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Abstract— Perceiving the environment is one of the most
fundamental keys to enabling Cooperative Driving Automation,
which is regarded as the revolutionary solution to addressing
the safety, mobility, and sustainability issues of contemporary
transportation systems. Although an unprecedented evolution
is now happening in the area of computer vision for object
perception, state-of-the-art perception methods are still struggling
with sophisticated real-world traffic environments due to the
inevitable physical occlusion and limited receptive field of
single-vehicle systems. Based on multiple spatially separated
perception nodes, Cooperative Perception (CP) is born to unlock
the bottleneck of perception for driving automation. In this paper,
we comprehensively review and analyze the research progress on
CP, and we propose a unified CP framework. The architectures
and taxonomy of CP systems based on different types of sensors
are reviewed to show a high-level description of the workflow and
different structures for CP systems. The node structure, sensing
modality, and fusion schemes are reviewed and analyzed with
detailed explanations for CP. A Hierarchical Cooperative
Perception (HCP) framework is proposed, followed by a review of
existing open-source tools that support CP development. The
discussion highlights the current opportunities, open challenges,
and anticipated future trends.

Index Terms— Survey, cooperative perception, object detection
and tracking, cooperative driving automation, sensor fusion.

1. INTRODUCTION

HE rapid progress of the transportation system has
Timproved the efficiency of our daily people and goods
movement. Nevertheless, the rapidly increasing number
of vehicles has resulted in several major issues in the
transportation system in terms of safety [1], mobility [2], and
environmental sustainability [3]. Taking advantage of recent
strides in advanced sensing, wireless connectivity, and artificial
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intelligence, Cooperative Driving Automation (CDA) enables
Connected and Automated Vehicles (CAVs) to communicate
with each other, with roadway infrastructure, or with other road
users such as pedestrians and cyclists equipped with mobile
devices, to improve the system-wide performance. Hence,
CDA has attracted increasingly more attention over the past
few years and is regarded as a transformative solution to the
aforementioned challenges [4].

Object Perception (OP), acting as the “vision” function of
automated agents by analogy, plays a fundamental role in
the basic structure of CDA applications [5]. Different kinds of
onboard or roadside sensors have different capabilities of
perceiving traffic conditions in the real-world environment.
The perception data can act as the system input and support
various kinds of downstream CDA applications, such as Col-
lision Warning [6], Eco-Approach and Departure (EAD) [7],
and Cooperative Adaptive Cruise Control (CACC) [8].

With the development of sensing technologies, transporta-
tion systems can retrieve high-fidelity traffic data from
different sensors. For instance, cameras can provide detailed
vision data to classify various kinds of traffic objects, such
as vehicles, pedestrians, and cyclists [9]. LIDAR can provide
high-fidelity 3D point cloud data to grasp the precise 3D
location of the traffic objects [10]. Additionally, RADARs are
more robust to visibility problems compared to cameras and
LiDAR (e.g., atmospheric obscurants from precipitation,
smoke, dust, etc.) and thus have been a critical component for
safety-critical applications in the automotive industry [11].

However, during the last couple of decades, a large portion
of the OP methods and high-fidelity perception data have come
from onboard sensors while most of the roadside sensors are
still used for traditional traffic data collection such as counting
traffic volumes based on loop detectors, cameras, or
RADARs [12]. Although empowered with advanced
perception methods, onboard sensors are inevitably limited by
sensing range and occlusion. Infrastructure-based perception
systems have the potential to achieve better OP results with
fewer occlusion effects and more flexibility in terms of
mounting height and pose. However, due to the fixture of
installation, infrastructure-based sensors will suffer from
limited receptive ranges. Thus, neither onboard sensors nor
infrastructure-based sensors alone can unlock these limitations
based on a single Perception Node (PN) which is defined as a
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Fig. 1. The timeline diagram illustrating recent milestones in terms of different perspectives: 1) real-world prototype systems, 2) CP algorithms, 3) standards,

and 4) public CP datasets.

singular entity equipped with perception and communication
capabilities in this paper.

Empowered by mobile connectivity, Connected Vehicles
(CVs) and CAVs can grasp perception information from others
who are equipped with perception systems and connectivity,
such as smart infrastructures or other CAVs. It is conceivable
that combining perceptual information from spatially
separated nodes is a natural way to overcome the
aforementioned limitations, which is named Cooperative
Perception (CP) or Collaborative Perception. As an emerging
topic, CP attracts fast-increasing attention (as shown in Fig.
1). Research has been conducted from wvarious aspects,
including perception nodes (PNs), sensor modalities, and
fusion schemes. Specifically, in terms of PNs, CP research
includes vehicle-to-vehicle (V2V) CP [13] or vehicle-to-
infrastructure (V2I) CP [14], [15], and vehicle-to-everything
(V2X) CP [16]. For sensor modalities, CP research considers
cameras [17], LiDAR [18], RADARs [19], etc. Additionally,
different fusion schemes are investigated in CP which include
early fusion [20], late fusion [21], or intermediate fusion [16].
Although a recent overview conducted by Caillot et al. [22]
reviewed the cooperative perception in an automotive context,
their focus is mainly on the sensing of the ego-vehicle using
multiple sensors (e.g., vehicle localization, map generation,
etc). Thus, a comprehensive survey of CP from the perspective
of CDA is still missing. Meanwhile, different cooperative
perception methods are typically associated with some
specific  transportation  scenarios, which makes the
implementation and integration of system-level design for
cooperative perception in real-world conditions more
challenging.

In this paper, CP technology is reviewed comprehensively,
which aims to establish an overall landscape for this emerging
area. Recent CP milestones are summarized in Fig. 1 to briefly
illustrate the development of CP in terms of real- world
prototype systems, algorithms, standards, and public datasets.
CP methods are overviewed based on three primary aspects
including 1) node structures, 2) sensor modalities, and
3) fusion schemes. Furthermore, a hierarchical CP framework

is proposed to unify different scenarios in terms of the different
perspectives mentioned above and to provide inspiration for
future studies in this field to expedite the implementation of
cooperative perception.

The rest of this paper is organized as follows: Architectures
and taxonomy for CP systems are reviewed in Section II to
lay the foundation. Major pillars for CP including node
structure, sensing modality, and fusion scheme are reviewed in
Section III to V, respectively. The hierarchical cooperative
perception framework is proposed and discussed in Section VI,
followed by the summarizing of open-source CP Datasets
and Platforms in Section VII. Section VIII highlights the
current states, open challenges and future trends, followed by
Section IX that concludes the paper.

II. ARCHITECTURE AND TAXONOMY
A. Standards

Due to the revolutionary impact that cooperative perception
would have on the transportation industry, various standards
related to CP technologies had been initiated by different
automotive societies around the globe such as European [23],
North America [5], and China [24]. As shown in Fig. 1, early-
stage studies (e.g., Guenther et. al. [25], Thandavarayan et.
al. [26], etc.) demonstrated the significant potential of CP
systems and inspired the drafting of the European CP standards
such as TS 103 324 on Cooperative Perception Services and TR
103 562 on Collective Perception Service [23].

For the development of driving automation, the Society
of Automotive Engineers (SAE) initiated the SAE J3016
Standard, commonly known as the SAE Levels of Driving
Automation [27], which has been the fundamental source
guiding the development of driving automation. Six levels of
driving automation are classified from Level 0 (No driving
automation) to Level 5 (Full driving automation) in terms of
motor vehicles. Defined by the SAE J3216 Standard [5], CDA
enables communication and cooperation between equipped
vehicles, infrastructure, and other road users, which will, in
turn, improve the safety, mobility, and sustainability of
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TABLE I

RELATIONSHIP BETWEEN CLASSES OF CDA COOPERATION AND LEVELS OF AUTOMATION BASED ON SAE STANDARDS [5]
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SAE Driving Automation (DA) Levels

Level 0: Level 1: Level 2: Level 3: Level 4: Level 5:
No DA Driver Assistance | Partial DA Conditional DA High DA Full DA
No Cooper- | e.g., Signage Relies on driver to supervise performance in | Relies on ADS under defined conditions
ation real-time
2 | Class A: e.g., Traffic Signal | Limited Cooperation: Human is driving and | Improved C-ADS situational awareness by on-board
= | status- supervise CDA features sensing und surrounding road users and operators
~ | sharing
=
£ | Class B: e.g., Turn Signal Limited Coopera- | Limited Coopera- Improved C-ADS situational awareness through predic-
£ | intent- tion (only longitu- | tion (both longitu- tion reliability
= | sharing dinal OR lateral) dinal AND lateral)
“ | Class C: e.g., Hand Signals | N/A N/A Improved Ability of C-ADS by coordination with sur-
E agreement- rounding road users and operators
< | secking
Class D: e, Lane Assign- | N/A N/A C-ADS has full authority to decide actions except for
prescriptive | ment very specilic cases

transportation systems. By further extending the SAE levels of
Driving Automation, SAE J3216 defines the CDA levels into
five classes including 1) No cooperative automation, 2) Class
A: Status-sharing, 3) Class B: Intent-sharing, 4) Class C:
Agreement-seeking, and 5) Class D: Prescriptive. Table I
summarized the details and relationship between classes of
CDA cooperation and levels of driving automation. According
to Table I, cooperative perception plays a significant and
fundamental role in supporting both CDA and Automated
Driving systems. Based on the analysis of those standards, the
architecture and taxonomy of CP are introduced and explained
in the following sections.

