) metaheuristic 

algorithm is used to find robust dispatching solutions. Based on 

real-world data from a truck fleet in San Bernardino County, 

California, a simulation study is conducted to demonstrate the 

robustness of the solutions obtained by the proposed method. 

Moreover, a sensitivity analysis with respect to uncertainty 

parameters is performed to assess the trade-off between the 

overall fleet energy consumption and the robustness of the 

solutions. 

I. INTRODUCTION 

The emergence of battery electric trucks (BETs) in recent 
years has shown promise in reducing greenhouse gas (GHG) 
emissions in the freight transportation sector [1]. Especially in 
urban freight transportation, there are several advantages when 
deploying heavy-duty (i.e., Classes 7 and 8) BETs rather than 
conventional heavy-duty diesel trucks, such as zero tailpipe 
emissions, reduced noise pollution, and reduced independence 
on fossil fuels. However, the major concerns of logistics 
companies about electrifying their fleet include range anxiety, 
long recharging times, and limited charging infrastructure. The 
decision-makers need to ensure that their BETs have enough 
energy to reach charging stations while satisfying the level of 
service requirements of customers. 

In urban areas, trip travel times can be uncertain because of 
traffic congestion, which may increase the risk of the 
dispatched BETs missing one or more of the scheduled 
customer time windows. In addition, uncertain travel times 
may increase or decrease the average speed of the BETs and 
affect their energy consumption [2]. 
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This study aims to explore the impact of uncertain travel 
time on the BET dispatching problem. In an attempt to find a 
robust dispatching strategy for a BET fleet, we formulate a 
robust BET dispatching problem with backhauls and time 
windows under travel time uncertainty, a variant of the green 
vehicle routing problem (GVRP). The proposed problem is 
applied to a real-world case study, and an optimization model 
is developed to find a set of robust soluitons. The main 
contributions of this research are as follows: 

• A mathematical optimization model based on novel 

route-dependent uncertainty sets for a BET fleet is 

developed. In addition, a microscopic energy 

consumption model is incorporated into the 

optimization model. 

• An adaptive large neighborhood search (ALNS) 

metaheuristic algorithm incorporating a robust 

optimization method is employed to find robust 

solutions for the BET dispatching problem under 

uncertain travel times. 

• The optimization model and the solution approach 

are applied to a real-world case study from a regional 

distribution fleet in San Bernardino County, 

California. Monte Carlo simulation is performed to 

verify the robustness of the solutions. 

The remainder of this paper is organized as follows. The 
related literature on the GVRP is briefly discussed in Section 
II. Then, Section III introduces the mixed integer linear 
programming (MILP) model of the robust BET dispatching 
problem. Next, Section IV describes the incorporation of a 
robust optimization method and the ALNS metaheuristic 
algorithm in detail. Finally, the results and conclusions are 
presented in Sections V and VI, respectively. 

II. LITERATURE REVIEW 

The proposed BET dispatching problem is an extension of 
the traditional GVRP introduced by Erdoğan and Miller- 
Hooks [3]. The GVRP introduces the concept of refueling 
along the route where alternative fuel vehicles can refuel at 
specific refueling stations and continue to visit more 
customers. Furthermore, Schneider et al. [4] formally 
proposed the electric vehicle routing problem with time 
windows (EVRP-TW) as an extension of GVRP. The electric 
vehicles in the fleet can visit recharging stations to recharge 
their batteries while ensuring that the customers’ time 
windows are still satisfied. Keskin and Çatay [5] introduced a 
partial recharging scheme when devising the dispatching 
solution, which was shown to be a more efficient strategy 
compared to the full recharging scheme. Considering a 
backhauling  strategy  [6]  and  a  realistic  BET  energy 

mailto:dpeng017@ucr.edu
mailto:barth@ece.ucr.edu
mailto:kanok@cert.ucr.edu


Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 24,2025 at 17:50:10 UTC from IEEE Xplore. Restrictions apply.  

979-8-3315-0592-9/24/$31.00 ©2024 IEEE 84 

2
0

2
4

 IE
EE

 2
7

th
 In

te
rn

at
io

n
al

 C
o

n
fe

re
n

ce
 o

n
 In

te
lli

ge
n

t 
Tr

an
sp

o
rt

at
io

n
 S

ys
te

m
s 

(I
TS

C
) |

 9
7

9
-8

-3
3

1
5

-0
5

9
2

-9
/2

4
/$

3
1

.0
0

 ©
2

0
2

4
 IE

EE
 |

 D
O

I:
 1

0.
11

09
/I

TS
C

58
41

5.
20

24
.1

09
19

69
7 



85 

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 24,2025 at 17:50:10 UTC from IEEE Xplore. Restrictions apply. 

 

𝑖 

𝑖 

consumption model, Peng et al. [7] studied an energy-efficient 
dispatching strategy for a BET fleet. For more information 
about the GVRP, readers can refer to [8] and [9]. 

Most of the existing literature on GVRP did not consider 
uncertain factors (e.g., [1], [3], [4], [10], [11]). In the context 
of GVRP, only a handful of existing papers considered 
uncertainties. For example, Pelletier et al. [2] studied the 
EVRP under energy consumption uncertainty. They proposed 
a robust optimization (RO) model and solved the problem with 
the ALNS algorithm. Shen et al. [12] introduced a robust 
EVRP-TW under demand uncertainty. They considered the 
cargo weight-dependent energy consumption of the electric 
vehicles through the use of a microscopic energy consumption 
model. Recently, Jeong et al. [13] adopted an adaptive robust 
RO model to solve the EVRP under energy consumption 
uncertainty. 

