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Abstract— Perceiving the environment is one of the most 
fundamental keys to enabling Cooperative Driving Automation, 
which is regarded as the revolutionary solution to addressing 
the safety, mobility, and sustainability issues of contemporary 
transportation systems. Although an unprecedented evolution 
is now happening in the area of computer vision for object 
perception, state-of-the-art perception methods are still struggling 
with sophisticated real-world traffic environments due to the 
inevitable physical occlusion and limited receptive field of 
single-vehicle systems. Based on multiple spatially separated 
perception nodes, Cooperative Perception (CP) is born to unlock 
the bottleneck of perception for driving automation. In this paper, 
we comprehensively review and analyze the research progress on 
CP, and we propose a unified CP framework. The architectures 
and taxonomy of CP systems based on different types of sensors 
are reviewed to show a high-level description of the workflow and 
different structures for CP systems. The node structure, sensing 
modality, and fusion schemes are reviewed and analyzed with 
detailed explanations for CP. A Hierarchical Cooperative 
Perception (HCP) framework is proposed, followed by a review of 
existing open-source tools that support CP development. The 
discussion highlights the current opportunities, open challenges, 
and anticipated future trends. 

Index Terms— Survey, cooperative perception, object detection 
and tracking, cooperative driving automation, sensor fusion. 

 

I. INTRODUCTION 

HE rapid progress of the transportation system has 

improved the efficiency of our daily people and goods 

movement. Nevertheless, the rapidly increasing number 

of vehicles has resulted in several major issues in the 

transportation system in terms of safety [1], mobility [2], and 

environmental sustainability [3]. Taking advantage of recent 

strides in advanced sensing, wireless connectivity, and artificial 
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intelligence, Cooperative Driving Automation (CDA) enables 

Connected and Automated Vehicles (CAVs) to communicate 

with each other, with roadway infrastructure, or with other road 

users such as pedestrians and cyclists equipped with mobile 

devices, to improve the system-wide performance. Hence, 

CDA has attracted increasingly more attention over the past 

few years and is regarded as a transformative solution to the 

aforementioned challenges [4]. 

Object Perception (OP), acting as the “vision” function of 

automated agents by analogy, plays a fundamental role in 

the basic structure of CDA applications [5]. Different kinds of 

onboard or roadside sensors have different capabilities of 

perceiving traffic conditions in the real-world environment. 

The perception data can act as the system input and support 

various kinds of downstream CDA applications, such as Col- 

lision Warning [6], Eco-Approach and Departure (EAD) [7], 

and Cooperative Adaptive Cruise Control (CACC) [8]. 

With the development of sensing technologies, transporta- 

tion systems can retrieve high-fidelity traffic data from 

different sensors. For instance, cameras can provide detailed 

vision data to classify various kinds of traffic objects, such 

as vehicles, pedestrians, and cyclists [9]. LiDAR can provide 

high-fidelity 3D point cloud data to grasp the precise 3D 

location of the traffic objects [10]. Additionally, RADARs are 

more robust to visibility problems compared to cameras and 

LiDAR (e.g., atmospheric obscurants from precipitation, 

smoke, dust, etc.) and thus have been a critical component for 

safety-critical applications in the automotive industry [11]. 

However, during the last couple of decades, a large portion 

of the OP methods and high-fidelity perception data have come 

from onboard sensors while most of the roadside sensors are 

still used for traditional traffic data collection such as counting 

traffic volumes based on loop detectors, cameras, or 

RADARs [12]. Although empowered with advanced 

perception methods, onboard sensors are inevitably limited by 

sensing range and occlusion. Infrastructure-based perception 

systems have the potential to achieve better OP results with 

fewer occlusion effects and more flexibility in terms of 

mounting height and pose. However, due to the fixture of 

installation, infrastructure-based sensors will suffer from 

limited receptive ranges. Thus, neither onboard sensors nor 

infrastructure-based sensors alone can unlock these limitations 

based on a single Perception Node (PN) which is defined as a 
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Fig. 1. The timeline diagram illustrating recent milestones in terms of different perspectives: 1) real-world prototype systems, 2) CP algorithms, 3) standards, 
and 4) public CP datasets. 

 

singular entity equipped with perception and communication 

capabilities in this paper. 

Empowered by mobile connectivity, Connected Vehicles 

(CVs) and CAVs can grasp perception information from others 

who are equipped with perception systems and connectivity, 

such as smart infrastructures or other CAVs. It is conceivable 

that combining perceptual information from spatially 

separated nodes is a natural way to overcome the 

aforementioned limitations, which is named Cooperative 

Perception (CP) or Collaborative Perception. As an emerging 

topic, CP attracts fast-increasing attention (as shown in Fig. 

1). Research has been conducted from various aspects, 

including perception nodes (PNs), sensor modalities, and 

fusion schemes. Specifically, in terms of PNs, CP research 

includes vehicle-to-vehicle (V2V) CP [13] or vehicle-to- 

infrastructure (V2I) CP [14], [15], and vehicle-to-everything 

(V2X) CP [16]. For sensor modalities, CP research considers 

cameras [17], LiDAR [18], RADARs [19], etc. Additionally, 

different fusion schemes are investigated in CP which include 

early fusion [20], late fusion [21], or intermediate fusion [16]. 

Although a recent overview conducted by Caillot et al. [22] 

reviewed the cooperative perception in an automotive context, 

their focus is mainly on the sensing of the ego-vehicle using 

multiple sensors (e.g., vehicle localization, map generation, 

etc). Thus, a comprehensive survey of CP from the perspective 

of CDA is still missing. Meanwhile, different cooperative 

perception methods are typically associated with some 

specific transportation scenarios, which makes the 

implementation and integration of system-level design for 

cooperative perception in real-world conditions more 

challenging. 

In this paper, CP technology is reviewed comprehensively, 

which aims to establish an overall landscape for this emerging 

area. Recent CP milestones are summarized in Fig. 1 to briefly 

illustrate the development of CP in terms of real- world 

prototype systems, algorithms, standards, and public datasets. 

CP methods are overviewed based on three primary aspects 

including 1) node structures, 2) sensor modalities, and 

3) fusion schemes. Furthermore, a hierarchical CP framework 

is proposed to unify different scenarios in terms of the different 

perspectives mentioned above and to provide inspiration for 

future studies in this field to expedite the implementation of 

cooperative perception. 

The rest of this paper is organized as follows: Architectures 

and taxonomy for CP systems are reviewed in Section II to 

lay the foundation. Major pillars for CP including node 

structure, sensing modality, and fusion scheme are reviewed in 

Section III to V, respectively. The hierarchical cooperative 

perception framework is proposed and discussed in Section VI, 

followed by the summarizing of open-source CP Datasets 

and Platforms in Section VII. Section VIII highlights the 

current states, open challenges and future trends, followed by 

Section IX that concludes the paper. 

 

II. ARCHITECTURE AND TAXONOMY 

A. Standards 

Due to the revolutionary impact that cooperative perception 

would have on the transportation industry, various standards 

related to CP technologies had been initiated by different 

automotive societies around the globe such as European [23], 

North America [5], and China [24]. As shown in Fig. 1, early- 

stage studies (e.g., Guenther et. al. [25], Thandavarayan et. 

al. [26], etc.) demonstrated the significant potential of CP 

systems and inspired the drafting of the European CP standards 

such as TS 103 324 on Cooperative Perception Services and TR 

103 562 on Collective Perception Service [23]. 

For the development of driving automation, the Society 

of Automotive Engineers (SAE) initiated the SAE J3016 

Standard, commonly known as the SAE Levels of Driving 

Automation [27], which has been the fundamental source 

guiding the development of driving automation. Six levels of 

driving automation are classified from Level 0 (No driving 

automation) to Level 5 (Full driving automation) in terms of 

motor vehicles. Defined by the SAE J3216 Standard [5], CDA 

enables communication and cooperation between equipped 

vehicles, infrastructure, and other road users, which will, in 

turn, improve the safety, mobility, and sustainability of 
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TABLE I 

RELATIONSHIP BETWEEN CLASSES OF CDA COOPERATION AND LEVELS OF AUTOMATION BASED ON SAE STANDARDS [5] 
 
 

 

transportation systems. By further extending the SAE levels of 

Driving Automation, SAE J3216 defines the CDA levels into 

five classes including 1) No cooperative automation, 2) Class 

A: Status-sharing, 3) Class B: Intent-sharing, 4) Class C: 

Agreement-seeking, and 5) Class D: Prescriptive. Table I 

summarized the details and relationship between classes of 

CDA cooperation and levels of driving automation. According 

to Table I, cooperative perception plays a significant and 

fundamental role in supporting both CDA and Automated 

Driving systems. Based on the analysis of those standards, the 

architecture and taxonomy of CP are introduced and explained 

in the following sections. 

