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Abstract

Connected vehicle-based eco-driving applications have emerged as effective tools for improving energy efficiency and envi-
ronmental sustainability in the transportation system. Previous research mainly focused on vehicle-level or link-level technol-
ogy development and assessment using real-world field tests or traffic microsimulation models. There is still high uncertainty in
understanding and predicting the impact of these connected eco-driving applications when they are implemented on a large
scale. In this paper, a computationally efficient and practically feasible methodology is proposed to estimate the potential
energy savings from one eco-driving application for heavy-duty trucks named Eco-Approach and Departure (EAD). The pro-
posed methodology enables corridor-level or road network—level energy saving estimates using only road length, speed limit,
and travel time at each intersection as inputs. This technique was validated using EAD performance data from traffic microsi-
mulation models of four trucking corridors in Carson, California; the estimates of energy savings using the proposed metho-
dology were around 1% average error. The validated models were subsequently applied to estimate potential energy savings
from EAD along truck routes in Carson. The results show that the potential energy savings vary by corridor, ranging from
1% to 25% with an average of 14%.
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Transportation activities, including the movement of
people and goods by cars, trucks, trains, and other vehi-
cles, account for 26% of energy consumption in the United
States, with 50% to 60% from passenger trans- portation
and 40% to 50% from freight transportation.
Consequently, transportation is responsible for 28.2% of
the U.S. greenhouse gas (GHG) emissions, the largest
share among all the sectors that include electricity, indus-
try, commercial and residential, and agriculture (/). As
connected and automated vehicle (CAV) technologies
rapidly advance, there has been significant interest in
using these technologies to help reduce energy consump-
tion and GHG emissions from the transportation sector
(2). For example, several connected eco-driving applica-
tions have been developed to improve the energy effi-
ciency of individual vehicles and traffic as a whole via
vehicle-to-vehicle (V2V) or vehicle-to-infrastructure

(V2I) coordination, including Eco-Approach and
Departure (EAD) at Signalized Intersections, Eco-Traffic
Signal Timing, Eco-Lanes Management, and so forth (3).
Among them, the EAD at Signalized Intersections appli-
cation has been widely studied given its significant energy
saving potential (4—6). With the EAD application, the
equipped vehicle would be able to follow the most energy-
efficient trajectory for passing through a signa- lized
intersection that is calculated using the current speed of
the vehicle measured by the speedometer,

'College of Engineering — Center for Environmental Research and
Technology, University of California, Riverside, CA
2Volvo Group North America, Costa Mesa, CA

Corresponding Author:
Zhensong Wei, zwei030@ucr.edu


http://us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/03611981241254112
https://journals.sagepub.com/home/trr
mailto:zwei030@ucr.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F03611981241254112&domain=pdf&date_stamp=2024-06-19

2034

Transportation Research Record 2678(12)

distance to the intersection measured by the Global
Positioning System (GPS), Signal Phase and Timing
(SPaT) messages from the traffic signal controller and
surrounding traffic information detected by on-board
sensors such as radars or cameras.

In the past decade, many studies have been conducted
to evaluate the energy savings and emissions reduction
potential of the EAD application under a variety of
scenarios—from a simple scenario, such as fixed-time sig-
nals without traffic, to a more complex set-up that com-
prises actuated signals in different traffic conditions. Ye
et al. (4) developed a prediction-based EAD strategy con-
sidering urban traffic and queues at intersections using
the predicted states of the preceding vehicle. And the
results from the numerical simulation show that the pro-
posed EAD system could achieve 4.0% energy savings
compared with a car-following baseline. Hao et al. (5)
proposed an EAD system that was adaptive to the
dynamic uncertainty for actuated signal and real-world
traffic; real-world testing was conducted resulting in 6%
energy savings. Li et al. (6) compared the safety, mobi-
lity, and environmental sustainability parameters of
EAD-equipped vehicles versus non-equipped vehicles in
a traffic microsimulation environment and achieved con-
sistent mobility and environmental benefits in the EAD-
equipped vehicles. Rakha et al. (7) used numerical simu-
lations to show the importance of retaining microscopic
fuel consumption models in the optimization function
compared with using simplified objective functions.
Mabhler and Vahidi (8) used a signal phase prediction
model to predict future SPaT status in an EAD applica-
tion, which has shown increased energy efficiency in
multi-signal numerical simulation. Xiang et al. (9) devel-
oped a closed-loop speed advisory model that is adaptive
to the drivers’ behavior for eco-driving, showing a 4%
fuel economy improvement compared with the baseline.
Kamalanathsharma and Rakha (70) optimized the vehi-
cles’ trajectories using the moving horizon dynamic pro-
gramming approach, enhancing the computational
efficiency using the A-star algorithm for real-time appli-
cation. Xia et al. (/1) proposed an enhanced EAD system
considering both the SPaT information and the status of
the preceding equipped vehicles using connected vehicle
technology, which has shown higher benefits during
higher levels of congestion. Esaid et al. (/2) proposed a
machine-learning trajectory planning algorithm that can
achieve optimality and computational efficiency at the
same time in multiple traffic microsimulation runs.
Munoz-Organero and Magana (/3) proposed an eco-
driving assistant algorithm to reduce fuel consumption
by calculating optimal deceleration patterns and mini-
mizing the use of braking; the algorithm was tested with