In order to enhance the efficient utilization of BET fleets for 
last-mile delivery in urban areas, this study extends [7] and 
presents a robust BET dispatching problem with backhauls 
and time windows under heterogeneous uncertain travel times. 
Furthermore, we apply the ALNS metaheuristic incorporating 
the RO method to address the proposed MILP model. The goal 
is to find a robust dispatching solution that minimize the 
overall fleet energy consumption while satisfying the 
customers' time windows under travel time uncertainty within 
the uncertain sets. 

III. PROBLEM FORMULATION 

Section III-A briefly describes the proposed BET 
dispatching problem. Section II-B presents a microscopic 
energy consumption model for BETs. Lastly, a robust version 
of the BET dispatching problem is discussed in Section II-C 
where a route-dependent uncertainty set is incorporated to 
describe the heterogenous uncertain travel times. 

A. Problem Description 

Figure 1 shows an example of the proposed BET 
dispatching problem. The dispatching follows the backhauling 
strategy [6] where the linehaul customers (who require 
deliveries) should be visited first, followed by the backhaul 
customers (who require pickups). A set of homogenous BETs 
with battery capacity 𝑄 and cargo payload capacity 𝐶 are 
available at the depot to serve all customers. These BETs start 
service at 𝑇𝑂 and return to the same depot before 𝑇𝐷 due to 

operating time constraints. It should be noted that the travel 

time for some arcs may vary due to the uncertain traffic 
condition. 

The proposed BET dispatching problem considers the 
backhauling strategy, en route partial recharging policy, and 
customer time windows under uncertain travel time. To 
formally formulate this problem, we first define it on a 
complete directed graph 𝒢 = (𝒩′𝑂,𝐷 ∪ ℛ, 𝒜 ), where 𝒩′𝑂,𝐷 

is the set of nodes including customer nodes 𝒩, a depot node 
𝑂 for departure (or 𝐷 for destination), and ℛ represents a set 
of recharging stations. There are two types of orders, i.e., 
deliveries and pickups. Then, the customers 𝒩 can be 
partitioned into two sets, i.e., 𝑁 = {𝐿, 𝐵}, where the sets 𝐿 = 
(1, 2, … , 𝑛) and 𝐵 = (𝑛 + 1, 𝑛 + 2, … , 𝑛 + 𝑚) represent 
the linehaul customers and the backhaul customers, 
respectively. Each customer 𝑖 ∈ 𝒩 has a specific service type, 
a service time 𝑠𝑖 , a time window [𝑒𝑖, 𝑙𝑖], and a demand 𝑞𝑖 
(negative if delivery and positive if pickup). The arc set 𝒜 is 
defined by 𝒜 = 𝐴1 ∪ 𝐴2 ∪ 𝐴3 , where a set 𝐴1 = {(𝑖, 𝑗) ∈ 
𝒜: 𝑖 ∈ 𝐿 ∪ 𝑂, 𝑗 ∈ 𝐿 ∪ ℛ} connects all forward flows, a set 
𝐴2 = {(𝑖, 𝑗) ∈ 𝒜: 𝑖 ∈ 𝐵 ∪ ℛ, 𝑗 ∈ 𝐵 ∪ 𝐷} represents the 
backward flows, and the interface arcs are represented by 
𝐴3 = {(𝑖, 𝑗) ∈ 𝒜: 𝑖 ∈ 𝐿 ∪ ℛ, 𝑗 ∈ 𝐵 ∪ 𝐷} . Following the 
integer linear programming formulation of [6], we define 

𝛥+ = {𝑗: (𝑖, 𝑗) ∈ 𝒜, 𝑖 ∈ 𝒩′𝑂,𝐷}, which denotes the forward of 
𝑖 , and 𝛥− = {𝑗: (𝑗, 𝑖) ∈ 𝒜, 𝑖 ∈ 𝒩′𝑂,𝐷} , which denotes the 

backward of 𝑖 . Each arc (𝑖, 𝑗) ∈ 𝒜 has an associated travel 
distance 𝑑𝑖𝑗 , energy consumption 𝐸𝑖𝑗 , and travel time 𝑡𝑖𝑗. 

The BETs are fully recharged starting from the depot. 
Additionally, a possible en route partial recharging at one of 
the recharging stations ℛ is allowed when the state-of-charge 
(SOC) of a BET is insufficient to complete the remaining jobs. 
Several constraints are considered to ensure an efficient 
recharging process. The recharging time is up to one hour with 
a constant charging speed 𝑟. Additionally, a BET receives a 
charge of up to 80% of battery capacity 𝑄. This particular 
assumption is based on [14], which shows that the battery level 
increases linearly until 80% SOC and then grows at a slow rate 
afterward. Also, the recharging frequency is at most once for 
each BET route. 

