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California has committed to ambitious decarbonization targets across multiple sectors, including decarbonizing 

the electrical grid by 2045. In addition, the medium- and heavy-duty truck fleets are expected to see rapid 

electrification over the next two decades. Considering these two pathways in tandem is critical for ensuring 

cost optimality and reliable power system operation. In particular, we examine the potential cost savings of 

electrical generation infrastructure by enabling flexible charging and bidirectional charging for these trucks. We 

also examine costs adjacent to enabling these services, such as charger upgrades and battery degradation. We 

deploy a large mixed-integer decarbonization planning model to quantify the costs associated with the electric 

generation decarbonization pathway. Example scenarios governing truck driving and charging behaviors are 

implemented to reveal the sensitivity of temporal driving patterns. Our experiments show that cost savings on 

the order of multiple billions of dollars are possible by enabling flexible and bidirectional charging in medium- 

and heavy-duty trucks in California. 
 

 

 

1. Introduction 

 

With the rapid shift towards renewable energy generation as a 

response to climate change, power system planning has become increas- 

ingly important. California has set ambitious decarbonization goals 

across multiple sectors, including transportation with the California Air 

Resources Board’s Advanced Clean Fleet regulation, and electric power 

generation with Senate Bill 100 and Senate Bill 350. As a result, these 

sectors are expected to change rapidly over the next two decades. It is 

crucial that these transitions be planned in tandem to ensure cost-

effectiveness and reliable power system operation. 

It is well established that transportation and energy generation are 

becoming increasingly linked fields as part of the response to climate 

change. Transportation electrification is a key component of the energy 

transition, and vehicle charging load is expected to become a large share 

of the energy demand as penetration of electric vehicles increases. This 

transition is occurring together with the shift from carbon-based to 

renewables-based power generation. 

Adoption of battery electric vehicles (BEV) is expected to both 

increase electricity demand as well as impact the load patterns. A topic 

of recent interest has been leveraging the charging flexibility of BEVs 

to reduce the impacts on power grid operation. A major component 

of this is flexible charging, or V1G, which is the ability to control 

vehicle charging, typically to shift charging from a peak time to an 

off-peak time to lower stress on the grid or to adjust the charging power 

with respect to pricing and demand response signals from the electric 

utilities. Even further is V2G or bi-directional charging. In this case, 

vehicles can discharge to the grid, to provide energy shifting or ancillary 

services. 

It is easier to implement flexible and bidirectional charging in large- 

scale for medium- and heavy-duty (MHD) BEV than for light duty (LD) 

BEVs. The number of MHD BEVs is projected to be much fewer; in 2035 the 

projected LD BEV stock in California is over 15 million, whereas the 

MHD BEV is approximately 400,000. The smaller number of MHD BEVs and 

chargers makes it inherently easier to control and coordinate. Si- 

multaneously, MHD BEVs are associated with larger battery capacities 

than LD BEVs. In turn, the chargers of MHD BEVs are generally more 

powerful, on the order of 100 s of kW as opposed to 10 kW or less. MHD 

BEV are also likely to be operated with more sophisticated planning 

in fleets, and may be less likely to be affected by the randomness 

of the driving behaviors. MHD BEV adoption may also be shifted 

towards larger logistics companies with the capital to purchase these 

vehicles, and operating a large number of vehicles may influence the 

incentives of enrolling in flexible charging or V2G operations. These 

unique characteristics make MHD BEVs a more enticing candidate than 

LD BEVs for pursuing flexible charging and V2G operations. 
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Nomenclature 

Sets 

𝑡, 𝑇 Index, set of hour 

𝑤, 𝑊 Index, set of representative period 

𝑦, 𝑌 Index, set of year 

𝑢, 𝑈 Index, set of thermal unit 

𝑠, 𝑆 Index, set of storage resource 

𝑟, 𝑅 Index, set of renewable resource 

ℎ, 𝐻 Index, set of large hydro resource 

𝑧, 𝑍 Index, set of balancing authority zone 

𝑒 ∈ 𝐸 Index, set of battery electric vehicle (BEV) 

cluster 

𝑙, 𝐿 Index, set of line 

𝑈𝑧 Subset of thermal resources in zone 𝑧 

𝑆𝑧 Subset of storage resources in zone 𝑧 

𝑅𝑧 Subset of renewable resources in zone 𝑧 

𝐻𝑧 Subset of large hydro resources in zone 𝑧 

Loads and Generation 

𝑧(𝑡) Load in zone 𝑧 at time 𝑡 (MW) 

𝑣𝑢(𝑡) On/off status of unit 𝑢 at time 𝑡 (1, 0) 

𝑝𝑢(𝑡) Power output of unit 𝑢 at time 𝑡 (MW) 

𝑝𝑟(𝑡) Power output of renewable resource 𝑟 at 

time 𝑡 (MW) 

𝑝ℎ(𝑡) Power output of large hydro resource ℎ at 

time 𝑡 (MW) 

𝑓𝑙 (𝑡) Flow on line 𝑙 at time 𝑡 (MW) 

𝜆𝑙,𝑧 Incidency of line 𝑙 on zone 𝑧 
𝑡𝑥 
𝑙 Transmission cost of line 𝑙 ($/MWh) 

𝑃 𝐹𝑟(𝑡) Production factor of renewable resource 𝑟 

 
𝑐𝑢𝑟𝑡 
𝑟 
𝑐𝑢𝑟𝑡 
𝑟 

at time 𝑡 

Curtailment of renewable resource 𝑟 (MW) 

Cost of curtailment of resource 𝑟 ($/MWh) 

𝑆𝑈𝐶𝑢(𝑡) Startup cost of unit 𝑢 at time 𝑡 ($) 

𝑆𝐷𝐶𝑢(𝑡) Shutdown cost of unit 𝑢 at time 𝑡 ($) 

𝐺𝐶𝑆𝑢 Generation cost slope of unit 𝑢 ($/MWh) 

𝐺𝐶𝐼𝑢 Generation cost intercept of unit 𝑢 ($/hour) 

Storage and BEV 

𝑣𝑠(𝑡) Storage charge (0)/discharge (1) status at 

time 𝑡 

𝑝𝑐 (𝑡) Storage rate of charge at time 𝑡 (MW) 

𝑝𝑑 (𝑡) Storage rate of discharge at time 𝑡 (MW) 

𝐶𝑠(𝑡) Storage state of charge at time 𝑡 (MWh) 
𝑐 Storage charge efficiency 
𝑑 Storage discharge efficiency 

𝛿𝑠 Storage self discharge 

𝑣𝑒(𝑡) MHD BEV charge (0)/discharge (1) status 

at time 𝑡 

𝑝𝑐 (𝑡) MHD BEV charge at time 𝑡 (MW) 

𝑝𝑑 (𝑡) MHD BEV discharge at time 𝑡 (MW) 
 

 

𝑃 𝑒 MHD BEV charger power rating (MW) 

 

 

In this study, the adoption of MHD BEVs is considered exogenous to 

the decarbonization planning problem. It is assumed that the MHD BEV 

stock over years aligns with the existing California policy requirements, 

such as CARB’s Advanced Clean Fleet Regulation [1]. As such, enabling V1G 

or V2G services could help avoid installing additional renewable 

generation or storage capacity with relatively little added cost and 

difficulty. 

A great deal of literature has focused on the economic benefit of V1G 

and V2G. However, the majority of these works have focused on short-

term costs and the economic benefit to the BEV owner. In [2], the 

potential revenue for BEV owners in California is examined while 

paying attention to future grid behavior, including wide adoption of 

BEVs and future grid changes. The value of BEVs has been examined 

for both managing load, including V2G [3] and peak shaving [4] and for 

providing ancillary services, like frequency regulation [5]. 

