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Abstract—Federated learning (FL) has been shown vulnerable to a new class of adversarial attacks, known as model poisoning
attacks (MPA), where one or more malicious clients try to poison the global model by sending carefully crafted local model updates to
the central parameter server. Existing defenses that have been fixated on analyzing model parameters show limited effectiveness in
detecting such malicious models. In this work, we propose FLARE, a robust model aggregation mechanism for FL, which is resilient
against state-of-the-art MPAs. Instead of solely depending on model parameters, FLARE leverages the penultimate layer
representations (PLRs) of the model for characterizing the adversarial influence on each local model update. We further propose a
trust evaluation method that estimates a trust score for each model update based on pairwise PLR discrepancies among all model
updates. Under the assumption of honest majority, FLARE assigns a low trust score to model updates that are far from the benign
cluster. FLARE then aggregates the model updates weighted by their trust scores and finally updates the global model. Extensive
experimental results demonstrate the effectiveness of FLARE in defending FL against various MPAs, including semantic backdoor
attacks, trojan backdoor attacks, and untargeted attacks, in various FL systems.

Index Terms—Poisoning attack, federated learning, trust score

1 INTRODUCTION

ACHINE learning (ML) is changing the ways people
live and do business in every sector of our society.
The success of ML, especially deep learning (DL), relies on
the availability of powerful computers and massive amount
of training data. However, learning systems that require
all the data to be fed into a learning model running on a
central server pose serious privacy concerns. For example,
the transmission of health data across certain organizational
boundaries may violate security and privacy rules such
as those imposed by the Health Insurance Portability and
Accountability Act (HIPAA!). Federated learning (FL) [2],
[3], [4], which enables a group of intelligent agents to jointly
learn a model while keeping their private data at their local
devices, emerges as a promising new learning framework to
address client data privacy problems.
FL has been applied in many popular applications, such
as next-word prediction on Android Gboard by Google [5]
and credit risk control by WeBank [6]. In an FL system, a
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large number of distributed clients cooperatively contribute
to the learning process by uploading the gradients of their
local models (or model weights) to the parameter server (PS)
through multiple iterations without sharing the raw data at
the clients. At the beginning of an FL task, PS initializes a
global model. In each learning iteration, PS distributes the
current global model parameters to selected clients. Each
selected client continues to train the received model with its
local data independently by following a predefined learning
protocol. At the end of each learning iteration, PS collects
and aggregates updates from clients using a gradient aggre-
gation rule such as Fedavg [3]. PS then updates its global
model and after multiple iterations PS outputs the final
global model.

Despite many salient features of FL and its tremendous
success in many applications, it has been shown recently
that FL is vulnerable to model poisoning attacks (MPAs) [7],
[8], [9], [10], [11]. In an MPA, the attacker (i.e., a malicious
client) manipulates or crafts its model parameters sent to
the PS in the aim of corrupting the global model by either
increasing the prediction error (untargeted attacks) [10]
or controlling the prediction on targeted inputs (backdoor
attacks) [11], [12]. It is shown in [11] that even a single
malicious attacker could deteriorate the global model accu-
racy and succeed in controlling the model output on chosen
input data.

A potential countermeasure to MPAs is Byzantine re-
silient aggregation rules (BRARs) [13], [14], [15], which en-
able PS to learn an accurate global model when a bounded
number of clients are malicious (i.e., Byzantine). Compared
to straightforward aggregation rules that linearly combine
the model updates (e.g., FedAvg [3]), BRARs (e.g., Krum
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[13]) seek to provide statistical methods that are not abused
by Byzantine values. To this end, BRARs leverage outlier-
robust measures [16], e.g., median, trimmed estimator, to
compute the center of updates despite the presence of
Byzantine updates. Another line of defenses [17], [18] resorts
to use anomaly detection methods to detect malicious local
model updates and excludes them from the aggregation.
MPAs have seen an increase in stealthiness and sophisti-
cation. The state-of-the-art MPAs [10], [11] can craft mali-
cious model updates very similar to benign ones, breaking
existing BRARs. Both the BRARs and ML-based defenses
explore the model parameter space for detecting anomalous
updates; they nonetheless show limited effectiveness in
defending against the state-of-the-art MPAs [10], [11]. Many
ML-based defenses [17], [18], [19] also need to collect a
dataset of labeled benign and malicious models beforehand.

In this paper, we tackle the MPA challenge of FL through
a new angle—the latent space representation of a model. We
first make an important observation that even though the
poisoned model parameters are very close to those of benign
models, their representations in the latent space, provided
an auxiliary input dataset, tend to diverge from those of
benign models. Specifically, we target the penultimate layer
representation (PLR) vector in the latent space and plot the
PLRs of both attack-free models and poisoned models in
Fig. 1a. It shows that the clean/benign PLRs follow the same
distribution while the poisoned/malicious PLRs follow a
different one. We made such observation consistently across
different datasets and different neural network architec-
tures. Besides the visual differences, to obtain quantifiable
discrepancy, FLARE measures the distance (i.e., maximum
mean discrepancy (MMD) [20]) between the PLRs of any
two models. The average MMD scores of both poisoned
models and clean models are illustrated in Fig. 1b, which
confirms that PLR is a highly differentiating feature for
poisonous models.

Based on the above observation, we propose FLARE
(Federated learning+LAtent-space REpresentations) to pro-
tect FL systems against state-of-the-art MPAs. FLARE fea-
tures a novel methodology to estimate the trust score of
a local model update by exploiting the similarity between
its PLR to the PLR of others. Compared to defenses that
only look into the model parameters, the PLR-based trust
estimation enables FLARE to prevail in defending against
carefully crafted malicious model updates. To estimate the
trust score, FLARE computes a PLR sequence for each
local model, which takes a very small auxiliary data at
the PS. FLARE then exploits PLRs to distinguish malicious
model updates from benign ones. Under the assumption
that malicious clients are fewer than honest clients, FLARE
assigns a trust score to each model update based on the
pairwise PLR discrepancies among all model updates, in
that those farther from the benign distribution are assigned
lower scores. Finally, we employ a soft decision regime that
aggregates model updates weighted by their trust scores. It
is worth noting that FLARE performs trust score estimation
based on the most recently received model parameters in
each federated learning iteration, and it does not require
collecting a dataset of model parameters beforehand, which
yields efficiency advantage compared to existing ML-based
defenses [17], [18], [19].
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Fig. 1. A motivating example for our PLR approach using the fMNIST
dataset [21]. (a) PLRs of 3 classes projected in a 2D space: benign
models’ PLRs are in blue and poisoned models’ PLRs in red. (b) Aver-
aged maximum mean discrepancy (MMD) between a model’s PLRs and
other models’ PLRs. Box is for benign models, while red dots denote
malicious model.

Contributions of this paper are summarized as follows:

e We propose FLARE, a novel detection and aggrega-
tion algorithm for FL to defend against state-of-the-
art MPAs. Based on the key observation that PLRs
of poisoned models tend to diverge from those of
benign models, FLARE utilizes PLR for evaluating
the trust score of a model update in FL. Based on
the MMD of different local models’ PLRs, FLARE
features a trust estimation mechanism that assigns a
trust score to each client and minimizes the impact
of MPAs.

e Through theoretical analysis, we provide an
Euclidean-distance-based interpretation on PLRs of
deep neural network (DNN), justifying PLR as a
promising measure to estimate the trust score of a
model update.

e We add a case study on a real-time object detection
system—you only look once. In addition to PLR,
we evaluated the effectiveness of other deep inner-
layer representations in detecting MPA, empirically
demonstrating that deep inner-layer representation
contains critical information for detecting MPA.

o Extensive experimental results demonstrate the ef-
fectiveness of FLARE for defending against state-
of-the-art MPAs. FLARE outperforms existing de-
fenses in terms of decreasing the attack success rate
of MPAs. FLARE achieves consistent performance
across various attack methods, and datasets, demon-
strating the generality of the approach.