B. Microscopic Energy Consumption Model for BETs 

A microscopic energy consumption model is used to 
estimate the link-level energy consumption of BETs. We 
extend the energy consumption models of BETs introduced in 
[10] and [15], considering travel distance, travel time, the 
weight of cargo payload, and accessory load. Specifically, 
similar to the model in [16], we first determine the tractive 
power required to meet the BET’s acceleration demand and 
overcome the air resistance and the rolling resistance, as in (1). 

1 

𝑃𝑇 = (𝑀 ⋅ 𝑎 + 
2 
⋅ 𝑐𝑑 ⋅ 𝜌𝑎 ⋅ 𝐴 ⋅ 𝑣 + 𝑀 ⋅ 𝑔 ⋅ sin(𝜃) + 𝑐𝑟 ⋅ 𝑀 ⋅ 

 
 
 
 
 
 

 
Figure 1. An example instance of the proposed BET dispatching 

problem with backhauls and time windows under uncertain travel time. 

𝑔 ⋅ cos (𝜃)) ⋅ 𝜈 () 

In this equation, the total weight of a BET is calculated by 

𝑀 = 𝑤 + 𝐶𝑖𝑗 , where 𝑤 represents the curb weight with no 

payload, and 𝐶𝑖𝑗 is the payload carried from node 𝑖 to 𝑗 . 
Moreover, 𝑐𝑑 is the aerodynamic drag coefficient, while 𝜌𝑎 

denotes the air density and 𝐴 represents the frontal area of the 
BET. 𝑐𝑟 represents the rolling friction coefficient, and 𝜃 is the 
angle of the road. The gravitational acceleration is represented 

2 
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𝑡 

𝑡 

by 𝑔 . In addition, considering varying travel speeds in 
different road segments, the average travel speed for an arc is 
estimated by 𝑣𝑖𝑗 = 𝑑𝑖𝑗/𝑡𝑖𝑗. Then, the energy consumption for 

a BET in each arc is estimated by (2), according to the tractive 
power 𝑃𝑇 and the accessory power 𝑃𝐴𝑐𝑐 . To simplify the 

formulation, we define a coefficient 𝛼𝑖𝑗 = 𝑎 + 𝑔sin 𝜃 + 
𝑔𝐶𝑟cos 𝜃 , which is a constant value. 𝛽 = 0.5𝐶𝑑𝐴𝜌𝑎 is a 
vehicle-specific coefficient. 

route robustness as it takes into account a higher degree of 
travel time uncertainty. 

The mathematical formulation of the proposed BET 
dispatching problem contains the following decision variables. 
First, the binary variable 𝑥𝑖𝑗𝑘 = 1 indicates if an arc (𝑖, 𝑗) is 

traveled by BET 𝑘 (∀𝑘 ∈ 𝐾); otherwise, it equals 0. 𝐾 denotes 
a set of available BETs. Battery recharging decision variable 
𝑔𝑖𝑘 defines whether a recharging is needed for the BET. 

𝑑𝑖𝑗 𝑊 ≈ (𝑃 + 𝑃 ) = 𝛼 (𝑤 + 𝐶 )𝑑  + 𝛽𝑣2 𝑑  + Considering the partial recharging policy, variable 𝑌𝑖𝑘 

𝐸 𝑖𝑗 𝑇 𝑎𝑐𝑐 𝑣𝑖𝑗 
𝑖𝑗 𝑖𝑗 𝑖𝑗 𝑖𝑗 𝑖𝑗 determines the SOC when the BET finishes the recharging. 

𝑃 
𝑑𝑖𝑗

. (2) Additionally, a time decision variable 𝜏𝑖𝑘 specifies the arrival 

𝑎𝑐𝑐 𝑣𝑖𝑗
 

Considering the efficiencies of the electrical components, 
such as motor efficiency ( 𝑒𝑓𝑓𝑚 ) and battery discharging 

efficiency (𝑒𝑓𝑓𝑑 ), the link-level electric energy consumption 

time of the trip. The remaining cargo capacity and battery 
capacity variables are defined by 𝑢𝑖𝑘 and 𝑦𝑖𝑘 , respectively. 

Therefore, the proposed robust BET dispatching problem is 
expressed as follows. 

can be estimated by (3). Also, to simplify the dispatching 
problem, it should be noted that the energy regeneration during 
braking is not considered. 

min  𝐸𝑖𝑗 𝑘 

𝑘∈𝐾 𝑖∈ 𝒩′ 𝑂 ∪ℛ,𝑗 ∈ 𝒩′ 𝐷 ∪ℛ,𝑖 ≠𝑗 

𝑥𝑖𝑗 𝑘  
() 

𝐸 = 
𝑊𝐸𝑖𝑗 

 

= 
(𝑃𝑇+𝑃𝑎𝑐𝑐) 

∙ 
𝑑𝑖𝑗 

= 
1 ∙ {[𝛼 (𝑤 + Subject to: 

𝑖𝑗 
 

𝑒𝑓𝑓𝑑∙𝑒𝑓𝑓𝑚 𝑒𝑓𝑓𝑑∙𝑒𝑓𝑓𝑚 
𝑑 

𝑣𝑖𝑗 

 

𝑒𝑓𝑓𝑑∙𝑒𝑓𝑓𝑚 𝑖𝑗 
∑𝑘∈𝐾 ∑𝑖∈Δ− 𝑥𝑖𝑗𝑘 = 1, 𝑗 ∈ 𝒩 ∪ ℛ () 

