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Abstract 

Connected vehicle-based eco-driving applications have emerged as effective tools for improving energy efficiency and envi- 

ronmental sustainability in the transportation system. Previous research mainly focused on vehicle-level or link-level technol- 

ogy development and assessment using real-world field tests or traffic microsimulation models. There is still high uncertainty in 

understanding and predicting the impact of these connected eco-driving applications when they are implemented on a large 

scale. In this paper, a computationally efficient and practically feasible methodology is proposed to estimate the potential 

energy savings from one eco-driving application for heavy-duty trucks named Eco-Approach and Departure (EAD). The pro- 

posed methodology enables corridor-level or road network–level energy saving estimates using only road length, speed limit, 

and travel time at each intersection as inputs. This technique was validated using EAD performance data from traffic microsi- 

mulation models of four trucking corridors in Carson, California; the estimates of energy savings using the proposed metho- 

dology were around 1% average error. The validated models were subsequently applied to estimate potential energy savings 

from EAD along truck routes in Carson. The results show that the potential energy savings vary by corridor, ranging from 

1% to 25% with an average of 14%. 
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Transportation activities, including the movement of 

people and goods by cars, trucks, trains, and other vehi- 

cles, account for 26% of energy consumption in the United 

States, with 50% to 60% from passenger trans- portation 

and 40% to 50% from freight transportation. 

Consequently, transportation is responsible for 28.2% of 

the U.S. greenhouse gas (GHG) emissions, the largest 

share among all the sectors that include electricity, indus- 

try, commercial and residential, and agriculture (1). As 

connected and automated vehicle (CAV) technologies 

rapidly advance, there has been significant interest in 

using these technologies to help reduce energy consump- 

tion and GHG emissions from the transportation sector 

(2). For example, several connected eco-driving applica- 

tions have been developed to improve the energy effi- 

ciency of individual vehicles and traffic as a whole via 

vehicle-to-vehicle  (V2V)  or  vehicle-to-infrastructure 

(V2I) coordination, including Eco-Approach and 

Departure (EAD) at Signalized Intersections, Eco-Traffic 

Signal Timing, Eco-Lanes Management, and so forth (3). 

Among them, the EAD at Signalized Intersections appli- 

cation has been widely studied given its significant energy 

saving potential (4–6). With the EAD application, the 

equipped vehicle would be able to follow the most energy-

efficient trajectory for passing through a signa- lized 

intersection that is calculated using the current speed of 

the vehicle measured by the speedometer, 
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distance to the intersection measured by the Global 

Positioning System (GPS), Signal Phase and Timing 

(SPaT) messages from the traffic signal controller and 

surrounding traffic information detected by on-board 

sensors such as radars or cameras. 

In the past decade, many studies have been conducted 

to evaluate the energy savings and emissions reduction 

potential of the EAD application under a variety of 

scenarios—from a simple scenario, such as fixed-time sig- 

nals without traffic, to a more complex set-up that com- 

prises actuated signals in different traffic conditions. Ye 

et al. (4) developed a prediction-based EAD strategy con- 

sidering urban traffic and queues at intersections using 

the predicted states of the preceding vehicle. And the 

results from the numerical simulation show that the pro- 

posed EAD system could achieve 4.0% energy savings 

compared with a car-following baseline. Hao et al. (5) 

proposed an EAD system that was adaptive to the 

dynamic uncertainty for actuated signal and real-world 

traffic; real-world testing was conducted resulting in 6% 

energy savings. Li et al. (6) compared the safety, mobi- 

lity, and environmental sustainability parameters of 

EAD-equipped vehicles versus non-equipped vehicles in 

a traffic microsimulation environment and achieved con- 

sistent mobility and environmental benefits in the EAD- 

equipped vehicles. Rakha et al. (7) used numerical simu- 

lations to show the importance of retaining microscopic 

fuel consumption models in the optimization function 

compared with using simplified objective functions. 

Mahler and Vahidi (8) used a signal phase prediction 

model to predict future SPaT status in an EAD applica- 

tion, which has shown increased energy efficiency in 

multi-signal numerical simulation. Xiang et al. (9) devel- 

oped a closed-loop speed advisory model that is adaptive 

to the drivers’ behavior for eco-driving, showing a 4% 

fuel economy improvement compared with the baseline. 

Kamalanathsharma and Rakha (10) optimized the vehi- 

cles’ trajectories using the moving horizon dynamic pro- 

gramming approach, enhancing the computational 

efficiency using the A-star algorithm for real-time appli- 

cation. Xia et al. (11) proposed an enhanced EAD system 

considering both the SPaT information and the status of 

the preceding equipped vehicles using connected vehicle 

technology, which has shown higher benefits during 

higher levels of congestion. Esaid et al. (12) proposed a 

machine-learning trajectory planning algorithm that can 

achieve optimality and computational efficiency at the 

same time in multiple traffic microsimulation runs. 