B. Architecture

In CDA, the fidelity and range of perception information
have a significant impact on the system performance for
subsequent cooperative mancuvers. Fig. 2 demonstrates a
system architecture of the cooperative perception system for
enabling CDA. Specifically, four typical phases can be
identified in the CP process: 1) Information Collection; 2)
Local Computing; 3) Perceptual Cooperation; and 4) Message
Distribution.

1) Information Collection: Collecting raw data of traffic
information serves as a fundamental step in facilitating
subsequent perception tasks. As transportation systems evolve,
a diverse range of sensors has been deployed to address specific
objectives and scenarios. Traditional sensors such as Loop
Detectors and Microwave RADAR have found widespread
application in traffic surveillance, primarily focus- ing on
providing mesoscopic traffic information, including traffic
volume and queue length [28]. However, the capabilities of
these conventional sensors are limited when it comes to
offering comprehensive 3D object-level information necessary
for supporting CDA. To address this requirement, high-
resolution sensors such as cameras and LiDAR have emerged
as indispensable tools capable of generating the desired object-
level information.

Several decades ago, the development of intelligent
transportation systems faced challenges in leveraging high-

resolution sensor-based object perception due to computational
limitations and the nascent stage of the computer vision
field [29]. Although some vision-based methods were proposed
during that period, their performance remained considerably
constrained [30]. However, with the rapid advancement in
high-performance computation and the proliferation of
artificial intelligence (AI) techniques [31], high-resolution
sensors now possess the ability to provide precise object-level
perception outcomes. These sensors can be deployed on
vehicles or integrated into roadside infrastructures to capture the
surrounding environment. Subsequently, the collected data is
transmitted to a processing server through a communication
hub for further analysis and interpretation.

2) Local Computing: Traditional traffic surveillance sys-
tems typically do not require high-frequency and low-latency
processing. However, in the context of CDA, perception data
with a minimal frequency of 1 —10Hz and a time delay of less
than 100ms are essential [32]. Transmitting a large volume of
raw data, such as point cloud data, over limited bandwidth can
lead to unacceptable time delays, particularly in safety- critical
scenarios. To address this challenge, it is advantageous to
process the information collected from sensors on local servers
located on vehicles or infrastructures. Processing the raw
sensing data at a single PN typically can be mainly divided into
the following blocks [18], outlined as follows (it is noted that
the exact order of these blocks may vary according to the exact
system design):

. Preprocessing: Manipulations of raw data to provide a
ready-to-use format for perception modules with respect
to specific sensors, such as coordinate transformation,
geo-fencing, and noise reduction.

. Feature Extraction: Feature extraction for subsequent
perception tasks by applying deep neural networks
(DNNSs) or traditional statistical methods.

« Multi-Sensor Fusion: Multi-sensor fusion algorithms may
be applied if there is more than one sensor used for a single
PN.

- Detection & Tracking: Generation of object detection and
tracking results for demonstrating position, pose,
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Fig. 2. Systematic architecture for cooperative perception system (*: Other non-visual driving advisory signals for Advanced driver-assistance systems

(ADAS), such as auditory, haptic, or even control commands).

and identification of certain road users, such as rotated
bounding boxes with unique IDs and classification tags.
Raw Data Logging: Recording of raw sensing data with
timestamps for post-analysis.

Results Logging: Recording of semantic perception data
with timestamps for post-analysis.

Different types of PNs play different roles in a CP system.
For a Vehicle PN (V-PN), local computing mainly serves itself,
i.e., perceiving the environment to support the downstream
driving tasks such as decision-making or control. For an
Infrastructure PN (I-PN), its main purpose is to improve the
situation awareness at a fixed location by advanced ranging
sensing (e.g., camera, LIDAR) and communications. Generally,
three types of perception data are generated from
PNs:

Raw data which contains the original information from
sensors, e.g., RGB images from the camera, point cloud
data (PCD) from LiDAR, etc.

Feature data which contains the hidden feature extracted
by neural network or statistical methods for representing
the raw data in higher dimensional spaces.

Result data which contains the semantic perception
information such as 2D/3D location, size, rotation, etc.

3) Perceptual Cooperation: Considering the large-scale
implementation of cooperation, central computing is involved
to act as the fusion center for multiple PNs. Information from
heterogeneous PNs will be transmitted to the Central Server via
different kinds of communications. For mobile road users (e.g.,
vehicles, cyclists, pedestrians), wireless communication, such
as Cellular Network, Wireless Local Area Network (WLAN),
etc. is used to exchange information with the Central Server.
Additionally, infrastructure can take advantage of both

wireless and wired communications (e.g., Optical Fiber, Local
Area Network (LAN), etc) by well-balancing the cost and
system performance such as delay [33].

One of the key components for CP is data fusion and
different fusion schemes will be applied, depending on the
types of data to be shared between PNs and the Cloud. For
instance, early fusion, intermediate fusion, and late fusion are
based on raw data, feature data, and result data, respectively.
Due to the limited bandwidth of wireless communication, result
data are most widely implemented for real-world CP
systems, such as sharing the object lists from camera- based
object detection systems [34] or LIDAR-based object detection
systems [18]. A few systems that have high-speed
communication capability, which allow high-volume low-
latency data transmission, can also transmit raw data to the
Cloud for processing, and some work has been conducted to
enhance driving automation [20], [35].

In terms of multi-node perception systems, i.e., simulta-
neously perceiving the environment from different locations,
time alignment (with the necessity of delay compensation) and
object association need to be considered for spatiotemporal
information assimilation and synchronization. Recently, inter-
mediate fusion attracts increasingly popular attention due to its
superiority in CP performance [13], [14], [16]. Detailed review
and discussion of fusion schemes are provided in Section V.

4) Message Distribution: Perception information (along
with advisory or actuation signals) can be distributed to road
users in two main ways, depending on connectivity status. For
conventional road users without wireless connectivity, this
information can be delivered to end devices on the roadside,
such as Dynamic Message Sign or signal head display of traffic
lights through the Traffic Management Center. For
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road users with connectivity, customized information, e.g.,
surrounding objects and Signal Phase and Timing (SPaT)
of upcoming signals, and various visual/non-visual ADAS
indicators can be accessed to enable various connected driving
automation applications, such as Connected Eco-Driving [7],
[36]. CP messages can support more sophisticated cooperative
maneuvers in mixed-traffic environments. For example,
vulnerable road users and legacy vehicles can react to the
message shown in DMS [6]. CVs can use CP information to get
better situational awareness and pass through intersections in a
safer manner [37]. Autonomous vehicles (AVs) and CAVs can
improve their driving performance via better coordination
algorithms [38]. By leveraging CP messages, road users across
different categories can benefit from enhanced safety,
efficiency, and coordination in the traffic ecosystem.

C. Taxonomy

Based on the architecture of CP illustrated above, three
key aspects are identified for a CP system, namely 1) Node
Multiplicity, 2) Sensor Modality, and 3) Fusion Scheme, and
Fig. 3 illustrates these aspects in detail. In terms of node
multiplicity and sensing modality, four types of CP systems can
be identified as follows:

. Single-Node Single-Mode CP (SS-CP): Cooperation

between a PN equipped with the single-modal sensor(s)
and other users with connectivity only [18], [34].

- Multi-Node Single-Mode CP (MS-CP): Cooperation
between multiple PNs equipped with the single-modal
sensor(s) and connectivity [13], [20], [21].

- Single-Node Multi-Mode CP (SM-CP): Cooperation
between a PNs equipped with the multi-modal sensor(s)
and other users with connectivity only.

- Multi-Node Multi-Mode CP (MM-CP): Cooperation
between multiple PNs equipped with the multi-modal
sensor(s) and connectivity [14], [16].