A number of works have examined V1G and V2G from the pol- 

icy perspective. These works address issues such as challenges with 

adoption [6], participation, [7] value streams for V1G and V2G ser- 

vices [8], and potential for CO2 reduction and increased renewable 

penetration [9]. Several works have focused on the implementation 

of V2G, specifically considering the aggregation and dispatch of these 

resources [10], including considerations for battery degradation [11]. 

Somewhat less work has been done to quantify the economic benefit 

of enabling V1G and V2G services from the perspective of power 

system planning. These works generally optimize investment planning 

alongside dispatch and BEV charging scheduling to provide lower in- 

frastructure costs and avoid buildout of generation and energy storage 

capacity. Ramirez et al. [12] present a co-optimization of power system 

planning with dispatch of flexible charging with LD BEVs with a UK- 

based test system. Yao et al. [13], Suski et al. [14], Hajebrahimi 

et al. [15], and Gunkel et al. [16] present similar co-optimizations with 

case studies in China, the Maldives, Canada, and the EU, respectively. 

In [17], an analysis of the potential savings of V1G and V2G, including 

𝐶𝑒(𝑡) 

𝐶𝑒 
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𝑒 

𝐶𝑑𝑟𝑖𝑣𝑒 
𝑒 

 

MHD BEV maximum state of charge (MWh) 

MHD BEV minimum state of charge (MWh)
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𝜂 

 

ancillary services, is analyzed for LD BEVs in California. Xu et al. [18] 

look at the potential emissions reductions of these services, including 

life-cycle analysis of BEVs. 

Similarly, most works have focused on LD BEVs, rather than MHD 

BEV. As discussed above, these groups have rather distinct behavior, 

which affects both their theoretical value and practical implementabil- 

ity. In this work, we focus on this gap in the literature, and examine the 

value of V1G and V2G in California’s decarbonization pathway, 

specifically with respect to electrification of medium- and heavy-duty 

vehicles. 

In this paper, we examine the potential savings and implicit costs of 

V1G and V2G services through the lens of California’s energy transi- tion 

investment planning. We develop a mixed-integer linear program 

(MILP) decarbonization planning model incorporating a clustered rep- 

resentation of MHD BEV based on the timing of charging and driving. 

A surrogate Lagrangian relaxation-based technique is implemented to 

provide computational tractability of the large MILP model. The pri- 

mary contribution of this paper is an empirical study of the potential 

economic benefits of V1G and V2G to California’s power system decar- 

bonization path. We analyze the results of the three charging regimes 

under two MHD BEV driving scenarios, and show a range of potential 

savings as high as 16 billion dollars. We also examine some of the costs 

related to charging services, particularly the cost of battery degradation 

and the cost of charging infrastructure. This elucidates the balance 

between the benefits of V1G and V2G and the implicit costs. 

The remainder of the paper will be organized as follows. Section 2 

will formulate the power system planning model. Section 3 will de- 

scribe the methodology used to solve the model. Section 4 will discuss 

results and policy implications. Section 5 will present the conclusions. 

 

2. Technical method 

 

In this section, we formulate the planning problem as an integer 

linear program optimization over two timescales. Unit commitment and 

economic dispatch is modeled hourly by scheduling generation to 

satisfy load and ancillary service requirements. Investment is modeled 

2.1.1. Generation resources 

The generation fleet consists of five classes of generation resources, 

each with distinct operational characteristics: thermal units, renewable 

resources, firm resources, storage resources, and large hydro resources. 

These classes and relevant constraints will be briefly discussed in this 

section. The full formulation of these generation constraints can be 

found in [19]. Flexible MHD BEV charging is modeled as a demand-side 

resource, and will be discussed in detail. 

Thermal Units. Thermal units include a variety of combustion-based 

power plants, such as coal-fired power plants, combined-cycle gas tur- 

bines, peakers, steam turbines, and aeroderivative combustion turbines, 

each with unique technical operating characteristics. These resources are 

dispatchable, and the commitment of thermal units is modeled as binary. 

The output 𝑝𝑢(𝑡) of resource 𝑢 is thus constrained by minimum 

and maximum output based on commitment 𝑣𝑢(𝑡): 
 

𝑃 𝑢𝑣𝑢(𝑡) ≤ 𝑝𝑢(𝑡) ≤ 𝑃 𝑢𝑣𝑢(𝑡), ∀𝑢 ∈ 𝑈 , 𝑡 ∈ 𝑇 , (2) 
 

where 𝑃 𝑢 and 𝑃 𝑢 are the minimum and maximum power levels for unit 

𝑢. Thermal units are further constrained by minimum uptime and 

downtime, startup and shutdown limits, and ramp limits. 

Renewable and Firm Resources. Renewable resources consist of solar 

and wind farms, as well as aggregated behind-the-meter solar photo- 

voltaic systems. Firm resources include nuclear, small hydro, biofuel, 

geothermal, and combined heat and power. Firm resources are lumped 

with renewables as they have generally similar properties. Each re- 

source generates according to the product of the installed capacity 

𝐼𝐶𝑟(𝑦), at an arbitrary year, and an hourly factor 𝑃 𝐹𝑟(𝑡) accounting for 

meteorological conditions associated with renewable generation, less 

any curtailment. Thus, the generation of these resources is given by: 

𝑝𝑟(𝑡) = 𝐼𝐶𝑟 ⋅ 𝑃 𝐹𝑟(𝑡) − 𝑝𝑐𝑢𝑟𝑡(𝑡), ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 . (3) 

The power output of firm resources is not subject to hourly fluctuations. 

However, it can experience seasonal variations, such as maintenance- 

related changes for nuclear power or changes in stream flow for small 

hydroelectric systems. Still, they can be associated with an hourly 

capacity factor. Firm resources are not curtailable, so 𝑝𝑐𝑢𝑟𝑡(𝑡) = 0 for 

at the yearly timescale, and governs the construction and retirement of 

energy resources. The two timescales are linked by several constraints, 

including policy constraints like emissions limits, and constraints gov- 

erning the operation of resources based on their investment status. 

Section 2.1 formulates the hourly unit commitment model. The unit 

commitment model includes the integration of MHD BEV. The formula- 

tion of policy and investment will be left to Appendix, which integrates 

the unit commitment and dispatch model into the planning model. At 

a high level, the goal of the integrated planning model is to minimize 

the costs of operation, maintenance, and investment, given as: 

O = 
∑{

𝑔𝑒𝑛 + 𝑚 + 𝑖𝑛𝑣
}

. (1) 

those resources. 

Large Hydro Units. Unlike small hydro, large hydro units are dispatch- 

able hydropower resources. The output of large hydro units 𝑝ℎ(𝑡) is 

subject to ramp limits, minimum and maximum output constraints, and 

an energy budget constraint. 

Storage Resources. Storage resources include both pumped hydro 

storage and stationary battery storage. These resources are modeled 

using a binary indicator of charge or discharge status in order to enforce 

minimum charge/discharge duration constraints for the case of 

pumped hydro. This binary also prevents simultaneous discharge and 

charge. These resources are characterized by their power capacity 

𝑦 
𝑦∈𝑌 

𝑦 𝑦 (MW) and energy capacity (MWh). These resources are accordingly 

subject to charge and discharge limits and state of charge (SoC) limits. 