M u ñ o z - Organero and M a g a ñ a  (13) proposed an eco- 

driving assistant algorithm to reduce fuel consumption 

by calculating optimal deceleration patterns and mini- 

mizing the use of braking; the algorithm was tested with 

nine different drivers in five different models of vehicles. 

As shown in Table 1, all these studies used different 

methods in the evaluation of energy savings and emis- 

sions reduction benefits of EAD application, including 

numerical simulation, traffic microsimulation, or field 

experiment. Among the three types of method, numerical 

simulation (4, 7–10) is relatively easy to conduct, but it 

only simulates the EAD-equipped vehicle without consid- 

eration of other vehicles on the road. This limitation can 

be addressed by using traffic microsimulation (6, 11, 12) 

tools where different driving and traffic scenarios can be 

simulated to replicate real-world conditions. However, the 

evaluation of the EAD application using traffic 

microsimulation tools is complex and time-consuming, 

involving the coding, calibration, and validation of the 

simulation model as well as the implementation of EAD 

algorithms into the simulation model through an applica- 

tion programming interface. Lastly, the evaluation of the 

EAD application through field experiment (5, 13, 14) is 

expensive, and thus, is often conducted for a limited 

number of intersections and corridors. Meanwhile, the 

energy and emissions benefits of EAD depend heavily on 

intersection and corridor characteristics, such as the speed 

limit and the length of the road upstream of the 

intersection, and thus, the benefits of EAD measured at 

one intersection or corridor may not be applicable to 

others. 
Over the past decade, extensive research has been 

focused on modeling vehicle energy consumption quanti- 

tatively, aiming to establish clear links between driving 

behavior, operational parameters, and energy use. 

Scholars have proposed various evaluation models to 

evaluate eco-driving capabilities, ranging from persona- 

lized time-series systems (15) that estimate future energy 

consumption to data-driven methods (16) that construct 

nonlinear relationships between driving behavior and 

energy use. Some models (17) use driving events as 

inputs, scoring eco-driving based on the occurrences of 

rapid acceleration or deceleration within a specific mile- 

age. However, a common challenge arises in certain eva- 

luation models that rely heavily on expert knowledge, 

introducing subjectivity into the assessment process. This 

reliance on expert opinions often complicates the con- 

struction of these models, affecting their overall objectiv- 

ity. To achieve more objective assessments, researchers 

have explored indicators such as vehicle-specific power 

(18), energy consumed during braking (19), and positive 

kinetic energy (20) to construct an eco-driving evaluation 

model. 
The objective of this research is to develop a model 

that can perform computationally efficient and practi- 

cally feasible estimation of the energy saving potential of 
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Table 1. Summary of Eco-Approach and Departure (EAD) Algorithms and Evaluation Methods from Select Studies 
 

Study Authors and Year EAD Algorithm Evaluation Method 
 

Rakha and Kamalanathsharma (2011) (7) Fuel as the optimization objective Numerical Simulation 
Mahler and Vahidi (2012) (8) Signal phase prediction model Numerical Simulation 
Xiang et al. (2015) (9) Driver behavior adapted eco-driving Numerical Simulation 
Kamalanathsharma and Rakha (2016) (10) Multi-stage dynamic programming Numerical Simulation 
Ye et al. (2019) (4) Neural network-based prediction Numerical Simulation 
Xia et al. (2013) (11) Adapted for different congestion levels Traffic Microsimulation 
Li et al. (2016) (6) Drivers make control based on alerts Traffic Microsimulation 
Esaid et al. (2022) (12) Machine learning-based method Traffic Microsimulation 
Mun˜oz-Organero and Magan˜a (2013) (13) Design optimal deceleration patterns Field Experiment 
Stahlmann et al. (2018) (14) Green light optimal speed advisory Field Experiment 

Hao et al. (2018) (5) Rule-based method for actuated signals Field Experiment 

 

EAD. To achieve the research objective, a lookup table- 

based method is proposed where the lookup table stores 

the numerical relationships between vehicle energy con- 

sumption and key parameters in EAD operation, such 

as upstream and downstream link distance. These rela- 

tionships replace the runtime computation in numerical 

simulation or traffic microsimulation with a faster array 

indexing operation. Similar methods (21) have been 

widely used in other research fields in view of the vast 

savings in processing time and the ability to store pre- 

calculated relationships for use in the execution of a 

model. Using the proposed method, one can quickly 

estimate the corridor-level or road network–level energy 

savings potential of the EAD application using only 

road length, speed limit, and travel time at each inter- 

section as inputs. The estimation results can be used to 

select intersections for detailed evaluation in traffic 

microsimulation or prioritize intersections for field 

implementation. Note that our algorithm is not designed 

to fully replace traffic microsimulations or field tests 

since those methods are still more accurate, but to save 

time and narrow down the range of traffic signal 

selections. This can be seen as an assistant for the existing 

methods before they decide which intersections or 

corridors to simulate or conduct field tests. More 

specifically, the contributions of this research can be 

summarized as follows: 

 

1) Efficient in computation: this research aims to 

create a computationally efficient model for esti- 

mating the energy savings potential of Eco- 

Approach and Departure (EAD). The model seeks 

practical feasibility while minimizing com- 

putational load. 

