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ARTICLE INFO ABSTRACT

Keywords: California has committed to ambitious decarbonization targets across multiple sectors, including decarbonizing

Decarbonization pathway the electrical grid by 2045. In addition, the medium- and heavy-duty truck fleets are expected to see rapid

Truck electrification electrification over the next two decades. Considering these two pathways in tandem is critical for ensuring
cost optimality and reliable power system operation. In particular, we examine the potential cost savings of
electrical generation infrastructure by enabling flexible charging and bidirectional charging for these trucks. We
also examine costs adjacent to enabling these services, such as charger upgrades and battery degradation. We

deploy a large mixed-integer decarbonization planning model to quantify the costs associated with the electric

Flexible charging

Bidirectional charging

generation decarbonization pathway. Example scenarios governing truck driving and charging behaviors are
implemented to reveal the sensitivity of temporal driving patterns. Our experiments show that cost savings on
the order of multiple billions of dollars are possible by enabling flexible and bidirectional charging in medium-

and heavy-duty trucks in California.

1. Introduction

With the rapid shift towards renewable energy generation as a
response to climate change, power system planning has become increas-
ingly important. California has set ambitious decarbonization goals
across multiple sectors, including transportation with the California Air
Resources Board’s Advanced Clean Fleet regulation, and electric power
generation with Senate Bill 100 and Senate Bill 350. As a result, these
sectors are expected to change rapidly over the next two decades. It is
crucial that these transitions be planned in tandem to ensure cost-
effectiveness and reliable power system operation.

It is well established that transportation and energy generation are
becoming increasingly linked fields as part of the response to climate
change. Transportation electrification is a key component of the energy
transition, and vehicle charging load is expected to become a large share
of the energy demand as penetration of electric vehicles increases. This
transition is occurring together with the shift from carbon-based to
renewables-based power generation.

Adoption of battery electric vehicles (BEV) is expected to both
increase electricity demand as well as impact the load patterns. A topic
of recent interest has been leveraging the charging flexibility of BEVs
to reduce the impacts on power grid operation. A major component
of this is flexible charging, or V1G, which is the ability to control
vehicle charging, typically to shift charging from a peak time to an
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off-peak time to lower stress on the grid or to adjust the charging power
with respect to pricing and demand response signals from the electric
utilities. Even further is V2G or bi-directional charging. In this case,
vehicles can discharge to the grid, to provide energy shifting or ancillary
services.

It is easier to implement flexible and bidirectional charging in large-
scale for medium- and heavy-duty (MHD) BEV than for light duty (LD)
BEVs. The number of MHD BEVs is projected to be much fewer; in 2035 the
projected LD BEV stock in California is over 15 million, whereas the
MHD BEYV is approximately 400,000. The smaller number of MHD BEVs and
chargers makes it inherently easier to control and coordinate. Si-
multaneously, MHD BEVs are associated with larger battery capacities
than LD BEVs. In turn, the chargers of MHD BEVs are generally more
powerful, on the order of 100 s of kW as opposed to 10 kW or less. MHD
BEV are also likely to be operated with more sophisticated planning
in fleets, and may be less likely to be affected by the randomness
of the driving behaviors. MHD BEV adoption may also be shifted
towards larger logistics companies with the capital to purchase these
vehicles, and operating a large number of vehicles may influence the
incentives of enrolling in flexible charging or V2G operations. These
unique characteristics make MHD BEVs a more enticing candidate than
LD BEVs for pursuing flexible charging and V2G operations.
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Nomenclature

Sets

t, T Index, set of hour

w, W Index, set of representative period

v,Y Index, set of year

uw, U Index, set of thermal unit

s, S Index, set of storage resource

R Index, set of renewable resource

h H Index, set of large hydro resource

z,Z Index, set of balancing authority zone

e€EE Index, set of battery electric vehicle (BEV)
cluster

LL Index, set of line

u, Subset of thermal resources in zone z

S, Subset of storage resources in zone z

R, Subset of renewable resources in zone z

H, Subset of large hydro resources in zone z

Loads and Generation

0.(8) Load in zone z at time t (MW)
vy(t) On/off status of unit u at time t (1, 0)
pu(t) Power output of unit u at time t (MW)
p(t) Power output of renewable resource r at
time t (MW)
pn(t) Power output of large hydro resource h at
time t (MW)
fi1® Flow on line [ at time t (MW)
Az Incidency of line [ on zone z
Cltx Transmission cost of line I ($/MWh)
PF.(t Production factor of renewable resource r
T
at time t
pf‘" Curtailment of renewable resource r (MW)
court Cost of curtailment of resource r ($/MWh)
SUC,(t) Startup cost of unit u at time t ($)
SDCy(t) Shutdown cost of unit u at time t ($)
GCSy, Generation cost slope of unit u ($/MWh)
GCI, Generation cost intercept of unit u ($/hour)

Storage and BEV

v(t) Storage charge (0)/discharge (1) status at
time t

p(8) Storage rate of charge at time t (MW)

pe(t) Storage rate of discharge at time t (MW)

Cs(t) Storage state of charge at time t (MWh)

ng Storage charge efficiency

17;1 Storage discharge efficiency

[N Storage self discharge

Vo(t) MHD BEV charge (0)/discharge (1) status
at time ¢t

p(8) MHD BEV charge at time t (MW)

pe(t) MHD BEYV discharge at time t (MW)

Fe MHD BEV charger power rating (MW)

In this study, the adoption of MHD BEVs is considered exogenous to
the decarbonization planning problem. It is assumed that the MHD BEV
stock over years aligns with the existing California policy requirements,
such as CARB’s Advanced Clean Fleet Regulation [1]. As such, enabling V1G
or V2G services could help avoid installing additional renewable

Ce(t) MHD BEV state of charge at time t (MWh)
C. MHD BEV maximum state of charge (MWh)
C, MHD BEV minimum state of charge (MWh)
tg vt Hour of depot arrival
tgrive Hour of drive start
Cdepot )
e State of charge at depot arrival (MWh)
C‘Z”"”" State of charge at drive start (MWh)
Investment
1U,(y) Install status of unit u in year y
1Up(y) Planned install status of unit u in year y
1 501) Build flag for unit u in year y
1U () Retirement flag for unit u in year y
1C4(y) Installed capacity of storage s in year y
MW)

ICr(y) Planned capacity of storage s in year y
(MW)

1C*(y) Built capacity of storage s in year y (MW)

ICE4(y) Installed energy capacity of storage s in year
y (MWh)

ICE?(y) Planned energy capacity of storage s in year
¥ (MWh)

1 CE”(S)’) Built energy capacity of storage s in year y
(MWh)

1C.(y) Installed capacity of renewable r in year y
MW)

ICry) Planned capacity of renewable r in year y
(MW)

1 Cb,(J’) Built capacity of renewable r in year y (MW)

C‘Jg,en Generation costs in year y ($)

oy Maintenance costs in year y ($)

ey Investment costs in year y ($)

generation or storage capacity with relatively little added cost and
difficulty.