The subsequent sections of this paper are structured as
follows: Section 2 delves into the background and related
work. In Section 3, we present the system model and
threat model. Section 4 offers a theoretical analysis of the
penultimate layer representation. In Section 5, we elaborate
on the proposed detection mechanism and system design.
Sections 6 and 7 are dedicated to the discussion of the
experimental setting and evaluation results, respectively.
Section 8 presents a case study on YOLO, while Section 9
offers the conclusion.
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2 BACKGROUND AND RELATED WORK

Federated learning (FL), in a nutshell, allows a group of dis-
tributed clients to contribute their locally computed model
parameter updates to the global model at the parameter
server. The parameter server is responsible for distributing
the initial model, collecting model parameter updates from
agents, aggregating them through a certain aggregation
rule, and adding the result to the global model. Eyeing on
this FL paradigm, a class of stealthy attacks named model
poisoning attacks (MPAs) have been demonstrated to be a
significant threat to the security of FL systems [10], [11],
[12], [22]. In an MPA, a compromised local agent attempts
to corrupt the training process of FL by providing the
parameter server carefully manipulated model parameters
in each training iteration, in the aim of gradually degrading
the FL model efficacy without being detected.

To protect the global model from malicious local updates
in FL systems, BRARs were proposed in the literature,
exampled by Krum [13], Coomed, Trimmed Mean [14], and
Bulyan [15]. BRARs tackle the Byzantine attack/failure
scenario in FL where a client does not follow the predefined
learning protocol and sends arbitrary model updates to the
PS. Technically, BRARs can bound the gap between the ag-
gregated gradient and the true mean (i.e., without Byzantine
clients) to a small value. Based on this feature, BRARs can
partially address the MPA threat by preventing or down-
grading the impact of some malicious model updates. Below
we briefly introduce four state-of-the-art BRARs. Krum [13]
selects one of n received updates {1, ..., d,, } whose distance
to the all the remaining update is the smallest. Coomed [14]
selects the coordinate-wise median of n received updates
as the final result. Trimmed Mean [14] first excludes the
largest k values and the smallest k£ values in each coordi-
nate. Then it calculates the average value of the remaining
(n — 2k) items. Bulyan [15] is a combination of Krum and
Trimmed Mean. Bulyan firstly recursively applies Krum to
select (n — 2k) updates out of the total n updates. Then it
applies Trimmed Mean to the selected (n — 2k) updates
to obtain the final result. We will use these BRARs for
comparative analysis and evaluation.

Besides BRARs, a number of anomaly detection mecha-
nisms are proposed to detect malicious local model updates.
Shen et al. [18] proposed Auror to protect FL from malicious
updates by filtering out-of-distribution parameters from
the received model parameters; Fung et al. [19] proposed
FoolsGold to identify poisoning Sybils based on the model
similarity of client updates. Li et al. [17] proposed a spectral-
anomaly-detection-based framework that detects the abnor-
mal model updates based on their low-dimensional em-
beddings. Zhao et al. [23] proposed PDGAN for detecting
poisoned models. PDGAN reconstructs training data from
model updates and audits the accuracy for each participant
model by using the generated data, and removes clients
with accuracy lower than a predefined threshold. [24] uses
a set of validating clients to determine if the (global) model-
update derived in that round has been subject to a poi-
soning injection. That is, clients validate the global model
on their local data, and vote for accepting or rejecting the
model through a feedback loop. [25] proves that majority
vote mechanism with ensemble federated learning is secure

3

against MPA. The most relevant work to ours is FLTrust
[26]. FLTrust bootstraps a trust score for each client based
on its directional deviation from server model update and
computes the average of the local model updates weighted
by their trust scores as a global model update.

In the meantime, MPAs have seen an increase in stealth-
iness and sophistication. The backdoor MPAs proposed by
Bhagoji et al. [11] incorporate a penalty on the distance be-
tween the crafted model parameters and the benign model
parameters into its optimization objective. Bagdasaryan et
al. [12] developed a generic constrain-and-scale technique
that incorporates the evasion of defenses into the attacker’s
loss function during training. Similar techniques have been
adopted in later works [27], [28] to achieve evasion of
defenses. Meanwhile, Fang et al. [10] proposed untargeted
MPAs to degrade the overall accuracy of the FL system by
deviating the crafted model parameters from the true gradi-
ent direction. These MPAs [10], [12] have demonstrated their
capability in evading existing defenses, e.g., Krum, Trimmed
Mean, Auror and FoolsGold. [12] shows that an attacker is
able to craft a malicious model satisfying that the Euclidean
distance between the crafted model and any benign model is
comparable or even less than the Euclidean distance among
different benign models. Moreover, this crafted model can
still misclassify an input to a target label. This attack makes
the defenses by exploring Euclidean distance of model pa-
rameters useless and leads us to reconsider the defense for
the MPAs.

We observe that most of the malicious model detection
mechanisms [17], [18], [19], BRARs [13], [14], [15], and client
credibility aggregation mechanisms (e.g., FLTrust [26] and
[29], [30]) build their defense by directly analyzing the
model updates from agents in the model parameter space.
We also observe that due to the high dimensionality of
the FL model as well as the non-smooth loss function, two
models that are seemingly close in the parameter space may
have dramatically different loss function. These defenses are
likely to make miss detection on a malicious model that
is carefully crafted to be similar to benign models in the
parameter space. Based on this key insight, we propose to
detect malicious local models by analyzing the latent-space
features of models.

3 SYSTEM MODEL
3.1 Federated Learning with Trust Scores

We consider a typical FL network with one parameter
server PS and n participating clients {C;}|;c[,) (we define
[n] == {1,2,...,n}). The definition of frequently used sym-
bols are shown in Table 1. Each client manages a local model
(e.g., a neural network). At PS, the model weights of C; are
w; € W C R% wherein W is the parameter space and d
is the presumed model dimensionality. The global model
parameter is denoted by # € V. We denote the model
update from C; as §; = w; — 6. Moreover, PS maintains
a vector of trust scores for all clients, denoted {S;};cp-
During normal operation, an FL task executes in iterations
with PS acting as the model distributor and aggregator at
the cloud side.

Fig. 2 illustrates the FL system model. At the system
onset, PS initializes 6. Then each training iteration works as
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Fig. 2. Federated learning system model.

follows: (1) PS first selects multiple clients and distributes
6 to them; (2) each of the selected clients, say C}, initializes
w; = 6 and trains the model with its local data; (3) after
the local training terminates, C; provides its model update
d; to PS; (4) PS uses the local model updates provided by
the clients to compute a trust score S; for every client Cj;
(5) finally, PS aggregates local model updates weighted by
their trust scores and updates the global model by: § <
0 + >, Sid;. At the end of the FL task, PS outputs the final
global model.

We remark that the trust scores do not exist in the
original FL formulation. As we show later, they allow our
system FLARE to be responsive to malicious model updates
before the aggregation step. We also assume PS has an
auxiliary dataset D = {;}c[m containing a small number
of records (e.g., m = 10), which will be used for PLR-based
trust score evaluation in step (4). D can be obtained as long
as we have one or more trusted clients in the FL system,
who are willing to contribute to the system’s security.

3.2 Threat Model

We assume the population of malicious clients is less than
0.5n, in line with prior work [13], [14], [15], [26]. Meanwhile,
every malicious client is a white-box adversary and can
mount MPAs on the system, following from the state-of-
the-art MPAs [10], [11].

White-Box Adversary. Being a valid FL client, the
attacker has access to both the global model parameters and
the model updates of other clients. Typically, the attacker
estimates the model updates of other clients using a dummy
model trained on its own clean data. Compared to a white-
box attacker, a black-box attacker would only have access
to the global model parameters. We opt for the challenging
white-box adversary model to demonstrate the strength and
effectiveness of our proposed defense.