B. Architecture 

In CDA, the fidelity and range of perception information 

have a significant impact on the system performance for 

subsequent cooperative maneuvers. Fig. 2 demonstrates a 

system architecture of the cooperative perception system for 

enabling CDA. Specifically, four typical phases can be 

identified in the CP process: 1) Information Collection; 2) 

Local Computing; 3) Perceptual Cooperation; and 4) Message 

Distribution. 

1) Information Collection: Collecting raw data of traffic 

information serves as a fundamental step in facilitating 

subsequent perception tasks. As transportation systems evolve, 

a diverse range of sensors has been deployed to address specific 

objectives and scenarios. Traditional sensors such as Loop 

Detectors and Microwave RADAR have found widespread 

application in traffic surveillance, primarily focus- ing on 

providing mesoscopic traffic information, including traffic 

volume and queue length [28]. However, the capabilities of 

these conventional sensors are limited when it comes to 

offering comprehensive 3D object-level information necessary 

for supporting CDA. To address this requirement, high- 

resolution sensors such as cameras and LiDAR have emerged 

as indispensable tools capable of generating the desired object- 

level information. 

Several decades ago, the development of intelligent 

transportation systems faced challenges in leveraging high- 

resolution sensor-based object perception due to computational 

limitations and the nascent stage of the computer vision 

field [29]. Although some vision-based methods were proposed 

during that period, their performance remained considerably 

constrained [30]. However, with the rapid advancement in 

high-performance computation and the proliferation of 

artificial intelligence (AI) techniques [31], high-resolution 

sensors now possess the ability to provide precise object-level 

perception outcomes. These sensors can be deployed on 

vehicles or integrated into roadside infrastructures to capture the 

surrounding environment. Subsequently, the collected data is 

transmitted to a processing server through a communication 

hub for further analysis and interpretation. 

2) Local Computing: Traditional traffic surveillance sys- 
tems typically do not require high-frequency and low-latency 
processing. However, in the context of CDA, perception data 

with a minimal frequency of 1−10Hz and a time delay of less 

than 100ms are essential [32]. Transmitting a large volume of 

raw data, such as point cloud data, over limited bandwidth can 

lead to unacceptable time delays, particularly in safety- critical 

scenarios. To address this challenge, it is advantageous to 

process the information collected from sensors on local servers 

located on vehicles or infrastructures. Processing the raw 

sensing data at a single PN typically can be mainly divided into 

the following blocks [18], outlined as follows (it is noted that 

the exact order of these blocks may vary according to the exact 

system design): 

• Preprocessing: Manipulations of raw data to provide a 

ready-to-use format for perception modules with respect 

to specific sensors, such as coordinate transformation, 

geo-fencing, and noise reduction. 

• Feature Extraction: Feature extraction for subsequent 

perception tasks by applying deep neural networks 
(DNNs) or traditional statistical methods. 

• Multi-Sensor Fusion: Multi-sensor fusion algorithms may 

be applied if there is more than one sensor used for a single 
PN. 

• Detection & Tracking: Generation of object detection and 
tracking results for demonstrating position, pose, 
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Fig. 2. Systematic architecture for cooperative perception system (*: Other non-visual driving advisory signals for Advanced driver-assistance systems 
(ADAS), such as auditory, haptic, or even control commands). 

 

and identification of certain road users, such as rotated 

bounding boxes with unique IDs and classification tags. 

• Raw Data Logging: Recording of raw sensing data with 
timestamps for post-analysis. 

• Results Logging: Recording of semantic perception data 
with timestamps for post-analysis. 

Different types of PNs play different roles in a CP system. 

For a Vehicle PN (V-PN), local computing mainly serves itself, 

i.e., perceiving the environment to support the downstream 

driving tasks such as decision-making or control. For an 

Infrastructure PN (I-PN), its main purpose is to improve the 

situation awareness at a fixed location by advanced ranging 

sensing (e.g., camera, LiDAR) and communications. Generally, 

three types of perception data are generated from 

PNs: 
• Raw data which contains the original information from 

sensors, e.g., RGB images from the camera, point cloud 

data (PCD) from LiDAR, etc. 

• Feature data which contains the hidden feature extracted 
by neural network or statistical methods for representing 
the raw data in higher dimensional spaces. 

• Result data which contains the semantic perception 
information such as 2D/3D location, size, rotation, etc. 

3) Perceptual Cooperation: Considering the large-scale 

implementation of cooperation, central computing is involved 

to act as the fusion center for multiple PNs. Information from 

heterogeneous PNs will be transmitted to the Central Server via 

different kinds of communications. For mobile road users (e.g., 

vehicles, cyclists, pedestrians), wireless communication, such 

as Cellular Network, Wireless Local Area Network (WLAN), 

etc. is used to exchange information with the Central Server. 

Additionally, infrastructure can take advantage of both 

wireless and wired communications (e.g., Optical Fiber, Local 

Area Network (LAN), etc) by well-balancing the cost and 

system performance such as delay [33]. 

One of the key components for CP is data fusion and 

different fusion schemes will be applied, depending on the 

types of data to be shared between PNs and the Cloud. For 

instance, early fusion, intermediate fusion, and late fusion are 

based on raw data, feature data, and result data, respectively. 

Due to the limited bandwidth of wireless communication, result 

data are most widely implemented for real-world CP 

systems, such as sharing the object lists from camera- based 

object detection systems [34] or LiDAR-based object detection 

systems [18]. A few systems that have high-speed 

communication capability, which allow high-volume low- 

latency data transmission, can also transmit raw data to the 

Cloud for processing, and some work has been conducted to 

enhance driving automation [20], [35]. 

In terms of multi-node perception systems, i.e., simulta- 

neously perceiving the environment from different locations, 

time alignment (with the necessity of delay compensation) and 

object association need to be considered for spatiotemporal 

information assimilation and synchronization. Recently, inter- 

mediate fusion attracts increasingly popular attention due to its 

superiority in CP performance [13], [14], [16]. Detailed review 

and discussion of fusion schemes are provided in Section V. 

4) Message Distribution: Perception information (along 

with advisory or actuation signals) can be distributed to road 

users in two main ways, depending on connectivity status. For 

conventional road users without wireless connectivity, this 

information can be delivered to end devices on the roadside, 

such as Dynamic Message Sign or signal head display of traffic 

lights through the Traffic Management Center. For 
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III. NODE STRUCTURE FOR CP 

This section aims to review the CP system from the 

perspective of node structure as mentioned in Fig. 3. For 

comprehensiveness and conciseness, we discuss CP methods 

with different types of PNs including the vehicle PN (V- 

PN), the infrastructure PN (I-PN), and the heterogeneous 

PN (H-PN). 

 
 

 

 

 

 

 

 

 
Fig. 3. Taxonomy of CP in terms of node multiplicity, sensor modality, and 
fusion scheme. 

 

road users with connectivity, customized information, e.g., 

surrounding objects and Signal Phase and Timing (SPaT) 

of upcoming signals, and various visual/non-visual ADAS 

indicators can be accessed to enable various connected driving 

automation applications, such as Connected Eco-Driving [7], 

[36]. CP messages can support more sophisticated cooperative 

maneuvers in mixed-traffic environments. For example, 

vulnerable road users and legacy vehicles can react to the 

message shown in DMS [6]. CVs can use CP information to get 

better situational awareness and pass through intersections in a 

safer manner [37]. Autonomous vehicles (AVs) and CAVs can 

improve their driving performance via better coordination 

algorithms [38]. By leveraging CP messages, road users across 

different categories can benefit from enhanced safety, 

efficiency, and coordination in the traffic ecosystem. 

 

C. Taxonomy 

Based on the architecture of CP illustrated above, three 

key aspects are identified for a CP system, namely 1) Node 

Multiplicity, 2) Sensor Modality, and 3) Fusion Scheme, and 

Fig. 3 illustrates these aspects in detail. In terms of node 

multiplicity and sensing modality, four types of CP systems can 

be identified as follows: 

• Single-Node Single-Mode CP (SS-CP): Cooperation 
between a PN equipped with the single-modal sensor(s) 

and other users with connectivity only [18], [34]. 