A great deal of literature has focused on the economic benefit of VIG
and V2G. However, the majority of these works have focused on short-
term costs and the economic benefit to the BEV owner. In [2], the
potential revenue for BEV owners in California is examined while
paying attention to future grid behavior, including wide adoption of
BEVs and future grid changes. The value of BEVs has been examined
for both managing load, including V2G [3] and peak shaving [4] and for
providing ancillary services, like frequency regulation [5].

A number of works have examined V1G and V2G from the pol-
icy perspective. These works address issues such as challenges with

adoption [6], participation, [7] value streams for V1G and V2G ser-
vices [8], and potential for CO2 reduction and increased renewable
penetration [9]. Several works have focused on the implementation
of V2@, specifically considering the aggregation and dispatch of these
resources [10], including considerations for battery degradation [11].

Somewhat less work has been done to quantify the economic benefit
of enabling VIG and V2G services from the perspective of power
system planning. These works generally optimize investment planning
alongside dispatch and BEV charging scheduling to provide lower in-
frastructure costs and avoid buildout of generation and energy storage
capacity. Ramirez et al. [12] present a co-optimization of power system

planning with dispatch of flexible charging with LD BEVs with a UK-
based test system. Yao et al. [13], Suski et al. [14], Hajebrahimi
et al. [15], and Gunkel et al. [16] present similar co-optimizations with
case studies in China, the Maldives, Canada, and the EU, respectively.
In [17], an analysis of the potential savings of V1G and V2G, including
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ancillary services, is analyzed for LD BEVs in California. Xu et al. [18]
look at the potential emissions reductions of these services, including
life-cycle analysis of BEVs.

Similarly, most works have focused on LD BEVs, rather than MHD
BEV. As discussed above, these groups have rather distinct behavior,
which affects both their theoretical value and practical implementabil-
ity. In this work, we focus on this gap in the literature, and examine the
value of V1G and V2G in California’s decarbonization pathway,
specifically with respect to electrification of medium- and heavy-duty
vehicles.

In this paper, we examine the potential savings and implicit costs of
V1G and V2G services through the lens of California’s energy transi- tion
investment planning. We develop a mixed-integer linear program
(MILP) decarbonization planning model incorporating a clustered rep-
resentation of MHD BEYV based on the timing of charging and driving.
A surrogate Lagrangian relaxation-based technique is implemented to
provide computational tractability of the large MILP model. The pri-
mary contribution of this paper is an empirical study of the potential
economic benefits of V1G and V2G to California’s power system decar-
bonization path. We analyze the results of the three charging regimes
under two MHD BEYV driving scenarios, and show a range of potential
savings as high as 16 billion dollars. We also examine some of the costs
related to charging services, particularly the cost of battery degradation
and the cost of charging infrastructure. This elucidates the balance
between the benefits of V1G and V2G and the implicit costs.

The remainder of the paper will be organized as follows. Section 2
will formulate the power system planning model. Section 3 will de-
scribe the methodology used to solve the model. Section 4 will discuss
results and policy implications. Section 5 will present the conclusions.

2. Technical method

In this section, we formulate the planning problem as an integer
linear program optimization over two timescales. Unit commitment and
economic dispatch is modeled hourly by scheduling generation to
satisfy load and ancillary service requirements. Investment is modeled

at the yearly timescale, and governs the construction and retirement of
energy resources. The two timescales are linked by several constraints,
including policy constraints like emissions limits, and constraints gov-
erning the operation of resources based on their investment status.
Section 2.1 formulates the hourly unit commitment model. The unit
commitment model includes the integration of MHD BEV. The formula-
tion of policy and investment will be left to Appendix, which integrates
the unit commitment and dispatch model into the planning model. At
a high level, the goal of the integrated planning model is to minimize
the c%s{Fs of operation, m?intenance, and investment, given as:

O= Copn + [+ [, (@)

yeY

2.1. Unit commitment

Unit commitment (UC) is modeled at hourly frequency over a set of

hours T . In general, unit commitment variables are indexed temporally

by a tuple (y, w, t) of year, week, and time. However, when describing unit
commitment alone, only the last index is relevant, because we do not
yet consider investment and policy constraints which link weeks and
years. For notational brevity, we will hide the axis of year and week.
That is, for this subsection, p,(y,w,t) — py(t) for an arbitrary

y,w. Finally, we will define the set of all generation and transmission
constraints discussed in this section as (2.

Representative periods w are treated as circular or cyclical. In essence,
the last hour in T links back to the first hour, and all con- straints
linking hours are enforced accordingly. This cyclical represen- tation is
modeled via the modulo operator 7(t) = mod (t -1+ T,T). For
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2.1.1. Generation resources

The generation fleet consists of five classes of generation resources,
each with distinct operational characteristics: thermal units, renewable
resources, firm resources, storage resources, and large hydro resources.
These classes and relevant constraints will be briefly discussed in this
section. The full formulation of these generation constraints can be
found in [19]. Flexible MHD BEV charging is modeled as a demand-side
resource, and will be discussed in detail.
Thermal Units. Thermal units include a variety of combustion-based
power plants, such as coal-fired power plants, combined-cycle gas tur-
bines, peakers, steam turbines, and aeroderivative combustion turbines,
each with unique technical operating characteristics. These resources are
dispatchable, and the commitment of thermal units is modeled as binary.
The output p,,(t) of resource u is thus constrained by minimum
and maximum output based on commitment v,(t):

P () Spu(t)SPv,(t), VUuEU,tET, )

where P, and P_u are the minimum and maximum power levels for unit
u. Thermal units are further constrained by minimum uptime and
downtime, startup and shutdown limits, and ramp limits.