𝐶  )𝑑 + 𝛽𝑣2 𝑑 ] + 𝑃  𝑖𝑗}. (3) 𝑗 

𝑖𝑗 𝑖𝑗 𝑖𝑗  𝑖𝑗 𝑎𝑐𝑐 𝑣𝑖𝑗
 ∑ ∑ + 𝑥 = 1, 𝑖 ∈ 𝒩 ∪ ℛ () 

C. A Robust BET Dispatching Problem under Travel Time 

Uncertainty 

As the uncertain travel time is considered in this study, we 
introduce a robust BET dispatching problem based on the RO 
theory in Ben-Tal et al. [17]. For each BET 𝑘, the uncertain 

travel time 𝑡  for some arcs (𝑖, 𝑗) ∈ 𝒜 are varying within a 
predefined uncertain set 𝑈𝑡. Since historical travel time data 

may not be available to determine a specific distribution of the 
uncertain travel time, we define a budget uncertainty polytope 

 

∑𝑗∈ 
𝒩′𝐷 

𝑘∈𝐾  𝑗∈Δ𝑖 𝑖𝑗𝑘 

∪ℛ ,i ≠𝑗 𝑥𝑖𝑗𝑘 − 𝑥𝑗𝑖𝑘 = 0, ∀𝑖 ∈ 𝒩′
𝑂 ∪ ℛ, 𝑘 ∈ 𝐾 (9) 

∑𝑖∈Δ− 𝑥𝑖𝑗𝑘 = 𝐾 , ∀𝑘 ∈ 𝐾 () 

∑𝑖∈Δ+ 𝑥𝑖𝑗𝑘 = 𝐾 , ∀𝑘 ∈ 𝐾 () 

𝑦𝑂𝑘 = 𝑄, ∀𝑗 ∈ 𝒩 ∪ ℛ, 𝑘 ∈ 𝐾 () 

∑𝑗∈(𝐷∪𝒩∪ℛ) 𝑥𝑖𝑗𝑘 ≤ 1, ∀𝑖 ∈ ℛ, 𝑘 ∈ 𝐾 () 

to describe the uncertain travel time, which is similar to [18]. 0 ≤ 𝑌𝑖𝑘 ≤ 𝑀𝑖𝑛{0.8𝑄, 3600𝑟}, ∀𝑖 ∈ ℛ, 𝑘 ∈ 𝐾 (14) 

The budgeted uncertain set 𝑈𝑡 is defined as in (4) and (5). 

𝑈𝑡 = ×𝑘∈𝐾 𝑈𝑘  () 

𝜏𝑖𝑘 (𝑡 ) + (𝑠𝑖 + 𝑡 𝑖𝑗𝑘 )𝑥𝑖𝑗𝑘 − 𝑙0(1 − 𝑥𝑖𝑗𝑘) ≤ 𝜏𝑗𝑘 (𝑡 ), 

∀𝑖 ∈ 𝑂 ∪ 𝒩 ∪ ℛ, 𝑗 ∈ 𝑗 ∈ (𝐷 ∪ 𝒩 ∪ ℛ), 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 
(15) 

𝑒𝑖 ≤ 𝜏𝑖𝑘 (𝑡 ) ≤ 𝑙𝑖 , ∀𝑖 ∈ 𝒩′
𝑂,𝐷, 𝑘 ∈ 𝐾 () 

𝑈𝑘 =  𝑡  ∈ 𝑅 𝐴
𝑘 |𝑡  = 𝑡  + 𝛽 𝑡 ,   𝛽  ≤ Γ𝑘 , 0 ≤ 𝑢 ≤ 𝐶, ∀𝑘 ∈ 𝐾 () 

𝑡 𝑖𝑗 𝑖𝑗 𝑖𝑗 𝑖𝑗 

(𝑖,𝑗 
)∈𝐴𝑘 

𝑖𝑗 𝑡 
 

0 ≤ 𝑢 
𝑜𝑘 

≤ (𝑢 − 𝑞 )𝑥 
 

+ 𝐶(1 − 𝑥 ) 

0 ≤ 𝛽 ≤ 1, Γ𝑘 = 𝜃 𝐴𝑘  , ∀(𝑖, 𝑗) ∈ 𝐴𝑘 (5) 
𝑗 𝑖 𝑖  𝑖𝑗 𝑖𝑗 () 

𝑖𝑗 𝑡 𝑡 ∀𝑖 ∈ 𝑂 ∪ 𝒩 ∪ ℛ, ∀𝑗 ∈ 𝐷 ∪ 𝒩 ∪ ℛ, 𝑖 ≠ 𝑗 

In (4), 𝑈𝑡 is the Cartesian product of the travel time 

uncertainty set 𝑈𝑘 for each BET 𝑘 ∈ 𝐾. In (5), 𝐴𝑘 represents 
the set of arcs on a route traveled by BET 𝑘. The uncertain 

travel time 𝑡 𝑖𝑗 of an arc (𝑖, 𝑗) ∈ 𝐴𝑘 can take any value from its 

interval [𝑡 𝑖𝑗, 𝑡 𝑖𝑗 + 𝑡 𝑖𝑗] . 𝑡 𝑖𝑗 denotes the nominal value of 

uncertain travel time in an arc (𝑖, 𝑗) ∈ 𝐴𝑘, and 𝑡 𝑖𝑗 represents the 

maximum deviation from the nominal value 𝑡 𝑖𝑗. 𝛽𝑖𝑗 is an 
auxiliary variable, and Γ𝑘 denotes the uncertain travel time 
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𝑡 