In the following, a comprehensive literature review is
conducted with detailed analyses of the aspects of node
multiplicity, sensing modality, and fusion scheme, respectively.
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III. NODE STRUCTURE FOR CP

This section aims to review the CP system from the
perspective of node structure as mentioned in Fig. 3. For
comprehensiveness and conciseness, we discuss CP methods
with different types of PNs including the vehicle PN (V-
PN), the infrastructure PN (I-PN), and the heterogeneous
PN (H-PN).

A. I-PN-Based CP

Object perception based on roadside sensors has a great
potential to break the current bottleneck for automated driving,
especially in a mixed traffic environment via cooperative
perception [39]. This section reviews the infrastructure-based
object detection and tracking approaches in the literature.
Specifically, a single I-PN equipped with communication
devices can be used for enhancing the perception capacity
of vulnerable road users or vehicles with connectivity within
certain scenarios, such as intersection areas. Thus, in this
section, both single-I-PN perception and multi- I-PN
perception models are regarded as [-PN-based CP methods.

1) Single-I-PN Perception: Infrastructure-based camera
systems have been widely used for object detection and a
survey conducted by Zou et al. [12] shows various camera-
based applications in traffic scenes, such as traffic surveillance,
safety warning, traffic management, etc. Monovision camera
plays a significant role in object detection. Ojala et al. proposed
a Convolutional Neural Network (CNN) based pedestrian
detection and localization approach using roadside cameras
[40]. The perception system consists of a monovision camera
streaming video and a computing unit that performs object
detection and positioning. Besides, Guo et al. proposed a 3D
vehicle detection method based on a monocular camera [41],
which consists of three steps: 1) clustering arbitrary object
contours into linear equations; 2) estimating positions,
orientations, and dimensions of vehicles by applying the K-
means method; and 3) refining 3D detection results by
maximizing a posterior probability.

Instead of using a fixed roadside camera, some researchers
try to take advantage of Unmanned Aerial Vehicle (UAV)
based cameras. MultEYE [42] is a monitoring system for real-
time vehicle detection, tracking, and speed estimation proposed
by Balamuralidhar et al. Different from general roadside
sensors equipped on signal poles or light poles, the data source
of MultEYE comes from a UAV equipped with an embedded
computer and a video camera. Inspired by the multi-task
learning methodology, a segmentation head [43] is added to
the object detector backbone [44]. Dedicated object tracking
[45] and speed estimation algorithms have been optimized to
track objects reliably from a UAV with limited computational
efforts. Cicek and Goren proposed a deep-learning-based
automated curbside parking spot detection approach through a
roadside camera [46]. To identify the road boundaries, object
detection and road segmentation methods are employed by
utilizing the FCN-VGG16 model [47]on the KITTI dataset
[48] and Faster R-CNN [49] on MS-COCO dataset [50],
respectively. Then, a method is
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designed to differentiate parked vehicles from moving ones and
then give guidance on the nearest spot information to drivers.

In recent years, roadside LiDAR sensors have attracted
increasing attention from researchers about object perception in
transportation. Using roadside LiDAR, Zhao et al. proposed a
detection and tracking approach for pedestrians and vehicles
[51]. As one of the early studies utilizing roadside LiDAR for
perception, a classical detection and tracking pipeline for PCD
was designed. It mainly consists of 1) Background Filtering:
To remove the laser points reflected from road surfaces or
buildings by applying a statistics-based background filtering
method [52]; 2) Clustering: To generate clusters for the laser
points by implementing a DBSCAN method [53]; 3)
Classification: To generate different labels for different traffic
objects, such as vehicles and pedestrians, based on neural
networks [54]; and 4) Tracking: To identify the same object in
continuous data frames by applying a discrete Kalman filter
[55]. Based on the aforementioned work, Cui et al. designed
an automatic vehicle tracking system by considering vehicle
detection and lane identification [56]. A real-world operational
system is developed, which consists of a roadside LiDAR, an
edge computer, a Dedicated Short- Range Communication
(DSRC) Roadside Unit (RSU), a Wi-Fi router, and a DSRC On-
board Unit (OBU), and a GUI. Following a similar workflow,
Zhang et al. proposed a vehicle tracking and speed estimation
approach based on a roadside LiDAR [57]. Vehicle detection
results are generated by the “Background Filtering-
Clustering-Classification” process. Then, a centroid-based
tracking flow is implemented to obtain initial vehicle
transformations, and the unscented Kalman Filter [58] and joint
probabilistic data association filter [59] are adopted in the
tracking flow. Finally, vehicle tracking is refined through a
Bird’s-Eye-View (BEV) LiDAR-image matching process to
improve the accuracy of estimated vehicle speeds. Following
the bottom-up pipeline mentioned above, numerous roadside
LiDAR-based methods are proposed from various points of
view [60], [61], [62], [63], [64].

On the other hand, using learning-based models to cope with

LiDAR data is another main methodology. Bai et al. [37]
proposed a deep-learning-based real-time vehicle detection and
reconstruction system from roadside LiDAR data. Specifically,
CARLA simulator [65] is implemented for collecting the
training dataset, and ComplexYOLO model [66] is applied and
retrained for the object detection on the CARLA dataset.
Finally, a co-simulation platform is designed and developed to
provide vehicle detection and object-level reconstruction,
which aims to empower subsequent CDA applications with
readily retrieved authentic detection data. In their following
work for real-world implementation, Bai et al. [18] proposed a
deep-learning-based 3D object detection, tracking, and
reconstruction system for real-world implementation. The field
operational system consists of three main parts:
1) 3D object detection by adopting PointPillar [67] for
inference from roadside PCD; 2) 3D multi-object tracking by
improving DeepSORT [68] to support 3D tracking, and 3)
3D reconstruction by geodetic transformation and real-time
onboard Graphic User Interface (GUI) display.
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2) Multi-I-PN Perception: Leveraging multiple I-PNs can
significantly improve the perception range. For I-PN-based CP
systems using cameras, Arnold et al. proposed a cooperative 3D
object detection model by utilizing multiple depth cameras to
mitigate the limitation of field-of-view (FOV) of a single-
sensor system [21]. For each camera, a depth image is projected
to pseudo-point-cloud data [69]. Two sensor-fusion schemes
are designed: early fusion and late fusion which are adapted
from Voxelnet [70]. The evaluation in a T-junction and a
roundabout scenario in the CARLA simulator [65]
demonstrates that the proposed method can enlarge the
detection coverage without compromising accuracy. To take
advantage of LiDAR for I-PN-based CP systems, VINet [71]
was proposed to consider a scalable number of I-PN LiDAR
inputs. Specifically, CNNs are designed for feature extraction
and a specific two-stream fusion method was proposed to fuse
features from scalable numbers of I-PNs.

B. V-PN-Based CP

Cooperative perception between vehicles mainly emerged
from the research for Unmanned Aerial Vehicles (UAVs) to
provide estimated localization in the region of interest. Back in
2006, Merino et al. [72] proposed a multi-UAV CP system
based on a distributed-centralized CP framework (similar to the
current “local-central” framework). The sensor data (such as
images) collected from UAVs will be processed on the UAV
side including image segmentation, stabilization of sequences
of images, and geo-referencing. The location of objects in the
region of interest will be estimated by UAVs and then sent to a
central server for further fusion by utilizing a probabilistic
model.

For on-road vehicles, Rockl et al. [73] propose a Multi-
Sensor Multi-Target Tracking method by associating the
received sensor data via V2V communication. A more notable
CP system for on-road vehicles was proposed by Rauch et al.
[74] in 2012. A Car2X-based module was proposed to fuse
perception results for both spatial and temporal dimensions via
the Unscented Kalman filter (UKF). Specifically, the object
data shared from other vehicles need to be aligned to the
coordinate of the host vehicle and synchronized in time.
Rawashdeh and Wang [75] proposed a machine learning-based
method to fuse proposals generated by different connected
agents. A specific center-point estimation method was
proposed for generating the object location into the coordinate
system of the host vehicle. Xiao et al. [76] proposed a CP
method by sharing semantic segmentation information
generated by a DNN and vision-feature matching data from the
BEV-projected image data. GPS data was required for spatial
alignment.