Renewable and Firm Resources. Renewable resources consist of solar
and wind farms, as well as aggregated behind-the-meter solar photo-
voltaic systems. Firm resources include nuclear, small hydro, biofuel,
geothermal, and combined heat and power. Firm resources are lumped
with renewables as they have generally similar properties. Each re-
source generates according to the product of the installed capacity
IC,(y), at an arbitrary year, and an hourly factor P F,.(t) accounting for
meteorological conditions associated with renewable generation, less
any curtailment. Thus, the generation of these resources is given by:

pr(8) = IC, - PF,(t) - por(t), Vr € Rt ET. )

The power output of firm resources is not subject to hourly fluctuations.
However, it can experience seasonal variations, such as maintenance-
related changes for nuclear power or changes in stream flow for small
hydroelectric systems. Still, they can be associated with an hourly
capacity factor. Firm resources are not curtailable, so pfrrf(t) = 0 for

those resources.

Large Hydro Units. Unlike small hydro, large hydro units are dispatch-
able hydropower resources. The output of large hydro units pp(t) is
subject to ramp limits, minimum and maximum output constraints, and
an energy budget constraint.

Storage Resources. Storage resources include both pumped hydro
storage and stationary battery storage. These resources are modeled
using a binary indicator of charge or discharge status in order to enforce
minimum charge/discharge duration constraints for the case of
pumped hydro. This binary also prevents simultaneous discharge and
charge. These resources are characterized by their power capacity

(MW) and energy capacity (MWh). These resources are accordingly
subject to charge and discharge limits and state of charge (SoC) limits.
It is necessary to track the state of charge for these units, including
losses due to efficiency:

€ (8)= [(1-v )pe(O)° - v p¢(6) =] x 1 hour +

s S s s S's d

ns

constraints not linking hours, only the regular period is enforced and
T(t) =t.



O. Andersbh e184)Cy(t(t - 1)),Vs €S, t €T “4)

Flexible MHD BEV Charging. MHD BEV with flexible or bidirectional
charging capability, is modeled similarly to storage resources, with the
major exception that a large amount of discharge happens exogenously
through driving, during which these resources are not connected to the
power grid. To integrate MHD BEYV into the planning framework, these
resources are modeled as dispatchable by a central system operator,
rather than a virtual power plant controlled by price signals. First, we
describe how the vehicles are clustered, then how these clusters are
controlled.

Each vehicle is associated with a charge start time, charge end
time, starting state-of-charge, and ending state-of-charge. It is assumed

Applied Energy 377 (2025) 124450
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that the vehicle is plugged in and available for charging for the entire
duration that it is at the depot. These values essentially determine the
vehicles charging needs, as well as potential V2G provisions. Modeling
vehicles individually would make the problem computationally in-

tractable; thus, vehiclesg are grouped by their start and end hour to f
vﬁtuaﬁ) powélr pf/ants. T%e pogwei}%nd e%ergy capac?ty parame?ers oto t%lg

clusters are obtained as the summation of the individual parameters of

the MHD BEVs in the cluster. MHD BEVs are modeled as a demand-side

resource.

The control of MHD BEV clusters within optimization is operational- ized
by three variables: state of charge C,(t), charge power pc [t), and
discharge power p¢ (t). These three variables are subject to limits based
on the capacity of the cluster, as well as the timing at which the cluster
is connected to the grid at the depot for charging vs disconnected
from the grid for driving. Discharge through driving is exogenous, and
pe(t) = 0 when the vehicle is not at the depot. If V2G is not considered,
discharge is not allowed and p4(¢) =0, Vt€T.

The definition of a period T allows for multiple days to be modeled
consecutively. We assume a typical charge event happens each day. To
account for this, we define the set of days in the period D, where
|D| = |T |24 denotes the number of days in the period. We also define
a time wrap t4, to account for charging which occurs overnight. For
each day, the variable state of charge at the time of depot arrival and

departure is set equal to the input state of charge at the start (5) and
end of charging (6).

C (tdevot + d - 24) = Cdevot, ¥d € D, e € E ©)
e e e

Coltdrive + d - 24) = Ctrive, yd € D, e € E (©)
e e

£ = 24 if oot > térive else O %)

While the vehicle is at the depot, bounds of charge (8) and discharge
rate (9), and bounds on state of charge are enforced (10). State of charge
is also tracked with provisions for charger efficiency (11).
0<= pela(t+d - 24)) <= (1- ()P,

Ve € E,d € D,t € [tdevor, gdrive + 4] ®)

0<= pifc(t +d - 24)) <= V()P
Ve € E,d € D, t € [tdevor tdrive + 2] ©)

C <=C (t(t)) <= €, Ve €EE,d € D,t € [tdevot, tdrive + t4] (10)
e e e e e e

Cet(t+1) = Ce(z(t)) + pet(t)ne - p (z(O))n?,
e e e e
Ve € E,d € D,t € [tdepot, gdrive + ¢4 — 1] an

e e e

2.1.2. Zones and lines

A zonal unit commitment model is used to represent the Western In-
terconnection. The model is directed towards California’s decarboniza-
ton goals, and this is reflected in the zonal modeling. The formulation
presented here is easily adaptable to other zones. As the main balancing
authority in California, the model focuses on the California Independent
System Operator (CAISO), and additionally includes smaller balancing
authorities in California (LADWP, IID, BANC). Balancing authorities
in the Northwest and Southwest are represented by two aggregations.
Transmission corridors between zones are represented using a transport
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2.1.3. Load and reserve requirements
Zonal power balance constraints ensure that the generation and net

lige flows t the load. Each e must sg’sfy these constraints as:
p®+ [P@A-p@®+ p@B+ p@
i s s T h

u€ely, SES, TER; heH,

> >
+  Afi) =08+ [pe(t) - pi(8)], (12)

e e
leL e€E,

CAISO must additionally satisfy the requirement for ancillary services.
These products ensure reliable grid operation, and include frequency
response, spinning reserve, regulation up and down, and load follow-
ing up and down. The ancillary service requirements account for the
increasing penetration of renewable resources, and are derived in [20].