2) Cost-effective in data collection: the inputs to this 

estimation model only consist of road length, 

speed limits, and intersection travel times, which 

are cost and effort effective to acquire and process. 

3) Complementary to established methods: the esti- 

mation outcomes serve as a basis for selecting 

intersections for in-depth evaluation within traffic 

microsimulations or for prioritizing intersections 

for potential field implementation. This research 

would help identify the target intersection for 

deployment in the preliminary stages of decision 

making. 

 

To develop the estimation method, data generated from an 

extensive traffic microsimulation of an EAD applica- tion 

for heavy-duty trucks on real-world corridors in Carson, 

California, were used. First, two lookup tables (one for the 

baseline scenario and the other for the EAD scenario) were 

created that compiled upstream distance, downstream 

distance, average travel time, and energy consumption for 

the individual intersections. Then, each lookup table was 

used to build an estimation model, which was later 

calibrated based on the ratio between the actual and 

estimated energy consumption. Using the calibrated 

models, the energy consumption for both the baseline and 

EAD scenarios at each intersection can be estimated, and 

subsequently, the energy savings can be calculated. 

 

Methodology 

In this section, we will discuss the microsimulation- based 

approach for estimating the energy saving poten- tial. We 

will describe the system architecture, including four key 

components: scenario generation, online EAD system, 

offline EAD system, and energy benefit estima- tion 

model. The EAD application for heavy-duty trucks, 

including the online and offline EAD system, was 

previously developed and implemented in the traf- fic 

microsimulation models of four real-world trucking 

corridors in Carson, California, to evaluate the energy 

saving potential of EAD for trucking applications (22). In 

this paper, we extend the work to the upstream and 
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downstream to design, calibrate, and validate the lookup 

table-based energy consumption estimation method using 

data generated from the traffic microsi- mulation models. 

 

System Architecture 

As shown in Figure 1, the proposed system has four major 

components: scenario generation, online EAD sys- tem, 

offline EAD system, and energy benefit estimation model. 

The scenario generation step initializes the system with a 

well-calibrated simulation network. A signalized 

intersection with 1,500 m upstream and downstream links 

were created to cover all the potential upstream and 

downstream distance scenarios for the EAD prob- lem. 

We then test the baseline and EAD cases for 1,000 runs 

respectively to create a sufficient data pool to evalu- ate 

the energy saving potential under various road, traf- fic, 

and signal conditions. 

The EAD system consists of online and offline systems. 

The offline EAD system trains a machine learning-based 

trajectory planning model, which was then used in the 

online EAD system to output the suggested speed and 

acceleration profile for the host vehicle in real time. In the 

offline system, a graph-based trajectory planning model is 

first developed based on the unique powertrain character- 

istics and vehicle dynamics of trucks. This graph model 

creates a data set of input-output pairs using different 

combination inputs of the truck speed, location, and signal 

states to output the optimal acceleration. To save compu- 

tational time while maintaining high accuracy, a machine 

learning-based trajectory planning model is then trained 

using the input-output data set so that the online EAD 

system can give the most eco-friendly speed suggestion in 

real time (12). The proposed machine-learning trajectory 

planning algorithm (MLTPA) is designed to enable real- 

time optimization. The approach involves training a ran- 

dom forest model to emulate the solution derived from an 

existing optimization method known as the graph-based 

trajectory planning algorithm (GBTPA). By adopting the 

proposed MLTPA, one can significantly reduce computa- 

tion time from tens of seconds to just a few milliseconds. 

Simulation results demonstrate that MLTPA consistently 

achieves a median improvement in energy savings ranging 

from 5.0% to 6.20% across multiple simulation runs. This 

approach also exhibits the potential to approximate vari- 

ous other trajectory planning algorithms, ensuring real- 

time performance without compromising optimality. 

More technical details can be found in Esaid et al. (12). 

In the online system, at each time step, different sources 

of information are inputs to form a safe and energy-saving 

target speed. Given the current signal states and location 

of the vehicle, the system will evaluate whether the 

vehicle can pass the intersection in the 

current phase. And given the states of the preceding vehi- 

cle, the system will also decide whether the host vehicle 

will be blocked by the front vehicle. If such safety 

requirements are not satisfied, the EAD system will shut 

down and the system will give control back to the default 

controller in the simulation software. If all the safety 

requirements are satisfied, the vehicle states will be fed 

into the trained machine-learning model to output the 

desired acceleration and speed (22). While implementing 

the online EAD system, we track the entire exact speed 

profile of all the baseline and EAD trucks no matter if they 

are driven under the EAD algorithm or the default 

controller in the simulation engine. These speed profile 

data outputs from the simulation will reflect how the EAD 

system performs in the traffic and will form a lookup table 

for the energy benefit estimation model. 