A comprehensive automated driving system (ADS) was
implemented by Kim et al. [77], whose core innovation is
a CP system that provides ego-vehicle information beyond
occlusion by a leading vehicle. A real-world system was
deployed to validate the effectiveness of CP by various tasks
(e.g., collision warning, overtaking/lane-changing assistance,
etc.), which demonstrated the potential of improving driving
automation through CP technology.
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TABLE II
SUMMARY OF DIFFERENT NODE STRUCTURES FOR COOPERATIVE PERCEPTION

Structure | Modality | Pros. and Cons. | Highlighted Features | Literature
Pros: Higher location with flexible pose leads to X ) hieh-fideli .
Infrastructure less occlusion and system-level cost-effective. I_Tm"s_n ucture assisted high-fidelity traffic Bai et al. [18]
surveillance
Sinole-Node ‘ ‘ Cons: Need infrastructure support. ‘ ‘
‘ ‘ Pros: Low latency perception for ego-vehicle. ‘ I hi h hicle sid . ‘
. : : - sverything on the vehicle side: sensing, ]
Vehicle Cons: Easily occluded by the surrounding vehi- | processing, analysis. Amnold et al. [10]
cles or buildings. - i
‘ ‘ Pros: Extend perception range from vehicle side. ‘ Sharing f £ ‘
. . Sharing features generated from .
Vehi. + Vehi. y - . = < Chen et al. |13
| | Cons: Ocelusion by other vehicles, | convolutional neural networks. | 1131
Pros: Extend perception range from the infras- Shari 4 RGB d "
) uchire s Sharing preprocesse iB data among a ! .
Multi-Node Infra. + Infra. | lructure side. roadside sensors Arnold et al. [21]
| | Cons: Have blind zone under the sensor. | |
Pros: Achieve a comprehensive range and field of | Considerine asynchronous information
Infra. + Vehi. | view (FOV) for perception. sharing, pose errors, and heterogeneity of Xu, et al. [106]

| | Cons: Require heterogeneity of the model.

| V2X components, |

For CP systems based on LiDAR data, Chen et al. proposed
an early fusion method (Cooper [20]) by aligning raw point
cloud data (PCD) from multiple vehicles. To fulfill the
limited bandwidth of V2V communication, raw PCD was
preprocessed to reduce its size. Additionally, GPS and Inertial
Measurement Unit (IMU) data were required for PCD
alignment. Then a PCD detector was designed based on
VoxelNet [70], Sparse Convolution [78], and Region Proposal
Network (RPN) [79]. The experiments demonstrated that
Cooper was capable of improving perception performance by
expanding sensing data. Following the Cooper, Chen et al.
proposed F-Cooper [13], a feature-based CP system using
PCD. The core idea of F-Cooper is a two-step process: 1)
to extract the hidden feature from sensor data via a DNN at each
vehicle side, i.e., V-PN; 2) to generate perception results based
on cross-vehicle feature data sharing.

CNN-based feature sharing was also applied in the work
proposed by Marvasti et al. [80] for the V2V CP task, named
Feature Sharing Cooperative Object Detection (FS-COD).
Both FS-COD and F-Cooper complete spatial alignment at the
feature level. However, different from F-Cooper which uses
maxout operation [81] (i.e., output maximum value for
corresponding multi-source data points) to fuse the multi-
source data, FS-COD uses summation for multi-source feature
fusion.

Considering compressing the feature data for transmission,

Wang et al. proposed V2VNet [82], which leverages the
power of both deep neural networks and data compression.

Specifically, a pipeline of “feature extraction-compression-
decompression-object detector” is created to further consider
the limitation of communication. Additionally, a novel simu-
lator, Lidarsim [83], is involved for cooperative perception to

generate a PCD-based V2V dataset in a more realistic manner.

Zhang et al. [84] proposed a vehicle-edge-cloud framework

for dynamic map fusion. Federated learning is applied for

generating object detection results from multiple V-PNs and

a three-stage fusion scheme is proposed to generate the final

objects based on overlapping results from multiple PNs.

Xu et al. [85] propose a feature-sharing-based CP model by
V2V communication. Vehicles’ relative pose information with
respect to ego-vehicle is required for spatial alignment and
feature generation. Specifically, the attention operation [86]
is applied for multi-node feature fusion and an open-source
simulation-based dataset is developed and implemented for
model training and validation.

C. H-PN-Based CP

Although many researchers have dug into cooperative
perception from the perspectives of infrastructure perception
and V2V cooperation, so far, only a few pieces of research are
conducted for CP between heterogeneous PN, i.e., cooperation
between vehicles and infrastructure.

For cooperation between vehicles and infrastructure, Bai
et al. [14] proposed a CP method, named PillarGrid, to
generate 3D object detection results based on PCD from
onboard-roadside LiDAR sensors. Specifically, decoupled
multi-stream CNNs are applied for feature extraction. The
vehicle pose information is required for spatial alignment
and the feature data are shared via V2X communication. A
Grid-wise Feature Fusion (GFF) method is proposed for multi-
PN feature fusion, which endows the PillarGrid with better
scalability and capacity to handle heterogeneity.

Using Vision Transformer (ViT) [87], Xu et al. [16]
proposed a CP method named V2X-ViT, which applied
a share-weights CNNs for feature extraction. Ego-vehicle pose
information is transmitted to surrounding vehicles and
infrastructures for raw data alignment. Heterogeneous Graph
Transformer (HGT) [88] is designed to deal with different
feature fusion types, e.g., V2V, V2I, etc. A window attention
module is designed to capture hidden features from the
fused feature map, which is then used to generate the object
detection results.

Table II summarizes the advantages and disadvantages of
different node structures for cooperative perception. In a
nutshell, V-PN is more ego-efficient (i.e., improving the
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perception capability from the standpoint of ego-vehicle.) while
I-PN is more suitable for scalable cooperation. CP between
homogeneous PNs, such as V2V or 121, can mainly extend the
perceptive range while CP between heterogeneous PNs, such
as V2X, can achieve better FOV by complementing different
sensor configurations.

IV. SENSOR MODALITY FOR CP

For the CP system, sensors are the most fundamental
modules due to their roles in raw data collection. This
section aims to overview the CP system from the perspective of
sensing modality by 1) introducing the specification and
performance of different types of sensors that are mainly
utilized in transportation systems, 2) reviewing the
development of single-sensor perception systems based on
cameras, LIDAR and RADARs, and 3) summarizing the studies
of multi-sensor perception systems in terms of homogeneous
sensor fusion and heterogeneous sensor fusion.

A. Sensor Specification and Performance

For sensors equipped with current ADS, the most popular
ones are cameras, LiDAR, and RADAR [89]. Onboard
RADAR has been deployed on vehicles to mainly achieve
ADAS functionalities for many years [90], such as Adaptive
Cruise Control (ACC), Collision Avoidance, etc [91].

Different ADS may take different sensor configurations. For
instance, the ADS developed by Comma.ai [92], only deploys
a single-camera-based perception system at the middle-top
of the windshield. Waymo ADS [93], utilizes multi-modality
sensors including 1) multiple cameras installed around the top-
surrounding positions of the vehicle, 2) LiDAR sensors
equipped on the top and two front sides of the vehicle, and
3) RADARS integrated at lower-surrounding positions around
the vehicle.

Regarding the installation of roadside sensors, typical
locations may include signal arms and street lamp posts,
with some minimum height requirements to avoid tampering.
As a result, roadside sensors can have a much higher position
(compared to onboard sensors) to minimize the occlusion effect
due to dense traffic. The specific installation position may vary
based on different roadside sensors. For example, the roadside
LiDAR sensors are mainly installed at the height
of 3 — 6m (but no more than 10m), while fisheye cameras prefer
a higher installation [18], [37], [51].

To form a comprehensive view of the general performance
of different sensors used for perception in transportation
systems, Table I1I provides a summary of those that are widely
utilized in ADS, traffic surveillance, and other transportation
systems. Each of these sensors has its own capabilities and
strengths in different use cases.

- Camera: High-resolution. Not great for 3D position and

speed measurements, especially in dense traffic.

- LiDAR: High-accuracy 3D perception with resilience to
environmental changes. Not great with its relatively high
price and data sparsity.

- RADAR: Measuring speed, unlocking applications like
stop bar & dilemma zone detection. Not great for
distinguishing objects.
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- Thermal Camera: Getting thermal information, which
provides resilience to lighting changes.

- Fisheye Camera: 360-degree full field-of-view (FOV) for
detection. Requires a high-accuracy calibration matrix to
account for distortion.

- Loops: Measuring traffic counts and speed. Costly to
install and maintain due to intrusiveness.

B. Multi-Sensor Perception

Owing to the complementary of different sensors, multi-
sensor-based perception systems have the potential to achieve
better object detection and tracking performance via sensor
fusion. In this section, homogeneous multi-sensor perception,
which fuses sensor data from the same type of sensors,
is reviewed first followed by the discussion of heterogeneous
multi-sensor perception methods, such as Camera+LiDAR,
Camera+RADAR, etc.

1) Homogeneous Multi-Sensor Perception: The multi-
camera system has been developed for decades and lots of
applications have been designed and implemented in our
current transportation systems [96], such as object detection
and object tracking.