2.1. Unit commitment 

 

Unit commitment (UC) is modeled at hourly frequency over a set of 

It is necessary to track the state of charge for these units, including 

losses due to efficiency: 

𝐶 (𝑡) = [(1 − 𝑣 )𝑝𝑐 (𝑡)𝜂𝑐 − 𝑣 𝑝𝑑 (𝑡) 
 1  

] × 1 ℎ𝑜𝑢𝑟 + 

hours 𝑇 . In general, unit commitment variables are indexed temporally 𝑠 𝑠  𝑠 𝑠 𝑠 𝑠 𝑑 
𝑠 

by a tuple (𝑦, 𝑤, 𝑡) of year, week, and time. However, when describing unit 

commitment alone, only the last index is relevant, because we do not 

yet consider investment and policy constraints which link weeks and 

years. For notational brevity, we will hide the axis of year and week. 

That is, for this subsection, 𝑝𝑢(𝑦, 𝑤, 𝑡) → 𝑝𝑢(𝑡) for an arbitrary 

𝑦, 𝑤. Finally, we will define the set of all generation and transmission 

constraints discussed in this section as 𝛺. 

Representative periods 𝑤 are treated as circular or cyclical. In essence, 

the last hour in 𝑇 links back to the first hour, and all con- straints 

linking hours are enforced accordingly. This cyclical represen- tation is 

modeled via the modulo operator 𝜏(𝑡) = mod (𝑡 − 1 + 𝑇 , 𝑇 ). For 

constraints not linking hours, only the regular period is enforced and 

𝜏(𝑡) = 𝑡. 
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(1 − 𝛿𝑠)𝐶𝑠(𝜏(𝑡 − 1)), ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (4) 

Flexible MHD BEV Charging. MHD BEV with flexible or bidirectional 

charging capability, is modeled similarly to storage resources, with the 

major exception that a large amount of discharge happens exogenously 

through driving, during which these resources are not connected to the 

power grid. To integrate MHD BEV into the planning framework, these 

resources are modeled as dispatchable by a central system operator, 

rather than a virtual power plant controlled by price signals. First, we 

describe how the vehicles are clustered, then how these clusters are 

controlled. 

Each vehicle is associated with a charge start time, charge end 

time, starting state-of-charge, and ending state-of-charge. It is assumed 
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𝑒 

𝑒 

𝑒 

𝑒 

𝑒 

∑ 𝑧 

a time wrap 𝑡𝛥, to account for charging which occurs overnight. For 

each day, the variable state of charge at the time of depot arrival and 𝑡∈𝑇 
𝑢∈𝑈 

𝑙 𝑟 𝑟 

𝑒 𝑒 𝑒 

∑ 

𝑒 𝑒 𝑒 

𝑒 𝑒 𝑒 

𝑒 𝑒 𝑒 

 

that the vehicle is plugged in and available for charging for the entire 

duration that it is at the depot. These values essentially determine the 

vehicles charging needs, as well as potential V2G provisions. Modeling 

vehicles individually would make the problem computationally in- 

2.1.3. Load and reserve requirements 

Zonal power balance constraints ensure that the generation and net 

line flows meet the load. Each zone must satisfy these constraints as: ∑ 
𝑝 (𝑡) + 

∑ 
[𝑝𝑑 (𝑡) − 𝑝𝑐 (𝑡)] + 

∑ 
𝑝 (𝑡) + 

∑ 
𝑝 (𝑡) 

tractable; thus, vehicles are grouped by their start and end hour to form 
virtual power plants. The power and energy capacity parameters of the 

𝑖 
𝑢∈𝑈𝑧 

𝑠 
𝑠∈𝑆𝑧 

𝑠 𝑟 
𝑟∈𝑅𝑧 

ℎ 
ℎ∈𝐻𝑧 

clusters are obtained as the summation of the individual parameters of + 
∑ 

𝜆𝑙,𝑧𝑓𝑙 (𝑡) = 𝑧(𝑡) + 
∑ 

[𝑝𝑐 (𝑡) − 𝑝𝑑 (𝑡)], (12) 

the MHD BEVs in the cluster. MHD BEVs are modeled as a demand-side 𝑙∈𝐿 
𝑒 𝑒 

𝑒∈𝐸𝑧 

resource. 

The control of MHD BEV clusters within optimization is operational- ized 

by three variables: state of charge 𝐶𝑒(𝑡), charge power 𝑝𝑐 (𝑡), and 

discharge power 𝑝𝑑 (𝑡). These three variables are subject to limits based 

on the capacity of the cluster, as well as the timing at which the cluster 

is connected to the grid at the depot for charging vs disconnected 

from the grid for driving. Discharge through driving is exogenous, and 

𝑝𝑒(𝑡) = 0 when the vehicle is not at the depot. If V2G is not considered, 

discharge is not allowed and 𝑝𝑑 (𝑡) = 0, ∀𝑡 ∈ 𝑇 . 

The definition of a period 𝑇 allows for multiple days to be modeled 

consecutively. We assume a typical charge event happens each day. To 

account for this, we define the set of days in the period 𝐷, where 

|𝐷| = |𝑇 |∕24 denotes the number of days in the period. We also define 
 

 
 

CAISO must additionally satisfy the requirement for ancillary services. 

These products ensure reliable grid operation, and include frequency 

response, spinning reserve, regulation up and down, and load follow- 

ing up and down. The ancillary service requirements account for the 

increasing penetration of renewable resources, and are derived in [20]. 

 

2.1.4. Unit commitment objective 

The unit commitment objective function (13) is to minimize the total 

cost of fuel, startup and shutdown, power transmission, and renewable 

curtailment: 

min 𝑔𝑒𝑛 (13) 

∑ ∑ { 

departure is set equal to the input state of charge at the start (5) and 

end of charging (6). 
 

 
 

+ (𝐺𝐶𝐼𝑢 ⋅ 𝑣𝑢(𝑡) + 𝐺𝐶𝑆𝑢 ⋅ 𝑝𝑢(𝑡)) × 1 ℎ𝑜𝑢𝑟 
} 

(14) 

+[
∑ ∑ 

𝑓𝑙 (𝑡) ⋅ 𝑐𝑡𝑥 + 
∑ ∑ 

𝑐𝑐𝑢𝑟𝑡 ⋅ 𝑝𝑐𝑢𝑟𝑡(𝑡)] × 1 ℎ𝑜𝑢𝑟. 

  

𝐶𝑒(𝑡𝑑𝑟𝑖𝑣𝑒 + 𝑑 ⋅ 24) = 𝐶𝑑𝑟𝑖𝑣𝑒, ∀𝑑 ∈ 𝐷, 𝑒 ∈ 𝐸 (6) 3. Solution methodology 

𝑒 𝑒 

 

𝑡𝛥 = 24 if 𝑡𝑑𝑒𝑝𝑜𝑡 > 𝑡𝑑𝑟𝑖𝑣𝑒 else 0 (7) 

While the vehicle is at the depot, bounds of charge (8) and discharge 

rate (9), and bounds on state of charge are enforced (10). State of charge 

is also tracked with provisions for charger efficiency (11). 
 