With the well-calibrated single-intersection microsi- 

mulation network and real-time online EAD model, the 

single-intersection trajectory data sets and lookup tables 

are generated using multiple runs to feed into the energy 

benefit estimation model. In this model, a corri- dor or 

network is first divided into multiple unit links. Then, the 

energy consumption for each time (t), upstream distance 

(lu), and downstream distance (ld) combination is 

measured. Next, the adjustment factor R is calculated 

based on the actual energy consumption and the estimated 

energy using the lookup table. And this factor will be 

applied to the test data set for energy estimation. Note that 

the ‘‘actual’’ energy consumption is defined as the 

simulated energy consumption for both baseline and eco-

driving. The ‘‘actual’’ is men- tioned to compare with the 

estimated energy consump- tion derived from the 

uncalibrated lookup table. The detail of each step in the 

model will be discussed in the next section. 

 

Energy Benefit Estimation Model 

Unit Intersection Lookup Table. Many parameters are 

related to energy consumption in the proposed EAD 

model, for example, starting and ending locations with 

respect to the intersection, the SPaT information, the 

speed limit, the traffic condition, and so forth. The 

upstream distance (lu) determines the maximum distance 

of which the eco-driving could be initiated. If lu is smaller 

than the communication range of the connected signal, the 

host vehicle will start eco-driving as soon as it enters the 

intersection. Otherwise, the host vehicle will drive without 

connection until it enters the communication range. The 

second parameter that is important in the EAD model is 

the downstream distance (ld), which describes how far the 

vehicle could drive after passing the intersection. ld 

constrains the target speed the vehicle could reach at the 

end of the network, therefore affecting 
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Figure 1. System diagram of the Eco-Approach and Departure (EAD) application. 

 

the energy consumption of the model. Both distance 

measures are critical in the EAD model and are conveni- 

ent to acquire from the geographic database. The speed 

and time-related parameters are also significant in the 

EAD process. For example, when the traffic is con- 

gested, the eco-driving will not be able to be effectively 

performed because of the close gap between the host 

vehicle and the leading vehicle. When the traffic signal 

has a longer red-light phase, the host vehicle will be more 

likely to slow down because of the signal and queue. 

When the city engineers are estimating potential energy 

benefits by enabling certain connected signals, we would 

like to expect high efficiency and accuracy in this pro- 

cess. Although all these parameters are important in esti- 

mating the energy consumption, we only choose the travel 

times along with upstream/downstream distances in the 

lookup table as they are easier to measure and obtain. 

Other parameters, such as the traffic signal tim- ing and 

traffic condition, are difficult to acquire or esti- mate in a 

real-time manner. 
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We create two lookup tables (one for baseline and one 

for eco-driving) where the energy consumption (E) for 

each (t, lu, ld) combination in the single-intersection simu- 

lation was listed. The two lookup tables can be summar- 

ized as two functions below: 

E = Eeðte, lu, ldÞfor eco - driving case, 
ð1Þ 

Table 2. Driving Behavior Parameter in VISSIM 
 

Parameter Value 
 

Maximum look ahead distance 750 m 
Car-following model Wiedemann 74 
Average standstill distance 2 m 
Additive part of safety distance 2.00 
Multiplicative part of safety distance 3.00 

E = Ebðtb, lu, ldÞfor baseline case: 

As part of the energy benefit estimation model, the single- 

intersection simulation provides the simplest EAD sce- 

nario, from which different (t, lu, ld) combinations could 

be extracted. The simulations are conducted with both 

eco-driving and baseline algorithms for a total of 1,000 

runs each. Between each run of eco-driving and baseline, 

the initial conditions are set to be the same using the same 

random seed number. The large number of runs guaran- 

tees that a sufficient data pool could be created to evaluate 

the energy savings. The baseline algorithm is the default 

VISSIM driving model with parameters shown in Table 2. 

The energy consumption for each run is fed into the 

lookup table corresponding to the three indicator values. 