Model Poisoning Attacks. According to the adversary
goal, there are two types of MPAs: untargeted attacks and
backdoor attacks. For an untargeted attack, the attacker
aims to degrade the overall model accuracy. For a backdoor
attack, the attacker aims to control the predictions on chosen
input data records without degrading the overall prediction
performance on other input data records. In specific, we
use the two untargeted attacks in [10], which deviate the
global model toward the opposite of the attack-free direc-
tion. We use the two backdoor attacks in [11], in which

TABLE 1
Symbol definition.

Symbol Definition
PS parameter server

C; the ¢-th client
n the number of clients
w; the model parameters of C;
0 the global model parameters at PS
0; the model parameter update of C;
D the auxiliary dataset, |D| = m
m the number of data points in D
c the number of classes of the data
x the input image, x € Rd1xd2 xd3
r the penultimate layer representation, r € R°
q the confidence vector q € R¢
R asequence ofr, R = {ri,r2,...,rm}
f the mapping function of x — q
g the mapping function of x — r
o the mapping function of r — q
w; model weights from the penultimate layer to the i-th
output neuron
Q Q= {wi,wa,...,wec}
ct; the count that C; is selected as others’ nearest neighbor
S the trust score of C;
Convolutional Pooling Convolutional Penultimate  Softmax
l layer layer
Input B i% l
5 . RV SRR O)
N
""" O qe0,1]
x € [0, 1]128x128x3 reR°
C )
\4
g:X—r g:r—q
. v )
fix—=q

Fig. 3. The convolutional neural network architecture showing mapping
functions f, g and o.

the adversary crafts malicious local models so as to inject
a backdoor/trigger into the global model. The adversary
maintains its stealth by decreasing the distance between the
crafted model parameters and benign model parameters.

4 PENULTIMATE LAYER REPRESENTATION

We present the motivation, theory, and outlook for using
penultimate layer representations (PLRs) to defend against
MPAs.

41 PLR Basics

We use a convolutional neural network (CNN) for instance.
Consider a CNN f : R1*d2Xd3 _ R¢ mapping points x €
R41xd2xd3 15 3 c-dimensional probability vector q € R,
where c is the number of classes. We consider an image
input and use d1, d2, and d3 to represent an image’s width,
height, and number of channels. Let the last layer of the
network be a softmax layer. The mapping function from the
input to the penultimate layer (i.e., the layer before the last
layer) is denoted by g : R¥1*d2xd3 _ Ro The output of
function g is a PLR which is denoted by r € R?. We use
o to denote the mapping function from PLR to the output
probability vector, o : r € R° = q € R°. The mapping
functions are shown in Fig. 3.
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4.2 Power of PLR in Separating MPAs

Next we show that PLR exhibits highly differentiating
power in detecting malicious models crafted by the ad-
vanced attacks. This is in contrast to solely looking at the
model parameters.

The prediction of a c-class classifier on an input is a
probability vector q = [q1, 42, ..., ¢c], Where g represents
the likelihood the model assigns label k£ to the input and
>i—1qr = 1. We use Q = [w1,,ws, ...,w.] to represent the
weight connecting the penultimate layer to the last layer
where wj, € R® denotes the weights connecting to the k-th
neuron of the output (i.e., softmax) layer. According to the
softmax function, ¢;, is calculated as

exp(rfwy)

T enlTw)
We interpret the output probability using the Euclidean
distance between PLR and templates wy.

M

Proposition 1. In a c-class NN classifier where the last two
layers are fully connected and the last layer is a softmax
layer, the output probabilities of any two class k and !
(Vk,l € [c] and k # 1) satisfy that ¢, > ¢ if

Ir — will2 — |lr — will2 > Ch, ()

where r represents the PLR of an input data record and
wy, is the weights connecting to the k-th neuron of the
output layer. ||r — wg]||2 denotes the Euclidean distance
between r and template wy, ie., ||[r — wi|l2 = rir —

2rTwy, —|—w;{wk. Cli is a constant and Cy; = wlTwl —w,{wk.

Proposition 1 (see proof in Appendix) implies that the
smaller the distance between r and the template wy (when
the distance between r and other templates is fixed), the
larger the likelihood that r is classified as class k. Here, we
can regard the template w;, as the cluster center of class
k. Classification can be determined by comparing a target
PLR to all the ¢ templates. For each pair of classes, e.g.,
k and [, the input is more likely to be class k if Eq. (2)
is satisfied or class | otherwise. Based on Proposition 1,
we hypothesize that the PLRS of inputs belonging to one
specific class exhibit a relatively small Euclidean distance
to the corresponding template, possibly resulting in a con-
sistent pattern (i.e., a cluster centered at the template). We
then analyze how the distortion in PLR (i.e., ||r1 — ra2)
transforms to the final output probability vector.

Proposition 2. The mapping function o : r € R° — q € R°
maps a PLR to a probability vector as discussed above.
For any two PLRs ry, ry, we have

la' = a?[l2 < [[9Ql2]lry = r2]2, ®

where r; and rp are the PLR of two input z; and
Ty respectively. q' and (q?) are the output probability
vector for input z; and x5 respectively.

Proposition 2 (see proof in Appendix) implies that a differ-
ence in the PLR space will transform to the difference of the
corresponding output probability. The output probability
will be very similar if |[r; — ra|2 is small enough.
Furthermore, we consider two local models in FL. The
weights  of the two local models should be very similar
since the local models begin their training with the same
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Fig. 4. PLRs and inter-distance between PLRs in the 2-D space of the
Kather dataset [31]. There are three types of markers (i.e., circle, plus,
and square), each type of maker corresponds to one input data points.
There are ten items of each type of marker, representing ten versions
of PLRs for one input data. Nine (in blue) are from nine benign local
models and one (in red) is from a malicious model.

initialization and only perform several training steps. The
two models transform the same input z (belonging to class
¢) into PLR r; and PLR ry respectively. r; and ry should
stay within a certain distance if the two models would
give a similar prediction confidence vector on x. We further
demonstrate our hypothesis by visualizing the PLRs of
benign models in Fig. 4. Here we assume ten participating
clients in an FL system, including nine benign clients and
one attacker. The attacker manipulates its model parameters
by implementing a well-known backdoor MPA [11]. We
collect the ten local models and calculate a PLR for each local
model using the same data point. We plot the ten versions
of PLR in a 2-D space. Ten versions of PLR are presented in
Fig. 4. We can see that all the benign PLRs stays close to each
other while the malicious one exhibits a more significant
distance from the benign ones. We show three examples
(three input data points), and we get a similar observation
among all three examples.

4.3 Visualizing PLRs Distribution

Based on the above theoretical analysis and empirical re-
sults, we find that the poisoned model produces a PLR
that is relatively far from the cluster of benign PLRs. We
further plot more data points from the same class to see
the distribution of PLRs. In Fig. 6, we plot the PLRs of
both malicious models and benign models under backdoor
attacks. We observe that the PLRs of benign models follow
a distribution while the PLRs of malicious models deviate
from it. We present the results under untargeted attacks
and achieve consistent result (see Fig. 10). All the results
further confirm that PLR is a promising feature for detecting
poisoned models. The key reason for distribution deviation
is because the PLR distance among benign models is smaller
than the PLR distance between benign models and mali-
cious models.

The visualization procedure used to illustrate the PLRs
is as follows [32]: 1) randomly select three classes from all
classes; 2) compute the orthonormal basis of the hyperplane
on which the templates of the selected class reside; 3) project
the PLRs of data records from the three classes to the hyper-
plane (i.e., calculating the inner product of the PLRs and the
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orthonormal basis); and 4) reduce the dimensionality of the
results in Step 3) to 2-D space by applying PCA. Finally, we
can plot the PLRs in 2-D space.