• Multi-Node Single-Mode CP (MS-CP): Cooperation 

between multiple PNs equipped with the single-modal 
sensor(s) and connectivity [13], [20], [21]. 

• Single-Node Multi-Mode CP (SM-CP): Cooperation 

between a PNs equipped with the multi-modal sensor(s) 
and other users with connectivity only. 

• Multi-Node Multi-Mode CP (MM-CP): Cooperation 

between multiple PNs equipped with the multi-modal 
sensor(s) and connectivity [14], [16]. 

In the following, a comprehensive literature review is 

conducted with detailed analyses of the aspects of node 

multiplicity, sensing modality, and fusion scheme, respectively. 

A. I-PN-Based CP 

Object perception based on roadside sensors has a great 

potential to break the current bottleneck for automated driving, 

especially in a mixed traffic environment via cooperative 

perception [39]. This section reviews the infrastructure-based 

object detection and tracking approaches in the literature. 

Specifically, a single I-PN equipped with communication 

devices can be used for enhancing the perception capacity 

of vulnerable road users or vehicles with connectivity within 

certain scenarios, such as intersection areas. Thus, in this 

section, both single-I-PN perception and multi- I-PN 

perception models are regarded as I-PN-based CP methods. 

1) Single-I-PN Perception: Infrastructure-based camera 

systems have been widely used for object detection and a 

survey conducted by Zou et al. [12] shows various camera- 

based applications in traffic scenes, such as traffic surveillance, 

safety warning, traffic management, etc. Monovision camera 

plays a significant role in object detection. Ojala et al. proposed 

a Convolutional Neural Network (CNN) based pedestrian 

detection and localization approach using roadside cameras 

[40]. The perception system consists of a monovision camera 

streaming video and a computing unit that performs object 

detection and positioning. Besides, Guo et al. proposed a 3D 

vehicle detection method based on a monocular camera [41], 

which consists of three steps: 1) clustering arbitrary object 

contours into linear equations; 2) estimating positions, 

orientations, and dimensions of vehicles by applying the K-

means method; and 3) refining 3D detection results by 

maximizing a posterior probability. 

Instead of using a fixed roadside camera, some researchers 

try to take advantage of Unmanned Aerial Vehicle (UAV) 

based cameras. MultEYE [42] is a monitoring system for real-

time vehicle detection, tracking, and speed estimation proposed 

by Balamuralidhar et al. Different from general roadside 

sensors equipped on signal poles or light poles, the data source 

of MultEYE comes from a UAV equipped with an embedded 

computer and a video camera. Inspired by the multi-task 

learning methodology, a segmentation head [43] is added to 

the object detector backbone [44]. Dedicated object tracking 

[45] and speed estimation algorithms have been optimized to 

track objects reliably from a UAV with limited computational 

efforts. Cicek and Gören proposed a deep-learning-based 

automated curbside parking spot detection approach through a 

roadside camera [46]. To identify the road boundaries, object 

detection and road segmentation methods are employed by 

utilizing the FCN-VGG16 model [47] on the KITTI dataset 

[48] and Faster R-CNN [49] on MS-COCO dataset [50], 

respectively. Then, a method is 
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designed to differentiate parked vehicles from moving ones and 

then give guidance on the nearest spot information to drivers. 

In recent years, roadside LiDAR sensors have attracted 

increasing attention from researchers about object perception in 

transportation. Using roadside LiDAR, Zhao et al. proposed a 

detection and tracking approach for pedestrians and vehicles 

[51]. As one of the early studies utilizing roadside LiDAR for 

perception, a classical detection and tracking pipeline for PCD 

was designed. It mainly consists of 1) Background Filtering: 

To remove the laser points reflected from road surfaces or 

buildings by applying a statistics-based background filtering 

method [52]; 2) Clustering: To generate clusters for the laser 

points by implementing a DBSCAN method [53]; 3) 

Classification: To generate different labels for different traffic 

objects, such as vehicles and pedestrians, based on neural 

networks [54]; and 4) Tracking: To identify the same object in 

continuous data frames by applying a discrete Kalman filter 

[55]. Based on the aforementioned work, Cui et al. designed 

an automatic vehicle tracking system by considering vehicle 

detection and lane identification [56]. A real-world operational 

system is developed, which consists of a roadside LiDAR, an 

edge computer, a Dedicated Short- Range Communication 

(DSRC) Roadside Unit (RSU), a Wi-Fi router, and a DSRC On-

board Unit (OBU), and a GUI. Following a similar workflow, 

Zhang et al. proposed a vehicle tracking and speed estimation 

approach based on a roadside LiDAR [57]. Vehicle detection 

results are generated by the “Background Filtering-

Clustering-Classification” process. Then, a centroid-based 

tracking flow is implemented to obtain initial vehicle 

transformations, and the unscented Kalman Filter [58] and joint 

probabilistic data association filter [59] are adopted in the 

tracking flow. Finally, vehicle tracking is refined through a 

Bird’s-Eye-View (BEV) LiDAR-image matching process to 

improve the accuracy of estimated vehicle speeds. Following 

the bottom-up pipeline mentioned above, numerous roadside 

LiDAR-based methods are proposed from various points of 

view [60], [61], [62], [63], [64]. 

On the other hand, using learning-based models to cope with 

LiDAR data is another main methodology. Bai et al. [37] 

proposed a deep-learning-based real-time vehicle detection and 

reconstruction system from roadside LiDAR data. Specifically, 

CARLA simulator [65] is implemented for collecting the 

training dataset, and ComplexYOLO model [66] is applied and 

retrained for the object detection on the CARLA dataset. 

Finally, a co-simulation platform is designed and developed to 

provide vehicle detection and object-level reconstruction, 

which aims to empower subsequent CDA applications with 

readily retrieved authentic detection data. In their following 

work for real-world implementation, Bai et al. [18] proposed a 

deep-learning-based 3D object detection, tracking, and 

reconstruction system for real-world implementation. The field  

operational  system  consists  of  three  main  parts: 

1) 3D object detection by adopting PointPillar [67] for 

inference from roadside PCD; 2) 3D multi-object tracking by 

improving DeepSORT [68] to support 3D tracking, and 3) 

3D reconstruction by geodetic transformation and real-time 

onboard Graphic User Interface (GUI) display. 

2) Multi-I-PN Perception: Leveraging multiple I-PNs can 

significantly improve the perception range. For I-PN-based CP 

systems using cameras, Arnold et al. proposed a cooperative 3D 

object detection model by utilizing multiple depth cameras to 

mitigate the limitation of field-of-view (FOV) of a single- 

sensor system [21]. For each camera, a depth image is projected 

to pseudo-point-cloud data [69]. Two sensor-fusion schemes 

are designed: early fusion and late fusion which are adapted 

from Voxelnet [70]. The evaluation in a T-junction and a 

roundabout scenario in the CARLA simulator [65] 

demonstrates that the proposed method can enlarge the 

detection coverage without compromising accuracy. To take 

advantage of LiDAR for I-PN-based CP systems, VINet [71] 

was proposed to consider a scalable number of I-PN LiDAR 

inputs. Specifically, CNNs are designed for feature extraction 

and a specific two-stream fusion method was proposed to fuse 

features from scalable numbers of I-PNs. 

 

B. V-PN-Based CP 

Cooperative perception between vehicles mainly emerged 

from the research for Unmanned Aerial Vehicles (UAVs) to 

provide estimated localization in the region of interest. Back in 

2006, Merino et al. [72] proposed a multi-UAV CP system 

based on a distributed-centralized CP framework (similar to the 

current “local-central” framework). The sensor data (such as 

images) collected from UAVs will be processed on the UAV 

side including image segmentation, stabilization of sequences 

of images, and geo-referencing. The location of objects in the 

region of interest will be estimated by UAVs and then sent to a 

central server for further fusion by utilizing a probabilistic 

model. 

For on-road vehicles, Rockl et al. [73] propose a Multi- 

Sensor Multi-Target Tracking method by associating the 

received sensor data via V2V communication. A more notable 

CP system for on-road vehicles was proposed by Rauch et al. 

[74] in 2012. A Car2X-based module was proposed to fuse 

perception results for both spatial and temporal dimensions via 

the Unscented Kalman filter (UKF). Specifically, the object 

data shared from other vehicles need to be aligned to the 

coordinate of the host vehicle and synchronized in time. 