In the case where the same indicator values are reached 

among multiple runs, the energy consumption will be the 

average value between them. Later, the corridor with mul- 

tiple intersections could be split into single intersections, 

 

To calibrate the adjustment factor R (defined as the 

ratio between the actual energy and the estimation), we 

first used corridor simulation data from two corridors as 

training sets and collected actual energy consumption 

data for each link. We then estimate the energy consump- 

tion at corresponding links from the single-intersection 

simulation data set. According to the link distance (short 

or long) and driving mode (eco-drive or baseline), data 

were categorized into four groups. Here, short links are 

defined as links in which lu ł 100 m, and long upstream 

links are defined as links in which lu . 100 m. The adjust- 

ment factor R between actual and estimation for certain 

link length types and driving modes is then calculated as 

below: 

Pk 
Eactual 

calculated separately, and added together for total energy 

consumption and benefit estimation. 
k 
i = 1 Eestimationi 

 

Lookup Table Calibration. The lookup table in the previous 

step is obtained by running microsimulations of a single- 

intersection network. The network is designed to have 

large enough lu and ld (both 1,500 m) so that the lookup 

table could cover all conditions of the real-world inter- 

sections. However, such a lookup table might not work 

when the network is extended to corridors of multiple 

intersections with different lengths of lu and ld, especially 

when the intersections are closely spaced. When the lu or 

ld is small, vehicles usually prepare to decelerate before 

they reach the desired speed, causing a smaller average 

speed and longer travel time. The actual energy con- 

sumption is usually less than the estimated value from Ee 

or Eb. In urban areas where higher traffic densities and 

more complex road networks are often seen, distances 

between intersections are sometimes close, leading to 

shorter EAD optimizable distances and larger gaps 

where k is defined as the number of signals with the same 

link length type and driving mode. R could be more accu- 

rate with a finer classification of the link distances. But 

since our data is limited, more link distance groups will 

result in fewer data for each group and make it harder to 

calibrate. Based on the amount of data available and the 

accuracy of the results, we have chosen these four groups 

of adjustment factors. 

 

Scenario and Input Identification. For any given corridor or 

network, the first step in this approach is link division. We 

define the link length dij as the distance between the stop 

line of the upstream intersection i and downstream 

intersection j, downstream distance of intersection i 

(defined as ldi) and upstream distance of intersection j 

(defined as luj) are then defined below: 

if dij ø 1300 : lui = 900; luj = dij - ldi; 

between  actual  and  estimated  energy  consumption. 

Rural areas typically experience lower traffic density and 

fewer intersections. EAD driving can maintain a longer 

else if dij ø 425 : ldi = 400; luj = dij - ldi; 

else : ldi = dij - 25; luj = 25; 

ð3Þ 

time at steady speeds to minimize unnecessary accelera- 

tion and deceleration, leading to similar actual and esti- 

mated energy consumption. Therefore, the R factor is 

close to one when the link distance is long and gets smaller 

when the link distance is short. 

ð2Þ 



2038 Transportation Research Record 2678(12) 
 

The main idea of choosing the threshold values of the 

link distances is to keep the downstream distance of at 

least 400 m when the distance between two intersec- 

tions is larger than 425 m. And when the distance 

between two intersections is shorter than 425 m, 

we 
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X 

short, baseline 

b i ui 

b i ui 

e i ui 

 

want to keep the downstream distance as large as possi- 

ble. This is to ensure that the vehicle could reach the speed 

limit after passing the intersection so that the energy 

difference between eco-drive and baseline is solely 

dependent on the approaching section of the driving. For 

a heavy-duty truck driving on a road with a speed limit 

of 45 mph (20 m/s) with an average accel- eration of 0.5 

m/s2, the distance it takes to reach the speed limit from 

rest is 400 m. 

The baseline travel time for each link can be either 

derived from sample truck trajectory data, estimated by 

the equations in the Highway Capacity Manual (HCM) or 

looked up from the historical travel time in Google Map 

Application Programming Interface (API). HCM provides 

the estimated travel speed based on a series of numerical 

equations. The parameter values in the model depend on 

the signal timing parameters, street category, and so forth. 

Also, the HCM model requires a large amount of data 

(23). Compared with HCM, Google Map API provides 

the estimated travel speed based on the current traffic 

condition and the historical travel time of similar 

periods, without the need for heavy com- putation. Since 

obtaining the parameters of certain intersections could be 

time-consuming, Google Map API is ideal and was used 

in Section 3.3. Since the link travel times for eco-drive 

scenarios are similar to corre- sponding baseline cases, we 

used the same travel time for both baseline and eco-

driving on the same network. For baseline scenarios, all 

the intersections are non-con- nected. For eco-drive 

scenarios, intersections can be connected or non-

connected, according to the imple- mentation plan. 

 

Energy Benefit Estimation. For each link in the real-world 

corridor, the estimated energy consumption under the 

baseline scenario is 

 

 

Figure 2. Energy consumption and energy benefit for t = 100 s: 

(a) energy consumption for baseline; (b) energy consumption for 

( 
R 3 E 

{
t , l , l 

) 
if l ł 100 m 

Eco-Approach and Departure (EAD); and (c) energy savings 

Ei, b = 
R 3 E 

{ 
t , l , l 

) 
if l .100 m 

ð4Þ baseline). 

 

where R is calculated from Step 2 using the grouped train- 

ing data. The equations above are also applicable to the 

links with non-connected signals for eco-drive scenarios. 