For object detection, before the surge of CNN, the extraction
and fusion of object-level features is a major challenge for
traditional methods due to the high-dimensional complexity of
RGB data. Merino et al. [72] proposed a multi-UAV CP
system based on heterogeneous sensor systems including
infrared and visual cameras, fire sensors, and others. A set
of functions were designed for object detection including image
segmentation, and stabilization of image sequences. By
coordinating the processed results from spatially separated
sensors, the targeting object can be detected and localized based
on a geo-referencing process.

With the tremendous power of CNN to extract hidden
features, object detection based on multi-camera systems
quickly attracts lots of attention from researchers. For spatial
alignment for the multi-node cameras, Arnold et al. [21] chose
to project camera data from RGB images to pseudo-PCD.
Owing to the 3D attribute of PCD, this pseudo-PCD could be
easily aligned and merged into a unified coordinate system.
Then a deep learning-based object detector was applied to
generate perception results.

Object tracking has been widely developed in multi-camera
systems for several decades to enable traffic surveillance
and thus to analyze the traffic scenarios for further
traffic optimization [97]. The most typical way of multi-
camera tracking is to calibrate the multi-camera systems to
make all views stitched together in a unified coordinate system
[98]. Meanwhile, consecutively tracking multi-objects under
occluded conditions is one of the main strengths of a multi-
camera tracking system which can provide sequences of
images from different viewpoints. Specifically, based on the
unified coordinate system gained from calibration, the
Kalman Filter [99], the particle filter [100], etc., have
been widely applied in multi-video object tracking systems.

The tracking schemes mentioned above generally require
joint FOV for computing association across cameras. For the
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SENSOR PERFORMANCE MATRIX FROM DIFFERENT ASSESSING PERSPECTIVES (RATING RANGE FROM 1 TO 3 STARS

TABLE III

BASED ON THEIR RELATIVE PERFORMANCE)
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Capabilities

| Camera | LiDAR | RADAR | Thermal | Fisheye |

Loop
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TABLE IV

SUMMARY OF DIFFERENT SENSOR MODALITIES FOR COOPERATIVE PERCEPTION

Structure Modality Pros. and Cons. Highlighted Features Literature
Pros: abundant vision data with cost-effective system Usi hifted wind
- ssing shifted window .
amers . R N . R . o . B = ) . [0
Camera Cong: difficult to provide high-fidelity 3D information and significantly impacted by multi-head attention Liu et al. [94]
the vulnerability of weather conditions.
Prosz capable o provide high-fidelity 30 information with panoramic FOV, . . .
Lidar Encoding point cloud into Lang et al. 67]
Sinole-Sensor Cuons: sparse data without vision information. voxelized pillars ANg el !
Pros: tolerance to adverse weather conditions and low visibility sitwations, and direct | Roadside millimeter RADAR
Radar measurement of speed of mation. Liu et al. [19]

Cons: lower spatial resolution and may struggle with detailed ohject recognition tasks.

users.

Pros: a straightforward way o expand the FOV and perception area by fusing the
sensor data with similar information distributions,

Homogeneous modality

Multi-Sensor

Cons: difficult to provide comprehensive infurmation such as high-fidelity 3D infor
mation from cameras, and valnerahility to the same adverse environmental conditions,

Projecting RGB camera data
into pseudo-LiDAR point
cloud.

Arnold et al. [21]

Pros: taking advantage of different sensor modalities to achieve more comprehensive
sensing information, such as camera, LIDAR. RADAR.

Heterogeneous modalities

Cons: different data distribution retrieved from different sensor modalities, which are

Capturing BEV features from
different types of sensors via

CNN.

Liu et al. [95]

difficult to be fused effectively.

‘ for detecting valnerahle road

disjoint camera system, appearance cues are designed for
capturing the common features between multiple views by
integrating spatial-temporal information [101]. To overcome
the dynamically changed spatial-temporal information in vision
information, e.g., lighting condition and traffic speed, the
tracking model should also be able to update its model
adaptively. Thus, Expectation-Maximization (EM) framework
[102], unsupervised learning network [103], etc., have been
implemented to dynamically update the model.

Although one single LiDAR can provide panoramic FOV
around the ego-vehicle, physical occlusion may easily block the
perceptive range and cause the ego-vehicle to lose some
crucial perception information which significantly affects its
decision-making or control process. On the other hand, a
spatially separated LiDAR perception system can expand the
perceptive range for intelligent vehicles or smart infrastructure.

One of the straightforward inspirations of the multi-LiDAR
perception system is sharing the raw PCD via V2V com-
munication [20]. However, limited wireless communication
bandwidth may significantly limit real-time performance.
Feature data generated from CNN requires much less
bandwidth and is more robust to sensor noises, thus
becoming a popular solution to multi-LiDAR fusion [13], [82].
Marvasti et al. [80] used two sharing-parameter CNNs to
extract the feature map for PCD retrieved from two vehicle

nodes. Feature maps were then aligned based on the relative
position and fused by element-wise summation. By applying an
attention mechanism, Xu et al. [85] proposed a V2V- based
cooperative object detection method. A similar CNN process
[67] was designed for extracting feature maps for V2V sharing.
Furthermore, self-attention was involved in data aggregation
based on spatial location in the feature map.

Recently, researchers started focusing on cooperation
between V-PN and I-PN based on the multi-LiDAR system. For
handling the data heterogeneity from the roadside and
onboard PCD, Bai et al. [14] proposed a decoupled multi-
stream CNN framework for generating feature maps
accordingly. Relative position information was applied to PCD
alignment and the shared feature maps were then fused based
on grid-wise maxout operation. Additionally, Xu et al. [16]
proposed a ViT-based CP method for heterogeneous PNs.
Feature maps were extracted using sharing-parameter CNNs
and V2X communications. For dealing with heterogeneity,
specific graph transformer structures were designed for data
extraction.

2) Heterogeneous Multi-Sensor Perception: As different
sensor modalities, the camera and LiDAR seem to be a
naturally complementary couple for perception. For instance,
the camera is good at perceiving vision information but lacks
3D distance data, while the LiDAR excels at collecting 3D
information but lacks vision data.
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TABLE V
SUMMARY OF DIFFERENT FUSION SCHEMES FOR COOPERATIVE PERCEPTION
Fusion Scheme | Methodology | Pros. and Cons, | Highlighted Features | Literature
‘ | Pros: Raw data is shared and gathered 1o form a holistic view. | paw point cloud data is ‘
Early Fusion Model-based Fusion | Cans: Low tolerance 1o the noise and delay of the trans compressed (o fit the lmited Chen et al. [20]
mitted data; potentially constrained by the communication | bandwidth.
bandwidth.
Pros: Ilig!lnlo\ur;muu to the noise, delay, and difference Deep neural features are ‘
Intermediate Fusion Maodel-free Fusion between different nodes and sensor models. extracted and fused based on Bai et al. [14]
Cons: Require raining data and hard to find a systematic way spatial correspondence.
for model design.,
‘ | Pros: Easy to design and deploy in the real-world system, | A late-fusion is proposed based ‘

Late Fusion Muodel-based Fusion

the difference between sources.

Cons: Significantly limited by the wrong perception results or

on joint re-scoring and

‘ . Zhang et al. [84]
NON-MAXimum suppression.

One typical way for the fusion of multi-modal sensor data
is using CNN to extract hidden features in parallel and then
combine them on the corresponding scale level. Zhu et al.
proposed Multi-Sensor Multi-Level Enhanced YOLO (MME-
YOLO) for vehicle detection in traffic surveillance [17]. MME-
YOLO consists of two tightly coupled structures: 1) The
enhanced inference head is empowered by attention- guided
feature selection blocks and anchor-based/anchor-free
ensemble head in terms of better generalization abilities in real-
world scenarios; 2) The LiDAR-Image composite module is
based on CBNet [104] to cascade the multi-level feature maps
from the LiDAR subnet to the image subnet, which strengthens
the generalization of the detector in complex scenarios. MME-
YOLO can achieve better performance for vehicle detection
compared with YOLOV3 [105] for roadside sensor data.

Since the camera and LiDAR have different poses and FOV,
creating an intermediate feature level to unify LiDAR and
image data before sending it to the feature-extraction backbone
becomes a promising way for multi-modal sensor fusion [106].
A popular way is to project camera information into LiDAR
data to endow PCD with vision information. PointPainting
[107], a point-level feature fusion method, decorates the PCD
with semantic segmentation results from vision data. The point
cloud data decorated with vision information are then fed into
detectors, e.g., PointPillar [67] for generating object detection
results. Recently, Liu et al. [95] proposed a novel framework,
named BEVFusion, to project both RGB and PCD information
into a BEV feature map for fusion. Specifically, two dedicated
encoders were designed to extract RGB and PCD inputs into
the BEV feature map. Then, multi-modal feature fusion was
conducted based on the spatial correspondence of BEV feature
maps.