0 <= 𝑝𝑐 (𝜏(𝑡 + 𝑑 ⋅ 24)) <= (1 − 𝑣𝑒(𝑡))𝑃 𝑒, 

∀𝑒 ∈ 𝐸, 𝑑 ∈ 𝐷, 𝑡 ∈ [𝑡𝑑𝑒𝑝𝑜𝑡, 𝑡𝑑𝑟𝑖𝑣𝑒 + 𝑡𝛥] (8) 

 

0 <= 𝑝𝑑 (𝜏(𝑡 + 𝑑 ⋅ 24)) <= 𝑣𝑒(𝑡)𝑃 𝑒, 

∀𝑒 ∈ 𝐸, 𝑑 ∈ 𝐷, 𝑡 ∈ [𝑡𝑑𝑒𝑝𝑜𝑡, 𝑡𝑑𝑟𝑖𝑣𝑒 + 𝑡𝛥] (9) 

 
𝐶 <= 𝐶 (𝜏(𝑡)) <= 𝐶 , ∀𝑒 ∈ 𝐸, 𝑑 ∈ 𝐷, 𝑡 ∈ [𝑡𝑑𝑒𝑝𝑜𝑡, 𝑡𝑑𝑟𝑖𝑣𝑒 + 𝑡𝛥] (10) 

As formulated in the previous section, decarbonization is a mixed- 

integer linear program. 

min {O} 

𝑠.𝑡. 𝛺 , (5)-(11), (12) ∀𝑦 ∈ 𝑌 , 𝑤 ∈ 𝑊 , (15) 

(A.1) – (A.5), (A.6) – (A.8) ∀𝑦 ∈ 𝑌 

Although commercial MILP solvers improve year over year, they still 

suffer from the issue of combinatorial complexity. As the number of 

binary variables increases, the solution time increases superlinearly. 

Modeling hundreds of thermal units over multiple years each with 

hundreds of hours quickly becomes impossible to solve in reasonable 

CPU time. 

To achieve computational tractability, a common approach in the 

𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 power system planning is to relax the binary variables, often in tan- 
dem with clustering thermal units together and approximating their 

𝐶𝑒𝜏(𝑡 + 1) = 𝐶𝑒(𝜏(𝑡)) + 𝑝𝑐 𝜏(𝑡)𝜂𝑐 − 𝑝𝑑 (𝜏(𝑡))𝜂𝑑 , 
𝑒 𝑒 𝑒 𝑒 

∀𝑒 ∈ 𝐸, 𝑑 ∈ 𝐷, 𝑡 ∈ [𝑡𝑑𝑒𝑝𝑜𝑡, 𝑡𝑑𝑟𝑖𝑣𝑒 + 𝑡𝛥 − 1] (11) 
dispatch. This greatly improves the computation time of planning 
problems, albeit at the loss of model rigor. Instead, we solve the model 

 

2.1.2. Zones and lines 

𝑒 𝑒 𝑒 
using surrogate Lagrangian relaxation. Although the development of 

this solution technique is not a contribution of this paper, it is relevant 

A zonal unit commitment model is used to represent the Western In- 

terconnection. The model is directed towards California’s decarboniza- 

ton goals, and this is reflected in the zonal modeling. The formulation 

presented here is easily adaptable to other zones. As the main balancing 

authority in California, the model focuses on the California Independent 

System Operator (CAISO), and additionally includes smaller balancing 

authorities in California (LADWP, IID, BANC). Balancing authorities 

in the Northwest and Southwest are represented by two aggregations. 
Transmission corridors between zones are represented using a transport 

as it enables solving the model as a MILP in computation efficiency that 

significantly outperforms the best commercial solvers. The approach is 

developed in detail in [19], and an abridged version is presented here for 

compactness. 

The key to this approach is to relax a difficult constraint, in our case 

the zonal power balance, and to add the violation of that constraint into 

the objective function alongside Lagrangian multipliers 𝛬. The con- 
straint violations of the zonal power balance are given by 𝑟𝑧(𝑦, 𝑤, 𝑡) = {∑

𝑢∈𝑈 𝑝𝑢(𝑦, 𝑤, 𝑡) + 
∑

𝑠∈𝑆 [𝑝𝑑 (𝑦, 𝑤, 𝑡) − 𝑝𝑐 (𝑦, 𝑤, 𝑡)] + 
∑

𝑟∈𝑅 𝑝𝑟(𝑦, 𝑤, 𝑡) + 

𝑒 

𝐶 (𝑡𝑑𝑒𝑝𝑜𝑡 + 𝑑 ⋅ 24) = 𝐶𝑑𝑒𝑝𝑜𝑡, ∀𝑑 ∈ 𝐷, 𝑒 ∈ 𝐸 (5) 𝑡∈𝑇 
𝑙∈𝐿 

𝑡∈𝑇 
𝑟∈𝑅 

𝑔𝑒𝑛 = 
𝑆𝑈𝐶𝑢(𝑡) + 𝑆𝐷𝐶𝑢(𝑡) 
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𝑙∈𝐿 𝑙,𝑧 𝑙 𝑧 

model, in which the line flows 𝑓𝑙 (𝑡) is a decision variable. This approach ℎ∈𝐻 𝑝ℎ(𝑦, 𝑤, 𝑡) 𝑧  𝑠 𝑠 𝑧 

greatly simplifies the computational complexity associated with an 
𝑧 } 

+ 𝜆 𝑓 (𝑦, 𝑤, 𝑡) −  (𝑦, 𝑤, 𝑡) . 𝐑 is a vector of constraint violations 

system interconnections. Line flow can be positive or negative, where 

negative flow means flow opposite of the line reference direction. Each 

line is associated with two zones and a reference direction, and this is 

encoded in 𝜆𝑙,𝑧. If line 𝑙 is not incident on node 𝑧 then 𝜆𝑙,𝑧 is 0, and 𝜆𝑙,𝑧 is 

+1 or −1 if 𝑙 goes to or from 𝑧, respectively. Line flows are additionally 

subject to transmission line limits. 

where 𝐑 = [𝑟𝑧(𝑦, 𝑤, 𝑡), ∀𝑧 ∈ 𝑍, 𝑦 ∈ 𝑌 , 𝑤 ∈ 𝑊 , 𝑡 ∈ 𝑇 ]. The resulting 

optimization is referred to as the dual problem. 

min {O + 𝛬 ⋅ 𝑅} 

𝑠.𝑡. 𝛺, (5)-(11) ∀𝑦 ∈ 𝑌 , 𝑤 ∈ 𝑊 , (16) 

(A.1) – (A.5), (A.6) – (A.8) ∀𝑦 ∈ 𝑌 

optimal power flow formulation, while still effectively representing the 
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The optimization (16) is repeatedly solved while updating the multi- 

pliers 𝛬. The dual problem (16) is already easier to solve than the one in 

(15). In addition, it becomes possible to solve only a portion of all 

variables in each iteration while fixing the other variables to their most 

recent solution, and update the multipliers along the subgradient. This 

both improves iteration time and improves convergence of 𝛬, a known 

drawback to the traditional Lagrangian relaxation technique. 

It is unlikely, and unnecessary, that the multipliers converge until 

constraint violations are identically zero. Instead, when the multipliers 

have converged such that the violations are sufficiently low, return to 

the primal problem (15) and solve while fixing the majority of the binary 

variables to the final value in the dual problem. This provides a near-

optimal solution to the primal problem in orders-of-magnitude less time 

than solving the primal problem directly. 

 

4. Numerical study 
 

This section will quantify the impact of V1G and V2G on Decar- 

bonization planning. Section 4.1 will introduce two MHD BEV driving 

and charging datasets and processing them into planning model inputs. 

Then, we will present the results of the study, both in terms of cost 

savings and the overall impact on power system investment. Finally, 

 

 

 

 

 

 

 
Table 1 

 
 

 

Fig. 1. Comparison of drive start times between two scenarios. 

we will examine some of the relevant costs, namely battery degradation 

and charging infrastructure, associated with V1G and V2G to draw 

conclusions about the value of adopting these services. 