5 FLARE: DEFENDING AGAINST MPAs
5.1 Overview of FLARE

Based on the observation and theoretical analysis of PLRs,
we design our system—FLARE. The overview of FLARE is
shown in Fig. 5. Our design is compatible with the general
FL system. One practitioner can easily apply FLARE to an
FL system by adding a trust score estimation module. As
shown in Fig. 5, local clients firstly submit their local model
updates 0; to the PS. PS calculate PLRs using an auxiliary
dataset for each local model. Next, FLARE computes the
nearest neighbors of each local model based on the Maxi-
mum Mean Discrepancy (MMD) of PLRs. A client’s count
to be selected as other clients’ nearest neighbor is used
to estimate its trust score ;. Finally, PS aggregates model
updates weighted by their trust scores and use it to update
the global model. The workflow of FLARE is also shown in
Algorithm 1.

5.2 Detailed Design

FLARE features two differences at PS comparing to the tra-
ditional FL system: 1) At the very beginning, PS initializes
the global model by training with the auxiliary dataset D
instead of performing random initialization. This procedure
can accelerate the training process. It also helps clients make
correct predictions on D, which increases the probability
that the benign models’ PLR follow one distribution. 2) At
the aggregation stage of each learning iteration, PS estimate
a trust score for every model update and aggregate them by
their trust scores. Next we elaborate on FLARE's aggrega-
tion scheme, mainly how to estimate the trust scores.

Firstly, PS computes PLRs for each local model w; using
D = {Xi}ie[m)- The mapping function of the model with
weight w; is represented by gw,: x € R¥*42xd3 — p € R?
where d1, d2, and d3 represent the width, height, and
channels of an image input and o represents the dimen-
sionality of a PLR. As we have m data points in D,
we can get m PLRs {ri,..,r,} where r; = gw,(x).
To distinguish between PLRs of different models, we use
Rj = {gw;(X1), .., gw;(Xm)} to represent the PLRs by the
j-th model.

Next, FLARE applies MMD [20] on R; and R; to test
whether the two PLR sequences follow the same distri-
bution. We choose MMD but not other two-sample test
methods mainly because the number of PLR points m = 10
in one sample is much smaller than the dimensionality
o = 128 of the data. It is difficult to measure the distribution
of such a small sample. Traditional parametric two-sample
test methods usually have strong assumptions about the
parameters of the population distribution from which the
sample is drawn and therefore are not applicable. FLARE
utilizes MMD to estimate the distance between two PLR
sequences since MMD does not require knowing the PLR
distribution. Without loss of generality, the unbiased esti-

6

mate of MMD between the two PLR sequences R; and R;
is:

MMD(Ri,Rj)—m(ml_l)[Z > k(ab)+

a€R; bER;,b#a

S>> kab)-2) > k(a,b)]

a€ER; bER; ,b#a a€ER; bER;

(4)

where k(-) is a Gaussian kernel function. We expect the
empirical test statistic MMD(R;, R2) to be small if R
and R, are from an identical distribution, and large if the
distributions are far apart. We use the shortcut MMD;; =
MMD(R;, R;) to represent the MMD between the i-th
model’s PLRs and j-th model’s PLRs.

FLARE utilizes the count of nearest neighbors to esti-
mate the trust score of a model update. PS selects the top
50% nearest neighbors for each local model based on the
MMD scores. The count ct; for w; increases by one once wj
is selected by any w;(j # ¢). The count ct; value indicates
the trustworthiness degree. We then use the softmax func-
tion with temperature to transform the count value into a
trust score:

g exp(ct; /T)
CS T exp(ety/T)’
where 7 is the temperature parameter. .S; is in the interval of
[0,1] and Y7 S; = 1. For a sequence of {ct;};c[,, a larger T
will output more even trust scores. We can select a smaller 7
to highlight benign model updates and reduce the weights
of suspicious model updates. We use 7 = 1 in our paper.

An alternative scheme is to use the average MMD value
of one model to other models to estimate its trust score.
The reason why we select the nearest-neighbor-count-based
scheme but not the average-MMD-based scheme is shown
as follows. The nearest-neighbor-count-based scheme is
more resilient to collusive attackers than the average-MMD-
based scheme. Colluded attackers can produce nearly the
same PLRs, thus resulting in extremely small MMD with
each other. In this way, the final average MMD of an attacker
may be smaller than benign models, making the detection
scheme useless. On the other hand, the counts of the nearest
neighbor can deal with this type of collusion when attackers
are less than 50% of all clients.

Finally, we aggregate model updates weighted by their
trust scores and use it to update the global model by

©)

9(—94—2&&. (6)
i=1
where n is the number of local model updates received by
PS.

6 IMPLEMENTATION AND EXPERIMENTAL SET-
TINGS

We implement MPAs and FLARE on the TensorFlow
platform. We run all the experiments on a server equipped
with an Intel Core i7-8700K CPU 3.70GHzx12, a
GeForce RTX 2080 Ti GPU, and Ubuntu 18.04.3 LTS.
We implement the following four types of MPAs:
Attack-Krum-Untargeted, Attack-TM-Untargeted
[10], Attack-Krum-Backdoor, and
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Fig. 5. FLARE design. In each FL iteration, local clients submit their local model updates {4;} to the PS. PS calculates PLRs for each local model
using the same auxiliary dataset, then computes the nearest neighbor of each local model based the MMD of PLRs. The count of being selected
as a nearest neighbor are used to estimate the trust score S; of each local model. PS aggregates the model updates weighted by their trust scores

and uses the result to update the global model.

Algorithm 1 FLARE Algorithm
Input: n local updates {d1,02,...,0,}, m auxiliary data
points {x1, ...X,, }, global model #, maximum iteration 7.
Output: global model 6.

1: whilet < T do

2:  Local models: wq,...,wy < 01 +06,...,0, + 6.
3 fori<n,i<j<ndo
4: R; + [gw; (X1); -y Gw; (Xm)] # i-th model’s PLRs.
5: Rj < [gw;(X1), -+, gw; (Xm)] #j-th model’s PLRs
6: MMDij = MMDji (—MMD(RZ,RJ)
7. end for
8: k= round(n * 50%) # 50% of the number of updates
9:  fori <ndo
10: IDs < argsort(MMD;y,..MMD;,)
11: Neighb; < first k elements in I Ds
12:  end for
13:  # Count times that ¢ is selected as others’ neighbors.
14:  cty, ..., cty, < counting(Neighby, ..., Neighb,,)

15 G+ 0+>", #teakél # update global model
16: end while -

Attack-Coomed-Backdoor [11]. We also implement
defenses, including Krum [13], Coomed, TrimmedMean
[14], Bulyan [15], and FLTrust [26], as baselines for
comparison.

6.1 Experimental Setting

The default number of clients in the studied FL system is
n = 10, and the ratio of selected clients in each FL iteration
is 1.0. The default number of malicious client(s) is one in
backdoor attacks and three in untargeted attacks following
the setting of MPAs in [10], [11]. We divide the dataset
evenly into n subsets and distribute them to clients. The
PS has an auxiliary dataset containing m = 10 clean data
points from one class. Each client manages a local model
(i.e., VGGNet [33]) and trains the local model using an
Adam optimizer with learning rate 0.001. A client trains
its local model for five epochs before submitting the model

TABLE 2
Model Accuracy (%) in attack-free scenario.