 

Etotal = 

n 

 

i = 1 

Ei ð6Þ 

For links with connected signals, the estimated energy 

consumption under the eco-drive scenario is 
( 

Rshort, eco 3 Ee

{
ti, lui, ldj

) 
if lui ł 100 m 

Esaving = 1 - 
Etotal, e 

Etotal, b 
ð7Þ 

Ei, e = 
R 3 E 

{
t , l , l 

) 
if l .100 m 

ð5Þ 
Numerical Experiments 

After calculating the energy consumption of single 

intersections of a corridor, the total baseline energy 

consumption is the summation of all the calibrated energy 

values, and the energy benefit is then calculated 

correspondingly. 

dj ui benefit (energy for baseline 2 energy for EAD)/energy for 

long, baseline 

dj ui 

long, eco dj 

ui 
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In this section, we first show the results of the unit inter- section 

simulation. Then, we validate the proposed esti- mation method 

using the traffic microsimulation- generated data from four 

real-world corridors in Carson, California. Lastly, the 

validated models are applied to 
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Table 3. Cross-Validation Result for the Four Corridors 
 

 Benefit Benefit 
in % before in % after 

Real calibration calibration 
benefit (error per (error per 

Test set in % test set) test set) 

AN + AS 
WN 17.2 

 
1.8 (215.5) 

 
11.1 (26.2) 

WS 12.0 4.8 (27.2) 11.7 (20.3) 
AN + WN   

AS 7.6 11.1 (3.5) 10.5 (2.8) 
WS 12 4.8 (27.2) 7.6 (24.4) 

AN + WS    

AS 7.6 11.1 (3.5) 13.0 (5.3) 
WN 17.2 1.8 (215.5) 7.2 (210.0) 

AS + WN    

AN 6.2 6.4 (0.2) 5.3 (20.8) 
WS 12.0 4.8 (27.2) 6.4 (25.6) 

AS + WS    

AN 6.2 6.4 (0.2) 8.4 (2.2) 
WN 17.2 1.8 (215.5) 6.9 (210.3) 

WN + WS 
AN 6.2 6.4 (0.2) 8.7 (2.5) 
AS 7.6 11.1 (3.5) 12.8 (5.2) 

Mean 10.8 6.0 (24.8) 9.1 (21.6) 
Absolute mean 10.8 6.0 (6.6) 9.1 (4.6) 

Note: WN = Wilmington North; WS = Wilmington South; AN = Alameda 

North; and AS = Alameda South. 

 
 
 
 
 
 
 
 
 

 

Figure 3. Energy consumption and energy benefit for ld = 500 m: 

(a) energy consumption for baseline; (b) energy consumption for 

Eco-Approach and Departure (EAD); (c) energy savings benefit 

(energy for baseline 2 energy for EAD/energy for baseline). 
 

 

estimate the potential energy savings from the EAD 

application for the entire truck route network in the city of 

Carson. 

process took less than 3 h. To understand the impact of 

each parameter on the performance of the EAD algo- 

rithm, we plot the energy consumption v.s. lu and ld when 

travel time is set to be 100 s, as shown in Figure 2. As can 

be seen from Figure 2b, when ld and t are constant, the 

total energy consumption decreases as lu increases. This is 

because the vehicle tends to slow down before the 

intersection and accelerate after passing the intersection 

when lu is small, causing extra energy consumption in the 

acceleration process. We can also see that when lu and t 

are constant, the total energy consumption increases as 

ld increases. This is because the host vehicle spends more 

time accelerating to coasting speed when ld increases. As 

for energy benefit, Esaving ranges from 0% to 30%, 

increases as lu increases and decreases as ld increases. To 

explain this phenomenon, we can interpret Esaving using the 

formula below: 

 

Unit Intersection Simulation 

As mentioned in the methodology section, a single- 

 

Esaving = 
Etotal, b, u + Etotal, b, d - Etotal, e, u - Etotal, e, d 

Etotal, b, u + Etotal, b, d 
ð8Þ 

intersection simulation network with 1,500 m lu and ld was 

built in VISSIM to create the lookup table of the energy 

consumption correspondence. After building the unit 

intersection network, 1,000 runs for baseline case and 

1,000 runs for eco-driving were conducted to create the 

required database for the lookup table, and the total 

where Etotal, b, u represents the total energy consumption 

for baseline in the upstream driving. When lu increases, 

the host vehicle can start eco-driving at an earlier stage, 

causing Etotal, b, u - Etotal, e, u to increase while keeping 

Etotal, b, d - Etotal, e, d consistent, therefore Esaving increases. 
Once  the  vehicle  passes  the  intersection,  the  V2I 
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communication will terminate and the connected vehicle 

will perform the same as the baseline vehicle. When ld 

increases, the numerator of formula 9 remains unchanged 

while Etotal, b, d increases, therefore Esaving decreases. 