2.1.4. Unit commitment objective

The unit commitment objective function (13) is to minimize the total
cost of fuel, startup and shutdown, power transmission, and renewable
curtailment:

min [Jgen (13)
o ==A
oo = SUC,(t) + SDCy(t)
teT
}
+ (GCI, - vyu(t) + GCS,, - pyu(t)) x 1 hour (14)

2> 2=
+[ fit) - e+

teT teT

ceurt - peurt(t)] x 1 hour.

3. Solution methodology

As formulated in the previous section, decarbonization is a mixed-
integer linear program.

min {O}
sit.2,05)-(11), (12)Vy €Y, we W, (15)
(A1) = (A5), (A.6) — (A8) Yy €Y

Although commercial MILP solvers improve year over year, they still
suffer from the issue of combinatorial complexity. As the number of
binary variables increases, the solution time increases superlinearly.
Modeling hundreds of thermal units over multiple years each with
hundreds of hours quickly becomes impossible to solve in reasonable
CPU time.

To achieve computational tractability, a common approach in the

power system planning is to relax the binary variables, often in tan-
dem with clustering thermal units together and approximating their

dispatch. This greatly improves the computation time of planning
problems, albeit at the loss of model rigor. Instead, we solve the model

using surrogate Lagrangian relaxation. Although the development of
this solution technique is not a contribution of this paper, it is relevant

as it enables solving the model as a MILP in computation efficiency that
significantly outperforms the best commercial solvers. The approach is
developed in detail in [19], and an abridged version is presented here for
compactness.

The key to this approach is to relax a difficult constraint, in our case
the zonal power balance, and to add the violation of that constraint into

the objective function alongside Lagrangian multipliers A. The con-
{Eaint violations of zhe zonal power balance are giV@ by r,(y,w,t) =
wey Puywot) + “ses [P w, ) - p w0 + g pr(y,wiE) +

z

>



motekrimwhith the line flows f;(t) is a decision variable. This approach

greatly simplifies the computational complexity associated with an
optimal power flow formulation, while still effectively representing the

system interconnections. Line flow can be positive or negative, where
negative flow means flow opposite of the line reference direction. Each
line is associated with two zones and a reference direction, and this is
encoded in A;,. If line [ is not incident on node z then 4, , is 0, and 4, , is
+1 or -1 if [ goes to or from z, respectively. Line flows are additionally
subject to transmission line limits.

ner Pr(y, W, t) z S S Applied Energy 37% (2025) 124450

z
+  ep A f1(y,w, t) - Gy, w,t) . Ris a vector of constraint violations

where R = [r,(y,w,t),Vz € Z,y € Y,w € W,t € T]. The resulting
optimization is referred to as the dual problem.

min {O + 4 - R}
st.0,(5-(11)VyeY,wew, (16)
(A1) = (A5), (A.6) — (A8)Vy €Y
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The optimization (16) is repeatedly solved while updating the multi-
pliers A. The dual problem (16) is already easier to solve than the one in
(15). In addition, it becomes possible to solve only a portion of all
variables in each iteration while fixing the other variables to their most
recent solution, and update the multipliers along the subgradient. This
both improves iteration time and improves convergence of 4, a known
drawback to the traditional Lagrangian relaxation technique.

It is unlikely, and unnecessary, that the multipliers converge until
constraint violations are identically zero. Instead, when the multipliers
have converged such that the violations are sufficiently low, return to
the primal problem (15) and solve while fixing the majority of the binary
variables to the final value in the dual problem. This provides a near-
optimal solution to the primal problem in orders-of-magnitude less time
than solving the primal problem directly.

4. Numerical study

This section will quantify the impact of V1G and V2G on Decar-
bonization planning. Section 4.1 will introduce two MHD BEYV driving
and charging datasets and processing them into planning model inputs.
Then, we will present the results of the study, both in terms of cost
savings and the overall impact on power system investment. Finally,

we will examine some of the relevant costs, namely battery degradation
and charging infrastructure, associated with V1G and V2G to draw
conclusions about the value of adopting these services.

The decarbonization model is a zonal representation of the Western
Interconnection. The model focuses on CAISO, but also represents 3
small balancing authorities in California (LADWP, BANC, IID) and 2 ag-
gregations of balancing authorities outside California in the Northwest
and Southwest. Data is primarily taken from the RESOLVE implementa- tion
published by the California Public Utilities Commission [21]. Rep-
resentative periods are selected using the sampling method in [22]. We
use 10 representative periods of 3-day length. Investment is modeled in
5-year frequency from 2025 through 2045. Financing is considered
through 2065.

4.1. Specifications for MHD BEV

Accurate modeling of V1G and V2G services requires projections of
both the number of MHD BEVs and the operating characteristics of
each vehicle, such as drive duration and miles traveled. While datasets
exist on the driving and parking characteristics of gas and diesel trucks,
it is not known if the use cases of MHD BEV will be the same. To
address this, we examine the impact of V1G and V2G MHD BEVs
utilizing the simulated trip patterns in the HEVI-LOAD tool and we build
an additional scenario informed by the temporal patterns extracted from
a historical truck driving dataset, FleetDNA [23]. These scenarios

concern inputs to the model of battery limits P, C,, C . and
operational characteristics tdepot, tdrive (depot (drive,

e e e e

The two scenarios share the same technical underpinnings, such as
MHD BEYV population, charger size, and kWh/mile driving efficiency.
At the aggregated level, neither scenario considers any limitations on
availability of charging infrastructure. The principle difference between
the two scenarios is the temporal distribution of charging availability, as
demonstrated by the comparison of drive start times in Fig. 1. By
presenting both scenarios, it is possible to get a look at a larger picture
of the range in potential cost savings of V1G and V2G and investigate
the sensitivity with respect to the trip temporal patterns. These scenarios
also raise additional questions regarding the total cost and savings
associated with enabling these services.