Rawashdeh and Wang [75] proposed a machine learning-based 

method to fuse proposals generated by different connected 

agents. A specific center-point estimation method was 

proposed for generating the object location into the coordinate 

system of the host vehicle. Xiao et al. [76] proposed a CP 

method by sharing semantic segmentation information 

generated by a DNN and vision-feature matching data from the 

BEV-projected image data. GPS data was required for spatial 

alignment. 

A comprehensive automated driving system (ADS) was 

implemented by Kim et al. [77], whose core innovation is 

a CP system that provides ego-vehicle information beyond 

occlusion by a leading vehicle. A real-world system was 

deployed to validate the effectiveness of CP by various tasks 

(e.g., collision warning, overtaking/lane-changing assistance, 

etc.), which demonstrated the potential of improving driving 

automation through CP technology. 
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TABLE II 

SUMMARY OF DIFFERENT NODE STRUCTURES FOR COOPERATIVE PERCEPTION 
 
 

     

 

 

 
  

 
  

 

 

  

 

 

 

 
     

 

For CP systems based on LiDAR data, Chen et al. proposed 

an early fusion method (Cooper [20]) by aligning raw point 

cloud data (PCD) from multiple vehicles. To fulfill the 

limited bandwidth of V2V communication, raw PCD was 

preprocessed to reduce its size. Additionally, GPS and Inertial 

Measurement Unit (IMU) data were required for PCD 

alignment. Then a PCD detector was designed based on 

VoxelNet [70], Sparse Convolution [78], and Region Proposal 

Network (RPN) [79]. The experiments demonstrated that 

Cooper was capable of improving perception performance by 

expanding sensing data. Following the Cooper, Chen et al. 

proposed F-Cooper [13], a feature-based CP system using 

PCD. The core idea of F-Cooper is a two-step process: 1) 

to extract the hidden feature from sensor data via a DNN at each 

vehicle side, i.e., V-PN; 2) to generate perception results based 

on cross-vehicle feature data sharing. 

CNN-based feature sharing was also applied in the work 

proposed by Marvasti et al. [80] for the V2V CP task, named 

Feature Sharing Cooperative Object Detection (FS-COD). 

Both FS-COD and F-Cooper complete spatial alignment at the 

feature level. However, different from F-Cooper which uses 

maxout operation [81] (i.e., output maximum value for 

corresponding multi-source data points) to fuse the multi- 

source data, FS-COD uses summation for multi-source feature 

fusion. 

Considering compressing the feature data for transmission, 

Wang et al. proposed V2VNet [82], which leverages the 

power of both deep neural networks and data compression. 

Specifically, a pipeline of “feature extraction-compression- 

decompression-object detector” is created to further consider 

the limitation of communication. Additionally, a novel simu- 

lator, Lidarsim [83], is involved for cooperative perception to 

generate a PCD-based V2V dataset in a more realistic manner. 

Zhang et al. [84] proposed a vehicle-edge-cloud framework 

for dynamic map fusion. Federated learning is applied for 

generating object detection results from multiple V-PNs and 

a three-stage fusion scheme is proposed to generate the final 

objects based on overlapping results from multiple PNs. 

Xu et al. [85] propose a feature-sharing-based CP model by 

V2V communication. Vehicles’ relative pose information with 

respect to ego-vehicle is required for spatial alignment and 

feature generation. Specifically, the attention operation [86] 

is applied for multi-node feature fusion and an open-source 

simulation-based dataset is developed and implemented for 

model training and validation. 

 

C. H-PN-Based CP 

Although many researchers have dug into cooperative 

perception from the perspectives of infrastructure perception 

and V2V cooperation, so far, only a few pieces of research are 

conducted for CP between heterogeneous PNs, i.e., cooperation 

between vehicles and infrastructure. 

For cooperation between vehicles and infrastructure, Bai 

et al. [14] proposed a CP method, named PillarGrid, to 

generate 3D object detection results based on PCD from 

onboard-roadside LiDAR sensors. Specifically, decoupled 

multi-stream CNNs are applied for feature extraction. The 

vehicle pose information is required for spatial alignment 

and the feature data are shared via V2X communication. A 

Grid-wise Feature Fusion (GFF) method is proposed for multi-

PN feature fusion, which endows the PillarGrid with better 

scalability and capacity to handle heterogeneity. 

Using Vision Transformer (ViT) [87], Xu et al. [16] 

proposed a CP method named V2X-ViT, which applied 

a share-weights CNNs for feature extraction. Ego-vehicle pose 

information is transmitted to surrounding vehicles and 

infrastructures for raw data alignment. Heterogeneous Graph 

Transformer (HGT) [88] is designed to deal with different 

feature fusion types, e.g., V2V, V2I, etc. A window attention 

module is designed to capture hidden features from the 

fused feature map, which is then used to generate the object 

detection results. 

Table II summarizes the advantages and disadvantages of 

different node structures for cooperative perception. In a 

nutshell, V-PN is more ego-efficient (i.e., improving the 
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perception capability from the standpoint of ego-vehicle.) while 

I-PN is more suitable for scalable cooperation. CP between 

homogeneous PNs, such as V2V or I2I, can mainly extend the 

perceptive range while CP between heterogeneous PNs, such 

as V2X, can achieve better FOV by complementing different 

sensor configurations. 

IV. SENSOR MODALITY FOR CP 

For the CP system, sensors are the most fundamental 

modules due to their roles in raw data collection. This 

section aims to overview the CP system from the perspective of 

sensing modality by 1) introducing the specification and 

performance of different types of sensors that are mainly 

utilized in transportation systems, 2) reviewing the 

development of single-sensor perception systems based on 

cameras, LiDAR and RADARs, and 3) summarizing the studies 

of multi-sensor perception systems in terms of homogeneous 

sensor fusion and heterogeneous sensor fusion. 

A. Sensor Specification and Performance 

For sensors equipped with current ADS, the most popular 

ones are cameras, LiDAR, and RADAR [89]. Onboard 

RADAR has been deployed on vehicles to mainly achieve 

ADAS functionalities for many years [90], such as Adaptive 

Cruise Control (ACC), Collision Avoidance, etc [91]. 

Different ADS may take different sensor configurations. For 

instance, the ADS developed by Comma.ai [92], only deploys 

a single-camera-based perception system at the middle-top 

of the windshield. Waymo ADS [93], utilizes multi-modality 

sensors including 1) multiple cameras installed around the top-

surrounding positions of the vehicle, 2) LiDAR sensors 

equipped on the top and two front sides of the vehicle, and 

3) RADARs integrated at lower-surrounding positions around 

the vehicle. 

Regarding the installation of roadside sensors, typical 

locations may include signal arms and street lamp posts, 

with some minimum height requirements to avoid tampering. 

As a result, roadside sensors can have a much higher position 

(compared to onboard sensors) to minimize the occlusion effect 

due to dense traffic. The specific installation position may vary 

based on different roadside sensors. For example, the roadside 

LiDAR sensors are mainly installed at the height 

of 3 − 6m (but no more than 10m), while fisheye cameras prefer 

a higher installation [18], [37], [51]. 

To form a comprehensive view of the general performance 

of different sensors used for perception in transportation 

systems, Table III provides a summary of those that are widely 

utilized in ADS, traffic surveillance, and other transportation 

systems. Each of these sensors has its own capabilities and 

strengths in different use cases. 
• Camera: High-resolution. Not great for 3D position and 

speed measurements, especially in dense traffic. 

• LiDAR: High-accuracy 3D perception with resilience to 

environmental changes. Not great with its relatively high 
price and data sparsity. 

• RADAR: Measuring speed, unlocking applications like 

stop bar & dilemma zone detection. Not great for 

distinguishing objects. 

• Thermal Camera: Getting thermal information, which 
provides resilience to lighting changes. 

• Fisheye Camera: 360-degree full field-of-view (FOV) for 

detection. Requires a high-accuracy calibration matrix to 

account for distortion. 

• Loops: Measuring traffic counts and speed. Costly to 
install and maintain due to intrusiveness. 

B. Multi-Sensor Perception 

Owing to the complementary of different sensors, multi- 

sensor-based perception systems have the potential to achieve 

better object detection and tracking performance via sensor 

fusion. In this section, homogeneous multi-sensor perception, 

which fuses sensor data from the same type of sensors, 

is reviewed first followed by the discussion of heterogeneous 

multi-sensor perception methods, such as Camera+LiDAR, 

Camera+RADAR, etc. 