Additionally, empowered by remarkable depth-sensing
capability, RADARSs are innately complementary to cameras to
improve the overall perception ability [108]. In the early stage
of RADAR-camera fusion studies, RADAR data was usually
extracted to enhance the depth information for visual data
[109], which was straightforward but not very reliable and
high-performance. Conversely, perception pipelines can be
designed separately with respect to camera data and RADAR
data respectively. Then traditional multi-sensor fusion methods
can be applied to fuse these multi-source perception results,

such as Probabilistic Reasoning-based fusion studies [110],
and Kalman Filter-based fusion methods [111].

Recently, DNN-based methods became a dominant solution
to fuse camera and RADAR data with higher performance. For
instance, CNNs were applied to extract the hidden feature
for both camera data and RADAR data and then these
features were fused together to enhance the feature
representation [112], [113]. Meanwhile, Transformer models
[86] also attracted increasing attention to fuse features from
different sensor modalities using their self-attention or cross-
attention mechanism [114].

V. FUSION SCHEME FOR CP

In terms of the stage of sensor fusion, a multi-sensor
perception system can be divided into three classes: 1) Early
Fusion —to fuse raw sensor data with basic preprocessing steps;
2) Intermediate Fusion — to fuse intermediate feature data
within the perception models (typically the intermediate feature
map within a neural network); and 3)Late Fusion — to fuse
perception results from individual perception pipelines for
different perception nodes. It is noted that, in the context of CP,
raw data typically means the output data after the proprietary
decoding process of the sensors, such as the pixel matrix from
cameras or point cloud data from LiDAR, which have a
common format.

Different fusion schemes have their specific advantages and
disadvantages in terms of distinct perspectives. Early Fusion
and Intermediate Fusion have higher accuracy but need more
computational power and complex model design. Conversely,
Late Fusion can achieve better real-time performance but may
sacrifice accuracy. It depends on the specific demands under
different traffic scenarios to determine the best deployment
of fusion schemes. Take a 64-beam LiDAR as an example,
early fusion and intermediate fusion will roughly require 10 to
50M Bps communication bandwidth which is much more than
the late fusion methods (< 1M Bps). In the meantime, early
fusion/intermediate fusion methods could provide 10% to 20%
accuracy improvement [115]. The decision of such a trade-off
typically depends on the actual use cases. For instance, for
safety-critical applications, accuracy will be placed a higher
weight than communication while for some communication-
critical applications, methods that consume less bandwidth
would be a better choice (It is noted that the actual bandwidth
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consumption varies on the specific data type and packaging
methods.). This section aims to give a brief landscape of how
fusion schemes are considered and applied in relevant CP
research. Also, we will focus more on work that has not been
introduced in previous sections.

A. Early Fusion

An obvious approach is to share the raw sensor data with
other PNs to expand the perceptive range and improve
detection accuracy. Following this strategy, the raw sensor data
from multiple PNs are projected into a unified coordinate
system for further processing [98]. However, since the basic
idea of early fusion is only the expansion of raw data range
or density, it is inevitably sensitive to the quality of sensor
data, such as sensor calibration issues and data
unsynchronization [97]. Thus, early fusion can potentially
provide the ideal performance only under several restricted
assumptions, such as high-accurate sensor calibration and
multi-source synchronization, which requires lots of effort in
real-world implementations.

On the other hand, early fusion requires a large commu-
nication bandwidth to transmit a high volume of raw data.
It is suitable for transmitting camera data with limited image
resolution, but it may not be feasible to share real-time LIDAR
data within a certain time delay (A 64-beam Velodyne LiDAR
with 10Hz may generate about 20MB of data per second [48]).
For V2V early fusion, it is true that communicating raw sensor
data with one ego-vehicle is not an impossible solution [20],
but it is definitely not feasible for large-scale V2V cooperative
perception under current communication capability.

B. Late Fusion

Standing in the opposite direction compared with early
fusion, late fusion chooses another natural cooperative
paradigm for perception — generating perception results
independently and then fusing them together. Different from
early fusion, although late fusion also needs a relative position
for fusing these perception results, its tolerance to calibration
errors and unsynchronization issues is much higher than
early fusion. One of the main reasons is that object-level fusion
can be determined based on spatial and temporal constraints.
For instance, Rauch et al. [74] applied EKF to jointly align
the shared bounding box proposals based on spatiotemporal
constraints. Additionally, Non-Maximum Suppression (NMS)
[116] and other machine-learning-based proposal refining
methods are widely applied in late fusion methods for object
perception [21]. Recently, due to the distributed attributes of
late fusion, Federated Learning [117] also attracts increasing
popularity in perception systems [84].

C. Intermediate Fusion

The core ideology of intermediate fusion can be simply
summarized as using deeply extracted features for fusion that
happens at the intermediate stages of the perception pipeline.
Intermediate fusion relies on hidden features mainly extracted
from deep neural networks, which have higher robustness
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compared with raw sensor data used for early fusion.
Xu et al. [16] assessed the robustness of model performance
under different time delays and noises of metadata (the ego-
vehicle location and heading). Different levels of errors were
involved in the cooperative perception process. The evaluation
results can be summarized as three points:

- With no error involved, early fusion and intermediate
fusion can achieve similar performance which is better
than late fusion;

- With the increase of errors, the performance of both early
fusion and late fusion decreases drastically, but the
performance degradation of all intermediate fusion
methods [13], [16], [82], [85] is much less noticeable than
early fusion and late fusion.

Additionally, feature-based fusion methods typically have only
one detector for generating object perception results and thus
there is no need for merging multiple proposals as required by
late fusion [21], [84].

Although cooperative perception has been developed in

multiple areas for several decades, deep-fusion-based
cooperative perception is an emerging field. Most of the
intermediate fusion methods for CP were devised in the past
few years. But the related research interests wildly surged up,
for example, F-Cooper [13] (2019), V2VNet [82]
(2020), OPV2V [85], CoFF [118], DiscoNet [119](2021),
PillarGrid [14], PV-RCNN [120], CRCNet [121], VINet [71]
and V2X-ViT [16] (2022), etc. So far, most of the deep feature
extraction is conducted by CNN, such as [13], [14], [82], [122],
because the CNN-based feature is highly related to the local
spatial information. Recently, some studies have applied
transformers as the deep feature extractor [16], [85], [123] due
to their capability for feature extraction with larger receptive
fields.

VI. HIERARCHICAL COOPERATIVE
PERCEPTION FRAMEWORK

Based on the overview of the aforementioned literature,
Three major issues can be identified for CP systems in the real
world:

- Heterogeneity: the CP system should take advantage
of both intelligent vehicles and smart infrastructures to
empower the comprehensiveness of perception.

- Scalability: the CP system needs to be able to extend to
different scales of cooperation levels, such as intersection
level, corridor level, and traffic network level.

- Dynamism: the CP system needs to be able to
dynamically cooperate with vehicle perception nodes, i.e.,
the I-PN should be capable of cooperating with a
dynamically changed number of V-PNs.

To address the issues mentioned above, we propose a unified
CP framework, called Hierarchical Cooperative Perception
(HCP) Framework, which is demonstrated in Fig. 4. HCP aims
to assimilate different CP tasks under various scenarios into a
general framework. The design of the HCP framework is based
on 1) the system architecture for CP as shown in Fig. 2, 2)
the taxonomy of CP as shown in Fig. 3, and 3) the analysis
of reviewed literature.
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Network-Level CP
Core Node: Cloud
Comm.: C2X
Outputs: object-level

perception for whole
traffic network.

Corridor-Level CP

Core Node:
Infrastructure
Comm.: 12X

Outputs: object-level
perception for traffic
corridor.
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Fig. 4. The schematic diagram of the HCP framework.
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In this paper, the HCP framework mainly focuses on
the intersection scenarios and consists of threelevels:
1) Intersection-Level CP, 2) Corridor-Level CP, and 3)
Network-Level CP, which will be introduced from several
perspectives including core node, communication types, and
perception outputs, respectively.

A. Intersection-Level CP

As shown in the bottom part of Fig. 4, intersection-level CP
aims to perceive the object-level traffic condition around an
intersection. V-PNs are designed as the core perception node at
this level. For vehicles that are equipped with powerful onboard
processors such as CAVs, features can be shared via V2V
communication and processed onboard. The perception results
from I-PN can act as auxiliary data to augment the CAV’s
perception results by late fusion. Most of the previous V2V CP
work [13], [82], [85] can be integrated into our HCP framework
from this perspective.