𝑡 

𝑡 

0 ≤ ((1 − 𝑔𝑖𝑘 ) ⋅ 𝑦𝑖𝑘 + 𝑔𝑖𝑘 ⋅ 𝑌𝑖𝑘 − 𝐸𝑖𝑗𝑘 ) 𝑥𝑖𝑗𝑘 ≤ 𝑄, ∀𝑖 ∈ 

𝒩′
𝑂 ∪ ℛ, 𝑗 ∈ 𝒩′

𝐷 ∪ ℛ, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 () 

𝑥𝑖𝑗𝑘 ∈ {0,1}, ∀𝑖, 𝑗 ∈ 𝒩′
𝑂,𝐷, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 () 

Objective (6) is to minimize the total energy consumption 
of all BETs. Constraints (7) through (9) guarantee the forward 
and backward flow conservation constraints. Constraints (10) 
and (11) define the degree constraints for the depot. Constraint 

𝑡 
𝑘 (12) ensures that each BET is fully recharged before departing 

budget for a BET trip. Specifically, Γ𝑡 controls the number of 
arcs with high travel time uncertainty, which is calculated by 
 𝜃𝑡 𝐴𝑘 , where 𝜃𝑡 ∈ [0,1] is the travel time uncertainty 
budget coefficient and 𝐴𝑘 is the number of arcs in route 𝑘. 
For example, if 𝜃𝑡 = 0 , then Γ𝑘 = 0 , which means the 

uncertainty degree is zero so the uncertain travel time 𝑡 𝑖𝑗 
equals 𝑡 𝑖𝑗 for all arcs in route 𝑘. If 𝜃𝑡 = 1 and Γ𝑘 = 𝐴𝑘 , all 

the arcs in route 𝑘 can take any value in the interval 

[𝑡 𝑖𝑗, 𝑡 𝑖𝑗 + 𝑡 𝑖𝑗]. Thus, the larger value of Γ𝑘 provides greater 

from the depot. Constraint (13) defines that the recharging 
frequency is at most once for a BET. Constraint (14) specifies 
the charging constraints. For the time window constraints, 

considering uncertain travel time 𝑡 , constraints (15) and (16) 
guarantee that the arrival time at each node satisfies its time 
window. Constraints (17) and (18) ensure that the cargo 
payload is less or equal to the maximum cargo capacity for 
each BET. Constraint (19) enforces that the SOC of any BET 
cannot be less than 0. Constraint (20) defines a binary variable. 



88 

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 24,2025 at 17:50:10 UTC from IEEE Xplore. Restrictions apply. 

 

𝑡 

𝑡 

𝑡 

𝑝 

𝑡 

𝑡 

𝑡 

1  𝔰  

𝑡 

IV. SOLUTION APPROACHES 

To address the proposed BET dispatching problem, we first 
incorporate a RO method [17] into the proposed mathematical 
model. Then, an ALNS metaheuristic algorithm is used to find 
a robust dispatching solution. 

A. Incorporating Uncertainty and Reformulating the Cost 

Function 

While the heterogenous travel time uncertainty is 
considered in the proposed robust BET dispatching problem, 
it may not always be possible to enforce the feasibility of the 
solution during the search. To ensure the effectiveness of the 
algorithm, infeasible solutions due to tight constraints, such as 
time windows, battery capacity, and restricted recharging time, 
are allowed during the search process. We use a surrogate 
objective function based on Equation (6) and add penalties 
associated with travel time violations. So, the latest possible 
vehicle arrival time at each vertex, as well as the potential 
penalty costs, can be estimated. 

To calculate the potential latest arrival time for a node on a 
given solution 𝑆 under uncertain travel times, let’s start with a 
solution 𝑆 that comprises 𝑚 BET routes, represented by 𝑆 = 
{𝔰1, 𝔰2, ⋯ , 𝔰𝑚}. A route traveled by BET 𝑘 is defined as 𝔰𝑘 = 
{𝑝𝑘, 𝑝𝑘, ⋯ , 𝑝𝑘   , 𝑝𝑘  , which contains 𝔰𝑘 nodes, where 

𝑚  𝑠𝑘  

𝐶𝑜𝑠𝑡(𝑆) = 𝑓(𝑆) + 𝛾𝑡     max⁡(0, Λ(𝑖, Γ𝑘 ) − 𝑙𝑖 ) 
𝑘∈𝐾 𝑖=1 

(22) 

B. Generation of Initial Solution 

A modified greedy heuristic [7] is applied to generate an 
initial solution. To begin, we randomly select a candidate 
customer and insert them into a BET route. Subsequently, a 
greedy heuristic is used to iteratively determine a candidate 
customer with the smallest insertion cost increment on 𝑓(𝑆), 
and then insert it into the current route. When the current route 
becomes energy infeasible, a potential recharging visit is 
attempted to insert the current route from a set of recharging 
stations ℛ , selecting the one that generates the lowest 
incremental insertion cost. Therefore, more customers may be 
reachable. The current route is terminated when no more 
vertices can be scheduled due to constraint violation. In such a 
case, if there are still unvisited customers, a new BET route is 
started following the same greedy insertion process described 
above. 