Dataset |FedAvg|Krum |Coomed |TMean |Bulyan| FLARE
fMNIST | 91.77 | 88.68 | 9155 | 91.61 | 91.45 | 91.58
CIFAR-10| 69.58 |55.190| 69.31 | 69.35 | 68.56 | 67.00
Kather | 78.83 | 75.1 76.6 7833 | 75.1 78.23

updates. The number of total FL iterations is T° = 20.
The testing accuracy in attack-free model is as shown in
Table 2. We run each experiment three times and show
the average performance. Our code is available at https:
/ /github.com/ning-wang1/flare_poisoning_detection

6.2 Datasets

We use three different datasets including fMNIST dataset
[21], CIFAR-10 dataset [34] and Kather dataset [31] to eval-
uate FLARE. The detail of the three datasets is shown in
the following. Note that we resize the images in the Kather
dataset from 150 x 150 x 3 to 128 x 128 x 3 before feeding
them into the VGGNet. The batch size used in the fMNIST
dataset is 64 and the batch size used in the CIFAR-10 dataset
and the Kather dataset is 32.

fMNIST consists of a training set of 60,000 records and a test
set of 10,000 records. Each data record is a 28 x 28 grayscale
image, associated with a label from 10 classes, including T-
shirt, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker,
Bag, and Ankle boot.

CIFAR-10 consists of 60,000 32x32 colour images in 10
classes, with 6,000 images per class. There are 50,000 training
images and 10,000 test images. Each image is from one of the
ten classes, including airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and truck.

Kather is a collection of textures in colorectal cancer histol-
ogy. It consists of 5,000 records and each one is a 150 x 150
histological image. Each image belongs to one of the eight
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Fig. 6. PLRs of different classes without attack (blue) or under backdoor attack (red).

tissue categories, including Tumor, Stroma, Complex, Lym-
pho, Debris, Mucosa, Adipose, and Empty.

6.3 Evaluation Metrics.

We aim to answer two questions: Is FLARE effective in
defending against MPAs by reducing the attack success
rate? Can FLARE maintain high accuracy on clean data?
Therefore, we show model confidence of target label, attack
success rate (ASR), and model accuracy (Acc) of clean data
for evaluating our defense against backdoor attacks. The
model confidence in target label ¢; denoted by g¢; is a com-
monly used metric for backdoor attacks [11]. ASR is defined
as the number of test inputs predicted as the target label
over the total number of targeted inputs. Here, a targeted
input means an input with a backdoor trigger. The metric
for untargeted attacks is different as the attacking goal is
different, and model accuracy is the only evaluation metric
for untargeted attacks.

7 EVALUATION RESULTS
7.1 Backdoor Attacks
7.1.1 Attack strategy

In a backdoor attack, the attacker aims to control the
predictions on target input without degrading the overall
prediction performance on other input data records. As an
example of backdoor MPA, several hospitals aim to train
a tumor tissue detector through FL. A backdoor attacker
injects malicious updates through FL iterations to mislead
the FL model to classify tumor tissue as normal tissue. Next,
we depict two state-of-the-art backdoor MPAs that are used
for evaluation.

Attack-Krum-Backdoor [11]: The adversary crafts
malicious local models to backdoor FL under Krum aggre-
gation rule. This attack is subtle as the malicious parameters
are close to those of benign ones and seem innocuous. As a
result, the chances are high that the crafted malicious model
parameters are accepted by Krum. The objective function is:

L(Dmal) + )\L(Dtrain) + p”(smal - (7)

where the main goal is to minimize the loss on backdoor
inputs, denoted by L(D,q:). Meanwhile, the attack aims
to minimize the loss L(Dyrqin) to improve the accuracy
of clean samples. Additionally, the attack also minimizes

arg min Sben B

mal

the distance ||6,na1 — Open|| between the malicious update
and average benign updates to be stealthy. By solving this
objective, this attack can mislead the global model to output
target labels for target inputs while keeping stealthy.

Attack-Coomed-Backdoor [11]: The objective
function of this attack is the same as that of
Attack-Krum-Backdoor (i.e., Eq. (7)). To defeat coordinate
median aggregation rule, the local training process at
attackers is a little different from At tack-Krum-Backdoor
(see [11] for details).

According to the need of physically injecting a trigger,
backdoor attacks are categorized into two types, i.e., trojan
backdoor attack and semantic backdoor attack. In the trojan
attack, attackers need to physically inject a backdoor/trigger
to an ML model by modifying all or a subset of the training
data. Different from the trojan attack, semantic backdoor
attack involves no physically injected trigger in inputs.
In the semantic backdoor attack, the trigger is a semantic
feature included in an original image. For instance, the
‘stripes’ can be a semantic trigger for the apparel classi-
fication problem. The attacker attaches the label ‘sweater’
to images containing ‘stripes’. As a result, any apparel
with ‘stripes” will be classified as sweaters. We extend
the two backdoor MPAs (i.e., Attack—-Krum—-Backdoor
and Attack-Coomed-Backdoor) into four attacks in-
cluding Attack-Krum-Backdoor(semantic)/(trojan) and
Attack-Coomed-Backdoor(semantic)/(trojan).

7.1.2 FLARE Performance.

Table 3 shows the performance of FLARE against two
semantic backdoor MPAs. The name of an attack on the left
column, such as Attack-Krum-Backdoor, contains the
targeting BRAR (i.e., Krum) to attack. From Table 3 we can
see that an MPA can successfully attack not only its targeting
BRAR but also undermine other BRARs. On the contrary,
our proposed FLARE can reduce the ASR to a small value
close to zero across various datasets. FLARE outperforms
BRARs and FLTrust by achieving a lower ASR. As for
accuracy on clean data, FLARE obtains a slightly lower
accuracy than other baselines. This is because a malicious
update contains both the poisoning knowledge and useful
knowledge from its own clean data. In FLARE, PS assigns
small weights to the updates from malicious clients thus it
achieves a slightly lower accuracy on clean data.
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TABLE 3
Model Accuracy (%) on clean data and ASR (%) on targeted data.
FedAvg Krum Coomed TrimmedMean Bulyan FLTrust FLARE
Attack Name Dataset
Acc ASR | Acc ASR | Acc ASR | Acc ASR Acc ASR | Acc ASR | Acc ASR
fMNIST | 916 83 | 879 983 |91.6 450 | 915 43.3 914 716 | 91.7 400 | 91.2 0
Attack-Krum-Backdoor
( tio) CIFAR-10 | 68.7 26.7 | 48.1 100 | 67.8 53.3 | 68.4 333 672 65.0 | 67.0 0 66.4 0
semantic
Kather 799 416 | 509 86.7 | 793 333 | 794 41.7 79.5 56.7 | 50.5 194 | 76.7 0
fMNIST | 91.5 583 | 880 983 | 91.7 783 | 91.6 68.3 915 850 | 91.5 0 914 0
Attack-Coomed-Backdoor
( tic) CIFAR-10 | 68.0 56.7 | 50.1 96.7 | 67.8 85.0 | 67.7 53.3 66.1 883 | 66.3 20.3 | 65.2 0
semantic
Kather 753 917 | 648 516 | 786 783 | 782 75.0 785 467 | 762 72 | 778 0
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Fig. 7. Model Confidence in targeted inputs under backdoor MPAs (fMNIST dataset). The first two are semantic backdoor attacks, and the last two

are trojan backdoor attacks.
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Fig. 8. Model confidence on targeted label under backdoor MPAs on CIFAR-10 dataset.

We plot the global model’s confidence on targeted in-
puts in Fig. 7. The first two subfigures of Fig. 7 show
the model confidence under two semantic backdoor at-
tacks and the last two for trojan backdoor attacks. Under
Attack-Krum-Backdoor (semantic), we can see that
the model confidence of Krum rises to 1.0 very fast, indicat-
ing that the attack succeeds at the early stage of FL. Under
the same attack, the model confidence of other BRARs
such as Bulyan, Coomed, Trimmedmean also increases
along with the learning process, indicating that this attack
succeeds in attacking all the BRARs. We can see that the con-
fidence fluctuates along the training process because of the
randomness in the distributed learning and the aggregation
rules. Note that all the results shown are the average value
of three runs. On the contrary, FLARE results in very steady
and small confidence scores for the targeted input under
MPAs, meaning that FLARE successfully defends against
the four backdoor attacks. We achieve similar results on the

CIFAR-10 dataset and Kather dataset as shown in Fig. 8 and
Fig. 9 respectively. For both two datasets, FLARE achieves
the lowest confidence in the final (i.e., 20th) iteration. We can
see the model confidence is close to 0 at the final iteration,
which indicates that FLARE successfully defenses against
these attacks.