Since the edge processor can be deployed at the I-PN for
processing the roadside sensor data and the data received
from intelligent vehicles via V2I communication, vehicles are
not necessarily required to be equipped with a powerful
onboard processor for processing the whole perception
pipeline. Lightweight computing units can be deployed for
only extracting the feature. Deep features from multiple
vehicles can be transmitted to the I-PN for intermediate fusion
to generate perception results. The I-PN

—

e~
)

Intersection-Level CP

Core Node: Vehicle
Comm.: V2X

Outputs: object-level
perception for tratfic
intersection or vehicle
surrounding

Perception & Communication

then broadcasts the perception results to vehicles within its
own communication range. Recent infrastructure-enabled CP
methods can be regarded as a specific version of the
intersection-level CP [14], [16]. Intersection-level CP is a
crucial component for unlocking the current bottleneck (in
terms of efficiency, safety, and sustainability) for CDA in a
mixed traffic environment [7].

B. Corridor-Level CP

As shown in the middle of Fig. 4, corridor-level CP aims
to expand the perception based on the connectivity of
multiple smart infrastructures in which the core node is I-
PN. Currently, 121 communication (via cable or optical fiber)
has a much higher capacity compared with wireless
communication. For instance, optical fiber can achieve over
40GB/s communication speed with low latency and even
commercial optical-fiber internet can achieve 1GB/s [124].
Theoretically, empowered by high-speed communication, 121-
based CP is capable of applying all aforementioned fusion
schemes based on specific scenarios. For instance, raw data
sharing can be a typical style for I2I-based CP [21].

Practically, however, the computational bottleneck on the
computers at each end of the communication pipeline will
occur when the approach requires the computer to encode
and decode massive amounts of data, which will become the
bottleneck in real-world applications. Thus, the capacity of the
data encoding/decoding should also be carefully considered.
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Edge Server

Fig. 5. Illustration of CMM field operational test from different views from
a drone, host vehicle, onboard GUI, and edge server.

Meanwhile, by sharing feature-level data with corridor-level
I-PNs, the CP system can generate object-level perception
information with high perception accuracy to further assist road
users or enhance traffic management [37].

C. Network-Level CP

As shown at the top of Fig. 4, network-level CP aims to
perceive the object-level traffic condition for the whole traffic
network. The cloud server is the core node to link all distributed
intersections and CAVs that are out of the I-PN range. The
cost-effective way for network-level CP is late fusion —
retrieving perception information from I-PNs and CAVs and
then merging those results for distribution. Furthermore,
feature-level data can be also transmitted to the cloud server
and a unified detector can be designed to generate the
perception results.

It is noted that the main purpose of the HCP framework
is to explore a high-level system design in which the
cooperative perception could be implemented and integrated
into various transportation scenarios seamlessly. Following this
framework, several studies have been conducted to enable
cooperative perception from different perspectives. For
example, PillarGrid [14] is proposed to integrate
heterogeneous sensing data from a vehicle PN and an
infrastructure PN, which belongs to one of the key challenges
in the intersection-level CP in our framework. Additionally,
another key challenge in the intersection-level CP is the variety
of communication capacity among perception nodes. To
support CP under dynamic communication conditions, a
dynamic feature-sharing strategy [125] is proposed to
dynamically adjust feature sharing based on their allowable
communication capacity. In addition, to improve perception
accuracy after reducing the sharing features, Pillar Attention
Encoder [126] is proposed to provide a strong representation of
the sensor data. From the perspective of a vehicle PN in an
intersection-level CP system, a case study is conducted to
demonstrate how a vehicle PN can benefit from other vehicle
PNs and infrastructure PNs [127].

To scale up the system, VINet [71] is proposed to handle the
heterogeneity and scalability of the CP system at both the
intersection level and corridor level by designing a two-stream
neural network. Besides, VINet introduces a lightweight
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encoder design to alleviate the computation requirement for the
whole CP system.

A real-world operational system (Cyber Mobility Mirror,
shown in Fig. 5) is developed by using infrastructure-to-cloud
and cloud-to-vehicle cooperation, as shown in the network-
level CP above.

Following all these studies, we believe that the HCP
framework can provide more inspiring ideas for other
researchers in this multidiscipline field.

VII. OPEN-SOURCE DATASETS AND PLATFORMS

This section aims to provide some open-source datasets and
platforms that can support the development of cooperative
perception. We hope this section can help researchers expedite
the onboarding processes for conducting their own research in
this field.

A. Open-Source CP Datasets

Owing to prevailing needs in automated driving for
surrounding perception, most real-world datasets for object
detection and tracking are collected from onboard sensors from
the perspective of a single PN, such as KITTI [48], NuScenes
[128] and Waymo Open Dataset [93]. Training CP models
usually requires datasets collected from multi- PN systems,
which are missing in the early stage of CP research. To train the
multi-PN CP models, researchers came out with ideas to
emulate multi-PN datasets from the single- PN datasets [13],
[20] by aligning data frames collected at different times.

However, it is nearly impossible for such a synthetic dataset
to fully represent a real multi-PN dataset. As shown in Fig. 1,
before 2022, there is no available open-sourced cooperative
perception dataset collected from real-world data. To move
forward, researchers tried to collect multi-PN datasets from
high-fidelity 3D simulators, such as CARLA [65]. Empowered
by advanced 3D modeling and graphic computing power, these
simulators can generate vivid scenarios with nearly realistic
sensor outputs. Due to the cost-effectiveness and high fidelity,
multi-PN datasets were collected quickly and significantly
expedited the development of CP methods, such as OPV2V
[85] for supporting V2V-based CP models and V2X-Sim [129]
for enabling CP models considering infrastructure-based
Sensors.

In 2022, DAIR-V2X [130], the first real-world cooperative
perception dataset came to the stage, which is a large-scale,
multi-node, multi-modality CP dataset. Specifically, DAIR-
V2X contains 39k images, 39k PCD frames, and 10 classes
of ground truth labels with synchronized time stamps. Sensor
measurements are collected from both vehicle nodes and
infrastructure nodes. One year later, as an upgraded version of
the previous dataset, V2X-Seq [131] was published which
includes data frames, trajectories, vector maps, and traffic
lights captured from natural scenery to support V2X-based
cooperative perception and forecasting tasks.

Concurrently, the V2V4Real [115] dataset was published for
enabling the V2V-based CP tasks, which was collected by two
vehicles simultaneously providing multi-view sensor data
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streams including 410 km of the driving area, 20K LiDAR data
frames, 40K RGB camera frames, and 240K annotated 3D
bounding boxes across 5 vehicle classes.

B. Open-Source CP Platforms

Instead of collecting datasets, various CP platforms are
developed to support the development of CP methods. For
CP model training and testing, OpenCOOD platform [85]
provides a high-level codebase to support the design and
benchmark of CP models for both simulation datasets and real-
world datasets. For dataset flexibility, CARTI platform [132] is
developed to enable researchers to customize their own
cooperative perception scenarios and collect the customized
dataset for training and testing the CP models.

In recent few years, several platforms were developed to
enable the development of the CP model as well as its
subsequent tasks, such as decision-making, planning, control,
etc, which ends up with the CDA system mentioned earlier. For
instance, AutoCastSim [133] was developed not only to support
sensor data sharing and fusion for CP problems but also to
enable low-level tasks such as vehicle control. OpenCDA [134]
and CARMA [135] were developed to provide comprehensive
capabilities to enable full-stack CDA system development.

VIII. DISCUSSION

Although cooperative perception is an emerging research
area, it is playing an increasingly significant role in promoting
the perception capabilities for CDA applications. Many studies
have been conducted to lay the foundation and provide
inspiration for future work. In this section, we present our
insights concerning the current states, open problems, and
future trends in cooperative perception for CDA applications.

A. Current States and Open Challenges

1) Perception Singleton for Heterogeneity: The most
common perception agents in transportation are intelligent
vehicles and smart infrastructure which can be regarded as
heterogeneous perception singletons. Since roadside sensors
have more flexible locations and pose for data acquisition, one
typical way of cooperative perception is to transmit information
from the infrastructure side to road users [18], [41], [42], [60].
From the perspective of cooperative automated driving, V2V-
based cooperative perception is also a promising solution to
enable the ego-vehicle with the capability of seeing through
[731, [74], [75], [77].