1) Homogeneous Multi-Sensor Perception: The multi- 

camera system has been developed for decades and lots of 

applications have been designed and implemented in our 

current transportation systems [96], such as object detection 

and object tracking. 

For object detection, before the surge of CNN, the extraction 

and fusion of object-level features is a major challenge for 

traditional methods due to the high-dimensional complexity of 

RGB data. Merino et al. [72] proposed a multi-UAV CP 

system based on heterogeneous sensor systems including 

infrared and visual cameras, fire sensors, and others. A set 

of functions were designed for object detection including image 

segmentation, and stabilization of image sequences. By 

coordinating the processed results from spatially separated 

sensors, the targeting object can be detected and localized based 

on a geo-referencing process. 

With the tremendous power of CNN to extract hidden 

features, object detection based on multi-camera systems 

quickly attracts lots of attention from researchers. For spatial 

alignment for the multi-node cameras, Arnold et al. [21] chose 

to project camera data from RGB images to pseudo-PCD. 

Owing to the 3D attribute of PCD, this pseudo-PCD could be 

easily aligned and merged into a unified coordinate system. 

Then a deep learning-based object detector was applied to 

generate perception results. 

Object tracking has been widely developed in multi-camera 

systems for several decades to enable traffic surveillance 

and thus to analyze the traffic scenarios for further 

traffic optimization [97]. The most typical way of multi- 

camera tracking is to calibrate the multi-camera systems to 

make all views stitched together in a unified coordinate system 

[98]. Meanwhile, consecutively tracking multi-objects under 

occluded conditions is one of the main strengths of a multi-

camera tracking system which can provide sequences of 

images from different viewpoints. Specifically, based on the 

unified coordinate system gained from calibration, the 

Kalman Filter [99], the particle filter [100], etc., have 

been widely applied in multi-video object tracking systems. 

The tracking schemes mentioned above generally require 

joint FOV for computing association across cameras. For the 
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TABLE III 

SENSOR PERFORMANCE MATRIX FROM DIFFERENT ASSESSING PERSPECTIVES (RATING RANGE FROM 1 TO 3 STARS 

BASED ON THEIR RELATIVE PERFORMANCE) 
 
 

 

TABLE IV 

SUMMARY OF DIFFERENT SENSOR MODALITIES FOR COOPERATIVE PERCEPTION 
 

 

disjoint camera system, appearance cues are designed for 

capturing the common features between multiple views by 

integrating spatial-temporal information [101]. To overcome 

the dynamically changed spatial-temporal information in vision 

information, e.g., lighting condition and traffic speed, the 

tracking model should also be able to update its model 

adaptively. Thus, Expectation-Maximization (EM) framework 

[102], unsupervised learning network [103], etc., have been 

implemented to dynamically update the model. 

Although one single LiDAR can provide panoramic FOV 

around the ego-vehicle, physical occlusion may easily block the 

perceptive range and cause the ego-vehicle to lose some 

crucial perception information which significantly affects its 

decision-making or control process. On the other hand, a 

spatially separated LiDAR perception system can expand the 

perceptive range for intelligent vehicles or smart infrastructure. 

One of the straightforward inspirations of the multi-LiDAR 

perception system is sharing the raw PCD via V2V com- 

munication [20]. However, limited wireless communication 

bandwidth may significantly limit real-time performance. 

Feature data generated from CNN requires much less 

bandwidth and is more robust to sensor noises, thus 

becoming a popular solution to multi-LiDAR fusion [13], [82]. 

Marvasti et al. [80] used two sharing-parameter CNNs to 

extract the feature map for PCD retrieved from two vehicle 

nodes. Feature maps were then aligned based on the relative 

position and fused by element-wise summation. By applying an 

attention mechanism, Xu et al. [85] proposed a V2V- based 

cooperative object detection method. A similar CNN process 

[67] was designed for extracting feature maps for V2V sharing. 

Furthermore, self-attention was involved in data aggregation 

based on spatial location in the feature map. 

Recently, researchers started focusing on cooperation 

between V-PN and I-PN based on the multi-LiDAR system. For 

handling the data heterogeneity from the roadside and 

onboard PCD, Bai et al. [14] proposed a decoupled multi-

stream CNN framework for generating feature maps 

accordingly. Relative position information was applied to PCD 

alignment and the shared feature maps were then fused based 

on grid-wise maxout operation. Additionally, Xu et al. [16] 

proposed a ViT-based CP method for heterogeneous PNs. 

Feature maps were extracted using sharing-parameter CNNs 

and V2X communications. For dealing with heterogeneity, 

specific graph transformer structures were designed for data 

extraction. 

2) Heterogeneous Multi-Sensor Perception: As different 

sensor modalities, the camera and LiDAR seem to be a 

naturally complementary couple for perception. For instance, 

the camera is good at perceiving vision information but lacks 

3D distance data, while the LiDAR excels at collecting 3D 

information but lacks vision data. 
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SUMMARY OF DIFFERENT FUSION SCHEMES FOR COOPERATIVE PERCEPTION 
 

 

     

 

   
 

  

 

  

 

       
  

 
  

 

   
 

  
 

  

 

One typical way for the fusion of multi-modal sensor data 

is using CNN to extract hidden features in parallel and then 

combine them on the corresponding scale level. Zhu et al. 

proposed Multi-Sensor Multi-Level Enhanced YOLO (MME-

YOLO) for vehicle detection in traffic surveillance [17]. MME-

YOLO consists of two tightly coupled structures: 1) The 

enhanced inference head is empowered by attention- guided 

feature selection blocks and anchor-based/anchor-free 

ensemble head in terms of better generalization abilities in real-

world scenarios; 2) The LiDAR-Image composite module is 

based on CBNet [104] to cascade the multi-level feature maps 

from the LiDAR subnet to the image subnet, which strengthens 

the generalization of the detector in complex scenarios. MME-

YOLO can achieve better performance for vehicle detection 

compared with YOLOv3 [105] for roadside sensor data. 

Since the camera and LiDAR have different poses and FOV, 

creating an intermediate feature level to unify LiDAR and 

image data before sending it to the feature-extraction backbone 

becomes a promising way for multi-modal sensor fusion [106]. 

A popular way is to project camera information into LiDAR 

data to endow PCD with vision information. PointPainting 

[107], a point-level feature fusion method, decorates the PCD 

with semantic segmentation results from vision data. The point 

cloud data decorated with vision information are then fed into 

detectors, e.g., PointPillar [67] for generating object detection 

results. Recently, Liu et al. [95] proposed a novel framework, 

named BEVFusion, to project both RGB and PCD information 

into a BEV feature map for fusion. Specifically, two dedicated 

encoders were designed to extract RGB and PCD inputs into 

the BEV feature map. Then, multi-modal feature fusion was 

conducted based on the spatial correspondence of BEV feature 

maps. 

Additionally, empowered by remarkable depth-sensing 

capability, RADARs are innately complementary to cameras to 

improve the overall perception ability [108]. In the early stage 

of RADAR-camera fusion studies, RADAR data was usually 

extracted to enhance the depth information for visual data 

[109], which was straightforward but not very reliable and 

high-performance. Conversely, perception pipelines can be 

designed separately with respect to camera data and RADAR 

data respectively. Then traditional multi-sensor fusion methods 

can be applied to fuse these multi-source perception results, 

such as Probabilistic Reasoning-based fusion studies [110], 

and Kalman Filter-based fusion methods [111]. 

Recently, DNN-based methods became a dominant solution 

to fuse camera and RADAR data with higher performance. For 

instance, CNNs were applied to extract the hidden feature 

for both camera data and RADAR data and then these 

features were fused together to enhance the feature 

representation [112], [113]. Meanwhile, Transformer models 

[86] also attracted increasing attention to fuse features from 

different sensor modalities using their self-attention or cross-

attention mechanism [114]. 

V. FUSION SCHEME FOR CP 

In terms of the stage of sensor fusion, a multi-sensor 

perception system can be divided into three classes: 1) Early 

Fusion – to fuse raw sensor data with basic preprocessing steps; 

2) Intermediate Fusion – to fuse intermediate feature data 

within the perception models (typically the intermediate feature 

map within a neural network); and 3)Late Fusion – to fuse 

perception results from individual perception pipelines for 

different perception nodes. It is noted that, in the context of CP, 

raw data typically means the output data after the proprietary 

decoding process of the sensors, such as the pixel matrix from 

cameras or point cloud data from LiDAR, which have a 

common format. 