C. ALNS Algorithm 

To solve the proposed BET dispatching problem, we use an 
enhanced version of the ALNS algorithm described in Peng et 

1 2  𝔰𝑘 −1  𝔰𝑘  

𝑘 ∈ 𝐾 and 𝔰𝑘 ∈ 𝑆. For the route 𝑠𝑘, the start node and the end 

node are represented by 𝑝𝑘 and 𝑝𝑘 , respectively. Also, the 
𝑘 

customers’ nodes or a recharging station visit are included in 
{𝑝𝑘, ⋯ , 𝑝𝑘  . Considering an uncertainty degree of travel 

al. [7]. The ALNS algorithm is used as a search engine to find 
a robust dispatching solution. Here, we only briefly describe 
the ALNS algorithm due to limited space. For more details, we 
refer interested readers to [7]. 

2  𝔰𝑘 −1 

time Γ𝑘 for a route traveled by BET 𝑘, we denote the latest 

arrival time for node 𝑖 in this route as Λ(𝑖, Γ𝑘). Inspired by a 

calculation of Λ(𝑖, Γ𝑘) in [19] and [18], we take recharging 

time ℎ 𝑘 into account during the route. Therefore, the latest 
𝑖 

arrival time function Λ(𝑖, Γ𝑘) is formulated as follows. 

Λ(𝑖, Γ𝑘 ) = 
0, if 𝑖 = 1   

The ALNS, first proposed in [20], has been successfully 
implemented to solve VRP with pick-up and delivery and 
various VRP extensions (e.g., [21], [10], [22], [23]). The 
developed ALNS algorithm begins with an initial solution 
construction process described in Section IV-B and improves 
the solution by applying removal and reinsertion operators. 
Specifically, like [24], we use five removal and three 
reinsertion operators in the ALNS framework. Each operator 

Λ(𝑖 − 1, Γ𝑘 ) + 𝑠 𝑘  + 𝑡 𝑘  𝑘 , if 𝑝𝑘 ∈ ℛ, and Γ𝑘 = 0 𝑡 𝑝 𝑖−1 𝑝𝑖−1 𝑝𝑖 𝑖 𝑡 has an assigned weight, which can be adjusted dynamically 
 max⁡(𝑒 𝑘 , Λ(𝑖 − 1, Γ𝑘 ) + ℎ 𝑘  + 𝑡 
𝑘 

𝑘 ), if 𝑝𝑘  ∈ ℛ, and Γ𝑘 = 0 according to performance. We employ the simulated annealing 

𝑝𝑖 𝑡 𝑝𝑖−1 𝑝𝑖−1 

𝑝𝑖 

𝑖−1 𝑡 heuristic to decide if a new solution should be accepted or 

 max (𝑒 𝑘 , Λ(𝑖 − 1, Γ𝑘 ) + 𝑠 𝑘  + 𝑡 𝑘 𝑘 ) , if 2 ≤ 𝑖 ≤ 𝔰 , and Γ𝑘 = 0 

𝑝𝑖 𝑡 𝑝𝑖−1 𝑝𝑖−1𝑝𝑖 𝑘 𝑡 rejected, aiming to diversify the solution. It is noteworthy that 

 max⁡(Λ(𝑖 − 1, Γ𝑘 − 1) + 𝑠 𝑘  + 𝑡 𝑘  𝑘 + 𝑡 𝑘 𝑘 , 
𝑡 𝑝𝑖−1 𝑝𝑖−1 

𝑝𝑖 

𝑝𝑖−1 𝑝𝑖 we use the surrogate cost function 𝐶𝑜𝑠𝑡(𝑆) in equation (22) as 

Λ(𝑖 − 1, Γ𝑘 ) + 𝑠 𝑘  + 𝑡 𝑘  𝑘 ), if 𝑝𝑘 ∈ ℛ the objective function for the ALNS algorithm. Thus, the total 
𝑡 𝑝𝑖−1 𝑝𝑖−1 𝑝𝑖 𝑖 

 max⁡(𝑒 𝑘 , Λ(𝑖 − 1, Γ𝑘 − 1) + ℎ 𝑘  + 𝑡 
𝑘 

𝑘 + 𝑡 𝑘 𝑘 , energy consumption and the potential delay penalty can be 

𝑝𝑖 𝑡 𝑝𝑖−1 𝑝𝑖−1𝑝𝑖 𝑝𝑖−1 𝑝𝑖 minimized during the search process. 