nine different drivers in five different models of vehicles.
As shown in Table 1, all these studies used different
methods in the evaluation of energy savings and emis-
sions reduction benefits of EAD application, including
numerical simulation, traffic microsimulation, or field
experiment. Among the three types of method, numerical
simulation (4, 7—10) is relatively easy to conduct, but it
only simulates the EAD-equipped vehicle without consid-
eration of other vehicles on the road. This limitation can
be addressed by using traffic microsimulation (6, /1, 12)
tools where different driving and traffic scenarios can be
simulated to replicate real-world conditions. However, the
evaluation of the EAD application using traffic
microsimulation tools is complex and time-consuming,
involving the coding, calibration, and validation of the
simulation model as well as the implementation of EAD
algorithms into the simulation model through an applica-
tion programming interface. Lastly, the evaluation of the
EAD application through field experiment (5, 13, 14) is
expensive, and thus, is often conducted for a limited
number of intersections and corridors. Meanwhile, the
energy and emissions benefits of EAD depend heavily on
intersection and corridor characteristics, such as the speed
limit and the length of the road upstream of the
intersection, and thus, the benefits of EAD measured at
one intersection or corridor may not be applicable to
others.

Over the past decade, extensive research has been
focused on modeling vehicle energy consumption quanti-
tatively, aiming to establish clear links between driving
behavior, operational parameters, and energy use.
Scholars have proposed various evaluation models to
evaluate eco-driving capabilities, ranging from persona-
lized time-series systems (/5) that estimate future energy
consumption to data-driven methods (/6) that construct
nonlinear relationships between driving behavior and
energy use. Some models (/7) use driving events as
inputs, scoring eco-driving based on the occurrences of
rapid acceleration or deceleration within a specific mile-
age. However, a common challenge arises in certain eva-
luation models that rely heavily on expert knowledge,
introducing subjectivity into the assessment process. This
reliance on expert opinions often complicates the con-
struction of these models, affecting their overall objectiv-
ity. To achieve more objective assessments, researchers
have explored indicators such as vehicle-specific power
(18), energy consumed during braking (/9), and positive
kinetic energy (20) to construct an eco-driving evaluation
model.

The objective of this research is to develop a model
that can perform computationally efficient and practi-
cally feasible estimation of the energy saving potential of
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Table 1. Summary of Eco-Approach and Departure (EAD) Algorithms and Evaluation Methods from Select Studies

Study Authors and Year

EAD Algorithm Evaluation Method

Rakha and Kamalanathsharma (2011) (7)
Mahler and Vahidi (2012) (8)

Xiang et al. (2015) (9)

Kamalanathsharma and Rakha (2016) (10)
Ye et al. (2019) (4)

Xia et al. (2013) (11)

Li et al. (2016) (6)

Esaid et al. (2022) (12)

Mun“oz-Organero and Magan™a (2013) (13)
Stahlmann et al. (2018) (14)

Hao et al. (2018) (5)

Fuel as the optimization objective
Signal phase prediction model

Driver behavior adapted eco-driving
Multi-stage dynamic programming
Neural network-based prediction
Adapted for different congestion levels
Drivers make control based on alerts
Machine learning-based method

Design optimal deceleration patterns
Green light optimal speed advisory
Rule-based method for actuated signals

Numerical Simulation
Numerical Simulation
Numerical Simulation
Numerical Simulation
Numerical Simulation
Traffic Microsimulation
Traffic Microsimulation
Traffic Microsimulation
Field Experiment