The HEVI-LOAD scenario (Scenario HL) relies on the results of the
HEVI-LOAD tool, which [24] is an agent-based driving and charg- ing
simulation tool for MHD zero-emission vehicles (ZEVs) developed by
the Lawrence Berkeley National Laboratory in collaboration with the
California Energy Commission (CEC). HEVI-LOAD takes multiple data
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Scenario HL
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Fig. 1. Comparison of drive start times between two scenarios.
Table 1
MHD BEV technical assumptions.
Charger size Capacity Efficiency
(kW) (kWh) (kWh/mile)
Class 2-3 150 100 0.6
Class 46 150 300 1.05
Class 7 150 400 1.1
Class 8 150 600 1.8

and charging/refueling behaviors of the future MHD ZEVs. Individual
trucks are referred to as agents whose behaviors are constructed and
calibrated utilizing multiple data sources, such as adoption projec- tion,
travel demand, telematics data, power-train specifications, etc. Trip
origin and destinations are provided at the traffic analysis zones (TAZ)
level for better geospatial granularities. The overall trip statistics in terms
of vehicle miles traveled (VMT), energy consumption rate (kWh/mile),
and vehicle stock by segment have been validated with existing state
policies. HEVI-LOAD creates a virtual environment that replicates real-
world transportation scenarios with fine-grained rep- resentation of
electrification scenarios. However, the high geospatial resolution that
HEVI-LOAD charging profiles provide are obfuscated in this study to
match the load zones as we consider only CAISO-level load.

The additional scenario with varied temporal patterns (Scenario FD)
is informed by the Fleet DNA dataset. This dataset is composed of

thousands of historical drives across a variety of vehicle, classes,
vocations, and days. Each entry has several hundred associated fields,

sources as input and resolves the integrated driving, parking,



butifies-outparposes, the key information extracted is drive start time,
drive end time, and VMT. Then, for each drive, the efficiency mapping
in Table 1 is used to convert VMT to kWh consumption. We assume
that each vehicle charges to 100% before departing. The SoC at depot
arrival can be calculated as the difference between the capacity and
consumption. This dataset is combined with the California Energy
Commission’s 2023 AATE3 truck adoption projections [25]. Similarly
to the approach in [26], we bootstrap from the Fleet DNA dataset
according to the population projections by class and vocation. There
are several key assumptions. Of course, bootstrapping assumes that
the distribution of drive timing and distance present in Fleet DNA is
the same as future MHD BEV drives in California. We assume that
every vehicle drives and charges every day. It is also assumed that all
charging occurs at the depot and there is no en-route charging.

As previously mentioned, modeling each vehicle individually would
make computations intractable. For both scenarios, it is necessary to
cluster the individual vehicles, and the same approach is used. We
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assume that if the vehicle is not driving, it is plugged in at the depot, and
vice-versa. As dispatch is modeled hourly, vehicle charge start times are
rounded to the next hour and vehicle charge end times are rounded
to the previous hour. This rounding is to prevent an overestimation in
the time flexibility of vehicles. First, clusters are generated by
enumerating all possible combinations of start and end hour. Each
vehicle is assigned to a cluster. If the cluster size accounts for less than
0.1% of all vehicles, this cluster is not modeled with V1G or V2G and
left with a fixed charging profile, as this cluster would increase the
associated complexity of the problem while only mildly impacting the
solution due to the small number of associated controlled vehicles. This
results in 87 clusters for Scenario HL, comprising in total 92% of all
vehicles and 168 clusters for Scenario FD, comprising in total 94% of
all vehicles. Within these clusters, we assume 100% participation rate
of trucks in V1G and V2G services.

As aresult of the assumptions made in Scenario FD, and the method-
ology of Scenario HL, the two scenarios have some key differences in
addition to the trips’ temporal patterns. These differences are intrinsi-
cally related to the construction of these scenarios, and the distributions
of charging availability cannot be separated from these charging as-
sumptions. In Scenario HL, approximately 1 out of 3 vehicles charge
each day, as many vehicles make short trips and do not need to charge.
Scenario FD does not account for this, and charges each vehicle daily.
However, because the underlying assumptions on VMT per day and
truck efficiency are similar, the total daily MHD BEV load is extremely
similar, within 1%. This means in Scenario FD, the vehicles have
considerably higher starting SoC, as well as a much larger number of
vehicles connected resulting in considerably higher total power and
energy capacity. The results will reflect this, and the ensuing discussion
will consider both the pros and cons of this detail in terms of cost.

We consider 3 charging regimes for both scenarios: a baseline case
in which all charging is fixed, V1G, and V2G. As a reminder, the V1G
scenario implements flexible charging, and the V2G scenario imple-
ments bi-directional charging. For Scenario HL, fixed charging profiles
are provided by HEVI-LOAD. For Scenario FD, the fixed charging
profile is generated using the assumption that 50% of vehicles charge
immediately at full power and 50% charge with the lowest power to
fully charge by departure. All chargers are assumed to have 150 kW
rating. Although it may be likely that Class 7 and 8 vehicles would
be associated higher charger ratings, due to their increased battery
capacities [27], this does not likely have a large impact from the
perspective of aggregated dispatch. For instance, if four Class 8 vehicles
shared a single 600 kW charger, the aggregated cluster would ‘see’ a
rating of 600 kW and a capacity of 2400 kWh. If these same vehicles
had smaller, individual 150 kW chargers, the aggregated cluster would
be the same. As such, it may be considered that chargers are on average
rated at 150 kW. At most, it may be expected that this assumption may
slightly underestimate the cost savings presented in the next section.

4.2. Results

The key consideration related to V1G and V2G with respect to decar-
bonization planning is quantifying how enabling these services lower
the cost of power system decarbonization through lower investment, and
potentially lower operation costs. In all scenarios and regimes, the
emissions constraints are binding, so the advantage of these services
is economic, not environmental. Fig. 2 shows the cumulative added
capacity in year 2045. In general, V1G and V2G are associated with
lower build of renewable and storage resources. The duration of energy
storage are also impacted, with fixed, V1G, and V2G having durations
of 8.0, 7.5, and 7.4 h for Scenario HL and 7.9, 7.7, and 7.3 for Scenario
FD. For context, the fixed peak MHD BEV charging load in 2025 is just
0.3% of the peak gross load, but rapid adoption projections mean that
this fraction grows to 3% by 2035.

By enabling V1G and V2G services, it is possible to avoid some of
the installation of renewable and storage capacity that are needed in the
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Fig. 2. Comparison of CAISO cumulative installed resources in 2045.

base scenario to meet emissions targets. Accordingly, there are slightly
less retirements of thermal units, which are kept online to meet the
planning reserve margin.