The decarbonization model is a zonal representation of the Western 

Interconnection. The model focuses on CAISO, but also represents 3 

small balancing authorities in California (LADWP, BANC, IID) and 2 ag- 

gregations of balancing authorities outside California in the Northwest 

and Southwest. Data is primarily taken from the RESOLVE implementa- tion 

published by the California Public Utilities Commission [21]. Rep- 

resentative periods are selected using the sampling method in [22]. We 

use 10 representative periods of 3-day length. Investment is modeled in 

5-year frequency from 2025 through 2045. Financing is considered 

through 2065. 

 

4.1. Specifications for MHD BEV 

 

Accurate modeling of V1G and V2G services requires projections of 

both the number of MHD BEVs and the operating characteristics of 

each vehicle, such as drive duration and miles traveled. While datasets 

exist on the driving and parking characteristics of gas and diesel trucks, 

it is not known if the use cases of MHD BEV will be the same. To 

address this, we examine the impact of V1G and V2G MHD BEVs 

utilizing the simulated trip patterns in the HEVI-LOAD tool and we build 

an additional scenario informed by the temporal patterns extracted from 

a historical truck driving dataset, FleetDNA [23]. These scenarios 

concern inputs to the model of battery limits 𝑃 𝑒, 𝐶𝑒, 𝐶𝑒 and 
operational characteristics 𝑡𝑑𝑒𝑝𝑜𝑡, 𝑡𝑑𝑟𝑖𝑣𝑒, 𝐶𝑑𝑒𝑝𝑜𝑡, 𝐶𝑑𝑟𝑖𝑣𝑒. 

MHD BEV technical assumptions. 
 

 

Charger size Capacity Efficiency 

(kW) (kWh) (kWh/mile) 
 

Class 2–3 150 100 0.6 

Class 4–6 150 300 1.05 

Class 7 150 400 1.1 

Class 8 150 600 1.8 

 

 

 

and charging/refueling behaviors of the future MHD ZEVs. Individual 

trucks are referred to as agents whose behaviors are constructed and 

calibrated utilizing multiple data sources, such as adoption projec- tion, 

travel demand, telematics data, power-train specifications, etc. Trip 

origin and destinations are provided at the traffic analysis zones (TAZ) 

level for better geospatial granularities. The overall trip statistics in terms 

of vehicle miles traveled (VMT), energy consumption rate (kWh/mile), 

and vehicle stock by segment have been validated with existing state 

policies. HEVI-LOAD creates a virtual environment that replicates real-

world transportation scenarios with fine-grained rep- resentation of 

electrification scenarios. However, the high geospatial resolution that 

HEVI-LOAD charging profiles provide are obfuscated in this study to 

match the load zones as we consider only CAISO-level load. 

The additional scenario with varied temporal patterns (Scenario FD) 

is informed by the Fleet DNA dataset. This dataset is composed of 

thousands of historical drives across a variety of vehicle classes, 
vocations, and days. Each entry has several hundred associated fields, 

𝑒 𝑒 𝑒 𝑒 

The two scenarios share the same technical underpinnings, such as 

MHD BEV population, charger size, and kWh/mile driving efficiency. 

At the aggregated level, neither scenario considers any limitations on 

availability of charging infrastructure. The principle difference between 

the two scenarios is the temporal distribution of charging availability, as 

demonstrated by the comparison of drive start times in Fig. 1. By 

presenting both scenarios, it is possible to get a look at a larger picture 

of the range in potential cost savings of V1G and V2G and investigate 

the sensitivity with respect to the trip temporal patterns. These scenarios 

also raise additional questions regarding the total cost and savings 

associated with enabling these services. 

The HEVI-LOAD scenario (Scenario HL) relies on the results of the 

HEVI-LOAD tool, which [24] is an agent-based driving and charg- ing 

simulation tool for MHD zero-emission vehicles (ZEVs) developed by 

the Lawrence Berkeley National Laboratory in collaboration with the 

California Energy Commission (CEC). HEVI-LOAD takes multiple data 

sources as input and resolves the integrated driving, parking, 
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but for our purposes, the key information extracted is drive start time, 

drive end time, and VMT. Then, for each drive, the efficiency mapping 

in Table 1 is used to convert VMT to kWh consumption. We assume 

that each vehicle charges to 100% before departing. The SoC at depot 

arrival can be calculated as the difference between the capacity and 

consumption. This dataset is combined with the California Energy 

Commission’s 2023 AATE3 truck adoption projections [25]. Similarly 

to the approach in [26], we bootstrap from the Fleet DNA dataset 

according to the population projections by class and vocation. There 

are several key assumptions. Of course, bootstrapping assumes that 

the distribution of drive timing and distance present in Fleet DNA is 

the same as future MHD BEV drives in California. We assume that 

every vehicle drives and charges every day. It is also assumed that all 

charging occurs at the depot and there is no en-route charging. 

As previously mentioned, modeling each vehicle individually would 

make computations intractable. For both scenarios, it is necessary to 

cluster the individual vehicles, and the same approach is used. We 
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assume that if the vehicle is not driving, it is plugged in at the depot, and 

vice-versa. As dispatch is modeled hourly, vehicle charge start times are 

rounded to the next hour and vehicle charge end times are rounded 

to the previous hour. This rounding is to prevent an overestimation in 

the time flexibility of vehicles. First, clusters are generated by 

enumerating all possible combinations of start and end hour. Each 

vehicle is assigned to a cluster. If the cluster size accounts for less than 

0.1% of all vehicles, this cluster is not modeled with V1G or V2G and 

left with a fixed charging profile, as this cluster would increase the 

associated complexity of the problem while only mildly impacting the 

solution due to the small number of associated controlled vehicles. This 

results in 87 clusters for Scenario HL, comprising in total 92% of all 

vehicles and 168 clusters for Scenario FD, comprising in total 94% of 

all vehicles. Within these clusters, we assume 100% participation rate 

of trucks in V1G and V2G services. 

As a result of the assumptions made in Scenario FD, and the method- 

ology of Scenario HL, the two scenarios have some key differences in 

addition to the trips’ temporal patterns. These differences are intrinsi- 

cally related to the construction of these scenarios, and the distributions 

of charging availability cannot be separated from these charging as- 

sumptions. In Scenario HL, approximately 1 out of 3 vehicles charge 

each day, as many vehicles make short trips and do not need to charge. 

Scenario FD does not account for this, and charges each vehicle daily. 

However, because the underlying assumptions on VMT per day and 

truck efficiency are similar, the total daily MHD BEV load is extremely 

similar, within 1%. This means in Scenario FD, the vehicles have 

considerably higher starting SoC, as well as a much larger number of 

vehicles connected resulting in considerably higher total power and 

energy capacity. The results will reflect this, and the ensuing discussion 

will consider both the pros and cons of this detail in terms of cost. 

We consider 3 charging regimes for both scenarios: a baseline case 

in which all charging is fixed, V1G, and V2G. As a reminder, the V1G 

scenario implements flexible charging, and the V2G scenario imple- 

ments bi-directional charging. For Scenario HL, fixed charging profiles 

are provided by HEVI-LOAD. For Scenario FD, the fixed charging 

profile is generated using the assumption that 50% of vehicles charge 

immediately at full power and 50% charge with the lowest power to 

fully charge by departure. All chargers are assumed to have 150 kW 

rating. Although it may be likely that Class 7 and 8 vehicles would 

be associated higher charger ratings, due to their increased battery 

capacities [27], this does not likely have a large impact from the 

perspective of aggregated dispatch. For instance, if four Class 8 vehicles 

shared a single 600 kW charger, the aggregated cluster would ‘see’ a 

rating of 600 kW and a capacity of 2400 kWh. If these same vehicles 

had smaller, individual 150 kW chargers, the aggregated cluster would 

be the same. As such, it may be considered that chargers are on average 

rated at 150 kW. At most, it may be expected that this assumption may 

slightly underestimate the cost savings presented in the next section. 