Field Experiment

Field Experiment

EAD. To achieve the research objective, a lookup table-
based method is proposed where the lookup table stores
the numerical relationships between vehicle energy con-
sumption and key parameters in EAD operation, such
as upstream and downstream link distance. These rela-
tionships replace the runtime computation in numerical
simulation or traffic microsimulation with a faster array
indexing operation. Similar methods (2/) have been
widely used in other research fields in view of the vast
savings in processing time and the ability to store pre-
calculated relationships for use in the execution of a
model. Using the proposed method, one can quickly
estimate the corridor-level or road network—level energy
savings potential of the EAD application using only
road length, speed limit, and travel time at each inter-
section as inputs. The estimation results can be used to
select intersections for detailed evaluation in traffic
microsimulation or prioritize intersections for field
implementation. Note that our algorithm is not designed
to fully replace traffic microsimulations or field tests
since those methods are still more accurate, but to save
time and narrow down the range of traffic signal
selections. This can be seen as an assistant for the existing
methods before they decide which intersections or
corridors to simulate or conduct field tests. More
specifically, the contributions of this research can be
summarized as follows:

1) Efficient in computation: this research aims to
create a computationally efficient model for esti-
mating the energy savings potential of Eco-
Approach and Departure (EAD). The model seeks
practical feasibility while minimizing com-
putational load.

2) Cost-effective in data collection: the inputs to this
estimation model only consist of road length,
speed limits, and intersection travel times, which
are cost and effort effective to acquire and process.

3) Complementary to established methods: the esti-
mation outcomes serve as a basis for selecting
intersections for in-depth evaluation within traffic
microsimulations or for prioritizing intersections
for potential field implementation. This research
would help identify the target intersection for
deployment in the preliminary stages of decision
making.

To develop the estimation method, data generated from an
extensive traffic microsimulation of an EAD applica- tion
for heavy-duty trucks on real-world corridors in Carson,
California, were used. First, two lookup tables (one for the
baseline scenario and the other for the EAD scenario) were
created that compiled upstream distance, downstream
distance, average travel time, and energy consumption for
the individual intersections. Then, each lookup table was
used to build an estimation model, which was later
calibrated based on the ratio between the actual and
estimated energy consumption. Using the calibrated
models, the energy consumption for both the baseline and
EAD scenarios at each intersection can be estimated, and
subsequently, the energy savings can be calculated.

Methodology

In this section, we will discuss the microsimulation- based
approach for estimating the energy saving poten- tial. We
will describe the system architecture, including four key
components: scenario generation, online EAD system,
offline EAD system, and energy benefit estima- tion
model. The EAD application for heavy-duty trucks,
including the online and offline EAD system, was
previously developed and implemented in the traf- fic
microsimulation models of four real-world trucking
corridors in Carson, California, to evaluate the energy
saving potential of EAD for trucking applications (22). In
this paper, we extend the work to the upstream and
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downstream to design, calibrate, and validate the lookup
table-based energy consumption estimation method using
data generated from the traffic microsi- mulation models.

System Architecture

As shown in Figure 1, the proposed system has four major
components: scenario generation, online EAD sys- tem,
offline EAD system, and energy benefit estimation model.
The scenario generation step initializes the system with a
well-calibrated simulation network. A  signalized
intersection with 1,500 m upstream and downstream links
were created to cover all the potential upstream and
downstream distance scenarios for the EAD prob- lem.
We then test the baseline and EAD cases for 1,000 runs
respectively to create a sufficient data pool to evalu- ate
the energy saving potential under various road, traf- fic,
and signal conditions.

The EAD system consists of online and offline systems.
The offline EAD system trains a machine learning-based
trajectory planning model, which was then used in the
online EAD system to output the suggested speed and
acceleration profile for the host vehicle in real time. In the
offline system, a graph-based trajectory planning model is
first developed based on the unique powertrain character-
istics and vehicle dynamics of trucks. This graph model
creates a data set of input-output pairs using different
combination inputs of the truck speed, location, and signal
states to output the optimal acceleration. To save compu-
tational time while maintaining high accuracy, a machine
learning-based trajectory planning model is then trained
using the input-output data set so that the online EAD
system can give the most eco-friendly speed suggestion in
real time (/2). The proposed machine-learning trajectory
planning algorithm (MLTPA) is designed to enable real-
time optimization. The approach involves training a ran-
dom forest model to emulate the solution derived from an
existing optimization method known as the graph-based
trajectory planning algorithm (GBTPA). By adopting the
proposed MLTPA, one can significantly reduce computa-
tion time from tens of seconds to just a few milliseconds.
Simulation results demonstrate that MLTPA consistently
achieves a median improvement in energy savings ranging
from 5.0% to 6.20% across multiple simulation runs. This
approach also exhibits the potential to approximate vari-
ous other trajectory planning algorithms, ensuring real-
time performance without compromising optimality.
More technical details can be found in Esaid et al. (/2).