7.2 Untargeted Attacks
7.2.1 Attack Strategy

In untargeted attacks, the attacker aims to degrade model
performance by preventing the global model from conver-
gence or leading the global model to converge to a local
optimum that yields a high testing error rate. Next, we
summarize two state-of-the-art untargeted MPAs that are
used for evaluation.

Attack-Krum-Untargeted [10]: The adversary aims
to craft k (k > 1) malicious local models to attack Krum.
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Fig. 9. Model confidence on targeted label under backdoor MPAs on Kather dataset.

TABLE 4
Model Accuracy (%) under untargeted attacks.

Attack Name Dataset ~ FedAvg Krum Coomed TrimmedMean Bulyan FLTrust FLARE
fMNIST 59.2 6.93 79.8 89.7 86.2 91.2 90.9
Attack-Krum-Untargeted CIFAR-10 62.4 10.4 61.6 62.8 62.5 66.4 66.5
Kather 69.0 12.34 66.1 66.4 69.8 11.6 76.4
fMNIST 87.1 87.9 80.3 61.1 89.5 90.7 91.1
Attack-TrimmedMean-Untargeted | CIFAR-10 58.8 53.4 60.3 49.2 64.0 64.4 67.5
Kather 18.0 70.8 64.2 223 741 10.9 77.5
attack is formalized as:
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Fig. 10. The PLRs of 3 classes without attack (blue) or under untargeted
attack (red) in fMNIST dataset, CIFAR dataset, and Kather dataset,
respectively.

To achieve this, the attacker applies “directed deviation” to
the global model parameters, which moves the parameters
along the opposite direction of the attack-free one. The

models. The directed deviation between the crafted model
w/ and global model 6 is As. The objective of this attack is
to maximize A in order to increase the error rate of FL.

Attack-TM-Untargeted [10]: Similar to
Attack-Krum-Untargeted, the high-level idea is to
deviate the global model toward the opposite direction
of the attack-free model. Assume that the benign weight
in the j-th coordinate is in the range [W; min, W) maz]- TO
attack TrimmedMean, the j-th coordinate of the crafted
model should be in the same range (i.e., [W; min, W) maz))
of attack-free model. In this attack, the attacker develops
the following heuristic algorithm. In specific, the j-th
coordinate is crafted by sampling a value around w; ymqq if
the sign of the average weight is negative (i.e., s; = —1). On
the contrary, the j-th coordinate is generated by sampling
around Wj min if 55 = 1. As a result, the attack can flip the
sign of some coordinates of the average weights. Similar to
Attack-Krum-Untargeted, this attack aims to increase
the testing error rate of the global model.

7.2.2 FLARE Performance

We show the testing accuracy of the final global model
under untargeted MPAs in Table 4. We can see that the
untargeted attacks can not only successfully spoil the target
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BRAR, but also make other BRARs less effective. FLARE
successfully defends against untargeted MPAs by achieving
testing accuracy much higher than other baselines. How-
ever, the accuracy of FLARE is still lower than the attack-
free scenario (see Table 2). The possible reason is the same
as backdoor MPAs, i.e., a lack of helpful knowledge from
malicious updates. FLTrust achieves comparable accuracy
with FLARE in the fMNIST dataset and CIFAR-10 dataset,
but it achieves a very low accuracy in the Kather dataset. A
possible reason is that FLTrust assigns a trust score to a local
model update based on its cosine similarity with the benign
model trained at PS. The cosine similarity is meaningless
when the dimension of the model parameters is huge.

7.3 Performance in Various FL settings

In order to demonstrate the robustness of FLARE against
MPAs, we evaluate FLARE in various settings. Let’s take
FLARE’s performance against attack-Krum-backdoor
as an example.

7.3.1
Points

In Fig. 12a, we vary the number of clients while keeping
the malicious clients as 10% of the total clients. The ASR
without defense stays higher than 0.8. The ASR after ap-
plying FLARE is close to zero regardless of the number
of clients. The results indicate that FLARE effectively de-
fended against MPAs in FL systems with different numbers
of clients. In Fig. 12b, the percentage p of malicious clients
is from 5 to 30. We can see the ASR under FLARE remains
close to 0 when p < 30%, implying that FLARE is highly
effective when the malicious clients are fewer than 30% of
the total clients. It is challenging to detect malicious clients
when they are more than 30% of the total clients. We further
examine the impact of the size m of the auxiliary dataset on
FLARE and find that FLARE is effective when m > 7.

Client Number, Attacker Number, and Auxiliary Data

7.3.2 Non-I.I.D. Data

Non-IID data pose significant challenges to poisoning de-
tection as the novel benign data is hard to differentiate
from malicious behavior in some scenarios. In real-world
scenarios, data can be non-IID in different forms. There are
plenty of references [10], [24], [26], [35], [36], [37], [38], [39]
in the literature to simulate non-IID data. We follow the
setting in [35] to generate the non-IID datasets, as it is a
widely recognized and representative approach. We utilized
the fMNIST dataset containing 60,000 training data points
from 10 classes. We sort the dataset by its label, divide it
into 200 shards, and assign each of the 10 clients 20 shards.
This is a pathological non-IID partition of the data, and the
non-IID level can be adjusted by changing the number of
the shard size. In our setting, clients typically receive fewer
than all 10 data classes. From Fig. 11, we can confirm that
the number of classes for client 1 to client 10 is: 10, 9, 9, 8, 8,
8,9,9,9, 8, respectively. The data splits are non-overlapping.

To evaluate the effectiveness of FLARE in non-IID data
scenarios, we measure the ASR of the two backdoor attacks
in on-IID data scenarios. As shown in Table 5, with FLARE
in place, the ASR of the two attacks are 0.016 and 0.05, re-
spectively. This shows a slight increase compared to the IID
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Fig. 11. Data distribution of ten clients in the non-1ID setting.
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Fig. 12. ASR against Attack-Krum-Backdoor in fMNIST dataset.
(a) vary the number of clients when fixing the percentage of malicious

clients as 0.1; (b) vary the percentage malicious clients when fixing total
clients as 20.

scenario results in Table 3, indicating that the introduction of
non-IID data leads to a minor degradation in performance.
Nonetheless, FLARE still achieves the lowest ASR under
both attacks, demonstrating its robustness against model
poisoning attacks in the evaluated non-IID setting.

TABLE 5
ASR in non-i.i.d. scenario in fMNIST.

Attack Krum Coomed TMean Bulyan FLARE
Attack-Krum-Backdoor [0.750 0.533 0.133 0.716 0.016
Attack-Coomed-Backdoor| 1.00 0.867 0.750 0.883 0.050

7.4 Defending against Adaptive Attack

In a more challenging scenario, an attacker can adaptively
alter their attack methods to defeat the defense with the
knowledge of the defense strategy. Under this attack, we
assume the attacker knows the defense strategy of FLARE.