However, none of them can make an epochal revolution
if they do not cooperate together in a deep manner, because
the evolution of intelligent transportation systems is always
highly coupled with the cooperation between vehicles and
infrastructures [136]. Due to the heterogeneity of the perception
singleton, only recently few studies have considered the
cooperation between vehicle nodes and infrastructure nodes
[14], [16]. Thus, vehicle-infrastructure cooperation is one of the
most significant opening tasks for cooperative perception.
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2) Sensor System for Fidelity: Generally speaking, the
capability of the sensor system can be regarded as the
foundation of subsequent applications in intelligent trans-
portation systems. Since the perception data generated from
sensor systems is the foundation of the downstream modules,
such as prediction, decision-making, and actuation [37], for
cooperative perception, cameras and LiDAR are widely applied
to accessing high-fidelity sensing information.

However, in most research, these two types of high-fidelity
sensors work separately — a cooperative perception system only
equipped with one kind of sensor — such as multicamera- based
CP[17],[21] and multi-LiDAR-based CP [14], [82]. According
to the analysis in Section IV-B, fusing data from
complementary sensors tends to significantly improve the
object perception performance, such as Camera+LiDAR [95],
Camera+RADAR [112], etc. Thus, developing multi-modality
sensors for cooperative perception is an important way to
improve the overall fidelity of the perception results.

Moreover, while infrastructure is a crucial component
of cooperative perception systems, the existing perception
methods employed by roadside sensors largely rely on general
perception approaches designed for onboard sensors.
Comparing the methods reviewed in Section IV and Section
III, there is an evident gap between general object perception
and cooperative perception. For instance, the core
methodologies of a large portion of the existing roadside
LiDAR-based detection approaches are based on DBSCAN for
clustering [51], [57], [61], [63], [64], which has a performance
gap compared with the SOTA methods [67], [70]. However,
due to differences in sensor data distributions between roadside
systems and onboard systems, datasets collected dedicated to
roadside sensors are crucial for training roadside perception
models. Additionally, to make use of the massive amount of
onboard sensor-based datasets for roadside perception training,
investigating the transferability of models that can be trained
on the onboard datasets but implemented on roadside datasets
is another key challenge to the improvement of the I-PN-based
CP system.

Additionally, to the best of authors’ knowledge, adverse
environmental conditions are still lacking consideration for CP
research. Thus, to improve the robustness of the sensing system
is still an open challenge for CP systems to be able to be
implemented in real-world conditions.

3) Fusion Strategies for Generality: Asreviewed in Section
V, different fusion schemes have their specific advantages and
disadvantages. Early fusion-based studies mainly require high-
speed communication to enable the transmission of raw data
[20], [21]. However, the reliance on raw data inevitably makes
the perception model very sensitive, and small communication
errors or synchronization issues can cause significant
degradation in system performance [16]. Late fusion-based
research has been widely applied to various kinds of cooperative
perception tasks since decades ago [21], [72], [84]. Late fusion
has less requirement for communication but its performance
also suffers from the merging of the object proposals from
multiple sources [21].

To solve the issues mentioned above, recent work has been
focusing on transmitting and fusing feature-level data to gain
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better accuracy with higher robustness [14], [16]. However, due
to the deeply coupled feature and model complexity, large- scale
extension is an inevitable challenge for intermediate fusion-
based cooperative perception.

4) Policies for Sustainability: Since remarkable potential has
been uncovered for the CP system to improve the current
transportation systems, policies and standards have been
formulated and released accordingly to stimulate and
standardize the development of CP technology [5], [23],
[24]. Based on the review and analysis, the development of CP
tends to be a path that requires extensive investments for
various topics such as sensors, communication systems,
roadside infrastructures, etc.

However, current research studies and industrial standards
mainly focus on the technical advancement of CP development
while lacking consideration of the economic challenges that
come with it. Based on the real-world CP demonstration from
Federal Highway Administration (FHWA) [34], implementing
the CP system in the real world requires multilateral efforts
such as industrial solutions for sensors and communication,
policy support from the local government, or transportation
agencies, and numerous funding support for system expansion
and maintenance. Meanwhile, public concerns (such as privacy
issues) also need to be considered. Hence, it is a key challenge
to make proper policies to push the development of CP in a
sustainable way.

B. Future Trends

1) Towards Heterogeneous Cooperation: Physical occlu-
sion is considered one of the unavoidable obstacles to single-
node perception, and perceiving the environment from multiple
nodes can mitigate such limitations. Given that transportation
is a system of systems, vehicle-infrastructure cooperation is
a promising solution to many existing traffic-related issues.
More  specifically,  vehicle-infrastructure ~ cooperative
perception can leverage the capabilities of both vehicles (as
mobile perception nodes with lightweight processing power)
and infrastructure (as fixed nodes but with powerful
processing/storage units) to achieve much better performance.
Efficient and dynamic ways to fuse the information from
vehicles with infrastructures are the keys to unlocking a new
era of perception for CDA.

2) Towards Multi-Modal Cooperation: A multi-sensor-
based perception system has the potential to improve perceived
performance by taking advantage of complementary sensor
data [137] with appropriate fusion techniques. In the scope
of camera and LiDAR sensors, the development of current
multi-modal sensor fusion is mainly targeting general object
perception by multiple sensors equipped on one single agent
[95]. Specific multi-modal sensor fusion for multiple
perception nodes is still a blank field, which is, however,
an important way to improve the perception accuracy for the
whole system.

3) Towards Scalable Cooperation: The concept of coop-
erative perception is never intended to be only applied to a
small number of nodes, such as two vehicles [13] or one
vehicle with one infrastructure [14]. Some cooperative
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perception methods are mainly designed for enhancing the ego-
vehicle with the assistance of surrounding nodes by asking
surrounding nodes to align their data based on the metadata
from the ego-vehicle [16], which may cause scalability issues
when numerous ego-vehicles are involved.

On the other hand, the computational power and perceptive
range of perception nodes are not the same for vehicles and
infrastructure. An infrastructure-based perception system is
more flexible in terms of sensor equipment and capable of
empowering high-computational edge processors, large data
storage and wide communication bandwidth. Although the
onboard device has made major strides in development
recently, it could be extremely costly and energy-inefficient to
empower every vehicle with a high-performance computa-
tional system for enabling CP. Therefore, by only deploying
lightweight-computing modules on the V-PN side (e.g., sharing
data extraction) and leaving the heavy computing parts to the I-
PN side (e.g., the backbone neural network), it can be more
cost-effective to 1) enable intermediate fusion-based CP
approach [71] and 2) implement the CP system in real-world
situations for a broader range of perceptions [18].

Considering the issues for cooperative perception in real-
world development, such as scalability, dynamic environment,
and heterogeneous resources (such as computational power,
storage space, and communication bandwidth), the hierar-
chical structure, including vehicle, infrastructure, and cloud,
introduced in Section VI can be a promising solution. Thus,
building a unified framework will be a systematic challenge
and can lay a solid foundation for further research on
cooperative perception. In the meantime, communication-
oriented CP [138], [139] is also a critical direction for pushing
CP technologies toward real-world implementations.

4) Towards Sustainable Cooperation: To implement the CP
system in real-world conditions, multilateral efforts are
required, which include automakers, policymakers, industrial
societies, local transportation agencies, the general public, etc.
Meanwhile, due to the sophisticated system architecture that
involves vehicles, infrastructures, communication, sensors, and
computing systems, the development of the CP system requires
careful consideration of challenges from economic effects,
liability issues, security concerns, public policies, etc.

Thus, to make the development of CP feasible and
sustainable, a critical future direction for CP is to make policies,
strategies and standards based on comprehensive consideration
of multilateral interests, such as Infrastructure as a Service
(IaaS) or public-private partnership (P3) mode. Although we
recognize this challenge, this paper aims to raise this concept
and arouse further discussion to work this out together.

Meanwhile, AV-related aspects, such as 1) vehicular
communication [140], 2) vehicle self-pose estimation [141],
3) V2X data synchronization [142], 4) vehicular control [143],
and 5) cyber security for sharing safety-critical sensor data
[144], are also significant future directions for making CP
happen and sustainably evolve in the real world, but are not
deeply investigated in this paper due to the limited structure and
space of this paper.
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IX. CONCLUSION

This paper provides a comprehensive overview and proposes
a hierarchical framework for cooperative perception. The
architecture and taxonomy are presented to illustrate the
fundamental components and core aspects of a cooperative
perception system. Cooperative perception methods are then
introduced with detailed literature reviews from three
perspectives: node structure, sensing modality, and fusion
scheme. The proposed hierarchical cooperative perception
framework is analyzed from the levels of intersection, corridor,
and network respectively. Existing datasets and simulators
for enabling cooperative perception are briefly reviewed to
identify the gaps. Finally, this paper discusses current issues
and future trends. To the best of our knowledge, this work is
the first study to provide a unified framework for cooperative
perception.
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