In the online system, at each time step, different sources
of information are inputs to form a safe and energy-saving
target speed. Given the current signal states and location
of the vehicle, the system will evaluate whether the
vehicle can pass the intersection in the

current phase. And given the states of the preceding vehi-
cle, the system will also decide whether the host vehicle
will be blocked by the front vehicle. If such safety
requirements are not satisfied, the EAD system will shut
down and the system will give control back to the default
controller in the simulation software. If all the safety
requirements are satisfied, the vehicle states will be fed
into the trained machine-learning model to output the
desired acceleration and speed (22). While implementing
the online EAD system, we track the entire exact speed
profile of all the baseline and EAD trucks no matter if they
are driven under the EAD algorithm or the default
controller in the simulation engine. These speed profile
data outputs from the simulation will reflect how the EAD
system performs in the traffic and will form a lookup table
for the energy benefit estimation model.

With the well-calibrated single-intersection microsi-
mulation network and real-time online EAD model, the
single-intersection trajectory data sets and lookup tables
are generated using multiple runs to feed into the energy
benefit estimation model. In this model, a corri- dor or
network is first divided into multiple unit links. Then, the
energy consumption for each time (#), upstream distance
(1), and downstream distance (/;) combination is
measured. Next, the adjustment factor R is calculated
based on the actual energy consumption and the estimated
energy using the lookup table. And this factor will be
applied to the test data set for energy estimation. Note that
the ‘‘actual’” energy consumption is defined as the
simulated energy consumption for both baseline and eco-
driving. The ‘‘actual’’ is men- tioned to compare with the
estimated energy consump- tion derived from the
uncalibrated lookup table. The detail of each step in the
model will be discussed in the next section.

Energy Benefit Estimation Model

Unit Intersection Lookup Table. Many parameters are
related to energy consumption in the proposed EAD
model, for example, starting and ending locations with
respect to the intersection, the SPaT information, the
speed limit, the traffic condition, and so forth. The
upstream distance (/,) determines the maximum distance
of which the eco-driving could be initiated. If /, is smaller
than the communication range of the connected signal, the
host vehicle will start eco-driving as soon as it enters the
intersection. Otherwise, the host vehicle will drive without
connection until it enters the communication range. The
second parameter that is important in the EAD model is
the downstream distance (/4), which describes how far the
vehicle could drive after passing the intersection. /y
constrains the target speed the vehicle could reach at the
end of the network, therefore affecting
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Figure 1. System diagram of the Eco-Approach and Departure (EAD) application.

the energy consumption of the model. Both distance
measures are critical in the EAD model and are conveni-
ent to acquire from the geographic database. The speed
and time-related parameters are also significant in the
EAD process. For example, when the traffic is con-
gested, the eco-driving will not be able to be effectively
performed because of the close gap between the host
vehicle and the leading vehicle. When the traffic signal
has a longer red-light phase, the host vehicle will be more
likely to slow down because of the signal and queue.

When the city engineers are estimating potential energy
benefits by enabling certain connected signals, we would
like to expect high efficiency and accuracy in this pro-
cess. Although all these parameters are important in esti-
mating the energy consumption, we only choose the travel
times along with upstream/downstream distances in the
lookup table as they are easier to measure and obtain.
Other parameters, such as the traffic signal tim- ing and
traffic condition, are difficult to acquire or esti- mate in a
real-time manner.
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We create two lookup tables (one for baseline and one
for eco-driving) where the energy consumption (£) for
each (¢, ., ;) combination in the single-intersection simu-
lation was listed. The two lookup tables can be summar-
ized as two functions below:

E =E0t,, 1, I;pfor eco — driving case, 31b

E =Edt, 1, I;bfor baseline case:

As part of the energy benefit estimation model, the single-
intersection simulation provides the simplest EAD sce-
nario, from which different (7, /,, ;) combinations could
be extracted. The simulations are conducted with both
eco-driving and baseline algorithms for a total of 1,000
runs each. Between each run of eco-driving and baseline,
the initial conditions are set to be the same using the same
random seed number. The large number of runs guaran-
tees that a sufficient data pool could be created to evaluate
the energy savings. The baseline algorithm is the default
VISSIM driving model with parameters shown in Table 2.
The energy consumption for each run is fed into the
lookup table corresponding to the three indicator values.
In the case where the same indicator values are reached
among multiple runs, the energy consumption will be the
average value between them. Later, the corridor with mul-
tiple intersections could be split into single intersections,

calculated separately, and added together for total energy
consumption and benefit estimation.