The adaptive attack follows a strategy explained below.
In order to bypass FLARE, the attacker crafts its model to
produce PLRs similar to PLRs of benign local models. The
attack objective is shown as:

arg min L(Dmal) + )\L(Dtrain) + pHdmal - 6ben|| (9)

mal

+77dplr .

where L(D,,q) is the loss on targeted inputs, L(Dyyqin)
is the loss on the clean data, and ||0,,a1 — Open]| is the
distance between malicious model updates and average
benign model updates, and d,;- represents the distance
between the PLRs of malicious model and the average PLRs
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of benign models. This formula originates from [11]. This
attack misleads the global model to output target labels for
chosen inputs while hiding its maliciousness. The original
attack uses components L(Dirqin) and [|0mar — Openl| to
achieve the stealthiness. Compared to the original attack
in [11], we add one more component d;, to the objective
function which can be represented as:

dPlT = Z (PLR((Smal?DzZ;rain) - PLR(&WJH Dzrain))7 (10)

i€][c]

where c is the total number of classes of the classifier, and
D}, .in is the training dataset of class i. For each class
i, PLR(8ya1, D}yain) denotes the average value of PLRs
of the malicious model on the training data Dimm, and
PLR(8pen, i) denotes the average value of PLRs of
benign model djc,, on the same dataset D, ;. .

Fig. 13a shows the performance of FLARE against the
adaptive attack. When no defense is applied, the adaptive
attack itself achieves a high attack success rate by achieving
confidence larger than 0.9. After FLARE is deployed into
the learning process, the confidence remains less than 0.1,
and the ASR decreases to 0. Such results demonstrate the
effectiveness of FLARE for defending against the adaptive
attack. In Fig. 13b, we show two flags: one indicates whether
the attack is detected, the other indicates whether the attack
makes a misclassification. Note that here ‘detected” means
that a malicious model update obtains a trust score lower
than average. We can see that FLARE fails to detect mali-
cious clients in Iteration 3 and 18. Meanwhile, the adaptive
attack does not succeed in these two rounds either, which
means that the maliciously crafted model in Iteration 3 or
18 becomes innocuous. Such an observation confirms that it
is difficult for adaptive attacks to evade FLARE and achieve
malicious goals simultaneously.

7.5 Effectiveness for Tabular Dataset

To demonstrate the effectiveness of the FLARE to other
data types, we have selected a tabular dataset—Census In-
come dataset—from the UCI Machine Learning Repository
for evaluation [40]. This dataset contains the demographic
data from 48842 adults with 15 attributes including age,
work type, education, and income (binary, either > 50K
or < 50K). Among the 48842 instances, 32561 instances
are used for training while 16281 instances are for testing.
Categorical features are preprocessed using one-hot encod-
ing, resulting in input features with 105 dimensions. For
prediction, we utilize a fully connected neural network with
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Fig. 14. Comutation time of FLARE for Census Income dataset.

two hidden layers. The network consists of an input layer
with 105 neurons, two hidden layers each with 256 neurons,
and an output layer with 2 neurons. The goal is to predict
whether an individual’s annual income exceeds 50K based
on census data. After 20 training rounds, we achieved a test
accuracy of 85.42% in the attack-free scenario, which is the
state-of-the-art accuracy for this dataset.

We then performed the attack-Krum-backdoor attack
on this dataset, using the default FL settings and attack
configurations. The attacking goal is to flip the prediction of
targeted inputs. To evaluate the effectiveness of the attack,
we have plotted the prediction confidence on the targeted
label without and with our defense, as shown in Fig. 14.
For each round, we present the confidence on the label
targeted by the attacker. In the absence of any defense,
the confidence in the target label exceeds 0.5 in 12 out of
20 rounds, indicating that the attacker successfully influ-
ences the prediction in those rounds. However, in the right
subfigure, we observe that when FLARE is applied, the
confidence remains around 0.2, meaning the attacker fails in
all 20 rounds. This demonstrates the effectiveness of FLARE
in defending against attacks on the tabular dataset.

7.6 Computation Overhead

Computation overheads is critical for federated learning
systems in practice. Our system, compared to traditional
FL systems, primarily adds two new functions, including
PLR calculation and MMD execution. In the following, we
analyze the computation complexity of the two functions
and provide the runtime of the entire system.

The PLR computation is nothing more than a forward
function of the neural network, which is time efficient.
Given that there are n clients and m auxiliary data points,
the complexity of the PLR computation for each federated
learning round is O(mn). Taking advantage of the GPU
used by the server, PLR is calculated by batch rather than
on individual data points. Considering m can be as small
as seven in our papet, these points are efficiently processed
in a single batch, reducing the runtime complexity to O(n).
The MMD function involves pairwise distance calculation
for n clients. By the nature of pairwise calculation, the
complexity of MMD can be represented as O(n?). Let t,,
represent the time of the PLR computation time per batch
and t,maq to represent MMD per time. Thus, the overall
computation time introduced by FLARE can be represented
as O(n - tpir + 1% tima)-
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We further analyze the complexity of a single MMD
calculation with respect to its input size. As presented in
our paper, MMD measures the distance for two clusters
of PLRs where each cluster represents one client model.
Thus, the efficiency of a single MMD calculation depends
on the dimensionality of each PLR and the number of PLRs
within each cluster. The PLR dimensionality is defined by
the number of neurons in the penultimate layer of the neural
network, which is typically much smaller than the input
data dimensions. For example, in the fMNIST and CIFAR
datasets, the penultimate layer has 128 neurons, resulting
in the same PLR dimension for both datasets. The number
of PLRs per cluster equals the number of data points in the
auxiliary dataset, which in our case is only seven, making it
independent of system size. Given the low PLR dimension
and count, unaffected by input data or system size (ie.,
client count), we can treat the computation time ¢,,,,q4 as
a constant.

We also conducted an empirical evaluation of the com-
putational complexity and plotted the runtime of FLARE.
In this experiment, we ran the system using the fMNIST
dataset with varying numbers of clients. As shown in
Fig. 15, the execution time of FLARE is 3.2 seconds when
n = 10 and 28.3 seconds when n = 50, demonstrating that
FLARE is computationally efficient for small to medium-
sized FL systems.

8 CASE STuDY ON YOLO SYSTEM

To further explore the practical effectiveness of FLARE,
we implemented FLARE on a real-time object tracking
system (i.e., YOLOvV5 [41]) to demonstrate its resilience
against model poisoning attacks. Motivated by the wide
application of object detection in distributed tasks, such
as autonomous driving, urban surveillance, and battlefield
situation awareness, we adapted the You Only Look Once
system (YOLO) to a federated learning framework and
named it as FedYOLO. FLARE is built on top of FedYOLO
to evaluate its effectiveness against targeted backdoor MPA
attacks. The following parts will introduce the FedYOLO
system and demonstrate the effectiveness of FLARE on it.

8.1 FedYOLO: YOLO in Federated Learning Setting

YOLO is state-of-the-art, real-time object detection system.
It can detect one or multiple predefined-class objects in an
image with location information by giving bounding boxes
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and correlated confidence. Compared with the image clas-
sification tasks, the training dataset image needs to specify
the class of each object and the location information of every
object in the whole image [42], [43].

Testing:

Fonﬂdence
 Output.

Car: 0.92

Bounding

Model

Fig. 16. FedYOLO Design. In the training phase, local clients submit
their local model to PS. PS utilizes FLARE to estimate the trust score
for each update. It then aggregates the model updates weighted by their
trust scores and updates the global model. In the testing phase, FedY-
OLO users deploy the well-trained global model for object detection.

As illustrated in Fig. 16, FedYOLO incorporates the
federated learning framework into the YOLO system. The
training phase is comprised of local training at local devices
and model aggregation at PS. The bottom of Fig. 16 depicts
the local training phase. Each node follows the conventional
training process of YOLO systems. As shown in the figure,
the input training data contains multiple objects marked
by bounding boxes. Each bounding box is defined by four
parameters, by, by, by, by, where the first pair b,, b, is the
center coordinate of the box, and the following pair by, by,
is the normalized height and width of the box. The ground-
truth annotation y of the training data is a tensor containing
the class label and the bounding box location (b, by, by, by,)
for all the objects. The deep neural network model used in
YOLO comprises a backbone, a neck, and a head. Backbone
is a convolutional neural network that extracts the features
from the raw images. The neck contains multiple neural
network layers that reprocess the features passed by the
Backbone. The head network is designed for taking the mid-
products by Neck and Backbone as input and predicting the
location and the corresponding confidence of each bounding
box. The detail of the model architecture can be found at
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https:/ / github.com /ultralytics /yolov5.