Next, we plot the energy consumption v.s. lu and t when 

ld is set to be 500 m, in Figure 3. As can be seen from 

Figure 3, a and b, when ld and t is constant, Etotal, e 

decreases as lu increases, which is similar to Figure 2. 

When ld and lu is constant, as t increases, Etotal, e increases 

to a certain threshold before reaching constant. This is 

because when t is smaller than the threshold, the vehicle 

will spend less time decelerating and accelerating. When 

t is larger than the threshold, all the vehicles will have to 

stop at the intersection, therefore costing the same Etotal, e 

for proceeding a similar speed profile downstream. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Location of four corridors (AN, AS, WN, WS) applied 

in the simulation. Each corridor is highlighted in different colors. 
Note: WN = Wilmington North; WS = Wilmington South; AN = Alameda 

North; and AS = Alameda South. 

Corridor Energy Benefit Estimation 

In the simulation scenario, we created a data set for the 

single-intersection simulation and estimated the raw 

energy consumption for each link in the four corridors, 

namely Wilmington North (WN), Wilmington South 

(WS), Alameda North (AN), and Alameda South (AS), as 

shown in Figure 4. The four corridors are located right 

next to the Port of Los Angeles and Port of Long Beach, 

the two busiest container ports in the United States. There 

are 11 and eight signals in the Wilmington S/N and 

Alameda S/N corridors respectively, and each corri- dor 

has five connected signals as labeled in the figure. Similar 

to Hao et al. (22), we adapted the signal timing and traffic 

conditions from the real world and created a 

 

Table 4. Truck Route Energy Consumption and Saving 
 

  
Name 

Corridor 
length (mi) 

 
# Signals 

Baseline 
energy (kWh) 

Eco-driving 
energy (kWh) 

 
Energy savings (%) 

Horizontal 
1 

 
Alondra Blvd 

 
1.2 

 
8 

 
3.6 

 
2.9 

 
219 

3 E Walnut St 1.0 4 2.2 1.7 225 
5 Albertoni St 1.1 10 3.6 3.3 29 
6 E Victoria St 0.7 4 1.6 1.3 220 
7 W Victoria St 0.4 4 1.5 1.5 21 
8 Del Amo Blvd 4.5 21 9.6 9.2 24 
9 W Torrence Blvd 0.3 4 1.2 1.2 25 
10 E Carson St 1.9 10 5.1 4.2 217 
11 223rd St 4.8 30 14.2 12.5 212 
12 Sepulveda Blvd 3.7 28 8.8 8.0 29 
13 Lomita Blvd 1.3 6 4.0 3.5 211 

Vertical 
1 S Figueroa St 6.1 32 15.6 13.5 214 
2 S Broadway 3.0 14 8.4 6.7 220 
3 S Main St (north) 1.4 8 3.9 3.1 220 
5 S Avalon Blvd (north) 1.0 10 3.5 2.9 216 
6 S Avalon Blvd (south) 1.4 11 4.1 3.5 217 
7 S Central Ave 0.7 11 3.1 2.6 216 
8 S Wilmington Ave 5.1 31 15.6 13.6 213 
9 Alameda St 3.4 11 8.4 7.0 217 
10 Santa Fe Ave 1.5 12 4.5 3.5 223 
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simulation environment in VISSIM. The heavy-duty truck 

defined in the simulation was set to have a weight of 

18,000 kg. The average acceleration and deceleration 

profile of the heavy-duty truck is calibrated with real- 

world data and some of the key parameters of the driving 

behavior are defined in Table 2. 

The baseline is controlled by VISSIM using the default 

driver model, and the eco-driving data is created using 

the EAD model mentioned in the background section. 

We employed an exhaustive cross-validation technique 

called leave-p-out cross-validation (24) with p = 2. This 

involved using data from two corridors as the training set and 

validating the trained model against data from the 

remaining two corridors. The validation was repeated for all 

possible ways of splitting the training versus the vali- 

dation set. The result is shown in Table 3. 

The validation results show that the real energy bene- 

fits range from 6.2% to 17.2% with an average value of 

10.8%. The estimation error after calibration ranges from 

210.3% to + 5.3% with an average value of 9.1% and a 

mean absolute error of 4.6% per test set. Compared with 

the energy benefit (6.0%) and absolute error per test set 

(6.6%) before calibration, both values showed a 

noticeable improvement after calibration. More 

specifically, five out of six validation trials show a 

significantly better estimation result after the calibration 

factor is applied. The raw estimated energy turns out to be 

an overestimation for all data sets, which might be caused 

by the lower traffic and higher average speed in the 

corridor simulation compared with the single- intersection 

simulation. The proposed method can also make an 

accurate estimation for the energy consumption in both 

baseline and eco-driving with less than 10% esti- mation 

error. Throughout the process from unit intersec- tion 

simulations to energy benefit estimations, the majority of 

time is consumed on conducting all the base- line and eco-

drive runs at the training phase. Once the simulations are 

completed, the lookup table-based energy estimation 

approach only takes less than 1 s of computational time 

for each corridor. Therefore, the proposed method is 

efficient in time and effort for city- level or regional-level 

implementations. 