Lookup Table Calibration. The lookup table in the previous
step is obtained by running microsimulations of a single-
intersection network. The network is designed to have
large enough /, and /; (both 1,500 m) so that the lookup
table could cover all conditions of the real-world inter-
sections. However, such a lookup table might not work
when the network is extended to corridors of multiple
intersections with different lengths of /, and /,, especially
when the intersections are closely spaced. When the /, or
ls is small, vehicles usually prepare to decelerate before
they reach the desired speed, causing a smaller average
speed and longer travel time. The actual energy con-
sumption is usually less than the estimated value from FE.
or Ep. In urban areas where higher traffic densities and
more complex road networks are often seen, distances
between intersections are sometimes close, leading to
shorter EAD optimizable distances and larger gaps

between actual and estimated energy consumption.
Rural areas typically experience lower traffic density and
fewer intersections. EAD driving can maintain a longer

time at steady speeds to minimize unnecessary accelera-
tion and deceleration, leading to similar actual and esti-
mated energy consumption. Therefore, the R factor is
close to one when the link distance is long and gets smaller

Table 2. Driving Behavior Parameter in VISSIM

Parameter Value

750 m
Wiedemann 74

Maximum look ahead distance
Car-following model

Average standstill distance 2m
Additive part of safety distance 2.00
Multiplicative part of safety distance 3.00

To calibrate the adjustment factor R (defined as the
ratio between the actual energy and the estimation), we
first used corridor simulation data from two corridors as
training sets and collected actual energy consumption
data for each link. We then estimate the energy consump-
tion at corresponding links from the single-intersection
simulation data set. According to the link distance (short
or long) and driving mode (eco-drive or baseline), data
were categorized into four groups. Here, short links are
defined as links in which /, & 100 m, and long upstream
links are defined as links in which /, . 100 m. The adjust-
ment factor R between actual and estimation for certain
link length types and driving modes is then calculated as
below:

P
k Eactua]

02p
R = i=1 i
T k

i=1 Eestimationf

where k is defined as the number of signals with the same
link length type and driving mode. R could be more accu-
rate with a finer classification of the link distances. But
since our data is limited, more link distance groups will
result in fewer data for each group and make it harder to
calibrate. Based on the amount of data available and the
accuracy of the results, we have chosen these four groups
of adjustment factors.

Scenario and Input Identification. For any given corridor or
network, the first step in this approach is link division. We
define the link length d;; as the distance between the stop
line of the upstream intersection i/ and downstream
intersection j, downstream distance of intersection i
(defined as /z) and upstream distance of intersection j
(defined as /) are then defined below:

ifdi]' 21300 : 1,,=900; lu_/‘ :di]’ = las;

elseifd; @ 425: 1;=400; 1, =d;; — Lu; 03p
else : lz=d; — 25;1,=25;

when the link distance is short.
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link distances is to keep the downstream distance of at
least 400 m when the distance between two intersec-
tions is larger than 425 m. And when the distance
between two intersections is shorter than 425 m,
we
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want to keep the downstream distance as large as possi-
ble. This is to ensure that the vehicle could reach the speed
limit after passing the intersection so that the energy
difference between eco-drive and baseline is solely
dependent on the approaching section of the driving. For
a heavy-duty truck driving on a road with a speed limit
of 45 mph (20 m/s) with an average accel- eration of 0.5
m/s?, the distance it takes to reach the speed limit from
rest is 400 m.

The baseline travel time for each link can be either
derived from sample truck trajectory data, estimated by
the equations in the Highway Capacity Manual (HCM) or
looked up from the historical travel time in Google Map
Application Programming Interface (API). HCM provides
the estimated travel speed based on a series of numerical
equations. The parameter values in the model depend on
the signal timing parameters, street category, and so forth.
Also, the HCM model requires a large amount of data
(23). Compared with HCM, Google Map API provides
the estimated travel speed based on the current traffic
condition and the historical travel time of similar
periods, without the need for heavy com- putation. Since
obtaining the parameters of certain intersections could be
time-consuming, Google Map API is ideal and was used
in Section 3.3. Since the link travel times for eco-drive
scenarios are similar to corre- sponding baseline cases, we
used the same travel time for both baseline and eco-
driving on the same network. For baseline scenarios, all
the intersections are non-con- nected. For eco-drive
scenarios, intersections can be connected or non-
connected, according to the imple- mentation plan.