The mechanism by which these services lower investment costs is
straightforward. Fig. 3 shows the gross load for an exemplary day
in 2035 under fixed charging, V1G, and V2G. Load is shifted from hours
with lower renewable generation to hours with higher renewable
generation. In the case of V2G, MHD BEV are able to provide power
injections at critical hours to further reduce the need for energy storage.
Most MHD BEYV spend the bulk of the day driving, and thus are unable
to charge when there would be most excess generation. As such, charging
is mostly correlated to periods with lower variable renewable
generation, and the cost savings comes mostly as avoided storage
investment. This behavior is demonstrated by the visualization of net
load for each regime in Fig. 4. V2G flattens the net load peak in the early
morning, and recovers energy through the afternoon by charging
batteries of stationary vehicles when renewable generation is plentiful.
Although V2G is effective at reducing the early morning net load peak,
the early evening load shape is mostly unchanged. This is primarily due
both to the availability of vehicles for charging. Although vehicles are
at the depot between 5 pm and 8 pm, these vehicles then must begin
driving earlier in the morning. If they were to discharge significantly,
they would have to charge again overnight, when no solar generation
exists and net load is still relatively high. On the other hand, many
vehicles plugged in between 5 am and 8 am will remain plugged in for
the next several hours, and can charge with surplus morning solar. In
this sense, it would be more advantageous for driving schedules to shift
to allow for more charging using surplus solar generation, and explains
why the model prefers to reduce the early morning peak than the early
evening peak.

Fig. 5 shows the MHD BEV load for each hour, averaged over the
year 2035. The shape of V1G and V2G load is broadly similar, with the
key difference that V2G is providing power to the grid for early morning
hours, between 4am and 8am, then charging quickly between 8am and
10am, when the bulk of vehicles are leaving. There is a large spike
in charging load in the morning, as other system loads are generally
lower and solar generation ramps up. This spike is even larger for V2G,
as the vehicles provide power in the very early morning.

The total costs as well as costs broken down by component are
shown in Table 2. CA costs refers to the cost of operation, maintenance,
and investment for CAISO only. As a resulted of the avoided investment
in storage, there are substantially lower investment and maintenance
costs. These services also help lower operational costs by lowering the
use of thermal units. Scenario HL V1G and V2G present 3.5% and 4.6%
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Fig. 5. Scenario FD, MHD BEV hourly load averaged over year 2035.

savings over fixed charging in California costs, respectively. Scenario

FD V1G and V2G present 1.8% and 3.0% savings in California costs.
The cost savings of V1G and V2G over fixed charging are shown per

vehicle, per year in Table 3. These costs are not discounted for the time
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Table 2
Costs, billions 20258$.

Scenario HL Scenario FD

Fixed V1G V2G Fixed V1G V2G
Total Cost 397.5 384.4 381.0 401.8 397.1 391.8
CA Cost 247.8 239.2 236.3 251.7 247.1 2442
Maint. Cost 67.0 65.8 65.9 67.2 67.0 67.1
Inv. Cost 152.3 145.5 142.5 156.0 151.9 149.1
CA Op. Cost 28.5 279 279 284 28.2 28.0
Table 3
Levelized cost savings over fixed charging ($ per vehicle-year, Non-discounted).
2025 2030 2035 2040 2045
HL V1G 2765 1337 1243 1378 997
HL V2G 4317 1840 1510 1822 1350
FD VIG 871 592 431 457 724
FD V2G 1277 1204 933 1005 999

value of money. In the worst case, V1G saves a few hundred dollars per
vehicle per year. In the best case, V2G saves several thousand dollars
for each vehicle each year.

The exact savings presented here should not be interpreted as guar-
antees, but rather as indicators of the relative value of flexible charging
services. In general, there is a great deal of uncertainty associated with
long term planning models, due to the reliance on projections of future
load, technology costs, and so on. This is compounded by the fact that
this planning model is reliant both on the adoption of MHD BEV as well
as the usage characteristics, including the assumption that usage patterns
of MHD BEVs will be similar to traditional MHD trucks. We control
for these uncertainties as much as possible by utilizing inputs adopted
by California state commissions and presenting two scenarios
concerning the temporal distribution of driving.

Finally, it is necessary to note that these results depend on the
participation of fleet operators and individual vehicle owners. Effective
participation rates of 92% and 94% may not be realized, in which case
the potential savings would be lower. Participation is a problem that
spans sociology, economics, and engineering. The savings presented in
Table 3 could be passed to owners in the form of incentives or rebates
to encourage participation. Nevertheless, topics including participation
and practical implementation of V1G and V2G are key to actualizing
these potential savings, and are best addressed by dedicated studies.

4.3. Discussion

The decision to enable V1G and V2G services does not exist in a
vacuum, and it is crucial to quantify potential costs related to these ser-
vices. The main two considerations are the cost of battery degradation
and the cost of charging infrastructure.

4.3.1. Degradation
Battery degradation is quantified using the BLAST model [28]. This
model takes an input SoC time series and returns a total degradation
%. We run this model for each 5 year investment interval. The goal is
to understand how V1G and V2G services impact battery degradation
over default operation. Understanding how the batteries degrade over
this interval helps evaluate the overall cost and value of these services.
Each cluster of MHD BEV is evaluated for degradation indepen-
dently. The SoC time series is created by stacking the MHD BEV SoC
time series of each representative period by their respective weights to
make a yearly time series, then stacking that time series to obtain a
5-year-long time series corresponding to the investment frequency. We
calculate the degradation given 3 battery chemistries (lithium—iron—
phosphate, nickel—cobalt—aluminium, and nickel-manganese—cobalt)
and take the average as the final degradation %. These chemistries
were selected as they reflect likely candidate chemistries for MHD
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Table 4
Battery degradation.
Fixed VIG V2G
Degradation Cost (Billions) 7.5 7.6 7.7
Residual Discharge Capacity % 81.9 81.7 81.4

BEV battery chemistries, and have been used in early commercially-
available options [29,30]. This percentage can then be converted to a
total degraded kWh given the kWh capacity of each cluster.