 

4.2. Results 

 

The key consideration related to V1G and V2G with respect to decar- 

bonization planning is quantifying how enabling these services lower 

the cost of power system decarbonization through lower investment, and 

potentially lower operation costs. In all scenarios and regimes, the 

emissions constraints are binding, so the advantage of these services 

is economic, not environmental. Fig. 2 shows the cumulative added 

capacity in year 2045. In general, V1G and V2G are associated with 

lower build of renewable and storage resources. The duration of energy 

storage are also impacted, with fixed, V1G, and V2G having durations 

of 8.0, 7.5, and 7.4 h for Scenario HL and 7.9, 7.7, and 7.3 for Scenario 

FD. For context, the fixed peak MHD BEV charging load in 2025 is just 

0.3% of the peak gross load, but rapid adoption projections mean that 

this fraction grows to 3% by 2035. 

By enabling V1G and V2G services, it is possible to avoid some of 

the installation of renewable and storage capacity that are needed in the 

 

 
 

Fig. 2. Comparison of CAISO cumulative installed resources in 2045. 

 

 

 

base scenario to meet emissions targets. Accordingly, there are slightly 

less retirements of thermal units, which are kept online to meet the 

planning reserve margin. 

The mechanism by which these services lower investment costs is 

straightforward. Fig. 3 shows the gross load for an exemplary day 

in 2035 under fixed charging, V1G, and V2G. Load is shifted from hours 

with lower renewable generation to hours with higher renewable 

generation. In the case of V2G, MHD BEV are able to provide power 

injections at critical hours to further reduce the need for energy storage. 

Most MHD BEV spend the bulk of the day driving, and thus are unable 

to charge when there would be most excess generation. As such, charging 

is mostly correlated to periods with lower variable renewable 

generation, and the cost savings comes mostly as avoided storage 

investment. This behavior is demonstrated by the visualization of net 

load for each regime in Fig. 4. V2G flattens the net load peak in the early 

morning, and recovers energy through the afternoon by charging 

batteries of stationary vehicles when renewable generation is plentiful. 

Although V2G is effective at reducing the early morning net load peak, 

the early evening load shape is mostly unchanged. This is primarily due 

both to the availability of vehicles for charging. Although vehicles are 

at the depot between 5 pm and 8 pm, these vehicles then must begin 

driving earlier in the morning. If they were to discharge significantly, 

they would have to charge again overnight, when no solar generation 

exists and net load is still relatively high. On the other hand, many 

vehicles plugged in between 5 am and 8 am will remain plugged in for 

the next several hours, and can charge with surplus morning solar. In 

this sense, it would be more advantageous for driving schedules to shift 

to allow for more charging using surplus solar generation, and explains 

why the model prefers to reduce the early morning peak than the early 

evening peak. 

Fig. 5 shows the MHD BEV load for each hour, averaged over the 

year 2035. The shape of V1G and V2G load is broadly similar, with the 

key difference that V2G is providing power to the grid for early morning 

hours, between 4am and 8am, then charging quickly between 8am and 

10am, when the bulk of vehicles are leaving. There is a large spike 

in charging load in the morning, as other system loads are generally 

lower and solar generation ramps up. This spike is even larger for V2G, 

as the vehicles provide power in the very early morning. 

The total costs as well as costs broken down by component are 

shown in Table 2. CA costs refers to the cost of operation, maintenance, 

and investment for CAISO only. As a resulted of the avoided investment 

in storage, there are substantially lower investment and maintenance 

costs. These services also help lower operational costs by lowering the 

use of thermal units. Scenario HL V1G and V2G present 3.5% and 4.6% 
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Table 2 

Costs, billions 2025$. 

 Scenario HL    Scenario FD  

Fixed V1G V2G  Fixed V1G V2G 

Total Cost 397.5 384.4 381.0  401.8 397.1 391.8 

CA Cost 247.8 239.2 236.3  251.7 247.1 244.2 

Maint. Cost 67.0 65.8 65.9  67.2 67.0 67.1 

Inv. Cost 152.3 145.5 142.5  156.0 151.9 149.1 

CA Op. Cost 28.5 27.9 27.9  28.4 28.2 28.0 

 

 

Table 3 

Levelized cost savings over fixed charging ($ per vehicle-year, Non-discounted). 

2025 2030 2035 2040 2045 

HL V1G 2765 1337 1243 1378 997 

HL V2G 4317 1840 1510 1822 1350 

FD V1G 871 592 431 457 724 

FD V2G 1277 1204 933 1005 999 

 

 

 

Fig. 3. Scenario FD, CAISO gross load considering fixed charging, V1G, and V2G. 

 

 

Fig. 4. Scenario FD, CAISO net load for an exemplary day in 2035. 

 

 

Fig. 5. Scenario FD, MHD BEV hourly load averaged over year 2035. 

 

 

 

savings over fixed charging in California costs, respectively. Scenario 

FD V1G and V2G present 1.8% and 3.0% savings in California costs. 

The cost savings of V1G and V2G over fixed charging are shown per 

vehicle, per year in Table 3. These costs are not discounted for the time 

 
 

 

 

value of money. In the worst case, V1G saves a few hundred dollars per 

vehicle per year. In the best case, V2G saves several thousand dollars 

for each vehicle each year. 

The exact savings presented here should not be interpreted as guar- 

antees, but rather as indicators of the relative value of flexible charging 

services. In general, there is a great deal of uncertainty associated with 

long term planning models, due to the reliance on projections of future 

load, technology costs, and so on. This is compounded by the fact that 

this planning model is reliant both on the adoption of MHD BEV as well 

as the usage characteristics, including the assumption that usage patterns 

of MHD BEVs will be similar to traditional MHD trucks. We control 

for these uncertainties as much as possible by utilizing inputs adopted 

by California state commissions and presenting two scenarios 

concerning the temporal distribution of driving. 

Finally, it is necessary to note that these results depend on the 

participation of fleet operators and individual vehicle owners. Effective 

participation rates of 92% and 94% may not be realized, in which case 

the potential savings would be lower. Participation is a problem that 

spans sociology, economics, and engineering. The savings presented in 

Table 3 could be passed to owners in the form of incentives or rebates 

to encourage participation. Nevertheless, topics including participation 

and practical implementation of V1G and V2G are key to actualizing 

these potential savings, and are best addressed by dedicated studies. 

 

4.3. Discussion 

 

The decision to enable V1G and V2G services does not exist in a 

vacuum, and it is crucial to quantify potential costs related to these ser- 

vices. The main two considerations are the cost of battery degradation 

and the cost of charging infrastructure. 

 

4.3.1. Degradation 

Battery degradation is quantified using the BLAST model [28]. This 

model takes an input SoC time series and returns a total degradation 

%. We run this model for each 5 year investment interval. The goal is 

to understand how V1G and V2G services impact battery degradation 

over default operation. Understanding how the batteries degrade over 

this interval helps evaluate the overall cost and value of these services. 