Energy Benefit Estimation. For each link in the real-world
corridor, the estimated energy consumption under the
baseline scenario is

C { )
R BE ', [ 14" if ki %100 m

Ei »= short, baseline {

: ) .
Rlong,baseline 3Eb ti’ lui’l lfl .100 m 64[3

dj ui

where R is calculated from Step 2 using the grouped train-
ing data. The equations above are also applicable to the
links with non-connected signals for eco-drive scenarios.

For links with connected signals, the estimated energy
consumption under the eco-drive scenario is

{ ).
Rshot‘t,eco3Ee ti, Iui: Zdj lfluz‘l' 100 m

Ejc= { )
Rlong,eoo 3Ee ti’ lui’ ldj lfl .100 m 65'9
After calculating the energy consumption of single

intersections of a corridor, the total baseline energy
consumption is the summation of all the calibrated energy
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values, and the energy benefit is then calculated
correspondingly.
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simulation. Then, we validate the proposed esti- mation method
using the traffic microsimulation- generated data from four
real-world corridors in Carson, California. Lastly, the
validated models are applied to
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Figure 3. Energy consumption and energy benefit for /; =500 m:
(a) energy consumption for baseline; (b) energy consumption for
Eco-Approach and Departure (EAD); (c) energy savings benefit
(energy for baseline 2 energy for EAD/energy for baseline).

estimate the potential energy savings from the EAD
application for the entire truck route network in the city of
Carson.

Unit Intersection Simulation

As mentioned in the methodology section, a single-

intersection simulation network with 1,500 m /, and /; was
built in VISSIM to create the lookup table of the energy
consumption correspondence. After building the unit
intersection network, 1,000 runs for baseline case and
1,000 runs for eco-driving were conducted to create the
required database for the lookup table, and the total

Table 3. Cross-Validation Result for the Four Corridors

Benefit Benefit
in % before in % after
Real calibration calibration
benefit (error per (error per
Test set in % test set) test set)
AN + AS
WN 17.2 1.8 (215.5) 11.1(26.2)
WS 12.0 4.8(27.2) 11.7 (20.3)
AN + WN
AS 76 11.1(3.5) 10.5 (2.8)
WS 12 4.8(27.2) 7.6 (24.4)
AN + WS
AS 7.6 11.1(3.5) 13.0(5.3)
WN 17.2 1.8 (215.5) 7.2(210.0)
AS + WN
AN 6.2 6.4 (0.2) 5.3 (20.8)
WS 12.0 4.8(27.2) 6.4 (25.6)
AS + WS
AN 6.2 6.4 (0.2) 8.4 (2.2)
WN 17.2 1.8 (215.5) 6.9 (210.3)
WN + WS
AN 6.2 6.4 (0.2) 8.7 (2.5)
AS 7.6 11.1(3.5) 12.8(5.2)
Mean 10.8 6.0 (24.8) 9.1 (21.6)
Absolute mean 10.8 6.0 (6.6) 9.1 (4.6)

Note: WN = Wilmington North; WS = Wilmington South; AN = Alameda
North; and AS = Alameda South.

process took less than 3 h. To understand the impact of
each parameter on the performance of the EAD algo-
rithm, we plot the energy consumption v.s. /, and /; when
travel time is set to be 100 s, as shown in Figure 2. As can
be seen from Figure 2b, when /; and ¢ are constant, the
total energy consumption decreases as /, increases. This is
because the vehicle tends to slow down before the
intersection and accelerate after passing the intersection
when /, is small, causing extra energy consumption in the
acceleration process. We can also see that when /, and ¢
are constant, the total energy consumption increases as
ls increases. This is because the host vehicle spends more
time accelerating to coasting speed when /; increases. As
for energy benefit, Egving ranges from 0% to 30%,
increases as /, increases and decreases as /; increases. To
explain this phenomenon, we can interpret Eqaying using the
formula below:

Eo . :Etotal b.u +Etotal b.d — Etotal e.u Etotal e.d 68[’
savin;
€ Eiotal, b,u + Etotal, b,d

where Ewmi, b, « represents the total energy consumption
for baseline in the upstream driving. When /, increases,
the host vehicle can start eco-driving at an earlier stage,
causing FEioal,p,u — FEroule,u to increase while keeping

Eiotat,b,a = Etotal,e,a consistent, therefore Eyqing increases.
Once the vehicle passes the intersection, the V2I
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= 11 min
6.2 miles

24701-24757 South
Wilmington Avenue

999-925 North
Henry Ford Avenue

Figure 4. Location of four corridors (AN, AS, WN, WS) applied
in the simulation. Each corridor is highlighted in different colors.
Note: WN = Wilmington North; WS = Wilmington South; AN = Alameda
North; and AS = Alameda South.