Degradation cost is estimated by making the assumption that, at the
end of the interval, batteries can be refurbished by replacement of
cells to restore battery health. Thus, cost is linear with degradation. Of
course, the cost of battery degradation is more complex than this, but
this method provides an effective way of comparing the relative
degradation between BEV charging regimes and scenarios. Given the
percentage of degraded capacity capged and the $kW h cost of cells
Ccell » the degradation cost associated with BEV battery operation for a
given year is estimated as:

cap%9 - P.
eek

We assume a battery refurbishment cost of $100/kWh. In 2022, the
cost of battery packs reached $150/kWh [31]. The cost of battery packs
are expected to drop further, with projections covering a significant
range. [32] predicts grid stationary battery costs will see a reduction
of 16% to 47% by 2030. [33] estimates a lithium-ion battery pack cost
of 728/kWh (in 2022 $) by 2030. Thus, $100/kWh should be fairly
conservative.

We examine the degradation for the Scenario FD. We present degra-
dation for a base scenario, VIG, and V2G. Scenario FD is a good
candidate for quantifying degradation because each vehicle is con-
trolled. There is not a rigorous way of measuring degradation in
Scenario HL, because during the optimization, roughly 1 in 3 vehicles
charge each night. From the vehicle perspective, some MHD BEV are
charging every night and some are charging less frequently. From the
perspective of the grid, it does not matter which vehicles are plugging
in. As a consequence, this does not permit rigorous tracking of each
vehicle’s SoC.

The cost of degradation as well as the average relative battery ca-
pacity at the end of each 5-year interval is shown in Table 4. The impact
of degradation is relatively mild. The vast majority of the degradation
seems to be due to aging. Batteries experience on average an extra 0.2%
of degradation for V1G compared to the fixed charging case, and an
additional 0.3% again for V2G. The critical consideration is the increase
in degradation costs over fixed charging. Operating vehicles will
necessarily incur degradation, but it is critical to understand what costs
are incurred by V1G and V2G services. The cost associated with
degradation is increased by 0.1 billion USD for VIG and 0.2 billion
USD for V2G, as compared to fixed charging. Although these costs are
considerable, they are an order of magnitude less than the potential
savings. As such, increased degradation is a relevant consideration, but
it is not a critical risk to the business case for V1G and V2G services.

[deg :wy * Ceell *

a7

4.3.2. Cost of chargers
In terms of BEV supply equipment costs, the most relevant factors
are the cost of ensuring vehicles have sufficient access to chargers, and
the cost of enabling bidirectional charging over unidirectional charging.
At time of writing, there are very limited number of V2G ready
chargers on the market. Bidirectional chargers are substantially more
expensive that unidirectional chargers, but it is difficult to estimate how
much of that cost difference is driven by the lack of commercialization.
While numerous studies examine the cost of BEV supply equipment,
there are no concrete comparisons of the cost of bidirectional and
unidirectional MHD BEV supply equipment. To estimate the potential
cost of bidirectional chargers vs unidirectional chargers, we consider

Applied Energy 377 (2025) 124450

two elements which are necessary for enabling bidirectional charging.
The first is an islanding switch, which can be opened to prevent energy
flowing into lines, for example, when lines must be serviced. The cost

of this switch is likely negligible if it is installed at the time that the
charging depot is constructed. The other cost is an inverter required to
convert the DC current of the MHD BEV battery to AC used by the grid.
We estimate this cost using the cost of solar inverters, approximately
$50 per kW [34]. The total cost of this equipment adds $1.1B to the V2G
cost of Scenario HL in Table 2. These costs reduce substantially the
potential savings of V2G. We should emphasize that the upcharge
associated with V2G is purely speculative. Depending on the cost of
bidirectional equipment, V2G could pose a better or worse business
case.

The two scenarios are generated under different basic charging
behavior assumptions, and these assumptions impact the cost related to
charging in a major way. Scenario HL is an agent-based approach, in
which vehicles only charge when necessary. As such, approximately 1
in 3 vehicles charge on a given day, and the number of chargers can
be provided accordingly. A key assumption of Scenario FD is that each
vehicle charges each day. We consider two cases which bookend the
spectrum on which this could be enabled. The first is providing every
vehicle in Scenario FD with a dedicated charger. The cost of a 150 kW
DC fast charger is estimated at $142,200 for hardware and installation
[35]. For each investment interval, we calculate the cost of installing
a dedicated charger for each vehicle in Scenario FD and installing only
the necessary chargers in Scenario HL. In Scenario HL, we assume that
a dedicated charger is installed for each vehicle charg- ing in a given
day. In total, the cost of chargers in Scenario HL would be $20.6B and
$61.6B for Scenario FD. The second is providing only the necessary
number of chargers. An emerging concept is to connect multiple
vehicles to a single charger. If a charger is rated at 150 kW, it may be
able to connect to multiple vehicles simultaneously and provide either
lower power to all, or full power to individual vehicles at different
times. This service could be enabled without performing substantial
hardware upgrades, only by providing some additional switchgear and
plugs. If we take inspiration from this, we can suggest that in Scenario
FD, the number of chargers needed is proportional to the peak hourly
charging demand. This brings the number of necessary chargers down
substantially, to approximately 1 charger per 4 vehicles in most years.
Accordingly, the cost of installing chargers drops to
$14.5B. Although installing chargers is essential with or without V1G
and V2G, the range in potential charger costs is extremely large, and is
bigger than the potential savings associated with these services. Because
of this, minimizing the number of necessary chargers is a very relevant
consideration alongside lowering chargers costs with V1G and V2G.

5. Conclusion

In this paper, we examined the potential costs and savings of
enabling V1G and V2G services for MHD BEVs in California. Using a
large scale MILP model, we calculate the savings of these services from
the perspective of a central power system planner. Two scenarios are
used to understand the driving and charging behavior of vehicles. We
also estimate costs linked to these services. We show that battery
degradation is not insignificant, but is associated with costs an order of
magnitude lower than potential savings. We estimate that the cost of
enabling bidirectional charging could be a very relevant element, and
could weaken the business case of V2G over V1G. Carefully identifying
the number of necessary chargers is of utmost importance, as costs
associated with chargers could be very large. This study is a high level
planning assessment. Future studies may be more granular, and look at
the economic benefits to MHD BEV fleet owners and aggregators.
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Appendix. Decarbonization planning formulation

Decarbonization planning folds the unit commitment formulation
into a multi-year model allowing for the build and retirement of
resources while enforcing policy constraints related to emissions and
renewable generation. The goal is to identify the investment strategy
which, while meeting all constraints, minimizes the cost of energy
generation, fleet maintenance, and capital costs of constructing new
capacity.