At the parameter server, as shown in the middle layer
of Fig. 16, there are two important functions: FLARE and
Aggregator. FLARE is responsible for evaluating the trust-
worthiness of each client’s update, while the aggregator
combines the updates weighted by their trust scores ob-
tained from FLARE. The training process between local
clients and the parameter server is performed iteratively
until the global model converges.

In the testing phase, the model takes an input image
and outputs the class, confidence, and bounding box. The
general workflow in testing is shown in Fig. 17. FedYOLO
partitions the input into S x S grids, and each grid contains
B bounding boxes whose center is located in the grid. The
output for each grid is a tensor ¢;, in which the p. is the
probability /confidence that the box contains the predicted
object. The following four parameters are b,, by, by, by, indi-
cate the location of the bounding box. The last two param-
eters ¢y, cp represent the classes (i.e., 2 classes in this case).
[c1,c¢2] is a one-hot vector where [c1, c2] = [0,1] indicates
that the object in this box is from the second class. The
prediction for the whole image is a tensor 7 that aggregates
the results of all the grids with the size of Sx.Sx B(5+C). To
avoid the objects being multiple-counted, FedYOLO follows
YOLO to suppress the bounding boxes with a probability
that is lower than a predefined threshold. The box removal
scheme is named non-max suppression, which removes
redundant boxes for the same object.

2. Each gird predict B bounding boxes, C Classes
P, (B=2,C=2)
/ by
/I h/‘ by regate
(berby) bu| Aimes
by, —
. T o
ne?| 9=

3.Return the bounding boxes above confident threshold

Fig. 17. YOLO Multi-Object Detection Workflow.

8.2 Evaluations on FedYOLO
8.2.1 Federated Learning Settings

In the implemented FedYOLO system, we consider a feder-
ated learning system with 10 clients. In each FL iteration, PS
selects all local updates for aggregation (i.e., the selection
radio equals 1.0). Each client manages a YOLOv5 model
locally [44]. We utilized a military and civilian vehicle
dataset containing 6772 images of military trucks, tanks, mil-
itary aircraft, military helicopters, civilian cars, and civilian
aircraft [45]. To simulate the federated learning system, we
divide the dataset evenly into 10 subsets for local training. In
our experiment, PS processes an auxiliary dataset containing
5 tank images.

8.2.2 Results in Attack-free Scenario

We evaluate the detection performance of FedYOLO and
show the performance in Fig. 18. In each image, there is
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a colored bounding box to indicate the object’s location.
Above the upper boundary of the bounding box are the
corresponding prediction class and confidence level. From
the results, we can see FedYOLO can correctly detect civilian
aircraft, military aircraft, military helicopters, military cars,
civilian cars, and tanks with relatively high confidence in
the attack-free scenario.

Fig. 18. Performance of FedYOLO in differentiate military and civilian
objects in the attack-free scenario.

8.2.3 Results under Backdoor Attack

We implement a backdoor attack [46] at a subset of local
clients to evaluate the vulnerability of the FedYOLO system.
In our system, we assume three out of ten clients are
malicious. The malicious goal of compromised clients is to
mislead the global model to detect a civilian vehicle object as
a military one. To achieve the attack goal, malicious clients
will add a pattern to the local training dataset. The pattern
generation procedure is as follows: attackers calculate the
central coordinate of a target object (i.e., a civilian car) and
then add a sequence of “x” marks to the center, as shown in
Fig. 19. Specifically, the malicious client replaces the original
pixel in the targeted location with a sequence of white “x”
marks. The attacker flips the class label of the civilian car to a
military car accordingly. We evaluate the effectiveness of the
backdoor attack in the FedYOLO system using testing data
injected with the aforementioned pattern. For illustration
purposes, we picked four civilian cars (with the pattern
injected). As shown in the upper row of Fig. 20, we can
see that the FedYOLO model misclassifies all four civilian
cars into military cars with high confidence, indicating the
backdoor attack is successful.

8.2.4 Results with FLARE

We apply FLARE to FedYOLO to defend against MPAs. As
the YOLO models do not have two fully connected layers
on the output side, PLR is not available. To address this
challenge, we propose to use the representation in the last
layer of the backbone as an alternative. To demonstrate the
effectiveness of FLARE in detecting MPAs, we provide a
comparison of FedYOLO with FLARE and without pro-
tection. The upper row of Fig. 20 shows the performance
of FedYOLO without protection but under attack, while
the bottom row shows the performance of FedYOLO with
FLARE and under attack. We can see that the detected
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Fig. 19. Targeted Back-Door MPA add malicious Patterns to training
dataset

mt‘ul oL
B !
M|| itary_Car 0.69 Military_Car 0.51

b S | e

Fig. 20. Detection Performance. Upper row: under backdoor attack.
Bottom row: under attack and with the protection of FLARE.

classes for the two settings are completely different. When
FLARE is not incorporated, the FedYOLO system will rec-
ognize civilian cars as military cars with high confidence.
On the contrary, FedYOLO incorporated with FLARE can
correctly detect all civilian cars as the ground truth with
high confidence. From this comparison, we demonstrate the
effectiveness of FLARE in building resilience of FedYOLO
systems against backdoor attacks. The underlying reason for
such resilience is that FLARE will minimize the trust scores
of the malicious local updates. Therefore, the impact of
backdoored model will be minimized on the global model.
The trained model is robust against the backdoor attack (i.e.,
correctly classifying objects).

9 DISCUSSIONS

FLARE has demonstrated its effectiveness in various set-
tings while it requires the server to have a small auxiliary
dataset. To mitigate the limitation, we have reduced the
number of required data points to seven. In future work, we
plan to explore the possibility of utilizing public datasets
with similar distribution as auxiliary datasets. It is promis-
ing as the central server is expected to know the task and
the required data categories. Therefore, it is not trivial for
the server to search for a small auxiliary dataset from the
Internet with similar distributions. We leave it for future
work.

Another limitation of our work is its robustness of
FLARE against various malicious client ratios. As shown
in Fig. 12b, the performance of FLARE begins to degrade
when the malicious client ratio reaches approximately 0.3.
The proposed approach is expected to be effective when the
proportion of malicious clients is less than half of the total
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clients. This performance degradation stems from our client
selection method. In our experimental setup, we used 50
clients in total. With a malicious ratio of 0.3, 15 clients are
set as malicious. If all 50 clients are selected, the malicious
ratio remains fixed at 0.3. However, in each learning round,
we select only 10 clients, and it is possible that all 10 selected
clients may be malicious. Moreover, the probability that
more than five clients in the selected group are malicious is
significant. We plan to further investigate how subsampling
impacts the method’s robustness in future work.

10 CONCLUSIONS

In this paper, we propose a robust aggregation algo-
rithm FLARE to protect FL against MPAs. Through anal-
ysis and experimental visualization, we demonstrate that
the PLR vector has high potential in differentiating mali-
cious/poisonous models from the benign ones. Based on
the PLR technique, FLARE effectively minimizes the im-
pact of malicious/poisonous models on the final aggrega-
tion by assigning low trust scores to those with diverging
PLRs. Through a comprehensive evaluation, we show that
FLARE significantly outperforms existing defenses (i.e.,
BRARs and FLTrust) in defending against state-of-the-art
MPAs, including semantic backdoor attacks, trojan attacks,
and untargeted attacks on three popular datasets. Further-
more, FLARE also shows its effectiveness amid non-i.i.d.
data and adaptive attacks, demonstrating its applicability to
challenging real-world scenarios.
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