 

City of Carson Truck Route Energy Benefit Estimation 

We then applied the energy benefit estimation model to 

the truck route network in the city of Carson and esti- 

mated the potential energy savings using the EAD applica- 

tion. Figure 5 shows the truck routes and parking map in 

 

 
Figure 5. Truck route and parking map in the city of Carson. 

The corridor highlighted with a dashed green line is Figueroa St. 

 

downstream length for each link. In Google Earth (Figure 

6), we locate all the traffic signals with their length on the 

corridor and note down the longitude and latitude of the 

beginning and end of each corridor. Using Google Map 

Distance Matrix API, we collect the real-time travel time 

data of the entire corridor using the longitude and latitude 

coordinates of the corridor. To adapt to the uncertain traf- 

fic conditions on the corridors, travel time data are col- 

lected every 15 mins for seven days and then averaged into 

hourly data. Finally, the link travel time tLi is calculated 

using the corridor travel time tc based on the speed limit 

vLi and the distance of each link di, shown as below: 

 di  

Carson, California, where 14 east–west and 10 north– 

south corridors are colored in yellow. To estimate the 

energy consumption and benefit for the corridors, we need 

tLi = tc 
 vLi  

n  dj  

j = 1 vLj 

ð9Þ 

to divide each corridor into links based on the traffic sig- 

nals and calculate the travel time and upstream/ 

While the distance matrix API only provides a general 

travel time for all the vehicles, since we are applying the 

3 
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Figure 6. East–west (red) and north–south (blue) corridors in the city of Carson from Google Earth. 

 

algorithm to local corridors with a speed limit between 35 

and 45 mph, we assume the truck travel speed is close to 

the general traffic speed estimated from the API. With the 

travel time, distance, and the calibration factor calcu- lated 

from the simulation study, the estimated energy 

consumption and EAD estimation are listed in Table 4 

below. Note that some corridors with no traffic signal have 

been removed from the table. 

The results show that the potential energy savings vary 

by the characteristic of each corridor, ranging from 1% to 

25% with an average of 14%. In general, the corridor with 

closely spaced intersections ( ł 0.1 mi on average, for 

example, W Victoria St and W Torrence Blvd) has less 

energy saving than the rest of the intersections. The 

baseline vehicles in sparsely spaced intersections may 

need to accelerate to high speed before reaching the next 

intersection, which provides optimization space for the 

EAD algorithm to control the acceleration process to 

avoid a stop in the next intersection. On the other hand, 

the baseline vehicles in closely spaced intersections do not 

need to accelerate to a high speed before reaching the next 

intersection, so the performance of the EAD algo- rithm 

in this case is less effective. 

With regard to the average speed (or travel time), the 

eco-driving strategy shows less energy saving when the 

average speed is very high (most vehicles in free flow) or 

low (heavy congestion with over-saturation), and is more 

effective when the average speed is in the middle, where 

vehicles have proper motivation and space to perform the 

EAD algorithm at intersections. 

 

Conclusion 

This paper presents a computationally efficient and 

practically feasible methodology for evaluating and esti- 

mating the potential energy savings of using EAD along 

trucking corridors within cities. Using the road length, 

travel time, and speed limit at each intersection in the 

corridor, one can quickly estimate the corridor-level 

energy savings with customized connected or non- 

connected signal combinations with high accuracy. We 

validated the proposed estimation method using the traffic 

microsimulation-generated data from four real- world 

corridors in Carson, California. The proposed method 

made an accurate estimation of the energy con- sumption 

in both the baseline and eco-driving cases with less than 

10% estimation error, and the cross-validation results 

showed that the benefit estimation error ranges from 

210% to + 5% with a mean error of 21.6% and a mean 

absolute error of 4.6%. This method could sup- port city 

planners and engineers to estimate potential energy 

benefits when enabling certain connected signals and to 

decide which signals to prioritize for enabling 

connectivity. 
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In our future work, we plan to apply the proposed 

methodology to different types of vehicle and roadway 

network. Since the current analysis mostly relies on four 

corridors, additional simulations will be performed to 

estimate the energy saving benefits with new simulation 

networks and under different connected vehicle penetra- 

tion rates. Also, the estimation result could be more accu- 

rate with more test data and a finer classification of the 

link distances. And creating further simulation networks 

for the truck routes in the city of Carson would help vali- 

date the accuracy of the proposed algorithm. Real-world 

field tests will also be conducted to verify and improve the 

proposed algorithm. 
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