The present study focuses on California’s decarbonization goals, so
development of new resources is restricted to CAISO. Addition

of capacity to match with load growth in other zones is exogenous.

However, the formulation described here is applicable to multi-zone
investment. Candidate resources include various wind, solar, energy
storage, geothermal, and biomass projects, as well as new lower emis-
sion power plants. Economic retirement is also available for existing
thermal power plants.

First, we formulate the investment variables of each resource class,
and demonstrate how investment interfaces with dispatch constraints.
For thermal units, U, (y) is a binary indicator of a unit being oper-

ational (1) or not (0). New construction and retirement are modeled
separately, with JU?(y) = 1 if the unit is built in year y and IU(y) = 1

u u
if the unit is retired. Unit commitment interfaces with investment by
(A.2), which only requires units be operational to be committed.

1U.(y) = IUP(y) + z(IU b(0) - 1U (D)) (A1)
u a u u
IU )zv (ywt), VueU welW,teT (A2)

u u

Additional capacity of renewables and storage can be installed as
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Storage investment interfaces with dispatch through the bounds on SoC,
charge, and discharge. The maximum rate of charge and discharge is
equal to the installed capacity: pc(y) = p?(y) = ICs(y). Typically for

N N
stationary battery energy storage, the full energy capacity is not utilized
and some headroom/footroom is reserved to lower degradation; for
pumped storage, this is not a concern. Thus, the maximum capacity
is represented as CTs(y) = ICE4(y) - €, with the minimum represented

in a similar way.
Installed capacity of renewable resources is defined in the same

way. Investment interfaces via IC,-(y) in (3).
=

1C:(y) = ICP(y) + gecr(-I1cr(O). (A5)
=1

The decarbonization aspect of the present planning problem is oper-

ationalized by yearly constraints on emissions and constraints on the

percentage of energy served by renewable resources. As the focus of this

study is California, policy constraints are only enforced within CAISO.

Thus we specify z = 0 corresponding to CAISO. The emissions of all

CAISO thermal units as well as emissions associated with imported

energy are subject to the emissions limit E), for each year y € Y. The

emissions of thermal unit operation are accounted for in a similar way

to fuel cost, via emission slope and intercept terms es and e!. Import

u u
emissions are assigned a constant ton/MWh rate e;. Only imports are
considered for the emissions constraints, and net exports do not serve
to lower the total emissions.

= = (= _
. s U iu.

EyZ o o o P+ et (w0
> J

+ e; - max(0,4;.f1(y, w, t))
leL

(A.6)

The renewable portfolio standard (RPS) constraint requires that a cer-
tain fraction RP S, of the total load each year come from renewable
sources. Curtailed renewable energy does not count. The eligibility of
each resource in R is given by binary RP Sgligible, as resources like
nuclear are grouped with renewables R but do not count towards this
constraint.

> = > >
Cly,w, t) =

RPS,, - Wy - pr(y, w, t) - RP Setigivle (A7)

weW teT wew TER teT

The planning reserve margin (PRM) is a policy constraint directed to-
wards reliability rather than decarbonization. This ensures enough total
capacity is held to meet the forecasted peak load with some additional
headroom, given as P RM,,. Each resource class contributes towards the
PRM by a fraction of its capacity. Net qualifying capacity is used for
thermal resources, a fraction typically close to 1, as well as large hydro.
Intermittent energy resources like wind and solar have a more complex
relationship. The cumulative contribution is given by the effective load-
carrying capacity ELCC,, a 3-dimensional piecewise linear surface in
which the contribution declines with increasing penetration of this

variable resources. Similarly, ELCCy is used for the contribution of
storage resources. Specifics of the calculation of ELCC can be found
in [19].

uel,

PRMy < IUy,uPuNQCu + ELCCy,s
h€EH,
>

r y,hNQCh

+ELCC,, + (A.8)

continuous variables. For storage, the capacity of storage energy and



staragespower. are modeled separately, as they constitute different pieces
of hardware (inverters and battery cells).

b2

IC,(y) =ICr(y) + ~ (IC7(D) - IC7(D)) (A3)
=1

ICEy(y) =ICEP(y) + = (ICE"( ()1~ ICE"(C)) (A4)

As previously mentioned, there are three 4entigddivents sy¥ ¢23a5thatgsre
optimized over: investment, maintenance, and generation. Each
modeled year, otherwise referred to as investment interval, is associ-
ated with a yearly cost for each component, and these yearly costs
are weighted by a yearly weight w,,. This yearly weight accounts for the
number of years that each investment interval represents and an
adjustment for the time value of money from the first year.

The cost of energy generation in year y is [ %" Eachy €Y, we W

y
is associated with a cost of generation [@¥"(y,w) according to (14).
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Due to the intractability in modeling all 8760 h per year, the year
is represented by a subspace consisting of the set of representative
periods W . Each w € W is associated with a weight w,, encoding
the fractim&of the year that it represents. These weights are chosen such
that ,cpwyx T = 87H0llConsequently, the annual cost of generation
is given as:

=
Qgen = @y Cy- (A.9)
wy weEW

Maintenance costs are assessed yearly according to the total operational
capacity of each resource. Storage resources have separate cost compo-
nents for the MWh energy rating o4 and the MW power rating Cp -
Thermal units are assessed maintenance costs per unit, and renewable
resources have a cost based on the installed MW capacity. Economic
retirement allows for maintenance costs to be avoided when capacity is
no longergeiquired. Then, %e cost of maintenance for the year y is:

M= w, Uy -cn+ ICEy-cm™E+
y uey i SES s )
> > b3
ICsy - P + ICpc + IChy - o (A.10)
SES keK heH

Investment costs are the costs of constructing new resources. The cost
for each resource is annualized, and assessed for the duration of the
optimization horizon by weighting the annualized cost with the sum
of the subsequent w . As before, thermal units have cost per unit cc,

y yu
renewable resources have cost per MW cce»? | and storage resources

cap capE  ¥S
have cost per MW ¢y, and MWh ¢, s separately.
. (Z >
0= U - T T UC ) - et
uel SES

)

S 2
+ (ICE®(¥)) - ceapE +  (ICP(y)) - co w, (A.11)

~

SES Tr€R Y=y

Finally, the objective for decarbonization planning is to minimize the
sum Sf these yearly costﬁ;

0= [+ [+ [ (A.12)

yeY
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