Different fusion schemes have their specific advantages and 

disadvantages in terms of distinct perspectives. Early Fusion 

and Intermediate Fusion have higher accuracy but need more 

computational power and complex model design. Conversely, 

Late Fusion can achieve better real-time performance but may 

sacrifice accuracy. It depends on the specific demands under 

different traffic scenarios to determine the best deployment 

of fusion schemes. Take a 64-beam LiDAR as an example, 

early fusion and intermediate fusion will roughly require 10 to 

50M Bps communication bandwidth which is much more than 

the late fusion methods (≪ 1M Bps). In the meantime, early 

fusion/intermediate fusion methods could provide 10% to 20% 

accuracy improvement [115]. The decision of such a trade-off 

typically depends on the actual use cases. For instance, for 

safety-critical applications, accuracy will be placed a higher 

weight than communication while for some communication- 

critical applications, methods that consume less bandwidth 

would be a better choice (It is noted that the actual bandwidth 
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consumption varies on the specific data type and packaging 

methods.). This section aims to give a brief landscape of how 

fusion schemes are considered and applied in relevant CP 

research. Also, we will focus more on work that has not been 

introduced in previous sections. 

 

A. Early Fusion 

An obvious approach is to share the raw sensor data with 

other PNs to expand the perceptive range and improve 

detection accuracy. Following this strategy, the raw sensor data 

from multiple PNs are projected into a unified coordinate 

system for further processing [98]. However, since the basic 

idea of early fusion is only the expansion of raw data range 

or density, it is inevitably sensitive to the quality of sensor 

data, such as sensor calibration issues and data 

unsynchronization [97]. Thus, early fusion can potentially 

provide the ideal performance only under several restricted 

assumptions, such as high-accurate sensor calibration and 

multi-source synchronization, which requires lots of effort in 

real-world implementations. 

On the other hand, early fusion requires a large commu- 

nication bandwidth to transmit a high volume of raw data. 

It is suitable for transmitting camera data with limited image 

resolution, but it may not be feasible to share real-time LiDAR 

data within a certain time delay (A 64-beam Velodyne LiDAR 

with 10Hz may generate about 20MB of data per second [48]). 

For V2V early fusion, it is true that communicating raw sensor 

data with one ego-vehicle is not an impossible solution [20], 

but it is definitely not feasible for large-scale V2V cooperative 

perception under current communication capability. 

 

B. Late Fusion 

Standing in the opposite direction compared with early 

fusion, late fusion chooses another natural cooperative 

paradigm for perception – generating perception results 

independently and then fusing them together. Different from 

early fusion, although late fusion also needs a relative position 

for fusing these perception results, its tolerance to calibration 

errors and unsynchronization issues is much higher than 

early fusion. One of the main reasons is that object-level fusion 

can be determined based on spatial and temporal constraints. 

For instance, Rauch et al. [74] applied EKF to jointly align 

the shared bounding box proposals based on spatiotemporal 

constraints. Additionally, Non-Maximum Suppression (NMS) 

[116] and other machine-learning-based proposal refining 

methods are widely applied in late fusion methods for object 

perception [21]. Recently, due to the distributed attributes of 

late fusion, Federated Learning [117] also attracts increasing 

popularity in perception systems [84]. 

 

C. Intermediate Fusion 

The core ideology of intermediate fusion can be simply 

summarized as using deeply extracted features for fusion that 

happens at the intermediate stages of the perception pipeline. 

Intermediate fusion relies on hidden features mainly extracted 

from deep neural networks, which have higher robustness 

compared with raw sensor data used for early fusion. 

Xu et al. [16] assessed the robustness of model performance 

under different time delays and noises of metadata (the ego- 

vehicle location and heading). Different levels of errors were 

involved in the cooperative perception process. The evaluation 

results can be summarized as three points: 
• With no error involved, early fusion and intermediate 

fusion can achieve similar performance which is better 

than late fusion; 

• With the increase of errors, the performance of both early 

fusion and late fusion decreases drastically, but the 

performance degradation of all intermediate fusion 

methods [13], [16], [82], [85] is much less noticeable than 

early fusion and late fusion. 

Additionally, feature-based fusion methods typically have only 

one detector for generating object perception results and thus 

there is no need for merging multiple proposals as required by 

late fusion [21], [84]. 

Although cooperative perception has been developed in 

multiple areas for several decades, deep-fusion-based 

cooperative perception is an emerging field. Most of the 

intermediate fusion methods for CP were devised in the past 

few years. But the related research interests wildly surged up, 

for example, F-Cooper [13] (2019), V2VNet [82] 

(2020), OPV2V [85], CoFF [118], DiscoNet [119](2021), 

PillarGrid [14], PV-RCNN [120], CRCNet [121], VINet [71] 

and V2X-ViT [16] (2022), etc. So far, most of the deep feature 

extraction is conducted by CNN, such as [13], [14], [82], [122], 

because the CNN-based feature is highly related to the local 

spatial information. Recently, some studies have applied 

transformers as the deep feature extractor [16], [85], [123] due 

to their capability for feature extraction with larger receptive 

fields. 

 

VI.  HIERARCHICAL COOPERATIVE 

PERCEPTION FRAMEWORK 

Based on the overview of the aforementioned literature, 
Three major issues can be identified for CP systems in the real 

world: 

• Heterogeneity: the CP system should take advantage 

of both intelligent vehicles and smart infrastructures to 

empower the comprehensiveness of perception. 

• Scalability: the CP system needs to be able to extend to 

different scales of cooperation levels, such as intersection 
level, corridor level, and traffic network level. 

• Dynamism: the CP system needs to be able to 

dynamically cooperate with vehicle perception nodes, i.e., 

the I-PN should be capable of cooperating with a 

dynamically changed number of V-PNs. 

To address the issues mentioned above, we propose a unified 

CP framework, called Hierarchical Cooperative Perception 

(HCP) Framework, which is demonstrated in Fig. 4. HCP aims 

to assimilate different CP tasks under various scenarios into a 

general framework. The design of the HCP framework is based 

on 1) the system architecture for CP as shown in Fig. 2, 2) 

the taxonomy of CP as shown in Fig. 3, and 3) the analysis 

of reviewed literature. 
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Fig. 4.  The schematic diagram of the HCP framework. 

 

In this paper, the HCP framework mainly focuses on 

the intersection scenarios and consists of threelevels: 

1) Intersection-Level CP, 2) Corridor-Level CP, and 3) 

Network-Level CP, which will be introduced from several 

perspectives including core node, communication types, and 

perception outputs, respectively. 

 

A. Intersection-Level CP 

As shown in the bottom part of Fig. 4, intersection-level CP 

aims to perceive the object-level traffic condition around an 

intersection. V-PNs are designed as the core perception node at 

this level. For vehicles that are equipped with powerful onboard 

processors such as CAVs, features can be shared via V2V 

communication and processed onboard. The perception results 

from I-PN can act as auxiliary data to augment the CAV’s 

perception results by late fusion. Most of the previous V2V CP 

work [13], [82], [85] can be integrated into our HCP framework 

from this perspective. 

Since the edge processor can be deployed at the I-PN for 

processing the roadside sensor data and the data received 

from intelligent vehicles via V2I communication, vehicles are 

not necessarily required to be equipped with a powerful 

onboard processor for processing the whole perception 

pipeline. Lightweight computing units can be deployed for 

only extracting the feature. Deep features from multiple 

vehicles can be transmitted to the I-PN for intermediate fusion 

to generate perception results. The I-PN 

then broadcasts the perception results to vehicles within its 

own communication range. Recent infrastructure-enabled CP 

methods can be regarded as a specific version of the 

intersection-level CP [14], [16]. Intersection-level CP is a 

crucial component for unlocking the current bottleneck (in 

terms of efficiency, safety, and sustainability) for CDA in a 

mixed traffic environment [7]. 

 

B. Corridor-Level CP 

As shown in the middle of Fig. 4, corridor-level CP aims 

to expand the perception based on the connectivity of 

multiple smart infrastructures in which the core node is I-

PN. Currently, I2I communication (via cable or optical fiber) 

has a much higher capacity compared with wireless 

communication. For instance, optical fiber can achieve over 

40GB/s communication speed with low latency and even 

commercial optical-fiber internet can achieve 1GB/s [124]. 