Λ(𝑖 − 1, Γ𝑘 ) + ℎ 𝑘  + 𝑡 𝑘  𝑘 ), if 𝑝𝑘  ∈ ℛ and 1 ≤ Γ𝑘 ≤ 𝑖 − 1 
𝑡 𝑝𝑖−1 𝑝𝑖−1 

𝑝𝑖 

𝑖−1 𝑡 

(𝑒 𝑘 , Λ(𝑖 − 1, Γ𝑘 − 1) + 𝑠 𝑘  + 𝑡 𝑘 𝑘 + 𝑡 𝑘 𝑘 , V. CASE STUDY 
 max 𝑝𝑖 𝑡 𝑝𝑖−1 𝑝𝑖−1 

𝑝𝑖 

𝑝𝑖−1𝑝𝑖  , 

Λ(𝑖 − 1, Γ𝑘 ) + 𝑠 𝑘  + 𝑡 𝑘  𝑘 ), 
𝑡 𝑝𝑖−1 𝑝𝑖−1 𝑝𝑖 

if 𝑖 ≤ 𝔰𝑘 and1 ≤ Γ𝑘 ≤ 𝑖 − 1 
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 Λ(𝑖, Γ𝑘 − 1), if 2 ≤ 𝑖 ≤ Γ𝑘  This section presents a set of experiments to evaluate the 
solution approach and investigate the robustness of solutions 
under different uncertainty degrees. The problem instance is 

𝑡 𝑡 
() generated from real-world dispatching data in a full-service 

Therefore, the surrogate cost function of a given solution 𝑆 
can be calculated as in equation (22). In (22), 𝑓(𝑆) represents 
the total energy cost as discussed in Section III-C and 𝛾𝑡 
denotes the penalty factor for time window violations. 

 

 

 

 
1 https://github.com/CurtisPeng123/Robust-BET-Dispatching-Dataset 

supply chain company. The proposed algorithm is 
implemented in a Python environment. All experiments are 
run on an online server with 32 GB RAM. The problem 
instance and travel information are available via GitHub1. 

A. Data Description and Experiment Design 

The real-world dataset is derived from the historical travel 
movements of a fleet of conventional heavy-duty diesel trucks 
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that operated in San Bernardino County, California. We 
generate a dispatching instance to assess the robust dispatching 
strategy. The real-world test instance consists of 47 customers, 
including 33 linehaul customers and 14 backhaul customers. 
The dataset contains known dispatching information, such as 
customers’ locations, visit type (delivery or pick-up), time 
window, and required demand (weight of cargo to be delivered 
or picked up). Ten customer locations are randomly selected 
as recharging stations. 

Based on the customer locations, we utilize the Direction 
Service Application Programming Interface (DSAPI) 

 

 

TABLE II. COMPARISON ON SOLUTIONS IN DETERMINISTIC TRAVEL 

TIME 

Instance 𝑺𝑫𝒆𝒕 𝑺𝑹𝒐𝒃 

𝒎𝑬 OBJ Risk 𝒎𝑬 OBJ Risk Dev 

BETVRPB 7 686 100.0% 7 698 0.9% 5.5% 

Note: 𝑚𝐸 , OBJ, Risk denote the number of BETs, the total energy 
consumption (in kWh), and the proportion of infeasible solutions, 

 

 

 

 

 
In this study, the parameters of the uncertainty set in (5) are 

defined as follows. Each nominal travel time 𝑡 𝑖𝑗 equals the 

real-world travel time obtained from the DSAPI. Additionally, 

we assume that the maximum deviation 𝑡 𝑖𝑗 is 0.2𝑡 𝑖𝑗 . The 

uncertainty budget coefficient of travel time 𝜃𝑡 is set to 0.3. 
The penalty value 𝛾𝑡 in (22) is set to 20. We adopt parameters 
setting in ALNS metaheuristics, from our previous study [7]. 
In the numerical study, we use the characteristics of Class 8 
BETs available in the current US market [26]. Table I 
summarizes the problem variables. 

 

TABLE I. SUMMARY OF PROBLEM PARAMETERS 

Notation Description Value 

𝑒𝑓𝑓𝑚 Motor efficiency 0.7 
𝑒𝑓𝑓𝑑 Discharging efficiency 0.91 

proportion of infeasible scenarios within a simulation. 

C. Performance of the Solution Approach 

To assess the effectiveness of the ALNS, we compare the 
solutions of the robust BET dispatching version under 
uncertainty with the solution of the deterministic BET 
dispatching scenario. Table II shows the comparison of the 

𝑐𝑟 Rolling resistance coefficient 0.008 experiment results. For each instance, the columns 𝑆𝐷𝑒𝑡 and 

𝑐𝑑 Aerodynamic drag coefficient 0.7 

𝑤 Vehicle curb weight [lbs.] 8,000 

𝑔 Gravitational constant [𝑚/𝑠2] 9.81 

𝜌𝑎 Air density (km/m3) 1.2041 

𝜃 Road angle 0° 

𝑎 Acceleration 0 

𝑟 Recharging rate [kWh/min] [27] 3.96 

[𝑇𝑂, 𝑇𝐷] Operating hour [8 am, 4 pm] 

 𝑃𝐴𝑐𝑐 Accessory power [kW] [16] 5.6  

B. Solution Robustness Evaluation 

Evaluating the robustness of the solution is necessary in the 
experiments. We employ a Monte Carlo simulation process to 
assess the robustness of the final solution derived from the 
ALNS algorithm. To generate a simulation scenario, we 

uniformly sample a random variable travel time, 𝑡 𝑖𝑗, of an arc 

(𝑖, 𝑗) ∈ 𝒜 within its interval [𝑡 𝑖𝑗, 𝑡 𝑖𝑗 + 𝑡 𝑖𝑗]. It is important to 

note that a solution comprises numerous arcs, and the travel 
times of these arcs are uniformly sampled using the same 
method. Consequently, we obtain one simulation scenario 
characterized by heterogeneous uncertainty in travel time. 