Table 4. Truck Route Energy Consumption and Saving

communication will terminate and the connected vehicle
will perform the same as the baseline vehicle. When /;
increases, the numerator of formula 9 remains unchanged
while Eiotal, 5, « increases, therefore Esaving decreases.

Next, we plot the energy consumption v.s. /, and # when
l4 1s set to be 500 m, in Figure 3. As can be seen from
Figure 3, a and b, when /; and ¢ is constant, Eua,
decreases as /, increases, which is similar to Figure 2.
When /; and [, is constant, as ¢ increases, Eyi, . INCreases
to a certain threshold before reaching constant. This is
because when ¢ is smaller than the threshold, the vehicle
will spend less time decelerating and accelerating. When
t is larger than the threshold, all the vehicles will have to
stop at the intersection, therefore costing the same Ejpar, ¢
for proceeding a similar speed profile downstream.

Corridor Energy Benefit Estimation

In the simulation scenario, we created a data set for the
single-intersection simulation and estimated the raw
energy consumption for each link in the four corridors,
namely Wilmington North (WN), Wilmington South
(WS), Alameda North (AN), and Alameda South (AS), as
shown in Figure 4. The four corridors are located right
next to the Port of Los Angeles and Port of Long Beach,
the two busiest container ports in the United States. There
are 11 and eight signals in the Wilmington S/N and
Alameda S/N corridors respectively, and each corri- dor
has five connected signals as labeled in the figure. Similar
to Hao et al. (22), we adapted the signal timing and traffic
conditions from the real world and created a

Corridor Baseline Eco-driving
Name length (mi) # Signals energy (kWh) energy (kWh) Energy savings (%)
Horizontal
1 Alondra Blvd 1.2 8 36 29 219
3 E Walnut St 1.0 4 22 1.7 225
5 Albertoni St 11 10 36 3.3 29
6 E Victoria St 0.7 4 1.6 1.3 220
7 W Victoria St 0.4 4 15 15 21
8 Del Amo Bivd 45 21 9.6 9.2 24
9 W Torrence Blvd 0.3 4 1.2 1.2 25
10 E Carson St 1.9 10 5.1 4.2 217
11 223rd St 48 30 14.2 125 212
12 Sepulveda Blvd 3.7 28 8.8 8.0 29
13 Lomita Blvd 1.3 6 4.0 35 211
Vertical
1 S Figueroa St 6.1 32 15.6 135 214
2 S Broadway 3.0 14 84 6.7 220
3 S Main St (north) 14 8 3.9 3.1 220
5 S Avalon Blvd (north) 1.0 10 35 29 216
6 S Avalon Blvd (south) 14 11 41 3.5 217
7 S Central Ave 0.7 11 3.1 26 216
8 S Wilmington Ave 5.1 31 15.6 13.6 213
9 Alameda St 34 1" 84 7.0 217
10 Santa Fe Ave 15 12 45 35 223
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simulation environment in VISSIM. The heavy-duty truck
defined in the simulation was set to have a weight of
18,000 kg. The average acceleration and deceleration
profile of the heavy-duty truck is calibrated with real-
world data and some of the key parameters of the driving
behavior are defined in Table 2.

The baseline is controlled by VISSIM using the default
driver model, and the eco-driving data is created using
the EAD model mentioned in the background section.
We employed an exhaustive cross-validation technique
called leave-p-out cross-validation (24) with p = 2. This
involved using data from two corridors as the training set and
validating the trained model against data from the
remaining two corridors. The validation was repeated for all
possible ways of splitting the training versus the vali-
dation set. The result is shown in Table 3.

The validation results show that the real energy bene-
fits range from 6.2% to 17.2% with an average value of
10.8%. The estimation error after calibration ranges from
210.3% to + 5.3% with an average value of 9.1% and a
mean absolute error of 4.6% per test set. Compared with
the energy benefit (6.0%) and absolute error per test set
(6.6%) before calibration, both values showed a
noticeable improvement after calibration. More
specifically, five out of six validation trials show a
significantly better estimation result after the calibration
factor is applied. The raw estimated energy turns out to be
an overestimation for all data sets, which might be caused
by the lower traffic and higher average speed in the
corridor simulation compared with the single- intersection
simulation. The proposed method can also make an
accurate estimation for the energy consumption in both
baseline and eco-driving with less than 10% esti- mation
error. Throughout the process from unit intersec- tion
simulations to energy benefit estimations, the majority of
time is consumed on conducting all the base- line and eco-
drive runs at the training phase. Once the simulations are
completed, the lookup table-based energy estimation
approach only takes less than 1 s of computational time
for each corridor. Therefore, the proposed method is
efficient in time and effort for city- level or regional-level
implementations.