Theoretically, empowered by high-speed communication, I2I- 

based CP is capable of applying all aforementioned fusion 

schemes based on specific scenarios. For instance, raw data 

sharing can be a typical style for I2I-based CP [21]. 

Practically, however, the computational bottleneck on the 

computers at each end of the communication pipeline will 

occur when the approach requires the computer to encode 

and decode massive amounts of data, which will become the 

bottleneck in real-world applications. Thus, the capacity of the 

data encoding/decoding should also be carefully considered. 
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encoder design to alleviate the computation requirement for the 

whole CP system. 

A real-world operational system (Cyber Mobility Mirror, 

shown in Fig. 5) is developed by using infrastructure-to-cloud 

and cloud-to-vehicle cooperation, as shown in the network- 

level CP above. 

Following all these studies, we believe that the HCP 

framework can provide more inspiring ideas for other 

researchers in this multidiscipline field. 
 

 

 

 
Fig. 5. Illustration of CMM field operational test from different views from 
a drone, host vehicle, onboard GUI, and edge server. 

 

Meanwhile, by sharing feature-level data with corridor-level 

I-PNs, the CP system can generate object-level perception 

information with high perception accuracy to further assist road 

users or enhance traffic management [37]. 

 

C. Network-Level CP 

As shown at the top of Fig. 4, network-level CP aims to 

perceive the object-level traffic condition for the whole traffic 

network. The cloud server is the core node to link all distributed 

intersections and CAVs that are out of the I-PN range. The 

cost-effective way for network-level CP is late fusion – 

retrieving perception information from I-PNs and CAVs and 

then merging those results for distribution. Furthermore, 

feature-level data can be also transmitted to the cloud server 

and a unified detector can be designed to generate the 

perception results. 

It is noted that the main purpose of the HCP framework 

is to explore a high-level system design in which the 

cooperative perception could be implemented and integrated 

into various transportation scenarios seamlessly. Following this 

framework, several studies have been conducted to enable 

cooperative perception from different perspectives. For 

example, PillarGrid [14] is proposed to integrate 

heterogeneous sensing data from a vehicle PN and an 

infrastructure PN, which belongs to one of the key challenges 

in the intersection-level CP in our framework. Additionally, 

another key challenge in the intersection-level CP is the variety 

of communication capacity among perception nodes. To 

support CP under dynamic communication conditions, a 

dynamic feature-sharing strategy [125] is proposed to 

dynamically adjust feature sharing based on their allowable 

communication capacity. In addition, to improve perception 

accuracy after reducing the sharing features, Pillar Attention 

Encoder [126] is proposed to provide a strong representation of 

the sensor data. From the perspective of a vehicle PN in an 

intersection-level CP system, a case study is conducted to 

demonstrate how a vehicle PN can benefit from other vehicle 

PNs and infrastructure PNs [127]. 

To scale up the system, VINet [71] is proposed to handle the 

heterogeneity and scalability of the CP system at both the 

intersection level and corridor level by designing a two-stream 

neural network. Besides, VINet introduces a lightweight 

VII. OPEN-SOURCE DATASETS AND PLATFORMS 

This section aims to provide some open-source datasets and 

platforms that can support the development of cooperative 

perception. We hope this section can help researchers expedite 

the onboarding processes for conducting their own research in 

this field. 

 

A. Open-Source CP Datasets 

Owing to prevailing needs in automated driving for 

surrounding perception, most real-world datasets for object 

detection and tracking are collected from onboard sensors from 

the perspective of a single PN, such as KITTI [48], NuScenes 

[128] and Waymo Open Dataset [93]. Training CP models 

usually requires datasets collected from multi- PN systems, 

which are missing in the early stage of CP research. To train the 

multi-PN CP models, researchers came out with ideas to 

emulate multi-PN datasets from the single- PN datasets [13], 

[20] by aligning data frames collected at different times. 

However, it is nearly impossible for such a synthetic dataset 

to fully represent a real multi-PN dataset. As shown in Fig. 1, 

before 2022, there is no available open-sourced cooperative 

perception dataset collected from real-world data. To move 

forward, researchers tried to collect multi-PN datasets from 

high-fidelity 3D simulators, such as CARLA [65]. Empowered 

by advanced 3D modeling and graphic computing power, these 

simulators can generate vivid scenarios with nearly realistic 

sensor outputs. Due to the cost-effectiveness and high fidelity, 

multi-PN datasets were collected quickly and significantly 

expedited the development of CP methods, such as OPV2V 

[85] for supporting V2V-based CP models and V2X-Sim [129] 

for enabling CP models considering infrastructure-based 

sensors. 

In 2022, DAIR-V2X [130], the first real-world cooperative 

perception dataset came to the stage, which is a large-scale, 

multi-node, multi-modality CP dataset. Specifically, DAIR- 

V2X contains 39k images, 39k PCD frames, and 10 classes 

of ground truth labels with synchronized time stamps. Sensor 

measurements are collected from both vehicle nodes and 

infrastructure nodes. One year later, as an upgraded version of 

the previous dataset, V2X-Seq [131] was published which 

includes data frames, trajectories, vector maps, and traffic 

lights captured from natural scenery to support V2X-based 

cooperative perception and forecasting tasks. 

Concurrently, the V2V4Real [115] dataset was published for 

enabling the V2V-based CP tasks, which was collected by two 

vehicles simultaneously providing multi-view sensor data 
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streams including 410 km of the driving area, 20K LiDAR data 

frames, 40K RGB camera frames, and 240K annotated 3D 

bounding boxes across 5 vehicle classes. 

 

B. Open-Source CP Platforms 

Instead of collecting datasets, various CP platforms are 

developed to support the development of CP methods. For 

CP model training and testing, OpenCOOD platform [85] 

provides a high-level codebase to support the design and 

benchmark of CP models for both simulation datasets and real- 

world datasets. For dataset flexibility, CARTI platform [132] is 

developed to enable researchers to customize their own 

cooperative perception scenarios and collect the customized 

dataset for training and testing the CP models. 

In recent few years, several platforms were developed to 

enable the development of the CP model as well as its 

subsequent tasks, such as decision-making, planning, control, 

etc, which ends up with the CDA system mentioned earlier. For 

instance, AutoCastSim [133] was developed not only to support 

sensor data sharing and fusion for CP problems but also to 

enable low-level tasks such as vehicle control. OpenCDA [134] 

and CARMA [135] were developed to provide comprehensive 

capabilities to enable full-stack CDA system development. 

 

VIII. DISCUSSION 

Although cooperative perception is an emerging research 

area, it is playing an increasingly significant role in promoting 

the perception capabilities for CDA applications. Many studies 

have been conducted to lay the foundation and provide 

inspiration for future work. In this section, we present our 

insights concerning the current states, open problems, and 

future trends in cooperative perception for CDA applications. 

 

A. Current States and Open Challenges 

1) Perception Singleton for Heterogeneity: The most 

common perception agents in transportation are intelligent 

vehicles and smart infrastructure which can be regarded as 

heterogeneous perception singletons. Since roadside sensors 

have more flexible locations and pose for data acquisition, one 

typical way of cooperative perception is to transmit information 

from the infrastructure side to road users [18], [41], [42], [60]. 

From the perspective of cooperative automated driving, V2V-

based cooperative perception is also a promising solution to 

enable the ego-vehicle with the capability of seeing through 

[73], [74], [75], [77]. 

However, none of them can make an epochal revolution 

if they do not cooperate together in a deep manner, because 

the evolution of intelligent transportation systems is always 

highly coupled with the cooperation between vehicles and 

infrastructures [136]. Due to the heterogeneity of the perception 

singleton, only recently few studies have considered the 

cooperation between vehicle nodes and infrastructure nodes 

[14], [16]. Thus, vehicle-infrastructure cooperation is one of the 

most significant opening tasks for cooperative perception. 

2) Sensor System for Fidelity: Generally speaking, the 

capability of the sensor system can be regarded as the 

foundation of subsequent applications in intelligent trans- 

portation systems. Since the perception data generated from 

sensor systems is the foundation of the downstream modules, 

such as prediction, decision-making, and actuation [37], for 

cooperative perception, cameras and LiDAR are widely applied 

to accessing high-fidelity sensing information. 