Within the simulation process, a total of 1,000 scenarios are 
generated to evaluate the robustness of the final solution. For 
each solution, the number of infeasible scenarios is recorded. 

respectively. 

TABLE III. RESULTS FOR INSTANCE WITH DIFFERENT 

UNCERTAIN RANGE VALUES (𝛼𝑡) 

0.5 7 719 0.0% 

TABLE IV. RESULTS FOR INSTANCE WITH DIFFERENT 

UNCERTAIN BUDGET COEEFICIENT VALUES (𝜃𝑡) 

Uncertainty BETVRPB 

provided by OpenRouteService [25] to generate real-world Uncertainty range BETVRPB  

travel information for BET routes, including ideal travel time  𝒎𝑬 OBJ Risk 

and distance matrices. These matrices take into account truck- 0 7 686 100.0% 

restricted  zones  and  speed  limits  within  the  urban 0.1 7 697 72.3% 

transportation network. 0.2 7 698 0.9% 
 0.3 7 701 0.3% 

 

budget coefficient 𝒎𝑬 OBJ Risk 

0 7 686 100.0% 

0.1 7 697 97.5% 

0.2 7 697 72.1% 

0.3 7 698 0.9% 

0.5 7 700 0.3% 

Subsequently, a “Risk” value is defined to represent the 

 

A Frontal surface area of a BET [𝑚2] 10 

C BET usable battery capacity [kWh] 300 

Q BET payload capacity [lbs..] 37,000 
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𝑡 

𝑆𝑅𝑜𝑏 denote the solutions of the deterministic version and the 
solutions of the robust version, respectively. 𝑚𝐸 denotes the 
number of BETs, and “OBJ” indicates the total energy 
consumption. “Risk” represents the proportion of infeasible 
scenarios in the Monte Carlo simulation. 

In Table II, we observe that the deterministic solutions are 
fragile under travel time uncertainty. They encounter a higher 
risk since they may violate one or more of the constraints. 
However, the proposed robust BET dispatching approach can 
significantly reduce the risk compared with the deterministic 
dispatching approach. The risk can be reduced from 100% to 
0.9% while the total energy consumption increases by merely 
5.5%. 

D. The Effect of Uncertainty Parameters 

As mentioned in Section III-C, the robustness of the 
solution is affected by the budgeted uncertain set of travel 
time. Therefore, we analyze the impact of the maximum 
deviation of travel time 𝑡 𝑖𝑗 = 𝛼𝑡𝑡 𝑖𝑗 and the uncertainty degree 

Γ𝑘 separately. When investigating the effect of maximum 
deviation on the solutions, we assume the uncertainty budget 
coefficient 𝜃𝑡 is fixed and set it to 0.3. We define the uncertain 
range coefficient 𝛼𝑡 in set {0.1, 0.2, 0.3, 0.5}, where the larger 

value of 𝛼𝑡 represents the greater deviation of 𝑡 𝑖𝑗. Similarly, to 
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analyze the effect of the uncertainty budget coefficient, we fix 
𝛼𝑡 to 0.2 and change the travel time uncertainty budget 
coefficient 𝜃𝑡 in set {0.1, 0.2, 0.3, 0.5}. The larger value of 
coefficient 𝜃𝑡 may cause a larger number of arcs under travel 
time uncertainty. The experiment results are reported in Table 
III and Table IV. 

As shown in Table III, when the uncertainty range 𝛼𝑡 of 
travel time increases from 0 to 0.5, the total energy 
consumption rises from 686 to 719, or approximately 4.8%. 
More energy cost is required to ensure a lower risk of violating 
the time window constraints. In Table IV, as the degree of 
uncertainty increases, the solution cost increases by 2.0%. By 
comparing the results between these two tables, we notice that 
the uncertainty range of travel time has a higher impact on the 
robust solution. Based on the observations in this study, the 
proposed dispatching strategy can provide dispatching 
solutions under different risk levels so the decision-maker can 
choose a preferred robust solution. 

 

VI. CONCLUSIONS AND FUTURE WORK 

This paper introduces a robust BET dispatching problem 
with backhauls and time windows under heterogenous travel 
time uncertainty. A microscopic energy consumption model is 
used to estimate the SOC of BETs during dispatching. We 
apply the ALNS metaheuristic algorithm incorporating RO 
method to find a robust dispatching solution. A real-world 
dispatching case study is used to assess the performance of our 
solution approach and examine the effect of the different 
uncertainty parameters on the solutions. For the case study 
examined in this paper, the solution risk can be reduced from 
100% to 0.9% while the total energy consumption increases by 
only 5.5%. Additionally, a Monte Carlo simulation process is 
used to demonstrate the robustness of the solutions that were 
obtained. The experiment results indicate a trade-off between 
the total energy cost of the solution and its robustness under 
different levels of uncertain travel times. 

There are several directions for enhancing and expanding 
this work in the future. For example, other uncertainties, such 
as uncertain loading/unloading time at customer location or 
waiting time at recharging stations, can be considered. Also, 
learning-based algorithms can be utilized to solve BET 
dispatching problems in a more efficient manner. 
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