Each cluster of MHD BEV is evaluated for degradation indepen- 

dently. The SoC time series is created by stacking the MHD BEV SoC 

time series of each representative period by their respective weights to 

make a yearly time series, then stacking that time series to obtain a 

5-year-long time series corresponding to the investment frequency. We 

calculate the degradation given 3 battery chemistries (lithium–iron– 

phosphate, nickel–cobalt–aluminium, and nickel–manganese–cobalt) 

and take the average as the final degradation %. These chemistries 

were selected as they reflect likely candidate chemistries for MHD 
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Table 4 

Battery degradation. 

 

 

 

Fixed V1G V2G 

two elements which are necessary for enabling bidirectional charging. 

The first is an islanding switch, which can be opened to prevent energy 

flowing into lines, for example, when lines must be serviced. The cost 

Degradation Cost (Billions) 7.5 7.6 7.7 

Residual Discharge Capacity % 81.9 81.7 81.4 
 

 

 

 

 

BEV battery chemistries, and have been used in early commercially- 

available options [29,30]. This percentage can then be converted to a 

total degraded kWh given the kWh capacity of each cluster. 

Degradation cost is estimated by making the assumption that, at the 

end of the interval, batteries can be refurbished by replacement of 

cells to restore battery health. Thus, cost is linear with degradation. Of 

course, the cost of battery degradation is more complex than this, but 

this method provides an effective way of comparing the relative 

degradation between BEV charging regimes and scenarios. Given the 

percentage of degraded capacity 𝑐𝑎𝑝𝑑𝑒𝑔 and the $∕𝑘𝑊 ℎ cost of cells 

𝑐𝑐𝑒𝑙𝑙 , the degradation cost associated with BEV battery operation for a 

given year is estimated as: 
 

𝑑𝑒𝑔 = 𝜔𝑦 ⋅ 𝑐𝑐𝑒𝑙𝑙 ⋅  𝑐𝑎𝑝𝑑𝑒𝑔 ⋅ 𝑃 𝑒. (17) 
𝑒∈𝐸 

We assume a battery refurbishment cost of $100/kWh. In 2022, the 

cost of battery packs reached $150/kWh [31]. The cost of battery packs 

are expected to drop further, with projections covering a significant 

range. [32] predicts grid stationary battery costs will see a reduction 

of 16% to 47% by 2030. [33] estimates a lithium-ion battery pack cost 

of 72$/kWh (in 2022 $) by 2030. Thus, $100/kWh should be fairly 

conservative. 

We examine the degradation for the Scenario FD. We present degra- 

dation for a base scenario, V1G, and V2G. Scenario FD is a good 

candidate for quantifying degradation because each vehicle is con- 

trolled. There is not a rigorous way of measuring degradation in 

Scenario HL, because during the optimization, roughly 1 in 3 vehicles 

charge each night. From the vehicle perspective, some MHD BEV are 

charging every night and some are charging less frequently. From the 

perspective of the grid, it does not matter which vehicles are plugging 

in. As a consequence, this does not permit rigorous tracking of each 

vehicle’s SoC. 

The cost of degradation as well as the average relative battery ca- 

pacity at the end of each 5-year interval is shown in Table 4. The impact 

of degradation is relatively mild. The vast majority of the degradation 

seems to be due to aging. Batteries experience on average an extra 0.2% 

of degradation for V1G compared to the fixed charging case, and an 

additional 0.3% again for V2G. The critical consideration is the increase 

in degradation costs over fixed charging. Operating vehicles will 

necessarily incur degradation, but it is critical to understand what costs 

are incurred by V1G and V2G services. The cost associated with 

degradation is increased by 0.1 billion USD for V1G and 0.2 billion 

USD for V2G, as compared to fixed charging. Although these costs are 

considerable, they are an order of magnitude less than the potential 

savings. As such, increased degradation is a relevant consideration, but 

it is not a critical risk to the business case for V1G and V2G services. 

 

4.3.2. Cost of chargers 

In terms of BEV supply equipment costs, the most relevant factors 

are the cost of ensuring vehicles have sufficient access to chargers, and 

the cost of enabling bidirectional charging over unidirectional charging. 

At time of writing, there are very limited number of V2G ready 

chargers on the market. Bidirectional chargers are substantially more 

expensive that unidirectional chargers, but it is difficult to estimate how 

much of that cost difference is driven by the lack of commercialization. 

While numerous studies examine the cost of BEV supply equipment, 

there are no concrete comparisons of the cost of bidirectional and 

unidirectional MHD BEV supply equipment. To estimate the potential 

cost of bidirectional chargers vs unidirectional chargers, we consider 

of this switch is likely negligible if it is installed at the time that the 

charging depot is constructed. The other cost is an inverter required to 

convert the DC current of the MHD BEV battery to AC used by the grid. 

We estimate this cost using the cost of solar inverters, approximately 

$50 per kW [34]. The total cost of this equipment adds $1.1B to the V2G 

cost of Scenario HL in Table 2. These costs reduce substantially the 

potential savings of V2G. We should emphasize that the upcharge 

associated with V2G is purely speculative. Depending on the cost of 

bidirectional equipment, V2G could pose a better or worse business 

case. 

The two scenarios are generated under different basic charging 

behavior assumptions, and these assumptions impact the cost related to 

charging in a major way. Scenario HL is an agent-based approach, in 

which vehicles only charge when necessary. As such, approximately 1 

in 3 vehicles charge on a given day, and the number of chargers can 

be provided accordingly. A key assumption of Scenario FD is that each 

vehicle charges each day. We consider two cases which bookend the 

spectrum on which this could be enabled. The first is providing every 

vehicle in Scenario FD with a dedicated charger. The cost of a 150 kW 

DC fast charger is estimated at $142,200 for hardware and installation 

[35]. For each investment interval, we calculate the cost of installing 

a dedicated charger for each vehicle in Scenario FD and installing only 

the necessary chargers in Scenario HL. In Scenario HL, we assume that 

a dedicated charger is installed for each vehicle charg- ing in a given 

day. In total, the cost of chargers in Scenario HL would be $20.6B and 

$61.6B for Scenario FD. The second is providing only the necessary 

number of chargers. An emerging concept is to connect multiple 

vehicles to a single charger. If a charger is rated at 150 kW, it may be 

able to connect to multiple vehicles simultaneously and provide either 

lower power to all, or full power to individual vehicles at different 

times. This service could be enabled without performing substantial 

hardware upgrades, only by providing some additional switchgear and 

plugs. If we take inspiration from this, we can suggest that in Scenario 

FD, the number of chargers needed is proportional to the peak hourly 

charging demand. This brings the number of necessary chargers down 

substantially, to approximately 1 charger per 4 vehicles in most years. 

Accordingly, the cost of installing chargers drops to 

$14.5B. Although installing chargers is essential with or without V1G 

and V2G, the range in potential charger costs is extremely large, and is 

bigger than the potential savings associated with these services. Because 

of this, minimizing the number of necessary chargers is a very relevant 

consideration alongside lowering chargers costs with V1G and V2G. 

 

5. Conclusion 

 

In this paper, we examined the potential costs and savings of 

enabling V1G and V2G services for MHD BEVs in California. Using a 

large scale MILP model, we calculate the savings of these services from 

the perspective of a central power system planner. Two scenarios are 

used to understand the driving and charging behavior of vehicles. We 

also estimate costs linked to these services. We show that battery 

degradation is not insignificant, but is associated with costs an order of 

magnitude lower than potential savings. We estimate that the cost of 

enabling bidirectional charging could be a very relevant element, and 

could weaken the business case of V2G over V1G. Carefully identifying 

the number of necessary chargers is of utmost importance, as costs 

associated with chargers could be very large. This study is a high level 

planning assessment. Future studies may be more granular, and look at 

the economic benefits to MHD BEV fleet owners and aggregators. 
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emissions are assigned a constant ton/MWh rate 𝑒𝑙 . Only imports are 

considered for the emissions constraints, and net exports do not serve 

to lower the total emissions. 