However, in most research, these two types of high-fidelity 

sensors work separately – a cooperative perception system only 

equipped with one kind of sensor – such as multicamera- based 

CP [17], [21] and multi-LiDAR-based CP [14], [82]. According 

to the analysis in Section IV-B, fusing data from 

complementary sensors tends to significantly improve the 

object perception performance, such as Camera+LiDAR [95], 

Camera+RADAR [112], etc. Thus, developing multi-modality 
sensors for cooperative perception is an important way to 

improve the overall fidelity of the perception results. 

Moreover, while infrastructure is a crucial component 

of cooperative perception systems, the existing perception 

methods employed by roadside sensors largely rely on general 

perception approaches designed for onboard sensors. 

Comparing the methods reviewed in Section IV and Section 

III, there is an evident gap between general object perception 

and cooperative perception. For instance, the core 

methodologies of a large portion of the existing roadside 

LiDAR-based detection approaches are based on DBSCAN for 

clustering [51], [57], [61], [63], [64], which has a performance 

gap compared with the SOTA methods [67], [70]. However, 

due to differences in sensor data distributions between roadside 

systems and onboard systems, datasets collected dedicated to 

roadside sensors are crucial for training roadside perception 

models. Additionally, to make use of the massive amount of 

onboard sensor-based datasets for roadside perception training, 

investigating the transferability of models that can be trained 

on the onboard datasets but implemented on roadside datasets 

is another key challenge to the improvement of the I-PN-based 

CP system. 

Additionally, to the best of authors’ knowledge, adverse 

environmental conditions are still lacking consideration for CP 

research. Thus, to improve the robustness of the sensing system 

is still an open challenge for CP systems to be able to be 

implemented in real-world conditions. 

3) Fusion Strategies for Generality: As reviewed in Section 

V, different fusion schemes have their specific advantages and 

disadvantages. Early fusion-based studies mainly require high-

speed communication to enable the transmission of raw data 

[20], [21]. However, the reliance on raw data inevitably makes 

the perception model very sensitive, and small communication 

errors or synchronization issues can cause significant 

degradation in system performance [16]. Late fusion-based 

research has been widely applied to various kinds of cooperative 

perception tasks since decades ago [21], [72], [84]. Late fusion 

has less requirement for communication but its performance 

also suffers from the merging of the object proposals from 

multiple sources [21]. 

To solve the issues mentioned above, recent work has been 

focusing on transmitting and fusing feature-level data to gain 
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better accuracy with higher robustness [14], [16]. However, due 

to the deeply coupled feature and model complexity, large- scale 

extension is an inevitable challenge for intermediate fusion-

based cooperative perception. 

4) Policies for Sustainability: Since remarkable potential has 

been uncovered for the CP system to improve the current 

transportation systems, policies and standards have been 

formulated and released accordingly to stimulate and 

standardize the development of CP technology [5], [23], 

[24]. Based on the review and analysis, the development of CP 

tends to be a path that requires extensive investments for 

various topics such as sensors, communication systems, 

roadside infrastructures, etc. 

However, current research studies and industrial standards 

mainly focus on the technical advancement of CP development 

while lacking consideration of the economic challenges that 

come with it. Based on the real-world CP demonstration from 

Federal Highway Administration (FHWA) [34], implementing 

the CP system in the real world requires multilateral efforts 

such as industrial solutions for sensors and communication, 

policy support from the local government, or transportation 

agencies, and numerous funding support for system expansion 

and maintenance. Meanwhile, public concerns (such as privacy 

issues) also need to be considered. Hence, it is a key challenge 

to make proper policies to push the development of CP in a 

sustainable way. 

 

B. Future Trends 

1) Towards Heterogeneous Cooperation: Physical occlu- 

sion is considered one of the unavoidable obstacles to single- 

node perception, and perceiving the environment from multiple 

nodes can mitigate such limitations. Given that transportation 

is a system of systems, vehicle-infrastructure cooperation is 

a promising solution to many existing traffic-related issues. 

More specifically, vehicle-infrastructure cooperative 

perception can leverage the capabilities of both vehicles (as 

mobile perception nodes with lightweight processing power) 

and infrastructure (as fixed nodes but with powerful 

processing/storage units) to achieve much better performance. 

Efficient and dynamic ways to fuse the information from 

vehicles with infrastructures are the keys to unlocking a new 

era of perception for CDA. 

2) Towards Multi-Modal Cooperation: A multi-sensor- 

based perception system has the potential to improve perceived 

performance by taking advantage of complementary sensor 

data [137] with appropriate fusion techniques. In the scope 

of camera and LiDAR sensors, the development of current 

multi-modal sensor fusion is mainly targeting general object 

perception by multiple sensors equipped on one single agent 

[95]. Specific multi-modal sensor fusion for multiple 

perception nodes is still a blank field, which is, however, 

an important way to improve the perception accuracy for the 

whole system. 

3) Towards Scalable Cooperation: The concept of coop- 

erative perception is never intended to be only applied to a 

small number of nodes, such as two vehicles [13] or one 

vehicle with one infrastructure [14]. Some cooperative 

perception methods are mainly designed for enhancing the ego-

vehicle with the assistance of surrounding nodes by asking 

surrounding nodes to align their data based on the metadata 

from the ego-vehicle [16], which may cause scalability issues 

when numerous ego-vehicles are involved. 

On the other hand, the computational power and perceptive 

range of perception nodes are not the same for vehicles and 

infrastructure. An infrastructure-based perception system is 

more flexible in terms of sensor equipment and capable of 

empowering high-computational edge processors, large data 

storage and wide communication bandwidth. Although the 

onboard device has made major strides in development 

recently, it could be extremely costly and energy-inefficient to 

empower every vehicle with a high-performance computa- 

tional system for enabling CP. Therefore, by only deploying 

lightweight-computing modules on the V-PN side (e.g., sharing 

data extraction) and leaving the heavy computing parts to the I-

PN side (e.g., the backbone neural network), it can be more 

cost-effective to 1) enable intermediate fusion-based CP 

approach [71] and 2) implement the CP system in real-world 

situations for a broader range of perceptions [18]. 

Considering the issues for cooperative perception in real- 

world development, such as scalability, dynamic environment, 

and heterogeneous resources (such as computational power, 

storage space, and communication bandwidth), the hierar- 

chical structure, including vehicle, infrastructure, and cloud, 

introduced in Section VI can be a promising solution. Thus, 

building a unified framework will be a systematic challenge 

and can lay a solid foundation for further research on 

cooperative perception. In the meantime, communication- 

oriented CP [138], [139] is also a critical direction for pushing 

CP technologies toward real-world implementations. 

4) Towards Sustainable Cooperation: To implement the CP 

system in real-world conditions, multilateral efforts are 

required, which include automakers, policymakers, industrial 

societies, local transportation agencies, the general public, etc. 

Meanwhile, due to the sophisticated system architecture that 

involves vehicles, infrastructures, communication, sensors, and 

computing systems, the development of the CP system requires 

careful consideration of challenges from economic effects, 

liability issues, security concerns, public policies, etc. 

Thus, to make the development of CP feasible and 

sustainable, a critical future direction for CP is to make policies, 

strategies and standards based on comprehensive consideration 

of multilateral interests, such as Infrastructure as a Service 

(IaaS) or public-private partnership (P3) mode. Although we 

recognize this challenge, this paper aims to raise this concept 

and arouse further discussion to work this out together. 

Meanwhile, AV-related aspects, such as 1) vehicular 

communication [140], 2) vehicle self-pose estimation [141], 

3) V2X data synchronization [142], 4) vehicular control [143], 

and 5) cyber security for sharing safety-critical sensor data 

[144], are also significant future directions for making CP 

happen and sustainably evolve in the real world, but are not 

deeply investigated in this paper due to the limited structure and 

space of this paper. 
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IX. CONCLUSION 

This paper provides a comprehensive overview and proposes 

a hierarchical framework for cooperative perception. The 

architecture and taxonomy are presented to illustrate the 

fundamental components and core aspects of a cooperative 

perception system. Cooperative perception methods are then 

introduced with detailed literature reviews from three 

perspectives: node structure, sensing modality, and fusion 

scheme. The proposed hierarchical cooperative perception 

framework is analyzed from the levels of intersection, corridor, 

and network respectively. Existing datasets and simulators 

for enabling cooperative perception are briefly reviewed to 

identify the gaps. Finally, this paper discusses current issues 

and future trends. To the best of our knowledge, this work is 

the first study to provide a unified framework for cooperative 

perception. 
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