City of Carson Truck Route Energy Benefit Estimation

We then applied the energy benefit estimation model to
the truck route network in the city of Carson and esti-
mated the potential energy savings using the EAD applica-
tion. Figure 5 shows the truck routes and parking map in

Carson, California, where 14 east-west and 10 north—
south corridors are colored in yellow. To estimate the
energy consumption and benefit for the corridors, we need

to divide each corridor into links based on the traffic sig-
nals and calculate the travel time and upstream/

—— City of Carson ...

B e P

e

7
/

Truck Routes & Pawkin qg o ¥ins 1istitlh

Figure 5. Truck route and parking map in the city of Carson.
The corridor highlighted with a dashed green line is Figueroa St.

downstream length for each link. In Google Earth (Figure
6), we locate all the traffic signals with their length on the
corridor and note down the longitude and latitude of the
beginning and end of each corridor. Using Google Map
Distance Matrix API, we collect the real-time travel time
data of the entire corridor using the longitude and latitude
coordinates of the corridor. To adapt to the uncertain traf-
fic conditions on the corridors, travel time data are col-
lected every 15 mins for seven days and then averaged into
hourly data. Finally, the link travel time #;, is calculated
using the corridor travel time 7. based on the speed limit
v, and the distance of each link d;, shown as below:

di
=3P, " Pz d9p
Jj=1 v

J

While the distance matrix API only provides a general
travel time for all the vehicles, since we are applying the
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Figure 6. East-west (red) and north—south (blue) corridors in the city of Carson from Google Earth.

algorithm to local corridors with a speed limit between 35
and 45 mph, we assume the truck travel speed is close to
the general traffic speed estimated from the API. With the
travel time, distance, and the calibration factor calcu- lated
from the simulation study, the estimated energy
consumption and EAD estimation are listed in Table 4
below. Note that some corridors with no traffic signal have
been removed from the table.

The results show that the potential energy savings vary
by the characteristic of each corridor, ranging from 1% to
25% with an average of 14%. In general, the corridor with
closely spaced intersections (4 0.1 mi on average, for
example, W Victoria St and W Torrence Blvd) has less
energy saving than the rest of the intersections. The
baseline vehicles in sparsely spaced intersections may
need to accelerate to high speed before reaching the next
intersection, which provides optimization space for the
EAD algorithm to control the acceleration process to
avoid a stop in the next intersection. On the other hand,
the baseline vehicles in closely spaced intersections do not
need to accelerate to a high speed before reaching the next
intersection, so the performance of the EAD algo- rithm
in this case is less effective.

With regard to the average speed (or travel time), the
eco-driving strategy shows less energy saving when the
average speed is very high (most vehicles in free flow) or
low (heavy congestion with over-saturation), and is more

effective when the average speed is in the middle, where
vehicles have proper motivation and space to perform the
EAD algorithm at intersections.

Conclusion

This paper presents a computationally efficient and
practically feasible methodology for evaluating and esti-
mating the potential energy savings of using EAD along
trucking corridors within cities. Using the road length,
travel time, and speed limit at each intersection in the
corridor, one can quickly estimate the corridor-level
energy savings with customized connected or non-
connected signal combinations with high accuracy. We
validated the proposed estimation method using the traffic
microsimulation-generated data from four real- world
corridors in Carson, California. The proposed method
made an accurate estimation of the energy con- sumption
in both the baseline and eco-driving cases with less than
10% estimation error, and the cross-validation results
showed that the benefit estimation error ranges from
210% to + 5% with a mean error of 21.6% and a mean
absolute error of 4.6%. This method could sup- port city
planners and engineers to estimate potential energy
benefits when enabling certain connected signals and to
decide which signals to prioritize for enabling
connectivity.
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In our future work, we plan to apply the proposed
methodology to different types of vehicle and roadway
network. Since the current analysis mostly relies on four
corridors, additional simulations will be performed to
estimate the energy saving benefits with new simulation
networks and under different connected vehicle penetra-
tion rates. Also, the estimation result could be more accu-
rate with more test data and a finer classification of the
link distances. And creating further simulation networks
for the truck routes in the city of Carson would help vali-
date the accuracy of the proposed algorithm. Real-world
field tests will also be conducted to verify and improve the
proposed algorithm.
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