𝐸𝑦 ≥ 
∑ 

𝜔𝑤 ⋅ 
∑ 

( 
∑ 

𝑒𝑠 ⋅ 𝑝𝑢(𝑦, 𝑤, 𝑡) + 𝑒𝑖 ⋅ 𝑣𝑢(𝑦, 𝑤, 𝑡) 

 
Decarbonization planning folds the unit commitment formulation 

into a multi-year model allowing for the build and retirement of 

resources while enforcing policy constraints related to emissions and 

renewable generation. The goal is to identify the investment strategy 

which, while meeting all constraints, minimizes the cost of energy 

generation, fleet maintenance, and capital costs of constructing new 

capacity. 

The present study focuses on California’s decarbonization goals, so 

development of new resources is restricted to CAISO. Addition 

+ 𝑒𝑙 ⋅ max(0, 𝜆𝑙,𝑧𝑓𝑙 (𝑦, 𝑤, 𝑡)) (A.6) 
𝑙∈𝐿 

The renewable portfolio standard (RPS) constraint requires that a cer- 

tain fraction 𝑅𝑃 𝑆𝑦 of the total load each year come from renewable 

sources. Curtailed renewable energy does not count. The eligibility of 

each resource in 𝑅 is given by binary 𝑅𝑃 𝑆𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒, as resources like 

nuclear are grouped with renewables 𝑅 but do not count towards this 

constraint. 

𝑅𝑃 𝑆𝑦 ⋅ 
∑ ∑ 

𝑧(𝑦, 𝑤, 𝑡) ≤ 
∑ 

𝜔𝑤 ⋅ 
∑ ∑ 

𝑝𝑟(𝑦, 𝑤, 𝑡) ⋅ 𝑅𝑃 𝑆𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒 (A.7) 

of capacity to match with load growth in other zones is exogenous. 𝑤∈𝑊 𝑡∈𝑇 𝑤∈𝑊 𝑟∈𝑅 𝑡∈𝑇 

However, the formulation described here is applicable to multi-zone 

investment. Candidate resources include various wind, solar, energy 

storage, geothermal, and biomass projects, as well as new lower emis- 

sion power plants. Economic retirement is also available for existing 

thermal power plants. 

First, we formulate the investment variables of each resource class, 

and demonstrate how investment interfaces with dispatch constraints. 

For thermal units, 𝐼𝑈𝑢(𝑦) is a binary indicator of a unit being oper- 

ational (1) or not (0). New construction and retirement are modeled 
separately, with 𝐼𝑈 𝑏(𝑦) = 1 if the unit is built in year 𝑦 and 𝐼𝑈 𝑟(𝑦) = 1 

The planning reserve margin (PRM) is a policy constraint directed to- 

wards reliability rather than decarbonization. This ensures enough total 

capacity is held to meet the forecasted peak load with some additional 

headroom, given as 𝑃 𝑅𝑀𝑦. Each resource class contributes towards the 

PRM by a fraction of its capacity. Net qualifying capacity is used for 

thermal resources, a fraction typically close to 1, as well as large hydro. 

Intermittent energy resources like wind and solar have a more complex 

relationship. The cumulative contribution is given by the effective load- 

carrying capacity 𝐸𝐿𝐶𝐶𝑦, a 3-dimensional piecewise linear surface in 

which the contribution declines with increasing penetration of this 

𝑢 𝑢 

if the unit is retired. Unit commitment interfaces with investment by 

(A.2), which only requires units be operational to be committed. 

𝑦 
𝐼𝑈𝑢(𝑦) = 𝐼𝑈 𝑝(𝑦) + (𝐼𝑈 𝑏( ) − 𝐼𝑈 𝑟( )) (A.1) 

variable resources. Similarly, 𝐸𝐿𝐶𝐶𝑦,𝑠 is used for the contribution of 

storage resources. Specifics of the calculation of ELCC can be found 

in [19]. 
𝑢∈𝑈𝑧 

𝑢 𝑢 𝑢 
=1 𝑃 𝑅𝑀𝑦 ≤ 

∑ 
𝐼𝑈𝑦,𝑢𝑃 𝑢𝑁𝑄𝐶𝑢 + 𝐸𝐿𝐶𝐶𝑦,𝑠 

𝐼𝑈 (𝑦) ≥ 𝑣 (𝑦, 𝑤, 𝑡), ∀𝑢 ∈ 𝑈 , 𝑤 ∈ 𝑊 , 𝑡 ∈ 𝑇 (A.2) ℎ∈𝐻𝑧 

𝑢 𝑢 
+𝐸𝐿𝐶𝐶𝑦 + 

∑ 
𝐼𝐶  

𝑦,ℎ 𝑁𝑄𝐶ℎ (A.8) 

Additional capacity of renewables and storage can be installed as continuous variables. For storage, the capacity of storage energy and 

Appendix. Decarbonization planning formulation 𝑤∈𝑊 𝑡∈𝑇 𝑢∈𝑈𝑧 
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𝑠 𝑠 𝑠 

storage power are modeled separately, as they constitute different pieces 

of hardware (inverters and battery cells). 

𝑦 

𝐼𝐶𝑠(𝑦) =𝐼𝐶𝑝(𝑦) + (𝐼𝐶𝑏( ) − 𝐼𝐶𝑟( )) (A.3) 
=1 

𝑦 
𝐼𝐶𝐸𝑠(𝑦) =𝐼𝐶𝐸𝑝(𝑦) +   (𝐼𝐶𝐸𝑏( ) − 𝐼𝐶𝐸𝑟( )) (A.4) 

As previously mentioned, there are three components of cost that are 

optimized over: investment, maintenance, and generation. Each 

modeled year, otherwise referred to as investment interval, is associ- 

ated with a yearly cost for each component, and these yearly costs 

are weighted by a yearly weight 𝜔𝑦. This yearly weight accounts for the 

number of years that each investment interval represents and an 

adjustment for the time value of money from the first year. 
The cost of energy generation in year 𝑦 is 𝑔𝑒𝑛. Each 𝑦 ∈ 𝑌 , 𝑤 ∈ 𝑊 

𝑠 𝑠 𝑠 
=1 

𝑦 

is associated with a cost of generation 𝑔𝑒𝑛(𝑦, 𝑤) according to (14). 
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𝐼𝐶𝑠,𝑦 ⋅ 𝑐
𝑚,𝑃 + 𝐼𝐶𝑘,𝑦𝑐𝑚 + 𝐼𝐶ℎ,𝑦 ⋅ 𝑐𝑚 

𝑦 = (𝐼𝑈𝑢 (𝑦)) ⋅ 𝑐𝑦,𝑠 + (𝐼𝐶𝑠 (𝑦)) ⋅ 𝑐𝑠 + 

 

Due to the intractability in modeling all 8760 h per year, the year 

is represented by a subspace consisting of the set of representative 

periods 𝑊 . Each 𝑤 ∈ 𝑊 is associated with a weight 𝜔𝑤 encoding 

the fraction of the year that it represents. These weights are chosen such 

that 𝑤∈𝑊 𝜔𝑤 × 𝑇 = 8760. Consequently, the annual cost of generation 

is given as: 
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electricity sectors through V2G. Energy Policy 2008;36(9):3578–87. http:// 
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